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Abstract—Computational notebooks are widely adopted by
data scientists for experimenting with machine learning (ML)
models. Despite the support for exploratory programming en-
abled by notebooks, they fall short in the ability to manage
alternatives across different stages of the ML pipeline. In this
study, we conduct a qualitative analysis to examine how data
scientists explore various alternatives through a series of versions
of notebooks on Kaggle. The findings indicate that data scientists
investigate multiple alternatives at each stage across multiple ver-
sions, yet only a limited number of combinations from different
stages are explored. Next, by combining alternatives from all
stages to form previously unexplored paths, we discover that
certain untested combinations of alternatives can outperform the
best models as identified in the original notebooks. Moreover, by
substituting the hyperparameter optimization and model configu-
ration stages with AutoML methods, we observe that only a select
number of ML pipelines experience improvement via AutoML,
which implies the limitation of the current AutoML techniques.
In summary, our study provides insights into the systematic and
effective exploration of overlooked ML pipeline configuration
combinations that yield superior results. The findings shed light
on future research directions such as the development of tooling
support of alternative management while striking a balance
between manual exploration and automated optimization.

Index Terms—Alternatives, computational notebooks, ex-
ploratory programming, code history, machine learning pipeline,
version control, AutoML

I. INTRODUCTION

Data scientists conduct exploratory programming in com-
putational notebooks to derive insights from a large amount
of data by building high-performance machine learning (ML)
models [1], [2], [3], [4]. One critical aspect of exploratory pro-
gramming is the need to compare and try various alternatives at
different ML stages (e.g., data preparation, feature engineer-
ing, model configuration, and hyperparameter optimization)
to finalize the best-performed model for their task [5], [6].
While the design of notebooks makes it easy for exploratory
programming, they do not provide sufficient support for
the comparison and management of alternatives in different
stages [7], [8]. Data scientists frequently employ a “quick and
dirty” method, which involves duplicating existing code into
different cells within the same notebook and adjusting it as
necessary, marking decision points with headings [9], [2]. This
allows them to execute the alternative versions simultaneously
and compare the results later [10], [7]. However, this practice
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Fig. 1. Research overview. We extracted alternatives for each ML
stage and manually combined the unexplored alternatives to form
new ML pipelines.

often leads to messy notebooks that are hard to reproduce [11],
[10], [2].

To address these issues, researchers have developed various
tools, including integrating a forking/branching mechanism
into the notebook, which supports searching in edit histories to
compare current and past results [3] and a side-by-side layout
of alternatives for parallelism [7]. Similarly, prior studies
designed methods to track the provenance of cells, enabling
the comparison of successive cell versions [12], visualize and
summarize the difference between versions of cells to help
data scientists maintain an overview of the evolution of the
explored ML pipeline [8], [13], [14]. While previous research
focused on comparing alternatives for each cell, there is still a
need to manually merge alternatives from various ML stages
into a new pipeline, and then execute, document, and compare
the outcomes. It remains unclear how analysts explore the
combination of alternatives across different ML stages, if
these alternatives are comprehensively analyzed during the
ML lifecycle, and how to further support the exploration after
extracting the diffs between versions of notebooks.

In this study, we conduct an exploratory study to gain
insights into the existing practices of exploring alternatives
and identify opportunities for enhancing exploratory program-
ming using notebooks. We accomplish this by examining 52
notebooks with a total of 930 versions of ML pipelines and
23385 lines of code from the Kaggle platform [15], focusing
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on two main sets of questions: (1) understanding the current
practices of exploring alternatives in notebooks (RQ1&2); (2)
assessing the potential of unexplored alternative combinations
(RQ3-5).
RQ1: What alternatives are data scientists exploring in
each part of the ML pipeline?

Motivation: To initially understand the alternatives that were
manually explored through different versions, we start by
qualitatively examining the code changes between consecutive
versions and identify the alternatives of each ML stage.

Results: The range of alternatives explored in different
iterations can be classified into four main categories: data
preparation, feature engineering, model configuration, and
hyperparameter optimization. There is significant variation in
the number of alternatives investigated within each notebook.
RQ2: How do data scientists explore alternatives in com-
putational notebooks?

Motivation: To understand how alternatives are explored in
notebooks through multiple versions and the way alternatives
from each ML stage are combined to develop diverse ML
pipelines, we document and identify the patterns of explo-
ration.

Results: Data scientists explore alternatives in an iterative
fashion including these steps: (1) constructing an ML pipeline
and obtaining prediction results; (2) exploring model-related
alternatives, namely hyperparameter optimization and model
configuration; (3) exploring data-associated alternatives, in-
cluding feature engineering and data preparation stage. Data
scientists occasionally merge different alternatives to create a
new ML pipeline, yet the median of our selected notebooks
only represents 1.8% of all possible combinations. This situa-
tion drives our interest in delving deeper into the potential of
unexplored combinations.
RQ3: Will an unexplored combination of alternatives
outperform the original notebook? if yes, to what extent?

Motivation: Considering the significant number of alterna-
tive combinations that remain untested, we aim to investigate
the possibilities of these unexplored ML pipelines. Therefore,
we manually constructed new ML pipelines to compare their
outcome with that of the originally best-performing model.

Results: Our study shows that for most notebooks (16/20),
there exists an unexplored pipeline that can lead to better
performance. In situations where the author has already ex-
plored every possible pipeline or there are too many possible
pipelines to exhaustively search, we are not able to observe
any performance improvement.
RQ4: Will incorporating AutoML toolkits into the ML
pipeline surpass the results of a manually assembled ML
pipeline? If yes, to what extent?

Motivation: Since AutoML toolkits are invented to facilitate
effective exploration of alternatives, mainly in the model
configuration and hyperparameter optimization stages, we
substitute the alternatives manually explored with AutoML
toolkits to evaluate the performance, as depicted in Figure 1.

Results: Incorporating AutoML tools does not lead to obvi-
ous improvement in terms of performance, with only 3 out of

20 notebooks showing enhanced performance, while 13 out
of 20 notebooks experience a performance decrease and 4
notebooks with performance unchanged. Overall, we found
that incorporating AutoML leads to a slight decrease (5.66%)
in performance.
RQ5: Will a combination of alternatives from different
data scientists outperform the original notebook result? If
yes, to what extent?

Motivation: We take the initiative one step further by inves-
tigating how leveraging crowdsourced alternatives explored by
various data scientists could result in better outcomes.

Results: Combining alternatives from different scientists
does not seem to have a positive impact on performance
overall, with 3 out of 10 notebooks showing performance
improvement and 7 out of 10 notebooks showing either
performance decrease or operational errors.

Our study shows the limitation of both integrating AutoML
and foreign alternatives from other pipelines, specifically, the
lack of domain knowledge of data and features, as well as the
lack of compatibility and coherence across implementations
of different data scientists. Our research indicates the potential
and the need to support effectively and automatically exploring
the combinations of alternatives during the ML lifecycle. The
result augments past studies by offering a more in-depth look
into the exploratory programming process.

In summary, this paper makes three major contributions: (1)
An empirical study on how data scientists explore alternatives
manually; (2) A replication package and dataset of explored
alternatives for future automation research; and (3) Sugges-
tions for future research directions and tooling support. The
replication package is available at [16].

However, caution should be raised when generalizing the
study’s conclusions to broader contents. The dataset utilized
in this study consists of ML pipelines sourced exclusively from
Kaggle, and only high-quality notebooks were selected for
our analysis purpose. Potential biases could exist since Kaggle
datasets might not represent the full diversity of ML practices
and pipelines used in various industries and research settings.
Additionally, our AutoML experimentation is confined to four
widely-used AutoML tools, which may not be representative
of other toolkits.

II. BACKGROUND

A. Exploring alternatives in the ML pipeline.

The ML pipeline refers to a systematic sequence of steps or
processes designed to automate and streamline the workflow
of developing, deploying, and maintaining machine learning
models. The process usually encompasses several key stages,
such as data preparation, feature engineering, model config-
uration, and hyperparameter optimization [17]. There is no
unified definition of how many stages are included in an ML
pipeline, and it’s widely recognized that these workflows are
non-linear and include multiple feedback loops [18].

Data scientists frequently experiment with various alter-
natives for certain stages by testing numerous models and
parameters to determine the best fit [7]. Liu et al. conducted
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interview studies to understand when, what, and how data
scientists explore alternatives across various scenarios, in-
cluding visual designs, datasets, hypotheses, and ML aspects.
They identified both triggers (e.g., hitting a dead-end or a
cognitive leap) and barriers (e.g., data scarcity or lack of
expertise) to exploring alternatives with current tools [19]. Our
research enhances previous efforts by examining the concrete
alternatives that data scientists manually investigate at the
source code level, aiming to determine whether unexplored
ML pipelines could lead to improved outcomes.

Prior works have also studied the limitation of the design of
the computational notebooks regarding comparing alternatives
in the linear view [3], and further designed solutions to
mitigate the challenges, such as introducing the ‘forking’
mechanism into notebooks to support side-by-side comparison.
After the comparison, data scientists can delete the forks and
only keep one that performs the best [7]. We contend that
alternatives that do not show immediate promising results
should not be discarded, as these outcomes may stem from an
inadequately explored search space. Rather, we speculate that
systematically exploring a combination of alternatives may
lead to more promising outcomes than the traditional linear
and limited search typically conducted by data scientists.

B. Studies on Computational Notebooks

Researchers have studied the computational notebook envi-
ronment extensively and proposed solutions to improve the
support during the exploratory programming process. For
instance, previous studies have suggested approaches for ad-
dressing the issue of arbitrary execution order [10], [3] and
better organizing code cells [20], facilitating communication
in notebooks [21], providing visualization for better under-
standing of the code dependencies [22], improving reusability
of notebooks [6], [23], documentation generation [24], [25],
leveraging AI techniques to support exploratory programming
using notebooks [26], etc.

The studies that are closely related to our project focus
on managing variants and version control for notebooks. For
example, Samuel et al. designed ProvBook as a Jupyter Note-
book extension to track the version history at the cell level,
allowing users to compare code changes side-by-side [12],
however, it does not highlight the code diff. Similarly, re-
searchers designed tools to visualize and summarize the differ-
ence between versions of cells to help data scientists maintain
an overview of the evolution of the explored ML pipeline [8],
[13], [14]. Several platforms such as GitHub and Kaggle
support the versioning for notebooks, however, researchers
found that most of the notebooks were uploaded after the
exploration was done and mainly for backup purposes [27].
Our study complements prior studies by focusing on the
scenario of managing and effectively exploring combinations
of alternatives across the ML pipeline.

C. Automated machine learning (AutoML)

AutoML toolkits have been developed to automate tasks
within the ML pipeline, aiming to lessen the burdensome

cost of the trial-and-error method typically performed by data
scientists. These toolkits support efficiently navigating the vast
configuration space [28], [29], [30], [31]. Most AutoML toolk-
its focus on model generation and model evaluation. Specifi-
cally, model generation can be divided into search space and
optimization methods. Search space is for generating either
traditional ML models (a.k.a shallow ML models) or neural
architectures for deep learning (DL) models. Correspondingly,
the optimization methods can be classified into hyperparameter
optimization and architecture optimization [28]. The specific
number of models and hyperparameter sets to search can be
defined by the user. Moreover, to support the automated feature
engineering stage, researchers designed methods to generate
large sets of features [32], [33], [34]. However, as feature
engineering is heavily dependent on domain knowledge, none
of the prior work includes AutoML tools in the feature engi-
neering stage. Moreover, significant progress is still required
to reach the anticipated objective. For example, prior research
has outlined the difficulties encountered by data scientists in
utilizing AutoML toolkits, revealing that these tools possess
restricted capabilities. Notably, there is a deficiency in support
for the operationalization of ML models/systems, referred
to as MLOps, in addition to issues concerning model and
data management [29]. A recent study from Alamin et al.
provided a summary of 37 AutoML toolkits mentioned on
StackOverflow, categorizing them based on the type of ML
pipelines they support, including shallow ML models, deep
learning models, or a combination of both model types [18],
[29].

In this study, we are interested in exploring alternatives in
not only the model configuration and hyperparameter opti-
mization stages but also data preparation and feature engi-
neering. Additionally, we evaluate the feasibility of taking all
the human-explored alternatives in the first two ML stages and
combined with AutoML infrastructure could result in models
that outperform those generated by simply applying AutoML
to the original notebook crafted by the data scientist.

III. CURRENT PRACTICES OF EXPLORING ALTERNATIVES
(RQ1&RQ2)

In this section, we describe the process of gathering data
on a collection of high-quality notebooks with their series of
revision histories, to qualitatively understand the alternatives
that have been explored by data scientists.

A. Notebook Selection

We gathered notebooks from Kaggle, which is the largest
platform for ML competitions and all the notebook versions
are accessible to the public. Whenever the users use ‘Save
& Run All’, they execute the notebook from top to bottom
and generate a new notebook version. A notebook version is a
snapshot of the work including compiled code, log files, output
files, and data sources. Gathering historical data on the ML
pipeline allows us to systematically review modifications at
various stages and identify the alternatives that data scientists
have manually explored.
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Fig. 2. Demographics of the 52 notebooks and 930 ML pipelines.

Fig. 3. Number of alternatives per category of all the 52 notebooks.

We chose the collection of “Winning solutions of Kaggle
competitions” [35] as the starting point, which was collab-
oratively curated by Kaggle users as an indicator of high-
quality notebooks. We established a series of criteria for inclu-
sion: notebooks must (1) utilize Python as their programming
language; (2) possess a minimum of five versions, providing
a sufficient range of alternatives for analysis; (3) contain a
comprehensive ML pipeline; and (4) be awarded medals or
ranked in the top 20%, as a measure to assure and further
ensure the notebooks’ quality. Further, we exclude notebooks
that have “beginner”, “guide”, “tutorial”, or “introduction” in
either the notebook or the competition title, to ensure the
notebooks are focused on training ML models rather than
educational purposes. Ultimately, 52 notebooks were gathered,
covering 34 competitions and 5 domains including healthcare,
social analysis, business, natural science, and education. We
present the demographics of the notebooks in Figure 2.

B. Qualitative analysis of the alternatives

To identify the alternatives in each notebook, we analyzed
the differences between consecutive versions to understand
the motivations behind these changes, such as bug fixes, code
refactoring, modifications to non-code elements, completion of
the ML pipeline, and the exploration of alternative approaches.
We concentrate exclusively on code modifications to investi-
gate and extract the alternatives experimented with by data
scientists at each ML stage, preserved across various versions.

During our analysis, we document alternatives at both the
method level and the variable level. For example, for a function
with a series of parameters, we denote it as n(a,b,c,...),
in which n represents the number of variables in the function
and (a,b,c,...) represents the number of assigned values
for each variable. For example, if there are three alternative
variables explored for hyperparameter optimization, such as
learning rate, epoch number, and batch size, and each has 4, 5,
and 6 possible values respectively, we record it as 3(4,5,6).
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Fig. 4. Alternatives at the statement level of NB5.

The total number of alternative-values combinations would be
4*5*6=120. In Figure 4, we visualize the alternatives that
were created and explored in NB5. For the pipeline path that
starts from the white box noted with 1(1) in data preparation,
the author introduced a set of functions in version 5 to remove
HTMLs, emojis, URLs and duplicate columns in the dataset.
We treat this set of functions as a single data-cleaning activity
and note it as 1(1). For the other pipeline path that starts
with yellow boxes, as in version 16, the author first formed
a step of creating a function in the data preparation level in
order to remove training samples with incorrect labels. Next,
in version 46, the author introduced two boolean variables,
target corrected and target big corrected to remove training
samples with incorrect labels and clean training data (i.e., re-
moving emojis, punctuations, URLs and abbreviations). There-
fore, we denote that there are two method-level alternatives,
For each of these 2 alternatives (functions), we can choose
whether or not to include it in the pipeline, therefore, we
denote it as 2(2,2). For the first two notebooks, the first
three authors independently went through the notebooks (NB5,
NB15) and labeled the alternatives, the corresponding ML
stage, and the version number. To address and resolve any
discrepancies, they conducted two rounds of discussions. This
method fostered a collaborative and comprehensive evaluation,
minimizing the likelihood of unresolved issues. Following this,
three authors independently labeled 16 to 17 notebooks each.

C. Results

RQ1: What alternatives are data scientists exploring in
each part of the ML pipeline?

We observed that the alternatives explored by data scien-
tists can be categorized into four main activities across the
ML pipeline, including data preparation, feature engineering,
model configuration, and hyperparameter optimization.
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• Data preparation includes changes in cleaning, prepro-
cessing, and wrangling, such as correcting issues (e.g.,
removing punctuation, imputing missing values, resiz-
ing images), and enhancing the dataset by adding new
attributes, forming tri-grams, and aggregating data. For
example, the author of NB5 added a method to remove
training samples with incorrect labels in version 16.

• Feature engineering contains the changes in the pro-
cess of transforming raw data into relevant features that
improve model accuracy, involving variable selection,
creation, and transformation based on domain knowledge.
For example, the author of NB14 removed 2 features in
version 3, leading to a model with better performance.

• Model configuration involves adjusting the hyperparam-
eters related to the architecture or individual components
of the model, including elements such as layers and loss
functions. For instance, data scientists may try to modify
the number and type of layers or activation functions
inside the model. They sometimes also configure different
models or stack multiple models together. For example,
the author of NB5 added another dropout layer when
defining the model structure in version 12.

• Hyperparameter optimization refers to the process of
adjusting various parameters that control the learning
process, such as the learning rate, the number of training
epochs, and the batch size, among others. For example,
the author of NB5 explored 5 different learning rates
across versions 25 to 29.

Figure 3 summarizes the distribution of the alternatives in each
category. For data preparation, the number of alternatives that
have been explored in each notebook ranges from 1 to 10
(median = 1, SD = 2.048), and the number of alternative-
values ranges from 1 to 2,304 (median = 3, SD = 333.72). For
feature engineering, the number of alternatives that have been
explored in each notebook ranges from 1 to 4 (median = 1, SD
= 0.65), and the number of alternative-values ranges from 1
to 24 (median = 2, SD = 3.601). For model configuration, the
number of alternatives have been explored in each notebook
ranges from 1 to 44 (median = 2, SD = 6.429), and the number
of alternative-values ranges from 1 to 45,120 (median = 3,
SD = 6252.073). For hyperparameter optimization, the number
of alternatives have been explored in each notebook ranges
from 1 to 30 (median = 3, SD = 5.29), and the number of
alternative-values ranges from 1 to 14,745,600 (median = 12,
SD = 2044287.974). The detailed notebook information can
be found in the replication package [16].

RQ1: Analysts investigated various alternatives across different
ML stages, potentially resulting in a large number of ML pipelines.

RQ2: How do data scientists explore alternatives in com-
putational notebooks?

Iteratively explore alternatives in the reversed order. We
observed that data scientists tend to explore alternatives in
an iterative fashion. Specifically, the data scientists began
their process by constructing a full pipeline and developing

the model. Following this, they initiated adjustments to the
model’s hyperparameters in pursuit of optimizing the model’s
performance. After several iterations of tuning, they might
reconsider and explore different approaches to feature engi-
neering (NB15, 16, 17, etc). In some cases, they alter data
preparation methods (NB2, 5, 7, etc.) In other cases, they
change the model configuration or adopt a new model into
the pipeline (NB 6, 13, etc.). Finally, they start another round
of hyperparameter tuning. Data scientists often experiment
with alternatives in the ML stage in reverse order as shown
in Figure 1. NB43 and NB31 are notable examples that
conducted the exploration in this manner. In the first few
versions of the notebook, the authors have processed the
data and defined a model to run initial experiments with a
set of hyperparameters. Rather than adhering to the initial
configurations, the authors have revisited the earlier stages
with each new version based on the experimental results
and built alternative models and associated hyperparameters.

loss 
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MSE

loss 
funuction

MAE

batch_size
16

batch_size
32

X-1

X
X+2
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Many iterations of the original
complete pipeline would occur as
the notebook version progressed.
For example, compared to pre-
vious versions, version x im-
plemented a new loss function
(Alternative 1), version x+1 in-
creased the batch size (Alternative
2), and version x+2 included both
alterations and combined the new
loss function with the increased
batch size.

Combinatory Exploration of alternatives from different
stages. It was noted that upon developing alternatives for
specific stages, data scientists manually integrated these al-
ternatives to construct various ML pipelines, evaluating their
performance through successive versions. 51 Out of 52 note-
books have attempted synthesizing previous versions to create
new experimental ML pipelines. As presented in Figure 1,
it depicts how data scientists manually investigate various
combinations of alternatives across different ML stages to
develop a model with improved performance. This pattern
not only highlights the iterative nature of ML model devel-
opment but also underscores the data scientists’ inclination
to explore the combinatory search space of pipeline config-
urations. However, among all the possible combinations of
alternatives, data scientists only explored 11% pipelines on
average with a median of 1.80%. This motivates us to evaluate
the unexplored combinations of alternatives and supports the
underlying intuition that constitutes RQ3&4, which will be
examined in the subsequent stages of our analysis.

RQ2: Data scientists often manually combine alternatives from
various stages to create a new ML pipeline. Nonetheless, due to the
constraints of current notebook designs and the vast search space
of alternatives, many potential ML pipelines remain unexplored.
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IV. INVESTIGATING UNEXPLORED COMBINATION OF
ALTERNATIVES (RQ3-5)

In this section, we outline the experiments conducted on
previously uninvestigated combinations of alternatives and
evaluate the performance. Furthermore, we evaluate the ef-
fectiveness of advanced AutoML solutions, pinpointing the
obstacles they encounter as well as the possibilities they offer.

A. AutoML Tools Selection.

As described in Section II, there are two types of AutoML
packages. The first type optimizes for hyperparameters based
on user-defined bounds and optimization strategy, while the
second type optimizes for both the model and the hyperpa-
rameters without the need to define anything in advance. For
the selection of AutoML tools, we first limit our selection
range to the second type since we assume that the user has no
prior knowledge about which hyperparameters to optimize and
what bounds to apply. Given the extensive time required for
experiments and qualitative data analysis, we included only
a subset of popular tools as a starting point. Eventually, we
picked four of the most popular toolkits, as indicated by their
popularity in multiple sources [36], including:

• AutoKeras [37]: keras-team/autokeras, with 9.1K stars;
• TPOT [38]: EpistasisLab/tpot, with 9.6K stars;
• Auto-sklearn [39]: automl/auto-sklearn, with 7.5K stars;
• H2O AutoML [40]: h2oai/h2o-3, with 6.8K stars.
These toolkits are mostly focusing on the model config-

uration and hyperparameter tuning stages. Each toolkit has
specific application scenarios. For example, Auto-sklearn is for
regular scikit-learn classifiers and regressors; TPOT optimizes
ML pipelines using genetic programming to help with data
preparation and modeling algorithms and model hyperparam-
eters [41]; H2O AutoML provides automated model selection
and ensembling for the H2O ML and data analytics platform;
and AutoKeras is built on top of Keras, a popular deep learning
framework that acts as an interface for the TensorFlow library.
Among them, AutoKeras and Auto-sklearn are based on deep
learning models and TPOT and H2O are for traditional ML
models. To make a fair comparison, for deep learning models,
we run either AutoKeras or Auto-sklearn based on the original
model structure developed by the author. For notebooks that
utilize traditional ML models, we choose TPOT or H2O.

As a result, out of 52 notebooks, we chose those that
are compatible with any of the four AutoML toolkits. Each
selected notebook must offer at least two alternatives in the
data preparation and feature engineering phases, ensuring
that post-AutoML application, alternatives remain for further
exploration. This criteria led to a total of 20 notebooks, as
summarized in Table I.

B. Methodology

Our approach consists of three stages, which are aimed at
assessing the performance of untested ML pipelines (RQ3),
evaluating AutoML toolkits (RQ4), and examining the mix of
alternatives trialled by various data scientists (RQ5).

Step 1 (RQ3): Merging Alternatives into one notebook
as configuration options. We gather alternatives for each
stage of ML by examining successive versions. When changes
are related to bug fixes or restructuring, we integrate these
modifications into the alternative, rather than considering them
as separate alternatives. For example, if version N is exploring
an alternative and version N + 1 fixes a bug introduced in
version N , we integrate the bug fix into the alternative, treating
them as a consolidated entity. We pick the latest working
version of the notebook as a baseline since it is typically the
most complete version and free of bugs that would prevent
ML pipeline execution. Table I, columns 4-7 show the number
of alternatives identified at each ML stage. Usually, it takes
about 6-8 hours to analyze a notebook that has approximately
20 versions to get it fully operational. Next, we assemble a
“merged” notebook that enables us to iterate through all pos-
sible combinations of alternatives, thereby creating a variety
of ML pipelines. Table I, column “Total #Pipelines” display
the count of constructed ML pipelines built for each notebook,
with totals ranging from 12 to 44,236,800.

To estimate the execution time, we refer to the Kaggle
record for the execution time of the latest version and multiply
it by the number of all possible ML pipelines. This gives
us an estimated total running time needed to execute all
merged pipelines. The total execution time for the sample
notebooks varies from 12 minutes to 70707610 hours. Due to
restricted computing capabilities, we opt for random sampling
from the entire set of possible combined alternatives with
a 95% confidence level and 10% margin of error whenever
the total runtime surpasses 30 hours. To validate that the
sampled subset of experimental ML pipelines could represent
the whole pipelines, we conduct experiment on NB13, where
we execute all 1,152 potential pipelines, followed by running
a randomly selected sample of 89. Subsequently, we carry out
a Student’s t-test, yielding a p-value of 0.43. This outcome
suggests that there is no statistically significant difference
between the results obtained from running all alternatives and
those from executing a randomly selected subset.

Step 2 (RQ4): Integrating AutoML into the ML pipeline.
To evaluate the performance of AutoML toolkits, we replace
the hyperparameter optimization and model configuration-
related code with the selected AutoML toolkits. We then fed
the AutoML tool the various iterated alternatives outputted
from the exploration of the data preparation and feature
engineering stages. Before feeding data into the AutoML tool,
we split the data into training and evaluation sets. We then
manually specify the total running time to be 30 hours to
keep consistent with Step 1. We have observed that running
AutoML on large datasets can be time-consuming. In some
cases(NB6), even a runtime of 30 hours may not suffice for
completing a single iteration of the training set. In this case,
we manually decrease the population size, which controls the
number of possible candidate model pipelines in one iteration,
in order to make sure that the AutoML tool is able to return
at least one model pipeline for further evaluation purposes.
The selected AutoML tool will integrate through several
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TABLE I
CHARACTERISTICS OF THE SELECTED 20 NOTEBOOKS FOR RQ3-5 AND CORRESPONDING RESULTS.

ID RQ5
Used Domain #Versions Data

Prep.

Feature
Eng.

Model
Config.

Hyperparam.
Tuning

Total
# Pipelines

Author
explored
Pipelines

Merged
Pipelines

Model
Ensemble

1 y Natural
Science

23 1(4) 1(3) 1(4) 4(3,3,3,3) 1296 7 1296

2 y Natural
Science

14 1(6) 1(2) 1(1) 1(1) 12 12 12

3 y Natural
Science

11 1(2) 1(1) 1(2) 4(2,2,3,5) 240 9 240

4 Healthcare 14 1(2) 1(3) 1(2) 1(2) 24 6 24

5 Natural
Science

104 1(1)
2(2,2)

1(1)
1(1)

1(1)
1(5)

3(5,2,3)
3(11,4,3) 2010 49 92 1(1)

6 Healthcare 35 1(1) 1(1) 2(1,1) 2(4,11)
1(1) 5324 23 5324 2(11,11)

7 Social
Analysis

29 1(1) 1(1) 4(5,2,2,2) 1(5) 160 16 61

8 Business 21 1(3) 1(1)
1(1)
1(1)
1(1)

5(3,2,2,2,2)
5(2,2,2,2,2)
3(2,2,2)

98304 8 2304 1(2)

9 Business 9 1(3) 1(2) 1(1) 2(4,3) 72 7 36

10 y Business 15 1(1) 1(3) 1(1) 18(4,5,5,3,2,2,2,2,2,
2,2,2,2,2,2,4,3,2) 44236800 8 97

11 y Business 13 1(2) 1(1) 1(2) 10(4,4,2,2,2,3,2,2,3,2) 36864 8 96

12 y Business 6 1(1) 2(2,2) 1(2) 2(2,4) 64 4 64

13 y Healthcare 12 3(3,2,2) 1(3) 1(1) 5(2,2,2,2,2) 1152 6 1152

14 y Healthcare 9 5(2,2,2,2,2) 2(2,2) 1(2) 2(2,2) 1024 7 88

15 y Business 20 1(1) 1(2) 1(2) 8(5,3,2,3,5,3,3,2) 32400 20 128

16 Healthcare 8 5(2,2,2,2,2) 2(3,2) 3(2,2,2) 5(2,2,2,2,2) 49152 5 115

17 Healthcare 12 1(1) 1(1) 1(3)
1(2) 3(2,2,2) 240 8 240 1(5)

18 y Education 15 6(2,2,2,2,2,2) 1(1) 3(2,2,2) 1(1) 512 6 310

19 Business 16 1(1) 2(1, 2) 1(3) 1(2) 12 6 12

20 y Education 6 1(1) 1(1) 3(1,1,1) 4(4,2,2,2) 96 6 96

models and automatically optimize the model hyperparameters
based on the training set and evaluate them through cross-
validation [42]. In the end, the AutoML tool returns the
best-performing model pipeline with the highest evaluation
score as the final AutoML model. We then apply the final
AutoML model to the evaluation set, using the same evaluation
metric as the original submission in order to compare the
performance.

Step 3 (RQ5): Integrating alternatives explored by
different data scientists into one ML pipeline. To guarantee
compatibility and streamline integration into a single ML
pipeline with minimal code adjustments, we concentrate on
combining notebooks from the same competition. Among the
20 sampled notebooks, we select 10 notebooks from four
competitions: (1) Natural Language Processing with Disaster
Tweets [43] (NB1, 2, 3); (2) Santander Customer Transaction
Prediction [44] (NB10, 11, 12); (3) ICR - Identifying Age-

Related Conditions [45] (NB13, 14); and (4) Feedback Prize
- English Language Learning [46] (NB18, 20). Like in Step
1, we integrate alternatives from compatible notebooks into a
single ML pipeline. The notebooks are considered compatible
if they utilize the same dataset and can be integrated with
minimal adjustments, ensuring a streamlined and error-free
execution process. For the purpose of assessing the viability
of integrating different approaches explored by various data
scientists, we refrain from making any logical corrections to
the merged notebook.

Evaluation. The performance of each formed ML pipeline
is assessed using the validation set. In cases where the original
competition did not use a validation set or the test datasets
were not made available, we allocate 20% of the original
training data to serve as the validation set. We ensure the train-
ing and validation datasets remain consistent throughout the
exploration process to maintain uniformity in model training
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TABLE II
SUMMARY OF EXPERIMENT SETTING.

Kaggle Colab Clusters

Name Tesla P100 Tesla T4 Tesla V100
freq. (MHz) 1328.5 1590.0 1530.0
memory (MB) 16276 15102 32501
#multiproc. 56 40 80
RAM (GB) 31 12 187

GPU

disk space (GB) 32673 472 1737

name Intel/Xeon ) Intel/Xeon
Freq. (MHz) 2199.998 2199.998
#cores 2 1
RAM (GB) 31 12

CPU

disk space (GB) 32308 174

and distinctly identify the impact.

C. Experiment Setup

All experiments and measurements were conducted using
one of the three settings. The specifications are summarized
in Table II. The first method involves leveraging the Kaggle
platform by forking the original notebook, integrating it on
Kaggle, and executing it using Kaggle’s computing resources.
This technique eliminates the need to download substantial
input datasets or configure the environment locally. It is
our preferred method because Kaggle offers an environment
that is compatible with the analyzed notebook. Nonetheless,
due to Kaggle’s GPU resource constraints, we also resort
to alternative platforms for our analyses as needed, such as
server clusters. The high-performance computing clusters can
be efficient on large-scale computations and provide more
computational power compared to Kaggle. However in order
to use this approach, we need to download all input datasets
and set up the environment on the cluster. If the previous two
methods are not suitable for some notebooks, Google Colab
and the local machine are also good options, which provide
GPU and TPU support while on local machines we could gain
full control over the environment. Depending on the size and
complexity of the merged notebooks, we decided to utilize the
most suitable approach each time. For instance, when dealing
with smaller and less intricate merged notebooks, running
them on platforms like Kaggle or Colab is a more convenient
option due to the pre-configured environment and streamlined
execution. For large and complex notebooks, utilizing the
computational power of clusters would be a better option.

D. Results of RQ3: Original pipeline vs. Merged pipeline

Table III summarize the results RQ3-5. The metrics marked
with an asterisk (*) in the table are indicators where lower
values represent better performance, as these metrics quantify
losses and errors.

Our experiment reveals that, excluding 4 out of 20 note-
books that remained constant, combinations of unexplored
alternatives in the other 16 notebooks lead to an increase in
performance of 13.57% on average, with a minimum and max-
imum observed increase of 1.09% (NB10) and 43.08% (NB1),
respectively. In particular, during the data preparation phase of

NB1, the author investigated the process of “pre-padding text
sequences” as part of a natural language processing task, and
in the stage of model configuration, the author opted for an
alternative approach by “expanding the number of units in
the recurrent layer.” However, these two distinct alternatives
were not previously integrated into a single ML pipeline in the
version history. In our study, we discovered that this untried
combination resulted in significant improvements, increasing
the accuracy from 65% to 93%.

Regarding the notebooks where the experimental ML
pipeline did not surpass the original version, there could be
several reasons. For instance, in NB2, despite the existence
of numerous alternatives across various ML stages, the author
has explored every possible combination of these alternatives
throughout the four stages across 14 versions of the notebooks.
In NB11, there are in total 36864 possible combinations of
alternatives and we only run 96 of them (to achieve 95%
confidence level and 10% MoE), it is possible that we did
not come across a combination that can lead to improvement.

Finding: While data scientists have manually merged various
alternatives across different stages of the ML pipeline to create
diverse ML pipelines in multiple versions of notebooks, strong
evidence suggests the presence of an unexplored combination that
could result in a more effective model. Exploring combinations of
different alternatives is both time and resource-consuming, most
data scientists are not able to exhaustively explore the alternatives
due to either time or computing resource limitations.

E. Results of RQ4: Evaluating AutoML toolkits

[Original pipeline vs. Original pipeline + AutoML]
Upon integrating AutoML into the original ML pipelines by
replacing the hyperparameter optimization and model config-
uration stage, our experiments indicate that merely 3 out of
20 notebooks (NB1, 19, 20) exhibited enhanced performance
by 6.15%, 9.41%, and 10.61%, respectively. Amongst the rest,
4 notebooks saw identical performance, while the remaining
13 notebooks have decreased by 16.59% on average, spanning
from 1.89% to 59.77% decrement.

[Merged pipeline vs. Merged pipeline + AutoML] We
additionally integrated AutoML into the manually merged al-
ternative pipelines by replacing the hyperparameter optimiza-
tion and model configuration stage. Out of the 20 notebooks,
only NB19 yielded better performance (8.14%) compared to
the manually merged ML pipelines as the AutoML tool was
able to select a better model-hyperparameter combination than
the original pipeline. Two notebooks maintained the same
performance and the rest 17 notebooks had their performance
decrease of 17.41% on average ranging from 1.08% to 56.25%.

We further draw comparisons between the original and
manually merged pipelines, both with AutoML incorporated.
Similar to their non-AutoML counterparts, we see that 9 out
of 20 notebooks maintained the same performance, while the
rest 11 notebooks improved upon the original pipeline with
AutoML varying from 2.70% to 37.14%, with an average
increase of 12.27%. The results showed that ML alternatives
in data preparation and feature engineering have the potential
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TABLE III
COMPARING MANUALLY MERGED ALTERNATIVES AND AUTOML INTEGRATION WITH THE CURRENT BEST ML MODEL

ID Metric Range O M O+A M+A M vs O
(%)

O+A vs
O (%)

M+A
vs O+A
(%)

M+A vs
M (%)

AutoML Toolkit

1 Accuracy (0, 1) 0.65 0.93 ↑ 0.69 ↑ 0.71 ↑ 43.08 6.15 2.90 -23.66 TPOT
2 Accuracy (0, 1) 0.89 0.89 → 0.66 ↓ 0.68 ↓ 0.00 -25.84 3.03 -23.60 TPOT
3 Accuracy (0, 1) 0.84 0.93 ↑ 0.84 → 0.84 → 10.71 0.00 0.00 -9.68 TPOT
4 Accuracy (0, 1) 0.72 0.96 ↑ 0.63 ↓ 0.70 ↓ 33.33 -12.5 11.11 -27.08 auto-sklearn
5 Accuracy (0, 1) 0.82 0.96 ↑ 0.70 ↓ 0.70 ↓ 17.07 -14.63 0.00 -27.08 auto-sklearn, TPOT
6 Laplace LL (−∞, 0) -6.91 -6.77 ↑ -7.78 ↓ -7.57 ↓ 2.03 -12.59 2.70 -11.82 TPOT
7 Accuracy (0, 1) 0.71 0.72 ↑ 0.68 ↓ 0.70 ↓ 1.41 -4.23 2.94 -2.78 AutoKeras
8 RMSLE* (0,∞) 1.46 1.42 ↑ 1.65 ↓ 1.44 ↑ 2.74 -13.01 12.73 -1.41 auto-sklearn, TPOT
9 RMSE* (0,∞) 0.23 0.22 ↑ 0.23 → 0.23 → 4.35 0.00 0.00 -4.55 H2O
10 Accuracy (0, 1) 0.92 0.93 ↑ 0.92 → 0.92 → 1.09 0.00 0.00 -1.08 auto-sklearn, TPOT
11 CV Score (0, 1) 0.90 0.90 → 0.90 → 0.90 → 0.00 0.00 0.00 0.00 TPOT
12 AUC (0, 1) 0.53 0.53 → 0.52 ↓ 0.52 ↓ 0.00 -1.89 0.00 -1.89 TPOT
13 Balanced Log Loss* (0, 1) 0.13 0.10 ↑ 0.15 ↓ 0.10 ↑ 23.08 -15.38 33.33 0.00 auto-sklearn, TPOT
14 Log Loss* (0, 1) 0.25 0.16 ↑ 0.32 ↓ 0.25 → 36.00 -28.00 21.88 -56.25 TPOT
15 RMSE* (0, ∞) 0.26 0.20 ↑ 0.29 ↓ 0.28 ↓ 23.08 -11.54 3.45 -40.00 TPOT
16 Accuracy (0, 1) 0.84 0.88 ↑ 0.79 ↓ 0.82 ↓ 4.76 -5.95 3.80 -6.82 TPOT
17 Laplace LL (−∞, 0) -6.90 -6.82 ↑ -7.62 ↓ -7.62 ↓ 1.16 -10.43 0.00 -11.73 TPOT
18 R2 Coefficient (0, 1) 0.87 0.87 → 0.35 ↓ 0.48 ↓ 0.00 -59.77 37.14 -44.83 TPOT
19 AUC (0, 1) 0.85 0.86 ↑ 0.93 ↑ 0.93 ↑ 1.18 9.41 0.00 8.14 TPOT
20 Mean RMSE* (0, 1) 0.66 0.58 ↑ 0.59 ↑ 0.59 ↑ 12.12 10.61 0.00 -1.72 TPOT

O – results from the original pipeline; O+A – Integrating AutoML into the original pipeline; M – manually Merged ML pipelines; M+A – Integrating
AutoML into the merged pipelines. Asterisk * emphasizes metrics where lower values are preferable. Laplace LL – Laplace Log Likelihood;

to enhance the performance of ML models. This reinforces
the findings of RQ2.1, which highlighted that unexplored
combinations of alternatives could yield better outcomes.

When comparing the search space created by data scientists
and AutoML regarding the model configuration and hyperpa-
rameter tuning stages, our results show that AutoML cannot
replace data scientists. There are many alternatives that are
not directly model-related. For example, the number of folds
for cross-validation, whether to shuffle the training data, etc.
Exploration of pipeline configuration is needed in these cases
to obtain an optimal result, which requires augmentation in
the AutoML training to perform these searches as well.

In addition to training configuration alternatives, while there
is a clear overlap between the search spaces selected by the
user and the search spaces of AutoML for model-related
alternatives, AutoML cannot cover all the models that the
users have selected or would have preferred, particularly when
the selection of models relies on domain knowledge of the
ML task and the dataset [29]. For example in NB1, the
author explored recurrent neural networks, which are not a
type of model architecture covered by AutoKeras. Similarly,
for NB13, the TPOT classifier explored the XGBoost model.
The data scientist also explored XGBoost as a potential
model alternative, albeit with a different and more effective
hyperparameter search space.

Finding: Our study found that the current AutoML toolkits cannot
replace data scientists when exploring alternatives in the ML
pipeline. Our proposed approach shows promise in helping data
scientists further improve their ML pipelines by incorporating their
exploratory history with AutoML, rather than relying entirely on
algorithms as is the case with AutoML.

F. Results of RQ5: Crowdsourding alternatives

As we would like to further understand if crowdsourcing
alternatives that have been explored in different ML pipelines
can produce better results, we manually merged alternatives
from different ML pipelines into one. The outcomes indicate
that in only one competition, merging three compatible note-
books (NB10, 11, 12) achieved enhanced performance after
merging the alternatives, with the top outcome surpassing the
original notebooks by 0.024%, 0.034%, and 63.81% respec-
tively. The reason why NB10 and NB11 show little improve-
ment is that the authors fork each other’s notebooks and make
further modifications to them, in this case, these two notebooks
share almost the same libraries, function calls, as well as
alternative configurations, with an average similarity score of
0.9949 across all stages. The integration of alternatives from
each other does not make a noticeable difference in the final
result. While NB12 shows significant performance improve-
ment after integrating alternatives from the feature engineering
stage of NB10, the potential reason is that the alternative
in feature engineering from NB10 is creating new features
based on statistical properties of the original features, while
the feature engineering of NB12 is adjusting original features
to have positive correlations with the target variable and
normalizing them. This might not have effectively captured
the underlying patterns in the data or might have introduced
noise. For the rest seven notebooks from three competitions,
after integrating alternatives from other compatible notebooks,
we observe either a decrease in performance (NB13, 14, 1, 2)
or operation errors (NB18, 20, 3) due to data structure size
and format mismatch, missing files, and resource exhaustion.
Specifically, NB18 and NB20 are not able to integrate with
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Fig. 5. Results of RQ3 and 4. The green color indicates improved performance of models with higher metric values on the y-axis, such as Accuracy and
Likelihood. Conversely, the orange color signifies better model performance with lower metric values on the y-axis, like Loss and Error.)

each other due to low similarity in the data preparation, model
configuration and hyperparameter optimization stages, as well
as data format mismatch in the feature engineering stage. The
average decrease in performance is 11.47%, with a maximum
decrease of 22.5% (NB1) and a minimum decrease of 0.024%
(NB13). For notebooks that share similar approaches and
function calls (NB13, 14), after we integrate alternatives from
each other, the performance is not obviously impacted, while
for notebooks that vary much in implementation, integrating
alternatives from each other will introduce a significant de-
crease in its performance (NB1, 2).

Finding: Our study shows the limitation of integrating alternatives
from different ML pipelines, namely the lack of compatibility and
coherence across implementations of different analysts. Despite
the potential for improvement demonstrated in some notebooks,
such integration often leads to disparate outcomes due to incon-
sistencies in data structures, processing methods, and underlying
assumptions. A large amount of manual effort is usually required
to remove these inconsistencies for a successful integration.

V. DISCUSSIONS AND IMPLICATIONS

A. Exploration cost within the search space

Computational notebooks offer a great platform for ex-
ploratory programming, yet they fall short in facilitating the
exploration of alternatives at every ML stage smoothly, owing
to their linear layout. In this study, we investigate the potential
of the unexplored search space. While we successfully iden-
tified at least one alternative combination that surpassed the
original submission in the majority of instances (16 out of 20),
the exhaustive search through the entire space, which grows
exponentially with the number of past alternatives, demands
a significant investment of time and resources. Given the
massive number of possible combinations of alternatives as
discussed in RQ3, it can be seen that the cost of exhaustive
search does not justify the increase in performance. Addition-
ally, incompatibility errors are likely to occur when alterna-
tives from different stages of the ML pipeline are combined
together. For instance, out of all possible feature engineering
alternatives, only a subset of them will be compatible with
a specific model configuration since the model expects some
particular features. As a result, our findings underscore that
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manually exploring different combinations is not practical,
highlighting the need for future assistance and direction to
navigate the search space effectively.

B. Limitation of AutoML.

Although AutoML toolkits are invented to mitigate such
problems and automate some of the explorations, especially
during model configuration and hyperparameter optimization
stages [31], doubts remain about the practical usability of
these AutoML toolkits [47]. Potential reasons for AutoML
yielding worse results can be attributed to several factors:
(1) Limited search space of AutoML tools: AutoML tools
come with a pre-defined search space for algorithms, hy-
perparameters as well as model architectures. It is possible
that our problem requires a specific algorithm or model that
falls outside of the default search space of AutoML tools;
and (2) Improper feature engineering: AutoML tools like
TPOT provide automated feature engineering as part of their
pipeline optimization process including normalization, feature
selection and dimension reduction. In our study, since we are
feeding AutoML tools with data that is already processed
and cleaned, it is possible that AutoML tools have performed
redundant feature engineering which negatively impacts the
model accuracy. Future studies could broadly explore the
compatibility and ease of use of AutoML toolkits, aiming to
improve their integration into the notebook environment.

C. Tooling support for organizing and exploring alternatives

With the surge in complexity and scale of ML pipelines,
existing tools have substantially streamlined ML lifecycle
management, primarily in experiment tracking, result visual-
ization, and version control. Nevertheless, there still remains a
gap in the exploration and understanding of pipeline alternative
search spaces. In light of our experimental findings, we
propose several future research and tooling directions.

Automatically extracting the alternative entities for each
ML stage. Most existing tools support model and data version-
ing. Manual tools require the user to label and register stages
and versions of the ML pipeline. While previous research has
explored ways to automatically tag source code associated with
different ML stages [48], [49], there are currently no ready-
made tools that have been incorporated into the computational
notebook environment. Future research could design automatic
tools that require minimal labelling overhead, yet compromise
on the granularity of control and usually require extra wrapper
code or hooks to track experiments. Additionally, integrating
code to streamline the construction of executable ML pipelines
would be advantageous.

Search Interval: Cumulative vs Iterative. Considering the
search space may expand exponentially, it would be beneficial
to progressively introduce possible combinations of alterna-
tives as analysts contribute new options. A cumulative search
is when the search is only employed when the manual searches
and experiments are completed. All registered versions will be
combined to analyze the best alternative. Iterative search at-
tempts to explore the search space each time a new checkpoint

is registered. This approach is more computationally intensive,
but the immediate feedback of alternatives could provide real-
time insights that contribute to future experiments.

VI. THREATS TO VALIDITY

In structuring our study to minimize bias and mitigate the
impact of random noise, we acknowledge the possibility that
our strategies might not have been fully effective. This section
examines potential validity threats to our research.

Regarding internal validity, our empirical research required
significant manual intervention, potentially introducing sub-
jectivity and bias. To mitigate this risk, we adopted an
open coding approach: two authors independently verified and
cross-checked all findings. Any disagreements in labelling
were discussed and resolved by a third author. Moreover, the
potential exists for errors in the source code when we manually
integrate multiple notebooks into one, possibly due to our lack
of familiarity with both the notebook and the dataset domain.
To counteract this risk, we have conducted thorough testing
of our implementation. Additionally, we have designated two
authors to each notebook to ensure they reach a consensus and
obtain consistent results.

Concerns regarding external validity relate to the extent
to which our findings can be generalized. The dataset used
for the study contains ML pipelines sourced exclusively from
Kaggle, specifically utilizing 52 notebooks for addressing
RQ1&2, and 20 notebooks to answer RQ3-5. The selection
was limited to high-quality competition notebooks ranking
in the top 20%, ensuring the inclusion of comprehensive
ML pipelines and sufficient alternative explorations. However,
this selection criterion may restrict the generalizability of
our conclusions to more typical and less ideal scenarios.
Therefore, constructing a more extensive dataset is necessary
to draw more broadly applicable conclusions. Furthermore,
our experiments are restricted to four widely-used AutoML
tools, which may not fully represent the breadth of available
toolkits. As a result, caution is advised when generalizing the
study’s findings beyond this scope. Future research will aim
to include other emerging tools to improve the generalizability
of the results.

VII. CONCLUSION

In this project, we examine the methods data scientists use
to explore alternatives with computational notebooks and eval-
uate the possibilities of unexplored ML pipelines that could
deliver superior results. However, qualitative analysis and the
manual construction of ML pipelines are labour-intensive. We
suggest directions for future research and the development of
tools to enhance support for exploratory programming.
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