
Exploring trends and practices of forks in open-source software
repositories

Mahsa Hadian
Polytechnique Montreal

Montreal, QC, Canada

mahsa.hadian@polymtl.ca

Soude Ghari
Polytechnique Montreal

Montreal, QC, Canada

soude.ghari@polymtl.ca

Marios Fokaefs*
Polytechnique Montreal

Montreal, QC, Canada
marios.fokaefs@polymtl.ca

Scott Brisson
University of Toronto

Toronto, ON, Canada
scott.brisson@mail.utoronto.ca

EhsanNoei
University of Toronto

Toronto, ON, Canada
e.noei@utoronto.ca

Kelly Lyons
University of Toronto

Toronto, ON, Canada
kelly.lyons@utoronto.ca

ABSTRACT

Bram Adams
Queen's University

Kingston, ON, Canada
bram.adams@queensu.ca

Forking a software repository is a popular and recommended prac­
tice among developers. A fork is a copy of the original repository
that can evolve independently from the parent repository, allowing
developers to experiment with a code base or test new features
without the danger of affecting the original project. A fork can
result in changes that are pushed back to the original project or
even evolve into an independent project. Some projects tend to be
forked extensively to the point where their forks are also forked
and form families of projects. In this work, we explore the motiva­
tion, the practices and the culture of forking open-source software
repositories. In particular, we study how forks evolve compared to
the parent repository, how they are related to pull requests, how
they contribute back to the parent, and how dependencies, in terms
of libraries or external modules defined in a build script, are shared
or differ within project families. Finally, we relate our findings
with how communication and collaboration occurs within software
families.

CCS CONCEPTS

• Software and its engineering ----t Open source model; Soft­

ware design engineering; Software libraries and repositories;

Software development process management.

KEYWORDS

mining software repositories, open source software, forks, software
development processes, version control, dependencies, collabora­
tive software development

•currently, Pr Fokaefs is a faculty member at York University, Toronto, Canada

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CASCON'22, November 15-17, 2022, Toronto, Canada

© 2022 Copyright held by the owner/author(s).

Shurui Zhou
University of Toronto

Toronto, ON, Canada
shuruiz@ece.utoronto.ca

ACM Reference Format:

Mahsa Hadian, Soude Ghari, Marios Fokaefs, Scott Brisson, Ehsan Noei,

Kelly Lyons, Bram Adams, and Shurui Zhou. 2022. Exploring trends and

practices of forks in open-source software repositories. In Proceedings of

CASCON'22. ACM, New York, NY, USA, 10 pages.

1 INTRODUCTION

Forking is an open source practice that, until the early 2000s, was
interpreted as a negative phenomenon: "There is strong social pres­
sure against forking projects. It does not happen except under plea
of dire necessity, with much public self-justification, and with a
renaming" [12]. Typically, a subset of a given community would dis­
agree about the development plan, progress or team composition of
a given project, copy (the current state of) the code base elsewhere
and continue separately from the initial community. Notable exam­
ples of such "hard" forks [20] are the forking of XEmacs from the
main GNU Emacs in 1991 (both communities never merged again),
or the EGCS fork from GCC in 1997 (successfully merged again into
GCC 2.95). Today, the meaning of fork has softened slightly, thanks
to the popularity of GitHub, and is mostly interpreted as "social"
forking [20], which simply makes a copy of a (parent) repository
in order to make modifications (new features, bug fixes or pure
experimentation) to the code base that can then be proposed back
to the parent (through a "pull request").

The notion of social forks goes much deeper than this. German
et al. [6] note that modern forks basically are distributed branches
of a code base that together form an ecosystem ("super-repository")
around their parent, i.e., forks maintain traceability to their par­
ent. Brisson et al. [2] went a step further, identifying the crucial
role of social relationships between the contributors of a parent
repository, its forks, and the forks' own forks to the extent that
these forks essentially form a "family" of projects communicating
directly through pull requests (PRs), issues, and mentions. Like any
family, there might be small cliques that interact more closely than
others, or some family members might break off from the family
altogether.

CASCON'22, November 15-17, 2022, Toronto, Canada Hadian and Ghari, et al.

Table 1: List of metrics mined from the repositories and considered in this study.

Category

Age

Forks

Commits

Dependencies

Users

Followers

Pull Requests (PRs)

PR Comments

PR Mentions

Issues

Issue Comments

Issue Mentions

Issue Events

Metric

age

depth

forks

forks_family

commit_count

unique_commits

commit_author

commit_message

dependencies

jaccard

users_repo

users_also_in_family

followers _repo

followers_family

followers_ outside

pr_repo

pr_family

pr_repo_comments

pr_family_comments

pr_repo_code_comments

pr_family _code_comments

pr_mentioned_repo

pr_mentioned_family

pr_mentioned_outside

issue_repo

issue_family

issue_outside

issue_comments_repo

issue_ comments _family

issue_ comments_ outside

issue_mentioned_repo

issue_mentioned_family

issue _mentioned_ outside

issue_closed

issue _subscribed

issue_unsubscribed

issue_reopened

issue_assigned

issue _referenced

Description

Total age (in days).

Total #forks away from the parent.

Total #forks.

Total #forks that have participated in a PR or issue within

the family.

Total #commits present in the repository.

Total# of unique commits, present in the fork, but not in

the parent

Usemame that made the commit

Message of the commit

List of unique dependencies.

Jaccard distance between the sets of dependencies of the

fork and of the parent

Total #users with write access to the repository.

Total #users with write access to the repository and one

other familial repository.

Total #followers of users_repo coming from the same repos­

itory.

Total #followers of users_repo coming exclusively from the

family.

Total #followers of users_repo coming from outside the

family.

Total #PRs within the same repository (through branching)

Total #PRs within the same family (through forking)

Total #comments from pull request discussions in pr_repo.

Total #comments from pull request discussions in pr_family.

Total #comments from pull request commit discussions in

pr_repo.

Total #comments from pull request commit discussions in

pr_family.

Total #PR mentions of users in users_repo.

Total #PR mentions of users exclusively in the family.

Total #PR mentions of users outside the family.

Total #issues reported by users in users_repo.

Total #issues reported by users exclusively in the family.

Total #issues reported by users outside the family.

Total #issue comments from issue_repo.

Total #issue comments from issue_family.

Total #issue comments from issue_outside

Total #issue mentions of users in users_repo.

Total #issue mentions of users exclusively in the family.

Total #issue mentions of users outside the family.

Total #issues closed.

Total #issues subscribed.

Total #issues unsubscribed.

Total #issues reopened.

Total #issues assigned.

Total #issues referenced.

CASCON'22, November 15-17, 2022, Toronto, Canada

• RQl .H2o: Activity does not vary along the depth of the family
tree.

Approach: The important metrics to test these hypotheses are
mainly the number of commits and the age of a repository. In order
to control project activity for project age, we calculated the metric
of "activity density", which simply shows the average number of
commits per day of activity. In practice, this is a normalization
of activity and it helps to differentiate two repositories with, for
example, heavy activity (large number of commits), but a short and
a long lifetime each. The density was used as a continuous outcome
to study the relationship with other metrics of the repositories.

To validate our hypotheses statistically, we first checked for
normality of the activity metric using the Shapiro-Wilk test (a =
0.05), whose null hypothesis states that the data distribution under
study is normal. Since this hypothesis was rejected with p < 2.2e -
16, we can conclude that the activity density metric values were
not normally distributed, hence we opted for non-parametric tests,
i.e., Mann-Whitney for RQl.Hlo and Kruskal-Wallis for RQ1.H2o
(comparing activity across 5 depth levels). In both cases, we used
a = 0.05. For the Kruskal-Wallis test, which is an omnibus test, we
used the Dunn post-hoc tests in case RQ1.H2o is rejected, since this
would allow to find the individual depth levels with significantly
more or less activity.

Results: There is a significant difference in activity between

hard and social forks. Testing our first hypothesis with the Mann­
Whitney test between the activity density and the type of the fork
(hard or social) rejected the null hypothesis (p < 0.05) for all 5
thresholds, when examining the entire dataset, i.e., all forks merged
in a single dataset without accounting for individual families.

Activity varies significantly along with depth of the family

tree. We obtained this result for our second hypothesis through
a Kruskal-Wallis test on activity density for different depths of a
fork in the repository family tree. We could not reject the null
hypothesis (with p = 0.1661). One important reason for this could
be the substantial imbalance of the dataset with respect to the depth
of each fork. More specifically, out of the 3405 forks studied in total,
2964 were immediate forks of the root of the family tree, 323 were
forks of forks and the other 72 were deeper in family tree up to a
depth of 5. For this reason, we repeated the analysis to compare
the activity between forks of depth 1 and forks of depth more than
1. For this analysis, we performed a Mann-Whitney U test. In this
case, with p = 0.028, we can reject the null hypothesis, thus activity
differs between forks of depth 1 and those deeper in the family tree.

The proportion of families with significant differences

in activity between social and hard forks varies from 4.1%
to 13.7%. Continuing on the per-family analyses, we performed
a series of Mann-Whitney U tests to study if there are indeed any
emerging patterns with respect to activity density and if these pat­
terns are different between social and hard forks within the same
family. Table 3 shows the numbers of families where different pat­
terns of activity ("Activity" columns) were observed between social
and hard forks. We performed the test for all considered thresholds
of merged commits between forks and baselines. In some families,
depending on the threshold, only one type of fork (either social
or hard) occurs, as shown by the number of families with a single
type of fork in the last column of Table 3. Examining the results

Hadian and Ghari, et al.

Activity Dependencies
Single

p < 0.05 p > 0.05 p < 0.05 p > 0.05
type
fami-

lies

1 com. 10 63 8 65 2
25% 3 70 6 67 2
50% 4 67 6 65 4
75% 8 61 5 64 6
ALL 6 62 5 63 7

Table 3: Differences in Activity (based on activity density) and

Dependencies (based onJaccard distance) per family between

social and hard forks for different pull request thresholds.

more carefully, we found that 14 out of75 families have a signifi­
cant difference in activity between hard and social forks in at least
one of the 5 thresholds. However, these families account for about
49% of our entire dataset. As a result, they seem to be responsible
for the global outcome when all forks are merged into a single
dataset. On the other hand, 50.7% (threshold "1 commit") to 85.3%
(threshold "ALL") offamilies do not exhibit significant differences
in activity. However, these families have an average of 28 forks
per family accounting for 51 % of the total number of repositories
in our dataset. While it is evident that the size of the family has
an impact on the results, we can argue that in larger families with
more forking activity, the development intensity seems to differ
between hard and social forks consistently across different merge
thresholds to distinguish between the two types.

3.2 RQ2: Dependency Analysis

Motivation: The premise behind analyzing dependencies to study
differences between forks and parents is that dependencies, along
with code and documentation, can be used to accurately describe
the purpose and the functionality of a project. Even in the presence
of general-purpose dependencies, like logging, authentication, a cer­
tain number of dependencies are project or domain-specific, clearly
indicating functionality. In the context of project families, we can
easily deduce some drift in functionality and purpose between forks
and parents by simply comparing the sets of dependencies. Unlike
dependencies, code may require cumbersome and expensive com­
parisons to find differences, while documentation, when available,
requires equally complicated natural language processing, with the
associated shortcomings.

In this work, we focus on dependencies and more specifically
on the presence or absence of dependencies between forks and
parents, not version updates of existing dependencies. This is be­
cause dependency updates are a very common change, especially
between forks and parents, but do not necessarily contribute to a
drift in functionality. In addition, as mentioned before, build files,
where dependencies are explicitly specified, usually leave version
as a variable, exactly because it changes often and in most cases
the latest version is the one required.

To respond to RQ2, we examined the following two null hy­
potheses:

