
University of Toronto
ECE532 Digital Hardware

Using External ZBT Memory

Version for EDK 8.1i, May 10 2006

1 Goals

You will be learning how to connect external memory to the OPB bus controller.

If you wish to use a controller that does not have the OPB bus interface you should still go through this
module to become familiar with the clocking issues and then look at Section 7.

2 Background

In previous designs you have used internal memory structures instantiated within the FPGA. This memory
has been connected to the LMB (the Local Memory Bus). The external memory on the Multimedia Board
is ZBT memory and will be connected to the system with the OPB (On-chip Peripheral Bus).

External memory can be connected to an EDK system using Xilinx’s External Memory Controller (EMC)
core. The EMC is an OPB peripheral that can connect up to 8 external banks into the address space of the
MicroBlaze.

The Base System Builder wizard has the ability to create a design that contains a connection to a sin-
gle ZBT bank. The design provided by the Base System Builder works. However, it does not properly
handle the memory clocking. In more complicated designs, the clock synchronization becomes very relevant.
This document describes how to modify the design provided by the Base System Builder so that the clock
to the external memory is properly synchronized to the internal clock.

For high-speed interfaces, such as the ZBT memory, it is necessary to account for delays through the FPGA
and on the traces of the PCB. The Digital Clock Manager (DCM) available on the Xilinx Virtex II FPGA
can be used to account for these delays.

A clock feedback wire, with delay equal to the clock lines to the five memory chips according to the Multi-
media User Guide, is available to align the phase of the internal clocks to the clock arriving at the memory
chips using a DCM.

The Multimedia board contains a total of five banks of ZBT memory, providing 10MB of space. After
learning how to use the EMC to connect to a single bank, this document will address how to connect all five
banks.

3 Requirements

Module 1: Building a Base System
Module 2: Adding Drivers and IP

4 Preparation

• Summaries of how to connect external memories are given in the “Connecting to Memory” section of
the documentation for the OPB External Memory Controller Core.

• You might also want to look at the Xilinx DCM (Digital Clock Manager) documentation found in the
Virtex II FPGA data sheet.

1



University of Toronto
ECE532 Digital Hardware

Using External ZBT Memory

5 Connecting a Single ZBT Bank

5.1 Step-by-step

1. Create a new system with Base System Builder as you normally would. Ensure that in ZBT 512Kx32 is
selected with the OPB EMC option in the Configure Additional IO Interfaces screen. You may also wish
to select Generate Sample Application in the Software Configuration screen as the application includes a
test of the ZBT memory.

2. The created project should include one dcm 0 DCM module already. By selecting IP Catalog tab from
Project Information Area, add another instance of dcm module. The two DCM modules will be used
to create the clocking scheme shown in Figure 1. Add the following to the ports table for each of
the DCM modules: CLKIN, CLKFB, RST, DSSEN, PSEN, CLK0, LOCKED. Set them all as internal in
scope. The default setup should be fine.

CLKIN

CLKFB

CLK0
External Clock

DCM

OPB_Clk

Synchronous Memory Bank

BUFG OBUF

FPGA

Syncmem_Clk

CLKIN

CLKFB

CLK0

DCM

S
yn

cm
em

_C
lk

_f
b

CLK

Figure 1: The clocking scheme required for external ZBT memory with clock feedback (Taken from Xilinx’s
OPB EMC datasheet).

Connect the ports of the first DCM module to the following nets.

RST dcm rst
CLKIN sys clk predcm
CLKFB sys clk s
PSEN net gnd
DSSEN net gnd
CLK0 sys clk s
LOCKED opb dcm locked

Connect the ports of the second DCM modules to the following nets.

RST dcm rst
CLKIN sys clk s
CLKFB zbt dcm feedback
PSEN net gnd
DSSEN net gnd
CLK0 zbt dcm clk
LOCKED zbt dcm locked

2



University of Toronto
ECE532 Digital Hardware

Using External ZBT Memory

3. Locate the system port that connects the external sys clk pin to the net sys clk s. Change the net to
sys clk predcm.

4. Using the Add External Port button from System Assembly View, create an output port named
ZBT 512Kx32 EMC CLK FEEDBACK OUT and an input port ZBT 512Kx32 EMC CLK FEEDBACK IN.
It is not necessary to classify the ports as CLK signals. Connect the two new ports to the zbt dcm clk
and zbt dcm feedback nets respectively. Change the C CLKIN PERIOD parameter for each DCM to
37.037. The default values for the other parameters should be sufficient. The DCM will lock when the
edges of its CLKFB and CLKIN inputs are aligned.

5. Locate the generated port ZBT 512Kx32 EMC CLK OUT. This was generated by System Builder. No-
tice that it is by default connected to sys clk s. Connect it to zbt dcm clk instead.

6. Edit the system.ucf file to connect the two new ports to appropriate pins. This can be accomplished
by adding the following lines.

Net ZBT_512Kx32_EMC_CLK_FEEDBACK_IN LOC= AE15;

Net ZBT_512Kx32_EMC_CLK_FEEDBACK_IN FAST;

Net ZBT_512Kx32_EMC_CLK_FEEDBACK_OUT LOC= AH14;

Net ZBT_512Kx32_EMC_CLK_FEEDBACK_OUT FAST;

7. The DCM takes time to synchronize the clocks and lock. During this time, it is undesirable for the
MicroBlaze or other components to be operating. The LOCKED signal of the DCM can be used to
keep other components in a reset state until the DCM is ready. A custom core clk align v1 00 a has
been created that helps accomplish this. It can be found in the zip file for this module.

Copy the clk align core into the system’s pcores directory. Restart the EDK and find the core in IP
Catalog tab.

8. Add an instance of the clk align core to the system and add all of its ports. Connect the ports with
the internal connections that follow:

external clk sys clk predcm
extend dcm reset sys rst preclkalign
dcm0 locked zbt dcm locked
dcm1 locked opb dcm locked
fpga reset sys rst s
dcm reset dcm rst

9. Locate the system port that connects the external sys rst pin to the sys rst s net. Alter it so that it
connects to the sys rst preclkalign net.

10. The system is now ready to be built and downloaded. Be aware that Base System Builder connected
the system reset signal to User Switch SW0 on the Multimedia board. It is best to download the system
with the switch in the reset state. However, the signal must be low in order for XMD to connect to
the MicroBlaze.

11. Do a quick sanity check by running XMD and doing a memory read and a memory write to the
address space associated with the ZBT. The address space associated with the ZBT is not the same
as the address space associated with the EMC. To find the address space, check the Parameters tab of
Add/Edit Cores and select the instance of the opb emc.

12. Run the sample application for another quick test of the ZBT memory communications.

3



University of Toronto
ECE532 Digital Hardware

Using External ZBT Memory

6 Connecting Multiple ZBT banks

One solution to connect multiple external memory banks is to use multiple EMCs. However, this is a sig-
nificant waste of FPGA logic since, as mentioned earlier, an EMC is capable of controlling up to 8 external
banks. We will now use an EMC to connect to the 5 ZBT memory banks available on the Multimedia board.

With the exception of the Chip Enable signals, the EMC was designed such that all the external banks
share the same signals (such as the address and data signals). The Multimedia board’s design is not ideal for
this. The pins for each ZBT bank are connected to separate pads on the FPGA. This is fine for most signals,
such as the address lines, since that data can easily be distributed to many of the FPGA pins. However,
complications arise for the data signals since they are bidirectional and involve tristate buffering.

The connection scheme intended to be used with the EMC is shown in Figure 2a. For this scheme to
work, the data pins from each ZBT must be connected together externally—outside of the FPGA. However,
on the Multimedia board, this is not the case. Each ZBT has its own set of pins allocated for it on the
FPGA. This is a non-issue if only one ZBT is being used by the EMC (as we have done thus far). However,
if more than one ZBT bank is present the connection scheme shown in Figure 2b is required. Each ZBT
bank requires its own set of tristate buffers.

Thus, the task of connecting multiple ZBT banks largely consists of adjusting the EMC so that it can
adhere to the required connection scheme.

T

O

I

FPGA
Bank 0 Bank 2

Bank 1 Bank n-1

EMC

(a) The data signal connection scheme in-
tended for use with the EMC

FPGA

Bank 0

Bank 2

Bank 1

Bank n-1

T

O

I

(b) The required signal connection scheme
on the multimedia board

Figure 2: The expected and the necessary connection schemes for external memory

6.1 Step-by-step

1. Since an altered version of the EMC will be used to connect the external ZBT banks, we will not be
using the EMC used in the first part of this lab. Create a new system using Base System Builder that
does not contain an EMC. This will avoid any conflict in the .ucf file.

2. Locate the opb emc core in the hardware library found in the directory within which EDK is installed.
It can be found in EDK/hw/XilinxProcessorIPLib/pcores. Copy the opb emc v1 10 b directory into
your design’s pcores directory. Change the version number in the directory’s name so that when
the altered EMC core is added, it can be distinguished from the original. For example, rename the
directory to opb emc v1 10 c.

3. Examine the files in the core’s hdl/vhdl directory. Although you may be more familiar with Verilog,
you should be able to decipher that according to the HDL, the EMC has 3 ports for the data: Mem DQ I,
Mem DQ O and Mem DQ T. The core is configured so that the EDK generates tristate buffers based
on these signals. We will be altering the configuration so that these signals are exposed instead.

4



University of Toronto
ECE532 Digital Hardware

Using External ZBT Memory

4. Open opb emc v2 1 0.mpd in the core’s data directory. Within the Ports section locate the Mem DQ
port. Notice that it has its DIR option set to INOUT. This causes the EDK to look for the three
signals mentioned above and form a set of tristate buffers. Replace the single port declaration with
the following three port declarations.

PORT Mem_DQ_I = "", DIR = IN, VEC = [0:C_MAX_MEM_WIDTH-1], PERMIT = BASE_USER

PORT Mem_DQ_O = "", DIR = OUT, VEC = [0:C_MAX_MEM_WIDTH-1], PERMIT = BASE_USER

PORT Mem_DQ_T = "", DIR = OUT, VEC = [0:C_MAX_MEM_WIDTH-1], PERMIT = BASE_USER

5. When sending data out, it is sufficient to send the data to all 5 banks since only the bank with its
Chip Enable signal high will register the data. However, when reading data from the ZBTs, the data
lines from each bank must be multiplexed using the Chip Enable signal to select which bank’s data is
valid and should be sent to the EMC. A custom core has been created to do this.

Locate the zbtio core in the zip file and copy it into your design’s pcores directory. The zbtio core
multiplexes the data input. It also provides the tristate buffers for each chip and splits up some vectored
signals into individual lines for convenience.

6. If the system is open in the EDK, close and reopen it so that the newly added cores are available. Use
IP Catalog tab to add an instance of opb emc and zbtio.

Verify that the opb emc that was added is in fact the modified one by checking the IP version column
of the System Assembly View tab. It should be the version that was changed in the core’s directory
name (1.10.c if you followed this text’s example). Provide the EMC an address space of 0x1F. This is
the address space of the controller; not the memory being controlled. Connect the EMC as a slave on
the OPB.

7. Add the following ports of the EMC: OPB Clk, Mem WEN, Mem OEN, Mem DQ T, Mem DQ O,
Mem DQ I, Mem CKEN, Mem CEN, Mem BEN, Mem ADV LDN, and Mem A. Connect OPB Clk to
sys clk s. All the ports should be internal in scope.

8. Add all the ports of the zbtio core. Make the following connections between the zbtio core and the
opb emc core. (Note that for them to be connected, they must share the same net in the Net Name
column. The information in the table below cannot be simply typed in.) All the connections should
be internal in scope.

zbtio opb emc
emcchipselect Mem CEN
emcoen Mem OEN
emc2zbt data Mem DQ 0
zbt2emc data Mem DQ I
tribuff enable Mem DQ T

9. Connect the following ports of the zbtio core to the external ports indicated. The connections should
be external in scope as they refer to pins that will be listed in the .ucf file (it will be edited later).
Note that a value in the range column is required for the multi-bit data signals.

5



University of Toronto
ECE532 Digital Hardware

Using External ZBT Memory

zbtio port External Port Range
bank0data MEMORY BANK0 DATA [0:31]
bank0ce MEMORY BANK0 CEN
bank0oen MEMORY BANK0 OEN
bank1data MEMORY BANK1 DATA [0:31]
bank1ce MEMORY BANK1 CEN
bank1oen MEMORY BANK1 OEN
bank2data MEMORY BANK2 DATA [0:31]
bank2ce MEMORY BANK2 CEN
bank2oen MEMORY BANK2 OEN
bank3data MEMORY BANK3 DATA [0:31]
bank3ce MEMORY BANK3 CEN
bank3oen MEMORY BANK3 OEN
bank4data MEMORY BANK4 DATA [0:31]
bank4ce MEMORY BANK4 CEN
bank4oen MEMORY BANK4 OEN

10. As you might be noticing, setting up these all these ports is repetitive and tedious using the EDK GUI.
You may find it useful to add ports by directly editing the system’s MHS file. The file can quickly be
accessed via the Project tab in the Project Information Area. Create some of the connections below
using the GUI. Using the connections made in the GUI as an example, create the remaining by directly
modifying the MHS file. Check the results using the GUI.

The following ports are the signals shared by all 5 ZBT banks. Use the Add Port button to create
a system port. The system ports name will refer to a definition in the .ucf file. Connect the system
port to the indicated port on the opb emc by ensuring that they share the same net in the Net Name
column (do not just type the information in the table).

System port EMC Port Range
MEMORY BANK0 ADDR Mem A [0:31]
MEMORY BANK0 ADV LDZ Mem ADV LDN
MEMORY BANK0 BEN Mem BEN [0:3]
MEMORY BANK0 CLKEN Mem CKEN
MEMORY BANK0 WEN Mem WEN
MEMORY BANK1 ADDR Mem A [0:31]
MEMORY BANK1 ADV LDZ Mem ADV LDN
MEMORY BANK1 BEN Mem BEN [0:3]
MEMORY BANK1 CLKEN Mem CKEN
MEMORY BANK1 WEN Mem WEN
MEMORY BANK2 ADDR Mem A [0:31]
MEMORY BANK2 ADV LDZ Mem ADV LDN
MEMORY BANK2 BEN Mem BEN [0:3]
MEMORY BANK2 CLKEN Mem CKEN
MEMORY BANK2 WEN Mem WEN
MEMORY BANK3 ADDR Mem A [0:31]
MEMORY BANK3 ADV LDZ Mem ADV LDN
MEMORY BANK3 BEN Mem BEN [0:3]
MEMORY BANK3 CLKEN Mem CKEN
MEMORY BANK3 WEN Mem WEN
MEMORY BANK4 ADDR Mem A [0:31]
MEMORY BANK4 ADV LDZ Mem ADV LDN
MEMORY BANK4 BEN Mem BEN [0:3]
MEMORY BANK4 CLKEN Mem CKEN
MEMORY BANK4 WEN Mem WEN

6



University of Toronto
ECE532 Digital Hardware

Using External ZBT Memory

11. Since the opb emc core is able to control several types of external memories, parameters must be used
to ensure proper commutation with the ZBTs. Customize the following parameters of the opb emc.

C NUM BANKS MEM 5
C INCLUDE DATAWIDTH MATCHING 0 0
C INCLUDE DATAWIDTH MATCHING 1 0
C INCLUDE DATAWIDTH MATCHING 2 0
C INCLUDE DATAWIDTH MATCHING 3 0
C INCLUDE DATAWIDTH MATCHING 4 0
C SYNCH MEM 0 1
C SYNCH MEM 1 1
C SYNCH MEM 2 1
C SYNCH MEM 3 1
C SYNCH MEM 4 1
C OPB CLK PERIOD PS 37037
C DEV MIR ENABLE 0
C MEM0 BASEADDR 0x80600000
C MEM0 HIGHADDR 0x807fffff
C MEM1 BASEADDR 0x80800000
C MEM1 HIGHADDR 0x809fffff
C MEM2 BASEADDR 0x80a00000
C MEM2 HIGHADDR 0x80bfffff
C MEM3 BASEADDR 0x80c00000
C MEM3 HIGHADDR 0x80dfffff
C MEM4 BASEADDR 0x80e00000
C MEM4 HIGHADDR 0x80ffffff

The BASEADDR and HIGHADDR parameters define the address space associated with each bank.

12. As was done when connecting a single external bank, the ZBTs must be driven by the clocking scheme
shown in Figure 1.

Follow the directions in “Connecting a Single ZBT Bank” to implement the clocking scheme. However,
the .ucf file that will be used will have a different naming convention. Create the following external
ports with the Add External Port button in the System Assembly View. These ports will replace the
ports beginning with ZBT 512Kx32 that were used when connecting a single bank.

Port Net
MEMORY CLOCK FB IN zbt feedback
MEMORY CLOCK FB OUT zbt clk
MEMORY BANK0 CLK zbt clk
MEMORY BANK1 CLK zbt clk
MEMORY BANK2 CLK zbt clk
MEMORY BANK3 CLK zbt clk
MEMORY BANK4 CLK zbt clk

13. Open the system’s data\system.ucf file. Like the MHS file, it can be accessed from the System tab.
Find the file zbt.ucf in the zip file. Append the contents of this file to data\system.ucf. This file
contains the pin mappings written in the Multimedia Board’s user guide. (For future reference, the
User guide contains an error at Memory Bank3 Addr4 assigning it to AF4 rather than AF3. The file
zbt.ucf contains this correction.)

14. Save the file, build and download the system to the FPGA.

15. Do a quick sanity check with XMD to ensure that the ZBT are being accessed. This can be done with
memory write and memory read commands on an address allocated for a ZBT.

7



University of Toronto
ECE532 Digital Hardware

Using External ZBT Memory

16. Write a simple program to test writing and reading to the ZBTs. Below is an example program. It
writes each word’s (MicroBlaze) address to the ZBT and reads it back. Check xparameters.h for the
definitions suitable for your system.

#include <stdio.h>

#include "xparameters.h"

#define UINT unsigned int

int main()

{

UINT * mem = (UINT*)XPAR_OPB_EMC_0_MEM0_BASEADDR;

xil_printf("Writing to Mem\n\r");

while(mem <= (UINT*)XPAR_OPB_EMC_0_MEM4_HIGHADDR)

{

*mem = ((UINT) mem );

mem++;

}

xil_printf("Reading from mem\n\r");

mem = (UINT*)XPAR_OPB_EMC_0_MEM0_BASEADDR;

while(mem <= (UINT*)XPAR_OPB_EMC_0_MEM4_HIGHADDR)

{

if(*mem != ((UINT) mem))

xil_printf("Error at 0x%X = 0x%X\n\r",mem,*mem);

mem++;

}

xil_printf("Done\n\r");

}

17. External memory is often useful for programs which are too large to fit within the internal block ram.
Create a new software project named dhrystone in the system and add the dhrystone code found in the
zip file for this module. The dhrystone program is a large program which can be run off the ZBTs.

18. Double click on the new software project’s Compiler Options. Change the Program Start Address to
0x80600000. Compile the program.

19. Using XMD, download the program to the ZBTs by typing dow dhrystone/executable.elf. Then
run the program by typing run. Dhrystone should send text to the standard output if it is running.

6.2 Other Examples of Multiple Memory Banks

The previous example is intended to run at 27MHz. There are two other examples of designs that run at
50MHz and 100MHz. The zip files are available on the web site as is a diagram of the DCM configurations.
Note that the DCMs are configured differently from the example above.

No timing analysis has been done to determine the actual timing margins of these configurations. This
is an exercise left for the reader.

No DCM phase shifting is used. With some timing analysis, some DCM shifting might make the design
more robust. Experimentally these designs work and are offered as examples.

8



University of Toronto
ECE532 Digital Hardware

Using External ZBT Memory

7 Using the ZBT Memories without an OPB Bus Interface

If you want to connect hardware directly to the ZBT memories without using the OPB bus, then you will
need to use a standalone ZBT controller. There are some links on the EDK Tutorials web page below m08.
You should look at xapp136 to see an overview of how these memories work.

These controllers have not been packaged as cores for EDK.

8 Simulation

If you wish to do simulations that include the ZBT memories, a verilog behavioural model, MMboard ZBT behmod.v

is included in the zip file for this module.

9 Look At Next

Module 13: MBlaze MP3 Decoder

9


