
A Meta-Summary of Challenges in Building
Products with ML Components – Collecting

Experiences from 4758+ Practitioners
Nadia Nahar∗†, Haoran Zhang†, Grace Lewis‡, Shurui Zhou§, Christian Kästner†

∗Carnegie Mellon University, †Carnegie Mellon Software Engineering Institute, ‡University of Toronto
∗nadian@andrew.cmu.edu

Abstract—Incorporating machine learning (ML) components
into software products raises new software-engineering challenges
and exacerbates existing ones. Many researchers have invested
significant effort in understanding the challenges of industry
practitioners working on building products with ML components,
through interviews and surveys with practitioners. With the
intention to aggregate and present their collective findings, we
conduct a meta-summary study: We collect 50 relevant papers
that together interacted with over 4758 practitioners using
guidelines for systematic literature reviews. We then collected,
grouped, and organized the over 500 mentions of challenges
within those papers. We highlight the most commonly reported
challenges and hope this meta-summary will be a useful resource
for the research community to prioritize research and education
in this field.

I. INTRODUCTION

After decades of effort in machine learning (ML) research
to build better models, researchers from industry and academia
have recently started to shift their attention to improving how
to build software products with such models. Incorporating a
ML component into a software product is often argued to be
harder than incorporating traditional functional components,
because of the specific characteristics of machine learning
(e.g., based on data, no specifications in the traditional sense,
fairness concerns) and how they impact the entire life cycle of
the product [58], [83], [111], [41], [49]. While the traditional
software development process has challenges of its own,
bringing ML into the picture is argued to break a lot of existing
software architecture and engineering assumptions [58], [49].
This leads initiatives to rethink existing processes and practices
and shift priorities in software teams. As a result, we keep
hearing from practitioners on how they perceive building,
deploying, and incorporating machine learning in software
products as a challenge, even when the initial ML research
and model prototypes seemed promising.

While some practitioners give talks on challenges or
write experience papers (e.g., examples in academic venues
surveyed elsewhere [66], [84]), researchers have also been
actively studying the challenges faced by practitioners when
building software products with ML components across many
projects. In recent years, many researchers have interviewed
or surveyed practitioners to identify what has really changed
for them with the introduction of machine learning, often with
the goal of identifying challenges, research opportunities,

Fig. 1. Research Method

and best practices in a rapidly changing field. While some
studies focus on specific aspects, such as challenges regarding
architecture [109], collaboration [77], or fairness [36], [94],
many others explore challenges more broadly. Many of these
studies have identified similar challenges. We believe that
we have reached a point where practices have settled and
research on challenges approaches saturation – we think that
now is a good time to step back and survey the collective
findings of the research community.

In this paper, we aim to consolidate knowledge about
challenges in the practice of building software products with
ML components, with a systematic literature survey of existing
studies that interviewed or surveyed industry practitioners
across multiple projects. We identified 50 studies of which, 30
conducted interviews, 11 conducted surveys, and nine did both,
with a total of over 4758 identified participants (seven studies
did not report the number of participants; some participants
may have participated in multiple studies). Using the meta-
summary research method [103], [95], [24], we analyze, orga-
nize, and synthesize findings across all these studies (as shown
in Fig. 1), answering the overall research question: What are
the challenges experienced by industry practitioners in
building software products with ML components?

We group the challenges from the meta-summary into cate-
gories. In a nutshell, we find practitioners struggle in different
product development stages: (1) requirements engineering,
(2) architecture, design, and implementation, and (3) quality



assurance. We also find engineering challenges in ML-specific
stages: (4) model development, and (5) data engineering. Other
issues relate to cross-cutting concerns related to (6) process,
and (7) organization and teams. Following the meta-summary
method, we present and organize the challenges mentioned
by the practitioners in the original papers as they have been
reported, without attempting to speculate or pass our own
judgments on the findings. We conclude the paper with a brief
discussion, reflecting our own views.

Our key contribution is the meta-summary, which we
present in narrative form in this paper. We additionally pro-
vide details with clear traceability to findings and papers as
supplementary documents [76].

II. SCOPING AND RELATED WORK

With the advance of ML techniques, many organizations
have invested substantial efforts in building products with
ML components. While there is a large amount of research
that focuses entirely on the challenges that data scientists
face in their model-development work (e.g., development
responsibilities [51], data exploration [74], [62], data-science
processes [29], [69], development in notebooks [19], [32],
[87], AutoML [121]), another body of work focuses on the
challenges of building products with those models, often with
interdisciplinary teams, and placing substantial attention on
qualities like safety and observability. The latter work, which
forms the scope of this survey, moves beyond the model-
centric view of classic data-science workflows and considers
building automated pipelines and entire software systems with
many ML and non-ML components, as well as the engineering
challenges involved. It emerges in a growing research commu-
nity often named Software Engineering for Machine Learning
(SE4ML) studying the engineering challenges of building both
ML components and products that contain ML components.

Understanding practitioner needs. Academic research is
often criticized for being far removed from the needs faced
by practitioners in industry [120], [94], [8]. If researchers
want to achieve rapid impact in industry, they need to under-
stand what problems are important to practitioners; conversely,
practitioners may attempt to attract researchers to work on
their problems. Attempts to close the gap between academia
and practice typically need to navigate a tradeoff between
(a) investigating one or few teams in depth with findings
that may not generalize or (b) exploring common problems
across many teams with more shallow engagements. Focused
on individual teams, we see a few ethnographic studies [86],
[85], many direct collaborations with an industrial partner [52],
[93], and many experience reports published by practitioners
in papers [9], [48], [31], [59], talks [70], [30], [26], or blog
posts [131], [34], [113]. To understand problems across teams,
many researchers conduct interviews across multiple teams
and organizations, e.g., [119], [58], [109], [77], [65], to be
either addressed by the same researchers or reported as open
problems to the community. Other researchers have focused on
surveying practitioners at scale across companies and regions,
e.g., [57], [44], [122], [130].

In this paper, we go one step further to aggregate and ana-
lyze results from prior interviews and surveys with over 4758
practitioners, which will help guide future research and edu-
cational activities toward challenges relevant to practitioners.

Previous literature reviews. There have been several prior lit-
erature reviews on topics related to building products with ML
components. Most surveys review academic papers proposing
solutions in subfields, such as testing ML components [129],
[5], [97], [15], [38], safety and security [13], [63], [38],
data management [90], and even trying to cover published
research on SE4ML broadly [27], [68]. The closest to our work
are two literature surveys that analyze practitioner experience
reports published at academic conferences (not including grey
literature) collecting the self-reported challenges of a few
dozen teams [66], [84]. In this work, we specifically perform
a meta-summary of academic papers reporting on interviews
and surveys with practitioners.

III. RESEARCH METHOD

The goal of this paper is to summarize challenges in
building products with ML components, accumulated from
industry practitioners in prior research. To achieve this goal
and answer our research question, we first define the appro-
priate search strategy and study selection criteria to find the
relevant literature that identifies challenges through commu-
nicating with industry practitioners. We follow the guidelines
for systematic literature review (SLR) for this paper collection
step [50]. Then, we extract the data from the selected papers
and analyze the data to complete the synthesis process. Several
approaches have been explored for synthesizing qualitative
research in software engineering, such as thematic synthesis,
meta-ethnography, and meta-summary [39]. As our aim is to
discover patterns or themes of challenges in building products
with ML components, as well as get a sense of the priority of
the challenges based on the frequency of reports by industry
practitioners, the meta-summary method is best suited for
this research problem [39], [95], [103]. The meta-summary
method provides a well-balanced synthesis mechanism, which
is deeper than mapping studies, and not as exhaustive as
meta-ethnography, which requires significant expertise and
experience with the methodology and its philosophical stance
[95]. Thus, we apply the meta-summary method [103], [24],
[95] to perform the quantitative aggregation of the qualitative
evidence that we present as findings. Fig. 1 shows the overview
of the research process followed in this study.

A. Paper Selection

To increase reliability, reproducibility and objectivity of
the process for paper selection, we follow the established
procedure of conducting systematic literature reviews [50].

Relevant years. Much of the research on engineering products
with ML components was inspired by the seminal 2015 ML
technical debt paper by Sculley et al. [104], which outlined
various engineering challenges in building and operating ML



infrastructure. For completeness, we selected the year range
of the papers to be from 2010 to 2022.

Publication venues. To search for papers, we select digital
libraries and databases commonly used by software engineer-
ing review papers, e.g, [45], [20], [64]. We do not filter by
the venue, as we expect to find papers that are published in
different communities including software engineering, human-
computer interaction, and machine learning. Since we aim to
aggregate results from robust empirical studies, we did not
include gray literature, such as blog posts, which typically
reflect opinions or individual experience only. However, we
did include arXiv as a data source, as it contains many relevant
academic papers in this field, even if some have not been peer
reviewed. Specifically, we use the following 8 data sources:
IEEE Xplore (ieeexplore.ieee.org), ACM Digital library (por-
tal.acm.org/dl.cfm), Wiley InterScience (www.interscience.
wiley.com), Elsevier Science Direct (www.sciencedirect.com),
SpringerLink (www.springerlink.com), EI Compendex (www.
engineeringvillage.com), and arXiv (https://arxiv.org).

Search query. Defining the right scope and corresponding
search query required some iteration. We started by assembling
an initial set of 21 papers as a seed set (a common practice
[25], [66]). The seed set was composed of papers that we
knew well from our past work in this field. We then analyzed
the seed set to define the keywords needed to retrieve those
and similar papers.

We realized that our research question has three aspects, and
therefore to retrieve the papers that would satisfy our research
question, we focused on those three parts to formulate the
search query: (A) The paper needs to mention an ML-
related keyword, since we focus on challenges introduced
by ML components. (B) The paper needs to mention a
software engineering or ML deployment-related keyword,
since we focus on engineering challenges that go beyond
local concerns of data scientists; for example the paper should
discuss concerns related to actual product development where
models are deployed and incorporated into larger software
systems. Finally, (C) the paper needs to mention surveys
or interviews, since we are interested in the challenges
mentioned by industry practitioners and these are the most
common relevant research methods; we are not interested in a
single-team case study or ethnographic study, as the challenges
found in such papers may be specific to individual products.

After adding some semantically similar terminologies, we
developed the following search query fragments – A: “machine
learning” OR “artificial intelligence” OR “deep learning” OR
“ML component” OR ”data science”; B: ”software engineer-
ing” OR “software systems” OR ”production-ready systems”
OR ”ML systems” OR “deploying ML” OR “ML deploy-
ment”; C: “interview” OR “survey” OR “questionnaire”. The
final query was of the following format “A AND B AND C.”

We searched with this query within the abstract of the
papers in all the digital data sources except SpringerLink,
as it did not have the option to search within abstracts. For
SpringerLink, we retrieved 5612 papers based on a full-text

TABLE I
PAPER SELECTION

Data Source Initial
Search
Result

After Filtering by
Title/Abstract and
Snowballing

Final
Selection

IEEE 69 30 19
ACM 48 11 10
Willey 6 0 0
ScienceDirect 32 5 3
Engineer Village 101 3 0
Springer 6* 3 2
arXiv 79 8 5
Snowballing - 26 11
Total 341 86 50
*abstract filtering from 5612 papers retrieved with fulltext search

search, and subsequently used a custom script to search within
the abstracts of these papers. This provided us with a total of
341 papers from all the sources (see Table I).

This search query retrieved 18 of the 21 seed papers. Two
papers were missed because the conducted interviews were not
mentioned in the abstract (the abstract framed the research
as a case study), and one paper was not listed within the
libraries searched (only available on TechRxiv). To account
for this difference we performed one round of snowballing, as
explained later in this section.

Selection criteria. The initial search returned many papers that
were not directly relevant to our research question. Next, we
selected 86 relevant papers by reading the title and abstract,
evaluating them against the inclusion and exclusion criteria
(see Table II), which we incrementally refined. Finally, we
read the full paper, and once again evaluated each against the
inclusion and exclusion criteria, which narrowed our set down
to 39 papers. Multiple researchers participated in this process
and discussed papers at the boundary.

Most of the papers that were discarded in this round were
either literature surveys in the domain of machine learning for
software engineering (i.e., using ML techniques to facilitate
software engineering tasks; not relevant to this study) or used
interviews or surveys to evaluate tools. We also removed
papers that have a narrow focus or are entirely model-centric,
e.g., interviewing only data scientists about their modeling
work (e.g., [35], [46], [23], [80]) or interviewing only non-
technical people (e.g., [117], [12], [33], [100]).

Snowballing. To capture relevant papers that did not match
our keywords in their abstract, we performed one iteration
of backward snowballing [126], which means that we went
through the selected papers’ reference list to find whether we
missed any relevant papers. We analyzed 26 additional papers
and considered 11 of them as relevant based on the inclusion
and exclusion criteria, which included the three papers from
the seed set we previously missed.

Final paper set. Overall, our process resulted in a final set of
50 papers. Most of the papers were published recently, since
2019. This sudden explosion of interview and survey studies

www.interscience.wiley.com
www.interscience.wiley.com
www.sciencedirect.com
www.springerlink.com
www.engineeringvillage.com
www.engineeringvillage.com
https://arxiv.org


TABLE II
INCLUSION AND EXCLUSION CRITERIA

Inclusion Criteria

I1: Paper includes software engineering challenges for ML
systems

I2: Paper uses interview or survey with industry practitioners
(software engineers, data scientists, etc.) to identify the
challenges

I3: Paper appears in a refereed publication (including confer-
ence proceedings, journal, etc.) or uploaded in arxiv in a
publication format

I4: Paper is written in English

Exclusion Criteria

E1: Paper has a strict ML model view and does not consider
the system or product using the model

E2: Paper interviews/surveys only non-technical people (end-
users, domain experts, etc.)

E3: Paper focuses on ML for software engineering instead of
software engineering for ML systems

E4: Paper falls in the category of gray literature: blog post,
technical report, government report, webinar, poster ses-
sion, presentation, etc.

with practitioners in recent years justifies our motivation for
this study to aggregate all the findings of these papers. Most
of the papers, 30 out of 50, were published in software
engineering venues (including five at WAIN/CAIN), 11 papers
in HCI venues, two papers in AI Ethics venues, and the seven
remaining ones are scattered over other communities. A total
of 947 interviews and 3811 survey responses were reported
in 43 papers, and the seven remaining papers did not report
specific counts of the interviewed or surveyed practitioners.

Of the 50 papers, 31 papers explicitly list research questions
or the aim of their research as identification of challenges (or
issues, problems, difficulties) in different aspects of building
products with ML components. The other papers do not
explicitly set a goal of identifying challenges but more broadly
study the process of building products with ML components,
yet they also report practitioner challenges in their findings.

B. Qualitative Meta-Summary Process

As stated earlier, we used the meta-summary research
method [103], [95], [24] to synthesize the findings from the
collected papers. This method is used to perform quantitative
aggregation of qualitative findings, which are necessarily the
thematic summaries of the underlying data from different stud-
ies. We conduct the following steps to perform the synthesis,
as per the guidelines.

Extracting findings. Along with the standard metadata (title,
source, venue, year, etc.), we extracted study-specific data
regarding research questions, study method, interview and
survey participant counts, and, most importantly, the chal-
lenges reported within the papers. To maintain consistency
in extracting the findings, we considered only challenges
that were derived from the interview and survey answers in
the papers, not challenges derived from other literature or

personal experience of the authors. We extracted challenges
related to building software systems with ML components, but
excluded those that relate exclusively to the data- and model-
related work performed by a data scientist, such as algorithmic
problems, notebook coding, and hyper-parameter tuning. We
extracted a total of 520 excerpts relating to challenges from
the 50 papers. We stored all extracted information from each
paper in a spreadsheet for further analysis.

Grouping topically similar findings. We organize the
findings at the level of reported challenges that we extracted
from the papers. Different papers grouped findings in different
ways and using different terminologies; we aimed to find a
consistent organizational principle. For identifying similar
topics and grouping those together, we needed to understand
and compare those reported challenges in their original con-
text. Card sorting is a common technique for grouping similar
findings [115], [40], which we used for this paper. Following
the standard card sorting method, we created one (virtual)
card per reported challenge, and incrementally and iteratively
organized those cards into groups of similar challenges.
Multiple researchers went through all the cards in synchronous
and asynchronous fashion to grasp the different concepts
and identify relevant themes and clusters around the reported
challenges. This being a collaborative effort, we did not aim
for inter-rater agreement between independent grouping by
individual researchers, but instead worked together as a team
to build consensus. There were many rounds of card sorting
including moving the cards back and forth between different
clusters, splitting the cards to handle different dimensions,
merging similar clusters, and splitting clusters when we found
there was more than one theme, until all involved researchers
were satisfied with the clusters and placement of the cards. We
developed three layers of clustering – the reported challenges
extracted from the papers as the smallest unit, groups of
common themes or patterns in the challenges as the second
layer, and finally a third (or top) layer grouping the second
layer clusters by development stages or cross-cutting concerns
for the ease of reporting results. We performed this card
sorting process in an online platform (miro.com), allowing
us to manipulate colors, add different tags to the cards,
add comments, emojis, and so on. We share the resulting
card-sorting board as supplementary documents [76].

Abstracting and formatting findings. For each of the second
layer clusters we abstracted out the concrete details of the
reported challenges and summarized the clusters based on
the identified themes of the groups. For this, we once again
looked into the cards of each of the clusters individually and
attempted to develop broad statements that capture the content
of the cards in that cluster, which provide the headings of
our results presented in Section IV. We wanted to be concise,
but also comprehensive to properly capture the themes in
the card. At the same time, as Sandelowski and Barroso
suggested [15], we were careful to preserve the context in
which the findings appeared by going back and forth in the
original papers when confusion arose, moving cards to other



clusters or themes as needed.

Calculating effect sizes. Methods for meta-summaries rec-
ommend reporting the frequency of findings in the original
sources [103]. Since many of our analyzed papers ask similar
broad research questions, we can carefully interpret findings
mentioned more frequently as more common, though some
papers clearly specialize in specific sub areas such as fairness
or software architecture [36], [58]. We do not attempt to
count frequencies of mentions within the papers (“intensity
effect size”) because they are not consistently reported, but
just report the percentage of papers reporting on a challenge
theme (“frequency effect size”).

C. Limitations and Threats to Validity

All research designs have limitations that threaten validity
and credibility of results. As usual, readers should be careful
when generalizing findings beyond what is allowed by the
methods. Despite best efforts in our selection methods (SLR
process, snowballing) we may have missed some relevant pa-
pers. In setting clear rules for scope, we had to do some judg-
ment calls by consensus of all researchers for a number of pa-
pers, for example, whether to include [35], [2], [11], [6], [108].

As discussed earlier, the meta-summary synthesis method
was chosen for its fit, but comes with its own limitations: it
does not analyze original raw data, but only what is reported
by other papers. Organizing and categorizing the data required
some interpretation of the papers and some judgment calls.
The method encourages quantification of effect sizes, but those
may not be entirely reliable as the analyzed papers use differ-
ent methods and sometimes focus on specific subquestions.

It would have been interesting to analyze findings in
additional dimensions, for example, whether team members
in different roles or projects, or in different application
domains, experience different challenges, or whether different
challenges surface depending on the research method in the
original study (e.g., survey vs. interview, open question vs.
closed question). Unfortunately, data in the original studies
is frequently not reported consistently and with enough
granularity to enable such analyses.

While the meta-summary method can in principle also
identify conflicts within the literature, this was not feasible in
our study. The analyzed papers typically reported challenges,
not the absence or relative importance of certain challenges.
Given that different papers often had a different focus, rather
than being replications of each other, we cannot conclude that
not mentioning a challenge implies that there was no such
challenge. Hence, we limited our analysis to aggregating and
grouping reported challenges.

IV. RESULTS

We report our findings of the meta-summary in this section
using the layers derived from the card sorting. The top layer
includes development stages (1) Requirements Engineering,
(2) Architecture, Design, and Implementation (with a special
focus on (2a) Model Development and (2b) Data Engineering),
and (3) Quality Assurance, plus (4) Process challenges and

(5) Team challenges as crosscutting concerns. Also, although
MLOps, Fairness, and other more specific categories are often
used to organize results in the surveyed papers, we eventually
settled on minimizing the number of cross-cutting topics. We
decided to include operations challenges in the Architecture
and Design group, as we consider them primarily as a design
for change issue; and we separate and group various concerns
for specific qualities, such as fairness, in the development
stages where the concerns arise, such as requirements and
quality assurance. Within these top layer headings, we have
our second layer clusters which are the abstracted challenges
based on our identified themes, reported as the sub-headings
in the following sections.

A. Requirements Engineering

Requirements engineering is known as an important and
challenging stage of any software project, but as a consistent
theme, we find that practitioners argue that the incorporation
of ML further complicates requirements engineering.

Lack of AI literacy causes unrealistic expectations from
customers, managers, and even other team members [6],
[109], [55], [119], [51], [67], [118], [122], [44], [77], [127],
[37], [61], [78], [99], [22], [85] (17/50). Across many stud-
ies, many practitioners report that customers frequently have
unrealistic expectations of ML capabilities in a product, like
demanding a complete lack of false positives or expecting
very high accuracy that is infeasible with provided resources
(e.g., data, funding). Commonly, practitioners similarly blame
a lack of AI literacy on customers not wanting to pay for
the continuous improvement of the model: they have a static
view of model development [44], [77] only consider paying for
coding, as they do not understand the need for experimental
analysis [61] and even difficulty convincing engineering teams
to invest in collecting high-quality data [51]. The issue of
unrealistic requirements does not only come from customers,
but also from team members within the company itself: Data
scientists find it hard to explain the capabilities of ML to
managers, requirements engineers, and even designers [122],
[77], [37], [78], [22], [85]. According to practitioners, a lack of
AI literacy in team members manifests particularly in defining
and scoping the project: Stakeholders find it hard to understand
the suitability of applying ML itself [55], [127], scoping and
deciding the functional and non-functional requirements [119],
[61], interpreting the model outcomes [109], [78], [99], and
the infrastructure needs (e.g., appropriate data, monitoring
infrastructure, retraining requirements) when building products
[119], [127], [78]. Many practitioners also report that ML-
specific system-level qualities like fairness and explainability
are frequently ignored during requirements elicitation, as the
stakeholders are not aware of them [119], [77], [94], [10].

Vagueness in ML problem specifications makes it difficult
to map business goals to performance metrics [114], [60],
[57], [109], [55], [119], [118], [122], [77], [94], [36], [61],
[29], [78], [99], [65], [85] (17/50). Practitioners across many
studies mention the challenge of formulating the specific



software and ML problem in a way that satisfies business
goals and objectives. ML practitioners find it difficult to map
the high-level business goals to the low-level requirements for
a model. While customers are broadly interested in improving
the business, practitioners often find it difficult to quantify the
contribution of the ML model and its return on investment.
Also, Responsible AI initiatives find it difficult to quantify
their contributions to the business, for example, measuring
the value added by improving fairness and explainability,
or to deliberate about tradeoffs between conflicting fairness
and business objectives [10], [94], [36], [85]. Even with
some notion of responsible AI requirements, practitioners find
the requirements vague and not concrete enough to actually
implement (e.g., unclear subpopulations and protected charac-
teristics to balance discrimination) [119], [94]. On the other
hand, practitioners also frequently report that many projects
are exploratory without clear upfront business goals, thus,
starting off the project without clear requirements is pretty
common, albeit often problematic [109], [122], [61], [29].

Regulatory constraints specific to data and ML introduce
additional requirements that restrict development [29],
[108], [119], [10], [37], [81], [109] (7/50). Practitioners in
multiple studies expressed how regulatory restrictions con-
strain ML development and require audits and involvement
from legal teams. Privacy laws such as GDPR impose ad-
ditional requirements on ML practitioners such as ensuring
the collection of individual consent [119], [37] and providing
the nontrivial ability to remove individuals from training data
after they revoke consent. Similarly, practitioners in regulated
domains report a need for explainability and transparency
that prevents them from using deep learning and post-hoc
explainability techniques [108], [29], [10].

B. Architecture, Design, and Implementation

We find that many ML practitioners struggle with designing
the architecture of products with ML components.

Transitioning from a model-centric to a pipeline-driven
or system-wide view is considered important for moving
into production, but a difficult paradigm shift for many
teams [58], [109], [55], [67], [127], [61], [75], [65], [1], [73],
[42] (11/50). Practitioners frequently report challenges in
migrating from exploratory model code, often in a notebook,
to deployable production-quality code in automated ML
pipelines [127], [61]. Building an end-to-end ML pipeline
is considered to be a challenge due to the difficulties of
integrating various ML and non-ML components in a system
operating within an environment [58], [109], [55], the
overwhelming complexity of integrating many tools and
frameworks [67], [65], [73], the need for engineering skills
beyond the comfort zone of some data scientists [73], and so
on. While practitioners emphasized the importance of pipeline
automation for many projects where frequent re-training and
deployment of models are needed, they also consider it
time-consuming, labor-intensive, error-prone, and not well
supported by current tools [109], [75], [65], [1], [42].

ML adds substantial design complexity with many, often
implicit, data and tooling dependencies, and entanglements
due to a lack of modularity [109], [110], [65], [114], [60],
[58], [122], [127], [1], [4], [22] (11/50). Many practitioners
report challenges from additional complexity when designing
systems incorporating machine learning, and the traditional
software architecture and design practices no longer fit [60],
[58], [127], [22]. ML changes the assumptions in traditional
software systems such as encapsulation and modularity and
causes entanglements of data, source code, and ML models,
which can lead to “pipeline jungles” and “change anything
changes everything” integrations that are hard to maintain
[109], [65], [60], [122], [110], [1]. Unlike traditional systems,
ML requires the incorporation of data pipelines that need to
handle a high volume of data and often data architectures of
distributed nature, and practitioners also need to understand
and design for the data flow in the entire system [114], [122],
[127]. Practitioners also point out that complexities arise due
to a large amount of surrounding “glue code” to support
the ML models [109], [4], and complicated dependency and
configuration management [122], [4].

Difficulty in scaling model training and deployment on
diverse hardware [109], [67], [61], [107], [29], [99], [110],
[65], [42], [73] (10/50). Practitioners commonly report dif-
ficulty dealing with cloud and computational resources, even
with the recent emergence of MLOps. Practitioners find the
technologies to be difficult to integrate into the production
environment and require substantial time, effort, and money
[67], [61], [29], [99], [65], [73]. Among the common problems
of such deployments, practitioners brought up the mismatch
of development and production environments [61], [110],
difficulties in building a scalable pipeline [107], [29], [65],
[42], adhering to serving requirements such as latency and
throughput [109], [65], as well as undocumented tribal knowl-
edge within the team, hampering future deployments [110].
Despite the emerging MLOps tooling, practitioners still raise
many questions about how to utilize those resources and
sometimes express being overwhelmed by the sudden flood
of tools and frameworks to choose from [51], [2].

While monitorability and planning for change are often
considered important, they are mostly considered only late
after launching [109], [29], [110], [42], [58], [57], [127],
[1], [55], [54], [77], [4], [10], [98], [73] (15/50). Practitioners
report struggling with monitoring their deployed models for
detecting drift, bias, or even failures. While many highlight
monitoring as very important, planning for monitoring is rare
[77]. Even for companies that adopt a monitoring infrastruc-
ture, practitioners report struggling with ad-hoc monitoring
practices of logging, creating alerts, or doing everything man-
ually [110], [58]. Similar concerns were raised about model
evolution, where practitioners acknowledge it to be important,
but fall behind in planning for change in their architectural
design [109], [29], [42], [1], [4]. Practitioners mentioned that
ML-centric software goes through frequent revisions more
than traditional software (e.g., due to model retraining, or even



model replacement for data change, hyperparameter tuning, or
change of domain, etc.), and the changes tend to be nontrivial
and nonlocal, raising the need for an architecture that supports
such changes. As a result, we find practitioners’ soliciting
the need for adapted architectural patterns to design for such
post-launch activities for products with ML components with
monitorability as a significant quality attribute [58], [127].

C. Model Development

Although we explicitly exclude challenges relating only to
the work and tools of data scientists when building models,
we find reports of engineering challenges during model devel-
opment, which we report in this section.

Model development benefits from engineering infrastruc-
ture and tooling but provided infrastructure and technical
support are limited in many teams [61], [29], [42], [57],
[122], [55], [54], [4], [118], [51], [81], [7], [92], [130],
[75], [28], [78], [2], [11] (19/50). ML practitioners share
tooling needs for different tasks including data analysis and
visualization, feature engineering, model development, inte-
gration, evaluation, deployment, monitoring, reproducibility,
and support for specific qualities like privacy, security, and
explainability. They report a lack of adequate tools in these
areas and find the existing tools and techniques to be (a)
unavailable in their environment [29], [7], (b) not automated
enough [92], (c) requiring too much expert knowledge to be
used [130], [57], [81], [92], (d) limited to specific tasks and
types of data sets [7], [92], or (e) not suitable for their own
problems [7], [11], [51]. This raises demand for custom tools
but many teams lack the resources and engineering support.

Code quality is not standardized in model development
tools, leading to conflicts about code quality [110], [122],
[77] (3/50). Practitioners report that code quality and review
processes are usually not standardized and are inconsistent
across development and production environments. The expec-
tations around code quality and versioning also differ widely in
teams and create conflicts within teams, especially among team
members with different roles and backgrounds. Practitioners
commonly complain about low code quality in data science
code, especially in notebooks.

D. Data Engineering

In developing ML models, data plays an important role.
While we exclude challenges related exclusively to data-
related work within ML pipelines, we report engineering
challenges related to handling data within the system.

Data quality is considered important, but difficult for
practitioners and not well supported by tools [109], [67],
[61], [29], [99], [110], [65], [60], [1], [77], [4], [119], [51],
[37], [92], [28], [73] (17/50). ML practitioners commonly
report struggling with validating and improving data quality.
Even with significant research efforts in building tools for
data labeling, cleaning, visualization, and management, data
work is still reported as a problematic area for practitioners.
Practitioners reported that they need to invest significant effort

and time in data pre-processing, cleaning, and assembly [28],
[37], [77], [1], [92], [65], [61], [51]. Practitioners also mention
their pain points in handling data errors and validating data
quality, where better tool support is desired [107], [109],
[110], [51], [99], [119], [60], [73]. Although it is common to
associate these data issues within the model building pipeline,
practitioners feel the need for cooperation from other parts of
the organization (e.g., requirements engineers need to identify
and specify requirements regarding data collection, formats,
and the ranges of data and domain experts need to help to
understand the structure and semantics of the data), which
they mention is lacking [99], [119], [92], [77], [37].

Internal data security and privacy policies restrict data
access and use [67], [61], [29], [99], [65], [55], [77], [4], [51],
[47] (10/50). Data access is often restricted due to security
and privacy policies within organizations, beyond possible
regulatory restrictions, e.g., policies ensuring that customer
data is not shared outside the company. Due to restrictions on
the flow of data, ML practitioners need to deal with additional
complexities in the data pipeline, as only a restricted number
of team members can analyze the data and as they have limited
access to the right data and no access to data locally for
model optimization or model debugging due to data movement
constraints [47], [61], [65], [29].

Although training-serving skew is common, many teams
lack support for its required detection and monitoring
[29], [110], [65], [57], [127], [77], [4] (7/50). The mismatch
between training data and production data is a common
problem in products with ML components, where models work
well on test data but generalize poorly to real-world data in
production. Even if training the model with a representative
dataset initially, the production environment often encounters
drift toward data distributions that are less well supported by
the model. Practitioners explain that monitoring models in
production for staleness is an important activity that supports
detecting the degradation of model performance and retraining
it with new data if needed. However, they also find it chal-
lenging to set up the monitoring infrastructure and report a
lack of tool support.

Data versioning and provenance tracking are often seen as
elusive, with not enough tool support [67], [107], [42], [1],
[55], [118], [37] (7/50). While software engineers routinely
adopt mature version control systems for code, practitioners
report challenges in versioning data, typically due to the large
volumes of data involved. Practitioners mention that they need
to have traceability and transparency to answer questions like
“Which data was this model trained on?” or “Which code or
data change made our accuracy deteriorate?” [42], but it’s not
possible for them to keep track of data and models across the
life cycle without technological support [42], [1], [128]. This is
a bigger problem for practitioners in small companies as they
do not want to invest in storage capacity to version their mod-
els and datasets, though they understand the importance [37].



E. Quality Assurance

One of the biggest changes that the incorporation of ML
models brings to traditional software development is challeng-
ing the traditional notion of correctness, where models are
evaluated for accuracy or fit rather than whether they fully
meet a specification. Understandably, this impacts conven-
tional processes and practices for testing and quality assurance.

Testing and debugging ML models is difficult due to lack of
specifications [109], [118], [44], [92], [130], [75], [28], [60],
[57], [122], [77], [61], [107], [29], [99], [110], [65], [1], [4]
(19/50). Practitioners find testing and debugging of ML models
challenging. They ubiquitously report difficulty establishing
quality assurance criteria and metrics, given that no model
is expected to be always correct, but it is difficult to define
what amount and what kind of mistakes are acceptable for a
model [61], [29], [65], [60], [122], [77], [4], [44], [130], [28].
In particular, practitioners find it difficult to define accuracy
thresholds for evaluations. Furthermore, practitioners find it
difficult to select adequate test data, specifically curating test
data of sufficient quality and quantity that is representative
of the production environment [57], [122], [118], [92], [75].
Curating test data for ML testing is also considered costly
and labor-intensive, and practitioners desire methods and tools
from the research community for automated test input genera-
tion to reduce this cost [60], [122], [44]. Practitioners consider
it a challenge to get labels for test data and evaluate test quality
(e.g., in terms of coverage) due to the difficulty of defining the
valid input space and the test oracle problem [60], [122], [28].
Practitioners also mention the silent failing of models (i.e.,
models give wrong answers rather than crashing), the long tail
of corner cases, and the “invisible errors”, that are handled on
an ad-hoc basis without a systematic framework or a standard
approach [110], [122], [28]. Additionally, practitioners raise
challenges regarding evaluating model robustness, on one
hand, suffering from the lack of a concrete methodology [92],
[28], and on the other hand, having various metrics but no
consensus on which metric to use [60].

Testing of model interactions, pipelines, and the entire
system is considered challenging and often neglected [65],
[60], [55], [77], [92], [130], [75], [28] (8/50). Testing literature
often focuses on ML models and data quality, but less on how
models are integrated into the system, and even less on the
infrastructure to produce the models. Practitioners find sole
unit testing of individual models insufficient and ineffective,
due to the entanglement of models and different ML com-
ponents, as well as the difficulty of explaining why an error
occurred due to the low interpretability of individual models
[60], [122], [130]. The lack of pipeline and system testing
beyond the model is also considered a problematic area [55],
[77], [92], [130], [75], [28]: While practitioners tend to focus
more on the data- and model-related issues, the error handling
around the model is found to be insufficient in previous studies
[130], [28], leading to system failures even where the model
gives the correct results [75]. Practitioners also report having

no systematic evaluation strategy nor automated tools and
techniques for pipeline and system-level testing [60], [77].

Testing and monitoring models in production are consid-
ered important but difficult, and often not done [109],
[110], [60], [77], [92] (5/50). Many practitioners recognize
the need to test in production (online testing), since offline
test data for models may not be representative, especially as
data distributions drift. However, practitioners consider online
testing complex as it is not trivial to design online metrics that
not only depend on the model but also on the external envi-
ronment, user interactions after deployment, and the context
of the product overall [110], [60]. They also find online testing
time-consuming, as it requires longer observation periods to
obtain meaningful results [109], [110]. Practitioners also state
that there is no surefire strategy to precisely detect when the
model is underperforming in online testing [110].

There are no standard processes or guidelines on how
to assess system qualities such as fairness, security, and
safety in practice [42], [54], [36], [118], [37], [98], [108],
[10], [11] (9/50). Research often discusses how machine
learning influences fairness, robustness, security, safety, and
other qualities, but practitioners report that they find evaluat-
ing these as challenging. While practitioners consider these
qualities important [42], [54], they often report having no
effective methodology or concrete guidelines for evaluating
them [54], [36], [118], [37], [98], [108], [11]. Even regarding
fairness, which has received a lot of research attention lately,
practitioners report finding it hard to apply auditing and de-
biasing methods due to not having a proper process in place
[36], [37]. Some practitioners report waiting for complaints
from customers rather than being proactive when it comes
to fairness [36], or even blindly expecting the algorithms to
inherently provide qualities like security against attacks [54].

F. Process

Building software products with ML components involves
many moving parts that need to be planned and integrated.
Fitting them together in a cohesive process can be challenging.

Development of products with ML component(s) is often
ad-hoc, lacking well-defined processes [61], [29], [114],
[122], [55], [4], [118], [44], [51], [75], [6] (11/50). Many
practitioners report struggles finding a good process for devel-
oping ML components and products around them [61], [29],
[114], [122], [44], often coming up with ad-hoc strategies and
experiencing a lack of good engineering practices [44], [75].
ML practitioners have explored using the traditional software
development life cycles and found those to be a poor fit
for exploratory development work. Even with a flexible agile
methodology, practitioners identified that small iterations of
sprints cannot fit the initial feasibility study that ML requires,
with the timeline being too fixed and too short [61], [29], [6].
Also, they find it hard to set expectations for each sprint, as
the project objectives may be unclear at the beginning and
need to be revisited after the initial investigation [55], [6].



Uncertainty in ML development makes it hard to plan and
estimate effort and time [61], [122], [4], [118], [44], [28],
[6] (7/50). Modeling work tends to be iterative and exploratory
and as such uncertain, where practitioners cannot estimate
upfront how long it may take to reach a model with a certain
level of accuracy or whether that is even possible; instead, they
commonly progress with many experiments with different al-
gorithms and datasets [4], [44]. Practitioners thus report having
difficulties setting expectations and (intermediate) deadlines
for a project [61], [122], [4], [28], [6] and providing upfront
effort and cost estimates [61], [4], [118].

Practitioners find documentation more important than
ever in ML, but find it more challenging than tra-
ditional software documentation [61], [107], [29], [57],
[77], [18], [53], [128], [88] (9/50). Many practitioners point
out various process and coordination challenges rooted in
poor documentation. Some practitioners emphasize that doc-
umentation is even more important when it comes to ML
components, as human decisions are inscribed in different
stages of ML pipelines and cannot be retrieved from code
or data without documentation [29], [128]. The final model
code is the outcome of many different explorations and
experimentations that include multiple rounds of data pro-
cessing, feature engineering, hyperparameter tuning, and other
activities. Many problem-specific decisions have been made
in those stages that cannot be understood from the resulting
model or pipeline code. Some argue that not recording these
decisions in documentation causes them to slowly become
invisible, severely impacting future re-analysis and revisions,
or even model integration and deployment [29], [57], [128].
Others emphasize that, along with model documentation, data
documentation is also imperative to share hidden information
inside the data and create a shared data understanding, yet
mostly missing in organizations [107], [77]. Others report
that, with the incorporation of ML, the documentation process
becomes more complicated as ML practitioners find it difficult
to present complex model information in an accessible way to
all levels of stakeholders [18], [53], [88]. It is also non-trivial
for practitioners to decide on the right amount of details to
include in the documentation. They place the blame mostly
on the lack of organizational incentives, resources, and unclear
and vague guidelines for ML documentation [18], [88].

G. Organization and Teams

Along with challenges faced in different development
stages, practitioners also mention challenges from the orga-
nizational and teamwork perspective while building products
with ML components.

Building products with ML components requires diverse
skill sets, which is often missing in development teams
[109], [67], [122], [127], [4], [118], [123], [47], [75], [78],
[6], [2] (12/50). Incorporation of ML in a product is not
simply adding another component to the system; it requires
people from multiple disciplines to get involved to support
different aspects of this component. Teams require diverse

skill sets to develop, deploy, and integrate the model into the
complete product, including hardware expertise, engineering
skills, knowledge of math and statistics, business understand-
ing, UX design, operations, and domain expertise. The lack of
this varied expertise in the team is commonly mentioned to
be a challenge by practitioners [109], [122], [118], [47], [6],
[2]. Also, as discussed in the next subsection that communi-
cation is often hindered by lack of AI literacy or common
terminology [29], [1], [4], [75], [78], [127], cross-disciplinary
knowledge seems to be important for team members to interact
and understand each other’s vocabulary; however, practitioner
experiences indicate that such cross-disciplinary education is
not broadly available yet [110], [28].

Many teams are not well prepared for the extensive
interdisciplinary collaboration and communication needed
in ML products [67], [107], [127], [77], [4], [7], [75], [78],
[17], [22], [122] (11/50). For building a product with ML
components, team members need to collaborate with people
from different disciplines as mentioned above, such as business
leaders, engineers, designers, and various other departments
inside the company, and even outside the organization [107],
[122], [127], [78], [22]. Practitioners report that they often
struggle to collaborate effectively in such interdisciplinary
teams, because team members often do not understand the
concerns of other members from other backgrounds, like data
scientists lacking knowledge of engineering practices, testing
frameworks, continuous integration and delivery, and such
[29], [1], [4], [75]; software engineers lacking AI literacy
[29], [75]; and data scientists and software engineers not
understanding or interacting members with in with business
roles [127], [78]. Practitioners report struggling with cultural
differences, differences in expectations, and conflicting priori-
ties [67], [4], [7], [78], and they often do not agree on assigned
responsibilities [61], [77]. These multidisciplinary teams also
suffer from miscommunications arising from inconsistency
in their technical terminologies [77], [75], [17]. Siloing of
teams by specialization and lack of communication across such
silos are also observed in many production settings, fostering
integration problems even further [77], [7].

ML development can be costly and resource limits can
substantially curb/limit efforts [67], [110], [4], [47], [78],
[2] (6/50). Practitioners report that organizations involved in
the development of products with ML components often suffer
from resource and budget limitations. Hardware, infrastruc-
ture, cloud storage, GPUs, etc., are expensive, and especially
for small companies, it is difficult to justify such expenditures
based on the expected return on investment from the model.

Lack of organizational incentives, resources, and edu-
cation hampers achieving all system-level qualities [54],
[94], [81], [47], [98], [78], [108], [11] (8/50). Practitioners
mention that organizational incentives also have an impact on
achieving certain qualities of products with ML components.
A quality that practitioners reported frequently as particularly
challenging due to the lack of organizational incentives is



fairness [94], [36]. Awareness of potential problems, including
potential consequences from biased models, seems to be the
main reason for lacking responsible AI practices, along with
the lack of organizational incentives and structures, as well
as priority conflicts. Safety, security, and privacy also seem to
suffer from similar issues of awareness, education, resource
constraints, and are often disregarded due to tradeoffs with
development cost [54], [81], [47], [98], [11].

V. DISCUSSION AND CONCLUSIONS

With this meta-summary, we aggregate and summarize the
challenges reported by industry practitioners who build soft-
ware products with ML components. We find that practitioners
report challenges in all stages of the development process,
from the initial requirements specification stage to quality
assurance of the deployed product. They report a broad range
of issues from lacking process, organizational structure, and
team collaboration strategies, to lacking tool support for data,
model building, deployment, and monitoring.

Old, new, and harder challenges. Arguably, many reported
challenges are not new to software engineers, and likely
many software engineers may have reported similar challenges
in non-ML projects. It seems though that the introduction
of machine learning exacerbates some universal challenges
and introduces new ones. For example, software engineer-
ing literature is well aware that requirements engineering is
challenging, with customers having unrealistic expectations
and developers directly jumping into coding without under-
standing requirements first. While our study does not support
direct comparisons, it seems that these problems haunt ML
practitioners more, given how ML inspires hopes for amazing
capabilities, but in a way that may be difficult to understand
and specify without substantial ML expertise. Similarly, the
software-engineering literature is full of nuanced discussions
of development life cycles and competing process models,
but ML practitioners struggle adopting even the most flexible
agile-inspired processes for their projects with the uncertainty
that ML brings. Also, team collaboration and organizational
challenges are well known in traditional software engineering,
but those seem to become even more central with the addi-
tional complexity and inclusion of more people with different
backgrounds, cultures, and priorities. Other challenges seem
new, such as the data- and model-related challenges associated
with ML components, and several of the reported challenges
regarding architecture and quality assurance stemming from
the different nature of reasoning in machine learning.

Toward better engineering of ML products. A finding from
our study is that there is much more consensus on what the
challenges are, than how to overcome them. Some challenges
could be addressed with new tooling or new practices; for
others it may be possible to simply adopt existing good
engineering practices; and yet others may just be intrinsically
hard problems. While we cannot provide a rigorous summary
or analysis, we close by reflecting on possible directions.

• Requirements Engineering. For challenges of unrealistic
requirements, several studies mentioned that practitioners
found it useful to conduct training sessions with clients
and other team members on AI literacy, before starting ML
projects [77], [95], [106], [119]. But again, while many
practitioners mention suffering from unclear model require-
ments, we still do not seem to have a good solution, and ad-
ditional research on how to elicit and describe requirements
for models may be needed. Another area for future research
would be to better understand and prepare for regulatory
constraints and provide evidence of compliance.

• Architecture, Design, and Implementation. Machine
learning seems to provide significant challenges to
architectural design of software systems, but arguably
many challenges are similar to other large and complex
and distributed software systems. While there are nascent
discussions on organizing architecture knowledge as
patterns [109], [124], [58], [56], it does not seem like
the field has reached saturation. This seems to be a field
though, where industry-oriented research (similar to the
data architecture of facebook [31]) has more access to
the complicated real-world scenarios where architectural
planning becomes important than what academics can
typically access. From the challenges raised by practitioners,
it is apparent that along with the need for design practices,
patterns, and mechanisms to handle system and model-level
considerations (e.g., dependency management, scalability,
monitorability), we also need to support teams in shifting
from model-centric work to system thinking, possibly
through tailored education for ML practitioners.

• Model Development and Data Engineering. Consistent
across many papers, we find that ML practitioners desire
more engineering support, such as better infrastructure and
tools for model and data work. Data scientists also indicate
a need for more cooperation from other team members
in terms of support for data, which necessitates better
collaboration strategies and data education for the entire
team. On the other hand, a few practitioners highlighted
the necessity of standardization of ML code quality, which
may be a low hanging fruit technically, but may require a
change to the culture and practices in many projects.

• Quality Assurance. Quality assurance for machine
learning, especially for models, is a very active area
of research, with proposals for many different testing
strategies to validate different model characteristics covered
in multiple literature surveys [129], [97], [96], [38]. While
we found that a lot of practitioners mentioned concerns
about specifying model adequacy goals, few practitioners
showed concerns about system testing, monitoring in
production, and testing for fairness, security, and safety.
We are surprised to not see more concerns about system-
level quality beyond the model, which might indicate either
that practitioners do not consider these testing areas as chal-
lenging, or that most organizations (especially outside of big
tech) are not yet mature enough to even start thinking about
such testing needs. Monitoring though is recognized as an



important challenge, with many available tools but common
adoption problems that may be worth investigating further.

• Process. While there is research on development processes
for ML models [116], [69], there seems to be little work on
addressing process challenges that arise when integrating
ML and non-ML work in production projects that are
commonly mentioned by practitioners. We believe that this
is an area with plenty of research opportunities to evaluate
what processes and practices work well in different contexts.

• Organization and Teams. While there is lots of research on
technical issues, practitioners often see organizational and
team issues (such as a lack of AI literacy in teams, unclear
responsibility boundaries, and a lack of team synchroniza-
tion) as some of the most difficult challenges to overcome.
Education and better collaboration strategies seem to be
the factors that might put a positive impact on mitigating
many of the challenges that the practitioners mentioned.
Overall we believe that a lot of progress can be made

with better education and better adoption of good software
engineering practices. There are plenty research opportunities
to adapt existing practices, support them with tooling, and
create new interventions altogether. We hope that the collection
of challenges, which can be traced to the original studies where
they were raised by practitioners, will be helpful in selecting
and prioritizing research and education in our community.

Acknowledgments. Kästner’s, Nahar’s, and Zhang’s work
was supported in part by the National Science Foundation
(#2131477), Zhou’s work was supported in part by the Nat-
ural Sciences and Engineering Research Council of Canada
(NSERC, RGPIN2021-03538), and Lewis’ work was funded
and supported by the Department of Defense under Contract
No. FA8702-15-D-0002 with Carnegie Mellon University for
the operation of the Software Engineering Institute, a federally
funded research and development center (DM23-0228).

REFERENCES

[1] Amershi, S. et al. 2019. Software Engineering for Machine Learning: A
Case Study. Proc. 41st Int’l Conf. on Software Engineering: Software
Engineering in Practice (ICSE-SEIP), 291–300.

[2] Andrade, H., Lwakatare, L.E., Crnkovic, I. and Bosch, J. 2019.
Software Challenges in Heterogeneous Computing: A Multiple Case
Study in Industry. Proc. 45th Euro. Int’l Conf. on Software Engineering
and Advanced Applications (SEAA), 148–155.

[3] Arnold, M. et al. 2019. FactSheets: Increasing trust in AI services
through supplier’s declarations of conformity. IBM Journal of R&D.
63, 4/5, 6:1–6:13.

[4] Arpteg, A., Brinne, B., Crnkovic-Friis, L. and Bosch, J. 2018. Software
Engineering Challenges of Deep Learning. Proc. 44th Euro. Conf. on
Software Engineering and Advanced Applications (SEAA), 50–59.

[5] Ashmore, R., Calinescu, R. and Paterson, C. 2022. Assuring the
Machine Learning Lifecycle: Desiderata, Methods, and Challenges.
ACM Computing Surveys. 54, 5, 1–39.

[6] Baijens, J., Helms, R. and Iren, D. 2020. Applying Scrum in Data
Science Projects. Proc. 22nd Conf. on Business Informatics, 30–38.

[7] Bäuerle, A. et al. Symphony: Composing Interactive Interfaces for
Machine Learning. Proc. 2022 CHI Conf. on Human Factors in
Computing Systems, 1–14.

[8] Begel, A. and Zimmermann, T. 2014. Analyze this! 145 questions
for data scientists in software engineering. Proc. 36th Int’l Conf. on
Software Engineering, 12–23.

[9] Bernardi, L., Mavridis, T. and Estevez, P. 2019. 150 Successful Ma-
chine Learning Models: 6 Lessons Learned at Booking.com. Proc. 25th
ACM SIGKDD Int’l Conf. on Knowledge Discovery & Data Mining -
KDD ’19, 1743–1751.

[10] Bhatt, U. et al. 2020. Explainable machine learning in deployment.
Proc. 2020 Conf. on Fairness, Accountability, and Transparency,
648–657.

[11] Boenisch, F., Battis, V., Buchmann, N. and Poikela, M. 2021. “I Never
Thought About Securing My Machine Learning Systems”: A Study
of Security and Privacy Awareness of Machine Learning Practitioners.
Proc. Mensch und Computer 2021, 520–546.

[12] Borch, C. 2022. Machine learning, knowledge risk, and principal-agent
problems in automated trading. Technology in society. 68.

[13] Borg, M. et al. 2020. Safely Entering the Deep: A Review of Verifica-
tion and Validation for Machine Learning and a Challenge Elicitation in
the Automotive Industry. Journal of Automotive Software Engineering.
1, 1, 1–19.

[14] Boyd, K.L. 2021. Datasheets for Datasets help ML Engineers Notice
and Understand Ethical Issues in Training Data. Proc. ACM on Human-
Computer Interaction. 5, CSCW2, 1–27.

[15] Braiek, H.B. and Khomh, F. 2020. On testing machine learning
programs. The Journal of systems and software. 164, 110542.

[16] Breck, E., Cai, S., Nielsen, E., Salib, M. and Sculley, D. 2017. The
ML test score: A rubric for ML production readiness and technical
debt reduction. Proc. 2017 IEEE Int’l Conf. on Big Data, 1123–1132.

[17] Brennen, A. 2020. What Do People Really Want When They Say They
Want “Explainable AI?” We Asked 60 Stakeholders. Extd. Abs. of the
2020 CHI Conf. on Human Factors in Computing Systems, 1–7.

[18] Chang, J. and Custis, C. 2022. Understanding Implementation Chal-
lenges in Machine Learning Documentation. Equity and Access in
Algorithms, Mechanisms, and Optimization, 1–8.

[19] Chattopadhyay, S., Prasad, I., Henley, A.Z., Sarma, A. and Barik, T.
2020. What’s wrong with computational notebooks? Pain points, needs,
and design opportunities. Proc. 2020 CHI Conf. on Human Factors in
Computing Systems, 1–12.

[20] Chotisarn, N. et al. 2020. A systematic literature review of modern
software visualization. Journal of visualization / the Visualization
Society of Japan. 23, 4, 539–558.

[21] Dilhara, M., Ketkar, A. and Dig, D. 2021. Understanding Software-
2.0: A Study of Machine Learning Library Usage and Evolution. ACM
Trans. on Software Engineering and Methodology. 30, 4, 1–42.

[22] Dove, G., Halskov, K., Forlizzi, J. and Zimmerman, J. 2017. UX
Design Innovation: Challenges for Working with Machine Learning
as a Design Material. Proc. 2017 CHI Conf. on Human Factors in
Computing Systems, 278–288.

[23] Epperson, W., Wang, A.Y., DeLine, R. and Drucker, S.M. 2022.
Strategies for Reuse and Sharing among Data Scientists in Software
Teams. Proc. 44th Int’l Conf. on Software Engineering: Software
Engineering in Practice, 243–252.

[24] Faan, M.S.P. and Aprn, J.B.P. 2006. Handbook for Synthesizing Qual-
itative Research. Springer Publishing Company.

[25] Felizardo, K.R., Mendes, E., Kalinowski, M., Souza, É.F. and Vijayku-
mar, N.L. 2016. Using Forward Snowballing to update Systematic
Reviews in Software Engineering. Proc. 10th Int’l Symposium on
Empirical Software Engineering and Measurement, 1–6.

[26] Follow, R. Bridging the Gap Between Data Science & Engineer:
Building High-Performance Teams.

[27] Giray, G. 2021. A Software Engineering Perspective on Engineering
Machine Learning Systems: State of the Art and Challenges. Journal
of Systems and Software. 180, 111031.

[28] Golendukhina, V., Lenarduzzi, V. and Felderer, M. 2022. What is
software quality for AI engineers? Towards a thinning of the fog. Proc.
1st Int’l Conf. on AI Engineering: Software Engineering for AI, 1–9.

[29] Haakman, M., Cruz, L., Huijgens, H. and van Deursen, A. 2021.
AI Lifecycle Models Need To Be Revised. An Exploratory Study in
Fintech. Empirical Software Engineering. 26, 5, 1–29.

[30] Harris, J. 2020. Beyond the jupyter notebook: how to build data science
products. Towards Data Science.

[31] Hazelwood, K. et al. 2018. Applied Machine Learning at Facebook: A
Datacenter Infrastructure Perspective. Proc. 2018 Int’l Symposium on
High Performance Computer Architecture (HPCA), 620–629.

[32] Head, A., Hohman, F., Barik, T., Drucker, S.M. and DeLine, R. 2019.
Managing messes in computational notebooks. Proc. 2019 CHI Conf.
on Human Factors in Computing Systems - CHI ’19, 1–12.

[33] Henry, K.E. et al. 2022. Human-machine teaming is key to AI adoption:
clinicians’ experiences with a deployed machine learning system. NPJ
digital medicine. 5, 1, 1–6.



[34] Hermann, J. and Del Balso, M. 2017. Meet Michelangelo: Uber’s
machine learning platform.

[35] Hill, C., Bellamy, R., Erickson, T. and Burnett, M. 2016. Trials and
tribulations of developers of intelligent systems: A field study. Proc. on
Visual Languages and Human-Centric Computing (VL/HCC), 162–170.

[36] Holstein, K. et al. 2019. Improving Fairness in Machine Learning
Systems: What Do Industry Practitioners Need? Proc. 2019 CHI Conf.
on Human Factors in Computing Systems, 1–16.

[37] Hopkins, A. and Booth, S. 2021. Machine Learning Practices Outside
Big Tech: How Resource Constraints Challenge Responsible Develop-
ment. Proc. Conf. on AI, Ethics, and Society, 134–145.

[38] Huang, X. et al. 2020. A survey of safety and trustworthiness of deep
neural networks: Verification, testing, adversarial attack and defence,
and interpretability. Computer Science Review. 37, 100270.

[39] Huang, X., Zhang, H., Zhou, X., Babar, M.A. and Yang, S. 2018.
Synthesizing qualitative research in software engineering: a critical
review. Proc. 40th Int’l Conf. on Software Engineering, 1207–1218.

[40] Hudson, W. 2013. Card Sorting. The Encyclopedia of Human-Computer
Interaction, 2nd Ed. The Interaction Design Foundation.

[41] Hulten, G. 2018. Building Intelligent Systems: A Guide to Machine
Learning Engineering. Apress.

[42] Hummer, W. at al. 2019. ModelOps: Cloud-Based Lifecycle Manage-
ment for Reliable and Trusted AI. Proc. 2019 IEEE Int’l Conf. on
Cloud Engineering (IC2E), 113–120.

[43] Hynes, N., Sculley, D. and Terry, M. 2017. The data linter: Lightweight,
automated sanity checking for ML data sets. NIPS MLSys Workshop,
1-5.

[44] Ishikawa, F. and Yoshioka, N. 2019. How do engineers perceive
difficulties in engineering of machine-learning systems? - questionnaire
survey. Proc. 2019 Joint 7th Int’l Workshop on Conducting Empirical
Studies in Industry (CESI) and 6th Int’l Workshop on Software Engi-
neering Research and Industrial Practice (SER&IP), 2–9.

[45] Jain, R. and Suman, U. 2015. A Systematic Literature Review on
Global Software Development Life Cycle. SIGSOFT Softw. Eng. Notes.
40, 2, 1–14.

[46] Jentzsch, S. and Hochgeschwender, N. 2021. A qualitative study
of Machine Learning practices and engineering challenges in Earth
Observation. it - Information Technology. 63, 4, 235–247.

[47] John, M.M., Olsson, H.H. and Bosch, J. 2020. AI Deployment Ar-
chitecture: Multi-Case Study for Key Factor Identification. Proc. 27th
Asia-Pacific Software Engineering Conf. (APSEC), 395–404.

[48] Kanagal, B. and Tata, S. 2018. Recommendations for All: Solving
Thousands of Recommendation Problems Daily. Proc. 34th Int’l Conf.
on Data Engineering (ICDE), 1404–1413.

[49] Kästner, C. 2022. Machine Learning in Production: From Models to
Products.

[50] Keele, S. 2007. Guidelines for performing systematic literature reviews
in software engineering. Technical Rep., Ver. 2.3 EBSE Tech. Report.

[51] Kim, M., Zimmermann, T., DeLine, R. and Begel, A. 2018. Data
Scientists in Software Teams: State of the Art and Challenges. IEEE
Transactions on Software Engineering. 44, 11, 1024–1038.

[52] Kim, M., Zimmermann, T., DeLine, R. and Begel, A. 2016. The
emerging role of data scientists on software development teams. Proc.
38th Int’l Conf. on Software Engineering, 96–107.

[53] Königstorfer, F. and Thalmann, S. 2022. AI Documentation: A path to
accountability. Journal of Responsible Technology. 11, 100043.

[54] Kumar, R.S.S. et al. 2020. Adversarial Machine Learning - Indus-
try Perspectives. Proc. 2020 IEEE Security and Privacy Workshops
(SPW)., 69–75.

[55] Laato, S., Birkstedt, T., Mäantymäki, M., Minkkinen, M. and Mikko-
nen, T. 2022. AI governance in the system development life cycle:
insights on responsible machine learning engineering. Proc. 1st Int’l
Conf. on AI Engineering: Software Engineering for AI, 113–123.

[56] Lakshmanan, V., Robinson, S. and Munn, M. 2020. Machine Learning
Design Patterns. O’Reilly Media, Inc.

[57] Lewis, G.A., Bellomo, S. and Ozkaya, I. 2021. Characterizing and
Detecting Mismatch in Machine-Learning-Enabled Systems. Proc.
IEEE/ACM 1st Workshop on AI Engineering-Software Engineering for
AI (WAIN), 133–140.

[58] Lewis, G.A., Ozkaya, I. and Xu, X. 2021. Software Architecture
Challenges for ML Systems. Proc. 2021 Int’l Conf. on Software
Maintenance and Evolution (ICSME), 634–638.

[59] Lin, J. and Kolcz, A. 2012. Large-scale machine learning at Twitter.
Proc. Int’l Conf. on Management of Data, 793–804.

[60] Li, S., Guo, J., Lou, J.-G., Fan, M., Liu, T. and Zhang, D. 2022. Testing
machine learning systems in industry: an empirical study. Proc. 44th
Int’l Conf. on Software Engineering: Software Engineering in Practice,
263–272.

[61] Liu, H., Eksmo, S., Risberg, J. and Hebig, R. 2020. Emerging and
Changing Tasks in the Development Process for Machine Learning
Systems. Proc. Int’l Conf. on Software and System Processes, 125–134.

[62] Liu, J., Boukhelifa, N. and Eagan, J.R. 2020. Understanding the
Role of Alternatives in Data Analysis Practices. IEEE transactions on
visualization and computer graphics. 26, 1, 66–76.

[63] Liu, Q., Li, P., Zhao, W., Cai, W., Yu, S. and Leung, V.C.M. 2018.
A Survey on Security Threats and Defensive Techniques of Machine
Learning: A Data Driven View. IEEE Access. 6, 12103–12117.

[64] Lopez, G. and Guerrero, L.A. 2017. Awareness Supporting Technolo-
gies used in Collaborative Systems: A Systematic Literature Review.
Proc. 2017 ACM Int’l Conf. on Computer Supported Cooperative Work
and Social Computing, 808–820.

[65] Lwakatare, L.E., Raj, A., Bosch, J., Olsson, H.H. and Crnkovic, I. 2019.
A taxonomy of software engineering challenges for machine learning
systems: An empirical investigation. Proc. 2019 Int’l Conf. on Agile
Software Development, 227–243.

[66] Lwakatare, L.E., Raj, A., Crnkovic, I., Bosch, J. and Olsson, H.H.
2020. Large-scale machine learning systems in real-world industrial
settings: A review of challenges and solutions. Information and soft-
ware technology. 127, 106368, 106368.

[67] Mäkinen, S., Skogström, H., Laaksonen, E. and Mikkonen, T. 2021.
Who Needs MLOps: What Data Scientists Seek to Accomplish and
How Can MLOps Help? Proc. IEEE/ACM 1st Workshop on AI Engi-
neering - Software Engineering for AI (WAIN), 109–112.

[68] Martínez-Fernández, S. et al. 2022. Software Engineering for AI-Based
Systems: A Survey. ACM Transactions on Software Engineering and
Methodology. 31, 2, 1–59.

[69] Martinez-Plumed, F. et al. 2020. CRISP-DM twenty years later: From
data mining processes to data science trajectories. IEEE transactions
on knowledge and data engineering. 33, 8, 3048–3061.

[70] McGlohon, M. 2021. Demystifying Machine Learning in Production:
Reasoning about a Large-Scale ML Platform.

[71] McGraw, G., Figueroa, H., Shepardson, V. and Bonett, R. 2020. An
architectural risk analysis of machine learning systems: Toward more
secure machine learning. Berryville Institute of Machine Learning,
Clarke County, VA. Accessed on: Mar. 23.

[72] Mitchell, M. et al. 2019. Model Cards for Model Reporting. Proc. Int’l
Conf. on Fairness, Accountability, and Transparency, 220–229.

[73] Muiruri, D., Lwakatare, L.E., K Nurminen, J. and Mikkonen, T. 2022.
Practices and Infrastructures for ML Systems–An Interview Study in
Finnish Organizations. TechRxiv.

[74] Muller, M. et al. 2019. How Data Science Workers Work with Data:
Discovery, Capture, Curation, Design, Creation. Proc. 2019 CHI Int’l
Conf. on Human Factors in Computing Systems, 1–15.

[75] Myllyaho, L. et al. 2022. On misbehaviour and fault tolerance in
machine learning systems. Journal of Systems and Software. 183,
111096.

[76] Nahar, N. 2022. Supplementary documents: A meta-summary of
challenges in building products with ML components – collecting
experiences from 4758+ practitioners. OSF.

[77] Nahar, N., Zhou, S., Lewis, G. and Kästner, C. 2022. Collaboration
Challenges in Building ML-Enabled Systems: Communication, Docu-
mentation, Engineering, and Process. Proc. 44th Int’l Conf. on Software
Engineering, 413–425.

[78] Namvar, M., Intezari, A., Akhlaghpour, S. and Brienza, J.P. 2022.
Beyond effective use: Integrating wise reasoning in machine learning
development. Int’l Journal of Information Management.

[79] Nascimento, E., Nguyen-Duc, A., Sundbø, I. and Conte, T. 2020.
Software engineering for artificial intelligence and machine learning
software: A systematic literature review. arXiv.

[80] Nikanjam, A., Morovati, M.M., Khomh, F. and Ben Braiek, H. 2022.
Faults in deep reinforcement learning programs: a taxonomy and a
detection approach. Automated software engineering. 29, 1.

[81] Nikhil, K. et al. 2022. “If security is required”: Engineering and
Security Practices for Machine Learning-based IoT Devices. Proc. 4th
Int’l Workshop on Software Engineering Research and Practices for
the IoT (SERP4IoT), 1–8.



[82] Nushi, B., Kamar, E., Horvitz, E. and Kossmann, D. 2017. On human
intellect and machine failures: troubleshooting integrative machine
learning systems. Proc. Thirty-First AAAI Conf. on Artificial Intelli-
gence, 1017–1025.

[83] Ozkaya, I. 2020. What is really different in engineering AI-enabled
systems? IEEE software. 37, 4, 3–6.

[84] Paleyes, A., Urma, R.G. and Lawrence, N.D. 2022. Challenges in
deploying machine learning: A survey of case studies. ACM computing
surveys.

[85] Passi, S. and Jackson, S.J. 2018. Trust in Data Science: Collaboration,
Translation, and Accountability in Corporate Data Science Projects.
Proc. ACM on Human-Computer Interaction, 1–28.

[86] Passi, S. and Sengers, P. 2020. Making data science systems work. Big
data & society. 7, 2, 205395172093960.

[87] Pimentel, J.F., Murta, L., Braganholo, V. and Freire, J. 2019. A large-
scale study about quality and reproducibility of jupyter notebooks.
Proc. 16th Int’l Conf. on Mining Software Repositories, 507–517.

[88] Piorkowski, D., González, D., Richards, J. and Houde, S. 2020.
Towards evaluating and eliciting high-quality documentation for in-
telligent systems. arXiv.

[89] Piorkowski, D., Park, S., Wang, A.Y., Wang, D., Muller, M. and
Portnoy, F. 2021. How AI Developers Overcome Communication
Challenges in a Multidisciplinary Team: A Case Study. Proc. ACM
on Human-Computer Interaction 5.CSCW1, 1–25.

[90] Polyzotis, N., Roy, S., Whang, S.E. and Zinkevich, M. 2018. Data
Lifecycle Challenges in Production Machine Learning: A Survey. ACM
SIGMOD Record. 47, 2, 17–28.

[91] Rahimi, M., Guo, J.L.C., Kokaly, S. and Chechik, M. 2019. Toward
Requirements Specification for Machine-Learned Components. Proc.
27th Int’l Requirements Engineering Workshops (REW), 241–244.

[92] Rahman, M.S. et al. 2021. Machine Learning Application Develop-
ment: Practitioners’ Insights. arXiv.

[93] Rahman, M.S., Rivera, E., Khomh, F., Guéhéneuc, Y.-G. and Lehnert,
B. 2019. Machine Learning Software Engineering in Practice: An
Industrial Case Study. arXiv.

[94] Rakova, B., Yang, J., Cramer, H. and Chowdhury, R. 2020. Where
Responsible AI meets Reality: Practitioner Perspectives on Enablers
for shifting Organizational Practices. Proc. ACM on Human-Computer
Interaction, 1–23.

[95] Ribeiro, D.M., Cardoso, M., da Silva, F.Q.B. and França, C. 2014.
Using qualitative metasummary to synthesize empirical findings in
literature reviews. Proc. 8th ACM/IEEE Int’l Symposium on Empirical
Software Engineering and Measurement, 1–4.

[96] Ribeiro, M.T., Wu, T., Guestrin, C. and Singh, S. 2020. Beyond
Accuracy: Behavioral Testing of NLP models with CheckList. arXiv.

[97] Riccio, V. et al. 2020. Testing machine learning based systems: a sys-
tematic mapping. Empirical Software Engineering. 25, 6, 5193–5254.

[98] Rismani, S. et al. and Rostamzadeh, N. 2022. From plane crashes to
algorithmic harm: applicability of safety engineering frameworks for
responsible ML. arXiv.

[99] Riungu-Kalliosaari, L., Kauppinen, M. and Männistö, T. 2017. What
Can Be Learnt from Experienced Data Scientists? A Case Study.
Product-Focused Software Process Improvement, 55–70.

[100] Saha, D. et al. 2020. Human Comprehension of Fairness in Machine
Learning. Proc. AAAI/ACM Int’l Conf. on AI, Ethics, and Society, 152.

[101] Salay, R., Queiroz, R. and Czarnecki, K. 2017. An Analysis of ISO
26262: Using Machine Learning Safely in Automotive Software. arXiv.

[102] Sambasivan, N., Kapania, S., Highfill, H., Akrong, D., Paritosh, P. and
Aroyo, L.M. 2021. “Everyone wants to do the model work, not the
data work”: Data Cascades in High-Stakes AI. Proc. 2021 CHI Int’l
Conf. on Human Factors in Computing Systems, 1–15.

[103] Sandelowski, M., Barroso, J. and Voils, C.I. 2007. Using qualitative
metasummary to synthesize qualitative and quantitative descriptive
findings. Research in nursing & health. 30, 1, 99–111.

[104] Sculley, D. et al. 2015. Hidden Technical Debt in Machine Learning
Systems. Advances in Neural Information Processing Systems 28. C.
Cortes, N.D. Lawrence, D.D. Lee, M. Sugiyama, and R. Garnett, eds.
Curran Associates, Inc. 2503–2511.

[105] Sculley, D., Otey, M.E., Pohl, M., Spitznagel, B., Hainsworth, J. and
Zhou, Y. 2011. Detecting adversarial advertisements in the wild. Proc.
17th ACM SIGKDD Int’l Conf. on Knowledge discovery and data
mining, 274–282.

[106] Sendak, M.P. et al. 2020. Real-World Integration of a Sepsis Deep
Learning Technology Into Routine Clinical Care: Implementation
Study. JMIR medical informatics. 8, 7, e15182.

[107] Serban, A., van der Blom, K., Hoos, H. and Visser, J. 2020. Adoption
and Effects of Software Engineering Best Practices in Machine Learn-
ing. Proc. 14th ACM/IEEE Int’l Symposium on Empirical Software
Engineering and Measurement (ESEM), 1–12.

[108] Serban, A., van der Blom, K., Hoos, H. and Visser, J. 2021. Practices
for Engineering Trustworthy Machine Learning Applications. Proc. 1st
Workshop on AI Engineering-Software Engineering for AI, 97–100.

[109] Serban, A. and Visser, J. 2022. Adapting Software Architectures to
Machine Learning Challenges. Proc. 2022 IEEE Int’l Conf. on Software
Analysis, Evolution and Reengineering (SANER), 152–163.

[110] Shankar, S., Garcia, R., Hellerstein, J.M. and Parameswaran, A.G.
2022. Operationalizing Machine Learning: An Interview Study. arXiv.

[111] Shaw, M. and Zhu, L. 2022. Can Software Engineering Harness the
Benefits of Advanced AI? IEEE Software. 39, 6, 99–104.

[112] Siebert, J., Joeckel, L., Heidrich, J., Nakamichi, K., Ohashi, K., Namba,
I., Yamamoto, R. and Aoyama, M. 2020. Towards Guidelines for
Assessing Qualities of Machine Learning Systems. Proc. Int’l Conf. on
the Quality of Information and Communications Technology, 17–31.

[113] Smith, D. 2017. Exploring development patterns in data science.
[114] d. S. Nascimento, E., Ahmed, I., Oliveira, E., Palheta, M.P., Stein-

macher, I. and Conte, T. 2019. Understanding Development Process
of Machine Learning Systems: Challenges and Solutions. Proc. 2019
ACM/IEEE Int’l Symposium on Empirical Software Engineering and
Measurement (ESEM), 1–6.

[115] Spencer, D. 2009. Card Sorting: Designing Usable Categories. Rosen-
feld Media.

[116] Studer, S., Bui, T.B., Drescher, C., Hanuschkin, A., Winkler, L., Peters,
S. and Mueller, K.-R. 2021. Towards CRISP-ML(Q): A Machine
Learning Process Model with Quality Assurance Methodology. Ma-
chine Learning and Knowledge Extraction. 3, 2, 392–413.

[117] Tonekaboni, S., Joshi, S., McCradden, M.D. and Goldenberg, A. 2019.
What Clinicians Want: Contextualizing Explainable Machine Learning
for Clinical End Use. Proc. 4th Machine Learning for Healthcare
Conference, 359–380.

[118] Uchihira, N. 2022. Project FMEA for Recognizing Difficulties in
Machine Learning Application System Development. Proc. Int’l Conf.
on Management of Engineering and Technology (PICMET), 1–8.

[119] Vogelsang, A. and Borg, M. 2019. Requirements Engineering for
Machine Learning: Perspectives from Data Scientists. Proc. 27th Int’l
Requirements Engineering Workshops (REW), 245–251.

[120] Wagstaff, K. 2012. Machine Learning that Matters. arXiv.
[121] Wang, D. et al. 2019. Human-AI Collaboration in Data Science:

Exploring Data Scientists’ Perceptions of Automated AI. Proc. ACM
on Human-Computer Interaction. 3, CSCW, 1–24.

[122] Wan, Z., Xia, X., Lo, D. and Murphy, G.C. 2019. How does Machine
Learning Change Software Development Practices? IEEE Transactions
on Software Engineering. 47, 9, 1857–1871.

[123] Washizaki, H., Takeuchi, H., Khomh, F., Natori, N., Doi, T. and
Okuda, S. 2020. Practitioners’ insights on machine-learning software
engineering design patterns: a preliminary study. Proc. 2020 IEEE Int’l
Conf. on Software Maintenance and Evolution (ICSME), 797–799.

[124] Washizaki, H., Uchida, H., Khomh, F. and Guéhéneuc, Y.-G. 2020.
Machine learning architecture and design patterns. IEEE Software. 8.

[125] Washizaki, H., Uchida, H., Khomh, F. and Guéhéneuc, Y.-G. 2019.
Studying Software Engineering Patterns for Designing Machine Learn-
ing Systems. Proc. 10th Int’l Workshop on Empirical Software Engi-
neering in Practice (IWESEP), 49–495.

[126] Wohlin, C. 2014. Guidelines for snowballing in systematic literature
studies and a replication in software engineering. Proc. 18th Int’l Conf.
on Evaluation and Assessment in Software Engineering, 1–10.

[127] Zdanowska, S. and Taylor, A.S. 2022. A study of UX practitioners
roles in designing real-world, enterprise ML systems. Proc. 2022 CHI
Int’l Conf. on Human Factors in Computing Systems, 1–15.

[128] Zhang, A.X., Muller, M. and Wang, D. 2020. How do data science
workers collaborate? Roles, workflows, and tools. Proc. ACM on
human-computer interaction. 4, CSCW1, 1–23.

[129] Zhang, J.M., Harman, M., Ma, L. and Liu, Y. 2022. Machine learn-
ing testing: Survey, landscapes and horizons. IEEE Transactions on
Software Engineering. 48, 1, 1–36.

[130] Zhang, X., Yang, Y., Feng, Y. and Chen, Z. 2019. Software Engineering
Practice in the Development of Deep Learning Applications. arXiv.

[131] Zinkevich, M. 2017. Rules of machine learning: Best practices for ML
engineering. minegrado.ovh.


	Introduction
	Scoping and Related Work
	Research Method
	Paper Selection 
	Qualitative Meta-Summary Process
	Limitations and Threats to Validity

	Results
	Requirements Engineering
	Architecture, Design, and Implementation
	Model Development
	Data Engineering
	Quality Assurance
	Process
	Organization and Teams

	Discussion and Conclusions
	References

