Aligning Documentation and Q&A Forum through
Constrained Decoding with Weak Supervision

Rohith Pudari
University of Toronto
r.pudari @mail.utoronto.ca

Zhuyun Dai
Google
zhuyundai @google.com

Abstract—Stack Overflow (SO) is a widely used question-and-
answer (Q&A) forum dedicated to software development. It
plays a supplementary role to official documentation (DOC for
short) by offering practical examples and resolving uncertainties.
However, the process of simultaneously consulting both the docu-
mentation and SO posts can be challenging and time-consuming
due to their disconnected nature. In this study, we propose DOSA,
a novel approach to automatically align SO and DOC, which
inject domain-specific knowledge about the DOC structure into
large language models (LLMs) through weak supervision and
constrained decoding, thereby enhancing knowledge retrieval and
streamlining task completion during the software development
procedure. Our preliminary experiments find that DOSA outper-
forms various widely-used baselines, showing the promise of using
generative retrieval models to perform low-resource software
engineering tasks.

Index Terms—Stack Overflow, Natural language processing,
Constrained Decoding, Weak Supervision

I. INTRODUCTION & BACKGROUND

Stack Overflow (SO) is a popular Q&A forum that has
garnered over 23M software engineering (SE) related ques-
tions posed by 18M users as of June 2023 [I1]. Earlier
research indicated that SO is confronted with the issue of
excessive information and lacks an effective way to manage
the contents [2], [3]. Therefore, solutions are proposed to
improve SO, such as recommending the appropriate tags for
each question [2], [4], [5], help individuals use SO more
effectively [6], [7], detect duplicate SO questions using titles
and descriptions [8], and link two related SO posts [9] for
better information dispersion.

Prior work also demonstrated that SO users sometimes
manually link official documentation (‘DOC’ for short) as
references during the discussion since DOC could provide
a complimentary role for SO by providing official explana-
tions [10] (see Fig. 1 as an example). According to our analysis
(explained later), 54 out of 200 sampled SO questions with the
tag ‘Python’, have at least one link to the DOC in their answers.
Nevertheless, the task of concurrently referring to both DOC
and SO posts can be difficult and time-consuming because
they are not seamlessly integrated [10], [11]. Therefore, in
this work, we aim for designing an approach to automatically
align DOC and SO questions.

Shiyuan Zhou
University of Toronto
shiyuan.zhou @mail.utoronto.ca

Iftekhar Ahmed
University of California, Irvine
iftekha@uci.edu

Shurui Zhou
University of Toronto
shurui.zhou @utoronto.ca

First of all, the .json attribute is a property that delegates to the request.get json(
method, which documents why you see None here.

616

You need to set the request content type to application/json for the .json property and
.get_json() method (with no arguments) to work as either will produce None otherwise. See
the Flask Request documentation:

V The parsed JSON data if mimetype indicates JSON (application/json, see
.is _json).

Fig. 1. An example from SO where official documents are linked to support
a better understanding of the context [12].

However, accomplishing this task poses a difficulty given
the scarcity of training data. As far as we know, there is cur-
rently no public dataset available that includes the alignment
between SO questions and the relevant sections in the DOC.
Creating a large-size custom dataset by using labor-intensive
manual labeling is not scalable, making it not feasible to
directly and efficiently employ conventional machine learning
(ML) models that are data-hungry.

Recent large language models (LLMs) have been proven to
be potentially applicable to this problem, which have under-
gone pre-training on vast text and code collections, demon-
strating impressive capabilities in zero-shot learning [13] and
few-shot learning [14]! scenarios across various Natural Lan-
guage Processing (NLP) assignments [15] such as generative
retrieval [16]. They have also shown promising performance
on a variety of SE tasks, such as generating code [17]
and test cases [18], and even answering SO questions [19].
Nevertheless, it remains an open research problem for using
LLMs to align SO and DOC. Importantly, as LLMs generate
free-form text, it is unclear how to use them to retrieve an
existing piece of official documentation for a question instead
of generating a new, hallucinated text [20].

The closest work to our idea is from Treude et al. [11],
which focuses on augmenting Java API DOC by extracting
manually annotated meaningful sentences from SO answers,
which is similar to our baseline approach Pyserini, which

1Zero-shot: The model can generalize and make predictions on classes it
has never seen during training; Few-shot: The model learns to extract relevant
features and the underlying patterns in the few available examples, enabling
it to make predictions on unseen classes.

performs poorly in our problem setting (as we will explain
later). Different from this work, we leverage generative re-
trieval models with domain-specific knowledge to solve the
problem.

Specifically, we propose DOSA (short for DOC & SO Align-
ment), a novel approach to turn LLMs into a domain-specific
retriever capable of determining the specific section within the
DOC to which a given SO question belongs. We first design
a weak supervision technique to adapt LLM to the specific
DOC. Then, we employ constrained decoding [21], [22] to cast
LLM’s generation into retrieval by constraining that the LLM
must generate an existing category from DOC followed by an
existing sub-category under that category. With this process,
we can generate predictions on the most relevant existing
section of DOC for the input SO question without hallucination.
To the best of our knowledge, we are the first to use generative
retrieval for aligning multi-modality SE resources.

We evaluated DOSA on two documentation sites, Python
and Flask, which are popular libraries used in web application
development. As the starting point, we focus on evaluating the
feasibility of the proposed method. The preliminary results
show that our approach exhibits significant improvements
over the state-of-the-art (SOTA) LLMs, such as GPT-2 [23]
and LLaMA-7B [24], with an average precision and recall
increase of (22%, 18%) and (43%, 49%) respectively.
Our ablations also find that DOSA can achieve reasonable
performance by just relying on pre-trained LLMs without any
additional training.

In sum, our contributions include (1) designing a novel
approach to augment LL.Ms with domain-specific knowledge
through weak supervision and constrained decoding for the
knowledge retrieval task of connecting SO questions with
corresponding DOC; (2) constructing two datasets, Python and
Flask, by aligning SO and DOC with human-annotated labels
for training and evaluation, to encourage future research. All of
the source code and the constructed datasets can be accessed at
https://doi.org/10.5281/zenodo.8036663.

II. OUR APPROACH — DOSA

In this section, we first explain the construction of the
training and evaluation dataset, then we justify the feasibility
of LLM for the defined task. Lastly, we describe the two main
components/steps of DOSA, including (1) weakly-supervised
LLM adaptation on DOC, and (2) using LLM to retrieve a
category of DOC for a given SO question via constrained
decoding. We present the overview of DOSA in Fig. 3.

A. Training and Evaluation Datasets

As a starting point, we chose two popular topics,
Python [25] and Flask [26], to study the feasibility of our
method. We organize the content and structures of official
documentation to facilitate model training. We also randomly
sampled a subset of SO questions and manually labeled them
as ground truth for evaluation purposes.

C] Labels

This part of the documentation covers all the interfaces of ¢t
Flask. For parts where Flask depends on external libraries,

<script> Source code example
const names = {{ names|tojson }};
renderChart(names, {{ axis_data|tojson }});
</script>

- : ct,
[flask.json.dump(obj, fp, stkwargs) [Function name | scy.4

| Serialize data as JSON and write to a file. |
Function description J

Fig. 2. Example from Flask documentation used for constructing training
data, which contains two labels — one category (C) and one sub-category
(SC). C1 is the heading of this section parsed from the HTML page, and
SCI-1 is the subheading. The texts under each heading are labeled by the
corresponding C&SC.

(Sec.1l.C) Weakly supervised : (Sec.ll.D) Aligning SO to DOC
LLM adaptation on DOC 1 with constrained decoding
1

Categ. Sub-Categ. slide-window - - - - - - - t--———-—- .

' H
i |
! 1
! 1
|

1 ! :
1 518&s28&s3 1 ,

'

. seit [{ 52853854 180 = '
' ss&ss&s7 | Question !
SC1 2 1
i —> 36&57&58 SN 1 iConstrained: 1 '
' offici 08s108s 1)l 11) , § Decoding :! Predefined 1

Official S ! !
. Dotl:.l -sc2-1 ﬁ] | i Training1 - h Category@:
! 1 i Dataset ;| tH . Label |
: TR B} |
' i Eval. : -p : ,
} [| i Dataset Aﬁ_o ! X
' so —an : ~8 ' o :
! i ! Trained !
| question Manual Labeling : : Model : :
|

Fig. 3. Research method overview. C — Category, SC — Sub-category, s —
sentence. Pyserini, GPT-2, and LLaMA are three baselines of our method.
The texts highlighted in red are our contribution.

1) Constructing training datasets from DOC: We parsed
the HTML page of the corresponding DOC [25], [26] using
a web scraper [27] and extracted section headings, function
descriptions, code snippets, and other textual content. The
heading of a section is regarded as the category for the text
contained in that section. Likewise, the sub-section heading is
seen as the sub-category for the corresponding content. For
example, the content presented in Fig. 2 is a screenshot from
the Flask documentation, which includes the API section and
JSON Support sub-section. In our study, we defined “API” as
the first-level category (C') and “JSON Support” as the sub-
category (SC).

Note that our current method design solely captures two
tiers of headings from the official documentation as a proof-
of-concept. Subsequent efforts could involve incorporating
additional levels of categories to attain more accurate labeling
outcomes. Similarly, we treat both code and text as natural
language and do not consider the syntactic meaning of source
code. We also treat the whole code block as one sentence
for ease of implementation at the current stage. Future work
could include analyzing the syntax and semantics of the source
code, allowing for a more comprehensive understanding of
source code functionality and intent. In total, the Python
dataset contains 35 categories and 1644 sub-categories; the

https://doi.org/10.5281/zenodo.8036663

Flask dataset contains 28 categories and 381 sub-categories.

2) Constructing evaluation datasets from SO questions:
This step aims at finding the mapping between the SO
questions and the corresponding categories (equivalent to
the headings in the DOC). We first utilized the SOTorrent
dataset [28] and the Stack Exchange Data Dump [1] to collect
all the questions with the tags ‘Python’ or ‘Flask’. In total,
we collected 1.8M questions with the tag ‘Python’ and 52K
with the tag ‘Flask’. According to prior work and also our
observations, we found that the tags of each SO question are
not unified and could be duplicated and messy [29], which is
not reliable to be used as the ground truth labels. Therefore, we
decided to manually construct our own ground truth dataset.

However, due to the substantial volume of data and heavy
workload of manual labeling, we utilized a sampling size
calculator with a confidence level and margin of error set at
85% and 5% respectively and randomly sampled 200 questions
from the SO dataset for each of the ‘Python’ and ‘Flask’
tags. Two of the authors independently labeled the sampled
questions based on their relevance to specific topics within
Python or Flask documentation. Each question was assigned
a single label that best represented its primary category and
sub-category of documentation. This labeling process involved
examining keywords within the questions, utilizing the docu-
mentation search feature, and manually cross-referencing with
the top search results to ensure alignment with the correspond-
ing documentation sections. After the initial labeling, the two
authors held an alignment session to compare and discuss
their labeled results. During this session, any discrepancies in
labeling were identified and discussed to reach a consensus on
the correct labels for each question. The Cohen’s Kappa [30]
score of 0.83 indicated a near-perfect level of agreement
between the two author’s labeling decisions.

B. The feasibility of leveraging the LLM

Formally, we define the task of assigning labels to a SO
question (denoted as) using the extracted categories and sub-
categories (denoted as C' and SC) from a provided SE official
documentation (denoted as DOC):

qg— {C,SC} € DOC (1)

Since there is currently no public dataset available that
includes the mapping between SO questions and the relevant
category in the DOC, it is infeasible to apply conventional
ML approaches that need lots of human-labeled training data.
Therefore, we propose a novel approach, DOSA, that leverages
LLMs (e.g., GPT-2 or LLaMA) to perform this task in a
zero-shot manner. Specifically, we speculate that the language
comprehension capabilities of LLMs (e.g., LLaMA [24] or
GPT-4 [15]) fine-tuned on DOC could establish the connection
between the inherent meaning and context of the SO question
and the content of the DOC eliminating the need for explicit
training data. For example, in Fig. 1, the word “property” in
the first sentence holds distinct meanings in everyday English
usage compared to its significance within a programming

context making LLMs a good choice to perform this task in
a zero-shot manner.

C. Weakly-supervised LLM adaptation on DOC

The majority of publicly available LLMs are pre-trained on
a general-domain corpus, so their knowledge of a specific SE
domain’s official documentation can be limited or outdated,
as it requires re-collecting and processing large amounts of
new data, which may not always be feasible or practical to do
frequently. The first step in DOSA injects knowledge about the
specific DOC into the LLM by training it with the contents
of DOC, which acts as a form of weak supervision. Weak
supervision in this context refers to the use of imprecise or
noisy information, such as the content of DOC, to guide the
alignment of SO questions to categories and sub-categories
extracted from DOC.

t— (Ct,SCt) (2)

where ¢ is a chunk of text from DOC, C; and SC; are its
corresponding category and sub-category.

We use a sliding-window approach to generate chunks of
text ¢ from the documentation DOC, meaning a fixed-size
window that is moved across the collected text, capturing
subsets of sequential words or phrases. This way, the model
can be fine-tuned to analyze multiple sentences together, thus
providing a broader context for learning to predict the chunk’s
category/sub-category. After conducting several pilot experi-
ments with different window sizes on the dataset, we found
that grouping three (3) consecutive sentences together from the
DOC yields the best performance. On the other hand, larger
window sizes may introduce noise or unnecessary complexity,
hindering the model’s ability to generalize effectively. This
window size serves as the “sweet spot” for capturing the
context within the text.

D. Constrained Decoding for Producing Targeted Output

One of the challenges of directly applying LLMs to the
problem that DOSA is focusing on is that a standard LLM
picks one token from the entire vocabulary as the next token
at each decoding step. But in our task, we expect the model’s
output space should follow the structure of DOC - only
consisting of existing categories and the corresponding sub-
categories defined in the DOC. Thus, we leverage constrained
decoding [21], [22] technique, which allows us to incorporate
domain terminology during the token generation process,
enabling the models to produce more targeted outputs.

Given the example showed in Fig. 1, a standard LLM (.e.,
GPT-2 model in this case) will generate an output sequence —
[post, postman, text, print, build, ...], which is sorted by the
order of probability. However, none of the first five tokens is a
category defined in the Flask DOC, which is not useful to fulfill
our task as it does not allow the ability to align it with DOC.
After adding the step of constrained decoding, for the same
example above, the top-5 produced tokens are transformed
into [JSON, API, application, handling, quickstart], with a
descending order of probability and are all within the set of

existing categories and sub-categories collected from the DOC.
This enables us to align these tokens to DOC as they follow
the same categorical structure as defined in the DOC.

This process continues till the final output sequence matches
one of the predefined category or sub-category labels. Take the
multi-token category of “JSON Support” (see SC1-1 in Fig. 2)
as an example, our approach produces the word “JSON” in the
first decoding step and then generates “support” in the next
decoding step, and eventually stops by finding “JSON support”
matches a sub-category label from the Flask documentation.

Note that constrained decoding only operates during the
generation process at fest time; it does not change the LLM’s
parameters and the knowledge encoded in those parameters
(“parametric knowledge™) [21], [22]. Hence, as we will show
in the experiments, its effectiveness heavily relies on how
much the LLM already knows about the domain.

E. Implementation

Since DOSA is designed to be built on top of the SOTA
LLMs, we select two LLMs for a feasibility study: GPT-2 [23]
and LLaMA [24] (as shown in Fig. 3).

e GPT-2 is pre-trained on text written in English using a
causal language modeling objective and has been used in
tasks like text generation and summarization. It is suitable
for our task because it could understand the context and
detect the complex patterns in the DOC. Note that we
could not use the newer versions of this model like GPT-
4 because they are closed-source, but we need to make
changes to the model architecture, such as implementing
constrained decoding and adding a classification head,
to suit our task as a classification problem. We used the
default medium-size variation [31], which has 355 million
parameters, denoted as DOSA(GPT-2).

e LLaMA is an auto-regressive language model, whose
training dataset consisted of stack exchange data among
other sources. LLaMA is one of the recent models
(launched in Feb 2023) and has been proven to outper-
form GPT-3 [24] in most benchmarks [24]. This was
the largest open-source model available while testing.
We used the default 7 billion parameter variation from
HuggingFace [32], denoted as DOSA(LLaMA-7B).

III. EVALUATION AND DISCUSSION

Since DOSA uses LLM as a knowledge retriever, it is impor-
tant to compare it against conventional retrieval systems. Thus,
we include a SOTA retrieval-based baseline, Pyserini [33],
which is a widely-used reproducible Information Retrieval (IR)
toolkit in the field of NLP for indexing a collection of docu-
ments and querying the index to retrieve relevant documents.
Pyserini supports efficient indexing and retrieval of large-scale
collections, making it applicable for a wide array of applica-
tions, including IR research, question-answering systems, and
document ranking. It provides a Pythonic API for indexing and
searching large document collections using various retrieval
models. We used the BM25 retrieval model [34], a popular

TABLE I
PRECISION (P) AND RECALL (R) SCORES OF DIFFERENT MODELS. -
WEAK SUPERVISION, [CD] — CONSTRAINED DECODING. +
DENOTES THAT THE MODEL WAS IMPLEMENTED WITH LLAMA-7B AND
ONLY HAS weak supervision BUT NOT constrained decoding.

Topic Flask Python

Mode! Cat. Sub-Cat. _ Cat. Sub-Cat.
Pyserini P: 026 P:0.03 P:0.17 P:008
y R:0.19 R:0.10 R:0.13 R:0.06
P: 098 P: 099 P:093 P:033

DOSA@GPT2) R: 099 R:1.0 R: 094 R:041
P: 093 P:097 P:094 P:0.62

DOSALaMA-TB) pihgs R.091 R:096 R: 0.57
P: 061 P:0.66 P:052 P:0.19

+ R: 0.60 R:0.61 R: 0.55 R:0.20
P: 048 P:032 P:069 P:0.19

+ R: 0.51 R:0.39 R: 0.61 R:0.11
P: 030 P:0.14 P:0.11 P:0.09

+ R: 022 R:0.15 R:0.08 R:0.08
- P: 080 P:0.76 P:0.81 P: 041

+ R: 081 R:0.78 R: 0.82 R: 040
P: 0.87 P: 0.82 P: 0.80 P: 0.44
+ R:0.88 R:0.84 R:083 R:0.51

ranking function with a strong performance on zero-shot re-
trieval tasks [35]. It assigns a relevance score to each document
in a collection based on the query terms and their frequencies
within the document. The BM25 algorithm is widely used in
search engines and other text retrieval applications. As shown
in Fig. 3, Pyserini does not require training, and we follow the
default hyperparameters for inference. This is an appropriate
baseline for our task since it can index DOC pages and retrieve
pertinent categories and sub-categories of DOC by matching
common keywords found in SO questions.

In this section, we compare the performance of DOSA
with baselines and also dive deeper into understanding DOSA
through ablation studies to evaluate the importance of (1) Weak
supervision, (2) constrained decoding, and (3) the benefit of
model scaling. We report all the experiment results in Tab. L.

A. Conventional IR vs. LLMs

Our results show that LLMs are better suited for our task
compared to the conventional IR approach (i.e., Pyserini), as
LLMs excel at tasks requiring natural language understanding,
inference, and even generating human-like responses [23],
[24]. Pyserini, on the other hand, is primarily designed for IR
and indexing tasks, which rely on traditional techniques such
as bag-of-words, which may struggle to capture the nuanced
and contextual nature of SO questions and DOC. These findings
underscore the suitability of LLMs for our specific task.

B. How important is constrained decoding?

The results show that including both weak supervision and
constrained decoding (i.e., DOSAGPT-2) and DOSA(LLaMA-7B))
exhibits significant improvements over the versions without
constrained decoding (i.e., +(wx] and (Lrava-78]+ (wk]),
with an average precision and recall increase of (22%, 18%)
and (43%, 49%) respectively.

A potential explanation is that LLMs heavily rely on pre-
training and fine-tuning on large corpora [24]. This makes

TABLE II
HALLUCINATION RATES WHEN MODEL ONLY HAS WEAK SUPERVISION.
Topic Flask Python
Mode! Category Sub-Cat. Category Sub-Cat.
GPT-2 | + 5% 11% 6% 9%
+ 17% 25% 20% 28%

them susceptible to biases and noise present in the training
data. Without specifying the scope of the output labels, the
fine-tuned models may generate plausible labels but not in
direct alignment with DOC.

Constrained decoding helps address this issue by incorpo-
rating specific constraints (i.e., only output labels within the
defined scope) during the decoding process. It also reduces
hallucinations by guiding the model to generate labels that are
from the list of categories and sub-categories from DOC. In
our experiments, the introduction of constrained decoding led
to a notable reduction in hallucination rates. Specifically, the
hallucination rate diminished by approximately 8% for GPT-2
and 22% for LLAMA (see Tab. II). This reduction highlights
the effectiveness of constrained decoding in enhancing the
alignment accuracy of LLMs in the context of our task. The
effectiveness relies on the model’s capacity to handle and
respect these constraints. Larger models like LLaMA have
higher parameter counts and more expressive power, allowing
them to better accommodate and leverage these constraints,
resulting in more precise alignments and bigger performance
gains than the fine-tuned-only version.

C. Is the weakly-supervised adaptation necessary?

The weakly-supervised adaptation step aims to inject knowl-
edge about DOC to the LLM, but it can be expensive as
it requires training the LLM. Since LLaMA is trained on
vast amounts of publicly available text corpora [24], it might
have already seen and memorized the documentation sites
during pre-training and, therefore might not need the weak
supervision.

To understand the importance, we remove the weak super-
vision component from our method (a.k.a zero-shot) and only
keep the constrained decoding component, denoted as +
and (11ara-78)+ (cp]. The results show that the introduction
of weak supervision has yielded an approximate enhancement
of 10% at the category level and 20% at the sub-category level
for both Python and Flask. This improvement, however, comes
with a trade-off between convenience and accuracy. The zero-
shot approach, which does not require explicit training, offers
convenience but may result in less precise alignments. On
the other hand, models fine-tuned with weak supervision tend
to achieve higher accuracy at the cost of additional training
efforts.

With constrained decoding only, + is capable
of aligning SO questions to relevant pieces of documentation
with an average precision and recall of (0.69, 0.70), however,
+ could only achieve an average precision and
recall of (0.16, 0.13). This indicates that LLaMA’s pre-training
phase has already provided a good amount of programming-

related knowledge as compared to GPT-2. Performance of
(Lava-78)+(cp] is a significant advantage as it allows users to
immediately benefit from our approach without the time and
resources required for training their own models. It also sheds
light on next-generation knowledge retrievers for SE tasks, as
one can easily achieve a retriever with reasonable performance
by converting an LLLM using constrained generation, without
any LLM weak supervision.

D. Can DOSA benefit from model scaling?

We further investigate the effects of scaling in terms of
the size of the model, to find if larger language models
always yield better performance for our task. To this end, we
scale the model size by performing experiments on LLaMA

from 7 billion (denoted as +(cp)) to 13 billion
(denoted as +(co)). Our results demonstrate that

larger language models perform better, particularly when com-
bined with our zero-shot constrained decoding approach. The
superiority of larger models becomes especially evident when
no task-specific fine-tuning is applied, showcasing the power
of their pre-trained knowledge and capacity for generalization.
The observed scaling effects indicate that advances made
in LLM pre-training directly correspond to enhancements in
DOSA’s performance. As researchers continue to develop more
advanced and larger LLMs, the quality of DOSA is expected
to consistently improve.

IV. LIMITATIONS AND FUTURE WORK

While our approach, DOSA, has showcased promising out-
comes in aligning SO questions with relevant categories and
sub-categories in DOC, there exist certain limitations that
require further attention. Primarily, the current testing of our
approach has been confined to only two specific topics. For
its application to diverse programming contexts, additional
training data and potential adjustments to the classification
model might be necessary. Another limitation arises from
the manual labeling process involved in constructing the
evaluation dataset. Although undertaken meticulously, the hu-
man judgment factor could introduce inconsistencies. Despite
achieving a high Cohen’s Kappa score, the inherent subjectiv-
ity of labeling might introduce a degree of error or discordance
in the ground truth labels.

Despite many advancements in newer iterations of LLMs,
these models still encounter difficulties in direct retrieval
tasks [15], [24]. As a result, our approach offers a practical
solution to the persisting problem of aligning SO to DOC,
providing a crucial bridging mechanism between advanced
LLMs and the realm of precise information retrieval. We
established a foundation for aligning various documentation
resources within the same domain. Future work can capitalize
on these findings to not only amplify the generalizability,
performance, and utility of the proposed approach but also
to extend its application to broader domains beyond program-
ming. Exploring innovative methods for categorizing diverse
types of technical documents is also a promising avenue for
future exploration.

V. CONCLUSION

In this paper, we present an effective approach, DOSA,
for aligning SO questions to the relevant sections of DOC.
By combining constrained decoding and weak supervision,
along with leveraging LLMs, we achieved significant improve-
ments in alignment performance compared to other baseline
techniques. Our results highlight the importance of incorpo-
rating domain-specific knowledge, utilizing constraints, and
leveraging additional sources of weak supervision to enhance
alignment performance. Furthermore, we demonstrated that
LLMs, with their broader knowledge base and capacity for
generalization, outperformed smaller models, especially in
the zero-shot setting. Although generative retrieval has been
explored in other NLP tasks such as entity retrieval, to the
best of our knowledge, this result is the first to use generative
retrieval on SE tasks. Overall, this research lays a foundation
for aligning multiple resources of documentation on the same
topic.

[1]
[2]

[3]

[4]

[5]

[7]

[8]

[9]

[10]

[11]

(12]

REFERENCES

“Stack exchange data dump: Stack exchange, inc.” [Online]. Available:
https://archive.org/details/stackexchange

T. Saini and S. Tripathi, “Predicting tags for stack overflow questions
using different classifiers,” in 2018 4th International Conference on
Recent Advances in Information Technology (RAIT). 1EEE, 2018, pp.
1-5.

R. Rubei, C. Di Sipio, P. T. Nguyen, J. Di Rocco, and D. Di
Ruscio, “Postfinder: Mining stack overflow posts to support software
developers,” Information and Software Technology, vol. 127, p. 106367,
2020. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0950584920301361

S. K. Maity, A. Panigrahi, S. Ghosh, A. Banerjee, P. Goyal, and
A. Mukherjee, “DeepTagRec: A content-cum-user based tag recom-
mendation framework for stack overflow,” in European conference on
information retrieval (ECIR), pp. 125-131.

J. He, B. Xu, Z. Yang, D. Han, C. Yang, and D. Lo, “PTM4tag,” in
Proceedings of the 30th IEEE/ACM international conference on program
comprehension (ICPC). ACM.

S. Beyer and M. Pinzger, “A manual categorization of android app
development issues on stack overflow,” in 2014 IEEE international
conference on software maintenance and evolution (ICSME), pp. 531-
535.

C. Treude, O. Barzilay, and M.-A. Storey, “How do programmers ask and
answer questions on the web?: NIER track,” in 20711 33rd international
conference on software engineering (ICSE), pp. 804-807.

R. F. G. Silva, K. Paixao, and M. de Almeida Maia, “Duplicate question
detection in stack overflow: A reproducibility study,” in 20/8 IEEE
25th International Conference on Software Analysis, Evolution and
Reengineering (SANER). 1EEE.

B. Xu, D. Ye, Z. Xing, X. Xia, G. Chen, and S. Li, “Predicting seman-
tically linkable knowledge in developer online forums via convolutional
neural network,” in 2016 31st IEEE/ACM international conference on
automated software engineering (ASE), pp. 51-62.

S. Baltes, C. Treude, and M. P. Robillard, “Contextual documentation
referencing on stack overflow,” vol. 48, no. 1, pp. 135-149, publisher:
Institute of Electrical and Electronics Engineers (IEEE).

C. Treude and M. P. Robillard, “Augmenting API documentation with
insights from stack overflow,” in 2016 IEEE/ACM 38th International
Conference on Software Engineering (ICSE), pp. 392-403, ISSN: 1558-
1225.

How to get POSTed JSON in flask? [Online]. Available: https:
/Istackoverflow.com/q/20001229/13285998

[13]

[14]
[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]
(27]

[28]

[29]

(30]
[31]
[32]

[33]

[34]

[35]

M. Palatucci, D. Pomerleau, G. Hinton, and T. M. Mitchell, ‘“Zero-
shot learning with semantic output codes,” in Proceedings of the 22nd
International Conference on Neural Information Processing Systems, ser.
NIPS’09. Curran Associates Inc., pp. 1410-1418.

Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni, “Generalizing from a few
examples: A survey on few-shot learning,” vol. 53, no. 3, pp. 63:1-63:34.
OpenAl, “GPT-4 technical report.” [Online]. Available: http://arxiv.org/
abs/2303.08774

N. D. Cao, G. Izacard, S. Riedel, and F. Petroni, “Autoregressive entity
retrieval,” in International Conference on Learning Representations
(ICLR) 2020.

A. Karmakar and R. Robbes, “What do pre-trained code models know
about code?” in IEEE/ACM international conference on automated
software engineering (ASE), pp. 1332-1336.

M. Schifer, S. Nadi, A. Eghbali, and F. Tip, “Adaptive test generation
using a large language model,” tex.copyright: arXiv.org perpetual, non-
exclusive license. [Online]. Available: https://arxiv.org/abs/2302.06527
S. Kabir, D. N. Udo-Imeh, B. Kou, and T. Zhang, “Who answers it
better? an in-depth analysis of ChatGPT and stack overflow answers
to software engineering questions,” version: 3. [Online]. Available:
http://arxiv.org/abs/2308.02312

Z. Ji, N. Lee, R. Frieske, T. Yu, D. Su, Y. Xu, E. Ishii, Y. J. Bang,
A. Madotto, and P. Fung, “Survey of hallucination in natural language
generation,” vol. 55, no. 12, pp. 1-38.

C. Hokamp and Q. Liu, “Lexically constrained decoding for sequence
generation using grid beam search,” in Proceedings of the 55th annual
meeting of the association for computational linguistics (ACL) (volume
1: Long papers). Association for Computational Linguistics.

P. Anderson, B. Fernando, M. Johnson, and S. Gould, “Guided open
vocabulary image captioning with constrained beam search,” in Proceed-
ings of the 2017 conference on empirical methods in natural language
processing (EMNLP). Association for Computational Linguistics.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners.”

H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix, B. Roziére, N. Goyal, E. Hambro, F. Azhar, A. Rodriguez,
A. Joulin, E. Grave, and G. Lample, “LLaMA: Open and efficient
foundation language models,” tex.copyright: Creative Commons
Attribution 4.0 International. [Online]. Available: https://arxiv.org/abs/
2302.13971

The python standard library. python documentation. [Online]. Available:
https://docs.python.org/3/library/index.html

Welcome to flask — flask documentation (2.3.x). [Online]. Available:
https://flask.palletsprojects.com/en/2.3.x/

Beautiful soup. [Online]. Available: https://www.crummy.com/software/
BeautifulSoup/

S. Baltes, L. Dumani, C. Treude, and S. Diehl, “SOTorrent: Recon-
structing and analyzing the evolution of stack overflow posts,” in
2018 IEEE/ACM 15th international conference on mining software
repositories (MSR). IEEE Computer Society, pp. 319-330.

J. Liu, H. Zhang, X. Xia, D. Lo, Y. Zou, A. E. Hassan, and S. Li,
“An exploratory study on the repeatedly shared external links on stack
overflow,” Empirical Software Engineering, vol. 27, no. 1, Nov. 2021.
J. R. Landis and G. G. Koch, “The measurement of observer agreement
for categorical data,” vol. 33, no. 1, p. 159, publisher: JSTOR.
gpt2-medium - hugging face. [Online]. Available: https://huggingface.
co/gpt2-medium

decapoda-research/llama-7b-hf - hugging face. [Online]. Available:
https://huggingface.co/decapoda-research/llama-7b-hf

J. Lin, X. Ma, S.-C. Lin, J.-H. Yang, R. Pradeep, and R. Nogueira,
“Pyserini: A python toolkit for reproducible information retrieval re-
search with sparse and dense representations,” in Proceedings of the
44th annual international ACM SIGIR conference on research and
development in information retrieval (SIGIR 2021), pp. 2356-2362.

D. Harman, “NIST special publication 500-236: The fourth text retrieval
conference (TREC-4).”

N. Thakur, N. Reimers, A. Riicklé, A. Srivastava, and 1. Gurevych,
“BEIR: A heterogeneous benchmark for zero-shot evaluation of informa-
tion retrieval models,” in Proceedings of the 35th conference on neural
information processing systems datasets and benchmarks track (round
2).

https://archive.org/details/stackexchange
http://www.sciencedirect.com/science/article/pii/S0950584920301361
http://www.sciencedirect.com/science/article/pii/S0950584920301361
https://stackoverflow.com/q/20001229/13285998
https://stackoverflow.com/q/20001229/13285998
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2302.06527
http://arxiv.org/abs/2308.02312
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://docs.python.org/3/library/index.html
https://flask.palletsprojects.com/en/2.3.x/
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://huggingface.co/gpt2-medium
https://huggingface.co/gpt2-medium
https://huggingface.co/decapoda-research/llama-7b-hf

	Introduction & Background
	Our approach – DOSA
	Training and Evaluation Datasets
	Constructing training datasets from DOC
	Constructing evaluation datasets from SO questions

	The feasibility of leveraging the LLM
	Weakly-supervised LLM adaptation on DOC
	Constrained Decoding for Producing Targeted Output
	Implementation

	Evaluation and Discussion
	Conventional IR vs. LLMs
	How important is constrained decoding?
	Is the weakly-supervised adaptation necessary?
	Can DOSA benefit from model scaling?

	Limitations and Future work
	Conclusion
	References

