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Exploratory Programming in Notebooks

To derive insights from a large amount of data by building
high-performance ML model.
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Exploratory Programming in Notebooks

In [1]: dimport matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn import datasets

In [2]: data = datasets.load_iris().data[:,2:4]

) _i n ear Stru Ctu re petal_length, petal_width = data[:,8], data[:,1

In [3]: print(“"Average petal length: %.3f" X (sum(petal_length) / len(petal_length),))

p— L] Average petal length: 3.758
® — I‘ ,XI b I‘ E In [4]: clusters = KMeans(n_clusters=3).fit{data).labels_

In [5]: plt.scatter(petal_length, petal_width, c=clusters)

o n C re I I le n tal Out[5]: <matplotlib.collections.PathCollection at ©x124e294e@>
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Hard to Compare Alternatives Using Notebooks




Hard to Compare Alternatives Using Notebooks
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Hard to Compare Alternatives Using Notebooks
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Hard to Compare Alternatives Using Notebooks
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Observation

1x3x2x3 = 18 possible ML pipelines

Search space can be huge

It might not be feasible to MANUALLY
explore all the potential combinations
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Prior Work on Supporting Exploration and

Versioning in Notebooks

. 31]: x1 = np.linspa:e(o.of 3,0) .
* Integrate a branching i e B
plt.plot(xl, yl, 'o-')

mechanism into the

Start Time: 2018-05-25T12:39:22+02:00

n Ote b O O k [We | nman et al . 2 02 1] End Time: 2018-05-25T12:39:22+02:00

Execution Time: 139ms

Source:

x1 = np.linspace(0.0, 8.0)

y1 = np.cos(1 * np.pi * x1) * np.exp(-x1)
plt.subplot(2, 1, 1)

plt.plot(x1, y1, 'o-")

* Track the provenance of
cells, enabling the

comparison of successive B
cell versions [Samuel et al. 2018] "y

‘ hl|‘
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HOWEVER

While previous research focused on

comparing alternatives for each cell, .
there is still a need to manually
merge alternatives from various ML
stages into a new pipeline, and then
execute, document, and compare
the outcomes.
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Long-term Goal

To facilitate the automatic management
and exploration of alternatives
throughout the exploratory
programming process, while preserving
the inherent advantages of notebooks.
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There remains a lack of systematic

understanding of...

-

\_

~N

* How analysts explore the combination of
alternatives across different ML stages?

* If these alternatives are comprehensively

analyzed during the ML lifecycle? Y

* How to further support the exploration
after extracting the diffs between
versions of notebooks?
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Research Questions

Current

practices

Potential of
unexplored ML
pipelines




Research Questions

Current RQ1: What are the alternatives?
practices RQ2: How are alternatives explored?

Potential of
unexplored ML
pipelines
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Method - RQ1&2 (Current Practices)

MSR + Qualitative analysis
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Method - RQ1&2 (Current Practices)

Qualitative analysis =

/8 #atem the text

79 text = text.apply(losbda x *.join([{stemmer.stea(1)

[1] [ 86 for 4 in re.sud("[*a-2A-Z]", " ., x).split() if 1 mot in
stopwords)).lower())

—
(5] :[1] — — — 81

u[1] 82 #lesmatize the text
(6] :[5] - I I

.[1] — B3 toxt = text.apply(losbda x join({lesmatizer.lemmatize(1)

o m[6] B[5] g me—— 84  for 1 n re.sub(*[*a-2A-Z]", * *, x).split() if 1 mot 1n
e stopwords)).1

o1 (6] 2151 211 m———— Version
9l m

e 2] o e s initial version
9] gt

o1 06] 315 ——
b failed

failed

fix bug

create altemative, fix bug
no change

create altemative

failed

create altemative

S ——
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intention of the code change

add comment, finalize code

#3tem the text

ftext = text.apply(lasbds x: °

#for 4 in re.sub("[*a-2A-2)", °

stopwords)) . lower())

flesmatize the text

stext « text.apply(lasbda x: °

#for 1 in re.sub("[*a-2A-2)", *
stopwords]) . lower())

*.join([stemmer . stem(1)

", x).split() Af 1 not in

*.Join{[lemmatizer. lommatize(1)

", x).split() 1f 1 not in
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Results - RQ1 (Types of Alternatives)

# Alternatives in Data Preprocessing

Data

Preparation data cleamng, preprocessing, 1 -----~|--._._._:_f_:___ |
(DP) and wrangling .
0 4 B 12
________ # Alternatives in Model E-:III'IfIIIjL.I'a'EIDI‘n
Feature : _ "B
Engineering transforming raw data into I
(FE) relevant features 0 5w s
________ . . # Alternatives in Feature Engineering
Model adjusting the parameters related y -y
Configuration t0 the architecture or individual ) ouEEEE
(MC) components of the model 0 3 6 5

———————— ¥ Altermatives in Hyperparameter Optimization

Hyperparam  adjysting various parameters e

Optimization -
HO) that control the learning process =L 22



Results - RQ2

(How are alternatives explored?)

1,23

T
An iterative fashion TR Wl o *q] f&”ﬁ“

5 by by wh ok
Log kL 4 AR

Comparing Alternatives can be Tedious

The median of our
selected notebooks only

1x3x2x3 = 18 possible ML pipelines

The prior example only explored 5 pipelines

represents 1.8% of all
pOSSIb I e Com bl nath nS- It might not be feasible to explore all the

potential combinations




Research Questions

Current RQ1: What are the alternatives?
practices RQ2: How are alternatives explored?

Potential of RQ3: Evaluating unexplored ML pipeline

unexplored RQ4:
ML pipelines [=leL}
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RQ4: Potential and capability of AutoML

Data
Preparation
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Feature
Engineering .
(FE) r—-=—-=-=-=-=-=
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Research Questions

Current RQ1: What are the alternatives?
practices RQ2: How are alternatives explored?

Potential of
unexplored
ML pipelines

RQ3: Evaluating unexplored ML pipeline
RQ4: Potential and capability of AutoML
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RQ5: Feasibility of Combining
Alternatives from Different Analysts

Data
Preparation
(DP)

Feature
Engineering
(FE)

Model
Configuration
(MC)

Hyperparam
Optimization
(HO)

Data
Preparation
(DP)

Feature
Engineering
(FE)

Model
Configuration
(MC)

- o o o S e

Hyperparam
Optimization
(HO)

RQ5: Will a combination
of alternatives from
different data scientists
outperform the original
notebook result? If yes,
to what extent?
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Research Questions

Current
practices

Potential of
unexplored
ML pipelines

RQ1: What are the alternatives
RQ2: How are alternatives explored?

RQ3: Evaluating unexplored ML pipeline

RQ4: Potential and capability of AutoML
RQ5: Crowdsourcing alternatives
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Method to RQ3-5

(Unexplored ML Pipelines)

Ouantitative analysis

_—: 20 notebooks
——;— 11/87 mL pipelines In total



Method - RQ3-5

* |f the search space is too big, we conduct experiments by
randomly sampling a subset of pipelines.

NB5 has a total of 44,236,800 |
pipelines with a total

approximated running time of
70,707,610 hrs
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Results - RQ3

Potential of Unexplored Pipelines

« 19/20 NBs contain unexplored pipelines
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Results - RQ3

Potential of Unexplored Pipelines

*19/20 NBs contain unexplored
~ pipelines
1.1 *16 NBs has performance increase
(Avg 13.57%)
* 3 NBs have no performance increase




Results - RQ3

Potential of Unexplored Pipelines

«19/20 NBs contain unexplored pipelines
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Research Questions

Current
practices

Potential of
unexplored
ML pipelines

RQ1: What are the alternatives
RQ2: How are alternatives explored?

RQ3: Evaluating unexplored ML pipeline

RQ4: Potential and capability of AutoML
RQ5: Crowdsourcing alternatives
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Results — RQ4

Evaluating AutoML in Exploratory Programming

— o o e o o
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Results — RQ4
Original pipeline VS Qriginal pipeline + AutoML

3/20 NBs show an average performance
Increase of 8.72%.

17/20 NBs show an average performance
decrease of 16.59%.
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Results of RQ4 (Cont.):
Merged pipeline VS Merged pipeline + AutoML

1/20 NBs have 8.14% performance increase due to

a better set of hyperparameters
- 19/20 NBs have avg 17.41% performance decrease

1.0 1 Notebook 1 1.0 - Notebook 2 1.0 - Notebook 3
&
0.9 Do-__ . 0.9 - *
& 0.8 o 2
m e - i
S 5 0.8 - 0.8 ¥
u . " o
§ o7 —— | g
0.7 4 0.7 - 1 i
0.6 4 .
0.5 T T T T 0.6 T T T T 0.6 T 'II T T
O M O+A | M+A 0 M O+A | M+A 0 M O+A | M+A




Research Questions

Current
practices

Potential of
unexplored
ML pipelines

RQ1: What are the alternatives
RQ2: How are alternatives explored?

RQ3: Evaluating the unexplored ML pipeline

RQA4: Potential and capability of AutoML
RQ5: Crowdsourcing alternatives
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RQ5: Crowdsourcing Alternatives

AN L

NB2 Combined

Data .
Preparation

ks -.:.‘,',:.-...__.'. "-.’;1'::.‘;-_::_,:__.1_.‘ [] [] []

Feature

Engineering - . : - ‘ . . -

Model

Configuration - [] . i

(MC)

Hyperparam
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Result - RQ5: Crowdsourcing Alternatives

T 3/10 NBs - avg 21.61% 3/10 NBs show
Ope\’aﬂOﬂa
', 4/10 NBs - avg 11.47% orrOrS

Finding: Despite the potential for improvement
demonstrated in some notebooks, a large amount of
manual effort is usually required to remove these
Inconsistencies for a successful integration.
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Research Questions

Current RQ1: What are the alternatives
practices RQ2: How are alternatives explored?

Potential of RQ3: Evaluating the unexplored ML pipeline
unexplored RQ4: Potential and capability of AutoML
VISR RQ5: Crowdsourcing alternatives
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Tooling Opportunities &

Research Directions

* More efficient ways to extracting and managing
alternatives from large number of notebooks

#stem the text 76 gstem the text

70 tex’ . T - ‘_ o . o stext = text.apply(lasbda x: " “.join([stemmer.stem(1i)
s for VErsion intention of the code change ... « « re.swn(-(ra-2a-217, = =, %) sp1t() 4 £ not in
stopw . . stopwords)).lower())
1 initial version
ovo 2 add comment, finalize code SLARRELY: T L
tex! ) stext = text.apply(lambda x: * ".join([lemmatizer.lemmatize(i)
for 3 falIEd for 1 in re.sub("[*a-zA-2]", " *, x).split() if 1 not in
stopw . stopwords]).lower())
4 failed ’ ’
5 fix bug
6 create altemative, fix bug
7 no change
8 create altemative
9 failed

10 create altemative 43



Tooling Opportunities &

Research Directions

* More efficient ways to extracting and managing
alternatives from large number of notebooks

* More automated ways combine and execute merged

Pipelines s needed

+ If the search space is extensive, we conduct experiments
by randomly sampling a subset of pipelines.

NBS5 has a total of 44,236,800
L’, pipelines with a total o
S P ° approximated running time of &

70,707,610 hrs
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Tooling Opportunities &

Research Directions

* More efficient ways to extracting and managing
alternatives from large number of notebooks

* More efficient ways combine and execute merged
pipelines is needed

* Better usability of AutoML tools during exploratory
data analysis [Alamin et al. 2022]
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Can We Do Better with What We Have Done?
Unveiling the Potential of ML Pipeline in Notebooks
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Research Questions

Current RQ1: What are the alternatives
practices RQ2: How are alternatives explored?

el i RQ3: Evaluating the unexplored ML pipeline
unexplored RQ4: Potential and capability of AutoML
LISLIEIMEEE  RQ5: Crowdsourcing alternatives
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Tooling Opportunities &

Research Directions

* More efficient ways to extracting and managing
alternatives from large number of notebooks

» More efficient ways combine and execute merged
pipelines is needed

» Better usability of AutoML tools during exploratory data
analysis [Alamin et al. 2022]
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