Exploring trends and practices of forks in open-source software
repositories

Mahsa Hadian
Polytechnique Montreal
Montreal, QC, Canada
mahsa.hadian@polymtl.ca

Scott Brisson
University of Toronto
Toronto, ON, Canada

scott.brisson@mail.utoronto.ca

Bram Adams
Queen’s University
Kingston, ON, Canada
bram.adams@queensu.ca

ABSTRACT

Forking a software repository is a popular and recommended prac-
tice among developers. A fork is a copy of the original repository
that can evolve independently from the parent repository, allowing
developers to experiment with a code base or test new features
without the danger of affecting the original project. A fork can
result in changes that are pushed back to the original project or
even evolve into an independent project. Some projects tend to be
forked extensively to the point where their forks are also forked
and form families of projects. In this work, we explore the motiva-
tion, the practices and the culture of forking open-source software
repositories. In particular, we study how forks evolve compared to
the parent repository, how they are related to pull requests, how
they contribute back to the parent, and how dependencies, in terms
of libraries or external modules defined in a build script, are shared
or differ within project families. Finally, we relate our findings
with how communication and collaboration occurs within software
families.

CCS CONCEPTS

« Software and its engineering — Open source model; Sofi-
ware design engineering; Software libraries and repositories;
Software development process management.

KEYWORDS

mining software repositories, open source software, forks, software
development processes, version control, dependencies, collabora-
tive software development

*Currently, Pr Fokaefs is a faculty member at York University, Toronto, Canada

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CASCON’22, November 15-17, 2022, Toronto, Canada

© 2022 Copyright held by the owner/author(s).

Soude Ghari

Polytechnique Montreal
Montreal, QC, Canada
soude.ghari@polymtl.ca

Ehsan Noei
University of Toronto
Toronto, ON, Canada

e.noei@utoronto.ca

Marios Fokaefs*
Polytechnique Montreal
Montreal, QC, Canada
marios.fokaefs@polymtl.ca

Kelly Lyons
University of Toronto
Toronto, ON, Canada

kelly.lyons@utoronto.ca

Shurui Zhou

University of Toronto
Toronto, ON, Canada
shuruiz@ece.utoronto.ca

ACM Reference Format:

Mahsa Hadian, Soude Ghari, Marios Fokaefs, Scott Brisson, Ehsan Noeli,
Kelly Lyons, Bram Adams, and Shurui Zhou. 2022. Exploring trends and
practices of forks in open-source software repositories. In Proceedings of
CASCON’22. ACM, New York, NY, USA, 10 pages.

1 INTRODUCTION

Forking is an open source practice that, until the early 2000s, was
interpreted as a negative phenomenon: “There is strong social pres-
sure against forking projects. It does not happen except under plea
of dire necessity, with much public self-justification, and with a
renaming” [12]. Typically, a subset of a given community would dis-
agree about the development plan, progress or team composition of
a given project, copy (the current state of) the code base elsewhere
and continue separately from the initial community. Notable exam-
ples of such “hard” forks [20] are the forking of XEmacs from the
main GNU Emacs in 1991 (both communities never merged again),
or the EGCS fork from GCC in 1997 (successfully merged again into
GCC 2.95). Today, the meaning of fork has softened slightly, thanks
to the popularity of GitHub, and is mostly interpreted as “social”
forking [20], which simply makes a copy of a (parent) repository
in order to make modifications (new features, bug fixes or pure
experimentation) to the code base that can then be proposed back
to the parent (through a “pull request”).

The notion of social forks goes much deeper than this. German
et al. [6] note that modern forks basically are distributed branches
of a code base that together form an ecosystem (“super-repository”)
around their parent, i.e., forks maintain traceability to their par-
ent. Brisson et al. [2] went a step further, identifying the crucial
role of social relationships between the contributors of a parent
repository, its forks, and the forks’ own forks to the extent that
these forks essentially form a “family” of projects communicating
directly through pull requests (PRs), issues, and mentions. Like any
family, there might be small cliques that interact more closely than
others, or some family members might break off from the family
altogether.

CASCON’22, November 15-17, 2022, Toronto, Canada

It is not clear whether the motivational differences between
hard and social forks are also reflected in different development
practices. At a minimum, we are interested in understanding the
degree of activity in both types of forks, and how long forks sur-
vive in either case. Do hard forks really have a much more difficult
time succeeding, and, conversely, do social forks lead to substantial
contributions? To what extent do such contributions tackle more
invasive changes, such as updates of existing third party depen-
dencies or the addition of new dependencies, and how receptive is
the parent repository to such changes? Finally, does parent-fork
communication (e.g., issues and comments) help determine the type
(hard/social) and fate (success/failure) of forks?

To better understand the practices followed by social and hard
forks, this paper presents an empirical study that analyzes 75
GitHub families of Java projects that include a total of 3,405 reposi-
tories (parents and forks). We selected these projects using criteria
concerning their development activity (age in days, number of com-
mits), the intensity of the communication (size of team, number
of issues), the presence of build files (to specify dependencies) and
others. We then set out to answer the following research questions:

RQ1) How do forks evolve alongside their parents?

RQ2) How are dependencies maintained and evolved be-
tween forks and their parents?

RQ3) How does communication between repositories, also
within the context of families, relate to repository evolution?

The rest of the paper is organised as follows. Section 2 describes
the data collection process and how the study was organised. In
Section 3, we present and discuss the results of our study. Sec-
tion 4 provides an overview of related literature. Finally, Section 5
concludes this work.

2 STUDY SETUP

2.1 Data Collection - Repositories

GitHub provides accessibility to its internal data storage through an
API!. This API provides access to a rich collection of information
about developers and repositories, and also provides valuable oppor-
tunities to understand forking behavior. As an extra check, we also
used the GHTorrent data dump as a complementary data source
for the same dataset [7]. In practice, the official API corresponds
to the live current picture of GitHub, while the GHTorrent data
corresponds to a static, more cumulative picture of the same data.
In addition, GHTorrent is more complete with respect to communi-
cation and collaboration data. We aimed for the studied projects to
exist in both sources to have as complete a dataset as possible. Zhou
et al. [20] provide a dataset of 15,306 hard forks identified in GHTor-
rent’s data dump from June 2019. Starting from the same data dump,
we performed the following 10 steps to curate our dataset.

Identify and retrieve hard forks: We cross-referenced the 15,306
hard forks identified in the replication package of [20] with our
GHTorrent data dump. Because the unique GHTorrent repository
IDs were not provided, we cross-referenced the repository name
and owner name in order to identify the hard forks in our dataset.
Of 15,306 hard forks, 15,260 were identified and retained.

Identify parents from hard forks: The parents are needed to iden-
tify the entire software family for each repository. We recursively

Lhttps://developer.github.com/v3/

Hadian and Ghari, et al.

iterated through the data dump to find the parent (baseline reposi-
tory) for each hard fork identified in the previous step. Five (5) hard
forks were removed because the parents could not be identified, six
(6) hard forks were removed because they were not forked using
the GitHub forking mechanism (i.e., the fork button), but their code
base was manually copied in a new repository, so their parents
were not identifiable on GitHub which meant we could not link the
evolution histories between parents and forks. Finally, one hard
fork was removed because GHTorrent flagged the project as deleted,
resulting in 12,985 parents with 15,248 hard forks.

Remove non-Java repositories: We opted to focus on Java projects
since it is one of the most popular software languages, as identified
by the TIOBE index [16], especially in the open source domain, and
it possesses important properties we need for our analysis, namely
build files for dependencies. Focusing on a single language can also
help remove any variation in findings caused by this factor. Thus,
considering only Java projects (repositories with language set to
Java), we kept 1,038 parents with 1,201 hard forks.

Construct software families: Using the 1,038 parents that resulted
from the previous step, we recursively iterated through each par-
ent’s forks and the forks of their forks, as identified in the GHTor-
rent data dump, resulting in 1,038 families composed of 367,353
repositories with 1,201 hard forks. During this process, we also kept
track of which repositories were forks of the hard forks, resulting
in 23,805 repositories within the 367,353 repositories that are forks
of hard forks.

Remove pure clones: We define pure clones as forks that have been
forked from a parent on GitHub, but contain no other change (in
terms of commits). For the purpose of our study we removed pure
clones among the children found in the previous step. This elimi-
nated 289,501 repositories, resulting in 1,038 families composed of
77,852 repositories.

Remove personal repositories: Many repositories on GitHub are
personal repositories, meaning they only have a single contributor.
Since we are interested in the collaborative aspect of software de-
velopment, we removed such repositories, resulting in 970 families
composed of 15,725 repositories.

Remove inaccessible fork repositories: As we mentioned previ-
ously, parent repositories were identified using the GitHub API,
but their children (i.e., forks) were gathered and evaluated using
the GHTorrent dump, which contains more cumulative data and
helped us to further filter repositories with low activity. As an extra
check, we used the URLs in GHTorrent to call the GitHub API and
confirm that our dataset contains “live” repositories, meaning not
deleted or archived. As a result, we removed children from our
dataset that were not accessible via the GitHub API During this
step, we also removed families whose hard forks may have been
removed, bringing our dataset to 794 families composed of 11,162
repositories.

Remove repositories with no issues or PRs: Since we are interested
in studying communication among repositories, we included a
repository only if it used the collaborative tools on GitHub (i.e.,
issues and pull requests), resulting in 752 families composed of
7,976 repositories.

Remove non-software repositories with no build files: Many repos-
itories on GitHub are not used for software development. These
can include personal repositories, repositories that correspond to

Exploring trends and practices of forks in open-source software repositories

web sites, or even documentation and manuscript repositories [9].
We distinguished these repositories from actual software reposi-
tories using the classification system similar to [9]. We manually
inspected each repository and categorized each one as “software” or
“other”. Repositories categorized as “software” remained in our sam-
ple. In addition, given that our study is concerned with aspects of
collaboration and communication in software development, where
one analyzes artifacts in natural language, we also removed reposi-
tories whose dominant language was not English. This was done
in tandem with identifying software repositories by inspecting the
majority language used in the commit messages, pull requests, and
issues. From these projects, we considered only those that had a
build file, from which we could extract dependencies. The build
files we considered were Gradle? and Maven?, which are popular
among Java projects. Thus, considering only English Java software
repositories that have a build script, we kept 83 families composed
of 3,857 repositories.

Remove small families: We removed families composed of fewer
than 10 repositories (parent and forks) in order to reduce the risk
of over-fitting [15]. We also removed families whose hard fork was
removed during the previous filtration step, any duplicate reposito-
ries, and repositories that could not be accessed through GitHub’s
API. This resulted in a final dataset of 75 families composed of 3,405
repositories with 176 hard forks, with each family composed of at
least 10 repositories with at least one hard fork.

2.2 Data Collection - Metrics

After finalizing the dataset with respect to parent repositories and
their children, we gathered the following metrics necessary for
answering our research questions (see Table 1):

Development Metrics: For RQ1, we are interested in studying the
activity that takes place in forks. For that reason, we gathered data
for all commits (including the commit messages) for all repositories.
We also registered the date of creation for all forks and we calculated
the age of each repository as the number of days from the creation
day until 2019-06-014, which is the last date we considered. We also
gathered data about the PRs (pull requests) for each repository. We
only consider closed PRs. For Github, a closed PR is either a merged
PR or a rejected PR. We do not distinguish between the two, because
either of them show the intention of the fork to contribute back
to the parent repository, which brings them closer to the “social”
type of a fork. We did not consider open PRs because their status is
unclear and we could not be sure about their progress (a PR can be
retired by the submitter).

Dependencies: For RQ2, we are interested in how dependencies
are maintained and evolve between forks and their parents. As
described in Section 2.1, repositories in our dataset either use a Gra-
dle (build.gradle) or Maven (pom.xml) build file that describes the
project’s dependencies and other resources needed by the project.
In general, a Maven dependency is defined as a triplet of a groupId,
which is the unique identifier of the general project that the library
belongs to, an artifactId, which is the id of the specific library
and a version. Normally, the version corresponds to a number

https://gradle.org/

Shttps://maven.apache.org/

This date was selected to remove bias of very “young” repositories of less than a year
of age

CASCON’22, November 15-17, 2022, Toronto, Canada

or a version ID, but in some cases a variable may be used, which
instructs Maven to download the latest version available in the
project’s repository.

Gradle is not always consistent in structure between projects
because it provides different notations for specifying dependencies
including a string notation and a map notation. Therefore, a com-
bination of automatic parsing and manual inspection was used to
extract dependencies from dependencies and plugins blocks of
build.gradle files. In addition, the Gradle build file may include
the declaration of dependencies on local binaries or file dependen-
cies (i.e., a .jar file usually specified within a lib folder). For this
case, we extracted the jar files with the corresponding full names.
We used a python script to parse and identify the artifactId,
groupld, and version declaration described within the dependen-
cies and plugins blocks of the build file. The parsing resulted in a
set of triplets that specified the library, the module, and the version
of the module, similarly to Maven dependencies.

Communication Metrics: Communication metrics capture the
social activity in a repository, including pull requests, comments on
PRs, issues, users and followers among others that we are interested
in analyzing for RQ3. Each metric was mined or calculated from
GHTorrent, was measured relative to each repository, and can be
identified via its suffix:

e _repo: Metrics measured amongst users within the same
repository. For example, issue_repo is the number of issues
reported in the repository by users who have write access to
that repository.

o _family: Metrics measured amongst users in the same family.

For example, issue_family is the number of reported issues

by users exclusively with write access to another repository

in the same family.

_outside: Metrics measured from users not in the family. For

example, issue_outside of reported issues by users with no

write access to any repository in the same family.

3 RESULTS AND DISCUSSION

The classification of forks as social or hard within a family is the
first step towards answering the research questions we posed in the
beginning. Zhou et al. [20] propose a set of heuristics to differentiate
between hard and social forks. These heuristics include the age of
the repository, popularity (as measured by the number of stars in
GitHub), number of merged or unmerged pull requests, whether the
forks have received external pull requests, whether the forks have
changed the name of the repositories, among others. Additionally,
they interviewed several hard fork owners and found that many
owners did not intend to create a hard fork and branch out the
development, but after certain events or inconveniences (e.g., lack
of responses from the upstream, disagreement between fork owner
and upstream maintainers), these forks gradually evolved from
social forks to hard forks and stopped interacting with the original
projects.

In our work, we focus only on code contribution metrics, such
as number of commits and number of merged commits by pull
requests, to differentiate between hard and social forks, under the
assumption that these represent a less subjective way to capture the
nature of a fork and potentially the developers’ intent. According

CASCON’22, November 15-17, 2022, Toronto, Canada

Hadian and Ghari, et al.

Table 1: List of metrics mined from the repositories and considered in this study.

Category Metric Description
Age age Total age (in days).
Forks depth Total #forks away from the parent.
forks Total #forks.
forks_family Total #forks that have participated in a PR or issue within
the family.
Commits commit_count Total #commits present in the repository.
unique_commits Total # of unique commits, present in the fork, but not in
the parent
commit_author Username that made the commit
commit_message Message of the commit
Dependencies dependencies List of unique dependencies.
jaccard Jaccard distance between the sets of dependencies of the
fork and of the parent
Users users_repo Total #users with write access to the repository.
users_also_in_family Total #users with write access to the repository and one
other familial repository.
Followers followers_repo Total #followers of users_repo coming from the same repos-
itory.
followers_family Total #followers of users_repo coming exclusively from the
family.
followers_outside Total #followers of users_repo coming from outside the
family.
Pull Requests (PRs) pr_repo Total #PRs within the same repository (through branching)
pr_family Total #PRs within the same family (through forking)

PR Comments

pr_repo_comments
pr_family_comments
pr_repo_code_comments

pr_family_code_comments

Total #comments from pull request discussions in pr_repo.
Total #comments from pull request discussions in pr_family.
Total #comments from pull request commit discussions in
pr_repo.

Total #comments from pull request commit discussions in
pr_family.

PR Mentions pr_mentioned_repo Total #PR mentions of users in users_repo.
pr_mentioned_family Total #PR mentions of users exclusively in the family.
pr_mentioned_outside Total #PR mentions of users outside the family.

Issues issue_repo Total #issues reported by users in users_repo.

issue_family
issue_outside

Total #issues reported by users exclusively in the family.
Total #issues reported by users outside the family.

Issue Comments

issue_comments_repo
issue_comments_family
issue_comments_outside

Total #issue comments from issue_repo.
Total #issue comments from issue_family.
Total #issue comments from issue_outside

Issue Mentions

issue_mentioned_repo
issue_mentioned_family
issue_mentioned_outside

Total #issue mentions of users in users_repo.
Total #issue mentions of users exclusively in the family.
Total #issue mentions of users outside the family.

Issue Events

issue_closed
issue_subscribed
issue_unsubscribed
issue_reopened
issue_assigned
issue_referenced

Total #issues closed.

Total #issues subscribed.
Total #issues unsubscribed.
Total #issues reopened.
Total #issues assigned.
Total #issues referenced.

Exploring trends and practices of forks in open-source software repositories

to our definition, a social fork initiates changes destined for the
parent repository. These changes are represented by commits in
the fork that are then proposed to the parent through pull requests.
However, as people have different expectations of hard forks (which
form a new community) and social forks (which are still part of
the original community), it is necessary to define a threshold on
the contribution of forks back to the parent as the portion of fork
commits included in pull requests to the parent, and better identify
these two types of fork.

Zhou et al. [20] defined 30% as the threshold between social forks
and hard forks, yet without rigorous justification of this decision.
Therefore, in this work, we investigate different merge thresholds
and examine the impact of choosing a fixed threshold between
hard and social forks in these kind of studies. This first analysis
aims at investigating the distribution of social and hard forks in our
data set and also how this distribution changes when we consider
a different threshold for the ratio of merged pull requests. The
objective is not to propose a unique or evaluated method to classify
forks. In order to answer our research questions, we need to make
this classification and we present how the process of defining a
classification (i.e., selecting the merge threshold) can affect the
outcomes of a similar study.

In order to calculate the proportion of merged unique commits
from a fork to its parent, we define a unique commit as a commit
that has originated only from the fork. In practice, when a fork is
created from a parent repository, all the commits from the parent
are automatically copied in the fork’s history as well. Therefore,
we compared the commits, based on their SHA IDs’ between a fork
and its respective parent to identify the commits that are unique
only in the fork. However, commits that have been merged from
the fork to the parent through a pull request are present in both
the fork and the parent, hence, along with purely unique commits,
we also add merged commits in this count as long as they originate
from the particular fork (as mentioned in the corresponding pull
request metadata). Finally, the percentage of merged commits is
calculated as the ratio of merged over total unique commits in the
fork.

Based on this ratio, we considered a number of different thresh-
olds to examine the impact of choosing a fixed threshold in the
analyses between social and hard forks. More specifically, we iden-
tify a fork as social if at least 1, 25%, 50%, 75% or all of its unique
commits are merged back to its parent. For the rest of this work,
we answer the various research questions separately for each of
these thresholds and we discuss the results.

Table 2 shows the distribution of hard and social forks in our
dataset for the different thresholds, with the proportion of hard
forks increasing with threshold. In simple terms, as the threshold
becomes stricter, from requiring just 1 merged commit to 100%
merged commits, forks need to become much more coupled to the
parent repository to be considered a social fork.

We also compared our classification with that by Zhou et al. [20].
If we consider the latter as the ground truth, the last three columns
in Table 2 show the precision, recall, and accuracy measures per
threshold. The best precision is achieved when we consider all

5Commits were also compared based on commit message and author name to account
for rebasing issues, but no difference was found in the studied dataset.

CASCON’22, November 15-17, 2022, Toronto, Canada

Table 2: Fork types in our dataset by threshold compared to
that in Zhou et al. [20]

Our Dataset Compared to [20]
Commits | #Hard #Social | Precision Recall Accuracy
1 919 1,648 44.37 7.31 64.78
25% 1,100 1,467 56.95 7.85 58.15
50% 1,256 1,311 73.51 7.32 41.76
75% 1,520 1,047 66.22 7.99 52.26
ALL 1,634 933 78.14 7.24 37.32

commits being merged to the parent. In reality, from the forks
contained in the examined dataset only 5% are identified as hard
forks by Zhou et al. [20].

3.1 RQ1: Fork Evolution Analysis

Motivation: By definition, forks constitute an independent copy of
the parent repository in the sense that changes happening in the
forks are not automatically reflected back to the parent. If this is the
case for the entire lifetime of the fork, then we can talk about hard
forks. When changes are attempted to be explicitly pushed to the
parent (through a pull request) in a more or less systematic manner
(cf. the threshold in the previous section), we can talk about social
forks. It is important to note that for our study the intention of the
fork developer is the important part and not necessarily whether
the contribution will be accepted or rejected.

Based on this, it is natural to expect that the two types of forks
may demonstrate differences when it comes to their lifespan as
well as their development activity. One intuitive hypothesis would
be that, in general, social forks may have a shorter lifespan with
a denser development activity; this is the case when a social fork
contributes a small “patch” back to the parent, whose development
is done over a short but intensive period with lots of commits.
However, other social forks may have a longer lifespan, remaining
active for a longer time, and contributing changes in spurts, i.e.,
contributing multiple patches, back to the parent. On the other hand,
hard forks may correspond either to projects that have started to
evolve independently and follow their own development progress,
or repositories that were forked (perhaps for social reasons), but
were slowly abandoned. Our intention is to recover such patterns,
study them in the context of our entire dataset and within a per-
family context and answer the question if there are significant
differences in development activity between hard and social forks.

An interesting factor in the activity of forks within the context
of the same family is the “depth of the family tree”. Brisson et al. [2]
discuss how forking is not a sequential process, but it can result in
complex tree-like structures, which implies that repositories within
the same family may be forked not directly from the parent of the
family, but from other forks. Therefore, one question that remains
to be investigated is whether the depth of a fork in the family tree
has an effect on its development activity and practices.

To respond to RQ1, we examined the following two null hy-
potheses:

e RQ1.H1g: Activity is similar across social and hard forks.

CASCON’22, November 15-17, 2022, Toronto, Canada

® RQ1.H2¢: Activity does not vary along the depth of the family
tree.

Approach: The important metrics to test these hypotheses are
mainly the number of commits and the age of a repository. In order
to control project activity for project age, we calculated the metric
of “activity density”, which simply shows the average number of
commits per day of activity. In practice, this is a normalization
of activity and it helps to differentiate two repositories with, for
example, heavy activity (large number of commits), but a short and
a long lifetime each. The density was used as a continuous outcome
to study the relationship with other metrics of the repositories.

To validate our hypotheses statistically, we first checked for
normality of the activity metric using the Shapiro-Wilk test (& =
0.05), whose null hypothesis states that the data distribution under
study is normal. Since this hypothesis was rejected with p < 2.2e —
16, we can conclude that the activity density metric values were
not normally distributed, hence we opted for non-parametric tests,
i.e.,, Mann-Whitney for RQ1.H1y and Kruskal-Wallis for RQ1.H2¢
(comparing activity across 5 depth levels). In both cases, we used
a = 0.05. For the Kruskal-Wallis test, which is an omnibus test, we
used the Dunn post-hoc tests in case RQ1.H2 is rejected, since this
would allow to find the individual depth levels with significantly
more or less activity.

Results: There is a significant difference in activity between
hard and social forks. Testing our first hypothesis with the Mann-
Whitney test between the activity density and the type of the fork
(hard or social) rejected the null hypothesis (p < 0.05) for all 5
thresholds, when examining the entire dataset, i.e., all forks merged
in a single dataset without accounting for individual families.

Activity varies significantly along with depth of the family
tree. We obtained this result for our second hypothesis through
a Kruskal-Wallis test on activity density for different depths of a
fork in the repository family tree. We could not reject the null
hypothesis (with p = 0.1661). One important reason for this could
be the substantial imbalance of the dataset with respect to the depth
of each fork. More specifically, out of the 3405 forks studied in total,
2964 were immediate forks of the root of the family tree, 323 were
forks of forks and the other 72 were deeper in family tree up to a
depth of 5. For this reason, we repeated the analysis to compare
the activity between forks of depth 1 and forks of depth more than
1. For this analysis, we performed a Mann-Whitney U test. In this
case, with p = 0.028, we can reject the null hypothesis, thus activity
differs between forks of depth 1 and those deeper in the family tree.

The proportion of families with significant differences
in activity between social and hard forks varies from 4.1%
to 13.7%. Continuing on the per-family analyses, we performed
a series of Mann-Whitney U tests to study if there are indeed any
emerging patterns with respect to activity density and if these pat-
terns are different between social and hard forks within the same
family. Table 3 shows the numbers of families where different pat-
terns of activity (“Activity” columns) were observed between social
and hard forks. We performed the test for all considered thresholds
of merged commits between forks and baselines. In some families,
depending on the threshold, only one type of fork (either social
or hard) occurs, as shown by the number of families with a single
type of fork in the last column of Table 3. Examining the results

Hadian and Ghari, et al.

Activity Dependencies
Single
type
p<005 p>005|p<005 p>0.05 fami-
lies
1 com. 10 63 8 65 2
25% 3 70 6 67 2
50% 4 67 6 65 4
75% 8 61 5 64 6
ALL 6 62 5 63 7

Table 3: Differences in Activity (based on activity density) and
Dependencies (based on Jaccard distance) per family between
social and hard forks for different pull request thresholds.

more carefully, we found that 14 out of 75 families have a signifi-
cant difference in activity between hard and social forks in at least
one of the 5 thresholds. However, these families account for about
49% of our entire dataset. As a result, they seem to be responsible
for the global outcome when all forks are merged into a single
dataset. On the other hand, 50.7% (threshold “1 commit”) to 85.3%
(threshold “ALL”) of families do not exhibit significant differences
in activity. However, these families have an average of 28 forks
per family accounting for 51% of the total number of repositories
in our dataset. While it is evident that the size of the family has
an impact on the results, we can argue that in larger families with
more forking activity, the development intensity seems to differ
between hard and social forks consistently across different merge
thresholds to distinguish between the two types.

3.2 RQ2: Dependency Analysis

Motivation: The premise behind analyzing dependencies to study
differences between forks and parents is that dependencies, along
with code and documentation, can be used to accurately describe
the purpose and the functionality of a project. Even in the presence
of general-purpose dependencies, like logging, authentication, a cer-
tain number of dependencies are project or domain-specific, clearly
indicating functionality. In the context of project families, we can
easily deduce some drift in functionality and purpose between forks
and parents by simply comparing the sets of dependencies. Unlike
dependencies, code may require cumbersome and expensive com-
parisons to find differences, while documentation, when available,
requires equally complicated natural language processing, with the
associated shortcomings.

In this work, we focus on dependencies and more specifically
on the presence or absence of dependencies between forks and
parents, not version updates of existing dependencies. This is be-
cause dependency updates are a very common change, especially
between forks and parents, but do not necessarily contribute to a
drift in functionality. In addition, as mentioned before, build files,
where dependencies are explicitly specified, usually leave version
as a variable, exactly because it changes often and in most cases
the latest version is the one required.

To respond to RQ2, we examined the following two null hy-
potheses:

Exploring trends and practices of forks in open-source software repositories

200 4
depth
8 150+ 1
.
L2 2
%
0%100- . 3
2 o 4
50 5
0_ L | L _—.J
0.00 0.25 050 0.75 1.00

Jaccard Distance

Figure 1: Frequency of repositories per Jaccard distance.

e RQ2.H1¢: Dependency sets are similar across social and hard
forks.

e RQ2.H2¢: Dependency sets do not vary along the depth of the
family tree.

Approach: To capture differences in dependencies, we consid-
ered the set of dependencies for every repository as declared in
a build file (pom. xml or build.gradle). We excluded the version
information from each dependency to avoid version updates to
be considered as different dependencies (cf. motivation). We then
calculated the difference in the dependency sets between the parent
and each fork in terms of the Jaccard distance between the two sets.

To validate our hypotheses for RQ2, we followed a similar ap-
proach to that for RQ1. The Shapiro-Wilk test (« = 0.05) showed
that the Jaccard distance data is not normally distributed (p <
2.2e — 16). Therefore, similar non-parametric tests were applied,
Mann-Whitney for RQ2.H1(and Kruskal-Wallis for RQ2.H2((com-
paring activity across 5 depth levels) with & = 0.05. In case RQ2.H2,
is rejected, we applied post-hoc Tukey tests [18] to see if the Jaccard
distance is significantly different between different depths.

Results: Deeper forks tend to have a larger probability of
changing dependencies. Only 1,361 repositories out of a total
of 3,330 studied repositories (excluding parent repositories) had
the exact same set of dependencies as their respective parent. Fur-
thermore, Figure 1 shows the number of repositories with specific
Jaccard distances. For every distance, the plot also includes the dif-
ferent proportions according to the depth of the repository. Depth
1 corresponds to forks of the parent, depth 2 corresponds to forks
of forks and so on. We can observe that as the depth increases the
probability for greater deviations from the set of dependencies of
the parent also increases, i.e., deeper forks tend to have a larger
probability of changing dependencies.

We studied in detail the relationship between the Jaccard distance
and the depth in the family tree to identify the degree to which the
deviation in dependencies is stronger as we go deeper. Our dataset
contained forks up to a depth of 5 (where 0 is the depth of the
parent repository). The results for the Kruskal-Wallis test showed

CASCON’22, November 15-17, 2022, Toronto, Canada

that the Jaccard distance can become significantly higher as we
go deeper in the family tree. In addition, the post-hoc Tukey tests
show that the Jaccard distance is significantly different between
level 1 and each deeper level (i.e., 1-2, 1-3, 1-4), but there is not
much difference between other levels. From this, we can deduce
that starting from depth 2 the set of dependencies has deviated
enough from the parent that the Jaccard distances among all the
deeper forks are significantly different.

Between 7.2% and 10.9% of families show a significantly
higher deviation of dependencies in social forks compared to
hard forks. To study if the type of fork plays a role in the deviation
of dependencies, we again performed a series of Mann-Whitney U
tests per family of repositories to see if the Jaccard distances per
type of fork come from different distributions. As shown in Table 3
(column Dependencies), this hypothesis was confirmed only for a
few families for every threshold of commits. Nevertheless, when
we considered all studied repositories, outside the context of fami-
lies, the corresponding Mann-Whitney U tests for every threshold
confirmed the hypothesis that the Jaccard distances produce dif-
ferent distributions for social and for hard forks, respectively. We
also found that 9 out of 75 families had significantly different de-
pendency sets between hard and social forks, according to Jaccard
distance. These families accounted for about one third (34.8%) of the
dataset with an average of 131 forks between them. On the other
hand, at least 89% of families did not show significant difference in
their dependency sets between hard and social forks. These families
accounted for about 65% of our dataset, but with an average of 33
forks per repository. Once again, the difference in dependency sets
seems to be more prominent for larger families with more forking
activity.

3.3 RQ3: Communication and Evolution
Analysis

Motivation: As fundamentally collaborative activities, software projects

have a pronounced social aspect that involves significant amounts
of direct or indirect communication among developers. Based on
the definitions for hard and social forks, we hypothesize that the
quantity and the means of communication would be different for
the two types of forks. Moreover, we explore if communication
differs between the different evolution patterns, as expressed by
activity density and differences in dependencies between forks and
parent projects.

To respond to RQ3, we examined the following three null hy-
potheses:

e RQ3.H1y: Communication is the same between hard and social
forks.

e RQ3.H2¢: Communication is the same between different levels
of activity density.

e RQ3.H3(: Communication is the same between different levels
of Jaccard distance, representing the difference between forks
and parents with respect to dependency sets.

Approach: Since communication cannot be encapsulated in a
single value and rather it consists of multiple parameters, the hy-
potheses were not checked with simple statistical tests that would
accept or reject the null hypothesis. Rather, we trained different

CASCON’22, November 15-17, 2022, Toronto, Canada

Table 4: Significant communication metrics across all thresh-
olds.

Metric ALL 75% 50% 25% 1 Commit
(Intercept) -0.63*** -3.71°%* -3.82%** -4.086™** 2.52"**
forks 0.052** -0.005" 0** -0.004* 0.05
users_repo 0.55"** 0.41%** 0.42"** 0.32*** 0.86"**
users_also_in_family -0.61"** -0.39"** -0.38"** -0.35"** -0.85"**
followers_repo 0 0.050 0.020 0.053 -0.04
followers_family 0* -0.01* -0.03*** -0.06*** -0.01***
followers_outside 0 0 0 0 0*
pr_repo 0 0.01 0.009 0.01 0.02
pr_family 0 0 0 0 -0.01%**
pr_repo_comments 0 0 0 0.01** -0.01
pr_family_comments 0* 0* 0* -0.00 [Vl
pr_repo_code_comments 0.01 0 0.01 -0.02 0.28
pr_repo_code_comments 0.02*** 0* 0.01*** 0 0.01
issue_repo 0.10 -0.05 -0.06 -0.05 -0.49*%
issue_family 1.71 0.55™* 0.55™* 0.91%** 12.39
issue_outside -0.09** -0.01* -0.01* -0.01* -0.01
issue_assigned 0.11 -0.02 -0.03 -0.21 -4.99*
R? 0.084 0.132 0.149 0.154 0.155

regression models with the communication metrics as the predic-
tors, and the respective parameter for each of the above hypothesis:
logistic (hard vs social) for H1y, activity density for H2¢, and Jac-
card distance for H3¢. The models will tell us how accurately the
communication metrics can predict, or in our case explain, the out-
comes. If there exist statistically significant (p < 0.05) predictors
and the regression model is well-fitted (according to R?), we assume
that there is significant difference in communication between the
different outcomes. The logistic regression model was trained for
all five thresholds studied for hard and social forks.

Results: Evidence was found that certain communication el-
ements (users, followers, issues) are different between social
and hard forks. Table 4 shows the results for the logistic regression
models with the type of fork as outcome and the communication
metrics as input. The significance for each communication metric is
shown with respect to its p-value: % => p < 0.05, %* => p < 0.01,
%% =>p < 0.001.

As it can be seen by R? for each threshold, communication met-
rics cannot predict the type of fork with high accuracy. However,
we can see that the model fitness progressively increases as we
relax the threshold. While this may be due to data availability or
outcome imbalance, as it was discussed in Table 2 the balance with
respect to the outcome changes uniformly between the threshold.
As a result we can understand that the prediction is better when
we have more social forks. This conclusion is intuitive as social
forks tend to be more active in terms of communication, especially
within the same family, as we will discuss next. However, a more
microscopic analysis is needed to further confirm this finding.

With respect to significant communication predictors, we can
also see certain patterns. For example, it can be seen that the number
of users and the number of common users within the family are both
significant predictors across all thresholds. However, the respective
trends between the two metrics are opposite. The more users we
have in a fork, the higher the log-odds that the fork is a hard fork,
while the more users within the family, the higher the log-odds for
a social fork. Again, this is an intuitive finding, given that in social
forks users tend to be active in at least two forks, the social fork
and the parent. A similar observation can be made for followers

Hadian and Ghari, et al.

within the family, where in social forks users tend to follow multiple
repositories within the same family.

An interesting pattern can be observed with respect to issues.
While the number of issues within the family are an important
predictor for the type of fork, but conversely to users and followers,
a higher number of issues within the family implies higher log-odds
for a hard fork. In the contrary, more issues by users outside to
family imply higher log-odds for a social fork. We speculate that
this finding may be circumstantial based on how the repositories
are used. In any case, both metrics are neither very significant nor
consistently significant across all thresholds. Finally, there seems
to be no or little connection between pull requests and the type of
fork.

Table 5: Coefficients of communication metrics for Activity
Density and Jaccard Distance in linear regression models.

Communication metrics Activity Density Jaccard
(Intercept) 1.83E-02* 3.25E-01***
forks 1.05E-04 4.66E-04
user_repo -6.59E-03 2.34E-02**"
user_also_in_family 2.37E-02*** -2.43E-02***
followers_repo 1.55E-02** 9.91E-03**
followers_family -6.39E-05 -1.03E-03*"
followers_outside -1.69E-06 6.10E-06***
pr_repo 4.09E-03™** -7.78E-04
pr_family 2.19E-03*** -2.72E-04
pr_repo_comments -1.33E-04 -8.39E-04
pr_family_comments 3.22E-04™* -7.43E-06
pr_repo_code_comments 9.90E-04 -2.61E-03
pr_family_code_comments -4.98E-04* -1.25E-03***
issue_repo 1.22E-02* 6.43E-03
issue_family -2.40E-02 -4.18E-02
issue_outside -2.17E-02 7.73E-03
issues_assigned_repo 2.71E-03 0.24048
R 0.4731 0.02446

High communication metrics are correlated with high
development activity in terms of commits. Table 5 shows the
results of the linear regression models with the activity and Jaccard
distance as the outputs. One first observation is that the model
between communication and activity had R? = 0.4731 showing a
good fit and a potential relationship between activity density and
communication. More specifically, we can see that repositories with
a high number of users within the family of the fork, followers, pull
requests of the fork and of the family and issues also have high
activity with respect to daily commits. Unlike the type of fork, pull
requests and some of their respective social metrics are found to be
good predictors of activity density.

Communication metrics are not highly correlated with
differences in the dependency sets between parent reposito-
ries and forks. The fitness of the linear regression model with the
Jaccard distance as the output was R? = 0.02446, which may imply
that there is no strong relationship between communication and
the purpose of the repository as manifested by its dependencies.

Exploring trends and practices of forks in open-source software repositories

Even so, we can see that high values for repository specific com-
munication metrics, like number of users and number of followers,
imply high Jaccard distance and consequently greater deviation of
the fork’s dependencies from the parent. Conversely, high values
of family related communication metrics, like users, followers and
commit comments in pull requests, imply lower Jaccard distance
and more similar dependency sets between the fork and the parent.
Given that, as we have shown in RQ2, low Jaccard distance is corre-
lated with social forks, it makes sense that higher communication
activity within the broader family of the fork implies social forks.

Overall, we can confirm that communication metrics can be used
to indicate differences between the type of the fork (hard vs social)
or between different levels of activity density (in terms of daily
commits). Therefore, we can reject the null hypotheses RQ3.H1,
and RQ3.H2y. However, our analysis could not identify a strong
correlation between communication metrics and the difference in
the dependency sets (based on the Jaccard distance). Therefore, we
could not reject the null hypothesis RQ3.H3y.

4 RELATED WORK
4.1 Forks and Pull Requests

Forks and the practice of forking have been of interest to software
engineering researchers for over 20 years [20]. Several studies have
attempted to categorize forks by type. Zhou et al. [20] differentiate
between “hard” and “social” forks. Social forks are frequently used
to enable contributions from developers who are external to a
project. Independent or “hard” forks [20] often result in competing
development activities and significantly different project directions.

Rastogi and Nagappan [11], identify three types of GitHub forks:
contributing, independent, and inactive. Contributing forks are
similar to social forks in [20] in that are used to integrate changes
into the forked project (baseline) via pull requests (PRs) whereas,
independent forks do not issue pull requests and have internal
commits that differ from those in the baseline project [11] (akin
to hard forks in [20]). Inactive forks do not issue pull requests and
do not have any commits. Contributing forks are further classified
into those which are mostly used to fix bugs and those which are
used to add new features or functionality, and those that are used
to change configurations [8, 14].

Jiang et al. [8] investigated why and how developers fork what
from whom in GitHub. They observed that a common reason de-
velopers fork a repository is to send pull requests, fix bugs, and add
new functionality [10, 14].

Robles and Gonzalez-Barahona [13] found that a minority of
forks are merged back into the baseline repository. Moreover, the
number of forks that integrate code from similar or parent projects
is extremely low.

A study on the topic of clone-based variability management
demonstrated that practices such as clone-and-own is broadly used
in the Android ecosystem [3]. The study explored Android apps
that can be accessed through the official app store as well as Google
Play. A total of 88 Android application families were analyzed. They
found that: 1) the propagation of code from one variant to another
one is not more common in the applications, and 2) the number of
parent forks that propagate code through pull requests is very low.

CASCON’22, November 15-17, 2022, Toronto, Canada

4.2 Communication

There is substantial research on the significance of communica-
tion in GitHub. Tsay et al. [17] explore metrics that relate to PR
acceptance, including the number of comments, and the social con-
nections between the contributor and project manager. Zhang et al.
[19] explore the effects of @mentions on processing PRs, including
reducing the delay of developer collaboration. Bissyandé et al. [1]
conduct a large scale study on GitHub issues, including how they
relate to repository success. Destefanis et al. [5] look specifically
at issue comments, and explore how sentiment differs between
users and project contributors. Dabbish et al. [4] make the case that
GitHub contains a rich set of social inferences.

The notion of a software family is introduced in [2] in order to
analyze developer interaction within repositories, among reposito-
ries within the same family, and among families. The study found
that interactions from developers in the same software family share
arelationship with repository stars. Their results suggest that a soft-
ware family is an interesting concept for investigating developer
contributions.

5 CONCLUSION

The work presented in this paper aimed at studying the current
practices and trends of forking in open-source software reposito-
ries. The study explored how forks evolve with respect to their
parent repository and how this forked evolution may manifest it-
self in differences between forks of the same family of repositories
with respect to the purpose of the fork, the development activity,
the functionality of the software and the communication intensity
between developers. Our results showed that within repository
families we can differentiate between hard and social forks and that
these two types of forks show different patterns with respect to
the development activity, the evolution of dependencies and the
social interactions between the developers. We have also shown
that differences in development practices are also correlated with
communication activity.

The main objective of the study was to show that we can easily
characterize a fork, understand its purpose, and potentially predict
its evolution with respect to its parent, by observing measurable
and pragmatic indexes such as the number of commits, the number
users, the size and depth of the repository family, among others.
The practical usefulness of this finding is the increase in developer
awareness of software projects and the increased ability to onboard
new members in development activities. By focusing on a small set
of specific indexes and metrics and having a general awareness of
the family of a fork, a developer, new or old, can understand a lot
about the evolution of the project.

Although our study was extensive in terms of the number of
repositories and families of repositories it considered, at this stage
its nature was mostly observational. In the future, we plan to focus
deeper on specific families and repositories to identify case studies
that can provide explanations and potentially more specific patterns
that would further justify our findings. Personally contacting devel-
opers of the studied repositories, as in the case of Zhou et al. [20],
would further confirm the value and practicality of our findings.

CASCON’22, November 15-17, 2022, Toronto, Canada Hadian and Ghari, et al.

REFERENCES In Proceedings of the 11th working conference on mining software repositories.
p

[1] Tegawendé F Bissyandé, David Lo, Lingxiao Jiang, Laurent Réveillere, Jacques 9_2_101‘ o L
Klein, and Yves Le Traon. 2013. Got issues? who cares about it? a large scale inves- [10] Llnus Nyman and Tomnn Mlkkonen._201 L. To fork or not to fork: Fork motivations
tigation of issue trackers from github. In 2013 IEEE 24th international symposium in SourceForge projects. International Journal of Open Source Software and
on software reliability engineering (ISSRE). IEEE, 188-197. Processles (I]OSSP) 33 (20?1)’ 1-9. X L

[2] Scott Brisson, Ehsan Noei, and Kelly Lyons. 2020. We Are Family: Analyzing [11] {-\yushl Rastogi and Nachlappén NagaApPan.A 2016. Fork“}z‘? and the S}‘Sta}“ab‘l‘
Communication in GitHub Software Repositories and Their Forks. In 2020 IEEE ity of the Developer Community Partlapatlon—Ar? Empirical Investigation on
27th International Conference on Software Analysis, Evolution and Reengineering Outcomes and Reasons. In 2016 IEEE 23rd International Conference on Software
(SANER). IEEE, 59-69. Analysis, Evolution, and Reengineering (SANER), Vol. 1. IEEE, 102-111.

[12] Eric S. Raymond. 1998. Homesteading the Noosphere. First Monday 3, 10 (Oct.

[3] John Businge, Moses Openja, Sarah Nadi, Engineer Bainomugisha, and Thorsten ; ;
1998). https://doi.org/10.5210/fm.v3i10.621

Berger. 2018. Clone-based variability management in the android ecosystem.

In 2018 IEEE International Conference on Software Maintenance and Evolution [13] Gregorio Robles and Jesus M Gonzélez-Barahona. 2012. A comprehensive study
(ICSME). IEEE, 625-634. of software forks: Dates, reasons and outcomes. In IFIP International Conference
[4] Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. 2012. Social Coding on Open Source Systems. Springer, 1-14.

[14] Stefan Stanciulescu, Sandro Schulze, and Andrzej Wasowski. 2015. Forked and

in GitHub: Transparency and Collaboration in an Open Software Repository. In : . " .]
integrated variants in an open-source firmware project. In 2015 IEEE International

Proceedings of the ACM 2012 Conference on Computer Supported Cooperative Work) >
(Seattle, Washington, USA) (CSCW ’12). ACM, New York, NY, USA, 1277-1286. Conference on Software Maintenance and Evolution (ICSME). IEEE, 151-160.

[5] Giuseppe Destefanis, Marco Ortu, David Bowes, Michele Marchesi, and Roberto [15] C. T@tlthamthavc{m, S. McIntosh, A E. Hassan, ar.ld K. Matsumoto. 2017‘ An
Tonelli. 2018. On measuring affects of github issues’ commenters. In Proceedings Empirical Comparlsoq of Model Vahdanop Tthnlques for Defect Prediction
of the 3rd International Workshop on Emotion Awareness in Software Engineering. Models. IEEE Transactions on Software Engineering 43, 1 (?017)’ 1_18_' .
14-19. [16] TIOBE. 2020. TIOBE Index for August 2020. https://www.tiobe.com/tiobe-index/

[6] Daniel M. German, Bram Adams, and Ahmed E. Hassan. 2015. Continuously [17] Jason '.l"say, Laura Dabbish, ar}d James I-—Ierl‘)slelhl 20.14. Influence of Social and
Mining the Use of Distributed Version Control Systems: An empirical study of Technical Fagtors for Evaluating Contnbutlox.l n qltHUb' In P ’Ocee’ji'fg's of the
how Linux uses git. Empirical Software Engineering 21, 1 (2015), 260-299. 36th International Conference on Software Engineering (Hyderabad, India) (ICSE

[7] Georgios Gousios and Diomidis Spinellis. 2012. GHTorrent: GitHub’s data from 2014). ACM, New York, NY, USA: 356f3§6< .))
a firehose. In 2012 9th IEEE Working Conference on Mining Software Repositories [18] John W Tukey. 1949. Comparing individual means in the analysis of variance.
(MSR). IEEE, 12-21. Biometrics (1949), 99-114.

[8] Jing Jiang, David Lo, Jiahuan He, Xin Xia, Pavneet Singh Kochhar, and Li Zhang. [19] Y. Zhang, G.Yin, Y. Yu, and H. Wang. 2014. A Exploratory Study of @-Mention in

GitHub’s Pull-Requests. In 2014 21st Asia-Pacific Software Engineering Conference,
Vol. 1. 343-350.

Shurui Zhou, Bogdan Vasilescu, and Christian Kastner. 2020. How Has Forking
Changed in the Last 20 Years? A Study of Hard Forks on GitHub. In 2020 IEEE/ACM
42nd International Conference on Software Engineering (ICSE). IEEE.

2017. Why and how developers fork what from whom in GitHub. Empirical
Software Engineering 22, 1 (2017), 547-578.

[9] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M
German, and Daniela Damian. 2014. The promises and perils of mining GitHub.

[20

