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TABLE I
QUANTITY PER CLUSTER AND NUMBER OF INPUTS FOR EACH TYPE OF

ROUTING SIGNAL IN THE VPR ARCHITECTURE [2]

number of MUX inputs required (see Table I). A MUX with n inputs
contributes at most log(n) to the entropy, so we sum the log of the
number of inputs over all the signals. We obtain an entropy of 240 bits
per cluster or 40.0 bits per basic logic cell. This looks reasonable com-
pared to the lower bound. Now suppose we alter the previous parame-
ters to Fcint = 0:25, Fcfb = 0:25, and Fc = 0:1. Then the entropy per
cell becomes 26.6, which we can confidently say is insufficient (based
on our lower bound of 27) even for PLDs with only 65K cells. This is
true for any detailed routing architecture consistent with these param-
eters and for any routing algorithm.
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Abstract—A fundamental difference between application-specific inte-
grated circuits (ASICs) and field-programmable gate arrays (FPGAs) is
that the wires in ASICs are designed to match the requirements of a par-
ticular design. Conversely, in an FPGA, the area is fixed and the routing
resources exist whether or not they are used. In this paper, we investigate
how well several common network topologies map onto a modern FPGA
routing fabric. Different multiprocessor network topologies with between
8 and 64 nodes are mapped to a single large FPGA. Except for the fully-con-
nected networks, it is observed that the difference in logic resources used
and routing overhead among these topologies is insignificant for the sys-
tems tested. Fully-connected networks up to about 22 nodes are also fea-
sible on the same FPGA although the logic and routing utilization clearly
grows much faster. The conclusion is that a modern FPGA fabric is very
rich in resources and capable of supporting highly interconnected topolo-
gies. For systems with a modest number of nodes implemented on current
large FPGAs, it is not necessary to use the connectivity-limited topologies
typically used for networks-on-chip. Rather, direct point-to-point connec-
tions between all communicating nodes can be considered.

Index Terms—Computer networks, field programmable gate arrays
(FPGAs), multiprocessor interconnection, reconfigurable architectures,
topology.

I. INTRODUCTION

With the growing complexity of system-on-chip (SoC) circuits, more
sophisticated communication schemes are required to connect the in-
creasing number and variety of intellectual property (IP) blocks. Ap-
proaches like AMBA [1], CoreConnect [2], WISHBONE [3], and Sil-
iconBackplane [4] follow a shared bus scheme that works well for
master-slave communication patterns, where there are only a few mas-
ters. When there are several masters (e.g., processors) in the system,
synchronization, data interchange, and input/output (I/O) may saturate
the bus and contention will slow down data transfers.

A network-on-chip (NoC) [5], [6] provides a possible solution for
this problem by creating a scalable interconnection scheme. The con-
cept uses a set of buses connected to routers or switches that inter-
change packets, much in the same way as traditional computer net-
works or multiprocessor machines do. Consequently, NoC approaches
have design parameters and properties similar to traditional networks.
One of these parameters is the topology, which defines the intercon-
nection pattern between the routers and switches.

Multiple topologies have been studied for NoCs on application-spe-
cific integrated circuits (ASICs) [7], [8]. Topologies such as the hyper-
cube, ring, star, torus, and trees have simple packet routing algorithms.
However, a popular choice is the mesh [6], [9] because it provides
structure, better control over electrical characteristics, and has an easy
packet routing algorithm. These advantages are clear for ASICs, but
not necessarily for field-programmable gate arrays (FPGAs) [10]. The
electrical characteristics of the FPGA are solved by the chip vendor,
not by the user. The placement of components by the computer-aided
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design (CAD) tools for an FPGA will not result in symmetric, well-or-
ganized structured layouts that make the wiring easier. Furthermore,
manually restricting the placement of components or routing of nets
on an FPGA may lead to inefficient resource utilization.

The FPGAs programmable fabric can be used to implement any
topology without worrying about the physical implementation. Instead,
the concern becomes whether or not a particular topology is too com-
plex to be routable given the fixed set of logic and routing resources
available on the chip.

In this paper, we investigate the routability of several network topolo-
gies on FPGAs, measuring the impact of soft multiprocessor system
topologies and their characteristics when implemented on a modern
commercial FPGA. We do this by measuring the logic utilization, logic
distribution (area), maximum clock frequency, number of nets, and
the place and route time for six well-known network topologies and
a number of randomly generated topologies.

The rest of this paper is organized as follows. Section II provides
some background about research on NoCs. Section III describes the
methodology and testbench infrastructure implemented. Section IV
presents the resource utilization results obtained from the experiments.
Finally, Section V provides some conclusions.

II. RELATED WORK

Much research has been done on NoCs [6], [7], [9], [10], but the
focus is mostly on the dynamics of the network (e.g., efficient net-
work interface devices, packet routing algorithms, deadlock avoidance,
flow control), ASIC technology, simulation models, or they focus on a
single network topology. The synthesis of application-specific network
topologies provides multiprocessor SoC designers with a tool to map a
particular application to a particular topology and generate an ad hoc
NoC, which can be simulated [11]. In this paper, we focus on the next
level in the design flow after mapping an application to a particular
topology: we map several topologies to a particular chip and investi-
gate the limits of current commercial FPGA technology.

III. EXPERIMENTAL ENVIRONMENT

The experimental methodology and testbench infrastructure we use
focuses on static message passing networks. The ring, star, mesh, hy-
percube, 2-D-torus, fully-connected, and some random topologies are
selected as a representative sample of static networks, ranging from the
simplest ring topology to the routing-intensive fully-connected system.
The actual processor and network interface used are not the critical el-
ements in this study. What is required is to create circuits that force
particular communication patterns between the computing nodes to see
how the resources required to implement these circuits on the FPGAs
varies as the patterns (i.e., topologies) are changed.

We are interested in three network topology characteristics: node
degree, link complexity, and regularity [12]. The node degree is
the number of links from a node to its nearest neighbors. The link
complexity is the number of links the topology requires. A net-
work is deemed to be regular when all the nodes have the same
node degree. Fig. 1 shows examples of systems with different
numbers of nodes and topologies that are implemented to carry
out our experiments. The topologies are generated with a varying
number of nodes ranging from 8 to 64. Every topology can be seen
as a graph that is made of edges (links) and vertices (computing
nodes). In our implementations, the links are 70 bits wide with
32 bits used for transmission and 32 bits used for reception. The links
also include six control lines used by the network interface. The com-
puting nodes in Fig. 1 consist of a computing element and a network
interface module. Fig. 2 shows the structure of a computing node.

We use a Xilinx MicroBlaze soft processor [13] as the computing
element so the data memory and program memory are accessed by

Fig. 1. (A) 8-node ring. (B) 8-node star. (C) 32-node mesh. (D) 16-node hy-
percube. (E) 8-node fully connected topology. (F) 16-node 2-D-torus.

Fig. 2. Computing node architecture. The UART is only on one node in the
system.

independent memory buses. The hard multiplier option for the Mi-
croBlaze is disabled to minimize the impact of hard core blocks that
may influence or limit the placement and routing. The internal Block
RAM memory (BRAMs) in Xilinx FPGAs are hard core blocks that
also affect the placement and routing, but they are essential for the Mi-
croBlaze core to synthesize so they cannot be removed. The commu-
nication between the computing element and the network interface is
achieved using two 32-bit wide fast simplex links (FSLs), which is a
Xilinx first-input first-output (FIFO) core that provides a unidirectional
communication channel. One FSL is for transmission and one for re-
ception.

The network interface module is an extremely simple block, but it is
sufficient for our purposes as the focus of this paper is on the routability
of various topologies, not on the switching element architecture or the
network interface itself. It interfaces with the network via several links
(channels) according to the degree of the node. The two FIFOs that con-
nect the network interface to the computing element are used as mes-
sage buffers for the processor. We use network interfaces with varying
numbers of channels based on the node degree of a particular topology
to make sure that only the necessary logic is included.

Manually describing large multiprocessor systems is time con-
suming and error prone. Therefore, an automated process for
generating the systems used in our experiments is developed and
the flow is shown in Fig. 3. The flow starts by using the topology
generator, which is a Perl script that takes a high-level description of
the system, such as the type of topology and the number of nodes. The
topologies are described as graphs in a graph description file that is
input to the system generator [14]. The system generator translates the
graph into IP cores and buses and generates the files used by Xilinx’s
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Fig. 3. Design flow for generating our multiprocessor systems.

Fig. 4. Logic utilization of systems. The fully connected system did not route
for more than 22 nodes. The hypercube did not place and route with 64 nodes;
therefore, 32 nodes is the largest hypercube implemented.

EDK/ISE tools suite version 7.1i [13] to synthesize, place, and route
the multiprocessor designs. Once the systems are generated, the routed
nets are counted with the help of Xilinx’s XDL tool, which provides a
direct access to the native circuit description files (NCD) and provides
a report of the physical resource utilization for any design.

The Xilinx XC4VLX160 FPGA was used because it is the largest
LX version Virtex4 chip sold at the highest speed grade. The LX ver-
sion of the Virtex4 family has the highest logic density and fewer DSP
and BRAM cores than the SX version. It also does not have the Pow-
erPC processors or multi-gigabit transceivers (MGTs). Thus, the LX
version of the Virtex4 family provides the most homogeneous archi-
tecture, limiting the additional factor of hard cores embedded in the
FPGA.

IV. RESOURCE USAGE RESULTS

The logic resource usage is measured in terms of the total number
of lookup tables (LUTs) required for the entire design. The number
of LUTs is obtained from the EDK log file. Fig. 4 shows a plot of the
number of LUTs needed to implement the complete systems, including

Fig. 5. Topology impact on global routing.

the MicroBlaze, FSLs, memory interface controllers, network inter-
faces, UART, and OPB bus. As expected, the system with the fully-con-
nected network has the highest logic utilization, and as the system size
increases, the difference with respect to the other topologies becomes
more pronounced because of the O(n2) growth in size.

The routing resource utilization is measured in terms of the number
of nets, extracted from the XDL report. Unfortunately, the distance of
each routed net cannot be determined directly by the existing tools.
Scripts can be developed to compute the Manhattan distance based
on the XDL file report and investigate the locality of the connections,
but that remains as future work. The routing resource utilization for
these systems exhibits a similar trend to the logic resource utilization
shown in Fig. 4. The fully-connected system requires the most nets, as
expected, while the difference among the remaining topologies is not
significant. The 22-node fully-connected topology can be mapped and
placed using only 38% of the total logic resources in the XC4VLX160
FPGA. Beyond 22 nodes, the fully-connected topology fails to route
because there are insufficient routing resources for this particular
topology. This means that any other topology with 22 nodes or less,
will successfully place and route since the fully-connected topology is
the worst case.

An interesting observation from the experimental data is that the
logic and routing resource utilization exhibits a linear trend for all
the topologies used in this experiment, except for the fully-connected,
which has a square trend. The difference in the slope reflects the com-
plexity of the different network interfaces required by each topology.
This means that for a small number of nodes, all the topologies, but
the fully-connected, have similar implementation requirements in the
FPGA. This is consistent with the fact that for a small n,O(n logn) �
O(Kn), where K is a constant. A larger FPGA would be required to
implement more than 64 nodes where the topology complexities would
start to be more noticeable.

Fig. 5 shows the routing overhead of the network interface modules
and topology as a percentage of the entire design. The routing over-
head is calculated as the sum of the number of nets that are related to
the topology links plus all the nets from the network interface modules
divided by the total number of nets in the entire design. As expected,
the ring topology has the lowest routing overhead with about 6% of the
total number of nets. Moreover, for those topologies that have a linear
increase in routing resources, the routing overhead increases insignif-
icantly with the system size because for these system sizes, the nodes
are all fixed-degree, i.e., they each have k links, where k = 1 to 5. The
fully-connected topology overhead increases rapidly as the number of
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Fig. 6. 62-node star topology placement with empty spaces caused by the
RPMs. Note the location of the network interface and processor for the central
node.

nodes increases. With 22 nodes, the fully-connected interconnection
network accounts for 42% of the total routing in the system, compared
to only 13% routing overhead for the 32-node hypercube, which is the
next most complex topology.

While the fully-connected topology stresses the routing resources in
the entire chip, the star topology stresses the routing resources around
a single node (central node). We are able to build star systems up to 63
nodes; the 64-node star system did not route. Fig. 6 shows the place-
ment of the 62-node star topology. It is not surprising that the central
network interface is in the center of the chip, as the tools try to mini-
mize the distance to the rest of the nodes. Note that the central node’s
processor is placed away from the center of the chip indicating that the
placement of the network interface is more important to timing than the
placement of the central processor.

In our multiprocessor systems, the slowest block is the MicroBlaze,
which is synthesized to a maximum frequency of 150 MHz. Therefore,
the timing constraint for the entire multiprocessor system is also set
to 150 MHz. By using the star topology, we investigate the effects of
congestion around the central node on the operating frequency of the
star topology. We found that the congestion only caused degradation
in the design’s performance by reducing the maximum frequency of
150 MHz for 28 nodes or less, down to 109 MHz with 63 nodes. In
contrast, the ring topology, which does not experience that congestion,
meets the 150 MHz requirement up to 64 nodes.

The largest systems that successfully placed and routed for each
topology are: 22-node fully-connected, 32-node hypercube, 56-node
mesh, 56-node 2-D-torus, 63-node star; and 64-node ring. For the
64-node ring, which is the largest system, only 44% of the LUTs and
65% of the available slices in the chip are used. One factor that limits
the placement of larger systems is shown in Fig. 6. A visual inspection
reveals that the design has a porous placement suggesting that the
logic could be more tightly packed. This is caused by the relationally
placed macro (RPM) constraints on the MicroBlaze core, which forces
the core’s logic into a fixed relative placement on the FPGA to achieve
higher operating frequencies. Removing the constraint would allow
better packing of the design’s logic, but, depending on the placement,
could degrade the core’s operating frequency.

The place and route time data varies considerably because of the
random nature of the place and route algorithm. However, the ring,
star, mesh, and hypercube topologies have average times to place and
route that are approximately the same for a given number of nodes.
For example, on our IBM workstations with 3.0-GHz Pentium Xeon
processors and 3 GB of memory, the 8-, 16-, and 32-node systems have
average run times of 15 min, 35 min, and 1 h 58 min, respectively. The
torus topology requires considerably more time to place and route with
37 min, 72 min, and 3 h 15 min, for 8, 16, and 32 nodes, respectively.
Finally, the fully-connected topology required 16 min for the 8-node

system, 4 h for the 16-node system, and 1 day and 5 h for the 22-node
system.

V. CONCLUSION

When implementing an NoC using an ASIC, only the required
routing is included. Thus, it is important to make the correct tradeoffs
between the communication requirements for the application and the
routing requirements of the interconnect topology. FPGAs have a rich
routing fabric and the wires exist independent of their usage by the
design. This work has shown that the ring, star, mesh, 2-D-torus, and
hypercube topologies can all be routed on a modern FPGA and are
able to scale well for systems with a large number of nodes. Given a
multiprocessor system similar to those described in this paper, it would
make no significant difference in logic and routing resources which
topology to use. Hence, there is no need to limit the connectivity to
economize the use of resources at the expense of performance. Even
a fully-connected topology can work for small numbers of nodes (22
nodes), which suggests that for small networks, it is less important
to worry about routing considerations when picking the network
topology for an NoC on an FPGA.

This paper has considered only one particular FPGA family. Further
study of how these trends change with different FPGA fabrics, for ex-
ample with different FPGA architectures or families of FPGAs, or with
embedded hard blocks in the FPGA fabric, is an area for future work.

ACKNOWLEDGMENT

The authors would like to thank Xilinx and CMC Microsystems/
SOCRN for providing the tools, hardware, and computing equipment.
They would also like to thank the reviewers for their comments.

REFERENCES

[1] ARM Corp., Cambridge, U.K., “AMBA specification,” (1999). [On-
line]. Available: http://www.arm.com

[2] IBM Corporation, NY, “The Coreconnect Bus Architecture,” (1999).
[Online]. Available: http://www.chips.ibm.com

[3] OpenCores.org, “The WISHBONE system architecture,” (2002). [On-
line]. Available: http://opencores.org/projects.cgi/web/wishbone

[4] Sonics Inc., Mountain View, CA, “Sonics Inc. homepage,” [Online].
Available: www.sonicsinc.com/sonics/products/siliconbackplaneIII

[5] G. de Micheli and L. Benini, “Networks on chip: A new paradigm for
systems on chip design,” in Proc. Conf. Des., Autom. Test Eur. (DATE),
2002, pp. 418–418.

[6] S. Kumar, A. Jantsch, J. Soininen, M. Forsell, M. Millberg, J. Oberg, K.
Tiensyrja, and A. Hemani, “A network on chip architecture and design
methodology,” in Proc. IEEE Comput. Soc. Annu. Symp. VLSI, 2002,
pp. 105–112.

[7] A. Adriahantenaina, H. Charlery, A. Greiner, L. Mortiez, and C. A.
Zeferino, “Spin: A scalable, packet switched, on-chip micro-network,”
in Proc. Conf. Des., Autom. Test Eur. (DATE), 2003, pp. 20070–20070.

[8] P. P. Pande, C. Grecu, M. Jones, A. Ivanov, and R. Saleh, “Performance
evaluation and design trade-offs for network-on-Chip interconnect ar-
chitectures,” IEEE Trans. Comput., vol. 54, no. 8, pp. 1025–1040, Aug.
2005.

[9] W. J. Dally and B. Towles, “Route packets, not wires: On-chip inter-
connection networks,” in Proc. 38th Conf. Des. Autom. (DAC), 2001,
pp. 684–689.

[10] G. Brebner and D. Levi, “Networking on chip with platform FPGAs,”
in Proc. IEEE Int. Conf. Field-Program. Technol. (FPT), 2003, pp.
13–20.

[11] D. Bertozzi and A. Jalabert, “NoC synthesis flow for customized do-
main specific multiprocessor systems-on-chip,” IEEE Trans. Parallel
Distrib. Syst., vol. 16, no. 2, pp. 113–129, Feb. 2005.

[12] J. Duato and L. Y. Ni, Interconnection Networks, an Engineering Ap-
proach. Los Alamitos, CA: Computer Society Press, 1998.

[13] Xilinx, Inc., San Jose, CA, “Xilinx Inc. homepage,” (2006). [Online].
Available: http://www.xilinx.com

[14] L. Shannon and P. Chow, “Maximizing system performance: Using re-
configurability to monitor system communications,” in Proc. Int. Conf.
Field-Program. Technol. (FPT), 2004, pp. 231–238.


