Lab Test Requirements

ECE532S Digital Systems Design

January 8, 2012

For the lab test on February 1, 2011, you should do the following two tasks. Although you may work on the tasks as a group, each person in the group should be prepared to demonstrate and answer questions about any part of any of the tasks. Individual grades will be assigned. This is worth 5% of your final grade. If you do not have this exercise prepared in advance, you will be assigned a grade of 0%.

There will also be a short written component held at the end of the lecture on Thursday, Feb. 2, starting at approximately 9:40am lasting for about 15 minutes. Please make sure you are there.

Please ensure that you have signed up for a demo time slot. Contact your TA if you do not have one yet.

1. Build a MicroBlaze system that can blink an LED at the rate of once per second based on interrupts from a timer. The program should run until a character is typed on the serial port.

Add the snoopy core from Module m05 to determine:

- (a) The time it takes to execute the interrupt service routine;
- (b) The number of times the interrupt service routine is called.
- 2. Using the HDL of your choice, develop a synthesizable block that implements a simple 16 by 16 sequential multiplier. See Figure 6.7, page 379, in *Computer Organization*, Hamacher, Vranesic and Zaky, 5th ed.

The block has the following ports:

clk Input: the clock

reset_b Input: an active low reset signal

mer[15:0] Input: the 16-bit multiplier

mand[15:0] Input: the 16-bit multiplicand

go Input: the signal to start the operation

product[31:0] Output: the 32-bit product

done Output: the signal that indicates the product is valid

The block operates as follows:

- (a) The **reset_b** signal is set to 0 for a few cycles to reset the state machine.
- (b) The operands are made available at the inputs.
- (c) When go goes high, the multiplier and multiplicand are stored in internal registers.
- (d) After the operands are stored, the block uses a sequence of shift-and-add operations to do the multiplication.
- (e) When the multiplication is completed, the done signal is raised.

Your task is to:

- (a) Simulate this block using ModelSim.
- (b) Show a simple testbench using either ModelSim scripts or using an HDL.
- (c) Develop enough tests to convince someone that it is working.

- (d) Show the results of some tests with a waveform viewer.
- (e) Use ISE to synthesize the block and show that it can synthesize without errors. You do not need to actually load the chip and show it working in the hardware.