
Configuration and Programming of Heterogeneous Multiprocessors on a
Multi-FPGA System Using TMD-MPI

Manuel Saldaña, Daniel Nunes, Emanuel Ramalho and Paul Chow
Department of Electrical and Computer Engineering

University of Toronto
Toronto, ON, Canada M5S 3G4

email: {msaldana,dnunes,eramalho,pc}@eecg.toronto.edu

Abstract

Recent research has shown that FPGAs have true poten-
tial to speedup demanding applications even further than
what state-of-the art superscalar processors can do. The
penalty is the loss of generality in the architecture, but re-
configurability of FPGAs allows them to be reprogrammed
for other applications. Therefore, an efficient programming
model and a flexible design flow are paramount for this
technology to be more widely accepted. Furthermore, in the
history of computers, standards have been a positive expe-
rience because they provide a common ground for research
and development. A programming model for multiprocessor
Systems-On-FPGAs should be standard and application in-
dependent, but optimized for a particular architecture.

In this paper, we use TMD-MPI, a subset implementa-
tion of the message passing standard MPI, and a flexible
system-level design flow to implement heterogeneous Multi-
processor Systems-on-Chip on FPGAs. Hardware engines
are also included into the multiprocessor system by using
a message passing engine, which encapsulates the TMD-
MPI functionality in hardware, to enable the communica-
tion between hardware engines and embedded processors.
We test the functionality and scalability of the system by im-
plementing a 45-processor system across five FPGAs. As a
test example, we solve the heat equation by using the Jacobi
iterations method. Some performance metrics are measured
to demonstrate the impact of different computing cores on
the overall computation.

1 Introduction

As the level of integration in modern silicon chips in-
creases, the computing throughput requirements of new ap-
plications also increases. Currently, the limiting factor of
modern processors is not the number of transistors-per-chip
available but the wire delay and power consumption issues

caused by high frequency operation. An alternative to al-
leviate this problem is the inclusion of multiple lower fre-
quency, specialized computing cores per chip. For example,
microprocessor manufacturers, such as Intel, Sun Microsys-
tems, IBM and AMD have announced their multi-core mi-
croprocessors [9], although they incorporate only a few ho-
mogeneous cores.

Heterogeneous cores can provide further power savings
by specialization [13]. Also, hardware optimization for a
particular algorithm can significantly improve the execu-
tion speed with lower frequencies. Specialized computing
cores can be designed and implemented in FPGAs and their
flexibility allows programmers to configure them as needed.
Some high-performance computer vendors are including
FPGAs in their machines [5, 19, 21], and AMD’s Opteron
processors can be connected to FPGAs using the hyper-
transport protocol [6, 25]. FPGAs have evolved from just
glue logic to embedded systems to entire Systems-on-Chip
and recently to high-performance computing elements. Ini-
tiatives such as the FPGA High-Performance Computing
Alliance [7] and OpenFPGA [15] are examples of research
efforts to incorporate FPGAs into demanding computing
applications.

The capacity of modern FPGAs and the interconnection
of them provide enough resources to implement multipro-
cessor machines to exploit coarse-grain and fine-grain par-
allelism on a massive scale. However, fast communications,
enough memory and fast memory access times, an efficient
programming model, and a flexible hardware-software co-
design flow are mandatory to be able to use all the resources
effectively in multi-FPGA systems.

This paper extends previous work on TMD-MPI [18],
which is a lightweight message passing programming
model for embedded processors, to be used in heteroge-
neous processor systems. We show a number of multipro-
cessor configurations programmed to solve the heat equa-
tion, which is a typical parallel scientific application that

describes temperature change over time, given an initial
temperature distribution. The processors and the commu-
nication links are both heterogeneous, but by using TMD-
MPI the hardware complexities are abstracted from the pro-
grammer. The use of a standardized message-passing ap-
plication program interface promotes code portability and
the changes required to a C code that compiles for a Linux
cluster are minimal in order to be compiled in our testbed
system. To detect and understand possible bottlenecks in
the scalability of the design flow, the programming model,
and the Network-on-Chip infrastructure, we implement a
45-processor system across five FPGAs. We found that the
limiting factor for creating the systems is the on-chip mem-
ory available and the intense computing power required to
synthesize, place and route the designs, and not the design
entry time. The focus of this work is on the design flow,
which will help us to rapidly create prototypes of large sys-
tems that can be used to analyze performance bottlenecks.

The rest of this paper is organized as follows. Section
2 provides some background about concepts from previous
work. Section 3 describes a multi-FPGA prototype system
infrastructure. In Section 4, a multiprocessor system imple-
mented in the prototype machine is explained. Section 5
describes the heat equation problem and how the solution
is implemented in our multiprocessor testbed system. Sec-
tion 6 presents some experiments with the system and the
results obtained. Section 7 explores possible improvements
and future work, and finally Section 8 provides some con-
clusions.

2 Background

In this section we review previous work on the pro-
gramming model, design flow, on-chip/off-chip communi-
cations, and on the classification of computers relative to
the use of FPGAs in the computation.

2.1 Classes of Machines

First, let us specify the scope of the paper by categoriz-
ing the types of high-performance machines; this catego-
rization was first introduced in Patel [16]. As previously
stated, FPGAs are now an active field of research in the
HPC world, and based on the trend to incorporate FPGAs
in computation, high-performance machines are classified
into three categories. The first class of machines consists of
current supercomputers and clusters of workstations with-
out any involvement of FPGAs in the computation. Typi-
cal programming of such machines are coarse-grain paral-
lel programming using message passing or shared memory
libraries depending on how the memory is accessed by the
CPUs.

The second class of computers are those that connect FP-
GAs to CPUs. Such machines can execute application ker-
nels in a FPGA and take advantage of the bit level paral-
lelism and specialized hardware computing engines imple-
mented in the FPGA fabric. Coarse grain parallelism can
be achieved by using a cluster of machines, each one with
its own FPGA [5, 6, 11, 19, 21, 25]. The penalty in perfor-
mance for Class 2 machines comes from the high latency
communication between the CPUs and the FPGA. The pro-
gramming model for these machines is based on libraries to
send data to the FPGA to be processed and to receive the
results; the FPGA acts as a co-processor.

The third class of machines is purely FPGA-based com-
puters. These machines provide a tight integration between
processors and hardware engines because processors can be
embedded into the FPGA fabric. Although these embedded
processors are not as sophisticated as the state-of-the-art su-
perscalar processors, they can adequately perform control,
I/O tasks and some computations. Time critical computa-
tions can be performed in special hardware engines that can
exceed in performance the fastest processor available with
less power consumption. Class 3 machines open the pos-
sibility of exploring heterogeneous computer architectures
to more efficiently use the resources at hand by letting spe-
cialized hardware blocks do what they do best. Although
Class 3 machines are application-specific in nature, recon-
figurability is implicit in the FPGAs and they can be re-
configured as needed. Examples of Class 3 machines are
BEE [3], TMD [16], and the one presented in Charles [2].
In this paper, we focus on Class 3 machines.

2.2 The Abstraction of Communications

In a Class 3 machine, a network infrastructure is re-
quired to enable the communications between computing
elements. Three network tiers are identified and must be
made to provide the view of a single, extensible FPGA
fabric to the programmer [16]. The Tier 1 network is the
network-on-chip inside each FPGA and it is used for intra-
FPGA communications between processors and hardware
blocks. This network is based on point-to-point unidirec-
tional links implemented as FIFOs. This simplifies the
design of hardware blocks and provides isolation between
them, allowing the use of multiple clock domains by us-
ing asynchronous FIFOs. The FIFO is a powerful abstrac-
tion for on-chip communication, and more can be found in
Williams [23]. Several FPGAs can be placed together in the
same printed circuit board to form a cluster. The Tier 2 net-
work would be for inter-FPGA communication on the same
board using high-speed serial I/O links. The Tier 3 network
is reserved for inter-cluster communication allowing the use
of several clusters of FPGAs providing a massive amount of
resources. On top of this network infrastructure, a program-

ming model can be developed to provide a homogeneous
view of the entire system.

2.3 Programming Model

A major challenge in Class 3 machines is the design flow
and the programming model. From the user perspective, a
programming model should provide an efficient method for
implementing applications while abstracting the hardware
complexities. A programming model is defined by the na-
ture of the application and by the architecture of the ma-
chine. Despite the implicit application-specific architecture
of Class 3 machines, the programming model has to remain
generic, but optimized, to be able to use it in other applica-
tions.

The two most common paradigms for parallel program-
ming are message passing and shared memory. This work
is focused on the viability of the message passing paradigm
applied to System-on-Chip design; a study on parallel pro-
gramming paradigms is beyond the scope of this paper. We
use the message passing paradigm because it is well-known
and our testbed system has distributed memory. Also, for
a Multiprocessor System-on-Chip, shared memory over a
shared bus does not scale well with the number of proces-
sors because of congestion in the bus. For distributed mem-
ory machines, message passing has proven to be more scal-
able because memory and communications are not shared.
MPI [22] is the de facto message passing API for program-
ming scientific applications and enables code portability by
standardizing the syntax and semantics of the programming
interface. MPI was originally developed in a joint effort be-
tween academia and industry, and it is used extensively in
the high-performance community.

The idea of using message passing for Multiprocessor
System-on-Chip can be found in recent research [8, 12, 17]
and working groups such as the T-GENAPI from OpenF-
PGA [15], and the Message passing and resource manage-
ment working group from the Multicore Association [14].
MPI is appropriate for Class 3 machines because it provides
a generic application-independent interface, and does not
specify an implementation style or underlying technology.
The MPI implementation is entirely machine dependent, but
not the application program interface, in which the func-
tionality and syntax are standardized. This enables machine
vendors to provide an MPI implementation optimized for a
particular architecture. The entire MPI standard is meant
originally to be used for high-end computers with abundant
resources. However, not all the functionality established
in the standard is required to code a parallel application.
TMD-MPI [18] is a lightweight subset of MPI designed for
embedded systems with scarce memory restrictions. TMD-
MPI does not require an operating system, has a small mem-
ory footprint, and represents a low overhead for the proces-

sor. TMD-MPI is modular and designed in layers, such that
it is easy to port to other platforms. Programmers familiar
with MPI can develop applications using TMD-MPI with-
out having to learn new APIs. The role of TMD-MPI is two
fold; it provides interprocess communication and it enables
the design flow to gradually map high-level descriptions of
an application into hardware.

2.4 Design Flow

The design flow is the set of steps to follow to map an ap-
plication to a particular type of architecture. In Class 1 ma-
chines the design flow is relatively simple because only soft-
ware is involved; just compile and link libraries to create the
final executable code. In contrast, Class 2 and Class 3 ma-
chines involve software and hardware design flows. In par-
ticular, for Class 3 machines, the boundary between hard-
ware and software becomes vague and functionality can be
implemented in both levels; it becomes a tradeoff between
efficiency and flexibility.

Step 1 - Workstation Level

Step 2 - Workstation Level

Step 3 - TMD Level

Step 4 - TMD Level

Application

Prototype

T
M

D
_
M

P
E

A B C

B

Process
A

Process
B

Process
C

A

T
M

D
_
M

P
E

C

TMD-MPI TMD-MPI

MPI MPI

TMD-MPI TMD-MPI

Hardware

Engine A

Embedded

Processor

Hardware

Engine C

Figure 1. Multi-FPGA Design Flow

Figure 1 shows the design flow for our Class 3 ma-
chine [16]. In Step 1, the flow starts by creating the en-
tire application in a standard sequential C/C++ program in a
Linux workstation. In Step 2, the application is parallelized
using a well known MPI distribution, such as MPICH [10];
this is still at the workstation level. In Step 3, the paral-
lel version of the application is ported to the Class 3 ma-
chine using purely embedded processors. At this point, the
MPI implementation used is no longer MPICH, but TMD-
MPI. Because MPICH and TMD-MPI are using the same
standard API, this step should be straightforward. Finally,
in Step 4, those embedded processors that are computing
the most demanding part of the code can be substituted by
faster hardware computing blocks. The hardware blocks

will have to use a message passing engine (TMD-MPE),
which contains the TMD-MPI functionality in hardware, to
allow hardware blocks to communicate with embedded pro-
cessors. Moreover, the TMD MPE can also be used by the
processors to enable more efficient the communications by
relieving the processor from handling the message passing
algorithms.

3 A Class 3 Machine Testbed

This section describes the Class 3 machine testbed sys-
tem that we use to experiment with the programming model
and the design flow to create the multiprocessor designs.
First, we describe the hardware available on the testbed, fol-
lowed by a description of the software used.

3.1 Hardware Infrastructure

Our Class 3 machine prototype is shown in Figure 2. We
use five Amirix AP1100 PCI development boards [1]. Each
board has a Xilinx 2VP100 FPGA [24] with 128 MB of
DDR RAM, 4 MB of SRAM, support for high-speed serial
communication channels, two RS232 serial ports, and an
Ethernet connector. Based on a specific jumper setup, the
FPGA can be configured from the on-board configuration
flash memory, a compact flash card or from a JTAG inter-
face. We use the on-board configuration flash memory as it
can be accessed through the PCI bus.

FPGA

MGT links

mouse,
keyboard
& Ethernet

Pentium 4

RS232

Hard Disk
Connector

PCI Backplane

Figure 2. A Class 3 machine testbed

Each FPGA board is connected to a 16-slot PCI back-
plane, which provides power to the FPGA boards and it is
also used to access the configuration flash on each board.
Additional to the FPGA boards, there is a Pentium 4 card
plugged into the backplane. However, the Pentium proces-
sor is used only for the FPGA configuration and to provide
access to I/O peripherals, such as keyboard, mouse, mon-
itor, and a hard disk drive. The Pentium card is running

Linux and is also used as a terminal to print out all the stan-
dard output from the FPGAs.

The boards are interconnected by a fully-connected
topology of Multi-Gigabit Transceiver links (MGTs), which
are high-speed serial links [24]. Each MGT channel is con-
figured to achieve a full-duplex bandwidth up to 2.5Gbps.
The MGT links form the Tier 2 network for inter-FPGA
communications. Although the infrastructure is present for
a Tier 3 network, its use is scheduled for future work. Xil-
inx 2VP100 FPGAs have 20 MGT channels available, but
only five boards are used because only four MGT channels
have direct connectors to the board. More MGTs are avail-
able through an expansion card, which is not used in this
work.

3.2 Software Infrastructure

In this work, we use the Xilinx EDK/ISE 7.1i suite of
tools to design the multiprocessor system. For multipro-
cessor systems with a small number of nodes, the actual
design entry can be done manually directly coding in the
EDK integrated environment. It is especially easy for ho-
mogeneous multiprocessors where the specification of one
processor can be copied and pasted a few times, and then
the particular parameters for each processor can be modi-
fied. However, for larger systems, the multiprocessor spec-
ification becomes error prone due to the number of connec-
tions in the system. The use of an automated tool is rec-
ommended, such as the System Generator [20], which is a
CAD tool that, based on a graph description of a multipro-
cessor system, generates EDK hardware and software spec-
ification files, as well as some auxiliary files for EDK. After
the system is generated, particular parameters of each core
can be modified.

The design of multiprocessor systems across multiple
FPGAs requires considerable computing power to synthe-
size, place and route. A 40 MHz, 9-processor project takes
approximately 1.5 hours to be generated in a 3 GHz Pen-
tium Xeon computer. The design could be generated with
higher frequencies but the time it takes multiplied by the
number of boards make it extremely time consuming for an
architectural study, as in this paper, where changes to the
hardware requires frequent regenerations of the entire sys-
tem. For this reason, a small cluster of workstations is used
to generate the designs. Each FPGA board in the system has
its own EDK project, and the EDK projects are distributed
among the computers in the cluster. The cluster is used to
generate the bitstreams only; the actual configuration of the
FPGAs is done by the Pentium 4 card in the PCI backplane.

To configure the FPGA using the on-board configura-
tion flash, a PROM binary file is required. For this, we use
the Xilinx promgen utility, which generates PROM memory
files from a bitstream file. The binary files generated by the

cluster are transferred by FTP to the Pentium 4 card. Scripts
on the Pentium 4 card automate the configuration process
of each FPGA using the Apcontrol program [1], which is
a command line interface application developed by Amirix
to access the on-board configuration Flash through the PCI
bus.

In such a distributed environment, it is convenient to
have a centralized repository for the source code of the pro-
cessors; otherwise, there would be as many source files
as projects. Without a centralized scheme, a change in
the code of one library would have to be replicated for
all the projects increasing the risk of source-code version
problems. This scheme is adequate for this particular de-
sign example in which we use a Single-Program-Multiple-
Data (SPMD) programming paradigm to exploit data par-
allelism. However, other paradigms such as Multiple-
Program-Multiple-Data (MPMD) to implement functional
and data parallelism can also be used.

4 A Multiprocessor System in a Class 3 Ma-
chine

At this point, we have described our Class 3 machine
testbed and how it is programmed. In this section, we show
what is inside of each FPGA. We first present the differ-
ent types of processing units and network components, fol-
lowed by an introduction to the message passing engine,
and later we describe the different multiprocessor configu-
rations.

4.1 The Processing Elements

Three different processing units were used in this paper.
First, we use the Xilinx MicroBlaze soft-processor, which
is a processor implemented in the FPGA fabric. We can in-
stantiate up to 13 MicroBlaze processors per FPGA, if they
use 64KB of internal memory and no other logic requires
internal memory blocks. The second processing unit is an
IBM PowerPC405, which is a processor embedded in the
FPGA chip; each 2VP100 FPGA has two PowerPCs. The
third type of processing unit is a Jacobi hardware engine de-
signed to compute the Jacobi iterations algorithm [26]. The
description of the algorithm is presented in Section 5.

Each processing unit has its own local memory. The Mi-
croBlaze has a single dual-port RAM of 64KB for code and
data. The PowerPC has two independent memory blocks,
32KB for code and 32KB for data. For both processors, the
application code and the TMD-MPI code are both located
in the code section of the memory. The Jacobi hardware en-
gine has two 64KB dual-port memories to store only data,
because the algorithm is implemented as a state machine.
Although the Amirix FPGA boards have external memory,
they are not used in this work.

The MicroBlaze and the PowerPC405 have inherently
different architectures. The PowerPC405 has a 5-stage
pipeline, branch prediction logic, and no floating point unit
(FPU); and the MicroBlaze V.4 has a 3-stage pipeline and an
optional FPU. This makes the PowerPC405 faster for con-
trol sections of the code, for example in array initializations,
but it has to emulate in software the FPU operations, which
degrades its performance. In contrast, the MicroBlaze is not
as efficient as the PowerPC405 for control operations, but if
the FPU is enabled, the MicroBlaze is 20x faster in the math
section of the code than the PowerPC405 at the same clock
frequency. Although the PPC405 supports faster clock fre-
quencies than the MicroBlaze, for simplicity of the design,
both are running at the same frequency. Recall that the fo-
cus of this study is on the functionality of communications,
the programming model and the design flow rather than to
achieve peak performance, which will be addressed in fu-
ture work by optimizing all the algorithms and hardware
blocks, and using the maximum frequency possible.

FPGA

FPGA FPGA

FPGA FPGA

PPC

µB

Tier 1

Network

To Tier 3

Network

Tier 2

Network

(MGT Links)

Gateway node

TMD

MPE

Figure 3. Multiprocessor System on Multiple
FPGAs

4.2 The Network Components

Each board in Figure 3 has four gateway points to com-
municate with other FPGAs, one gateway per FPGA. The
gateway point is the interface between the Tier 1 network
and the Tier 2 network. Both networks have different pro-
tocols, and as a consequence, a network bridge block is
included in the gateway to translate network packets on-
the-fly as they go off-chip and on-chip again. The off-chip
point-to-point communication using the MGT links is per-
formed by a hardware block called the Off-Chip Communi-
cation Controller (OCCC) [4]. The OCCC provides a reli-
able link between FPGAs, it detects transmission errors and
requests a packet retransmission, if needed.

In this heterogeneous multiprocessor system, we define a
node as an element connected to a Tier 1 network. It can be
a MicroBlaze, a PowerPC405, a hardware engine, or a gate-
way point. All the nodes are connected to a Tier 1 network

interface block (NetIf), as can be seen in Figure 4. The
NetIf has the responsibility to route all the packets in the
network based on a unique identification number for each
processor and a routing information table. The NetIf in a
gateway point can detect when a packet is not local to the
FPGA and forward it to a remote FPGA, if the packet’s des-
tination field corresponds to the range of processor IDs in
the remote FPGA.

The FIFOs used to connect all the blocks in a Tier 1 net-
work are Xilinx FSLs [24]. Each FSL is a 32-bit wide, 16-
word deep FIFO. The depth of the FSL has an impact on
performance for the Tier 1 network because deeper FSLs
would increase the buffering capacity of the network and
decrease the number of FSLs in the full condition. How-
ever, in this paper we use the same depth for all the FSLs
and a more detailed study of this parameter remains as fu-
ture work.

Each MicroBlaze soft-processor has eight FSL channels
that provide a direct connection to its respective NetIf block
using an FSL. In contrast, the PowerPC405 in the 2VP100
FPGA does not have an FSL interface and an additional in-
terface block was developed to allow the PowerPC405 to
be connected to the Tier 1 network. This additional block,
called dcr2fsl, is a bridge between the PowerPC405 DCR
bus, which is a high-speed local bus, and the FSL interface.
The dcr2fsl block is shown in Figure 4.

BRIDGE OCCC

Network Interface (NetIf) FIFO

Tier 1

Network
TMD-MPE

BRIDGE OCCC
Tier 1

Network
TMD-MPE

Tier 2

Network

dcr2fsl

DCR bus

µB

PPC

FPGA_1 Gateway nodeComputing node

FPGA_2

Figure 4. Path of a packet from one FPGA to
another

Figure 4 shows the path that a packet follows in a typical
send operation from one processor in one FPGA to another
processor in another FPGA. First, the MicroBlaze sends the
entire message to the TMD-MPE, which will split the mes-
sage into smaller packets of data adding the proper headers.
Each packet is sent to the NetIf, which will route the packets
to the NetIf of the destination node. In this case, the desti-
nation node is the gateway node because the message is not
local to the FPGA in which the MicroBlaze is located. The
packets are translated into a Tier 2 network packet format
by the outgoing bridge and sent to the OCCC. The OCCC

will manage the off-chip communication with the receiving
OCCC. Once the packets are on the other FPGA, the incom-
ing bridge will translate the Tier 2 network packets to a Tier
1 network packet format again. The NetIf on the destina-
tion gateway will route the packets to the PowerPC’s NetIf,
which will pass the received packets to the dcr2fsl block,
and finally the PowerPC will read the packets through the
dcr bus.

4.3 The Message Passing Engine

Transferring the TMD-MPI functionality into a hard-
ware block provides considerable benefits to improve the
overall performance of the system. The TMD-MPE is a
message passing engine that reduces latency, increases the
bandwidth, and relieves the processor from handling the
message passing protocol and algorithms. TMD-MPE pro-
vides support for handling unexpected messages, handles
the communication protocol, and divides large messages
into smaller size packets to be sent through the network. As
shown in Figure 4, the TMD-MPE is connected between the
computing element (processor or hardware engine) and the
network interface (NetIf). The TMD-MPE, will receive the
message parameters and data from the computing element.
These parameters are the operation (whether it is sending
or receiving a message), the destination node id (rank of the
process in the MPI environment), the length of the message,
and an identification number for the message (the tag pa-
rameter in a normal MPI send operation). From this point,
the TMD-MPE will handle the communications through the
network with the destination TMD-MPE or with the desti-
nation embedded processor, assuming it is running TMD-
MPI.

However, three factors limit the advantages of using the
TMD-MPE with embedded processors. The first factor is
the memory access time of the processor when reading or
writing data to be sent or received. The second factor is the
access time to the FSL link. In the case of the MicroBlaze,
the FSL access is approximately 3 cycles, for constant val-
ues (no memory access) because the FSL channel is built
into the architecture. In contrast, the PowerPC405 has an
extra delay when sending or receiving data because the in-
formation has to pass through the DCR bus and the dcr2fsl
bridge. The third factor is the implicit sequential execu-
tion of instructions in a normal processor. Conversely, a
hardware engine can execute operations in parallel consid-
erably faster. The most interesting feature of TMD-MPE is
that it allows specialized hardware computing engines to be
connected to the Tier 1 network and send/receive messages
from other nodes in the system. Using a hardware engine in-
stead of a processor as a computing element exploits more
efficiently the TMD-MPE’s potential.

4.4 Computing Node Configurations

Based on the the type of computing element and whether
the TMD-MPE is used, different configurations can be
formed. Figure 5 shows the possible combinations for
a computing node. As previously explained, the Pow-
erPC405 requires the dcr2fsl adapter to use FSLs. The Mi-
croBlaze and PowerPCs that have the TMD-MPE, require
a lightweight version of TMD-MPI because much of the
functionality is now in hardware; the processors that do not
have the TMD-MPE, require a full TMD-MPI version. The
hardware engines will always require the TMD-MPE to be
able to connect to the network. The version of TMD-MPI
used by the processors is defined at compile time by declar-
ing a constant in the command line of the compiler.

TMD-MPE

TMD-MPE

TMD-MPE

dcr2fsl

dcr2fsl

µB

PPC

µB

PPC

Figure 5. Different node configurations based
on the use, or not, of TMD-MPE

5 The Heat Equation Application

To test the functionality of the system, an example ap-
plication is presented in this section. This application is the
heat equation, which is a partial differential equation that
describes the temperature change over time, given a specific
region, initial temperature distribution and boundary condi-
tions. The thermal distribution is determined by the Laplace
equation ∇(x, y) = 0, and can be solved by the Jacobi it-
erations method [26], which is a numerical method to solve
a system of linear equations. It is not the goal of this pa-
per to develop the best possible algorithm to solve the heat
equation. This method was chosen for its simplicity and
because it requires communication among the processors
to perform the computation. This example application is
meant to prove that the multiprocessor system in our Class
3 machine works by doing a meaningful computation.

The basic Jacobi algorithm is to solve iteratively Equa-
tion 1, where u is the matrix with the temperatures in a given
iteration step and v is the matrix with the temperatures for

Exchange

Rows

µB

PPC

Figure 6. Data decomposition and point-to-
point communication in Jacobi algorithm

the next iteration. In every iteration, the values of u have
to be updated with the values of v. The convergence condi-
tion is computed as the square root of the sum of the square
differences between the old values and the new values as
shown in Equation 2.

vi,j =
ui−1,j + ui+1,j + ui,j−1 + ui,j+1

4
(1)

√∑

i,j

(ui,j − vi,j)2 < ε (2)

The basic parallel algorithm for Jacobi is to split the ma-
trix into smaller, equal-size matrices as shown in Figure 6.
Each processor would have to exchange the border rows
with its immediate neighbors to compute the limiting rows
in each section. The steps in the algorithm are:

Step 1. Send to every node the section of data to process

Step 2. Exchange rows with neighbors

Step 3. Perform computation

Step 4. Compute the convergence data

Step 5. Reduce the convergence data and send it to the master

Step 6. Receive from master convergence signal, go to step 2 if
data has not converged

To program the Jacobi iterations method we follow the
programming flow described in Section 2.4. The changes
in the parallel C code from the workstation to our testbed
are minimal. Based on the type of processor used, condi-
tional compilation macros are coded to include the proper
header files for the MicroBlaze and the PowerPC405 pro-
cessors generated by the EDK; the actual MPI code remains
untouched. We validate the solution of the heat equation by
comparing the final results of our Class 3 machine with the
results of the sequential version of the code running on the
Pentium processor.

6 Experiments and Results

In this section we conduct two experiments to test the
design flow, the programming model and the network in-
frastructure running the Jacobi iterations method in differ-
ent heterogeneous multiprocessor systems. Also, these tests
provide an initial reference to compare the performance
with further improvements to TMD-MPI, TMD-MPE and
the network components.

6.1 Performance Test

In this first test, we have a fixed problem size, which is
a square region of 60x60 elements, and we measure the im-
pact on performance of heterogeneous cores. We show that
by using our design flow and TMD-MPI, we can create and
program a number of multiprocessor configurations. For
this objective, we use only one FPGA with nine processing
units. There are a considerable number of possible combi-
nations for this experiment based on the configuration of the
computing nodes, as explained in Section 4.4. We use only
a subset of the possible combinations; those that we believe
are the most representative. Table 1 summarizes the differ-
ent configurations for this experiment. The #µB, #PPC and
#Jacobi Engines columns are the number of MicroBlaze
processors, the number of PowerPC405 processors, and the
number of Jacobi hardware engines, respectively. The FPU
for µB column indicates whether the floating point unit is
enabled in the MicroBlaze. Finally, the Experiment ID col-
umn is a label to identify the experiment.

Table 1. Experiment configurations
#µB #PPC #Jacobi FPU for Experiment ID

Engines µB
9 0 0 no 9uB
9 0 0 yes 9uB FPU
7 2 0 yes 7uB FPU 2PPC
1 0 8 yes 1uB FPU 8HW
4 2 3 yes 4uB FPU 2PPC 3HW

Figure 7 shows the main-loop execution time of each
configuration in Table 1. The initialization of the square
region is not considered because the time spent in that part
of the code is not significant. The y-axis has a log scale
because the differences in execution times vary consider-
ably between configurations. In this experiment, a MicroB-
laze with FPU unit enabled, achieves 60x faster execution
times than a MicroBlaze without FPU, and 20x faster ex-
ecution times than a PowerPC405 because of the overhead
of software emulation of the floating point operations. The
impact of this can be seen in configuration 9uB, which is
slow compared to the other FPU-enabled configurations, as
expected. For configuration 4uB FPU 2PPC 3HW, three

MicroBlazes are substituted by Jacobi hardware engines.
The Jacobi hardware engines use the TMD-MPE to con-
nect them with the MicroBlazes and PowerPCs. The ex-
ecution time decreases gradually for the first seven nodes.
However, only the first four nodes are MicroBlaze proces-
sors, the next three are the Jacobi hardware engines, but
there is no improvement in performance because the Mi-
croBlazes are considerably slower than the Jacobi hardware
engines forcing them into an idle state while waiting for
the stop message coming from the first MicroBlaze. The
performance degrades even further when nodes eight and
nine are used. These nodes are PowerPC processors with-
out FPU support, which causes a drastic increase in the exe-
cution time. A similar situation happens with configuration
7uB FPU 2PPC because the PowerPC is slower than the
MicroBlaze with FPU. For clarity, the plot for configura-
tion 7uB FPU 2PPC is not included in Figure 7 since it is
identical to the plot of configuration 4uB FPU 2PPC 3HW.
Finally, in configuration 1uB FPU 8HW, eight Microblazes
are substituted by hardware engines, but the improvement in
performance is marginal compared to the 9uB FPU config-
uration, because the first Microblaze is still part of the com-
putation, which slows down the Jacobi hardware engines. In
this case, a master-slave approach, in which the MicroBlaze
is not part of the computation and only collects the conver-
gence data and sends the stop message would produce faster
execution times for configuration 1uB FPU 8HW.

 10

 100

 1000

 10000

 1 2 3 4 5 6 7 8 9

T
im

e
[s

]

Number of Processing Units

Execution Time

9uB
9uB_FPU

1uB_FPU_8HW
4uB_FPU_2PPC_3HW

Figure 7. Main loop execution time of differ-
ent Multiprocessor configurations

6.2 Scalability Experiment

In this experiment, we test the scalability of the system
by using the five boards available. Although each FPGA
board can have a different MPSoC configuration, we use the
same in all the FPGAs for simplicity. The changes from one
FPGA to another are the network routing table and a con-
stant defined at compile time for each processor to define

the MPI rank. We use seven MicroBlazes and two Pow-
erPC405 in each board. None of the processors are using
TMD-MPE and the MicroBlaze FPU unit is disabled. There
is a total of 45 processors, limited by the amount of internal
RAM in the FPGA. In a fixed-size problem, the region to
be computed has to be the same size regardless of the num-
ber of processors. Therefore, we need a region with enough
rows for each one of the 45 processors and still big enough
to fit in the memory of a single processor. A narrow region
of 240 rows by 16 columns is used; a larger region will not
fit into the memory of a single processor. For one proces-
sor, there will be a computation of 240 rows and there will
not be communication. For 45 processors, each node will
compute only five rows on average and exchange two rows
of 16 data values per iteration.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 5 10 15 20 25 30 35 40 45

S
p

e
e

d
u

p

Number of Processors

7uB_2PPC
ideal

Figure 8. Speedup of Jacobi iterations in the
45-node multiprocessor system

Figure 8 shows the speedup of the execution of the Ja-
cobi algorithm for 45 processors. The irregularities of
the plot are due to the nonlinearities of the network inter-
face’s scheduling algorithm and the heterogeneity of the
computing cores and communication links. The effect of
using multiple boards connected by the MGT links pro-
duces a slight change in the slope of the plot. The verti-
cal dashed lines show when there is an addition of a new
board. For this particular architecture-algorithm pair, we
found a sustained speedup up to 35 processors. There is an
inflection point around 40 processors representing a peak
performance-point after which adding more processors will
only slow down the execution of the application.

7 Future Work

With this working Class 3 machine testbed we will focus
on optimization and improvement of the architecture and
the design flow. In this section we present some of the ideas
for future versions of the system. We will experiment with

different algorithms under a more controlled environment.
We can modify the software and hardware, and study the
impact on performance.

We intend to use this platform to optimize the TMD-MPI
algorithms; for example, how to implement more efficient
collective operation algorithms, such as tree-based reduc-
tion instead of the basic linear algorithm that is currently
implemented. Also, TMD-MPI uses only the rendezvous
protocol, which saves memory and avoids buffer overflow
problems for large messages, but is inefficient for short mes-
sages. To alleviate this limitation, we plan to implement
a hybrid scheme including the eager protocol or buffered
scheme for short messages, and the rendezvous protocol for
large messages.

Currently, the TMD-MPE only performs the basic send
and receive operations, and collective operations are still
coordinated by the computing element that the MPE is con-
nected to. Future versions of the MPE should handle the
collective operations as well. Also, a DMA version of the
TMD-MPE would eliminate the overhead for the processor
of copying the data to the FSL.

Similarly, improvements of the hardware blocks that
form the Tier 1 network are also scheduled for future work,
such as, better scheduling and routing algorithms in the
NetIf block. One caveat of our system is that to include
a new node in the multiprocessor system, all the boards in
the entire system have to be synthesized, placed and routed
again, which is time-consuming, because the routing tables
of the NetIf and some links are added to the system. To
solve this problem, we will investigate incremental synthe-
sis, partial reconfiguration or software configuration of the
routing table using an embedded processor.

In terms of the design flow, we are working on CAD
tools to develop multiprocessor systems for multi-FPGA
platforms to help with the layout of the architecture, the
mapping of code into processors, and to automatically gen-
erate the design files for the FPGA design tools. Finally,
we will concentrate our efforts on the implementation of
molecular dynamics simulation on this prototype as it is
a demanding application with a low communication-to-
computation ratio, in which a Class 3 machine, such as
the one presented in this work can provide a significant
speedup.

8 Conclusions

In this work, we presented a heterogeneous multiproces-
sor system implemented in a multi-FPGA architecture. We
implemented the Jacobi iterations method to solve the two-
dimensional Laplace equation in a 45 embedded processor
system. A sustained increase in the speedup of the applica-
tion up to 40 processors shows that the system is scalable
and limited by the amount of on-chip memory and on-chip

resources, but not by the communications.
The standard API used by TMD-MPI made it easy to

port the application from a Linux cluster to the multi-FPGA
system by just including the proper header files for the Mi-
croBlaze and the PowerPC405. The rest of the code re-
mained the same. By using the design flow explained in
this paper, the substitution of some MicroBlazes by hard-
ware engines was transparent for the rest of the processors
in the system. This level of abstraction and isolation from
the actual implementation provides great flexibility to pro-
totype hardware engines and test them in a real multipro-
cessor architecture on-chip and not in simulation. It would
be difficult and time consuming to simulate 45 processors.

Finally, with the design flow methodology used, the most
time consuming task to adding more processors to the sys-
tem is not the design entry but the synthesis, place and route
processes; again, it is a limitation on computing power.

Acknowledgments
We acknowledge the CMC/SOCRN, NSERC and Xilinx

for the funding provided for this project. CONACYT in
Mexico provided funding to Manuel Saldaña. Thanks to
Amirix for the help with their hardware and tools.

References

[1] Amirix Systems, Inc. http://www.amirix.com/.
[2] C. L. Cathey, J. D. Bakos, and D. A. Buell. A Reconfig-

urable Distributed Computing Fabric Exploiting Multilevel
Paralellism. In Proceedings of the 14th Annual IEEE Sympo-
sium on Field-Programmable Custom Computing Machines
(FCCM’06). IEEE Computer Society Press, 2006.

[3] C. Chang, J. Wawrzynek, and R. W. Brodersen. BEE2: A
High-End Reconfigurable Computing System. IEEE Des.
Test ’05, 22(2):114–125, 2005.

[4] C. Comis. A high-speed inter-process communication archi-
tecture for FPGA-based hardware acceleration of molecular
dynamics. Master’s thesis, University of Toronto, 2005.

[5] Cray XD1 supercomputer for reconfigurable computing.
Technical report, Cray, Inc., 2005. http://www.cray.
com/downloads/FPGADatasheet.pdf.

[6] DRC computer. http://www.drccomputer.com/.
[7] FPGA High Performance Computing Alliance. http://

www.fhpca.org/. Curr. Jan. 2006.
[8] P. Francesco, P. Antonio, and P. Marchal. Flexible hard-

ware/software support for message passing on a distributed
shared memory architecture. In DATE ’05: Proceedings of
the conference on Design, Automation and Test in Europe,
pages 736–741, Washington, DC, USA, 2005. IEEE Com-
puter Society Press.

[9] D. Geer. Chip makers turn to multicore processors. Com-
puter, 38(5):11–13, 2005.

[10] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-
performance, portable implementation of the MPI message
passing interface standard. Parallel Computing, 22(6):789–
828, sep 1996.

[11] T. Hamada, T. Fukushige, A. Kawai, and J. Makino.
PROGRAPE-1: A Programmable Special-Purpose Com-
puter for Many-Body Simulations. In FCCM, pages 256–
257, 1998.

[12] A. Jerraya and W. Wolf, editors. Multiprocessor Systems-
on-Chip. Morgan Kaufmannn, 2004.

[13] R. Kumar, D. Tullsen, N. Jouppi, and P. Ranganathan. Het-
erogeneous Chip Multiprocessors. Computer, 38(11):32–
38, 2005.

[14] Message passing and resouerce management working group.
Technical report, Multicore Association, (Accessed: April
2006). http://www.multicore-association.
org/workgroup/ComAPI.html.

[15] OpenFPGA - Defining Reconfigurable Supercomputing.
http://www.openfpga.org/. Curr. Jan. 2006.

[16] A. Patel, M. Saldaña, C. Comis, P. Chow, C. Madill, and
R. Pomès. A Scalable FPGA-based Multiprocessor. In
Proceedings of the 13th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines, California,
USA, 2006.

[17] P. G. Paulin et al. Parallel programming models for a
multi-processor SoC platform applied to high-speed traf-
fic management. In CODES+ISSS ’04: Proceedings of
the 2nd IEEE/ACM/IFIP international conference on Hard-
ware/software codesign and system synthesis, pages 48–53,
New York, NY, USA, 2004. ACM Press.

[18] M. Saldaña and P. Chow. TMD-MPI: An MPI Imple-
mentation for Multiple Processors Across Multiple FP-
GAs. In Proceedings of the 16th International Conference
on Field-Programmable Logic and Applications, Madrid,
Spain, 2006.

[19] Extraordinary Acceleration of Workflows with Reconfig-
urable Application-specific Computing from SGI. Tech-
nical report, Silicon Graphics, Inc., Nov. 2004. http:
//www.sgi.com/pdfs/3721.pdf.

[20] L. Shannon and P. Chow. Maximizing System Performance:
Using Reconfigurability to Monitor System Communica-
tions. In International Conference on Field-Programmable
Technology (FPT), pages 231–238, Brisbane, Australia,
Dec. 2004.

[21] General Purpose Reconfigurable Computing Systems. Tech-
nical report, SRC Computers, Inc., 2005. http://www.
srccomp.com/.

[22] The MPI Forum. MPI: a message passing interface. In Su-
percomputing ’93: Proceedings of the 1993 ACM/IEEE con-
ference on Supercomputing, pages 878–883, New York, NY,
USA, 1993. ACM Press.

[23] J. A. Williams and X. X. N. W. Bergmann. FIFO Commu-
nication Models in Operating Systems for Reconfigurable
Computing. In Proceedings of the 13th Annual IEEE Sympo-
sium on Field-Programmable Custom Computing Machines
(FCCM’05), pages 277–278. IEEE Computer Society Press,
2005.

[24] Xilinx, Inc. http://www.xilinx.com.
[25] Xtreme Data Inc. http://www.xtremedatainc.

com/.
[26] J. Zhu, editor. Solving Partial Differential Equations on Par-

allel Computers. World Scientific, 1994.

