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In today’s landscape, hardware development teams face increasing demands for better quality products,
greater innovation, and shorter manufacturing lead times. Despite the need for more efficient and effective
processes, hardware designers continue to struggle with a lack of awareness of design changes and other
collaborators’ actions, a persistent issue in decades of CSCW research. One significant and unaddressed
challenge is understanding and managing dependencies between 3D CAD (computer-aided design) models,
especially when products can contain thousands of interconnected components. In this two-phase formative
study, we explore designers’ pain points of CAD dependency management through a thematic analysis
of 100 online forum discussions and semi-structured interviews with 10 designers. We identify nine key
challenges related to the traceability, navigation, and consistency of CAD dependencies, that harm the
effective coordination of hardware development teams. To address these challenges, we propose design
goals and necessary features to enhance hardware designers’ awareness and management of dependencies,
ultimately with the goal of improving collaborative workflows.
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1 Introduction

The technologies we rely on in our daily lives are constantly evolving, but the fundamental need for
physical products remains unchanged. The process of designing physical products (i.e., hardware
development) requires collaboration among multiple engineers and teams. In today’s landscape,
however, the hardware development process is increasingly challenging, due to the growing
complexity of products and the distributed nature of hardware development work [22, 90].

A significant challenge in collaborative hardware development is a lack of awareness, a persistent
issue highlighted in decades of CSCW research [87, 95] across various domains, like software
development [136], data science [96], and collaborative writing [83]. Specifically in hardware devel-
opment, it is challenging for designers to synchronize design activities and maintain an awareness
of what others are working on, especially because products can be immensely complex. For instance,
the Boeing 787 Dreamliner included 300,000+ CAD (computer-aided design) models [12] that must
cohesively integrate for the final airplane to function properly. Even student design projects can
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involve 1,000+ models parametrically linked by 40,000+ dependency relationships [53]. Without
dependency management tools, it is impossible to navigate these intricate dependency relation-
ships [44], locate design errors [70, 105], or prevent unintended impacts on others’ work [22].
Researchers, therefore, strongly advocate for the development of dependency awareness tools that
can passively track these complex relationships [19, 24, 79], thereby facilitating collaboration.

Managing dependencies is not limited to hardware development; modern software development
also requires careful coordination of activities, people, and artifacts. Software systems, like code,
libraries, or frameworks, are built from existing systems, creating technical dependencies [37, 56].
Software developers must be aware of these dependencies to understand how their work will
impact each other and to ensure that the project progresses in the right direction. Researchers have
developed tools to analyze and visualize technical dependencies to decrease developers’ cognitive
load and facilitate communication among development teams [37].

While dependency management has been explored in software development, the unique nature
of hardware development makes dependency management especially challenging, due to the
geometric data, the granularity of CAD dependencies, and the lack of maturity in the tools. First,
hardware designers work with 3D CAD models that represent intricate geometric and topological
data [48], and the models’ dependencies are inherently linked to their physical architecture. Unlike
software, where dependencies are typically expressed in text-based code and can be traced through
direct imports or function calls, CAD dependencies are often implicit [17], which are difficult to
trace or search for [70]. Second, dependencies in CAD can exist at multiple levels of granularity, such
as between 2D sketches, or assemblies (composed of multiple interconnected 3D models), as well
as between levels (e.g., a top-level assembly can reference a low-level sketch). Finally, collaborative
infrastructure for CAD (e.g., awareness tools, version control) is generally less mature than in
software development [22]. Therefore, we can draw inspiration from the software development
literature; however, we must recognize that the unique characteristics of hardware design necessitate
tailored approaches to effectively manage CAD dependencies.

Dependency management tools tailored to CAD artifacts are crucial for supporting efficient
collaboration in hardware development teams. While existing literature has developed visualizations
or models of CAD dependencies [99, 111], the user requirements for such tools remain poorly
understood due to the absence of a systematic exploration with real CAD practitioners. Therefore,
we draw from similar research targeting awareness challenges in collaborative work [1, 34, 65, 78,
103, 139], conducting formative studies to better understand designers’ needs regarding dependency
management. Our work is guided by the research question: What challenges do design engineers
face with managing technical dependencies in CAD projects? Gaining empirical insights into
these challenges will enable us to devise appropriate strategies for addressing CAD dependency
management, including the development of targeted tools.

Our approach to answering this question is a two-part formative study, wherein we gathered
insights from actual CAD users through online forum discussions and semi-structured interviews.
In the first phase, we mined 100 popular forum posts to obtain an overview of current practices
and challenges. In the subsequent phase, we conducted interviews with 10 professional mechanical
design engineers from a large technology organization that has established advanced dependency
management practices, to identify rich scenarios and examples of persistent pain points. By con-
ducting a thematic analysis of both data sources, we engage with a diverse array of CAD users
through forum discussions, while simultaneously gaining an in-depth understanding of challenges
from the interviews. This comprehensive approach enables us to thoroughly assess the existing
gaps in CAD dependency management, as well as propose design implications for CAD platforms.
Our contributions to CSCW are summarized as follows:
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(1) A systematic identification of nine dependency management challenges in CAD, integrating
insights from online forums and professional mechanical design engineers.

(2) A set of design goals, features, and initial tool concepts aimed at enhancing awareness and
coordination in CAD work, focusing specifically on improving the traceability and navigation
of technical dependencies.

(3) A discussion of the broader implications of improved technical dependency management,
including its potential to enhance coordination of people and planning of design activities.

2 Background & Related Work

In this section, we first provide a background on awareness in CSCW to motivate our study. We
then explore the specific awareness needs in CAD and the role of dependency management in
addressing these needs. Finally, we review the relevant literature on CAD dependency management,
as well as in the related field of software development, where dependency management has been
studied more thoroughly.

2.1 Awareness in CSCW

Awareness is defined as the “understanding of the activities of others, which provides a context for
your own activity” [41], and is a fundamental concept to the field of CSCW [57, 61, 85, 122]. In
their seminal work, Gutwin and Greenberg [59] developed a conceptual framework for workspace
awareness, which refers to the up-to-the-moment understanding of another person’s interactions
with a shared workspace. Simply put, awareness is understanding who is in the workspace, where
they are working, and what actions they are taking [58], which involves both displaying one’s
actions and monitoring others’ actions [66]. More recently, Tenenberg et al. introduced we-awareness,
which extends beyond simply displaying one’s actions and monitoring those of others [135]. We-
awareness refers to the socially recursive knowledge that each participant of a collaborative effort
has of the other (i.e., the action of partner A is perceivable by partner B, partner B’s perception is
perceivable by partner A, and so on) [135] such that all collaborators are mutually aware of each
other’s awareness [55]. This recursive nature of we-awareness is crucial for collaborative work,
especially in distributed teams, because it enables individuals to anticipate conflicts, coordinate
activities, and build common ground [28].

There are various levels of collaborative work (coordinated, cooperative, co-constructive) [7], but
at the most basic level, collaboration requires coordination. As defined by Malone and Crowston,
coordination is “the act of managing dependencies between activities performed to achieve a goal” [92].
An example of a dependency is a transfer dependency, which occurs when one activity produces
something (e.g., a product, information) that another activity needs; this requires transferring from
the “producer” activity to the “consumer” activity [93]. For coordination to occur, these dependencies
must be managed, and the actors must have awareness of these dependencies. Without adequate
awareness, teams are more likely to encounter misalignments, redundancies, or conflicts in their
work [61]. Thus, awareness and coordination are deeply interconnected: awareness provides the
contextual information necessary for managing dependencies, while coordination mechanisms [123]
aim to structure and handle those dependencies efficiently [42, 121].

Maintaining awareness, however, is challenging due to the dispersed nature of knowledge in
collaborative work [60] — what Hutchins refers to as distributed cognition [69]. The information
needed for coordination is distributed across team members and their workspace. This dispersion
imposes a cognitive load on individuals to track and process all relevant information [68]. Re-
searchers have developed various mechanisms (e.g., notifications [62, 88], shared dashboards [136],
real-time collaborative tools [143]) to reduce the user’s cognitive load by providing visibility of
other people’s actions and changes to shared artifacts [33]. For instance, change awareness tools
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track asynchronous modifications to collaborative documents, summarizing what was changed,
who made the change, where it occurred, how it differs from previous versions, and why it was
made [134]. Importantly, awareness mechanisms are not about delivering all information to users;
rather, they are about disseminating contextually relevant information based on the specific work
needs [124]. Thus, designing effective awareness tools requires answering key questions like: What
information should be provided? When should it be provided? To whom and in what form?

Overall, the CSCW literature underscores the critical role of awareness and coordination in
cooperative work. Our research specifically focuses on enhancing awareness in the field of hardware
development by helping designers manage dependencies in CAD. By identifying CAD dependency
management challenges, we highlight specific areas to improve designers’ workspace awareness,
ultimately fostering more effective coordination and collaboration for hardware development teams.

2.2 Awareness Needs in Cooperative CAD Work

Awareness is key in all cooperative work domains, but it is especially difficult to maintain in CAD
work, due to the nature of developing hardware products. For instance, CAD artifacts (e.g., 3D
models) represent complex geometric and topological data [48], making it challenging to use and
develop traditional coordination tools, like version control [21]. As such, CAD designers often
struggle to identify the changes to a shared model, identify conflicts between models, and integrate
contributions among collaborators [22].

In cooperative CAD work, multiple designers or teams work together to design a physical product.
Typically, each designer or team is responsible for different parts or subsystems, which are later
integrated to complete the overall product. To illustrate this process, imagine the following scenario:
Designer A will model the wheels of a car, and Designer B will model the axle concurrently [5]. For
their designs to function cohesively, Designers A and B must communicate about design consid-
erations, e.g., the wheel dimensions, materials, heat transfer, sequence of design decisions [107].
Additionally, they must coordinate with Designer C, who may be designing the car’s frame, and
agree on the interfaces between components [127]. The CAD models act as intermediary objects
that enable coordination between designers [106, 137]. Therefore, it is crucial for designers to be
aware of their collaborators’ changes to shared CAD models [22].

To ensure interfacing parts work together, designers use parametric CAD [4], which relies
on parameters to define and constrain a model’s geometry. Revisiting our car design example,
Designer B may define the axle’s position relative to the center of the wheels. If Designer A
changes the wheel diameter, the axle will automatically update — preserving fit and structural
integrity without requiring manual rework [129]. While this approach works in theory, managing
dependencies in complex products, comprising thousands of interacting parts, can quickly become
a colossal task. Designers not only need awareness of the dependencies between CAD models to
avoid unintentionally impacting another designer’s model [22], but they also need to modify the
dependencies accurately as the design changes — for example, deleting dependencies when they
are no longer needed. Maintaining accurate and consistent parametric relationships is essential to
prevent costly manual rework and integration issues [15].

In summary, awareness in the CAD context entails not only understanding what others are
working on but also recognizing how design changes affect the overall product. Due to the para-
metric aspect of CAD models, the dependencies within a product can become highly complex and,
if not managed properly, can result in significant issues such as integration failures, misaligned
components, and rework. Therefore, our work aims to shed light on the user needs for managing
CAD dependencies, ultimately aiming to help improve awareness and coordination in CAD projects.
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2.3 Dependency Management

In this section, we review related work, beginning with the study of dependency management in
software development, a domain that has long recognized and supported these challenges, providing
frameworks and tooling support. We then highlight how dependency management in CAD presents
unique and significant challenges beyond those encountered in software development.

2.3.1 In Software Development. Dependency management has been studied widely in the software
development field [35, 36]. In cooperative software development, dependencies arise among activi-
ties, artifacts, and different parts of the same artifact (like program dependencies [109]) [45]. While
there are many types of dependencies (e.g., knowledge, process, resource) [130, 131], software
development projects generally have: technical dependencies, which exist between artifacts (e.g.,
components of a software system [132]) [38], and work dependencies [18], among developers. Often,
technical dependencies imply work dependencies [56] — creating socio-technical dependencies [118]
— which requires developers to coordinate and communicate to maintain a shared understanding of
the dependency [56].

Dependencies are necessary since modern software is built on the foundation of existing code,
libraries, and frameworks [71]. However, dependencies can introduce challenges, such as breaking
changes [13, 72], incompatibility with other dependencies [40], and abandonment, where a package
is used but no longer maintained [102]. Developers must keep updated with the latest versions of
libraries that their code depends on to maintain dependency freshness [32], but it can be laborious
to constantly track new updates [81], prompting the development of tools for automatic detection
and updating [64]. When dependencies are not properly maintained, common errors can occur,
such as missing dependencies (where necessary links are absent) and redundant dependencies
(where a dependency exists but serves no purpose) [46, 126]. Tools to automatically identify these
errors have also been of interest in related work [46, 104, 114], and are widely used in open-source
communities to facilitate the maintenance of dependencies [9].

Due to the complexity of managing dependencies, software development researchers have
investigated various strategies, finding “formal” approaches, like impact analysis tools to identify
entities that will be affected by a change [84], and also “informal” approaches, like extensive
email communication to broadcast the update [36]. Visualization tools have been built to help
developers better understand the technical dependencies at different granularity levels, between
files [54], features [25], and code blocks [14]. For instance, De Souza et al. created network graph
visualizations to illustrate dependencies among developers for various scenarios, such as identifying
developers working on similar tasks [37]. Another tool, Palantir, monitors artifacts in different
developers’ workspaces and visually exchanges information about how dependent artifacts are
being modified, aiming to avoid conflicting changes [119]. Gori et al. developed FileWeaver, a
system that automatically detects dependencies among files, tracks their history, and lets users
view the downstream and upstream dependencies [54]. The aim of all of these tools is to improve
software developers’ awareness of technical dependencies.

The software development literature has extensively explored various aspects of dependency
management, such as types of dependencies, dependency-related errors, and awareness tools.
However, managing dependencies in CAD is inherently more complex due to the nature of 3D
models, which are tightly coupled with the physical architecture of the product, unlike text-based
code [48]. Although software engineering provides mature frameworks and tooling for dependency
management, comparable solutions remain underdeveloped in the CAD domain. Our work aims
to fill this gap by providing a deeper understanding of dependency challenges in CAD, which is
essential for developing effective management strategies.
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2.3.2 In CAD. As introduced in Section 2.2, the key idea of parametric CAD is that parameters are
used to define all geometry, whether the shape of a single part, or the positions of parts relative
to each other [52]. When designers are not careful about how they define these parameters (e.g.,
the direction of the dependency), they can introduce architecture debt [115], harming CAD model
maintainability and reusability [15]. This becomes especially challenging in complex product
development, where a single product (e.g., an airplane) may consist of hundreds of thousands
of CAD models, all interconnected through intricate dependencies [12]. Consequently, there is a
fundamental need for robust dependency management tools and strategies in CAD that can track
relationships between different models, support impact analysis, and manage product variants [111].

Dependency management is particularly complex in hardware development due to three main
factors: (1) the geometric nature of the data; (2) the granularity of dependencies; and (3) the lack
of maturity in existing tools. In contrast to software — where functions, variables, and modules
convey explicit semantic meaning and clearly defined relationships - CAD models are constructed
through sequences of geometric operations or features, that lack inherent semantics [17]. Features
do not typically carry textual information about their design intent or functional role within the
product [101]. As a result, errors or changes are not as obvious; for example, a change could occur
within the interior of a model, invisible from the outside view, whereas with software, code changes
are more easily detected, highlighted, and summarized. This lack of visibility and semantic clarity
makes it difficult to build tools that support effective change impact analysis in CAD.

Dependency management in CAD is further challenging because dependencies may span multiple
granularity levels, ranging from low-level sketches and features to parts and assemblies (see Figure 1).
These hierarchical relationships complicate both local edits and global coordination.

€

document assembly part feature sketch
(e.g., radial piston) (e.g., piston) (e.g., piston head) (e.g., revolve, cut) (e.g., lines, points)

Fig. 1. Granularity levels of CAD artifacts, organized from highest to lowest. A document is the top-level
container for CAD artifacts and often represents a product. However, due to technical limitations in some CAD
platforms, large or complex products may be split across multiple documents, creating “external references.”
An assembly is a model composed of multiple interacting parts. A part represents a single physical object
and is constructed from one or more features. A feature is an operation that manipulates geometry (in the
figure, two features, revolve and cut, create the piston head part). At the lowest level, a sketch is a set of 2D
line segments that defines a model’s geometry. Models adapted from [39].

Furthermore, dependencies can exist between different documents, known as “external references,”
a functionality supported by major CAD platforms, such as SolidWorks,' Fusion360,” and Onshape.’
External references can exist between artifacts at different granularity levels; for example, a circle
sketch in one document could define the diameter of a pipe in another document, and any change
to the sketch (e.g., increasing the diameter) will automatically update the dependent document.

Thttps://help.solidworks.com/2021/english/SolidWorks/sldworks/c_External _References.htm
https://www.autodesk.com/products/fusion-360/blog/reference-objects-sync-all-contexts/
Shttps://cad.onshape.com/help/Content/updating-references.htm
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It can be difficult for designers to trace the connections between different components [44],
so best practices have been developed for systematically setting up dependencies. One common
approach is “top-down” modelling [26, 27], whereby key parameters are defined in a central “master
sketch”, ensuring that dependent parts conform to the overall design constraints [20, 108]. Figure 2
illustrates this approach, where 2D sketches in the X-, Y-, and Z- planes define the reference
geometries for the overall product. With master sketches, there is one central place where all of the
dependency relationships are managed, and in the ideal scenario, changing the relevant element in
the master sketch propagates the changes downstream accordingly [27].

(a) Master sketch (b) Final CAD model

Fig. 2. Complex products typically follow a top-down architecture, where parameters are defined in (a) a
master sketch, which is used to create (b) the final CAD model. Adapted from [113].

Since multiple collaborators work across different dependent documents, researchers empha-
size the importance of tracking dependencies between these external references. Existing efforts
have developed automated measures for identifying these dependencies, such as through mapping
links [99], applying network approaches to identify independent modules [127], and using algo-
rithms to detect redundant dependencies [47]. Various researchers have also developed graph-based
visualizations to help designers understand the dependencies between CAD models [73, 80, 97].
Kozlova et al. interviewed six designers for feedback on their graph visualization of dependencies,
finding that users desired interactivity, reduced visual clutter, and support for various levels of
granularity [80]. Despite these advances, existing work focuses primarily on visualization and
lacks support for managing the dependencies, such as enabling designers to modify dependencies
directly within the interface. Beyond dependency management tools, awareness tools in CAD are
generally less mature compared to software development. For instance, cloud-based architecture,
though emerging, remains underutilized in many professional design organizations [91], which
limits collaboration. Sophisticated version control in CAD is still nascent [21, 24], which hinders
many aspects of dependency management, such as propagating changes across related documents
or models [22]. Given the current limitations of CAD collaboration systems, it is timely to guide
the development of more advanced dependency management capabilities.

Existing research on CAD dependency management has introduced various methods to identify
and visualize dependencies. However, a critical gap exists in understanding the challenges that must
be addressed before effective solutions can be developed. With the exception of Kozlova et al. [80],
most studies do not draw insights from real CAD users, and no studies take a systematic approach
to understanding the problem. Our research aims to fill this gap by identifying user requirements
for dependency management and proposing strategies grounded in empirical findings.
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3 Methods

To gain a comprehensive understanding of the challenges and user requirements surrounding CAD
dependency management, we conducted an exploratory sequential two-phase formative study [117],
and used Braun and Clark’s reflexive thematic analysis (RTA) approach [10]. In Study 1, we mined
and analyzed 100 user discussions from online CAD forum sites to build an initial understanding
of the current challenges experienced by design engineers. This forum thread analysis revealed
preliminary themes, which informed the analysis for Study 2, where we interviewed 10 professional
mechanical design engineers. By following this multi-modal approach, we aim to overcome the
limitations of a single data source. The forum discussions provide access to diverse discussion
topics [21] and a large pool of CAD users, enhancing the generalizability of our findings. In contrast,
with interviews, we naturally reach fewer CAD users, but we gain in-depth insights that highlight
the challenges and opportunities for CAD dependency management. Figure 3 summarizes our
research methods.

To determine appropriate sample sizes for both studies, we followed Malterud et al’s guidelines
for information power in qualitative research [94], which suggests that the number of participants
required depends on the richness and relevance of the data rather than a fixed threshold. While
either study alone may not hold sufficient information power, we conjecture that by supplementing
and triangulating these two samples [141], we collect the necessary evidence to answer our research
question. We discuss further details on study design and sample sizes in the following subsections.

In both Study 1 and Study 2, we investigated dependency management in the context of Onshape,*
a cloud-based CAD and data management platform. Like all parametric CAD software, Onshape
enables users to develop 2D sketches into 3D geometries and assemble these parts to create complex
models. However, Onshape is particularly advanced in its support for dependency management for
several reasons: (1) multiple designers can work on CAD documents simultaneously, removing
restrictions on collaborative design; (2) the version control system enables branching and merging,
supporting the creation and management of dependencies across different document versions;
and (3) the cloud-based architecture eliminates common broken file path issues [129]. Given
these capabilities, Onshape provides more sophisticated support than most CAD platforms, and
is considered a state-of-the-art system for dependency management. Nonetheless, designers still
report persistent challenges, therefore motivating the present study. Although we are interested
in understanding dependency management in CAD overall, for this paper, we scoped our data
collection to the Onshape platform, following the approach taken in similar studies, such as Kiani
et al’s investigation of help-seeking behaviours in the context of Autodesk Fusion360 [77].

Study 1: Mining Online Forum Discussions Study 2: Interviews with Design Engineers
26K threads 1,474 threads «®» 10 participants ax
& e g
Scrape Onshape Search keywords: Select popular Recruit participants Conduct semi-
forums "dependency", "dependencies”, threads from a professional structured interviews

"referenc*", "parent”, "child",
"hierarchi*", or "hierarchy"

design team

100 threads 10 interview transcripts

L Y 100 threads % 7 themes . . [ % 9 themes . .
Q a0 T HQ 1

Determine Deductive Develop Hybrid coding Develop final
relevance to RQ coding themes expanding Study 1's codes themes

Fig. 3. Overview of research methods for Study 1 and Study 2.

4https://www.onshape.com/en/
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3.1 Study 1: Mining Online Forum Discussions

The objectives of Study 1 are twofold: (1) to identify pain points and design goals for CAD depen-
dency management tools, and (2) to guide the theme development for Study 2. To achieve this, we
analyzed user discussions on online forums, a common data source used in CSCW research for
understanding current practices and challenges from a wide range of perspectives [3, 51]. Online
forums are important data sources for many domains, but especially for CAD-related topics, since
they are one of the most frequently used resources among professional engineers and serious CAD
users [77, 100, 112]. In our previous investigation of CAD version control practices [21], we found
that forums can be considered communities of practice, offering rich discussions, user complaints,
and needs that can inform the design of new features and improvements.

3.1.1 Data Collection. For this study, we collected data from Onshape forums,’ which are officially
affiliated with Onshape and hosted by its parent company, PTC Inc. At the time of our data
collection (July 2024), Onshape forums comprised over 26K posts, over 121K comments, and over
10K members. Discussions on the forums fall into various predefined categories, with the largest
being Community Support, where users seek troubleshooting assistance, and Improvement Requests,
where users provide product feedback.

To find forum posts relevant to our research question, we first did keyword searching using
the following keywords (stemmed): “dependency”, “dependencies”, “referenc*”, “parent”, “child’,
“hierarchi*”, OR “hierarchy”. We purposely did not stem the word dependency to depend* because it
created a significant noise in the data, retrieving each instance of phrases like “it depends”. Instead,
to be comprehensive, we searched for both dependency and dependencies. We included the keyword
referenc™ to capture discussions of external referencing, and parent, child, hierarchi®, and hierarchy
as these are common terms used in the CAD context to describe artifact dependencies [15, 23].

To collect the forum post content, we used a custom web-scraping tool using Python, built with
packages Selenium® and BeautifulSoup.” Using our keyword searching criteria, we retrieved any
forum posts that contained one or more of these keywords in the title, initial post, or any comments.
The data we collected includes each post’s title, posting date, the content of the post, and the
content in comments. Here, we define post as the initial contribution by the original author and
thread as the full discussion, comprising the post and all subsequent comments.

In total, our keyword search yielded 1,474 threads. Given the heavy workload of manually coding
all threads, we narrowed down the dataset by selecting the top 100 most popular threads, defining
popularity by the number of comments, as these threads had the highest user engagement, and
provided a rich source of content for analysis. The average comment count for popular threads was
63 (ranging from 35 to 401). The first author then reviewed each thread for relevance to our research
question; irrelevant threads were tagged as such and excluded. When a thread was excluded, the
first author revisited the original larger dataset (n = 1,474) and retrieved the next most popular
thread, repeating this process until 100 relevant threads were identified. In the end, 14 threads were
deemed irrelevant, thus the total number of forum threads we reviewed was 114.

The decision to analyze 100 threads was guided by Malterud et al’s concept of information
power [94], which states that the larger the information power the sample holds, the lower the
number of participants needed, and vice versa. A sample’s information power depends on five
dimensions: study aim, sample specificity, use of established theory, quality of dialogue, and analysis
strategy (case vs. cross-case). For our study, we ask an exploratory research question with a broad
aim to understand CAD dependency management challenges, however, our study context is of a

Shttps://forum.onshape.com/

Shttps://www.selenium.dev/
https://pypi.org/project/beautifulsoupd/

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 7, Article CSCW436. Publication date: November 2025.


https://forum.onshape.com/
https://www.selenium.dev/
https://pypi.org/project/beautifulsoup4/

CSCW436:10 Kathy Cheng, Alison Olechowski, and Shurui Zhou

specialized field (of hardware development using mechanical CAD) with participants of a specific
skillset. While forum posts lack direct interaction between researcher and participant — reducing
their information power — they involve rich peer-to-peer dialogue, particularly in lengthy threads
with multiple responses, where participants build on each other’s contributions. To maximize
information power, we prioritized discussions with the most comments, which are more likely to
reveal diverse perspectives and rich ongoing exchanges. Across the 100 threads analyzed, there were
78 unique post authors and 841 unique members represented in the comments. We do not claim to
capture complete insights on dependency management from all 841 users, but their excerpts indeed
contributed to our theme development. Since the forums offer a diverse range of users, we need
a bigger sample size (than with interviews) to provide sufficient information power. Given these
considerations, we believe this dataset encompasses diverse perspectives from CAD practitioners,
and that 100 forum threads provide sufficient data to “tell a rich story” [29, p. 56].

3.1.2 Data Analysis. Our analysis followed Braun and Clark’s method for reflexive thematic
analysis (RTA) [11]. The strength of RTA lies in the active, reflexive role of the researcher in the
knowledge production process, where the researcher’s subjectivity shapes theme development.
In this work, the researchers are experts in modern CAD and software engineering, which is key
to RTA, since it is our background that provides a unique perspective to investigate dependency
management within the CAD context. During the thematic analysis process, the researcher’s
subjectivity deepens the interpretation of the data [11]. Our analysis approach was inductive, given
the exploratory nature of our research question. We focused on both semantic and latent levels to
reflect the explicit content of the data while leveraging our expertise to inform our interpretation
of the data.

There are six phases of RTA, which follow a recursive process [29]. The first phase, familiarization,
began with the first author reading through all 100 threads to determine their relevance to the
research question, making casual observational notes throughout. The next phase, generating codes,
involved assigning short descriptive labels or “codes” to data excerpts to identify themes without
following a predefined framework, resulting in 290 codes. In the third phase, constructing themes,
we collated similar codes to develop themes; e.g., a recurring theme was that CAD designers
struggled to anticipate how changes to an artifact would affect its dependents. Throughout the
theme construction phase, all authors iteratively refined the candidate themes to ensure that each
was distinct and had a central organizing concept, resulting in 14 candidate themes and 73 candidate
sub-themes. In the fourth and fifth phases, revising and defining themes, all authors collaboratively
reviewed each theme’s codes, coded data, and relation to the research question to identify the
most meaningful themes. We then defined the following candidate themes: difficulty in tracing
dependency chains, lack of overview of project structure, poor impact analysis, ambiguous dependency
freshness, difficulty reorganizing models within the hierarchy, broken dependencies, and disorganized
design history. These seven themes provided an initial framework for the thematic analysis of the
interview transcripts generated in Study 2, detailed in the following section.

3.2 Study 2: Interviews with Design Engineers

For our second formative study, we conducted 10 semi-structured interviews with professional
mechanical design engineers who use CAD. The semi-structured format allowed us to ask open-
ended questions that captured a broad range of topics, while also providing an opportunity to
triangulate the themes identified in Study 1. The aim of Study 2 is three-fold: (1) to validate the
findings from the forum analysis; (2) to gather rich scenarios and nuances that highlight why
dependency management remains a persistent issue in CAD, and (3) to gather feedback on tool
features that could improve engineers’ awareness and management of dependencies.
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3.2.1 Participants. We recruited participants from a large technology organization that produces
software and hardware products — for anonymity, we refer to them hereafter as Company X. While
Company X has a substantial workforce with many departments and engineering teams, we focused
our participant recruitment on a particular team (hereafter: Team Y) that specializes in the design
and development of autonomous robots. We chose this particular company and team for a few
reasons. First, Company X is one of the largest organizations (>10K employees) that use Onshape,
with a substantial workforce and a diverse range of complex products. This complexity requires
sophisticated workflows and robust data management strategies for effective coordination, which
allows us to draw more meaningful insights for studying dependency management. Second, Team Y
has established a significant history of using Onshape for over four years. Consequently, their
practices regarding regular Onshape usage are well-established. Finally, Team Y, makes extensive
use of the external referencing features, relying on these workflows to design their flagship robot;
thus, we are capturing persistent challenges with using state-of-the-art dependency management
tools, not challenges due to a lack of familiarity. All of these factors make Team Y an ideal pool to
recruit participants to understand dependency management challenges.

We used purposive sampling [16] to recruit participants from Team Y. We recruited online through
a screening questionnaire posted in Team Y’s relevant Slack channels. In total, we interviewed 10
participants (represented by ID1-ID10 in Table 1), of which four were women, and six were men.
All interviewees have at least two years of experience working in Team Y at Company X and using
Onshape professionally. All participants were experienced in multiple CAD softwares, and nine
had experience using CAD software other than Onshape in a professional setting. Five participants
were senior mechanical engineers, three were mechanical design engineers, and two were team
leads. Each member of Team Y works on all the subsystems within the robot, so each interview
participant has experience managing dependencies from both sides of the dependency relationship,
which was an important experience for our interviews.

In determining a suitable sample size, we used Malterud et al’s information power [94]. We
purposefully selected interview participants based on specific characteristics of the organization,
team, and individual, to ensure that their insights were highly relevant to our research question.
As researchers with extensive experience conducting interviews and studying CAD collaboration,
we engaged in in-depth discussions with participants, further enhancing the quality of dialogue.
Additionally, because all interview participants belonged to the same company, a smaller sample size
was sufficient for identifying patterns within this organizational context. Throughout recruitment
and data collection, we continuously assessed the relevance and quality of the data to appraise the
information power iteratively, as recommended by Malterud et al. [94] and Braun and Clark [11].
Based on this ongoing evaluation, we determined that 10 participants provided sufficient information
power, and concluded data collection at that point.

3.22  Procedure. All 10 interviews were conducted remotely via Zoom between August and Sep-
tember 2024. The sessions were audio- and screen-recorded and automatically transcribed using
Zoom’s transcription service. Each interview lasted an average of 57 minutes, ranging from 47 to
65 minutes. The first author conducted all the interviews.

We began by asking participants about their role, job responsibilities, and experience at their
organization. We refrained from asking about specific challenges to avoid biasing their responses
based on themes identified in the forums. Instead, we asked them to describe a recent design project
and walk us through the entire process — from starting the CAD work to delivering the final output.
We encouraged participants to provide examples to ground their responses. For each scenario they
described involving the management, modification, or understanding of dependencies in CAD, we
asked follow-up questions, such as what artifacts were dependent, what information they needed to
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Table 1. Participants in Study 2. Columns with Yrs. indicate the number of years of experience.

Participant Job Title Gender  Yrs. using CAD  Yrs. using Onshape  Yrs. at Company
ID1 Senior Mechanical Engineer M 7-9 1-3 1-3
D2 Senior Mechanical Engineer M 10 + 1-3 1-3
D3 Senior Mechanical Engineer M 10 + 4-6 4-6
D4 Mechanical Design Engineer M 10 + 1-3 1-3
D5 Senior Mechanical Engineer M 10 + 4-6 4-6
D6 Mechanical Design Lead M 10 + 1-3 7-9
D7 Engineering Team Lead w 10 + 4-6 4-6
D8 Mechanical Design Engineer w 1-3 1-3 1-3
D9 Mechanical Design Engineer w 4-6 1-3 1-3
D10 Senior Mechanical Engineer w 7-9 4-6 4-6

understand the dependency relationships, and what challenges they faced. As participants recounted
scenarios, they shared their screens while using Onshape, walking us through the features they
typically use and demonstrating their design and navigation processes. The study was approved by
the University of Toronto’s Ethics Review Office.

3.2.3 Data Analysis. To begin data analysis, the interview transcripts were downloaded from
Zoom, anonymized, and imported into the qualitative data analysis platform, NVivo-12.8 Following
Study 1’s approach, we conducted the six phases of reflexive thematic analysis (RTA) [10] and
coded both semantic and latent levels of the data. However, we employed hybrid coding to analyze
the interview transcripts, combining deductive and inductive coding [31]. Like in Study 1, the
first author began with the familiarization phase by reviewing and cleaning the automatically
transcribed data while noting initial ideas. Since the data from Study 1 had already been coded, the
first author marked instances where interview data aligned with existing candidate themes, along
with new ideas that stood out against the previous analysis.

During the generating codes phase, the first author systematically analyzed each interview,
generating around 360 codes. In the constructing themes phase, we built upon the seven candidate
themes of dependency management challenges developed in Study 1, organizing codes that matched
these existing themes accordingly. When we identified new challenges related to dependency
management, we created additional themes to capture these insights. The first author independently
coded the interview transcripts, while all authors collaboratively discussed and refined the themes
throughout the process. This iterative refinement involved comparing the themes against each other
and checking them against the original codes and dataset, per the Braun and Clark method [10]. At
this stage, the thematic analysis included 20 candidate themes and 57 candidate sub-themes.

During revising and defining themes, all authors examined the codes within each theme to confirm
they follow a coherent pattern, and revisited the dataset to determine that the themes accurately
reflect the participants’ original meanings. This interview analysis confirmed five of the seven
themes from the forum threads and found two additional themes: messy navigation of the master
sketch and dependency conflicts across versions. Across both formative studies, we identified nine
challenges of CAD dependency management.

Finally, in the last phase of RTA, writing the report, we developed a deeper sense of how the
themes fit together to create a cohesive picture of CAD dependency management challenges.
Through this process, all authors collaboratively developed overarching themes that group the
nine themes into challenges related to: (1) traceability; (2) navigation; and (3) consistency.

8https://lumivero.com/products/nvivo/
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4 Findings: Challenges of CAD Dependency Management

This section synthesizes the findings from Study 1 and Study 2. We found nine challenges that
design engineers face with managing technical dependencies in CAD projects, summarized in
Table 2. To present our results, we have grouped the challenges into three overarching themes:
traceability-, navigation-, and consistency-related. Quotes from forum threads are denoted with F
(for “forum”) and the year it was posted in brackets — for example, “(F24)” for a thread posted in
2024. Quotes from interviews are denoted with the participant ID - for example, “(ID1)”.

Table 2. Overview of CAD dependency management challenges, as identified through thematic analysis of
forum threads and interviews conducted in Study 1 and Study 2, respectively. We summarize the frequency
of each challenge based on the number of relevant forum threads (out of 100) and the number of interviews
(out of 10) that reported these challenges. A dash (—) indicates that the challenge was not identified.

Category Challenge # of Threads  # of Interviews
Traceability-related  Difficulty in tracing dependency chains 36 10
Poor impact analysis 19 8
Broken dependencies 11 —
Navigation-related ~ Lack of overview of project structure 23 4
Difficulty reorganizing models within the hierarchy 5 2
Disorganized design history 8

Messy navigation of the master sketch -
Consistency-related Ambiguous dependency freshness 13
Dependency conflicts across versions -

— s g |

4.1 Traceability-related

Traceability-related challenges focus on the difficulty of understanding how different artifacts are
interconnected, including tracing the origins and histories of designs. Additionally, inadequate
traceability hampers designers’ ability to understand how artifacts are impacted by changes.

4.1.1 Difficulty in tracing dependency chains. Before beginning any modelling work — whether
modifying an existing design or creating a new one — CAD designers need to know how design
artifacts are interconnected. This requirement is central to parametric CAD [50], which requires
thoughtful consideration of how dimensions drive the overall design. However, tracking all these
relationships becomes challenging in complex product development, where products consist of
numerous parts and subsystems with intricate dependencies. As one forum user expressed, “external
references are problematic to humans, because we do not, and can not, scan through everything we
ever knew which bears on the problem at hand, every time we make decisions” (F15).

Existing tools typically only allow users to trace dependencies for one feature at a time (see
Figure 4). Users must manually select a feature, inspect its dependencies, and then repeat this
process for each related feature. Currently, there is no way to generate a comprehensive list that
spans multiple levels of granularity (e.g., across features, parts, assemblies). This process becomes
especially challenging when several layers of hierarchy exist (as described in Section 2.3.2), since
dependency tracing is only possible within a single document. As a result, designers must trace the
model’s history across multiple documents to understand the design intent. Often, this involves
discovering that one model depends on another in a separate document, which itself may depend on
yet another model, leading to a laborious and manual tracing process. As interviewee ID5 explained,
“you could track something from one part to the next part, and you will go into Master Sketch, and
that Master Sketch derived another Master sketch, etc. [...] You would have traversed 8 different places
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before you actually found out where the change was.” Participants identified two primary scenarios
in which they perform dependency tracing: (1) to understand a model’s history before making
modifications, and (2) to investigate the root cause of a design error. It is important to note that
both scenarios involve tracing upstream across documents, whereas it is “almost impossible to track
downstream” (ID2). ID2 further explained that if a tool could list all downstream features linked to
a sketch, this added visibility would influence their design decisions. For example, “if [the sketch]
points to a million different stuff, then probably I'll leave it alone, or be really, really careful” (ID2).

The difficulty of tracing dependency chains was the most common challenge, mentioned in 36%
of forum threads and by all 10 interviewees.
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Fig. 4. Onshape’s “Show dependencies” feature enables traceability within a document. Adapted from [74].

4.1.2  Poor impact analysis. Impact analysis is understanding how changes to a parent artifact
propagate downstream, which, in CAD, is often a difficult and manual task. Onshape — compared
to other CAD platforms — improves this process by allowing change propagation for models within
the same document, as one interviewee noted, “if the part geometries were just defined in the same
document, you will never have to do [change propagation]” (ID5). However, a significant challenge
remains: while the software can manage change propagation for a single dependency layer, it cannot
efficiently handle multi-level hierarchies that span across multiple documents. As interviewee ID1
said, “it takes a lot of time and effort to cascade a change down into the hierarchy. It might be 5 levels
deep or something.” Although manually reviewing and approving each propagated change in every
affected document is laborious, some users find this stepwise process purposeful. One forum user
explained that it allows designers to manually check each modified document “to ensure that each
parent assembly is referencing the correct/latest released version of a child part” (F23).

Given the tedious nature of this task, it can be impractical for designers to verify the impact in
each document, which can cause unintended changes to models without the designer’s awareness.
Interviewee ID3 described a common scenario: ‘every time there is an update of the master sketches,
you need to go to all the documents, update that reference, and then cross-validate.” Without tools
to systematically track these impacts, engineers rely on heuristics and a deep understanding of
their design to navigate dependencies selectively, since checking every child artifact for changes
is impractical. As ID3 further emphasized, “you need to be a little bit selective. But that is based
basically [based] on the knowledge that we have. We don’t have a bulletproof method here. It’s just too
much.”
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The idea of automatic change propagation is appealing to streamline this process, but users have
expressed caution about this approach. One forum user stated, “I'm interested in the possibility
of automated version updating in the assemblies, though I suspect that will get me in big trouble
when at some point when I forget to check an assembly that’s been auto-updated” (F21). With or
without automation, users highlight the importance of having a real engineer review the changes,
stating, “don’t forget that the user is the ultimate judge of their intent. Please make sure we can override
any magic if the magic isn’t working” (F15). Overall, CAD users find manual change propagation
tedious, while fully automated propagation can be prone to errors. Thus, the ideal solution may
be to streamline the review and approval process to improve efficiency, while maintaining design
integrity by systematically identifying changes.

The challenge of poor impact analysis was mentioned in 19% of forum posts and by 8 interviewees.

4.1.3 Broken dependencies. As part of refactoring practices, designers may clean up or archive
old designs without realizing these are still linked to other parts, unintentionally creating broken
dependencies. One forum user shared a typical scenario: ‘T have a document with a sketch [derived]
from another document which I trashed thinking it was not needed. [...] It really seems like this
shouldn’t be possible, at least without a warning” (F22). In this case, the designer was unaware of
the dependency and received no warning before creating the error.

Another frustration users face is the lack of detailed information about the root cause of the error.
For instance, Onshape’s generic message “Some dependencies are missing” leaves users uncertain
about how to fix the issue. One user drew the comparison, “This is a bit like a compiler getting to the
end of the compilation and saying, ‘Your source program has some errors. Please fix them.” Not useful”
(F22). Without knowing what the dependency originally referenced, designers cannot repair or
reroute the relationship to another artifact.

The challenge of broken dependencies was mentioned by 11% of forum threads but by no
interviewees.

4.2 Navigation-related

Navigation-related challenges involve the efficient retrieval and organization of information. These
challenges often arise from disorganized data, requiring designers to invest significant time and
effort to make sense of the cluttered dependency information.

4.2.1 Lack of overview of project structure. During CAD modelling, designers often have multiple
documents open to review the relevant information, but they typically focus on design work
within a single document at a time. Working predominantly within one document can create silos,
making it challenging for designers to understand how the design of the product is progressing at
a high level; this is especially the case when multiple collaborators are making changes to different
subsystems that may not immediately impact one another. Consequently, the inability to see the
bigger picture of these interconnected artifacts presents a significant challenge. One forum user
expressed, “with design information distributed between documents, branches, versions, revisions [...],
it’s very hard to look at a project and quickly get an understanding of what’s going on” (F19).
Feature request: visualizing external references. Designers have suggested that a visualiza-
tion would be useful to address the lack of overview problem. Interviewee ID9 stated, “the only
way for us to find out how [designs are] used is really by right-clicking and “Show dependency”. It’s
all text information [...], and we actually don’t have a visualization about how documents are linked
together” (ID9). This sentiment was echoed in the forum posts, where one user wrote, T think a
visual representation of the files makes it easier for a visual program” (F14), indicating that such a
tool would align with the way design engineers think and work, given the inherently visual nature
of CAD. Additionally, since the products being designed are physical, some users expressed that
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the dependency structure should be “ideally based on the assembly structure” (F19), mirroring the
architecture of the intended product.
This lack of overview challenge was mentioned in 23% of forum posts and by four interviewees.

4.2.2 Difficulty reorganizing models within the hierarchy. As external references are created between
CAD documents, these documents form a hierarchical structure. During the initial design phases,
designers often struggle to determine where certain dimensions or sketches should be placed within
the hierarchy; for example, in our previous car design scenario (Section 2.2), designers need to
decide the hierarchy of the axle, wheel, and frame dimensions. ID5 explained, “if I have one Part [A]
here and another Part [B] here, and then they have some sort of relation in common, then I don’t want
to be designing this [Part A] in isolation and this [Part B] in isolation. I want them to have a common
ancestor, a common source of truth.” To achieve this, the sketch that defines the interaction between
the two documents is moved to an upper-layer document, so that any change will propagate to
both lower-layer documents. This approach works in theory, but as the design progresses, it can
become necessary to reorganize the hierarchy. For example, lower-layer dimensions might need to
be moved higher if they will now drive multiple documents, or vice versa, as ID5 noted: “if a sketch
is no longer needed, then we shouldn’t define that in an upper document, because that just creates
an unnecessary step.” However, interviewees expressed that changing the hierarchy is not that
simple, because, “when moving the sketches, everywhere these are referenced, you have to reintroduce
that reference somewhere” (ID4). For instance, in our car example, if the frame depends on the axle,
which depends on the wheel, and now the frame needs to be the driving model, designers must
carefully adjust all related references. Identifying which dependency relationships need to be edited,
removed, or rerouted is not obvious, and there is no systematic or automated way to inform the
user of which references require changes.

Similarly, interviewees described difficulties in decomposing one large document into smaller
ones. ID9, the designer who originally developed the master sketch architecture, explained: “it was a
pain to split this master sketch [...] into 3. We needed to think about how we define the boundaries.” This
process becomes more error-prone when done collaboratively, as multiple people may be rerouting
these dependency relationships across various product subsystems. Without full awareness of each
other’s actions, errors such as circular references can occur. ID9 warned: “you need to plan through
like which part is dependent on which and how to avoid a loop reference because it’s really easy to
chase your own tail when you all work together.”

In both scenarios - reorganizing the hierarchy or decomposing documents — moving references
must be handled carefully to avoid errors when the references are not properly redefined. This
challenge was mentioned in 5% of forum posts and by two interviewees.

4.2.3 Disorganized design history. In CAD, the feature tree is a hierarchical representation of all
the features in a 3D model or assembly, reflecting the design history of the CAD document. As
designs become more complex, designers report increasing difficulty navigating the tree. One
forum user explained that when “starting to deal with bigger part studios (Still relatively small at
65 parts), [they are] really feeling the need for list organization” (F14). A common frustration is the
inability to easily reorder features so that they are displayed in a more intuitive order. For example,
designers expressed the desire to group dependent features. As one user explained, ‘T often want to
reorganize my tree so that features are as far up as they can be without breaking. I'd be so happy if I
could right-click a feature and just pick ‘Move Below Next Parent,” and it would push it as far up as
possible in the tree” (F18). The ability to reorganize the feature tree would provide designers with a
clearer overview of how certain features relate. One user highlighted the need for collapsing certain
features together, stating, “one of the main reasons for organizing a feature tree via grouping (like
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folders) is to condense it so that the sequence of actions can be more easily understood by a newcomer
or your future self” (F15).
This challenge was mentioned in 8% of forum threads, but did not appear in the interviews.

4.2.4 Messy navigation of the master sketch. In complex product development, designers often
employ a “master sketch” architecture to define the critical dimensions used throughout the product
(as described in Section 2.3.2). However, as more sketch elements accumulate, the master sketch can
quickly become overwhelming and difficult to read. ID10 captured this issue, stating, “there’s about
a billion things. And there’s dots and lines over everything. It’s a complete haystack, [and] very rapidly,
because we’re working in 3 dimensions, [the master sketch] becomes unreadable.” This messiness of
the master sketch not only hinders effective navigation but also increases the risk of errors. For
example, densely packed sketches make it challenging to select the correct reference geometry, as
ID9 noted: “if two lines are 3mm apart from each other, it’s easy to get things wrong.”

To improve readability, designers often want to “clean it up” (ID10) by reorganizing or removing
unnecessary sketch elements. One common scenario is that “some sketches, like lines [or] reference
points, are no longer used, as the design changes and updates” (ID9). However, Onshape does not
alert the user that a sketch element is no longer needed and can be safely removed. ID9 described
their two options: “the first way is to read it, think about it, and understand it, which takes so much
time that it’s impossible. The second way is just to delete it and see which document goes red [i.e., has
an error], which is also not very optimal”

If designers are unaware of a sketch’s downstream dependencies, modifying or removing it can
lead to unintended consequences (Section 4.1.2). As ID10 explained: “If I delete [a sketch element],
Ill break [all these] parts, and I won’t know about it until I update all references. And if I don’t know
where those references are, I can’t fix them. Someone might find that out 2 months later when they
update for some completely other reason, and then everything breaks, and they don’t know why.” This
uncertainty makes designers hesitant to delete anything for fear of causing broken dependencies.
As ID4 said, “stuff stays in [the master sketch] for a lot longer than it needs to, because the safe thing
to do is not to delete it. You don’t know what chaos you’ll cause if you get it wrong.” Consequently,
outdated features remain in the sketch, further adding to the clutter and increasing the risk of
accidentally selecting an outdated element to reference later on.

The challenge of messy master sketches was significant, mentioned by 5 out of 10 interviewees.

4.3 Consistency-related

Consistency-related challenges arise when versions of dependent documents are not synchronized.
This leads to two main issues: designers may be unsure whether dependencies are up-to-date (i.e.,
the freshness of the dependency), and conflicting versions can occur.

4.3.1 Ambiguous dependency freshness. External references in CAD are intended to allow parts
and subsystems to be developed in parallel, facilitating collaboration and design efficiency. As
design work progresses, new versions of documents are created, and dependent artifacts need to
be updated to ensure changes transfer correctly across documents. When a document has a new
version, Onshape sends notifications to all downstream documents, indicating that the dependency
is outdated and requires updating. However, it is often unclear whether the change actually impacts
other designs. This ambiguity becomes particularly challenging in the CAD context because each
document may contain various artifact types (e.g., sketches, features, parts, assemblies), and a
change to any one artifact will trigger a new version for the entire document — even though the
specific dependent artifact did not change. Assessing the relevance of this ‘new version’ notification
across numerous dependent documents is a time-consuming and complex task. One forum user
described this frustration: ‘T noticed that ANY change to information referenced in a drawing, whether
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the change affects what appears on the face of the drawing or not, requires the drawing to be updated.
[...] I spend a lot of time hitting the ‘update’ button and waiting for the drawing to regenerate” (F19).

To avoid missing critical updates, some designers err on the side of caution, creating new versions
and updating references frequently. However, this approach has its drawbacks, as another forum
user explained: “Let’s say I have a Document with 10 tabs and I change one of them. I'm happy with
the change, so I create a new version... well what just happened is that I just versioned 9 Elements that
DID NOT CHANGE. To me, that is not a good Data Management practice and creates a lot of overhead
keeping track of what’s changing and what’s not” (F19).

Beyond substantive design changes, even minor metadata updates in a document can trigger
notifications, further adding to the noise. As interviewee ID1 observed, “Onshape is meant to only
signal version updates when they have an impact. But, Onshape’s definition of an impact might differ
from what we think. [The software] might think that changing some description is a version change.”
This notification system’s ambiguity and the lack of granularity in alerts make it challenging for
designers to distinguish between meaningful updates and unnecessary distractions.

The challenge of ambiguous dependency freshness appeared in 13% of forum posts and four
interviews. Due to the frustration this issue caused, Team Y developed an in-house tool to auto-
mate this version update process. This tool generates a list of all “out-of-date” dependencies for
any document, enabling users to select and update these references in bulk, which significantly
streamlines the process and “kills all the noise of the blue dots [i.e., update icons]” (ID4).

4.3.2  Dependency conflicts across versions. Dependency conflicts in CAD arise when documents
reference different versions of another document. If dependencies fall out of sync, design compo-
nents can become incompatible. For example, ID1 highlighted, “if I [reference] revision B in a product
and revision F in a later product, how do you actually ensure that they work together?” Moreover,
this issue extends beyond the CAD environment to physical, real-world products. ID1 noted that
“we’re gonna have multiple versions of the bot running around [...] with multiple references to these
master sketches. A physical product out there won’t ever have a trigger to update, right? So how do
we keep track of all of those interweaving versions?” The challenge becomes even more complex
when trying to maintain consistency across various product lines, each tied to different states of
the same master sketch.

This challenge was only mentioned by ID1 and did not appear in any forum discussions; however,
we include it in our findings because of the significant negative consequences of version conflicts.

5 Discussion

Here, we summarize the identified challenges and outline key design goals for a CAD dependency
management tool. We then present potential features, design mockups, and a user scenario to
demonstrate how the proposed tool can address these challenges. Additionally, we discuss our
study’s main implications, concluding with limitations and future work directions.

5.1 Design Implications for CAD Dependency Management Systems

Our empirical investigations provide a comprehensive identification of dependency management
challenges in cooperative CAD work. As the next step, we have distilled these findings into design
goals and developed initial tool concepts to address the key challenges outlined in Section 4. We
focus on seven of the nine challenges identified, excluding the challenges of Disorganized design
history (4.2.3) and Messy navigation of the master sketch (4.2.4). These two challenges each pertain
to a very specific window in CAD - namely, the version control panel for design history, and the
sketch interface for the master sketch — and would benefit from specialized tool support integrated
within these specific windows. We, therefore, leave these two challenges for future work, while

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 7, Article CSCW436. Publication date: November 2025.



It’s a Complete Haystack: Understanding Dependency Management Needs in Computer-Aided Design CSCW436:19

focusing in this paper on the dependency management challenges that apply more broadly to
external references. Based on our formative study findings, we outline four design goals and ten
features for a CAD dependency management tool, summarized in Figure 5 and discussed below.

Formative study findings

Design goals Features
(challenges) en g

Difficulty tracing dependency enables search for a specific artifact

chains
to improve traceability

of dependencies generates a list of dependencies

Broken dependencies
generates visual network of dependent documents

Lack of overview of project allows viewing different levels of granularity

structure to display a high-level

overview of the project calculates the changes to dependent artifacts
Difficulty reorganizing models
within the hierarchy . 3 ) .
generates a list of artifacts that will be impacted

to support

Poor impact analysis —> . .
impact analysis

previews the impact visually

Ambiguous dependency enables bulk approval of changes

freshness
to streamline change propagates changes automatically
. propagation
Dependency conflicts across

versions summarizes the changes

Fig. 5. Overview of findings, design goals, and features for a dependency management tool.

5.1.1 Goal 1: To improve traceability of dependencies. CAD designers struggle to trace dependency
chains (4.1.1), making it crucial for the tool to enhance awareness of how artifacts are linked. The
tool should first allow users to search for a specific artifact (e.g., a document) and quickly locate it
within the project. Next, the tool should generate a list of dependencies, showing both upstream
(parent) and downstream (child) relationships. This list should be adjustable to show different
levels of granularity, such as sketches, parts, and documents. By incorporating these features,
designers can avoid the time-consuming task of manually searching across multiple documents.
This improved traceability would also mitigate the risk of broken dependencies (4.1.3), as users can
confirm that no artifacts depend on a design before archiving or deleting it.

5.1.2  Goal 2: To display a high-level overview of the project. Designers lack a clear overview of
the project structure (4.2.1), which makes it difficult to understand how documents relate to and
impact each other. To support this need, the tool should generate a high-level visual network graph
that maps the dependencies between documents. Users should be able to filter this view by level
of granularity and expand or collapse nodes to enhance visibility. To further enhance awareness,
users should also be able to select a specific document and visually trace the associated dependency
chains. This visualization can also support decisions about document placement within the project
hierarchy (4.2.2); for example, if a document appears high in the graph but has few or no dependents,
it may prompt users to reconsider its placement.

5.1.3  Goal 3: To support impact analysis. Another challenge to target is the difficulty in identifying
and understanding the effects of a change on related components (4.1.2). Manually verifying that
changes have been correctly propagated is a tedious and error-prone task. To address this, the tool
should preview the changes to the user in two ways: (1) generating a text-based list of artifacts
that will change and (2) visually previewing the impact in the network graph. Once the user makes
the desired changes to the model, the tool should calculate and display the impact of these changes
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on the graph; for example, if the wheel diameter of a car is increased by 5 cm, the tool should
update the position of the axle accordingly and indicate that the axle document has been modified.
Impacted nodes should be highlighted, with nodes with errors or conflicts flagged (perhaps in red).
This visual preview enables users to anticipate the changes before committing them.

5.1.4  Goal 4: To streamline change propagation. The fourth goal addresses the challenges of am-
biguous dependency freshness (4.3.1) and version conflicts (4.3.2). To mitigate these issues, the
tool should support bulk approval of changes after reviewing the preview. Once approved, the tool
should automatically propagate the changes, create new versions of the affected documents, and
produce a summary report outlining all changes. This workflow ensures that design changes remain
synchronized throughout the project. This idea is inspired by Team Y’s internal tool (described in
Section 4.3.1), which detects a document’s out-of-date references and enables batch version updates.
Considering how critical this issue was for their team - enough to warrant developing a custom
solution — we include this feature in our design goals. Our design concept builds on the foundation
of Team Y’s tool by extending its functionality project-wide, aiming to provide similar value to
other hardware development teams. Additionally, we propose generating change reports to provide
transparency in the update process and automatic documentation, a long-standing pain point in
CAD version control [97].

5.1.5 Tool Concept & Scenario. The design goals and features that we proposed offer general
implications for the builders of CAD platforms. However, to illustrate how such a tool could
function, we developed a series of initial mockups. We propose a plug-in tool integrated into the
CAD interface, allowing designers to easily access relevant dependency information within the
context of their current work (see Figure 6). In the plug-in window, a network graph maps the
dependency relationships between documents, represented as nodes, with arrows pointing from
parent to child. While all linked documents are displayed, the graph highlights the current open
document (e.g., Document 78) in dark blue, and all its parent and child documents in light blue for
clear visibility. A pop-up window can also display a list of parent and child documents, with the
ability to view more levels of granularity, such as the specific dependent features or sketches.

%) =Document78 0 - 2 o B o- Nusert -

Z 6 0 f%0 BEPAS-O0-0A-ABEE B WOOH-3F LS B0 S 0AWNAELOBREISTLY S T HE sovwsion

) ——
© ( search  Q

o [ Drentsttor [ WAsseri

Typical CAD workspace (b) Plug-in window

Fig. 6. A tool can be implemented as a plug-in directly in the CAD platform interface. Note that these
document names are dummy placeholders (e.g., “Document 78”). CAD model adapted from [128].
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The following user scenario illustrates how such a tool can improve CAD dependency manage-
ment. Imagine Emily, a junior mechanical design engineer, preparing for a design sprint to improve
the airflow of a cooling system. Emily has been assigned to redesign several components of the
cooling system and integrate the changes without disrupting the overall product architecture.

Searching for dependencies. Emily’s first task is to update the design of the radiator housing.
Aware that it depends on other parts of the cooling system, Emily avoids manually searching
through numerous interconnected CAD files and folders, and instead uses the newly implemented
dependency management tool. She types “Radiator Housing” into the tool’s search bar (Figure 7a)
and receives a list of upstream and downstream dependencies. The list not only provides direct
links to relevant documents but also allows Emily to explore relationships at different levels of
granularity, such as sketches and parts. This feature saves her from manually cross-referencing
documents, giving her immediate clarity on which artifacts are connected.

Gaining a high-level overview. Emily needs to understand how changes to the Radiator
Housing will affect other documents in the overall product. She uses the high-level overview
feature of the tool (Figure 7b), which generates a visual network graph showing all documents and
their dependency relationships within the cooling system project. Documents are represented by
nodes, with arrows illustrating the dependencies. Using filters, Emily narrows her view to only the
documents related to the Radiator Housing, revealing documents like the Airflow Duct and the
Cooling Fan. Emily sees how modifications to the Radiator Housing may ripple through the cooling
system. She expands nodes to explore specific sketches within the housing that might impact other
documents, ensuring that no dependencies are overlooked.

1) Searching for dependencies 3) Previewing the impact

Radiator Housing Q \\

Coolant Inlet Pipe

Features
Sketch 1
Cut3

Coolant Inlet Pipe >
Mounting Bracket >

Cooling Fan Mount >

Mounting Bracket '

N
. Cooling Fan Mount

\

Extrude 7 -
Sketch 2

v
Airflow Duct >

Revolve 3

Cooling Fan >
Coolant Outlet Pipe >

;Radiatc
NS

K
Coolant Outlet Pipe Cooling Fan

Airflow Duct Changes
Sketch 1
Cut3
Extrude 7 X
Sketch 2 X
X

Revolve 3

(a) Search for a document’s dependencies.

(c) Preview the impact on dependent documents.

2) Gaining a high-level overview
Coolant Inlet Pipe

N

Mounting Bracket - - Cooling Fan Mount

(Radiator Housing
e

Airflow Duct

Coolant Outlet Pipe Cooling Fan

4) Approving the changes
Coolant Inlet Pipe
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Change log
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Cut3
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v

i

(b) Visualize dependencies in a network.

(d) Bulk-approve the change propagation.

Fig. 7. Example user scenario of a CAD dependency management tool.
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Previewing the impact. Emily now modifies Radiator Housing. Before finalizing the changes,
she activates the impact analysis feature (Figure 7c), to preview the changes. This generates a
text-based list and a visual network graph that shows all affected artifacts, with nodes impacted
by her changes highlighted in yellow. The Airflow Duct is flagged in red, signalling a potential
conflict. The tool provides details on the flagged nodes, alerting her that her modifications interfere
with several features (e.g., Extrude 7, Sketch 2). With this information, Emily can tweak her changes
or consult a senior engineer to avoid introducing new problems.

Approving the changes. After reviewing and resolving the design changes, Emily selects the
option to bulk-approve the changes (Figure 7d). The tool then propagates the changes, creates new
versions of all updated documents (highlighted in green), and generates a summary report, giving
Emily a clear record of the changes made to the cooling system’s design.

With this tool, Emily no longer needs to painstakingly trace dependencies, manually search
through documents to find affected parts, or worry about unknowingly changing another designer’s
model. Although the design goals and features that we proposed here are by no means exhaustive,
they target key challenges of CAD dependency management. Therefore, it is in the interest of CAD
platform builders to implement such tools to enhance designers’ awareness of dependencies and
improve the efficiency of collaborative design.

5.2 Modularity: A Proactive Dependency Management Approach

Our study was motivated by the increasing complexity of hardware products, which comprise
numerous components and even more interdependent relationships that are challenging to manage.
We also proposed design goals for platform builders to help CAD designers better handle these
dependencies. However, this is just one perspective to address the problem. We conjecture that
managing dependencies can be approached: reactively, by alleviating the challenges we identified,
and proactively, by adopting best practices that prevent challenges from arising in the first place.

Proactive management involves integrating strategies during the design process to avoid potential
dependency issues. CAD researchers recommend minimizing the number of entities that depend
on a single component to avoid unwanted changes [116], advising against overloading a single
artifact with multiple dependencies. This best practice contradicts the master sketch philosophy,
and may require a reevaluation of that architecture. For instance, designers could consider product
modularity (the intentional decoupling of components [6]), by decomposing one highly intricate
master sketch into several more manageable modules. In our interviews, we observed an emerging
strategy that organizes master sketches in a hierarchy. At the top level, a global master sketch
defines shared parameters, which are referenced by a set of mid-level master sketches, each of
which governs a localized set of artifacts, creating a multi-layered hierarchy. This strategy extends
prior CAD literature, which typically assumes a single skeleton structure [27]. While this modular
approach can support more proactive dependency management, it also introduces a new challenge:
designers must make deliberate decisions about where to draw boundaries between sketches.

To improve modular design in CAD, future systems can draw from well-established software
engineering principles. For example, object-oriented design patterns such as Facade, Adapter, and
Mediator from Gamma et al’s catalog [49] offer mechanisms to abstract internal complexity and
define standardized points of interaction between components. Similar mechanisms in CAD could
help isolate subsystems and make interdependencies more explicit and manageable. Currently, CAD
models often depend on implicit geometric references (e.g., a line in one sketch defining the diameter
of a part in another document), which are difficult to inspect or refactor. Analogous to software’s
interface segregation principle, which encourages designing smaller, more focused interfaces between
software components [98], CAD platforms could enforce clearer contracts at reference points - e.g.,
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requiring users to define named interface geometries rather than linking arbitrary sketch elements.
While a promising direction, it must be adapted for hardware development, where parts can impact
each other even without explicitly defined dependencies; this challenge is especially critical in
assemblies with moving parts, where the motion path of one part can interfere with another in a
separate module in ways that are difficult to predict or detect.

Additionally, CAD’s top-down architecture resembles software’s layered architectural styles, yet
lacks the tools to manage such separation. Centralized “master sketches” are conceptually similar to
central configuration modules in software, but CAD lacks automated tools for detecting violations
of architectural boundaries or for restructuring modules when interdependencies grow tangled.
Tools inspired by software’s dependency injection and module boundaries [82, 133] could assist in
refactoring CAD models as the design evolves. Our participants’ frustrations with “chasing their
own tail” when resolving circular references underscore a need for dependency analyzers akin to
those used in large software systems.

Importantly, modularity is not just a technical concern but a socio-technical one. In distributed
teams, unclear dependencies often become coordination bottlenecks. As in software engineering,
where Conway’s Law implies that modular code reflects team communication structures [30, 67],
CAD platforms could make modular boundaries more visible and enforceable to aid cross-team
collaboration. By surfacing shared “interfaces” and ownership of different modules, CAD systems
could better align technical architecture with organizational roles, reducing accidental overlap and
misalignment across subsystems.

In summary, while modularity has long been a design ideal in software development, realizing
it in CAD demands a rethinking of tooling support, grounded in technical patterns and software
engineering collaborative practices. CSCW researchers are well-positioned to explore how these
concepts translate to the CAD domain, examining how modularity affects collaboration and how
teams negotiate, evolve, and contest modular boundaries in practice.

5.3 Implications for Collaborative Work

Our work focused on the management of technical dependencies, which refers to the relationships
between CAD artifacts. Designers must be aware of such dependencies in order to successfully
create and modify designs. However, understanding technical dependencies is only the first step, and
a natural progression is to explore how to manage the dependencies among people and teams [127],
i.e., work dependencies. Below, we revisit the concepts of coordination and awareness to discuss the
role of dependency management in collaborative design.

Levels of collaborative activity. Through the lens of Bardram’s levels of collaborative ac-
tivity [7], we discuss how dependency management shapes coordination, cooperation, and co-
construction. Better awareness of technical dependencies supports coordination by clarifying
which tasks depend on others, and how they should be accomplished (e.g., in series, in parallel) [43].
For example, project managers must determine which documents should be grouped together in a
design sprint. Suppose subsystems A, B, and C are interdependent, and A and B are modified during
the sprint; it makes sense also to include subsystem C. Redesigning related components concurrently
reduces the likelihood of dependency conflicts and backward compatibility issues [138].

Beyond coordination, cooperation occurs when individuals focus on a shared design goal and
make situated adjustments to their own and others’ actions accordingly [7]. When designers know
the technical dependencies associated with the CAD artifacts they are working on, it becomes
easier to identify with whom they need to communicate [18]. For instance, if a designer knows
that a colleague’s part references a parameter they plan to change, they may proactively discuss
the change, ensuring mutual understanding and reducing the risk of conflict [127].
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Finally, dependency management plays a role in co-construction, where collaborators jointly
shape both the means and object of work [7]. We saw signs of co-constructive activity in our
interviews, where participants described an emerging practice of multi-layered master sketches,
and a custom tool that maintains dependency freshness within this hierarchy. Co-construction is
both driven by, and a response to, increasingly complex technical dependencies. As CAD projects
become more modularized, co-construction will involve reconceptualizing how tasks are distributed
across teams — shaping not only what is being designed but how the work itself is structured.

Moving towards we-awareness. As introduced in Section 2.1, we-awareness is the socially
recursive knowledge that collaborators have of each other [135], which is essential for successful
distributed collaboration. Our proposed dependency management tool focuses on surfacing techni-
cal dependencies, which can support collaboration, as discussed above, but it does not fully address
the need for we-awareness. A promising direction for future work is to incorporate social signals
into the dependency graph — for instance, indicating who is actively making changes to which
documents, and the status of their changes (e.g., in progress, approved). By providing this kind of
contextual information, the tool can enhance spatial awareness [120] and facilitate the reciprocity
needed for we-awareness.

Dependency management in other collaborative domains. In large-scale software develop-
ment projects, developers often navigate intricate webs of dependencies. Changes in one module
can cause unforeseen ripple effects across the system, harming maintainability and security. Our
approach to visualizing dependencies and implementing proactive consistency checks can enhance
tools like DepsRAG [2], a multi-agent framework designed to enhance developers’ understanding
of software dependencies using large language models. By integrating these strategies, software
teams can achieve better traceability and mitigate risks associated with dependency changes.

Within open-source ecosystems, dependency management poses unique challenges. Many
communities struggle with managing dependency risks, often overwhelmed by vulnerability alerts.
Researching these alerts is resource-intensive, and attempting to address all of them can be even
more costly [8, 76, 110]. Our findings suggest that integrating proactive consistency checks and
dependency visualization tools can aid in prioritizing and addressing the most critical vulnerabilities,
thereby enhancing the security and stability of open-source projects.

Data scientists face similar dependency awareness challenges during exploratory data analysis
(EDA) [86, 140], particularly when trying to track dependencies between code cells and group
them into coherent task-specific segments. Our findings on modularizing large, layered master
sketches in CAD may offer transferable lessons — such as creating hierarchical structures that could
help contain the “messiness” [65] of computational notebooks. Additionally, our study’s emphasis
on visualizing dependencies and implementing proactive consistency checks can significantly
enhance collaborative EDA processes. For instance, tools like MLCask [89] have been developed to
manage component evolution in collaborative data analytics pipelines. By incorporating similar
visualization and consistency management techniques, teams can improve the robustness and
reproducibility of their workflows.

In conclusion, while our study primarily addressed technical dependencies in CAD, the implica-
tions of this work can help design teams better plan activities and facilitate collaborative efforts.
Although our focus is on CAD, these implications also shed light on awareness and coordination
needs in CSCW domains as a whole, where complex dependencies are common in fields like
software development [136] or data science [96, 144].
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5.4 Limitations & Future Work

This paper focuses on understanding the user requirements for managing technical dependencies
between CAD artifacts, but as discussed in Section 5.3, this does not encompass all the dependency
needs in cooperative CAD work, such as work dependencies. Nonetheless, we believe that our
systematic investigation of dependency management challenges is a necessary first step, and future
work will extend this investigation to explore socio-technical dependencies.

Next, like other empirical studies that conducted formative research with participants from a
single organization [75, 103], our findings have limited generalizability. However, to mitigate this
limitation, we included insights from online forum discussions to broaden the scope of perspectives
represented in our dataset.

Our study is also limited by its focus on a single CAD platform, Onshape. We intentionally chose
Onshape because of its advanced support for external references, but we cannot claim that the
challenges we identified are generalizable to all CAD software. Nevertheless, selecting Onshape
was essential, allowing us to investigate persistent challenges even within a state-of-the-art system.

Finally, in this work, we focused on a two-phase formative study of engineers’ experiences with
CAD dependency management, finding several fruitful user needs. Based on these findings, we
developed four design goals for a dependency management tool to address these challenges and
proposed initial tool concepts. It must be recognized that these design goals are not exhaustive,
and the features we present do not represent a comprehensive checklist for CAD dependency
management. For future work, we will develop and implement a functional tool based on the
concepts proposed in this paper. We will evaluate this tool using one or more methods, such as
usability studies [140, 142], design walkthroughs [63], or longitudinal studies [125], to further
refine the design and assess its effectiveness.

6 Conclusion

In this work, we conducted two empirical formative studies, seeking to better understand CAD
dependency management challenges. Through a thematic analysis of 100 popular user discussions
in online CAD forums and semi-structured interviews with 10 professional designers, we uncovered
nine key challenges that hinder workspace awareness and effective coordination within hardware
development teams. In an effort to enhance CAD dependency management, we distilled these
challenges into design goals and corresponding features that are essential for a CAD dependency
management tool. Beyond challenges and design goals, we also contribute initial tool concepts
that could implement these features as a plug-in for CAD platform interfaces. Our findings and
proposed solutions lay the groundwork for future development and evaluation of tools that can
better support designers in managing CAD dependencies and improving collaboration in the
hardware development domain.
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