
University of Toronto
ECE532 Digital Hardware

Module m05: Adding a User-Designed Peripheral

Version for EDK8.1i May 10 2006

As of EDK8.1i, there is now a wizard, the Create/Import Peripheral Wizard that can be used to add user-
designed peripherals into an EDK repository or an XPS project. If you wish to add a peripheral that will be
connected to the OPB or PLB bus, then this tool should make it much easier. At this point, a key limitation
is that it only works for cores written in VHDL. See the Embedded System Tools Reference Manual for more
information on this wizard.

This module was created before the Create/Import Peripheral Wizard was available. The value of doing
this module is to get an understanding of some of the underlying directory structure of an XPS project and
to see how to handle a peripheral that might not exactly fit the model of a typical peripheral. In this case,
the core to be added also has a connection directly to the processor, not just to the bus.

Goals

• Add a user designed peripheral to a basic MicroBlaze system. You will be provided with a core, called
snoopy that is written using VHDL.

• Demonstrate the required structure necessary for interfacing user-designed cores to the Xilinx cores in
an XPS project.

• Learn about how you would make your own core to attach to the OPB.

Requirements

Module 1 Building a base system. Preferably, do Modules 1-4.

Preparation

1. Review the handout outlining the EDK project structure provided in Module 1. We will be focusing
on the pcores subdirectory for this module.

2. Look at Module m09, “Integrating a Verilog design into a MicroBlaze System”. Much of the content
is also applicable to creating VHDL cores. Pay particular attention to the section about “Adding the
design to a MicroBlaze system”.

3. If you are unfamiliar with the profiling of code, read the manual page for “gprof”, which is available
on the ugsparcs with the “man” command.

Background

To this point, you have only been adding cores from the existing library. If you cannot find a core with the
required functionality, you will have to add your own.

This lab adds a simple core that can be used to profile the code running on a MicroBlaze. This has
similar functionality to the “gprof” utility for profiling that is available in the GNU tools. However, it is
much more accurate. You may find it useful for your project.

Step-by-step

1. Copy your working lab1 project into a new directory.

1



University of Toronto
ECE532 Digital Hardware

Module m05: Adding a User-Designed Peripheral

2. Add a pcores subdirectory to your new project directory.

Using an ssh window, login to your ugsparc account. The files you will need for this lab can be found
in m05.zip. Copy: 1) system.c to the code directory of your project; 2) the snoopy v1 00 a directory
into the pcores directory; and 3) the sst script and example results.txt to the root of the project
directory; 4) the OPBInterfaceModule directories to a directory where you can refer to them later.
Note: You may find the “cp -r” command useful. As well, the “mv” command can also be used to
“move” directories.

3. Take time to look through the directory structure of the snoopy core. The naming structure is es-
sential for XPS to be able to detect a user’s peripheral. All user cores must be located in the pcores
subdirectory or in a globally specified path to a peripheral repository. User cores can be defined using
either VHDL or Verilog, but any one core cannot have a mix of HDLs.

Along with the hdl files used to implement the core, the user must also include data files: a .pao file
(Peripheral Analyze Order) and an .mpd file (Microprocessor Peripheral Description). The .pao file
lists the order in which files in your design should be synthesized to resolve component architectures.
The .mpd file describes the external interface of the core to a system. For more information on these
files and their structure, go to the Embedded System Tools Guide.

Notice that the version numbers in the core name and the version numbers in the data file names differ.
The version in the core name is the core’s version. The version in the data file names is the version of
the syntax used to write the data file.

The easiest method for including user IP into an EDK project, is to follow an example. When you
develop your own cores for your project, you can use snoopy as a guide. The cores provided by Xilinx
in the INSTALL_DIR\hw\XilinxProcessorIPLib\pcores directory may also be used as a reference.

You are also encouraged to look around through the directories in the EDK installation because there
is a lot of source code available that might help you or guide you with your own designs.

4. The snoopy core is a snooping profiler that is able to profile software running on a softcore processor in
real time. The counters calculate the exact number of clock cycles spent executing contiguous address
ranges. The user specifies the number of counters and the lower and upper bounds for each counter
before synthesis. This information can be used by embedded system designers to determine which, if
any, sections of the software should be moved to hardware to achieve the required design specifications.

5. Open the IP Catalog tab located in Project Information Area. The snoopy core should appear in the
sub-list of Project Repository. Add the snoopy core by right clicking the snoopy core and select “Add
IP”. The core will appear in the list of System Assembly View. Connect it to the slave opb bus by
clicking the green empty circle associated with the core. The core requires 0x100 bytes and a 0x100
byte alignment. Since the tools resolve connections to the opb and lmb buses based on the address
of a peripheral, we suggest address range 0xffffff00 to 0xffffffff to guarantee the peripheral resides on
the opb. Double click SOPB sub-list under snoopy 0 to view the parameters associated; the default
setting of address range is fine.

6. For the snoopy core to work, it must be interfaced with the system clock, and the PC EX and valid instr
ports on the Microblaze core. In System Assembly View, select the Ports filter and connect the clock
from the snoopy core (OPB Clk) to the system clock. Generally, the connection can be done by
changing the corresponding name in “Net” column. The default setting for system clock is correct
here. Unfortunately, the PC EX and valid instr ports on the snoopy core are not visible through the
Add/Edit core interface. Therefore, they will have to be added manually to the hardware description.

7. Choose Project tab in Project Information Area and double click system.mhs file under Project Files
menu to open the file. You are going to edit this file by hand. It is important to remember that this
file contains the project description used by XPS to generate your MicroBlaze system.
Please note that amending system.mhs in XPS GUI is a new feature in version 8.1i. If you are about
to use an earlier version of XPS GUI, you need to close it and go to your project directory to modify
the system.mhs file when XPS is not running.

2



University of Toronto
ECE532 Digital Hardware

Module m05: Adding a User-Designed Peripheral

8. You are going to add two lines of code to the MicroBlaze and snoopy module descriptions. Each module
description begins with a BEGIN <module type>. Look for the MicroBlaze core and the snoopy core
and add the following two lines just before both END statements:

PORT PC EX = PC EX
PORT valid instr = valid instr

9. Save and close the mhs file. You will notice that the design is updated from the console window
message. Go back to System Assembly View, under the ports filter , you should now see that the
valid instr and PC EX ports of the processor have been connected to snoopy.

10. The core lets you set a reset address for clearing the counters, the number of counters you want to use
(maximum of 16) and the upper and lower bounds for the instruction addresses. Choose an address
that is within the address range assigned to the core. (Hints: if you used the suggested address range
for the core, the default reset address, 0xffffffe4, will be fine.) In order to view or change these settings,
double click the SOPB line under “snoopy 0” in System Assembly View.

11. Select Application Tab, remove the old system source file and add the new source file you copied
into the code directory, system.c. In Software menu, select “Generate Libraries & BSPs” to generate
software library. Then compile the new source file by selecting “Build All User Applications”. If you
get an error, go to the compiler options menu and verify that the executable is being placed in the
appropriate directory. From Project menu, launch EDK shell and disassemble your executable into a
file.

12. Open the disassembled file to determine the address ranges you will profile. You will be selecting
contiguous address ranges to profile based on function calls. Double click snoopy 0,SOPB to edit the
parameters for the snoopy core to profile the following functions:

Counter Function

0 start
1 exit
2 crtinit
3 main
4 exception handler
5 interrupt handler
6 program clean
7 program init
8 print
9 putnum
10 outbyte
11 XUartLite SendByte
12 XUartLite RecvByte
13 All Functions (complete program)

The lowerbound should be the starting address of the function and the upperbound should be the
address of the last instruction in the function. Change the default value for the NUM COUNTERS
parameter to 14.

13. Now you can generate the bitstream to download onto the FPGA.

14. After the bitstream has been downloaded onto the FPGA, start up the XMD window. Connect to
the XMD stub. Remember that when you start up the XMD window you will be in the project root
directory and the executable.elf file is in the mb0 default subdirectory.

15. The sst script you copied to your project directory can be used to read the counters. To reset them, use
the memory write command in the XMD window: mwr reset address <value>, where the reset address
is one of the core parameters. The counters are designed to reset independent of the written value.
Type “source sst” and a file res.out will be generated. Open the file res.out to view the values stored

3



University of Toronto
ECE532 Digital Hardware

Module m05: Adding a User-Designed Peripheral

in each of the 64-bit counters. The most significant portion is stored in 0x00 and the least significant
portion in the 0x04 address. As you have just reset the counters, all the values should be zero.

16. Open the GDB Debugger and connect to the target. The assembly listing of the main routine should be
visible, with the program counter set to 0x800. Set a breakpoint at the very last assembly instruction
in main, and execute the program using the “Continue” button. Remember, do not click the “Run”
button as GDB will try to re-download the code before execution. This feature does not work due to
a bug in the tools.

After you have run your application, you can check the new counter values again using the sst script.
Open res.out to see what the values for each counter are. Are they all non-zero values? Why or why
not? (Hint: look at the disassembled code to understand the values.) Each counter is 64-bits wide,
and the numbers in res.out are given in big-endian format.

17. Now copy res.out to res.bak. Reset the counter values as previously instructed and rerun the program.
Run the sst script again and look at the values of the counters. Are they all the same as the values
in your res.bak file. Why or why not? You should compare your results to those found in the file
example results.txt to verify the counter values.

18. You can also use the counters to determine how many clock cycles are required to execute a single
instruction by setting both the upper and lower bounds to the same address. If the instruction is
executed only once, the number of clock cycles should be the same as what is specified in the MicroB-
laze processor manual. Familiarize yourself with the available XMD commands or change the core
parameters to better understand how your application runs on the MicroBlaze processor.

19. Look at the OPBInterfaceModule files that you can use as templates when creating your own core for
the OPB. Your Verilog or VHDL code will go in the subdirectory of the “hdl” directory. You will need
at least an .mpd and .pao file in the “data” directory. If your core makes use of components that are
in netlist format instead of HDL, you will need a .bbd file.

Look at Next

Module 6: Using ISE
Module 8: Using ZBT Memory
Module 10: Using FSLs
Module 12: Using ChipScope
Module 13: MBlaze MP3 Decoder

4


