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Abstract—Bugs are inevitable in software development and
maintenance processes. Recently a lot of research efforts have
been devoted to automatic program repair, aiming to reduce
the efforts of debugging. However, since it is difficult to ensure
that the generated patches meet all quality requirements such as
correctness, developers still need to review the patch. In addition,
current techniques produce only patches without explanation,
making it difficult for the developers to understand the patch.
Therefore, we believe a more desirable approach should generate
not only the patch but also an explanation of the patch.

To generate a patch explanation, it is important to first un-
derstand how patches were explained. In this paper, we explored
how developers explain their patches by manually analyzing 300
merged bug-fixing pull requests from six projects on GitHub.
Our contribution is twofold. First, we build a patch explanation
model, which summarizes the elements in a patch explanation,
and corresponding expressive forms. Second, we conducted a
quantitative analysis to understand the distributions of elements,
and the correlation between elements and their expressive forms.

Index Terms—patch, explanation, program repair, bug-fixing

I. INTRODUCTION

Bugs are inevitable in software development and mainte-
nance, and bug fixing constitutes one of the largest portions
of maintenance cost [29]. To reduce the cost of bug fixing,
a lot of automated approaches have been proposed to repair
bugs [16], [32]. These approaches usually generate a patch and
apply it to the buggy program to make the program satisfy
certain specification such as a test suite.

However, automated program repair systems suffer from
the so-called weak test problem [37], which means that test
suites are usually insufficient. Even if a patched program
passes all tests, it may still be incorrect. In fact, many current
program repair systems produce a large number of incorrect
patches [30], such that developers cannot accept the gener-
ated patches blindly, and reviewing the patches is inevitable.
Besides, current approaches only provide patches without any
explanation, which makes the comprehension of patches more
difficult for code reviewers. For example, Tao et al. [45]
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have shown that patches without enough communications to
developers are likely to be rejected in open source projects.

Therefore, a more desirable approach for automated pro-
gram repair is to generate an explanation along with a patch
to facilitate the patch review. There are some researchers
who have claimed the importance of explaining patches. For
example, Le Goues et al. [17] believe that explaining repair is a
strongly related problem when integrating repair tools into the
development process. Monperrus [33] declares that a program
repair must not only synthesize a patch but also synthesize the
explanation. To synthesize the patch explanation, we first need
to know how a patch should be explained, i.e., what elements
constitute a patch explanation, and how they are expressed. As
far as we are aware, no systematic study has been conducted
to address this problem.

In this paper, we address the problem of what kind of
information was included in a well received patch explanation
by studying how developers explain patches in open source
projects. More specifically, we aim to answer the following
three research questions.
• RQ1: What are the constituent elements for a patch

explanation and how are they expressed?
• RQ2: What is the distribution of different constituent

elements for patch explanations?
• RQ3: What is the distribution of different means for

explaining constituent elements?
RQ1 helps us to understand “what to explain” and “how to

explain”. The other two RQs help us understand how often
the elements and means of explanation are presented and how
they are correlated.

To answer these research questions, we collected 300 bug-
fixing pull requests from six Java open-source projects on
GitHub. All these pull requests have been merged, indicating
that the explanations in these pull requests are more or less
adequate. We manually analyzed all these pull requests to
build a patch explanation model to address RQ1, and then we
performed quantitative analysis over the elements and means
of explanation in the model to answer RQ2 and RQ3.

Our study leads to a number of findings, and we highlight
a few here.



• There are five core elements in a patch explanation,
namely condition, consequence, position, cause, and
change, each explained in different ways (called expres-
sive forms).

• An explanation usually contains only two or three ele-
ments, indicating that we need to decide which element
to present.

• Some elements have positive correlations (appearing to-
gether) while some have negative correlations (mutually
exclusive).

• Reviewers are often assumed to be familiar with the
project, and thus, instead of code terms, high-level ab-
stract terms about the project are often used.

• While not popular among fault localization/predication
approaches, variables are often used to point out the
position of the bug in a patch explanation.

• Conditions are often specified over event sequence, which
is not well supported in mainstream programming lan-
guages.

Our findings present a general understanding of patch expla-
nations written by developers. These findings not only provide
guidance for the research of patch explanation generation, but
also are useful in other directions that require an understanding
of patch explanations, such as guiding developers for writing
better patch explanations, or measuring the quality of patch
explanations.

The rest of the paper is organized as follows. Section II
introduces our dataset. Section III presents our explanation
model. Sections IV and V present our quantitative analysis.
Section VI describes the implications of our study. Section VII
discusses the threats to validity in our study. Section VIII
presents the related work, and Section IX concludes our study.

II. DATA COLLECTION

A. Projects

In this study, we used six popular open-source Java projects
on GitHub, whose basic information is shown in Table I.
We selected these projects by considering various differences
among them so as to increase the diversity of our data sample.
As shown in Table I, the six projects are from different
development organizations, cover both libraries and applica-
tions, and cover both sequential and concurrent projects. More
specifically, RxJava is a library for composing asynchronous
and event-based programs and is often used for building
Android applications [1]. Spring is a framework for creating
Java web applications [2]. PocketHub is an Android client for
GitHub [3]. Nextcloud is an Android client for file share and
communication [4]. IntelliJ is a widely-used Java IDE [5].
Lang is a library for Java utility classes [6].

B. Pull Requests

Figure 1 shows a screen shot of a typical pull request from
the project Commons-Lang in GitHub, which consists of the
following four parts:
• Title briefly summarizes the pull request.

TABLE I
BASIC INFORMATION OF PROJECTS

Orgnization/Project Domain #Star #PR SLOC

ReactiveX/RxJava lib 35,688 51 267.2K
Spring/Spring-Boot frame 29,646 56 243.3K
PocketHub/PocketHub app 9,311 40 157.3K
JetBrains/IntelliJ-Community app 6,647 64 3,544.7K
Apache/Commons-Lang lib 1,450 36 761.8K
Nextcloud/Android app 1,090 53 59.4K

† “SLOC” refers to the number of lines of Java code, calculated by cloc [7]. “#PR”
refers to the number of reviewed pull requests.

Fig. 1. An example of a pull request [Lang#72] on GitHub

• Description explains the pull request in detail, e.g., what
bugs the pull request fixes and how to fix the bugs.

• Conversation shows the discussion between the submitter
and reviewers.

• Code Change Information shows the commits, changed
files, and code change difference, whose details can be
found in the corresponding tags.

In our study, we collected all the pull requests before Jan.
21th, 2019 for each project. We then applied the following
criteria to include pull requests from the initial collection:

The pull request has been merged to the master branch.
We only focus on merged pull requests because merged pull
requests have been reviewed as valid, and its explanation
is probably adequate for the developers to understand the
change. In our study, we follow Gousios’ heuristics [18] to
detect merged pull requests, including integrated through other
mechanisms and GitHub’s user interface.

The pull request changes Java source code. Even if the
main programming language of a project is Java, the changed
code in the pull request may be other programming languages,
such as XML or Markdown. In our study, we focus on bugs in
Java programs, and thus we considered only the pull requests
that mainly changed Java source code, excluding test code. We
checked this condition by examining the concrete changes.

The pull request only involves bug-fixing. A pull request
may have different purposes, e.g., adding new features, refac-
toring, or bug-fixing. In this study, we only focus on the bug-
fixing pull requests. We applied the following criteria to decide



whether a pull request fixes bugs: (1) the pull request has been
labeled with “Bug”; or (2) the link of a bug report labeled
with “Bug” is provided in the description or conversation. To
guarantee that the pull request only fixes bugs, we select the
pull request involving the only one label: “Bug”.

A possible alternative is to also review unmerged requests,
and treat these requests as negative examples to understand
the difference between good and bad explanations. However,
we rejected this idea because the reasons of rejections are
various. A unmerged requests may also be well explained, but
was rejected by other reasons such as incorrect code.

For every project, we randomly selected pull requests
that match the criteria mentioned above one by one un-
til our analyzed results achieve saturation. The pull re-
quests, whose descriptions are only the words “Commit” or
“Bug fix”, were excluded. In the end, we totally reviewed
300 pull requests. Our experimental data can be found at
https://github.com/anonymity2019/issre.

III. RQ1: WHAT ARE THE CONSTITUENT ELEMENTS FOR A
PATCH EXPLANATION AND HOW THEY ARE EXPRESSED?

A. Methodology

We use open coding [25] on all the sampled pull requests
to first generate the element types and then manually label
pull requests with the derived element types. The detailed
process is presented as follows: First, two authors individually
coded the sampled data set by reading the title, description,
and conversation, and summarized the elements for each pull
request; during a second pass, the codes were extracted. The
extracted codes were then grouped together and processed to
remove duplicates and, in cases, to generalize or specialize
them. The new codes were then applied to all answers. When
new codes emerged, they were integrated in the code set.
During the process, the code change information is used to
better understand the pull request and verify the coding results.
The output of this step is the elements a patch explanation
contains, and the relationship among these elements. Once an
inconsistency between the two authors was produced, it was
discussed with other authors until a consensus was reached.

After identifying all the elements, we follow the same
process to further subdivide each element into expressive forms
in order to capture different ways to express an element.
Finally, we built a patch explanation model.

B. Patch Explanation Model

Figure 2 shows the patch explanation model we defined,
which specifies how a patch explanation is formed. In the
model, each line indicates that the item on the left is composed
of the items on the right, where items on the right are optional,
but at least one of them should be presented per each element.

According to our analysis result, a patch explanation con-
sists of five elements (Line 1): Condition, Consequence,
Cause, Change, and Position, and Table II summarizes
each element, and corresponding information.
Condition, Consequence, and Cause describe infor-

mation about the bug, and Change describes information

TABLE II
CHARACTERISTICS OF THE CORE ELEMENTS

Element Explanation Info Category Statics/Dynamics
Condition When the bug occurs Bug Dynamics
Consequence What the bug causes Bug Dynamics
Position Where the bug occurs Bug,Repair Statics
Cause Why the bug occurs Bug Statics
Change How the bug is repaired Repair Statics

1. EXPLANATION ::= Condition, Consequence, Position, Cause, Change
2. Condition ::= [dynamics]
3. Consequence ::= [expected], [actual]
4. Position ::= <file>, <inner class>,

<method>, <variable>, <module>
5. Cause ::= <missing process>, <wrong process>
6. Change ::= <insertion>, <deletion>,

<replacement>
7. [expected] ::= [dynamics]
8. [actual] ::= [dynamics]
9. [dynamics] ::= <state>, [event]
10. [event] ::= <missing event>, <occurred event>

Fig. 2. Patch Explanation Model
[ ] −→ Intermediate Expressive Form, <>−→ Leaf Expressive Form

related to the repair. Position involves both bug and repair
information. Condition is the condition to trigger the bug,
Consequence is the undesirable consequence that the bug
leads to, Position is the location in the source code that
causes the bug and is repaired, Cause is the reason why the
bug occurs at the location, and Change is the modification
applied to the source code to fix the bug. In other words, these
elements explain when, where, and why the bug occurs, what
it causes, and how it is repaired.

Also, Position, Cause and Change concern about the
static, syntactic parts of the program, and Condition and
Consequence concern about the dynamic, runtime behav-
iors of the program.

Each element could be expanded into expressive forms
(Line 2-6), and some expressive forms can further be ex-
panded. We define the expressive forms that could be further
expanded as intermediate expressive forms (marked with [ ]),
otherwise, they are leaf expressive forms (marked with <>).
We shall only concern leaf expressive forms in the quantitative
studies later, and shall refer leaf expressive forms directly as
expressive forms if no confusion would be caused.

Figure 3 shows a patch explanation1, which contains
one Condition element and two Consequence ele-
ments. The element Condition describes a dynamic pro-
gram state, where the function’s argument is a negative
repeat value. One Consequence element expresses the
expected program state (“it returns an empty String”)
and the other Consequence element expresses the actual
occurred_event (“throwing a NegativeArraySizeExcep-
tion”).

C. Elements and Expressive Forms

Now we introduce the elements and their expressive forms
defined in the model.

1https://github.com/apache/commons-lang/pull/72.



Fig. 3. An example [Lang#72] of expressive forms compose to elements

1) Condition: Condition expresses a condition in the
runtime execution where the buggy behavior would be trig-
gered. Thus Condition could be expressed by dynamics,
which could be further expanded to state or event, indi-
cating that a dynamic condition can be expressed either by a
condition on the state of the program or by a condition over
the sequence of events happened during execution. Similarly,
event could be further expanded to missing_event and
occurred_event, indicating that the condition over the se-
quence of events can be expressed by the missing or existences
of events in the sequence.

a) Describing condition over a state: When describing
a condition over a state, the typical pattern is to declare a
predicate over the variables at the corresponding position.
The most common predicate is that a variable is equal to a
certain value or has a specific type. For example, Example 1
shows a condition where the second argument is not a typical
(Wildcard) type. A predicate can be more general and captures
a range of states. For example, Example 2 shows a condition
where the input value contains lower cases.

Example 1: “fixes bug in TypeUtils.equals(WildcardType,
Type) where it was incorrectly returning true when the second
argument was not a Wildcard type.” [Lang#73]

Example 2: “ Currently, IllegalArgumentException occur if
contains lowercase into log level.” [Spring#7914]

Besides concrete conditions like the above that correspond
to concrete code elements, a condition can also be abstract,
typically by declaring conditions over abstract concepts that
are known among the developers. For example, Example 3
shows an abstract condition requiring the presence of multiple
datasources, where “datasource” is an abstract concept known
among developers.

Example 3: “When there are multiple datasources present,
make sure that the AutoConfigureTestDatabase annotation
marks the embedded source as primary.” [Spring#7217]

b) Describing condition over a sequence of events:
Besides describing a condition over the state, the other ex-
pressive form is to describe a condition over the sequence
of events occurred during the program execution. An event
may refer to concrete events, such as calling a method or
throwing an exception, abstract events such as opening a file,
or user events such as clicking a button. Example 4 shows
an abstract event of setting management.port where the
actual implementation code involves creating an object and
calling its methods. Example 5 shows a user event, typically
occurred in applications with GUI.

Example 4: “Webflux doesn’t require Servlet.class, when
setting management.port, auto-configuration would fail with
class not found exception.” [Spring#10590]

Example 5: “Click one issue of “New” tab in Home
page. Click home/back button on the toolbar in the opened
issue page. Will see a strange loading view on the toolbar.”
[PocketHub#1082]

Please note that in theory all assertions over the event
sequence can be declared over states, as the events must
have caused some changes in the state to trigger the bug.
In Example 5, the events that click the tab and button must
cause some values of program variable to be changed. How-
ever, developers still use many assertions (61.1%) over event
sequences, suggesting such assertions may be more natural to
the developers. While we can easily declare assertions over
states in current programming languages, it is not easy to
declare assertions over event sequences. Our results suggest
that such a mechanism may be convenient to the developers
if presented at the programming language level.

Observation 1: When describing runtime conditions,
either assertions over the current program state or
assertions over the event sequence may be used.

2) Consequence: Consequence captures what unex-
pected result the bug caused. Similar to Condition,
Consequence also describes that undesirable behavior hap-
pens at runtime and can be described from two aspects: the
expected behavior, or the actual undesired behavior. For
example, Example 6 explains the expected behavior, where
Follow should be hidden. Example 7 explains the actual behav-
ior, where an undesirable exception IllegalArgumentException
is thrown.

Example 6: “Hides ‘Follow’ on if the viewed user is the
current user.” [PocketHub#955]

Example 7: “Currently, IllegalArgumentException occurs
if contains lowercase into log level.” [Spring#7914]

The consequence for the expected behavior and for the
actual behavior can often be deduced from each other. Thus,
it is common to have one of them in a patch explanation.
However, this is not always the case. For example, Example 8
describes both the expected and actual results, because the two
results cannot be deduced from the other, and both provide
useful information of the bug.

Example 8: “ The following scenario did not work...
expected result: result stream emits the combined event
actual result: result stream does not emit anything” [Rx-
Java#5494]

Observation 2: When explaining the consequence of
a bug, the expected behavior and the actual behavior
can often be mutually deduced from each other in most
cases, and 87.2% of the consequence elements mention
only one of the them.



The same as Condition, the expected and actual conse-
quences are both expressed by dynamics, which expands
to either state or event. Example 9 shows a consequence
state ’true’, example 10 shows the occurred_event
in StackOverflowError, and Example 11 contains the
missing_event “does not throw an exception” in the
program.

Example 9: “fixes bug in TypeUtils.equals(WildcardType,
Type) where it was incorrectly returning true when the second
argument was not a Wildcard type.” [Lang#73]

Example 10: “StackOverflowError on TypeUtils.toString
(...) for a generic return type of Enum.valueOf.” [Lang#292]

Example 11: “ReflectionToStringBuilder doesn’t throw Il-
legalArgumentException when the constructor’s object param
is null.” [Lang#85]

3) Position: Position explains the position in the source
code where the bug occurs and is repaired. Position
can be specified concretely using source code in the code,
or can be specified abstractly using high level terms. Our
model, Position expands to five expressive forms: file,
inner_class, method, variable, and module. The
first four expressive forms are concrete, referring to elements
in the code. For example, in Example 12, StrBuilder is a file
name and replaceImpl is a method name. The expressive forms
do not include class because in Java the file name is required
to be the same with the main class name. The expressive forms
also do not include statements or line numbers, and we observe
the reason is that these information can be easily seen from the
concrete changes and the submitter does not need to mention
them again. Furthermore, as Example 12 shows, an expressive
form with a smaller code granularity does not necessarily
subsume an expressive form with a larger code granularity. For
example, knowing method replaceImpl does not necessarily
mean that we know the file StrBuilder, as methods with this
name can appear in different classes.

Example 12: “Fix issue of buf using nonupdated buffer in
StrBuilder replaceImpl. Avoid array OoB error by keeping
variable buf consistent with buffer.” [Lang#200]

An interesting observation here is that, when submitters
refer to code elements, they seldom explicitly point out the
type of the code elements. In Example 12, the submitter
does not explicitly mention that StrBuilder is a file while
replaceImpl is a method. This observation suggests that the
submitter usually assume reviewers are familiar with the code,
an assumption that can be taken into account when designing
explanation generation approaches.

Observation 3: The submitters of pull requests do not
explicitly mention the type of code element, assuming
the reviewers are familiar with the code and can easily
identify them.

Another interesting observation is that variables are used
to explain the position of a bug in some pull requests. For

example, Example 13 shows a mentioned position which is
a concrete variable swappedPair. In many studies of fault
localization [24], [55] and fault prediction [12], bugs are
usually localized or predicted at statement, method, class, or
file level. This finding suggests that variable may also be a
good way to express the location of a bug and should be taken
into account.

Example 13: “There seems to be a bug in the current
implementation of the isRegistered implementation, where the
swappedPair is constructed similarly to the existing pair to
check their existence in registry.” [Lang#282]

Observation 4: Variables are used to represent the
position of a bug compared to automatic fault local-
ization technique.

The last expressive form module captures a function
related position. In many projects, developers often implicitly
divide the source code into different modules to achieve
different functions, and such module definitions are mutually
understood among submitters and the reviewers. For example,
the project RxJava implements a set of operators, and for
each operator, a set of methods are implemented following
a certain pattern. As a result, by only mentioning the name of
an operator, the reviewer could easily locate the bug location.
Example 14 demonstrates it.

Example 14: “This PR fixes a deadlock issue with the
refCount operator when ...” [RxJava#5975]

A further observation is that, while the positions mentioned
in pull requests are always modified by the patch, not all
positions modified by the patch are mentioned in the pull re-
quests. When a patch modifies multiple positions, usually only
one position is mentioned by the submitter to highlight the
most important and representative position. This observation
suggests an approach highlighting the most important change
may be useful to the user.

Observation 5: Among the explanations of patches
that change multiple positions, 73.8% explanations
mentions only one position.

4) Cause: Cause explains why the bug occurs at a certain
position of the program. Cause has two expressive forms,
missing_process and wrong_process.

The expressive form missing_process captures the
case where developers omitted some processing code. One
possibility is the omission of a subset of input domain, i.e.,
developers forget to deal with some corner cases. Example 15
describes the program lacks a check for a subscriber. Another
possibility is the omission of a procedure. Example 16 shows
that the developer forgets to clear the cookies.

Example 15: “Previously SingleFromCallable did not
check if the subscriber was unsubscribed before emitting
onSuccess or onError.” [RxJava#5743]



Example 16: “Logout never cleared the WebViews cookies
so you could not switch you accounts, we also need to clear
the cached items in the database.” [PocketHub#1109]

The expressive form wrong_process captures the case
where the current processing code is wrong. Example 17
describes the problem that the program does not properly
handle the exclusion of two actions.

Example 17: “The logic didn’t properly mutually exclude
the timer action and the onNext action, resulting in proba-
bilistic emission of the same buffer twice.” [RxJava#5427]

5) Change: Change describes the modifications applied to
the code to repair the bug. As the standard way to express mod-
ifications, Change has three expressive forms: insertion,
replacement, and deletion. However, since the concrete
changes are already given by the pull requests, the submitter
always provides a high-level abstract summary of the change
instead of a description of the concrete syntax differences.
Example 18 explains a removal operation. However, instead
of describing concrete positions of the removal, the submitter
explains the conditions for applying the removal to show the
positions abstractly. Example 19 is an example of insertion,
where “close connection” is used to summarize the concrete
statement inserted and “after performing the actual check” is
used to abstractly specify the insertion location.

Example 18: “This pull request removes the started check
on stop() for Jetty and Tomcat.” [Spring#8227]

Example 19: “Close connection after performing the actual
check to release resources.” [Spring#10153]

Observation 6: In 86.4% of the pull requests de-
scribing the code change, code change is described
in abstract ways to summarize the concrete changes
that are already presented in the file changes.

D. Inter-Rater Agreement

The two authors who participated in open coding respec-
tively had 7 and 8 years of programming experiences. One
was a student in computer department, while another was a
software developer in industrial company. Both of them had
rich experience for bug fixing.

Most of results labelled by two authors were consistent, but
there were inconsistencies in both the elements and the expres-
sive forms. When labeling elements, two authors had disagree-
ment in 34/300 pull requests. Cause and Consequence
caused the most inconsistencies, because the two elements
can sometimes be inferred from each other and thus cause
confusion. When labeling expressive forms, the two authors
had disagreement in 26/300 pull requests. The expressive
forms event and state caused the most inconsistencies,
because assertions over the event can also be translated to
those declared over states, causing confusion.

IV. RQ2: ELEMENTS DISTRIBUTION IN AN EXPLANATION

A. Methodology

In particular, we conduct quantitative analysis for RQ2 and
RQ3 from the following three aspects.
• A1: How many elements a pull request usually contains?
• A2: What elements are more popular when explaining

patches?
• A3: Is there a correlation between any two elements ?
To answer A1 of RQ2, we manually identified whether each

of the five elements exists in each pull request of our dataset,
and then counted the number of elements presented in each
pull request.

To answer A2 of RQ2, we counted the number of pull
requests containing each element, and calculated their pro-
portions among all the pull requests.

To answer A3 of RQ3, we used a statistical metric called
lift [8], which measures how much the occurrence of an item
A increases the probability of the occurrence of an item B, as
defined in Formula 1. In this formula, per(A) is the percentage
of pull requests containing element A in all the pull requests,
and per(A,B) is the percentage of pull requests containing
elements A and B at the same time in all the pull requests.
If lift(A,B) is equal to 1, i.e., per(A,B) = per(A) * per(B),
elements A and B are not correlated. If it is greater than 1,
elements A and B are more likely to appear in the same pull
request. If it is less than 1, the two elements are less likely to
appear in the same pull request.

lift(A,B) =
per(A,B)

per(A) * per(B)
(1)

B. Results and Analysis

1) Number of elements involved in an explanation: Table III
shows the percentage of pull requests containing the corre-
sponding number of elements (#1–5). Overall, only 2.0% (i.e.,
six) pull request involves all of the five elements, while almost
70% pull requests involve two or three elements. For ease of
presentation, we call them two-element and three-element pull
requests.

TABLE III
PERCENTAGE OF PULL REQUESTS CONTAINING #1–5 ELEMENTS

Num. RxJava Spring PocketHub IntelliJ Lang Nextcloud Total

#1 7.8% 19.6% 32.5% 18.8% 8.3% 30.8% 20.4%
#2 29.4% 42.9% 42.5% 45.3% 50.0% 63.5% 45.5%
#3 47.1% 23.2% 17.5% 23.4% 36.1% 3.8% 24.1%
#4 11.8% 12.5% 7.5% 7.8% 5.6% 1.9% 8.0%
#5 3.9% 1.8% – 4.7% – – 2.0%

† ‘Num’ is the number of elements in a pull request.

It is reasonable to use two or three elements to explain
a patch. First, it is scarcely possible for some elements to
be used individually such as Position and Condition.
Therefore, the percentage of one-element pull requests is
relatively small. Second, it is unnecessary to use too many
elements to explain a patch. There are two possible reasons.
First, different elements may convey overlapped information.



For example, in Example 15, the cause of the bug is that
the developer forgot a check for the subscriber, and a natural
change for repairing this bug is to add the check. The elements
Cause and Change are overlapped, and thus the element
Change is omitted in the explanation. Second, some elements
may be not critical to understand the patch. For example,
Example 19 does not specify the condition under which the
bug may occur, but such information may not be critical in
understanding the bug. This observation suggests that, when
generating explanation, it may be important to select which
elements should be involved in the explanation.

When we consider each individual project, the observation
is similar. That is, for three projects, the numbers of two-
element and three-element pull requests are still the largest
in each project, i.e., RxJava 76.5%, Spring 66.1%, and
Lang 86.1%. The results are slightly differet for PoketHub,
Nextcloud and IntelliJ, where the percentages of one-element
pull requests are larger than that of three-element pull re-
quests. We further analyzed this issue, and found that the
one-element pull requests in PoketHub, Nextcloud and In-
telliJ mainly contain Consequence. A possible reason for
their percentage difference is that their domains are differ-
ent. PoketHub,Nextcloud and IntelliJ are application projects,
which may require less explanation than library and frame-
work projects. In many cases, a single expected consequence
describes what happened after applying the patch, which is
enough to explaining the purpose of a patch for application
projects. For example, Example 20 only describes an expected
consequence that is after applying the modification the system
could correctly displaying characters.

Example 20: “modified to display characters of some
languages(eg. chinese) correctly” [PocketHub#466]

Observation 7: Almost 70% pull requests contain two
or three elements.

We also analyze that, for all projects, most one-element pull
requests use Change or Consequence alone.

That is, Change or Consequence alone could well de-
scribe patches to some degree. For two-element pull requests,
Position occupies a significant portion. That is, while it is
not effective when used alone, Position is helpful when
combined with other elements.

Observation 8: Change or Consequence alone
could describe many patches, while Position is
more often used together with other elements.

2) Popular Elements: Table IV shows the percentage
of pull requests containing each type of elements. As
shown in this table, the most frequently used element is
Consequence(75.7%). This is as expected, because most of
the submitters have encountered the consequences of the bug
themselves, and thus it is natural to express Consequence.
The second frequently used element is Condition (48.3%).
This is because bugs are triggered under certain Condition,

and thus when describing Consequence, submitters usually
mention Condition. Cause (22.3%) has the smallest per-
centage. This is because developers have domain knowledge
for each project and can deducted Cause when Change is
explained. For example, Example 21 only describes how did
the submitter fix the bug without explaining the cause, but it is
easy for developers to realize that the cause of bug is missing
null check.

Example 21: “DiffBuilder: Add null check on fieldName
when appending Object or Object[].” [Lang#121]

TABLE IV
PERCENTAGE OF PULL REQUESTS CONTAINING EACH TYPE OF ELEMENTS

Element RxJava Spring PocketHub IntelliJ Lang Nextcloud Total

Position 76.5% 48.2% 12.5% 37.5% 88.9% 3.8% 31.7%
Condition 51.0% 41.1% 57.5% 53.1% 36.1% 49.1% 48.3%
Consequence 76.5% 60.7% 80.0% 81.3% 50.0% 98.1% 75.7%
Cause 27.5% 23.2% 30.0% 21.9% 19.4% 13.2% 22.3%
Change 43.3% 55.4% 25.0% 42.2% 44.4% 9.4% 37.0%

Observation 9: Consequence and Condition
are the two most popular elements, while Cause is
the least.

For each project, the conclusions are also similar. For
example, Consequence is indeed frequently used in each
project, which is the second most popular element for Lang
and the most popular element for all the other projects.
However, there are also some differences for different projects.
For example, the pull requests of framework and library
projects use more Postion than Condition, while those of
the Android application rarely use Position. Through our
manual investigation, one possible reason is that about 40%
pull requests of PocketHub and Nextcloud are described in
terms of UI interactions, which is hard to be directly mapped
to a position in the source code.

3) Correlation of Elements: For A3, we computed the
correlation of any two elements, whose results are shown
in Table V. The bold numbers represent the corresponding
elements that have the most strongly positive correlation,
and the italic numbers represent the elements have the most
strongly negative correlation.

TABLE V
THE CORRELATION BETWEEN TWO ELEMENTS

Position Condition Consequence Cause Change

Position – – – – –
Condition 0.91 – – – –
Consequence 0.79 1.11 – – –
Cause 1.15 0.80 0.80 – –
Change 1.17 0.71 0.61 0.97 –

The pairs with the two most positive correlations involve
Position. The reason is that, when explaining a cause and
change, Position is often used as auxiliary information
and its existence is dependent of other elements. There are
another pair whose correlation is positive: Condition and



Consequence. This is as expected: a single condition with-
out consequence makes no sense.

On the other hand, both Condition and Consequence
are negatively correlated with the other elements except each
other. Especially, Consequence and Change are strongly
negatively correlated. We explored the reason and found that
many pull requests are the fixes of simple bugs, where reading
Condition and Consequence is enough for developers to
deduce other information about bugs.

Observation 10: Position has the most pos-
itive correlation with Cause and Change. Both
Condition and Consequence are negatively cor-
related with the other elements except each other.

V. RQ3: EXPRESSIVE FORMS DISTRIBUTION IN AN
EXPLANATION

A. Methodology

The methodology of RQ3 is similar to RQ2, except that we
applied the analysis to expressive forms instead of elements
from A1 and A2. We did not conduct experiment for A3
because the data quantity is not enough to support correlation
analysis.

B. Results and Analysis

1) Number of Expressive Forms per Element: First of all,
we found that some elements have mutual exclusive expressive
forms and involve at most one expressive form in a pull
request, such as Condition, Cause, and Change. Since
abstract description can be used, with proper abstraction, all
the bugs can be triggered with a single condition, have one
single cause, and require one operation to repair. Therefore,
these elements in our dataset do not require multiple expressive
forms to describe.

For Position and Consequence, their expressive forms
are complementary, Table VI and Table VII show the percent-
ages of the elements Position and Consequence using
the corresponding number of expressive forms to express,
respectively.

TABLE VI
PERCENTAGE OF Position USING #1–3 EXPRESSIVE FORMS

Num. RxJava Spring PocketHub IntelliJ Lang Nextcloud Total

#1 71.8% 51.9% 100.0 62.5% 18.8% 50.0% 53.5%
#2 28.2% 33.3% – 33.3% 78.1% 50.0% 41.9%
#3 – 14.8% – 4.2% 3.1% – 4.7%

† ‘Num’ is the number of expressive forms in position. Position expressive forms
including file, inner class, method, variable and module. #1 means a position only refers
one of above five expressive forms.

Multiple expressive forms are used for Position since
one expressive form often cannot pinpoint a precise location.
We found submitters could use up to three expressive forms in
one pull request in our dataset. As we can see from Table VI,
most pull requests contain one expressive form (53.5%) or
two expressive forms (41.9%), with a few containing three

TABLE VII
PERCENTAGE OF Consequence USING #1–2 EXPRESSIVE FORMS

Num. RxJava Spring PocketHub IntelliJ Lang Nextcloud Total

#1 89.7% 88.2% 84.4% 88.5% 77.8% 88.5% 87.2%
#2 10.3% 11.0% 15.6% 11.5% 22.2% 11.5% 12.8%

† ‘Num’ is the number of expressive forms in consequence. Only consider two kinds
of expressive forms: actual and expected. #1 means a consequence only refers actual or
expected.

(4.7%). There are also some variations between projects. First,
the position information for PocketHub pull request is simple,
which only contains one expressive form. The reason is that,
since PocketHub is a GUI application, most pull requests
describe the bug using user actions, rather than pinpoint
the position in the code. Second, Spring has much more
expressive forms than other projects. A possible reason is, as
a framework, Spring usually requires precise discussion of the
code.
Consequence has multiple expressive forms because

some pull requests describe both expected behaviors and
actual behaviors, as Example 8 shows. From Table VII, we
can find that about 87.2% pull requests only mention one
expressive form, while 12.8% pull requests mention both
actual and expected results. When considering each individual
project, the situation is almost the same: the percentage of pull
requests mentioning one kind of consequence is much larger
than the percentage of pull requests mentioning two kinds of
consequence.

Observation 11: In most cases elements are described
with one expressive form, but Position may require
multiple expressive forms to pinpoint a precise loca-
tion, and Consequence may be expressed from both
expected and actual behaviors.

2) Popular Expressive Forms: Table VIII shows the pro-
portion of expressive forms for each element. We will discuss
each element one by one.
Position. As shown in Table VIII, 38.0% of the

Position elements involve the file name, which is the
most common position information. 37.2% of the Position
elements involve the method name. More concrete positions
such as variables are less frequently used. This observation
is consistent with existing studies [27] that developers expect
fault localization approaches to working on the method level.

The expressive form module is only used in RxJava, since
only this project has a clear notion of module that is mutually
understood among submitters and reviewers.

Observation 12: Coarse-grained positions such as
files and methods are more frequently used than fine-
grained position such as variables.

Condition. From the Table VIII we can see that,
missing_event is never used for conditions in our dataset.
This observation implies that fewer bugs are related to the



absence of events than the presence. In addition, state is
used less frequently than occurred_event, indicating that
an event is more important than a state to express a condition.
Consequence. Consequence can be described from the

actual behavior or the expected behavior. As we can see
from the table, submitters are more likely to describe the
undesirable actual behavior rather than the expected behavior.
Also, events are much more frequently used than states. When
event is used, whether the consequence is described through
missing events or occurred events depending on the nature of
the bug. As we can see from the table, each type occupies
a significant portion. Please note here a missing event in
actual corresponds an occurred event in expected, and
vice versa.

Observation 13: While conditions are described
through both events and states, consequences are much
more often described through events.

Cause. How Cause is expressed depends on the bug
type rather than the choice of submitters. Generally, a bug
occurrence can be divided into two case: one is wrong
handling case, another is missing handling case. Table VIII
shows that the proportion of two kinds of expressive form are:
wrong_process 74.6% and missing_process 25.4%.
Change. Similar to Cause, how Change is expressed

also depends on the bug type. As shown in Table VIII, the
percentage of three expressive forms are: insert (36.7%), delete
(5.1%), and replace (58.2%). The results suggest that most
bugs require addition and replacement to repair, while a few re-
quire deletion. This is consistent with several existing program
repair approaches that treat deletion as an anti pattern [43].

From the table we can also observe project-specific charac-
teristics of the expressive patterns. We have already mentioned
that the pull requests of Lang use more expressive forms for
positions than other projects. Here we can also observe that
method is more frequently used in Lang than other projects.
Furthermore, regarding to Condition, GUI applications
(PocketHub and Nextcloud) and event-based software (RxJava)
are more likely to be specified via events while libraries (Lang)
are more likely to be specified via state. It is interesting that the
application IntelliJ uses state more frequently than the other
two applications (PocketHub and Nextcloud). We investigated
the pull requests of IntelliJ, and found that the reason is
mainly related to the complexity of IntelliJ. Since IntelliJ is a
complex IDE, the state triggering the bug can often be reached
via different event sequences, and it is easier to specify the
condition via state. For example, several bugs are related to the
conflicts between plugins, it is easier to specify the condition
as “the existence of XX and XX plugins at the same time”
rather than describing the plugin installation process.

Observation 14: The use of expressive forms depends
on the category of the project and the type of bug.

TABLE VIII
THE EXPRESSIVE FORM FREQUENCY OF ELEMENTS

RxJava Spring PocketHub IntelliJ Lang Nextcloud Total

Pos

file 38.5% 44.4% 60.0% 58.3% 12.5% 50.0% 38.0%
method 23.1% 22.2% – 29.2% 78.1% 50.0% 37.2%
inner class – – – – 3.1% – 0.6%
variable – 33.8% 40.0% 12.5% 6.3% – 12.4%
module 38.5% – – – – – 11.6%

Cond
miss e – – – – – – –
occur e 80.8% 43.5% 81.8% 58.8% – 73.1% 61.1%
state 19.2% 56.5% 18.2% 41.2% 100.0% 26.9% 38.9%

Consq state actual – 17.6% 25.0% 11.5% 27.8% – 11.5%
miss e actual 7.7% 14.7% 15.6% 9.6% 11.1% – 8.8%
occur e actual 71.8% 88.2% 31.3% 57.7% 61.1% 96.2% 70.0%
state expt – 8.8% 21.9% – – – 7.5%
miss e expt – – – – – – –
occur e expt 30.8% 8.8% 21.9% 23.1% – 15.4% 18.5%

Cause miss process 50.0% 30.8% 25.0% 14.3% 14.3% – 25.4%
wrong process 50.0% 69.2% 75.0% 85.7% 85.7% 100.0% 74.6%

Change
insert 36.4% 33.3% – 40.7% 50.0% 20.0% 36.7%
delete 9.1% 11.1% – – 6.3% – 5.1%
replace 54.5% 55.6% 80.0% 59.3% 43.8% – 58.2%

† ‘e’ is short for event. ‘expt’ is short for expected. Note that we only consider
the expressive forms with the smallest granularity in a pull request. The reason
why the sum is less than 100% is round-off errors.

VI. IMPLICATIONS

Our results have several implications. First of all, our results
are useful for the generation of patch explanations. Our model
has captured the basic elements that should be involved in
a patch explanation and the expressive forms to represent
them, formed a basis for designing explanation generation. Our
quantitative study has revealed which elements and expressive
forms are more frequently used, which elements appear to-
gether or are exclusive. Our findings also review some facts
about the reviewers. For example, reviewers can be assumed
to be familiar with the projects and high-level abstract terms
are often preferred than code. These findings should be useful
in patch generation.

While generating full explanation is hard, our findings
also reveal parts of explanation that can be independently
generated and could be useful to the reviewers. For example,
one possibility is to point out the core modification if a patch
modifies many places in the project. Such a task is much easier
to automate than generating the whole explanation.

Several research efforts have been put on modeling bug
report quality [20], and our results could help to extend these
models for pull request quality. Similarly, many companies
provide guidelines for bug report writers. Our results could
further help extend such guidelines to pull requests.

Our results suggest a new granularity to be used in fault
localization/prediction approaches: variable. Our findings also
confirm that coarse-grained granularity such as methods in
fault localization is preferred by the developers than fine-
grained granularity such as statements [27].

Our finding that elements are often described in the ab-
stract level confirms the usefulness of code summarization
approaches [15], [31], and the collected pull requests provide
data for the research in this direction.

One goal of programming language design is to let the
developers specify the program in a natural way. Our results



found that conditions are often specified on event sequence
but such a specification is not supported by mainstream
programming languages, suggesting a new feature that could
be considered by language designers.

VII. THREATS TO VALIDITY

The internal threat to validity lies in our manual inspection
of pull requests. To reduce the subjectiveness of the manual
process, we adopted the open coding protocol, and two authors
independently analyzed the dataset to obtain the elements and
expressive forms until saturation is reached. We determine that
the saturation is reached when the elements and expressive
forms do not change after analyzing more than 20 pull
requests.

Another internal threat to validity lies in the use of merged
pull requests. We assume the merged pull requests are ad-
equately explained, but a pull request may also be merged
even if the explanation is insufficient. To mitigate this threat,
we investigate 300 pull requests from 6 different projects.
Furthermore, many of findings, such as what elements exist
in patch explanations, are not affected by whether individual
explanations are adequate or not. In addition, we found that
half of the reviewed pull requests were submitted by the core
developers of the projects. Actually, whether a pull request
comes from the core developers has no effect on the model.

The external threat to validity lies in our dataset. Since
each project tends to have its specific characteristics and its
participants have specific expressions, our observations from
our dataset may be not generalized to other projects well. To
reduce this threat, we carefully constructed our dataset by se-
lecting diverse projects that come from different organizations
and different domains. However, our dataset only considers
Java projects and is from GitHub. More studies are needed
to understand whether the results are generalizable to other
programming languages and repositories.

The construct threat to validity lies in the used correlation
metric. We used lift as the metric to calculate the correlation
between two elements. Lift may be not quite sufficient, and
there are other metrics. However, these metrics may be not
appropriate to our situation. For example, Pearson correlation
coefficient [9] measures the linear correlation between two
variables while elements in our model are not. We will try to
use more metrics to confirm our results in future study.

VIII. RELATED WORK

Empirical Studies. There are several empirical studies
concern the communication process between developers and
users around the pull requests, code changes, and bugs. First,
researchers have investigated the factors that affect the pull
request evaluation process [18], [19], [38], [40], [45]–[47],
[51]. Results show that both technical and social factors
affect the chance of acceptance. For example, programming
languages and domain specific factors can influence the suc-
cess and failure probabilities of pull requests. In particular,
Tao et al. [45] investigated the rejected patches in Eclipse
and Mozilla, and summarized the common reasons of patch

rejections. Second, Tao et al. [44] consider the change under-
standing and analysis process of developers, and summarize
the issues considered by the developers when understanding
a (potentially undocumented) code change. Third, Bettenburg
et al. [10] studied what makes a good bug report and revealed
that steps to reproduce, stack traces, and test cases are helpful
for developers to debug. Fourth, several approaches studies
pull request triaging problem, that is, automatically recom-
mending reviewers for pull requests [22], [28], [50], [52]–[54].
However, none of these studies answers the research questions
of this paper: how patches are explained, what elements are
mentioned in the explanations, and how they are expressed.

Automatic Code Comments Generation. Researchers have
worked on automatically generating code comments in the lit-
erature. Most of these techniques mined existing projects, doc-
umentations, communications between developers to generate
comments [14], [21], [26], [35], [36], [48], [49]. For example,
ColCom [48] generates code comments by applying code
clone detection techniques to discover similar code segments
and used the comments from some code segments to describe
the other similar code segments. Besides, Sridhara et al.
leveraged the program analysis and natural language analysis
to automatically generate descriptive summary comments for
Java methods [41], Java classes [34], and parameter com-
ments [42]. These approaches generate comments in general
and do not consider the specific model of patch explanations.
We believe our approach could potentially be combined with
these approaches to build better patch explanations.

Automatic Change Summarization. Multiple approaches
have been proposed to automatically generate summarizations
for code changes [11], [13], [23], [39]. These approaches
use text or syntactic differencing algorithms to identify and
represent the changed part of the code, and extract com-
ments or documentation related to the changed elements
for developers’ reference. In other words, these approaches
mainly generate the concrete explanation for the Change
element. Our studies reveal there are other elements such as
Condition, Consequence, Position, and Cause often
used in explaining patches, and Change element is often
explained abstractly. These elements and expressive forms
could be the future targets for summarization approaches.

IX. CONCLUSION

In this paper, we investigated the question “how to ex-
plain a patch”, with a manual inspection on 300 bug-fixing
pull requests from six projects in GitHub. We built a patch
explanation model, revealing the core elements and their
expressive forms in a patch explanation. We also performed
quantitative analysis over the elements and patch explanations
to understand their distributions and correlations. Our study
leads to a set of findings which could be useful in different
research problems, including generating patch explanation,
measuring pull request quality, helping developers to create
better pull requests, fault localization, fault prediction, code
summarization, and programming language design.
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