The Product Beyond the Model — An Empirical
Study of Repositories of Open-Source ML Products

Nadia Nahar*T, Haoran ZhangT, Grace Lewist, Shurui Zhou®, Christian Kistner!
fCarnegie Mellon University, fCarnegie Mellon Software Engineering Institute, $University of Toronto
*nadian @andrew.cmu.edu

Abstract—Machine learning (ML) components are increasingly
incorporated into software products for end-users, but developers
face challenges in transitioning from ML prototypes to products.
Academics have limited access to the source of commercial ML
products, hindering research progress to address these challenges.
In this study, first and foremost, we contribute a dataset of
262 open-source ML products for end users (not just models),
identified among more than half a million ML-related projects
on GitHub. Then, we qualitatively and quantitatively analyze 30
open-source ML products to answer six broad research questions
about development practices and system architecture. We find
that the majority of the ML products in our sample represent
more startup-style development than reported in past interview
studies. We report 21 findings, including limited involvement of
data scientists in many open-source ML products, unusually low
modularity between ML and non-ML code, diverse architectural
choices on incorporating models into products, and limited
prevalence of industry best practices such as model testing,
pipeline automation, and monitoring. Additionally, we discuss
seven implications of this study on research, development, and
education, including the need for tools to assist teams without
data scientists, education opportunities, and open-source-specific
research for privacy-preserving telemetry.

Index Terms—QOpen source dataset, machine learning products,
mining software repositories, software engineering for machine
learning

I. INTRODUCTION

With the increasing popularity of machine learning (ML),
more and more software products are incorporating ML com-
ponents to enable various capabilities, such as face recogni-
tion in photo-sharing apps. However, incorporating ML into
products is not just about developing the model; there is a
significant amount of effort to integrate the model into the
system, while considering aspects such as system architecture,
requirements, user experience (UX) design, safety and secu-
rity, system testing, and operations [1]-[3]. Developers find it
challenging to convert ML prototypes into software products
with ML components (ML products) [4]-[7]. Unfortunately, re-
searchers rarely have access to the source code of ML products
and hence face difficulty in (a) studying challenges in-depth
and (b) designing and evaluating interventions (e.g., tools and
practices). Currently, academic researchers rely primarily on
an outside view gathered through interviews or surveys with
industry practitioners [1], [5]-[9]. Some researchers perform
research within a company and gain rich access [10]-[14], but
are limited to a single context and can rarely share details.
This inability to access and study ML products — not just any
ML projects — poses a significant impediment to advancing

TABLE I: Sample ML Products for Analysis, from the Curated
Dataset of 262 ML Products: Mobile (P1-P10), Desktop (P11-
P20), and Web Applications (P21-P30)

ID Name Descrption Star Cont. U/D*
P1 Text Fairy OCR scanner app 751 5 10M+
P2 Seek by iNaturalist App to identify plants and animals 92 8 IM+
P3 Pocket Code App for learning programming 92 8 TM+
P4 ESP32 AI Camera ESP32-CAM processing Al tasks 82 1 1K+
P5 NotionAl MyMind App to store and search for items 182 2 1K+
P6 Organic Maps Offline map app 4023 226 500K+
P7 VertiKin E-commerce app 74 5 N/A
P8 FlorisBoard Android keyboard 3503 76 N/A
P9 NewsBlur Personal news reader 6123 83 50K+
P10 TfLite MNIST Handwritten digits classification 214 1 N/A
P11 AWIPS Advanced weather processing system 129 6 97K/mo
P12 Audiveris Optical musical recognition app 932 16 8.7K/mo
P13 Datashare Doc. analysis software for journalists 438 15 1.2K/mo
P14 Algoloop Algorithmic trading application 67 160 N/A
P15 Subtitle Edit Editor for video subtitles 4407 86 293K/mo
P16 DeepFacelLab Software for creating deepfakes 35566 19 N/A
P17 Faceswap Software for creating deepfakes 42623 80 297K/mo
P18 HO Helper for Hattrick football manager 138 12 14M+
P19 BigBlueButton Web conferencing system 7710 181 88K/mo
P20 PoseOSC Realtime human pose estimation 63 2 N/A
P21 OpenBB Terminal Investment research software 17481 136 94K/mo
P22 Coffee Grind Size Coffee particle analyzer 402 1 N/A
P23 Celestial Detection Classifier of celestial bodies 69 20 N/A
P24 Electricity Maps ~ Greenhouse gas intensity visualizer =~ 2566 268 3M+
P25 Galaxy Data intensive science for everyone 1021 255 187K/mo
P26 GridCal Power systems planning software 293 14 N/A
P27 Honkling Keyword spotting system 63 5 1.2K/mo
P28 Jitsi Meet App for video conferencing 18813 374 10M+
P29 Code.org Professional learning program for CS 712 132 82M+
P30 Basketball Analys. Analyze basketball shooting pose 781 4 N/A

*Users/Downloads: There is no reliable way to calculate the number of users;
we report them using multiple ways if available, such as downloads in google
play-store, self-reported on website, or website traffic tracker (similarweb.com) to
count average monthly users (in ‘value/mo’ format)

research in this field, leading to a wealth of academic literature
identifying challenges through professionals’ testimonies, but
a dearth of research offering scientifically-evaluated solutions
or interventions at the intersection of software engineering
(SE) and ML.

Historically, the field of SE has greatly benefited from open-
source software in terms of research, practice, and education.
Research on mining open-source software repositories has
allowed us to create vast datasets and study aspects that would
otherwise be challenging to investigate [15], [16], such as
effectiveness of continuous integration [17] and pull-request-
based development [18]. Open source allows researchers to
test interventions on software artifacts, which has been foun-
dational for many research areas such as program repair and
software testing [19], [20]. Many innovations developed and

https://github.com/renard314/textfairy
https://github.com/inaturalist/SeekReactNative
https://github.com/Catrobat/Catroid
https://github.com/longpth/ESP32CamAI
https://github.com/elblogbruno/NotionAI-MyMind
https://github.com/organicmaps/organicmaps
https://github.com/prabhakar267/vertikin
https://github.com/florisboard/florisboard
https://github.com/samuelclay/NewsBlur
https://github.com/nex3z/tflite-mnist-android
https://github.com/Unidata/awips2
https://github.com/Audiveris/audiveris
https://github.com/ICIJ/datashare
https://github.com/Capnode/Algoloop
https://github.com/SubtitleEdit/subtitleedit
https://github.com/iperov/DeepFaceLab
https://github.com/deepfakes/faceswap
https://github.com/akasolace/HO
https://github.com/bigbluebutton/bigbluebutton
https://github.com/LingDong-/PoseOSC
https://github.com/OpenBB-finance/OpenBBTerminal
https://github.com/jgagneastro/coffeegrindsize
https://github.com/ritwik12/Celestial-bodies-detection
https://github.com/electricitymap/electricitymap-contrib
https://github.com/galaxyproject/galaxy
https://github.com/SanPen/GridCal
https://github.com/castorini/honkling
https://github.com/jitsi/jitsi-meet
https://github.com/code-dot-org/code-dot-org
https://github.com/chonyy/AI-basketball-analysis
similarweb.com

evaluated on open source are later adopted in industry (e.g.,
Facebook’s adoption of program repair [21], and Google’s
adoption of mutation testing [22]). Beyond research and
development, access to open source on a larger scale has
revolutionized education, offering students and professionals
the opportunity to study and illustrate practices in open-source
repositories [23]-[25]. In the same manner, access to open-
source ML products could open opportunities for research,
education, and technology transfer. To this end, we identify
a corpus of such ML products.

Many past studies have tried to study ML projects in open
source, but usually (a) only focus on one or two specific exam-
ples or (b) use a dataset full of notebooks, research projects,
homework solutions, and demos, which are not representative
of real-world industrial ML products. While open source is
useful for studying ML libraries and notebooks [26]-[28],
researchers struggle to find good examples of open-source
ML products: Several papers prominently highlight FaceSwap
[29] as an active end-user open-source ML product and study
it in depth, but it is usually the only clear example of an
ML product ever identified or analyzed [30], [31]. Several
papers [32]-[34] rely on a dataset of 4,500 projects labeled
as “ML applied” [35], but closer inspection reveals that most
of these projects are research notebooks, tutorial-style projects,
and toy projects — not a promising dataset for those interested
in studying ML products.

We have two goals for this paper, (a) to identify a corpus
of ML products in open source, beyond just FaceSwap, and
(b) to analyze the curated dataset to answer research questions
of interest to the community. The first goal turned out to be
surprisingly difficult due to the abundance of open-source ML
projects that are not ML products, making the keyword search
approach used in related studies ineffective. In response, we
designed a tailored pipeline, strategized specifically for finding
ML products. We identified and manually verified a total of
262 repositories [35]. While this is a smaller corpus than past
datasets on ML projects, it provides a considerable number
of open-source projects that build an end-user product around
a model, have a development history, and are fully transpar-
ent, providing opportunities not achievable with interviews,
surveys, and even industry collaborations.

Second, we analyze our dataset to answer existing research
questions for which open-source software might provide useful
insights. Instead of a shallow quantitative analysis of all the
ML products, we conducted an in-depth analysis of a 30-
product sample (Table I) and reported 21 findings around
six research questions related to collaboration, architecture,
process, testing, operations, and responsible AI. Among others,
our findings reveal (a) often limited visible involvement of data
scientists in developing open-source ML products, and a lack
of clear boundaries between responsibilities for ML and non-
ML code, (b) diverse architectural choices on incorporating
often multiple models into products, and (c) rare use of
industry best practices, such as pipeline automation, model
evaluation, and monitoring. While our findings suggest that
open-source ML products often mirror practices reported from

startup-style ML products in industry, we also find a wide
range of practices and products in this dataset. Our dataset
offers ample research and educational opportunities, such as
developing tools to assist teams that lack access to data
scientists, tools and patterns to address the unexpectedly low
modularity between ML and non-ML code, and open-source-
specific innovations for privacy-preserving telemetry.

To summarize, the primary contributions of this paper are
(a) an open-source dataset of 262 ML products, (b) a novel
search strategy to identify the ML products from GitHub,
and (c) 21 findings around six broad research questions,
characterizing the nature of ML products in the dataset.

II. DEFINING ML PRODUCTS

Throughout the paper, we use the term ML product to
describe software products for end-users that contain ML
components. We explicitly distinguish ML products from other
ML-related projects and artifacts, such as notebooks and
models. Note that terminology in this field is not standardized
or consistent, as practitioners and researchers may refer to the
libraries that train models (e.g., TensorFlow), the code to train
models (e.g., in a notebook), the deployed models (e.g., GPT-
3), or the products around those models (e.g., FaceSwap) by
names such as ML systems, ML projects, or ML applications.
Our notion of ML product considers the entire software system
including non-ML components, in line with past research that
used terms like ML-enabled systems [1], [36], or ML systems
(51, [37].

During our research, we needed a clear definition for what
we consider an ML product (especially because we had to clas-
sify thousands of repositories). In line with interactive systems
in human-computer interaction [38], [39], and products in the
context of product management [40], [41], and after iteratively
reviewing hundreds of projects (cf. Sec. IV), we define ML
product as follows:

ML Product: A machine-learning product is a soft-
ware project (a) for end-users that (b) contains one or
more machine-learning components.

To be considered for end-users, the project must have
a clear purpose and a clear target audience. The purpose
can be fun and the audience can be “everybody.” The soft-
ware must be complete, usable, polished, and documented
(e.g., install and usage instructions) to the level typically
expected by the target audience. The product needs to use
at least one machine-learned model that provides major
or minor functionality in the software. The model can be
developed from scratch or called using an existing library
or APL

For contrast, we define ML libraries and ML projects:
ML Library: Libraries, frameworks, or APIs that are used
to perform ML tasks, such as TensorFlow and DVC!,

Uhttps://dvc.org/

https://dvc.org/

ML Project: ML Project represents any software project
that integrates some form of ML functionality or code. Ex-
amples include notebooks, research artifacts associated with
a paper, and course homework. All ML products are ML
projects, but most ML projects are not ML products.

Scoping. We exclude ML products targeting software devel-
opers and data scientists as end users from our corpus, such
as code-completion tools. These users have more technical
expertise and may interact with products through different
interfaces, sometimes blurring the line between product and
project. Researchers interested in ML products for developers
could repeat our search process with a wider scope.

III. EXISTING RESEARCH AND LIMITATIONS

Building ML products is challenging and requires
engineering beyond the model and ML pipeline. Many
researchers have studied the challenges that practitioners face
when turning an ML model or prototype into a product. We
recently collected challenges from 50 papers that surveyed and
interviewed practitioners regarding the software engineering
challenges faced when building ML products [42]. These
papers illustrated numerous challenges, such as architectural
issues due to lack of modularity in ML code increasing design
complexity [5], [43] and team collaboration hindered by the
absence of necessary skills [1], [44]. While these studies
with practitioners provide a high-level understanding of the
problems, they often do not offer sufficient details or access
to design-specific interventions.

Researcher tradeoff between internal and external valid-
ity for studying ML products. For studying ML products (not
just models and ML projects), researchers adopted different
research designs. Some conducted interviews, e.g., [1], [5],
[6], [43], while others focused on surveying practitioners at
scale, e.g., [7], [9], [45]. While these studies provide a broad
sense of the challenges (maximizing external validity), they
rely on self-reported data without access to artifacts. There
are also ethnographic studies [12], [13], industrial case studies
[14], [46], and experience reports [10], [11] — these can
yield a deeper understanding of specific cases (maximizing
internal validity), but at the cost of generalizability as they
are usually based on a single case (a common tradeoff [47]).
Access to an open-source dataset of ML products can provide
new opportunities, enabling researchers to validate reported
challenges on tangible data, devise solutions, and evaluate
interventions across a larger number of cases.

Academic interventions exist for models and pipelines
where plenty of notebooks and libraries exist in open
source to study, but not for product-level problems to
which academics hardly have access. Academics can de-
sign and evaluate solutions when adequate data is available,
such as the millions of notebooks on GitHub [27], [28], for
example supporting studies and evaluations of interventions
on dependency management, documentation generation, and
collaboration practices in notebooks [27], [48], [49]. There are
also many solutions for ML-related components such as data
validation [50], [51], training data creation [52], [53], model

building [54], [55], and fairness assessment [56], [57]. How-
ever, without access to study ML products, it is challenging
to design and rigorously evaluate interventions at the product
level (incl. architecture, collaboration, and documentation).

Open-source datasets exist for ML projects, but those
are not representative of ML products, and not suitable for
answering research questions related to ML product devel-
opment. Several papers introduce datasets of ML projects on
GitHub (not necessarily ML products). For instance, Gonzalez
et al. [35] collected over 4500 “applied Al and ML” reposi-
tories. The quality of this dataset was criticized for inclusion
of toy projects by Rzig et al. [30], who then curated a new
dataset with 2915 ML projects for studying the adoption of
continuous integration (CI) practices. Similar datasets of ML
projects were curated by van Oort et al. [58] and Tang et al.
[59] for purposes such as discovering the prevalence of code
smells and refactoring practices in ML projects. Widyasari et
al. [60] shared a manually-labeled dataset of 572 “engineered
ML projects,” referring to the need for a higher-quality dataset
that should include engineering practices. While all these
datasets can provide various insights about ML projects, they
are not promising for studying concerns related to developing
ML products (we analyzed all of them to find only four
projects that we consider as products). We argue that insights
about architecture [32], technical debt [34], and differences in
addressing ML and non-ML issue reports [33] from studying
ML projects might not well generalize to ML products.

Despite curating many datasets of ML-related projects pre-
sented above, researchers have not succeeded in finding ML
products in open source, apart from one frequently highlighted
example, FaceSwap [29]. Closest to our work, Wan et al.
curate a dataset of ML products where a model is used in
the context of some non-ML code (in their case to test the
code using the model). Unfortunately, all their projects are
toy projects, such as a O-starred fire-alarm “application” with
three commits that uses an object detection model to get object
labels from an input photo and prints “alarm” if it detects the
keyword “fire” in the label [61].

Existing datasets of ML projects and toy examples limit the
generalizability of research to real-world industry-style ML
products. Even worse, if a reader is not aware of the types of
projects in a dataset (which is not obvious when the example
provided is FaceSwap), it is easy to incorrectly generalize
findings to ML products. Thus, there is value in a dataset
specifically dedicated to ML products, which motivates us to
curate and study such a dataset.

IV. CONTRIBUTION A: CURATING THE DATASET

Identifying open-source ML products was surprisingly dif-
ficult and turned into a research project in itself. Searching
with keywords like “machine learning” in READMEs, as in
prior work collecting open-source ML projects [35], does not
work because (a) the vast number of ML projects (libraries,
notebooks, research experiments, demos) is much larger than
the much smaller number of ML products and (b) ML products

do not always explicitly advertise their use of machine learn-
ing, especially when used for smaller optional features. For
example, only one of the top 500 search results on GitHub
for “machine learning” is an ML product and 13 of our 30
analyzed ML products do not mention machine learning in
their README, such as the video-conferencing application
(P29) which uses facial expression detection as an add-on.

Instead, we explored and iteratively refined a new search
strategy combining domain knowledge, code search, and man-
ual analysis in a process that is specifically designed to scale
to search across all of GitHub. In a nutshell, our approach is
based on the following insights:

o Targeting end users, ML products have a user interface
(mobile, web, desktop, command line), whereas most
other ML projects do not. We rely on code search to
identify code relating to user interfaces.

e ML is used in products usually through a small number
of libraries and APIs, whether to train a custom model, to
load a serialized model, or to call a remote API service.
We rely on code search to identify the use of ML in
implementations.

o The final distinction between ML products and ML
projects requires human judgment (all our attempts at
automation yielded poor accuracy). We develop heuristics
to prioritize which projects to analyze to manage scarce
resources for manual analysis.

e Code search at the scale of GitHub is challenging. We
carefully design a multi-step pipeline that incrementally
reduces the search space, eliminating many projects that
are not ML products with cheaper analyses before more
expensive analysis steps are required.

Each insight makes assumptions that enable the search to
scale and find relevant ML products, but each assumption may
lose some ML products that do not meet them, such as user
interface mechanisms not captured (e.g., game engines) and
models not detected (e.g., custom k-nn implementations). Our
approach cannot ensure finding an exhaustive list of all ML
products — it is a best-effort attempt to collect as many ML
products as possible with reasonable resources, in the face of
a very difficult search challenge (see limitations below).

A. Search Space and Scope

We search for ML products on GitHub. GitHub is by far the
most popular platform for open-source projects, whereas more
specialized platforms such as Hugging Face only host ML
models. We only include popular project repositories (over 50
stars) that have been maintained recently (updated after 2019-
01-01), and that are documented in English — constraints that
are common in open-source research. We restrict our analysis
to desktop and web applications written in Javascript, Python,
Java, and C# (most popular languages for such applications
[62], [63]) in addition to mobile apps for Android and iOS.

B. Search Pipeline

To scale the search, we proceed in five steps, with increasing
per-project analysis cost in each step.

1. API search. We start with a very scalable step to retrieve a
vast overapproximation of candidate projects with the GitHub
Search API. We retrieve all GitHub repositories using any of
the four programming languages as the primary language and
all repositories matching the keywords “android” or “ios.” We
additionally restrict the search to stars and commit date, as
mentioned above. Where necessary, we partition the search
space by date to overcome GitHub’s maximum of 1000
search results. At this stage, we identified 430,902 candidate
repositories (cf. Table II).

2. Metadata and README filter. We retrieve each candidate
project’s README and GitHub metadata (including “about”
description and tagged topics) through the GitHub API. We
exclude obvious non-product repositories by matching key-
words such as “framework,” “tutorial,” and “demo” in the
description or README. In line with similar efforts, we
remove archived and deprecated repositories (e.g., keywords
“deprecated” or “obsolete”), forks, and repositories with non-
English descriptions (using an off-the-shelf model [64]). We
report the exact filters in the appendix [65]. We manually
validated a random set of 100 filtered projects finding no
incorrectly filtered projects. A total of 300,508 repositories
remained after applying this filter.

3. Product filter. To detect user interfaces, we rely on
code search, performed locally after cloning each candidate
repository. We curated a list of code fragments indicative
of 130 common frameworks for user interfaces, such as
“com.android.application” in a gradle.build file for Android
mobile applications, “import javax.swing” for Java desktop
applications, and “from flask import Flask” for web appli-
cations in Python (see appendix for details [65]). We remove
repositories that do not contain any of these code fragments,
leaving us with 26,386 potential products for further analysis.

4. ML filter. To identify the use of machine learning, we again
rely on code search, based on curated lists of code fragments
indicative of ML libraries and APIs. We count occurrences
of calls to any of 99 ML libraries or APIs (e.g., “import
caffe”) and of serialized models (e.g., files with .tflite, and
.mlmodel extensions). In addition, as a noisy last resort, we
count occurrences of 20 ML keywords, such as “machine
learning” and “NLP” in any source or text files (including
comments and documentation) to catch less common libraries
and custom implementations. At this point, 11,257 projects
pass at least one ML-related filter.

5. Manual inspection. The final step with by far the highest
per-repository cost is to manually validate whether a repository
is an ML product. One or more authors with extensive exper-
tise in ML products inspected the repository, its description,
and (when needed) its code to judge whether the repository is
indeed an ML product — this typically took 30 seconds to 20
minutes per repository. Our definition of ML product in Sec. 2
is the result of multiple iterations and refinement, for example,
establishing requirements for purpose and documentation, for
which we discussed 272 early-inspected projects as a group

TABLE II: Number of Retrieved Projects after Each Step

Mobile App Desktop App Web App Total

android iOS js Py java C# js Py java
GitHub Search 12,044 10,969 72,793 67,626 55,892 15,267 72,793 67,626 55,892 430,902
Initial Filter 3,358 4,055 83,777 36,396 22,802 7,145 83,777 36,396 22,802 300,508
Product Filter 2,296 2,801 1,100 1,663 1,909 2,590 3,025 8,747 2,255 26,386
Manual Check* 33 14 19 43 17 12 42 104 5 *%262

*Based on the ML clue counts, we inspected around 4k projects manually. **Removing duplicates.

(of which we considered 94 to be ML products) to arrive
at a stable definition which provided us with a high inter-
rater reliability (n=40, kappa=0.77). A few repositories near
the decision boundary were discussed by all authors until a
unanimous consensus was reached. We inspected about 4,000
of the 11,257 remaining repositories, prioritizing our resources
based on match counts for our ML filters, stratified product
category, language, and ML filter. In each strata, we stopped
when we reached 30 consecutive false positive repositories,
for example after inspecting 216 Android mobile apps.

C. Limitations and Threats to Validity

To make the search feasible we had to make various com-
promises, arriving at the described design. Given the various
heuristics, our approach represents a best-effort attempt and
cannot claim producing an exhaustive or complete list of ML
products. As discussed, we may have missed ML products in
other languages, using other GUI frameworks, or less common
ML libraries. Additionally, our approach involved manual
inspection, which, despite best efforts, opens the possibility
of human error and subjectivity.

Our search heuristics prioritize false positives over false
negatives, and we designed our approach accepting low preci-
sion (discarding many repositories in the last manual validation
step) to ensure high recall. While we would have preferred
to formally evaluate recall (i.e., whether we missed any
ML products) by comparing our dataset against any existing
ground-truth dataset of ML products, such a dataset does not
exist. As a substitute, we attempted to collect ML products
independently by seeking input from industry practitioners
through platforms like Quora, Reddit, LinkedIn, Twitter, and
a 32k-member Slack channel in the field of data science; but
aside from numerous replies expressing interest in our dataset,
we only received suggestions for two repositories, both of
which we determined not to be ML products according to
our definition. Additionally, we compared our dataset to other
existing datasets of ML projects [26], [35], [59], [60] but did
not find any additional repositories that satisfy our definition
of ML products in those datasets. In fact, those datasets only
contained a total of four ML products, all of which we detected
in our dataset. While all this raises our confidence, we cannot
formally assess recall.

D. The Open-Source ML Product Dataset

In total, we found 2622 ML products (cf. Table II, full
dataset in appendix [65]). The average ML product in our
corpus has 1495 stars, 28 contributors, and is 325MB in size.
Over half of the ML products are written in Python; most are
web applications.

The dataset comprises a diverse range of products, some
of which have a significantly larger number of users and a
more professional look than others. For instance, Seek (P2 in
Table I) is a mobile app for identifying plants and animals
using image recognition, downloaded over 1 million times
and reviewed by over 38k users with robust support from the
established iNaturalist community, who maintains a dedicated
website and continuously improves and maintains the app. In
contrast, NotionAl MyMind (P5), an Android app developed
by a single contributor, uses an ML classifier to automatically
tag images and articles, with a simple user interface, rare
updates, and under 5,000 downloads from the Play Store.
Approximately half of the products in our dataset have a
professional presentation like Seek; those generally have more
stars and a larger codebase. The others seem to be personal-
interest projects released as a product.

V. CONTRIBUTION B: LEARNING FROM THE DATASET

We created this dataset due to limited access to industry
products, which hinders research advancements and education
in the field. Now that we have this dataset, we can finally
attempt to answer numerous research questions about ML
products that have accumulated in many past studies with
open-source products, where previously we had to rely on
interviews or experience reports from industry practitioners.
Given the breadth of topics, we cannot cover everything in a
single study. In this paper, we explore a wide range of topics
rather than going into depth on a single one, to contribute new
knowledge and achieve two secondary objectives: (1) Charac-
terize the dataset: Our analysis with broad research questions
will implicitly characterize the products in our dataset and
enable other researchers to effectively use it and interpret
derived findings (cf. limitations of existing work in Section
IIT) — this also helps to explore how similar the ML products
in our dataset are to ML products described in interviews
and experience reports. (2) Identify when deeper analysis of
the dataset is feasible and promising: Our research questions
from different topics, such as collaboration, architecture, and

2Removing duplicates, such as same repositories for Android and iOS apps.

development process will identify what kind of questions are
worth going into deeper before committing resources to in-
depth analyses for individual research questions.

A. Research Method

First, we curated a list of research questions relevant to the
study and designed qualitative and quantitative strategies to
answer them. Given the novelty of the dataset and questions,
we heavily rely on qualitative analysis involving substantial
manual effort. Therefore, we decided it would be more man-
ageable to analyze a sample of 30 products from the dataset.

Deriving Research Questions. We selected research questions
that are not only of interest to the research community but
can also be feasibly answered by analyzing open-source ML
products (e.g., we did not find artifacts that would allow
us to answer “How do data scientists elicit, document, and
analyze requirements for ML systems?”). For this selection,
we employed a two-step process.

First, we explored the existing literature to identify topics
that are of interest to researchers in the field, such as the chal-
lenges faced by practitioners building ML products, collected
in our recent meta-survey of interviews and surveys [42]. We
identified numerous topics of interest, such as collaboration,
architecture, process, quality assurance, MLOps, and respon-
sible Al

Second, we examined our dataset of ML products to identify
potential research questions (RQs) that could plausibly be
answered with open-source data. We explored 15 randomly
selected ML products qualitatively, taking multiple pages of
notes for each product. We immersed ourselves in the source
code, documentation, contributor profiles, issues, and any other
available information provided on associated websites; we
identified the ML and non-ML components to familiarize us
with common structures. This gave us a sense of what kind
of questions can be reasonably answered.

In the end, we selected six questions spanning the entire life
cycle: e« RQ #1 (Collaboration): How interdisciplinary are
open-source ML product teams and how do they divide their
work? [1], [66] « RQ #2 (Architecture): How are open-source
ML products architected to incorporate models? [5], [32] e RQ
#3 (Process): What model-product development trajectory do
open-source ML products follow? [4], [67] e RQ #4 (Testing):
What and how are the open-source ML products and their
parts tested? [37], [68] « RQ #5 (Operations): How are open-
source ML products designed for operation? [44], [69] e RQ
#6 (Responsible AI): What responsible Al practices are used
in open-source ML products? [70], [71]

While each identified topic could warrant a dedicated study
and deeper analysis, here we provide initial answers for each
and explore opportunities for future research.

Analysis and Synthesis. Without existing established mea-
sures, we found a manual, mostly-qualitative analysis to be
more responsive and effective than a narrow quantitative
analysis at scale [72], [73]. To find answers to the RQs, the
ML products required an in-depth examination of the code,

analysis of contributor activities, and thorough inspection of
related documents. While we automated some measures, such
as contributor percentages and modularity scores, designing
them also required initial manual investigation and manual
classification of ML components. This made the process quite
labor-intensive, requiring 10-15 hours per product. Conse-
quently, we analyzed a sample rather than every product in
the dataset.

Sampling: We analyzed the 30 products shown in Table I
(11.5% of the dataset), which was manageable for our manual
analysis. Rather than attempting statistical generalizations, our
goal was to gain rich insights from the dataset. Thus, we aimed
to sample a diverse range of products using case-study research
logic [74], [75]. We used information-oriented selection to
select popular and large products (extreme/deviant cases),
because we expect them have a richer history to analyze,
and we included a random selection of other products for the
average cases. To represent different kinds of products, we
stratified selection across the three genres: mobile, desktop,
and web. Specifically, we select two products with the most
stars per genre (P§, P9, P16, P17, P21, P28), two products with
the most contributors per genre (P3, P6, P14, P19, P24, P25),
the product with the largest code size per genre (P1, P11, P29),
and five randomly selected products per genre. The sample set
of ML Products vary in terms of stars (avg. 5k, min. 63, max.
42k), no of contributors (avg. 82, min. 1, max. 374), and LOC
(avg. 564k, min. 1106, max. 2745k), as shown in Table I and
appendix [65].

Analyzing Products and Card Sorting: We conducted a
comprehensive qualitative analysis of the sampled products.
We describe the specific analysis steps separately for each
research question below, but generally, we follow the strat-
egy: two researchers carefully examined the GitHub repos-
itories, addressing each research question individually for
each product, involving tasks, such as reading documenta-
tion, identifying ML and non-ML components in the source
code, measuring modularity, examining contributor profiles,
analyzing commit history, and reviewing issues. The entire
research team regularly met to discuss, clarify understanding
and resolve disagreements, and organize findings. To organize
and find patterns among the products, we performed card
sorting [76]. Each product was represented by a card for each
RQ, describing our findings for that particular RQ, and we
iteratively grouped these cards to identify patterns within RQs.
Additionally, we searched for associations across patterns from
different RQs. We share analysis artifacts, including a Miro
board and spreadsheets, in the appendix [65].

Threats to Credibility and Validity. Despite following best
practices for qualitative research as we discussed, this part
of the research shares common threats encountered in qual-
itative research [72], [73]. Given the small sample size and
sampling strategy, statistical generalization is not suitable and
not advised. Readers should compare this to a study with 30
interviews. While we followed standard practices for coding
and memoing during the analysis of the products, we cannot

completely eliminate biases introduced by the researchers. In
addition, we only access public information and do not have
access to offline activities — hence, our findings should be
interpreted accordingly.

RQ #I: How interdisciplinary are open-source ML product
teams and how do they divide work?

Interdisciplinary collaboration is difficult, as has also been
found in building ML products [1], [66]. The transparency
of open-source development allows researchers to study many
aspects of collaboration, as demonstrated by numerous past
studies on team collaboration, pull requests, and diversity,
e.g., [77]1-[79]. To understand interdisciplinary collaboration
in open-source ML products, we explore team composition in
terms of the number of contributors and their backgrounds,
who works on ML and non-ML code of the product, and how
tangled ML and non-ML code are in terms of co-changes.
The findings can help study existing challenges such as siloed
development and guide further studies in collaboration.

Method. To analyze contributor backgrounds and numbers
(Findings 1-2), we collected contribution data from GitHub
and identified the core contributors as those collectively re-
sponsible for 80% of all commits (in line with past work [80],
[81]). We manually classified each contributor’s background
as SE-focused, ML-focused, or other (e.g., physics, finance),
based on public self-description, professional title, and educa-
tion history as found on their GitHub profile, LinkedIn profile,
and personal, project, or company websites, if available. If the
classification was not obvious (e.g., because of limited public
information) we classify their background as “unsure.”

To study how developers from SE and ML backgrounds
contribute to ML and non-ML code (Findings 3-4), we sepa-
rated the ML and non-ML code after excluding documentation
and binaries: We manually categorized code associated with
model training, prediction, and pipeline as ML-related, while
all other software infrastructure and graphical user interface
(GUI) code fell under non-ML, typically at the granularity of
files. Finally, we automatically analyze the commit history to
attribute code changes to contributors.

To analyze the coupling of ML and non-ML code (Finding
5), we analyze co-edits in the product history, known as
logical coupling [82], [83]. Specifically, we compute a relative
coupling index that indicates whether the ML and non-ML
parts are more or less coupled than would be expected if
all changes were randomly distributed across files. A low
relative coupling index indicates that changes are typically
isolated to only ML code or only non-ML code, whereas a
high relative coupling index indicates that ML and non-ML
code are often changed together, signaling low modularity. To
compute relative coupling index, we compute coupling using
evolutionary coupling index (ECI) [82] and then divide ECI
by the probability of coupling of random edits to normalize
the effect of size, as ML and non-ML code size differs
significantly (the average product has 971k LOC of non-ML
code and 23k LOC of ML code).

Finding 1: Most of the core contributors are software engi-
neers (74/92). Finding 2: Many products have a single core
contributor (13/30). In our sample of 30 products, we identi-
fied 140 core contributors, among whom we could classify 92.
Among the 92, we found 74 contributors as SE-focused and
10 contributors (spread across eight products) as ML-focused.
For 16 products where

: 18 Background
we could (':1a551fy . ML
all core contributors, =y — sE
C
many (9/16) had g‘é 3 B Unsure
exclusively SE-focused ~ §° = Other

contributors. We found
a single contributor
(in P24) who self-
identified to be an expert in both SE and ML.

Project

Finding 3: There is little evidence of clear silos, with
core contributors commonly committing to both ML
and non-ML code, regardless of background. Find-
ing 4: Team responsibilities are rarely assigned and
recognizable in the commit history. In contrast to the
widely reported

g S
problem of siloing 8%
o S¢g
in industry teams [I], z
we do not find a sy
. . pc]
clear delineation by §3
22
background of who gg° ;
- 8 Contributor
contributes to the ML ge Background
88 - ML
and non-ML code. We — sE
often find contributors EEN Unsure
of either background &3
working on both parts. = Project

Only five products (P13, P21, P24, P25, P29) publicly docu-
mented team structures with assigned roles and responsibilities
for team members, but even then the assigned responsibilities
do not always reflect the commit activities. For instance,
even though P29 has an explicit data team, we do not find
commits from the data team to the ML repository, but SE-
focused contributors change both the ML and non-ML code.
We conjecture that some offline collaboration is not visible in
the open-source repository.

Finding 5: ML and
non-ML code are
often changed together,
indicating low levels of
modularity. While models
are usually assumed to
be modular components
in a system, our analysis
reveals that many products
(12/30) in our sample
exhibit frequent co-changes of ML and non-ML code. For
example, P27 has a very high relative coupling index between
ML and non-ML code — we found that this product has
a custom script for training a speech recognition model,

Products
A U OO N

o - N W

0 025 05 1 2
Rel Coupling ldx

4

where the ML code directly updates the user interface (UI)
button based on the prediction result; any modification to
the UI properties requires an update to the model script to
accommodate the change, causing frequent co-changes of the
UI files and the model script. Conversely, although we indeed
found many products (18/30) that have coupling lower than
random, it is not as low as could be expected from fully
modular components of a product.

Discussion (open source versus industry): Open source ML
products mirror the startup style of development more
than big tech projects. In line with general trends in open
source [84], [85], we find relatively small teams developing
ML products in our sample, in contrast to often large teams
reported to build ML products in big tech companies [43],
[86]. Our open-source ML products are closer to the average
team size of 2-5 members in startups [87]. While prior
studies report misaligned responsibilities that do not reflect
developers’ abilities or preferences across all kinds of orga-
nizations building ML products [1], [66], [88], the fluent and
broad responsibilities and collective code-ownership resemble
characteristics commonly seen in startups. Overall, the open-
source ML products seem more reflective of activities in the
vast majority of ML projects outside of big tech organizations,
that have their own distinct and often understudied challenges

(11, [2]. [89].

Implication 1: Researchers should study the challenges of
teams that do not have access to data scientists and explore
providing assistance. Most studies on ML development focus
on the challenges of data scientists, perceived as the dominant
or novel role. Open-source ML products seem to be dominated
by software engineers, who adopt ML tools, often with limited
apparent participation from data scientists. Past interview
studies have already established pitfalls of software engineers
adopting ML without explicit training [1], such as inadequate
feature engineering and insufficient evaluation. Open-source
ML products provide an opportunity to study such problems
in public artifacts. In addition, ML products developed without
dedicated data scientists are likely common also in industry,
outside of big tech, and likely to become more common as
data science becomes more accessible (e.g., with AutoML
and prompt engineering) — researchers should explore how to
support software engineers with limited data-science expertise
in building ML products responsibly, for example, through
analysis, automation, and smart assistants. Recent tools for
detecting data smells [90] and data leakage [91] and for
anticipating fairness issues [92] provide encouraging starting
points. Conversely, a few ML products in our sample are
developed by data scientists without software engineers — such
cases are better researched [1], [93], but can equally benefit
from further studies and support.

Implication 2: Researchers should investigate sources of
non-modularity and develop tools and guidance. While
interactions among multiple models are a well-known problem
(“changing anything changes everything”) [3], [94], [95],

models are usually considered natural modules in a soft-
ware design with clear and simple interfaces [96], [97]. Yet,
we found surprisingly frequent co-changes of ML and non-
ML code. Research should explore the sources of this non-
modularity and have a unique opportunity to do so with our
dataset. Research should identify or create design strategies to
isolate change, possibly coded as design patterns (current ML-
related design patterns rarely consider the interaction of ML
and non-ML code [98], [99]), to guide practitioners toward
more modular designs. Positive examples in the dataset could
serve as illustrations in educational materials.

RQ #2: How are open-source ML products architected to
incorporate models?

Researchers have highlighted how ML can influence the
architecture of software products [5], [43]. To comprehensively
understand the product structures and the incorporated models,
we explore architecturally relevant aspects such as model type,
usage, importance, integration of multiple models, pipeline
automation, documentation, and big data infrastructure.

Method. To understand the overall structure of the model and
product, we conducted a comprehensive manual analysis of
the ML and non-ML code in the repositories. We analyzed the
code with a focus on the following artifacts: code structure and
data flow as it pertains to models — identifying how the models
are created, where and how they are called, and how the
model predictions are processed and used. We also reviewed
their documentation, relevant blogs and forums, associated
web pages, and related repositories under the same personal
or organizational account. We then sorted our findings and
grouped those into categories, using card sorting techniques
[76], guidance from previous research, and domain knowledge
from our research team.

Finding 6: About half of the products rely exclusively on
third-party ML models (13/30). We identified 15 products
that use third-party models via libraries (e.g., Tesseract OCR),
external APIs (e.g., ClarifyAl), or load pre-trained model files
from a remote repository. In contrast, 17 products self-train
models. Two products use both third-party or self-trained
models (P12, P30). For instance, the optical music recognition
application, P12, uses a self-trained model to classify music
symbols and an existing OCR library for classifying text.

Finding 7: The importance of the ML models to the
product varies, with about half using them as optional
functionality only (13/30). We found the importance of ML
models to vary considerably across different products. The
model is the core functionality in 11 products, as there would
be no product without the model (e.g., the OCR model in
the OCR scanner app P1). There are 6 products that may still
provide value without the model, but the model is a significant
functionality (e.g., the OCR model in video subtitle editor
P15 that could potentially operate on manual inputs). In 13
products, the model provides optional functionality, serving
as a nice-to-have add-on (e.g., facial expression recognition in
video conferencing app P28). Whether a third-party model is

used (Finding 6) is not necessarily associated with the model’s
importance: We found products investing substantial effort in
self-trained models for optional functionality (e.g., P6, P26,
P29) and products relying on a third-party model for core
functionality (e.g., P1, P12, P13). Products with models as
core tend to be smaller and have fewer contributors (avg. 112k
LOC, 1.4 contributors), while optional models are often added
to larger products with more contributors (avg. 754k LOC, 8.1
contributors).

Finding 8: Automation using model predictions is uncom-
mon (5/30), with most products keeping humans in the
loop. A central question in human-Al design is how to use
or present model predictions and whether and how to keep
humans in the loop [97], [100]. We find only five products that
use model predictions to fully automate actions (e.g., keyword
spotting app P27 executes gameplay instructions based on
recognized voice commands). Two products prompt users to
confirm an action (e.g., deepfake software P17 asks for con-
firmations on image previews between each processing stage).
Most products (23) in our sample merely display predictions,
leaving decisions about actions entirely to users (e.g., trading
app P21 graphically presents investment predictions).

Finding 9: Most products use raw model predictions with-
out any post-processing (21/30). Finding 10: Products that
automate actions are more likely to further process model
predictions. Products may check, process, and integrate model
predictions in many ways, some now encoded as patterns, such
as two-phased predictions for resilient serving of models [8],
[98]. However, most analyzed products (21/30) trust model
predictions and display them without any further processing.
Only two products incorporate additional architectural tactics
around model predictions: Plant identifier app P2 uses a two-
phase prediction system, combining a local model with an
online model for low-confidence cases (known as rwo-phase
prediction pattern [98]) and subtitle editor P15 performs exten-
sive checks on texts predicted via optical character recognition
and language translation before presenting them. In addition,
three products incorporate a confidence score threshold to filter
low confidence predictions (P9, P27, P29) and another three
offer a retraining option for the model if performance proves
unsatisfactory (P5, P12, P28). Interestingly, P11 uses machine
learning to check the results from a non-ML API. The few
products that automated decisions based on model predictions
(Finding 8) process predictions further, by offering retraining
mechanisms (3/5) and confidence checks (1/5).

Finding 11: Many products use

. Retrainl
multiple models (18/30), though |Automate
those models are mostly in-
dependent (11/18). Interactions No checks
Augment

among multiple models is a fre-
quently raised challenge in in-
dustry, where a minor change in
one model can trigger cascading
changes across the product [3], [94], [95], [97]. While 18

Score-checkl

1Prompt Safeguard1

products use multiple models, those perform independent tasks
in 11 products’: 7 products use models for separate functions
unrelated to each other (e.g., P15 uses one model for OCR and
another for speech-to-text) and 7 products provide alternative
models for the same function (e.g., P26 provides a choice
between two clustering models). Five products sequentially
compose models [97] (e.g., P12 passes text recognized by an
OCR model to an entity recognition model). Two products
use models for collective decision-making (e.g., P9 combines
multiple classifiers to generate personalized news feeds).

Finding 12: Pipeline automation is not common in open-
source ML products. Switching from a static mindset and
notebooks to pipeline automation is a commonly reported
challenge [1], [101]. Among the 17 products that use self-
trained models (Finding 7), training is often not automated. We
did not find any model training pipeline for four products (P2,
P18, P22, P30; we cannot tell if training happens offline or in a
private repository). Four products (P6, P10, P12, P16) require
manual execution of sequential training steps; two products
automate only data retrieval (P11, P24)3. Four products (P9,
P15, P27, P29) have GUI-integrated training pipelines that can
be separately activated via GUI actions. Only four products
(P14, P21, P23, P26) feature fully automated training pipelines
to consistently fetch the latest data and deploy updated models.

Finding 13: We do not find much effort on data or model
documentation. Both industry and academia view model and
data documentation as important for, among others, collabo-
ration, accountability, and reuse [102]-[105], but adoption in
industry is rare and perceived as challenging [48], [102]. In
our sample, the 17 products using self-trained models (Finding
7) provided minimal and mostly scattered documentation for
models and data, if any. Regarding model documentation, only
one product, P29, provides high-quality model documentation
(in the form of a model card [106]). Other products have at
most brief instructions for using the model API or descriptions
of the model architecture for the data scientists. Data docu-
mentation was mostly limited to presenting a data schema,
occasionally mentioning the volume of the training data, or
simply providing a link to their data sources. We found no
use of datasheets [107] or similar templates.

Finding 14: Most products do not use big data infrastruc-
ture (23/30). Scalability is reported as a common, important
architectural challenge for ML products, for handling large
datasets and distributing expensive training and inference
jobs, resulting in frequent reliance on big data infrastructure.
However, we did not find the use of local or self-hosted big
data infrastructure (such as Hadoop and Spark) in any of our
sample ML products. Seven products contain code related to
cloud services for storage, computing, monitoring, and search
(e.g., Amazon S3, EC2, CloudWatch, and Elastic Cloud).

Discussion (open source versus industry): Open-source ML
products share many of the development decisions and

3Numbers do not add up, as some products fall in multiple categories.

challenges discussed in industry studies. In line with the
industry trends, many open-source projects leverage third-
party models rather than building models from scratch, a
pragmatic choice given the cost, time, and skill requirements
involved in developing models with limited resources [89],
[108], [109]. We find models used for various tasks with vary-
ing levels of importance in a product, reflecting the diversity
of the ML products. Open-source ML products with models
as core more resemble startup-style projects, whereas attempts
to integrate models as enhancements to existing products are
found throughout the industry, including many established cor-
porations. While there are large variations within our dataset,
open-source ML products tend to lean toward the less complex
end of reported ML products in the industry, with simpler
architectures with few models, limited automation, and less
need for massive scale. The lack of pipeline thinking, overly
trusting model predictions, and poor documentation mirror
practices repeatedly criticized in industry projects [42], [69],
[102], and while the more experienced and well-resourced
companies work toward better practices [68], [86], [98], [106]
those challenges are still common in many newer and smaller
organizations.

Implication 3: Researchers should study patterns and
test interventions for different architectural choices. While
researchers and practitioners argue for the need to implement
safeguards [110], [111], prepare for the evolution of third-
party models [108], [112], design effective and safe human-
Al interaction models [113], and integrate multiple models
[3], [95], researchers rarely have access to enough products
to detect patterns and validate solutions on a range of sys-
tems. Even if some of the practices are rare in open source,
our dataset has many and diverse projects to study existing
patterns and to provide a testbed to evaluate the consequences
of different design interventions, such as design patterns to
isolate models or data-flow analyses to track whether and
how multiple models in a product interact. It also provides
opportunities for deeper investigation in certain aspects, such
as employing firehouse studies [114] to interview developers
when certain events occur. Additionally, it allows researchers
to conduct longitudinal studies to understand the evolution of
the team and the architecture over time. We have not seen any
prior longitudinal studies of projects in this field (common in
MSR-style research), likely due to a lack of access.

Implication 4: Educators should use open source to develop
teaching materials. In a field where access to concrete
implementations is scarce and educators often rely on demo
projects or second-hand reports, open-source ML products can
be a valuable educational resource to showcase system design
strategies and challenges, whether as illustrations in lectures
and blog posts, as foundations for homework assignments, or
as in-depth case studies as in the Architecture of Open Source
Application books [24], [115]. The dataset has sufficient
variety to cover simpler projects suitable for beginners, as
well as sophisticated products built by large teams to study
architectural design decisions.

Implication 5: Companies, foundations, and governments
should explore strategies to sustain model and big data in-
frastructure. Unlike revenue-generating commercial products,
most open-source ML products in our sample (27/30) did not
seek to monetize their products. The potential high recurring
cost for model APIs and cloud computing may prevent open-
source developers from scaling their products or from building
certain products in the first place. Some open-source products
may find a path to secure funding; for example, Seek by
iNaturalist P2 was supported by various nonprofit founda-
tions before establishing its own nonprofit with a seed grant.
While companies, foundations, and governments often support
open source (e.g., free hosting and CI on GitHub; Sovereign
Tech Fund, NSF POSE), sustained support for model APIs
and cloud computing is less common. Such support seems
essential to encourage open-source innovations as alternatives
to commercially dominated ML products.

RQ #3-6: Process, Testing, Operations, and Responsible Al

Due to the page limit, we only report brief findings from
the remaining four research questions, but refer the interested
reader to our appendix [65] for details on the methods,
findings, and discussions. The following findings 15-16 relate
to RQ #3, finding 17 to RQ #4, findings 18-20 to RQ #5, and
finding 21 to RQ #6.

Finding 15: Product-first development (16/30) is more com-
mon than model-first (7/30). Finding 16: When the model is
the core functionality, it is always developed first. In prior
work, we found that some projects start with models and later
build products around them
(model first) whereas others
adopt a product-first approach —
each creating distinct challenges
[1]. In our open-source sample,
we observe a greater prevalence
of the product-first trajectory,
which may be attributed to most
contributors being software engineers (Finding 2) and many
products adding machine learning for optional functionality
to existing products (Finding 7). Noticeably, products with
models as core are always developed model-first. For example,
deepfakes software P17, created the model first and added a
GUI a year later to make the model accessible to end users.

|Mode|—f|rst Core

P ~fi
roduct-first QpHonel

|Unsure Significantl

Finding 17: Testing regular software functionality is com-
mon (23/30), model testing is notably scarce (8/30), and
data validation is rare (2/30). Standard software testing
practices are widespread, but model evaluation is less prevalent
in our sample. Even among the eight products that included
model evaluation scripts, three (P3, P9, P29) approached
model testing like unit testing, asserting that predictions match
expected values. The rare cases (P6, P21) in which data vali-
dation is conducted involve only minimal checks for schema
and value ranges.

Finding 18: Only a few products (8/17) have mechanisms
for evolving models. Of the 17 products with self-trained

models, five products (P9, P16, P23, P27, P30) offer users
the option to retrain products at run time and three products
(P14, P21, P26) continually retrain their models by fetching
up-to-date data from their data sources. This aligns with our
recent finding that many product teams have a static view of
models [1].

Finding 19: Model monitoring is almost non-existent (1/30).
Despite the heavy emphasis on observability in industry and
academic literature for detecting failures and degradation [44],
[116], 29 out of the 30 products do not collect telemetry
and have no monitoring infrastructure. Only P21 incorporated
telemetry for financial forecasting. In addition, P9 uses Ama-
zon CloudWatch, but not for model monitoring.

Finding 20: MLOps tools are not used. We did not find
use of any popular MLOps tools for tasks such as automating
deployment, testing, monitoring, and data cataloging, in any
of the products. Given that many of these products do not
incorporate retraining mechanisms (Finding 18), they may
have less need for MLOps automation.

Finding 21: Responsible Al practices (e.g., fairness, safety,
security) are not apparent in open-source ML products.
Despite significant attention in academia, we do not find adop-
tion of any responsible Al practices in our sample. Only one
product, P17, discusses ethical usage in their README [29],
largely limited to disclaimers. Several products include privacy
policies and disclaimers unrelated to ML. One educational
product (P29) covers responsible Al practices as a subject.

Discussion (open source versus industry): In comparison
to industry, open source showcases similar and more
bad practices associated with both model and product
evaluation and maintenance. Similar to our observations on
architecture, open-source ML products exhibit many of the
characteristics criticized in past research, with low adoption of
tooling and interventions discussed by more experienced and
well-resourced organizations — we find the same low adoption
of model evaluation [117], data validation [118], monitoring
[42], [89], and responsible Al practices [1], [48], [70]. The
open-source ML products seem to reflect the practices of new
organizations and smaller teams more than those of big tech
organizations; they are likely reflective of the challenges that
new teams will experience, especially teams dominated by
software engineers.

Implication 6: Tool vendors have an opportunity to show-
case the benefits of automation tooling. Rather than relying
on testimonials and narrowly scoped tutorials, tool vendors
such as those of MLOps tools can demonstrate their tools in
forks of open-source ML products or can even work with open-
source developers to integrate them into their products. For
example, while researchers have found some public (mostly
very small) projects using the versioning tool DVC [119], none
of them were full ML products showcasing the integration
of model and product versioning. Similar to Implication 5,
tool vendors can provide resources to support open-source
communities.

Implication 7: Research should explore open-source
friendly monitoring approaches. Observability is a key focus
of the MLOps community; many researchers and practitioners
argue that the unreliable nature of ML and presence of data
drift makes monitoring and testing in production crucial to
responsible engineering [120], [121]. We conjecture that the
privacy-conscious open-source culture and a lack of central-
ized infrastructure contribute to the minimal adoption of mon-
itoring among open-source ML products. Researchers should
explore privacy-preserving and community-operated monitor-
ing solutions compatible with open-source values, ideally
through co-design processes with open-source practitioners.

VI. CONCLUSION

We offer a dataset of 262 open-source ML products to
facilitate research experiments that can benefit from access
to the development history and artifacts of ML products, and
report 21 findings and seven implications from six research
questions. The dataset is a valuable educational resource for
both academics and practitioners in ML product development,
offering diverse study materials with both large and small ML
products, and it also provides ample research opportunities as
described.

ACKNOWLEDGMENT

The authors would like to thank Bogdan Vasilescu, Rohan
Padhye, and Eunsuk Kang for helping with the framing, and
their continuous suggestions and feedback. The author would
also like to thank the industry practitioners who responded to
the queries about ML products on Quora, Reddit, LinkedIn,
Twitter, and Slack.

Késtner’s, Nahar’s, and Zhang’s work was supported in
part by the National Science Foundation (#2131477), Zhou’s
work was supported in part by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC, RGPIN2021-
03538), and Lewis’ work was funded and supported by the
Department of Defense under Contract No. FA8702-15-D-
0002 with Carnegie Mellon University for the operation of
the Software Engineering Institute, a federally funded research
and development center (DM24-1039).

REFERENCES

[1] N. Nabhar, S. Zhou, G. Lewis and C. Késtner, “Collaboration Challenges
in Building ML-Enabled Systems: Communication, Documentation,
Engineering, and Process,” in Proc. 44th Int’l Conf. on Software
Engineering, 2022, pp. 413-425.

[2] A. Arpteg, B. Brinne, L. Crnkovic-Friis and J. Bosch, “Software
Engineering Challenges of Deep Learning,” in Proc. 44th Euromicro
Conf. on SEAA, 2018, pp. 50-59.

[3] D. Sculley et al., “Hidden Technical Debt in Machine Learning
Systems,” Adv. in Neu. Info. Proc. Sys., vol. 28, pp. 2503-2511, 2015.

[4] E. d. S. Nascimento et al., “Understanding Development Process of
Machine Learning Systems: Challenges and Solutions,” in Proc. Int’l
Symposium on ESEM, 2019, pp. 1-6.

[5] G. A. Lewis, I. Ozkaya, and X. Xu, “Software Architecture Challenges
for ML Systems,” in Proc. ICSME, 2021, pp. 634-638.

[6] A. Vogelsang and M. Borg, “Requirements Engineering for Machine
Learning: Perspectives from Data Scientists,” in Proc. 27th Int’l Re-
quirements Engineering Conference Workshops, 2019, pp. 245-251.

(71

(8]

[91

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]
[21]
[22]

[23]

[24]
[25]

[26]

[27]

[28]

[29]
[30]

[31]

[32]

[33]

[34]

[35]

F. Ishikawa and N. Yoshioka, “How do engineers perceive difficulties
in engineering of machine-learning systems? - questionnaire survey,’
in Proc. Joint 7th CESI and 6th SER&IP, 2019, pp. 2-9.

L. E. Lwakatare et al., “A taxonomy of software engineering challenges
for machine learning systems: An empirical investigation,” in Proc.
Int’l Conf. on Agile Software Development, 2019, pp. 227-243.

Z. Wan, X. Xia, D. Lo and G.C. Murphy, “How does Machine Learning
Change Software Development Practices?,” IEEE Trans. Software Eng.,
pp. 1-1, 2019.

L. Bernardi, T. Mavridis, and P. Estevez, “150 Successful Machine
Learning Models: 6 Lessons Learned at Booking.com,” in Proc. 25th
Int’l Conf. on ACM SIGKDD, 2019, pp. 1743-1751.

J. Lin and A. Kolcz, “Large-scale machine learning at twitter,” in Proc.
ACM SIGMOD Int’l Conf. on Management of Data, 2012, pp. 793-804.
S. Passi and P. Sengers, “Making data science systems work,” Big Data
and Society, vol. 7, no. 2, p. 205395172093960, 2020.

S. Passi and S. J. Jackson, “Trust in Data Science: Collaboration,
Translation, and Accountability in Corporate Data Science Projects,”
Proc. of the ACM on HCI, vol. 2, no. CSCW, pp. 1-28, 2018.

M. S. Rahman et al., “Machine Learning Software Engineering in
Practice: An Industrial Case Study,” arXiv [cs.SE], 2019.

A. E. Hassan and T. Xie, “Software intelligence: the future of mining
software engineering data,” in Proc. FSE/SDP workshop on Future of
software engineering research, 2010, pp. 161-166.

A. E. Hassan, “The road ahead for Mining Software Repositories,” in
Frontiers of Software Maintenance, 2008, pp. 48-57.

B. Vasilescu et al., “Quality and productivity outcomes relating to
continuous integration in GitHub,” in Proc. 10th ACM Joint Meeting
on ESEC/FSE, 2015, pp. 805-816.

G. Gousios, M. Pinzger, and A. van Deursen, “An exploratory study of
the pull-based software development model,” in Proc. 36th Int’l Conf.
on Software Engineering, 2014, pp. 345-355.

C. L. Goues, M. Pradel, and A. Roychoudhury, “Automated program
repair,” Commun. ACM, vol. 62, no. 12, pp. 56-65, 2019.

A. B. Sdnchez et al., “Mutation testing in the wild: findings from
GitHub,” Empirical Software Engineering, vol. 27, no. 6, p. 132, 2022.
A. Marginean et al., “SapFix: Automated End-to-End Repair at Scale,”
in Proc. 41st ICSE-SEIP, 2019, pp. 269-278.

G. Petrovi¢ and M. Ivankovi¢, “State of mutation testing at google,”
in Proc. 40th ICSE-SEIP, 2018, pp. 163-171.

D. M. C. Nascimento, C. F. Chavez and R. A. Bittencourt, “The
Adoption of Open Source Projects in Engineering Education: A Real
Software Development Experience,” in Proc. Conf. Frontiers in Edu-
cation, 2018, pp. 1-9.

A. Brown and G. Wilson, The Architecture of Open Source Applica-
tions, vol. 1. Lulu.com, 2011.

E. Gamma and K. Beck, Contributing to Eclipse: Principles, Patterns,
and Plug-ins. Addison-Wesley Professional, 2004.

M. Dilhara, A. Ketkar, and D. Dig, “Understanding Software-2.0: A
Study of Machine Learning Library Usage and Evolution,” ACM Trans.
Softw. Eng. Methodol., vol. 30, no. 4, pp. 1-42, 2021.

J. F. Pimentel, L. Murta, V. Braganholo and J. Freire, “A large-scale
study about quality and reproducibility of jupyter notebooks,” in Proc.
16th Int’l Conf. on MSR, 2019.

F. Psallidas et al., “Data Science Through the Looking Glass: Analysis
of Millions of GitHub Notebooks and ML.NET Pipelines,” ACM
SIGMOD Rec., vol. 51, no. 2, pp. 30-37, 2022.

“Faceswap.” [Online]. Available: https:/faceswap.dev/

D. E. Rzig, F. Hassan, C. Bansal and N. Nagappan, “Characterizing
the usage of CI tools in ML projects,” in Proc. Int’l Symposium on
ESEM, 2022.

D. G. Widder, D. Nafus, L. Dabbish and J. Herbsleb, “Limits and
Possibilities for ‘Ethical AI’ in Open Source: A Study of Deepfakes,”
in Proc. Conf. on Fairness, Accountability, and Transparency, 2022,
pp. 2035-2046.

B. Zhang et al., “Architecture Decisions in Al-based Systems Develop-
ment: An Empirical Study,” in Proc. Int’l Conf. on Software Analysis,
Evolution and Reengineering, 2022, pp. 616-626.

T. D. Lai et al.,, “Comparative analysis of real bugs in open-source
Machine Learning projects,” arXiv [cs.SE], 2022.

D. OBrien et al., “23 shades of self-admitted technical debt: an
empirical study on machine learning software,” in Proc. 30th ACM
Joint European ESEC/FSE, 2022, pp. 734-746.

D. Gonzalez et al., “The State of the ML-universe: 10 Years of Artificial
Intelligence & Machine Learning Software Development on GitHub,”

[36]

[37]

[38]
[39]
[40]
[41]
[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]
[61]

[62]

[63]

in Proc. 17th Int’l Conf. on MSR, 2020, pp. 431-442.

H. Villamizar, M. Kalinowski and H. Lopes, “Towards Perspective-
Based Specification of Machine Learning-Enabled Systems,” in Proc.
48th Euromicro Conf. on SEAA, 2022, pp. 112-115.

J. Siebert et al., “Towards Guidelines for Assessing Qualities of
Machine Learning Systems,” in Proc. 13th Int’l Conf. Quality of
Information and Communications Technology, 2020, pp. 17-31.

D. Benyon, Designing Interactive Systems: A Comprehensive Guide to
HCI and Interaction Design. Addison Wesley, 2010.

J. Robert and A. Lesage, “The Handbook of Human-Machine In-
teraction : A Human-Centered Design Approach,” in Designing and
Evaluating User Experience, 2017, pp. 321-332.

K. Ulrich, Product Design and Development. McGraw-hill, 2016.
“What Is a Product in Product Management?” [Online]. Available: http
s://airfocus.com/glossary/what-is-a-product-in-product-management/
N. Nahar et al., “A Meta-Summary of Challenges in Building Products
with ML Components — Collecting Experiences from 4758+ Practi-
tioners,” in Proc. of 2nd Int’l CAIN, 2023.

A. Serban and and J. Visser, “Adapting Software Architectures to
Machine Learning Challenges,” in Proc. Int’l Conf. on SANER, 2022,
pp. 152-163.

S. Mikinen, H. Skogstrom, E. Laaksonen and T. Mikkonen, “Who
Needs MLOps: What Data Scientists Seek to Accomplish and How Can
MLOps Help?,” in Proc. Ist Workshop on Al Engineering - Software
Engineering for Al, 2021, pp. 109-112.

G. A. Lewis, S. Bellomo and I. Ozkaya, “Characterizing and Detecting
Mismatch in Machine-Learning-Enabled Systems,” in Proc. 1st WAIN,
2021, pp. 133-140.

S. Amershi et al., “Software Engineering for Machine Learning: A
Case Study,” in Proc. 41st ICSE-SEIP, 2019, pp. 291-300.

J. Siegmund, N. Siegmund, and S. Apel, “Views on Internal and
External Validity in Empirical Software Engineering,” in Proc. 37th
Int’l Conf. on Software Engineering, 2015, pp. 9-19.

A. Bhat et al., “Aspirations and Practice of ML Model Documentation:
Moving the Needle with Nudging and Traceability,” in Proc. of CHI
Conf. on Human Factors in Computing Systems, 2023, pp. 1-17.

L. Quaranta, F. Calefato, and F. Lanubile, “Eliciting Best Practices
for Collaboration with Computational Notebooks,” Proc. ACM Hum.-
Comput. Interact., vol. 6, no. CSCW1, pp. 1-41, 2022.

N. Polyzotis et al., “Data validation for machine learning,” in Proc.
Machine Learning and Systems, 2019, pp. 334-347.

N. Hynes, D. Sculley and M. Terry, “The data linter: Lightweight,
automated sanity checking for ml data sets,” NIPS MLSys Workshop,
vol. 1, no. 5, 2017.

A. Ratner et al., “Snorkel: Rapid Training Data Creation with Weak
Supervision,” Proc. VLDB Endow., vol. 11, no. 3, pp. 269-282, 2017.
C. Ré, F. Niu, P. Gudipati and C. Srisuwananukorn, “Overton: A data
system for monitoring and improving machine-learned products,” arXiv
[es.LG], 2019.

A. Head et al., “Managing messes in computational notebooks,” in
Proc. of CHI Conf. on Human Factors in Computing Systems, 2019.
S. Amershi et al., “ModelTracker: Redesigning Performance Analysis
Tools for Machine Learning,” in Proc. of 33rd Conf. on Human Factors
in Computing Systems, 2015, pp. 337-346.

R. K. E. Bellamy et al., “Al Fairness 360: An Extensible Toolkit for
Detecting, Understanding, and Mitigating Unwanted Algorithmic Bias,”
arXiv [cs.Al], 2018.

J. Wexler et al., “The What-If Tool: Interactive Probing of Machine
Learning Models,” IEEE Trans. Vis. Comput. Graph., vol. 26, no. 1,
pp. 56-65, 2020.

B. van Oort et al., “The Prevalence of Code Smells in Machine
Learning projects,” in Proc. 1st WAIN, 2021, pp. 1-8.

Y. Tang et al., “An Empirical Study of Refactorings and Technical
Debt in Machine Learning Systems,” in Proc. 43rd ICSE, 2021, pp.
238-250.

R. Widyasari et al., “NICHE: A Curated Dataset of Engineered
Machine Learning Projects in Python,” arXiv [cs.SE], 2023.

C. Wan et al., “Automated Testing of Software that Uses Machine
Learning APIs,” in Proc. 44th ICSE, 2022, pp. 212-224.

M. Nehra, “Top 10 Programming Languages for Desktop Apps in
2022 [Online]. Available: https://decipherzone.com/blog-detail/d
esktop-app-programming-languages

Amjo, “What language are most commonly used for web development.”
[Online]. Available: https://www.dotnetlanguages.net/web-languages-

https://faceswap.dev/
https://airfocus.com/glossary/what-is-a-product-in-product-management/
https://airfocus.com/glossary/what-is-a-product-in-product-management/
https://decipherzone.com/blog-detail/desktop-app-programming-languages
https://decipherzone.com/blog-detail/desktop-app-programming-languages
https://www.dotnetlanguages.net/web-languages-what-language-are-most-commonly-used-for-web-development/

[64]
[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]
[74]
[75]

[76]
[77]
[78]

[79]

[80]

[81]

[82]
[83]
[84]
[85]

[86]

[87]

[88]

[89]

[90]

[91]

what-language-are-most-commonly-used-for-web-development/
Jigsaw, “Perspective APIL: Using Machine Learning to Reduce Toxicity
Online.” [Online]. Available: https://www.perspectiveapi.com/

Nahar, N. 2024. Supplementary Documents: The Product Beyond the
Model. OSF. [Online]. Available: https://osf.io/gqyex/

D. Piorkowski et al., “How AI Developers Overcome Communication
Challenges in a Multidisciplinary Team: A Case Study,” Proc. of the
ACM on HCI, vol. 5, no. CSCW1, pp. 1-25, 2021.

F. Martinez-Plumed et al., “CRISP-DM twenty years later: From data
mining processes to data science trajectories,” [EEE Trans. Knowl.
Data Eng., pp. 1-1, 2020.

E. Breck et al., “The ML test score: A rubric for ML production
readiness and technical debt reduction,” in Proc. Int’l Conf. on Big
Data, 2017, pp. 1123-1132.

S. Shankar, R. Garcia, J. M. Hellerstein and A.G. Parameswaran, “Op-
erationalizing Machine Learning: An Interview Study,” arXiv [cs.SE],
2022.

B. Rakova, J. Yang, H. Cramer and R. Chowdhury, “Where Responsible
Al meets Reality: Practitioner Perspectives on Enablers for shifting
Organizational Practices,” Proc. of the ACM on HCI, vol. 5, no.
CSCWI, pp. 1-24, 2020.

S. Rismani and N. Rostamzadeh, “From plane crashes to algorithmic
harm: applicability of safety engineering frameworks for responsible
ML,” in Proc. CHI Conf. on Human Factors in Computing Systems,
2023, pp. 1-18.

K. Hammarberg, M. Kirkman, and S. de Lacey, “Qualitative research
methods: when to use them and how to judge them,” Hum. Reprod.,
vol. 31, no. 3, pp. 498-501, 2016.

C. Marshall and G. B. Rossman, Designing Qualitative Research.
SAGE Publications, 2014.

B. Flyvbjerg, “Five Misunderstandings About Case-Study Research,”
Qual. Ing., vol. 12, no. 2, pp. 219-245, 2006.

S. Harsh, “Purposeful Sampling in Qualitative Research Synthesis,”
Qualitative Research Journal, vol. 11, no. 2, pp. 63-75, 2011.

D. Spencer, Card Sorting: Designing Usable Categories. 2009.

E. Kalliamvakou et al., “The Code-Centric Collaboration Perspective:
Evidence from Github,” Tech. Report, Uni. of Victoria, p. 17, 2014.
G. Gousios et al., “Work Practices and Challenges in Pull-Based
Development: The Integrator’s Perspective,” in Proc. 37th Int’l Conf.
on Software Engineering, 2015, pp. 358-368.

B. Vasilescu et al., “Gender and Tenure Diversity in GitHub Teams,”
in Proc. 33rd Conf. on CHI, 2015, pp. 3789-3798.

K. Yamashita et al., “Revisiting the applicability of the pareto principle
to core development teams in open source software projects,” in Proc.
14th IWPSE, 2015, pp. 46-55.

M. Goeminne and T. Mens, “Evidence for the pareto principle in open
source software activity,” in Joint Proc. of the 1st Int’l Workshop on
MDSM and 5th Int’l Workshop on SOM, 2011, pp. 74-82.

T. Zimmermann, S. Diehl, and A. Zeller, “How history justifies system
architecture (or not),” in Proc. 6th Int’l WPSE, 2003, pp. 73-83.

H. Gall, K. Hajek and M. Jazayeri, “Detection of logical coupling based
on product release history,” in Proc. ICSM, 1998, pp. 190-198.

M. Ferreira et al., “Algorithms for estimating truck factors: a compar-
ative study,” Softw. Qual. J., vol. 27, no. 4, pp. 1583-1617, 2019.

G. Avelino et al., “A novel approach for estimating Truck Factors,” in
Proc. 24th Int’l Conf. on Program Comprehension, 2016, pp. 1-10.
A. Serban et al, “Adoption and Effects of Software Engineering Best
Practices in Machine Learning,” in Proc. 14th Int’l Symposium on
Empirical Software Engineering and Measurement, 2020, pp. 1-12.
M. L. Libes, “Here’s What The Average Tech Startup Looks Like.”
[Online]. Available: https://www.businessinsider.com/heres-what-the-
average-tech-startup-looks-like-2011-12

M. Kim et al., “Data Scientists in Software Teams: State of the Art
and Challenges,” IEEE Trans. Software Eng., vol. 44, no. 11, pp.
1024-1038, 2018.

A. Hopkins and S. Booth, “Machine Learning Practices Outside Big
Tech: How Resource Constraints Challenge Responsible Development,”
in Proc. AAAI/ACM Conf. on Al, Ethics, and Society, 2021, pp.
134-145.

H. Foidl, M. Felderer, and R. Ramler, “Data smells: categories,
causes and consequences, and detection of suspicious data in Al-based
systems,” in Proc. Ist Int’l CAIN, 2022, pp. 229-239.

C. Yang et al., “Data Leakage in Notebooks: Static Detection and Better
Processes,” in Proc. 37th Int’l Conf. on ASE, 2023, pp. 1-12.

[92]

[93]

[94]

[95]

[96]

[97]
[98]
[99]
[100]
[101]

[102]

[103]
[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]
[116]
[117]

[118]

[119]

[120]

[121]

Z. Buginca et al., “AHA!: Facilitating Al Impact Assessment by
Generating Examples of Harms,” arXiv [c¢s.HC], 2023.

T. Aho et al., “Demystifying Data Science Projects: A Look on the
People and Process of Data Science Today,” in Proc 21st Int’l Conf. on
Product-Focused Software Process Improvement, 2020, pp. 153-167.
B. Nushi et al., “On human intellect and machine failures: troubleshoot-
ing integrative machine learning systems,” in Proc. 31st AAAI Conf.
on Artificial Intelligence, 2017, pp. 1017-1025.

S. Apel, C. Kistner and E. Kang, “Feature Interactions on Steroids:
On the Composition of ML Models,” IEEE Softw., vol. 39, no. 3, pp.
120-124, 2022.

H. Yokoyama, “Machine Learning System Architectural Pattern for
Improving Operational Stability,” in Proc Int’l Conf. on Software
Architecture Companion, 2019, pp. 267-274.

C. Kistner, Machine Learning in Production: From Models to Products.
2022.

V. Lakshmanan, S. Robinson, and M. Munn, Machine Learning Design
Patterns. O’Reilly Media, Inc., 2020.

H. Washizaki et al., “Machine learning architecture and design pat-
terns,” IEEE Softw., vol. 8, 2020.

G. Hulten, Building Intelligent Systems: A Guide to Machine Learning
Engineering. Apress, 2018.

K. O’Leary and M. Uchida, “Common problems with creating machine
learning pipelines from existing code,” MLSys, 2020.

J. Chang and C. Custis, “Understanding Implementation Challenges
in Machine Learning Documentation,” in Proc. Equity and Access in
Algorithms, Mechanisms, and Optimization, 2022, pp. 1-8.

F. Konigstorfer and S. Thalmann, “Al Documentation: A path to
accountability,” Journal of Responsible Tech., vol. 11, p. 100043, 2022.
D. Piorkowski et al., “Towards evaluating and eliciting high-quality
documentation for intelligent systems,” arXiv [cs.SE], 2020.

M. Armold et al., “FactSheets: Increasing trust in Al services through
supplier’s declarations of conformity,” IBM J. Res. Dev., vol. 63, no.
4/5, pp. 6:1-6:13, 2019.

M. Mitchell et al., “Model Cards for Model Reporting,” in Proc. Conf.
on Fairness, Accountability, and Transparency, 2019, pp. 220-229.
K. L. Boyd, “Datasheets for Datasets help ML Engineers Notice and
Understand Ethical Issues in Training Data,” Proc. ACM Hum.-Comput.
Interact., vol. 5, no. CSCW2, pp. 1-27, 2021.

W. Ma, C. Yang and C. Kistner, “(Why) Is My Prompt Getting Worse?
Rethinking Regression Testing for Evolving LLM APIs,” arXiv [cs.SE],
2023.

L. Chen et al., “FrugalML: How to use ML prediction APIs more
accurately and cheaply,” Adv. Neural Inf. Process. Syst., 2020.

A. K. Paul and M. Schaefer, “Safeguards for the use of artificial
intelligence and machine learning in global health,” Bull. World Health
Organ., vol. 98, no. 4, pp. 282-284, 2020.

H. Abdelkader et al., “ML-On-Rails: Safeguarding Machine Learning
Models in Software Systems A Case Study,” arXiv [cs.SE], 2024.

A. Cummaudo et al., “Beware the evolving ‘intelligent’ web service! an
integration architecture tactic to guard Al-first components,” in Proc.
28th ACM Joint Meeting on ESEC/FSE, 2020, pp. 269-280.

M. Vossing et al., “Designing Transparency for Effective Human-Al
Collaboration,” Inf. Syst. Front., vol. 24, no. 3, pp. 877-895, 2022.
M. Barnett et al., “Helping Developers Help Themselves: Automatic
Decomposition of Code Review Changesets,” in Proc. 37th Int’l Conf.
on Software Engineering, 2015, pp. 134-144.

A. Brown and G. Wilson, The Architecture of Open Source Applica-
tions, Volume II. Lulu.com, 2012.

A. Bodor et al., “MLOps: Overview of Current State and Future
Directions,” in Proc. Int’l Conf. on SCA, 2022, pp. 156-165.

S. Li et al., “Testing machine learning systems in industry: an empirical
study,” in Proc. of 44th ICSE:SEIP, 2022, pp. 263-272.

N. Sambasivan et al., “‘Everyone wants to do the model work, not the
data work’: Data Cascades in High-Stakes Al,” in Proc. CHI Conf. on
Human Factors in Computing Systems, 2021.

A. Barrak, E. E. Eghan, and B. Adams, “On the Co-evolution of ML
Pipelines and Source Code - Empirical Study of DVC Projects,” in
Proc. Int’l Conf. on SANER, 2021, pp. 422-433.

R. Ashmore, R. Calinescu, and C. Paterson, “Assuring the Machine
Learning Lifecycle: Desiderata, Methods, and Challenges,” ACM Com-
put. Surv., vol. 54, no. 5, pp. 1-39, 2021.

D. Kang et al., “Model assertions for monitoring and improving ML
models,” MLSys, vol. abs/2003.01668, 2020.

https://www.dotnetlanguages.net/web-languages-what-language-are-most-commonly-used-for-web-development/
https://www.perspectiveapi.com/
https://osf.io/gqyex/
https://www.businessinsider.com/heres-what-the-average-tech-startup-looks-like-2011-12
https://www.businessinsider.com/heres-what-the-average-tech-startup-looks-like-2011-12

	Introduction
	Defining ML Products
	Existing Research and Limitations
	Contribution A: Curating the Dataset
	Search Space and Scope
	Search Pipeline
	Limitations and Threats to Validity
	The Open-Source ML Product Dataset

	Contribution B: Learning from the Dataset
	Research Method

	Conclusion
	References

