LLMs in Mobile Apps: Practices, Challenges, and
Opportunities

Kimberly Hau
University of Toronto
kimberly.hau @mail.utoronto.ca

Abstract—The integration of AI techniques has become in-
creasingly popular in software development, enhancing perfor-
mance, usability, and the availability of intelligent features. With
the rise of large language models (LLMs) and generative Al,
developers now have access to a wealth of high-quality open-
source models and APIs from closed-source providers, enabling
easier experimentation and integration of LLLMs into various sys-
tems. This has also opened new possibilities in mobile application
(app) development, allowing for more personalized and intelligent
apps. However, integrating LLM into mobile apps might present
unique challenges for developers, particularly regarding mobile
device constraints, API management, and code infrastructure.
In this project, we constructed a comprehensive dataset of
149 LLM-enabled Android apps and conducted an exploratory
analysis to understand how LLMs are deployed and used within
mobile apps. This analysis highlights key characteristics of the
dataset, prevalent integration strategies, and common challenges
developers face. Our findings provide valuable insights for future
research and tooling development aimed at enhancing LLM-
enabled mobile apps.

Index Terms—Large Language Model, LLM, Mobile Applica-
tion, Android Application, Open-source Application, AI-enabled
Software, ML-enabled Software

I. INTRODUCTION

Recent years have not only witnessed significant
advancements in natural language processing (NLP) tasks, but
also launched large language models (LLMs) into recognition
beyond its niche in NLP. Since then, the area has been moving
fast [1]], with LLMs showing potential toward becoming the
basic building block for general-purpose artificial intelligence
(AI) agents, and generative Al. Characterised as transformer-
based language models with over a billion parameters and
pre-trained on large Web-scale text corpus, it has been found
that scaling up both the size of training data and parameter
count of LLMs increases the capability of the models to
approximate human-level performance in various tasks [2].

As such, LLMs are now frequently integrated into
various types of software to enhance functionality across
a wide array of applications [1]], [3]-[6]. Similarly, mobile
applications (apps) are increasingly incorporating LLM
components, bringing advanced AI capabilities directly to
users’ devices. However, deploying LLMs to mobile devices
presents significant challenges. Prior studies have explored the
technical aspects of the integration of AI models into products,
and observed that the resource-constrained restrictions of
mobile devices make LLMs especially difficult to deploy

Safwat Hassan
University of Toronto
safwat.hassan @utoronto.ca

Shurui Zhou
University of Toronto
shuruiz@ece.utoronto.ca

locally to mobile apps [7]]. As studied by Alizadeh et al., the
unprecedented capabilities of LLMs come with substantial
computational and memory requirements for inference [8].
Also, Coplii et al. investigated the performance of LLMs on
various smartphones and concluded that further advancements
in power management and system integration are required
for achieving sustained performance on even top-of-the-line
mobile devices [9]]. This is corroborated by Murthy et al.,
who benchmarked the performance of LLMs on on-device
use cases and concluded that current LLMs require significant
resources in terms of CPU and RAM usage when deployed on
mobile devices [|10]. In addition to deploying LLMs on-device,
another option for LLM deployment is vendor-provided APIs
of commercial LLMs, such as Google’s Gemini [11] and
OpenAI’s GPT [12], which allows users the ability to run in-
ference on closed-source LLMs without requiring memory and
computational costs of storing and running the model locally.
However, as observed by Minaee et al., this comes with the
costs of maintaining subscriptions to the LLM vendor, latency
lags, and security concerns with transmitting information [[1]].
Overall, there remains a need for an examination of the
methods commonly employed by practitioners to integrate
LLMs into Android apps, along with an analysis of the
distinct challenges associated with each approach. Therefore,
in this study, we aim to provide insight into the practices,
opportunities, and challenges that surround the current deploy-
ment of LLMs to Android apps. This includes investigating
characteristics of LLM-enabled apps, integration strategies for
merging LLMs with traditional code, handling the challenges
of maintenance and updating apps in time with LLM updates,
and other common concerns with deploying LLMs to mobile
apps. For this project, we define LLM-enabled mobile apps
as mobile apps that contain one or more LLM components and
use such components to provide functionalities. We compiled
a detailed dataset comprising 149 Android apps available on
GitHub, each incorporating at least one LLM component, and
then asked the following three research questions (RQs):
RQ1: What are the characteristics of LL.M-enabled apps?
Method: For each Android app, we leveraged the GitHub
API [13]] to gather metrics such as the number of stars,
commits, issues, and contributors. We then manually inspected
each app to collect the LLM-related information, such as
the types and their vendors. From this data, we summarized
common traits across the dataset as well as outliers.

Results: We analyzed and interpreted the distribution of the
metrics above, finding that there is little difference in value
between the first 2 quartiles, indicating that a large percentage
of apps are smaller projects, but there are severe outliers. For
example, the median star count is 8, but the most starred
app in the dataset has 58,129. Finally, we classify the app
functionalities across the dataset and discover that the majority
of apps’ main functionality is chatbots, followed by other uses
of Al APIs such as text and image generation.

RQ2: What main integration strategies are used to adopt
LLMs into apps?

Method: We downloaded and qualitatively analyzed the source
code of each app to identify the different methods used by
developers to integrate LLMs into apps. We also provided
descriptive statistics for releases, issues, LLM-related releases,
and the app sizes associated with each strategy.

Results: We identified five integration strategies (IS) that are
utilized across the dataset to call LLMs as described below.
We find that 132 out of 149 apps integrate LLMs through
the first strategy, and apps that download the LLM either on
the end-device or a back-end server require fewer updates to
LLM-related code, compared to strategies that do not.

o IS1: Using third-party APIs provided by LLM vendors.

o IS2: Using a third-party website and calling LLMs as a
webview app.

o IS3: Calling LLMs hosted on a back-end server.

o IS4: Hosting LLMs on the user end-device.

o IS5: A hybrid strategy that utilizes two out of the four
integration strategies.

RQ3: What drives developers to update LLM-related
code?

Method: We manually identified the code used to interact with
LLMs for each app then collected the number of commits to
these code files as well as the commit messages. In order
to understand the intention behind these updates, we fed the
scrambled set of all commit messages into ChatGPT [12] to
identify the top ten most common topics across these updates.
In addition, we also observe the distribution of topics across
each integration strategy.

Results: We observe that the top three most common topics for
LLM-related code updates are Feature Additions, Refactoring
and Code Cleanup, and Version Updates.

To sum up, our study makes the following contributions:
(1) We present a novel dataset of Android apps with LLM in-
tegration, (2) We summarize the characteristics of this dataset
and the strategies used to integrate LLMs into the apps, and
(3) We analyze the commit messages of LLM-related code
updates to obtain insight into what drives developers to update
LLM-related code. Our findings shed light on how LLMs have
thus far been applied to mobile apps, and the challenges and
opportunities that come with it. The entire dataset can be found
in the replication package [14].

II. RELATED WORK
A. Studies on ML-enabled Systems

With the popularity of machine learning (ML) increasing
over recent years, there has been an increasing number of
products incorporating ML models into their products [1]], [3]—
(6, [15]. However, adding ML models to existing systems
require additional infrastructure and consideration of system
architecture [5], [16]. As well, developers must consider
system requirements and user concerns and experience, which
poses challenges on how to best embed the ML model [15],
[17]. The most commonly named problems include data qual-
ity, meshing ML models with traditional software parts, tool
support for managing ML products, and quality assurance [|15]],
[16]. Overall, we still know very little about how ML models
are embedded and integrated into ML-enabled systems [|15].

As a new subset of ML models, there is a similar mystery
surrounding how LLM models are being integrated into LLM-
enabled systems. Also, the findings from prior work focussing
on general systems may not be directly applicable to mobile
apps, as mobile apps are subject to more continuous, user-
motivated, maintenance [18]], and different non-functional con-
straints (e.g. energy consumption) [[19]. We aim to focus on
a subset of LLM-enabled systems by presenting an empirical
study on 149 LLM-enabled Android apps and the strategies
used to integrate LLMs.

B. On-Device LLM Deployment

One method to integrate LLMs into a system is to deploy
them on-device. Deploying LLMs on device is becoming a
research hotspot as it increases the potential applications and
eliminates the costs of cloud deployment, such as security
and internet connection [2]. However, there are restrictions
on limited hardware performance, memory bandwidth, and
storage capacity. LLMs have many parameters and have large
memory requirements to store the model parameters, the model
activations, and the gradients and corresponding statistics [2].

To facilitate on-device deployment, LLM-specific inference
engines have been developed, such as Llama.cpp [20], MLC-
LLM [21], or Langchain [22]]. These engines are specifically
designed for transformer-based LLM deployment on CPUs and
GPUs. In this study, we aim to investigate the use of these
engines in implementing LLMs in mobile apps, and how they
are incorporated into the rest of the system.

C. Third-Party Libraries in Mobile Apps

A large number of companies develop software by way of
Application Programming Interfaces (APIs), also known as
third-party libraries, which allow the reuse of existing code
components [23]]. These libraries are widely used in mobile
apps, accounting for, on average, over 60% of Android app
code as well as being used in almost every popular open-
source Android app project [23]], [24]. When these companies
issue updates to these libraries, app developers have the choice
to adopt these implementations, but may be deterred due to
the effort or effects of upgrading these libraries [25]. Salza et
al. conducted an empirical investigation into the when, why,

Search by Apply
LLM-reIated—»gg'171 - filtering | 622 | m.anu.al > 132
Repos L Repos | validation | Repos
Keyword criteria
149
Search b App! Repos
earcn Y [41356] SPPY 9151 manual [46
android' —>| I filtering o
) Repos o Repos | validation | Repos
topic criteria

Fig. 1. Data collection overview.

and how mobile app developers update third-party libraries in
code and found that only 15.52% of library uses are constantly
updated by developers, most of the updates are done with the
aim of avoiding bug propagation or making an app compatible
with the Android releases, and some app developers do not
update libraries due to low payoff or to not break existing
code [26]. We aim to investigate the particular usage of LLM-
related APIs, and whether they are a large factor in-app
updates and new releases.

Considering the numerous factors contributing to the
uncertainty and challenges associated with implementing
LLMs—including the requisite architectures, infrastructures,
and best practices—we aim to address key research gaps
through an analysis of Android apps that have integrated
LLMs. This study seeks to identify prevalent use cases,
challenges, and integration strategies related to incorporating
LLMs, as well as to characterize the features of such apps. By
leveraging these findings and metrics, we endeavor to answer
critical research questions regarding the implementation of
LLMs in Android apps, ultimately offering insights to inform
and facilitate the integration of LLMs in mobile apps.

III. DATA COLLECTION

Our study focused exclusively on open-source Android apps
with LLM integrations. Open-source projects provide access
to development practices typically unavailable in closed-source
software, such as code architecture, commit history, and testing
procedures. We began with a list of 33 LLM-related keywords
obtained from model repositories and scholarly articles, cov-
ering widely-used LLMs, frameworks specific to LLMs, and
companies focused on LLM technology [27]-[33], listed in
Tab. | We utilized the GitHub API [13] to collect a list of
repositories based on two distinct search criteria as presented
in Fig. [1]

TABLE I
THE LLM-RELATED KEYWORDS USED FOR DATA COLLECTION.

Category Keywords for Data Collection

Company openai [34], cohere [35]

Framework langchain [22], mlc llm [21], ollama [27], llama [20]
Term LLM, large language model

Model alexatm [36], claude [37], deepseek [38]], falcon [39],

gemini [[11]], gemma [40]], gpt [[12]], LaMDA [41],
marcoroni [42], minichat [43]], mistral [44], mixtral [45],
nyxene [46]], orca [47], PaLM [48], phi-1.5 [49],

phi-3 [50f, gwen [S1]], redpajama [52], shining

valiant [53]], stable beluga [54], stablelm [55]],

starling [56]], una-xaberius [57]], vicuna [58]

1) Search criterion 1: Matching keywords in repository
names, descriptions, or issue/PR discussions: We collected
all repositories that had one or more of the keywords in their
name or description, with at least one star and one fork.
We also collected all repositories with one or more stars
and forks with at least one issue or pull request (PR) that
contained one or more of the keywords. We specified the
creation date of the issues or PRs to be after the release date
of the corresponding LLM, or within the year 2022 for LLM-
related terms. This ensures that the search results focus on
discussions, updates, or contributions that are relevant to the
deployment or utilization of the LLM in question, reflecting
more current and contextually appropriate data. This resulted
in a list of 89,170 unique repositories.

Following the collection of repositories, we filtered reposi-
tories that match the following exclusion criteria (EC):

o ECI1: Projects without a Readme file: We excluded all
repositories that did not have a ReadMe file. This was
performed to remove toy projects, as well as to prevent
toy projects that are not well maintained from evading
the next step. This reduced the number of repositories to
81,955.

o EC2: Projects that are either deprecated or not
Android apps: We discarded all repositories that had
at least one of the exclusion keywords listed in Tab.
present in the ReadMe file. This was done to remove
repositories that were deprecated, archived, or obvious
non-product repositories, using exclusion terms such as
“tutorial,” “framework,” and “obsolete.” These exclusion
keywords were taken from Nahar et al.’s work [17]], which
utilized a similar filtering process for extracting ML
products. 24,144 repositories were remaining following
this step.

o EC3: Projects that do not have an Android-
Manifest.xml or lack activities in the Android-
Manifest.xml file: App developers need to include
AndroidManifest.xml file that specifies the main
settings of the app, such as required permissions and the
minimum Android API version. In our study, repositories
lacking an AndroidManifest.xml file were excluded, as
its absence indicates the repository does not represent a
genuine Android app. This filtering reduced the number
of repositories to 670. Subsequently, repositories contain-
ing one or more AndroidManifest.xml files were
further examined to ensure at least one activity was
defined in the manifest, resulting in the exclusion of 48
repositories and leaving a total of 622.

TABLE I
THE EXCLUSION KEYWORDS USED FOR FILTERING REPOSITORIES.

deprecated, obsolete, framework, library,
testing, toolkit, example, sample, guideline,
guide, tutorial, blog, book, libraries,
toolchain, interview notes, curated collection

Manual validation. Following these automatic filtrations,
the 622 repositories remaining were subject to manual

examination for LLM-relation. Manual validation was
employed for high accuracy in the end dataset. Each
repository was examined for some LLM involvement, such as
the use of REST APIs for closed-source LLMs, LLM-specific
frameworks, or discussion of LLM use in issues or pull
requests. Repositories were discarded for having no LLM-use
or being archived. The most common reason for repositories
being discarded was being flagged for LLM-related keywords
that did not refer to LLMs in the context that it was flagged
for. This was most common for ubiquitous terms such as
‘palm’, ‘falcon’ and ‘orca’, as well as ‘large language
model’, as the GitHub API did not maintain the order of
terms. Some repositories were also flagged for keywords such
as ‘GPT’ and ‘Claude’ from issues, in which users asked or
referenced GPT when having questions or writing code. A
few projects were categorised as ‘unknown’ for whether they
had LLM use, typically due to being mono-repositories or
containing multiple projects, which contained both LLM-use
and Android apps, but had unclear overlap.

After categorising each repository, we filtered all non-
English repositories. This resulted in 518 English repositories
from the previous 622. Of the 518 English repositories, 132
were true positives, 340 were false positives, and 46 were
categorised as ‘unknown’ or ‘other’.

2) Search criterion 2: Searching for Android repositories:
We performed a second data collection process to collect
repositories that did not have LLM mention in their title
issues/PRs but used LLMs in their code. In this process, we
used the GitHub API to gather all repositories that had been
added to the ’android’ topic on GitHub, with one or more
stars and forks. Following this, we cloned each repository
and applied our exclusion criteria (EC1 - EC3). This step
reduced our pool of candidates from 41,356 repositories to
12,063. We then searched each repository for the presence
of any of our LLM-related keywords in the code or title,
which further reduced our candidates to 6,678 repositories.
Due to the commonality of our keywords, we applied another
filtration step from this pool by searching each repository
for the presence of any keyword, preceded by either a space
or a special character. The result of this step was 1,151
repositories, which we performed manual validation on to find
46 repositories with LLM use, of which 17 were not also found
in the previous process. This brought our final dataset to 149
repositories. From this dataset, we performed an initial data
exploration into project characteristics.

IV. RQ1: WHAT ARE THE CHARACTERISTICS OF
LLM-RELATED APPS?

A. Methodology

To determine the characteristics of the dataset, we gathered
repository metadata related to the popularity and relevance of
projects, including the counts for contributors, commits, and
issues for each app using the GitHub API [13]]. Additionally,
we used cloc [59] to count blank lines, comment lines, and
physical lines of source code in a code base, to determine
the software size in lines of code (LOC) per app. We then

1.0 7 — cdf
wi
@
S 0.8 1
@
Q
[=%
L
= 0.6+
&
[
it
¥
‘G 0.4
7]
o
8
=
g 0.2 1
.7}
o
0.0 1
T T T T T T T
=] 0 xS 1 %] B
I U s L S L
Study year

Fig. 2. Cumulative distributive function of creation time across the dataset
of 149 Android apps.

TABLE III
VENDOR, LLMS PER VENDOR, AND THE NUMBER OF APPS PER VENDOR.

Vendor LLMs # of apps
Google Gemini, PaLLM, flan-t5 41
Anthropic Claude 5
Meta Llama, BART 6
Openai GPT, Whisper, Dall-E 111
Mistral mistral, mixtral 7
Perplexity Al perplexity 1
Ollama ollama 1
Huggingface huggingchat 1
Open-source vendors local model 4

manually investigated each app to log which LLMs were used
per app, whether it was open- or closed-source, as well as used
locally or with an APL

Finally, we classify the functionalities offered by the apps
of this dataset. For the 132 of 149 apps that had a repository
description, we retrieved the descriptions used and submitted
them to OpenAI’s GPT- 40-mini using a paid OpenAl API
subscription, set to zero temperature [[12f]. We first asked
the model to determine the top 5 functionalities presented
across all repository descriptions in a zero-shot prompt and to
provide a description of each functionality. We then prompted
the model with another zero-shot prompt that provided the
list of repository descriptions and the top 5 functionalities
and their descriptions and asked the model to assign one
functionality to each app. Finally, for the 17 apps that did
not have a repository description, we manually categorized
them by title and ReadMe file. The results of these prompts
are shown in Tab. [V1l

B. Results

The distribution for the collected metrics is shown in
Fig. and also presented in Tab. [V] Fig. 2] shows the
cumulative distribution of the creation date of repositories,
with the earliest repository (“YoubiMiku”) being created in
2018. We also present the top 10 repositories by star count

Histogram for contributors Histogram for commits

Histogram for issues Histogram for lines of code

,i
S
S

Frequency

Frequency
5 8

Frequency

®
2
I

N
S

o

50 100 150 200 250 300 350
contributors

o

10000 20000

commits

30000 40000

140
120
100 I

I 80
60
I 40

0 100 200 300 400 500 600 700 0 1 2 3 4 H
issues lines of code e

Frequency

Fig. 3. Histograms displaying the distribution of several characteristics.

TABLE IV
AN OVERVIEW OF THE TOP TEN REPOSITORIES SORTED BY STAR COUNT.

App #Stars #Commits #Contribors #Issues Google Play
AppFlowy 58,129 6,294 334 436 Yes
Maid 1,485 1,885 22 158 Yes
Futo Keyboard 775 42,801 62 739 Yes
GPT Assistant 667 44 1 51 No
chatAir 527 573 15 47 Yes
Flutter ChatGPT 461 19 6 9 No
OtakuWorld 446 2,176 5 11 No
_\GPT Mobile 413 371 4 38 Yes
ChatGPT App 337 19 2 22 No
SpeakGPT 291 179 2 128 Yes

in Tab. We also observe a large range of values for
the number of commits (spanning from 19 to 42,801) and
contributors (1 to 334) of these 10 apps. Notably, six out of
the 10 apps are also available on Google Play Store. Tab.
displays the overall distribution of LLMs used in this dataset,
and their vendors.

Contributor Distribution. Our results show that the aver-
age number of contributors is 5 with a median of 1 contributor.
The minimum, first quartile, and second quartile values for the
number of contributors are all 1, indicating that at least half
of the apps are maintained by a single contributor. The third
quartile shows only a modest increase, reaching 2 contributors.
However, the dataset contains a significant outlier: the app
“AppFlowy” [60]], which has 334 contributors, far exceeding
the third quartile value. As described in the project Readme
file, this app offers a variety of LLMs via APIs, including
GPT, Claude, Llama, and Mistral, as well as locally hosted
models, to power their search functionality.

In contrast, the majority of apps (101 out of 149) have only
1 contributor. These apps exhibit limited activity, with median
values of O issues, O releases, 2 stars, and 34 commits. The
remaining 48 apps with more than one contributor demonstrate
higher engagement with a median of 21.5 stars and 21.5
commits, though their median number of issues and releases
remains the same as those maintained by a single contributor.

Commit size. Although the average number of commits is
501, only 25% of the projects have more than 60 commits,
and 50% have fewer than 20 commits. There is an average
of 7 days per commit across all apps, with a median of 1
day per commit. Notably, “Futo Keyboard” app [61] stands
out with 42,801 commits, significantly exceeding the dataset’s
general trends. “Futo Keyboard” is a customizable keyboard
app leveraging local LLMs Whisper and Llama, and is among

the more popular apps, with 775 stars and 62 contributors.
The minimum number of commits is recorded for the app
“WizGPT” [|62f], which was created on May 4, 2023, with only
one commit labeled as “initial commit” since then. “WizGPT”
was planned to be a GPT and Dall-E powered voice assistant
that can be run on Android, i0S, Web, and Desktop based on
the Readme file. “WizGPT” has 6 stars and O releases and
issues.

Number of issues. The dataset shows a median of 0 issues
per project, with an average of 16 issues. Half of the projects
have no reported issues, and three-quarters have 4 or fewer.
The app “Futo Keyboard” [61]] significantly skews the upper
range with 739 issues, which inflates the average despite
most projects exhibiting minimal or no issues. A total of 82
apps, representing the majority, have 0 issues. These projects
typically exhibit minimal activity, with median values of 0
releases, 4 stars, and 11 commits. In contrast, apps with at least
1 issue demonstrate higher engagement, with median values
of 1 release, 24 stars, and 38 commits.

Sizes of the apps. The median size of the collected apps,
measured in LOC, is 3,838, with an average size of 70,360
LOC. The average LOC is nearly twenty times the median,
indicating a skewed distribution with some exceptionally
large apps. The app with the highest LOC, at 5,176,508, is
chatAir [63]], a native Android app for chatting with GPT,
Claude, and Gemini. As one of the most prominent apps in
the dataset, chatAir boasts 485 stars and ranks above the upper
quartile for issues, contributors, and commits. Its LOC count is
over five times the dataset’s average and represents the largest
size among all projects. The app also has the most tags in the
dataset, reflecting its active development. Conversely, the app
with the smallest LOC is OldGPT [64], a lightweight chat
app designed for users with outdated browsers or operating
systems. OIldGPT integrates GPT through the OpenAl API
and has minimal activity, with just 1 star, 3 releases, and no
reported issues.

App functionalities. As shown in Tab. the most com-
mon functionality seen across the repository descriptions is
Chatbot. Over half of the dataset (56%) is categorized into
this functionality. Conversely, the least common functionality
is Task Management and Productivity Tools, with only 6 apps
categorized into this functionality. Examining the descriptions
of each functionality, we can see that all functionalities men-
tion Al, indicating that the majority of apps use LLMs to
provide a large part of their service.

https://github.com/AppFlowy-IO/AppFlowy
https://play.google.com/store/apps/details?id=io.appflowy.appflowy
https://github.com/Mobile-Artificial-Intelligence/maid
https://play.google.com/store/apps/details?id=com.danemadsen.maid
https://github.com/futo-org/android-keyboard
https://play.google.com/store/apps/details?id=org.futo.inputmethod.latin.playstore
https://github.com/Skythinker616/gpt-assistant-android
https://github.com/flyun/chatAir
https://play.google.com/store/apps/details?id=info.flyun.chatair
https://github.com/wewehao/flutter_chatgpt
https://github.com/jakepurple13/OtakuWorld
https://github.com/Taewan-P/gpt_mobile
https://play.google.com/store/apps/details?id=dev.chungjungsoo.gptmobile
https://github.com/matthaigh27/ChatGPT-android-app
https://github.com/AndraxDev/speak-gpt
https://play.google.com/store/apps/details?id=org.teslasoft.assistant

TABLE V
A SUMMARY OF THE DISTRIBUTION OF QUANTITATIVE MEASUREMENTS
TAKEN ON THE DATASET.Q1-FIRST QUARTILE, Q3—THIRD QUARTILE.

Category Min. Q1 Median Q3 Max. Mean
#Stars 1 3 8 27 58,129 4494
#Commits 1 7 22 61.0 42,801 500.7
#Releases 0 0 0 1 88 4.6
Project age (days) 0 4 64 293 2,432 199
#Contributors 1 1 1 2 334 4.7
#lssues 0 0 0 4 739 15.7
KLOC 0.2 2.2 3.8 9.1 51765 70.3
Avg. days/commit 0.0 0.3 1.3 4.5 195.3 6.8

V. RQ2: WHAT MAIN INTEGRATION STRATEGIES ARE
USED TO ADOPT LLMS INTO APPS?

A. Methodology

To identify the strategies employed for integrating LLMs
within the dataset, we analyzed the source code for each app
by extracting and inspecting files containing code responsi-
ble for importing or invoking LLM functionalities. Similar
methods of model invocation were categorized into distinct
integration strategies, for which we computed median metrics,
including frequency of usage, number of releases, reported
issues, and lines of code. Furthermore, we calculated the
median proportion of LLM-related releases by pinpointing
commits that modified files containing LLM-related code. We
then counted the number of releases that followed one or more
such commits since the prior release. LLM-related code was
defined as code-facilitating tasks such as selecting, switching,
downloading, or invoking LLMs, including elements such as
API URLs, model identifiers, or prompt templates.

B. Results

Through qualitative analysis, we identified five distinct strate-
gies employed by developers to integrate LLMs into their
workflows. Tab. provides an overview of the key char-
acteristics associated with each strategy. These strategies are
described in detail below.

1) Strategy 1: Using Third-party API Calls: This strategy

is by far the most common across the dataset, with 132 apps
in our dataset using this integration strategy.
Description: This strategy (shown in Fig. d) allows developers
to access popular closed-source LLMs (e.g., GPT and Gemini)
using an API key. As shown in Fig. 5 developers set up
the model parameters (e.g., select the used model, define the
required temperature, and the maximum output token size).
Then, the mobile app calls the third-party model using an
API key for authentication. Given this strategy’s popularity,
packages are available from both vendors and third parties
that can help implement it. Two-thirds (87) of this strategy’s
apps call directly the third-party API using HTTP requests.

Our analysis reveals that 45 apps employ mediator libraries,
which serve as intermediaries to facilitate integration with

App Code Vendor Server
‘App Screen <> API Client <—1—» VTP"IC" <> LM
App Code Vendor Server
Mediator Vendor
‘App Screen}<—> Library ‘——» APl € LM

Fig. 4. An overview of the two methods for calling LLMs using Third-party
APIs.

third-party APIs. These mediator libraries can be categorized
into two distinct types:

1) Custom mediators that facilitate the connection to
a single vendor’s API: In this type, the third-party API
providers (e.g., Google, OpenAl) design the mediator
library to facilitate the connection to their API. For
example, as shown in Fig. 5] “AI Study Assistant” app
imports Google’s official generative library to access the
GenerativeModel object for calling Gemini. We find 21
apps that adopt custom mediators to integrate LLMs into
their code.

2) Generic mediators that facilitate the connection to
multiple vendors’ API: In this type, a generic medi-
ator library that facilitates the connection to multiple
LLM APIs. For example, “ChatAir” app imports the
theokanning.openai package that facilitates a connection
to GPT, Gemini, and Claude. We found 24 apps that
adopt generic mediators to integrate LLMs into their
code.

Insights and Discussion: Consistent with the overall dataset,
the subset of apps utilizing third-party API calls exhibits a
right-skewed distribution across most metrics. The median
values for both releases and issues in this subset are zero.
However, for apps with at least one release, the median number
of releases is 2.5, with 66.7% of these releases involving
modifications to LLM-related code. These findings highlight
the necessity for developers to actively maintain and update
LLM-related code as part of their app development process.

suspend fun generateText(
prompt: String,

key: String,

): String? {

val generativeModel = GenerativeModel(
modelName = "gemini-1.8-pro-latest"”,
apiKey = key,

generationConfig = generationConfig {
temperature = temp
maxOutputTokens = 2048
candidateCount = candidates

s
safetySettings = safetySettings

)

return generativeModel.generateContent(prompt).text

}
Fig. 5. An example of integrating Gemini using Google API [65].

2) Strategy 2: Using Third-party Website: Six apps use a
web view wrapper to access third-party LLMs.

TABLE VI
APP FUNCTIONALITIES ACROSS THE DATASET.

Functionality # (%) Description E.g., App and Description
Apps feat.ure a <;hatb0t 1nterfacc? that allows users to engage in natl}ral l.anguage ~ (ChatGemini - this app is a
conversations with AI models like ChatGPT or Gemini. This functionality enables -
Chatbot 84 (56%) L multiplatform chatbot app powered
users to ask questions, seek information, or have casual conversations, providing a by Gemini
personalized and interactive experience. y ’
Apps utilize APIs from OpenAl or other Al providers to access advanced features . , .
. . Lo . oo . . Sense - this app’s description
Integration with such as text generation, image creation, and summarization. This integration 5 . .
27 (18%) S describes itself as an OpenAl client
LLM APIs allows developers to leverage powerful Al models to enhance the app’s .
e . . o - o with ChatGPT support.
capabilities and provide users with sophisticated functionalities.
Apps are designed to generate content based on user input, such as recipes, Al Study Assistant - this app aims to
Content 19 (13%) stories, or summaries of videos and documents. This functionality allows users to enhance learning experiences by
Generation ° create personalized content quickly and efficiently, often using Al to enhance offering lecture summarization, essay
creativity and reduce effort. writing, and question generation.
. Apps incorporate voice recognition and syntheS}s capal'nlme.s, allowing users to SpeakGPT - this app is described as
Voice interact with the AI using voice commands. This functionality enhances - ;
. 13 (9%) o . . .] . a personal voice assistant, based on
Interaction accessibility and convenience, enabling hands-free operation and real-time voice ChatGPT
responses. :
Task App§ focus.on productivity by offering features like task management, to-do 11§ts, ToDo Tist with ChatGPT - this app’s
Management and journaling. These apps often use Al to help users generate tasks, track their : P e -
.. 6 (4%) L . o . . L functionality is facilitating to-do lists
and Productivity mood, or summarize information, making it easier to manage daily activities and . .
. . by generating tasks using ChatGPT.
Tools improve mental well-being.

TABLE VII
A SUMMARY OF THE DISTRIBUTION OF QUANTITATIVE MEASUREMENTS BY INTEGRATION STRATEGY.

Integration Strategy Frequency Median #releases Median #issues Median %LLM-related releases Median #LOC

IS1: Using third-party API calls 132 0.0 0.0 66.7% 2,929.0

IS2: Using third-party website 6 6.5 6.5 83.3% 916.5

IS3: Hosting LLMs on back-end servers 5 1.0 1.0 0.0% 6,519.0

IS4: Hosting LLMs on user devices 2 4.0 371.5 7.1% 26,3723.5

IS5: Mixing multiple integration strategies 4 21.0 100.5 40.3% 61,890.5
Description: Vendors (e.g., ChatGPT [12] and Hug- App Code Vendor Server

gingChat [66]) can allow users to access their LLMs via their
webpage. As shown in Fig. [6] apps can facilitate sending
prompts and receiving responses by implementing a webview
client to load the Vendors’ webpage URL. This strategy avoids
calling an API to access closed-source LLMs (shown in
Fig. [7). However, it may offer reduced capabilities compared
to those provided by APIs, due to rate limits placed by the
vendor [67].

Insights and Discussion: We find that five apps access
the ChatGPT website [12] and one app accesses Hug-
gingChat [|66]], a chat interface provided by Huggingface that
offers a list of LLMs to chat with. This strategy had the highest
median percentage of LLM-related releases (83.8%). When
examining the code updates and commit messages associated
with these releases, we observed that developers frequently
tweaked code surrounding the web client. This may be because
this strategy is not an officially provided integration method,
so developers may need to work around changes to the vendor
websites, such as updating URLs or domains.

3) Strategy 3: Hosting LLMs on Back-end Servers: Five
apps utilize LLMs that are hosted on back-end servers.

Vendor
Website

‘App Screen Web Client LLM

Fig. 6. An overview of calling LLMs using a webview wrapper to submit
prompts to the official vendor website.

Description: In this integration strategy, developers either host
the LLM on a back-end server and allow their apps to access
the hosted LLM using API calls, or provide the infrastructure
for the user to host the LLM on the user’s server. This strategy
avoids memory and computation demands on the user-end
devices and reduces the risks of sending users’s data to third-
party vendors (like sending users’ photos/text to OpenAl).
However, this strategy requires app developers or the user to
set up and run a live server on a separate device.

Insights and Discussion: Out of the five apps, two have
no releases. The median number of releases is 1 but rises
to 5 when excluding the two apps without releases. Of the
three apps that have one or more releases, two have no LLM-
related releases, resulting in a median of 0.0% of LLM-related
releases. These results show that hosting LLMs on back-end

https://github.com/chouaibMo/ChatGemini
https://github.com/F0x1d/Sense
https://github.com/mhss1/AIStudyAssistant
https://github.com/AndraxDev/speak-gpt
https://github.com/alexandresanlim/flutter-todo-list-chat-gpt

private val chatUrl = “https://chat.openai.com/"
webView.webViewClient = object : WebViewClient() {
override fun shouldOverrideUrlLoading(
view: Webview?,

request: WebResourceRequest?
): Boolean {
val url = request?.url ?: return false

if (url.toString().contains(chaturl)) {
return false

}

if (webView.url.toString().contains(chatUrl) &&
lwebView.url.toString().contains("/auth")

)
val intent = Intent(Intent.ACTION_VIEW, url)
startActivity(intent)
return true

}

return false

Fig. 7. An example of using a webview client to send prompts with OpenAI’s
chat URL [68]].

servers may require less maintenance compared to calling
third-party APIs. This could be because using a local LLM
does not require the developers to adjust to the updates from
the vendor side.

App Code Back-end Server

Back-end
Server APl iy

‘App Screen API Client

Fig. 8. Calling LLMs hosted on a back-end server.

await addMessage(m);
Stream<GenerateCompletionResponse> result =
await ChatService().generateCompletionStream(
prompt,
context: messageContext,
model: selectedLanguageModel.value ?? '',

)5

_response?.listen((value) async {
if (!didStartResponse) {
didStartResponse = true;

_currentMessage?.text = H

i

_handleResponseGeneration(value);

1

Fig. 9. An example view model for receiving a response from an LLM hosted
on a back-end server [69].

4) Strategy 4: Hosting LLMs on User Devices: This is
the least popular integration strategy across the dataset, as we
find two apps in the dataset that used LLMs locally.
Description: This strategy (shown in Fig.[T1)) requires the user
to load and store the LLM on the end device, which consumes
memory and computation but allows the user to run inference
privately and without requiring the internet. However, we
notice that app developers do not use frameworks to facilitate
running LLMs locally, requiring developers to develop their
own app-specific infrastructure.

Message _createMessage(MessageSource type, String message,
{String? modelName, context, Map<String, dynamic>? summary}) {
return Message.fromMap({
"source": type == MessageSource.userInput
? MessageSource.userInput.name
: MessageSource.generated.name,
"text": message,
"chatUuid": chatuuid,
"createdOn": DateTime.now().millisecondsSinceEpoch,
context,
modelName ?? summary?["model"],
"total_duration": summary?["total_duration"] ?? O,
summary?["eval_count"] ?? 9,
"eval_duration": summary?["eval_duration"] ?? 0,
s
¥

"context":
"model™:

"eval_count":

Fig. 10. An example view model for creating a response from an LLM hosted
on a back-end server [69].

Insights and Discussion: Unlike apps that apply a hybrid
strategy, which offers options for local models, both apps
are built for specific LLMs. One of the two apps, “Futo
Keyboard” [61]] app, uses llama.cpp [20] and whisper.cpp [[70]
to run Llama and Whisper models with few parameters,
reducing memory demands on the end device. The other runs
an open-source GPT4All model.

The “Futo Keyboard” app also has the largest number of
commits and issues in the dataset, which is the cause of
this strategy’s high median for its number of issues. Despite
hosting the model and running inference locally, as well as
having the highest median software lines of code, this strategy
also has a relatively low median percentage for releases
that contained updates to LLM-related code. Similar to the
previous strategy, this could be because the local LLM requires
fewer updates once implemented.

‘App Screen }4—»

Fig. 11. An overview of calling LLMs hosted on user devices.

App Code

Model

Interface

LLM

5) Strategy 5: Mixing Multiple Integration Strategies:
There are four occurrences of a hybrid strategy in our dataset.
Description: In this strategy, developers utilize multiple inte-
gration strategies, giving users choices between using vendor-
provided APIs or calling LLMs locally or from a third party.
Insights and Discussion: Two apps used LLMs both locally
and through an API, and two apps used LLMs through both
API and back-end servers. This subset contains some of the
most popular apps in the dataset, with three out of the four
apps in the third quartile across the entire dataset for stars and
contributors, and all four in the third quartile for issues and
releases. In particular, the “AppFlowy” app, which supports
APIs for GPT and Claude as well as local models such as
Mistral and Llama, has the most stars and releases in the entire
dataset, as detailed in RQ1. Another very popular app using
this hybrid strategy is “Maid” app [72], which is a chatting
app that also offers LLMs both through API and locally. This

File modelFile = new File(modelPath);
if(ImodelFile.exists()){
String downloadUrl =
"https://gpt4all.io/models/ggml-gpt4all-j-vi1.3-groovy.bin";
DownloadManager downloadManager =
(DownloadManager) getSystemService(Context.DOWNLOAD_SERVICE);
DownloadManager.Request request =
new DownloadManager.Request(Uri.parse(downloadUrl));
request.setTitle("File Download");
request.setDescription("Downloading file...");
request.setDestinationInExternalPublicDir
(Environment.DIRECTORY_DOCUMENTS, "ggml-gpt4all-j-vl.3-groovy.bin");
downloadID = downloadManager.enqueue(request);
registerReceiver(receiver, new IntentFilter
(DownloadManager.ACTION_DOWNLOAD_COMPLETE));
showDownload();
} else {
pref.edit().putBoolean("model™, true).apply();
showLoading();
new Thread(() -> {
createEmptyTextFile();
model = loadGo(modelPath, numThreads);
}) .start();

Fig. 12. An example of starting a chat with a local model [[71].

Below are git commit messages, each separated by newline escape. Provide the list
of the top 10 most common topics presented in all the messages with a brief
description of each topic.

{commit messages}

Fig. 13. Prompt to generate the ten most common topics.

app supports APIs for GPT, Claude, and Gemini, and local
support for Ollama, Llama, Mistral, and other local models,
and is second in stars to “AppFlowy” app. As a result, this
strategy has a high median number of releases and issues.
The median percentage of LLM-related releases is about one
in every four releases.

VI. RQ3: WHAT DRIVES DEVELOPERS TO UPDATE
LLM-RELATED CODE?

A. Methodology

To determine what drives developers to update LLM-related
code, we collected the commit messages from each LLM-
related update across all repositories, totaling 2,003 commits,
and submitted them to OpenAI’'s GPT-4o0-mini using a paid
OpenAl API subscription, set to zero temperature [34]. We
submitted two prompts to the model. The first was a zero-shot
prompt that provided all of the commit messages, randomized,
and asked the model to provide the list of the top ten most
common topics across all of the commit messages as well as
a description of each topic (shown in Fig. [T3).

The second prompt (shown in Fig.[T4) is a few-shot prompt
that provides the model with the commit messages in batches
of 100 messages. We inputted the list of topics and their
descriptions, generated by the previous prompt, and five exam-
ples of commit messages and the expected outputs, and asked
the model to assign each commit message to one of the topics.

B. Results

We observe that Feature Additions, Refactoring and Code
Cleanup, and Version Updates are the most discussed topics
when developers change LLM-related code. Tab.|VIII|shows

the identified ten topics along with their description, frequency,
and example commit messages. As shown in table the
most common topics are “Feature Additions”, “Refactoring
and Code Cleanup”, and “Version Updates”. We also notice
that “Bug fixes” and “Error handling” topics contribute to
242 commits (12.1%), which indicates the prevalence of
developers’ mistakes while adopting LLMs in their apps. We
observe that the least common topic is “Testing and Quality
Assurance”, which may indicate that developers need more
testing effort to ensure that the integrated LLMs work properly.

Assign only one topic from the list below to each git commit message,
separated by newline escape. Never assign a topic that is not from the list.

Git commit messages:
{commit messages}

List of topics and their meaning:
1. API Integration and Updates: Many commits focus on ...

10. Testing and Quality Assurance: A number of commits mention ...

Examples:

Message 1: "Update to 6.0.0 (1908)"

Output: Message 1, "Update to 6.0.0 (1908)", Version Updates

Message 2: "refactor: constants"

Output: Message 2, "refactor: constants", Refactoring and Code Cleanup
Message 3: "Implement OpenAl Chat completion API"

Output: Message 3, "Implement OpenAl Chat completion API", API Integration
and Updates

Message 4: "feat: add menu on chat activity"

Output: Message 4, "feat: add menu on chat activity", Feature Additions
Message 5: "[fix] Modify OkHttp timeout"

Output: Message 5, "[fix] Modify OkHttp timeout", Bug Fixes

Provide the output as CSV content: Message#,"Message text", Assigned Topic.
Do not provide any explanation or notes. Do not include the word "topic".

Fig. 14. Prompt to assign each commit message to a topic.

We find that “Feature Additions” and “Refactoring and
Code Cleanup” occurs in the top 3 most common topics
across all integration strategies. Tab. [[X] displays the total
number of commits across all apps, per integration strategy.
The percentage breakdown of commit messages assigned
to each topic per integration strategy is shown in Fig. [I3
“Feature Additions” is not only the most common topic across
all commit messages, but also the most common topic for
every integration strategy. As well, “Refactoring and Code
Cleanup” is also in the top 3 most common topics across all
integration strategies. Localization and Language Support, the
second least common topic, is only present for apps that use
third-party APIs as their integration strategy.

VII. THREATS TO VALIDITY

Regarding internal validity, our study required manual
effort in classifying apps as LLM-enabled and identifying
LLM-related code, which introduces potential subjectivity. To
mitigate this, multiple authors independently reviewed and
crosschecked classifications, following predefined criteria to
ensure consistency. Additionally, our study’s reproducibility
is constrained by the use of an evolving LLM (GPT-4o-
mini) for categorizing app functionality and commit message

TABLE VIII
THE COMMIT MESSAGE TOPICS.

Topic # (%) Description E.g., Commit Messages
.. Messages indicate the addition of new features, such as voice “feat: suppport translate and summary using
Feature Additions 607 (30%) input/output, image generation, and chat functionalities. local ai (#5858)”
Refactoring and Messages indicate code refactoring activities, such as renaming “refactor: move openai state, store and logic
442 (22%) . - . U S

Code Cleanup variables, restructuring files, and removing unused code. into its own service
Version Updates 293 (15%) Messages indicate updates to the app’s version. “Upgrade LangChain.dart to v0.5.0”

. Messages indicate fixing bugs, such as handling crashes, g . . "
Bug Fixes 190 (10%) incorrect API responses, and UI glitches. ‘fix: local ai enabledisable (#6151)
API Integration Messaggs 1n(§10at§ .the integration of new ?PIS or updating the “Fixed the model to the latest gpt-3.5-turbo
and Updates 177 (9%) 1ntegrat.1o.n.o e).ustmg APIs, such as rpodl ying code to ensure model”

compatibility with the latest API specifications.
User Interface (UI) 156 (8%) Messages indicate enhancing the user 1n}erche, such as layout “don’t show cost in $ but in tokens”
Improvements changes, theme updates, and overall design improvements.
Error Handling 52 (3%) Messages indicate improving error handhng rr}echamsms, such L{[{date..' handle open ai not responding zr
as adding error messages and handling exceptions. failing in general with a default message
Performance Messages mdlcgte optimizing the app’s performance, such as “Batch API calls when there is more than
Ontimizations 43 (2%) improving loading times, reducing memory usage, and 1000 UIDs”
P enhancing the efficiency of API calls.
Localization and 27 (1%) Messages indicate efforts to add or improve localization features, “Added support of multiple languages of voice
Language Support ¢ such as adding translations and adjusting language settings. assistant”
Testing and 16 (1%) Messages indicate testing activities, such as unit tests, “:white_check_mark: model and no stream
Quality Assurance ¢ integration tests, and quality assurance measures. completions has pass test”
TABLE IX

THE TOTAL NUMBER OF COMMITS PER INTEGRATION STRATEGY.

Integration Strategy Number of Commits

IS1: Using third-party API calls 1,712
IS5: Mixing multiple integration strategies 189
IS2: Using third-party website 57
IS4: Hosting LLMs on user devices 28
IS3: Hosting LLMs on back-end servers 17

topics. Variability in LLM outputs over time and potential API
changes could affect exact replication. To enhance reliability,
all LLM-based classifications were manually verified by the
authors. About external validity, our study considered a limited
set of LLMs, which may restrict the generalizability of our
findings. The results may not fully extend to LLMs with
different architectures, training data, or application domains.
Future work could expand the analysis to a broader range of
models to improve external validity.

VIII. CONCLUSION

In this study, we present a novel dataset of 149 LLM-
enabled Android apps and report an empirical investigation
into the characteristics of this dataset, the strategies that
developers use to integrate LLMs into their apps, and the
reasons why developers may update LLM-related code as well
as its implications on app releases. We identify five integration
strategies used: using a third-party API, calling LLMs from
a third-party website, hosting LLMs on a back-end server,
hosting LLLMs on the user end-device, and a hybrid strategy.

&=
=]
L

S1: Third-party APls

S2: Third-party Websites

S3: Hosted on Back-end Servers
S4: Local on User Device

55: Mixed Strategy

w
%]
L

w
(=]
L

N
w
L

= =
(=] w
L L

Percentage of commit messages
]
w o
X ;

e LI o o o @ G0 B e
e,oﬂb(’& o R G z%‘ﬁﬂ o Y\af'b\\ oﬂe““z o
) 0 i i
o3 e”‘oe eo"‘ Oc’a c\‘?&ﬁ 0" N 6‘0 \\““Q \!"’-‘5\3

e ks ggt‘ 6\'3 q‘-a’ﬂ. &

‘\qaﬂ\ e.\"uﬁo . Py & A0 \\ﬁ‘e aéac
0 A3 207 4 X
5 ?‘E\ WP B \)"z‘ @
Topics

Fig. 15. The distribution of commit message topics per strategy.

Among them, LLM integration via API is the most common
in our dataset, while storing LLMs locally on-device is the
least common. We also investigate reasons why developers
may update LLM-related code by using OpenAl’s GPT-4o-
mini to identify the top ten most common topics among all
commit messages used for changes to LLM-related code.

IX. ACKNOWLEDGMENTS

This work is partially supported by the Natural Sciences and
Engineering Research Council of Canada (NSERC), RGPIN-
2021-03538 and RGPIN-2021-03969.

[1]

[3]

[4]

[5]

[6

=

[7]

[8

=

[9

—

[10]

(11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]
[22]

(23]

REFERENCES

S. Minaee, T. Mikolov, N. Nikzad, M. Chenaghlu, R. Socher, X. Am-
atriain, and J. Gao, “Large language models: A survey,” arXiv preprint
arXiv:2402.06196, 2024.

H. Naveed, A. U. Khan, S. Qiu, M. Saqib, S. Anwar, M. Usman,
N. Akhtar, N. Barnes, and A. Mian, “A comprehensive overview of
large language models,” arXiv preprint arXiv:2307.06435, 2023.

W. X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou, Y. Min, B. Zhang,
J. Zhang, Z. Dong et al., “A survey of large language models,” arXiv
preprint arXiv:2303.18223, 2023.

J. G. Meyer, R. J. Urbanowicz, P. C. Martin, K. O’Connor, R. Li, P--
C. Peng, T. J. Bright, N. Tatonetti, K. J. Won, G. Gonzalez-Hernandez
et al., “Chatgpt and large language models in academia: opportunities
and challenges,” BioData Mining, vol. 16, no. 1, p. 20, 2023.

A. Fan, B. Gokkaya, M. Harman, M. Lyubarskiy, S. Sengupta, S. Yoo,
and J. M. Zhang, “Large language models for software engineering: Sur-
vey and open problems,” in 2023 IEEE/ACM International Conference
on Software Engineering: Future of Software Engineering (ICSE-FoSE).
IEEE, 2023, pp. 31-53.

K. Yang, J. Liu, J. Wu, C. Yang, Y. R. Fung, S. Li, Z. Huang, X. Cao,
X. Wang, Y. Wang et al., “If 1lm is the wizard, then code is the wand:
A survey on how code empowers large language models to serve as
intelligent agents,” arXiv preprint arXiv:2401.00812, 2024.

S. Carreira, T. Marques, J. Ribeiro, and C. Grilo, “Revolutionizing
mobile interaction: Enabling a 3 billion parameter gpt 1lm on mobile,”
arXiv preprint arXiv:2310.01434, 2023.

K. Alizadeh, I. Mirzadeh, D. Belenko, K. Khatamifard, M. Cho, C. C.
Del Mundo, M. Rastegari, and M. Farajtabar, “Llm in a flash: Efficient
large language model inference with limited memory,” arXiv preprint
arXiv:2312.11514, 2023.

T. Coplii, M. Loedi, A. Bendiken, M. Makohin, J. J. Bouw, and S. Cobb,
“A performance evaluation of a quantized large language model on
various smartphones,” arXiv preprint arXiv:2312.12472, 2023.

R. Murthy, L. Yang, J. Tan, T. M. Awalgaonkar, Y. Zhou, S. Hei-
necke, S. Desai, J. Wu, R. Xu, S. Tan et al., “Mobileaibench: Bench-
marking llms and lmms for on-device use cases,” arXiv preprint
arXiv:2406.10290, 2024.

Google, “Gemini,” 2024, https://gemini.google.com/, Last accessed on
2024-11-05.

OpenAl, “Chatgpt,” 2024, https://chatgpt.com/, Last accessed on 2024-
11-05.

Github Docs, “About the rest api,” 2022, https://docs.github.com/en/
rest/about-the-rest-api/about-the-rest-api?api Version=2022-11-28, Last
accessed on 2024-11-05.

“Replication packges,” https://github.com/kimberlyhau/
LLM-enabledAndroidAppsReplicationPackage,

Y. Sens, H. Knopp, S. Peldszus, and T. Berger, “A large-scale study
of model integration in ml-enabled software systems,” arXiv preprint
arXiv:2408.06226, 2024.

S. A. Paguthaniya, F. Y. Patel, E. Aminu, and A. Adeleye, “Integration
of machine learning models into backend systems: Challenges and
opportunities.”

N. Nahar, H. Zhang, G. Lewis, S. Zhou, and C. Kistner, “The product
beyond the model-an empirical study of repositories of open-source
ml products,” in 2025 IEEE/ACM 47th International Conference on
Software Engineering (ICSE). 1EEE Computer Society, 2024, pp. 63—
75.

N. Viennot, E. Garcia, and J. Nieh, “A measurement study of google
play,” in The 2014 ACM international conference on Measurement and
modeling of computer systems, 2014, pp. 221-233.

F. Palomba, D. Di Nucci, A. Panichella, A. Zaidman, and A. De Lucia,
“On the impact of code smells on the energy consumption of mobile
applications,” Information and Software Technology, vol. 105, pp. 43—
55, 2019.

ggerganov, “llama.cpp,” 2024, https://github.com/ggerganov/llama.cpp,
Last accessed on 2024-11-05.

MLC-AI “Mlc-1Im,” 2024, https://github.com/mlc-ai/mlc-1lm, Last ac-
cessed on 2024-11-05.

LangChain, “Langchain,” 2024, https://www.langchain.com/, Last ac-
cessed on 2024-11-05.

H. Wang and Y. Guo, “Understanding third-party libraries in mobile app
analysis,” in 2017 IEEE/ACM 39th International Conference on Software
Engineering Companion (ICSE-C). 1EEE, 2017, pp. 515-516.

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

[32]

(33]
[34]
(35]
[36]
[37]
(38]
[39]
[40]
[41]
[42]
[43]
[44]

[45]

[46]

(471

(48]

[49]

[50]

A. Polese, S. Hassan, and Y. Tian, “Adoption of third-party libraries
in mobile apps: a case study on open-source android applications,” in
Proceedings of the 9th IEEE/ACM International Conference on Mobile
Software Engineering and Systems, 2022, pp. 125-135.

M. Ahasanuzzaman, S. Hassan, and A. E. Hassan, “Studying ad library
integration strategies of top free-to-download apps,” IEEE Transactions
on Software Engineering, vol. 48, no. 1, pp. 209-224, 2020.

P. Salza, F. Palomba, D. Di Nucci, A. De Lucia, and F. Ferrucci, “Third-
party libraries in mobile apps: When, how, and why developers update
them,” Empirical Software Engineering, vol. 25, pp. 2341-2377, 2020.
Ollama, “Ollama,” 2024, https://ollama.com, Last accessed on 2024-11-
05.

Hugging Face, “Open llm leaderboard best models,”
2024, https://huggingface.co/collections/open-1lm-leaderboard/
IIm-leaderboard- best-models-652d6c7965a4619fb5c27a03, Last
accessed on 2024-11-05.

Novita Al “Top 10 IIm models on hugging
face,” 2024, https://medium.com/@marketing_novita.ai/

top- 10-1Im-models-on-hugging-face-365¢21120bdb,
on 2024-11-05.

Last accessed

Nitika Sharma, “Top 10 large language models on hugging
face,” 2024, https://www.analyticsvidhya.com/blog/2023/12/
large-language- models-on-hugging-face/, Last accessed on 2024-
11-05.

Tasmia Ansari, “16 best closed-source Ilms you must
know about,” 2024, https://analyticsindiamag.com/ai-mysteries/|

16-largest-closed-source- lIms-you-must-know-about/, Last accessed
on 2024-11-05.

Ben Lutkevich, “19 of the best large language models
in 2024, 2024, https://www.techtarget.com/whatis/feature/
12-of-the-best-large-language-models, Last accessed on 2024-11-
05.

Harry Guinness, “The best large language models (Ilms) in 2024,” 2024,
https://zapier.com/blog/best-1lm/, Last accessed on 2024-11-05.
OpenAl, “Openai,” 2024, https://openai.com/, Last accessed on 2024-
11-05.

Cohere Inc., “Cohere,” 2024, https://cohere.com/, Last accessed on 2024-
11-05.

Amazon Science, “Alexa teacher models,” 2024, https://github.com/
amazon-science/alexa-teacher-models, Last accessed on 2024-11-05.
Anthropic, “Claude,” 2024, https://www.anthropic.com/claude, Last ac-
cessed on 2024-11-05.

deepseek, “deepseek,” 2024, https://www.deepseek.com/, Last accessed
on 2024-11-05.

Technology Innovation Institute, “Falcon,” 2024, https://falconllm.tii.ae/,
Last accessed on 2024-11-05.

Google Deepmind, “Gemma,” 2024, https://github.com/
google-deepmind/gemma, Last accessed on 2024-11-05.

Google, “Lamda: our breakthrough conversation technology,” 2021,
https://blog.google/technology/ai/lamda/, Last accessed on 2024-11-05.
Huggingface, ‘“Marcoroni 7b - gguf,” 2024, https://huggingtace.co/
TheBloke/Marcoroni-7b-GGUE, Last accessed on 2024-11-05.

C. Zhang, D. Song, Z. Ye, and Y. Gao, “Towards the law of capacity gap
in distilling language models,” arXiv preprint arXiv:2311.07052, 2023.
Mistral Al, “Mistral,” 2024, |https://chat.mistral.ai/, Last accessed on
2024-11-05.

A. Q. Jiang, A. Sablayrolles, A. Roux, A. Mensch, B. Savary, C. Bam-
ford, D. S. Chaplot, D. d. 1. Casas, E. B. Hanna, F. Bressand et al.,
“Mixtral of experts,” arXiv preprint arXiv:2401.04088, 2024.
Huggingface, “Nyxene-v3-11b,” 2024, https://huggingface.co/beberik/
Nyxene-v3-11B, Last accessed on 2024-11-05.

S. Mukherjee, A. Mitra, G. Jawahar, S. Agarwal, H. Palangi, and
A. Awadallah, “Orca: Progressive learning from complex explanation
traces of gpt-4,” arXiv preprint arXiv:2306.02707, 2023.

Google Al, “Palm 2 models,” 2024, https://ai.google.dev/palm_docs/
palm, Last accessed on 2024-11-05.

Y. Li, S. Bubeck, R. Eldan, A. Del Giorno, S. Gunasekar, and Y. T. Lee,
“Textbooks are all you need ii: phi-1.5 technical report,” arXiv preprint
arXiv:2309.05463, 2023.

M. Abdin, S. A. Jacobs, A. A. Awan, J. Aneja, A. Awadallah,
H. Awadalla, N. Bach, A. Bahree, A. Bakhtiari, H. Behl et al., “Phi-
3 technical report: A highly capable language model locally on your
phone,” arXiv preprint arXiv:2404.14219, 2024.

https://gemini.google.com/
https://chatgpt.com/
https://docs.github.com/en/rest/about-the-rest-api/about-the-rest-api?apiVersion=2022-11-28
https://docs.github.com/en/rest/about-the-rest-api/about-the-rest-api?apiVersion=2022-11-28
https://github.com/kimberlyhau/LLM-enabledAndroidAppsReplicationPackage
https://github.com/kimberlyhau/LLM-enabledAndroidAppsReplicationPackage
https://github.com/ggerganov/llama.cpp
https://github.com/mlc-ai/mlc-llm
https://www.langchain.com/
https://ollama.com
https://huggingface.co/collections/open-llm-leaderboard/llm-leaderboard-best-models-652d6c7965a4619fb5c27a03
https://huggingface.co/collections/open-llm-leaderboard/llm-leaderboard-best-models-652d6c7965a4619fb5c27a03
https://medium.com/@marketing_novita.ai/top-10-llm-models-on-hugging-face-365c21120bdb
https://medium.com/@marketing_novita.ai/top-10-llm-models-on-hugging-face-365c21120bdb
https://www.analyticsvidhya.com/blog/2023/12/large-language-models-on-hugging-face/
https://www.analyticsvidhya.com/blog/2023/12/large-language-models-on-hugging-face/
https://analyticsindiamag.com/ai-mysteries/16-largest-closed-source-llms-you-must-know-about/
https://analyticsindiamag.com/ai-mysteries/16-largest-closed-source-llms-you-must-know-about/
https://www.techtarget.com/whatis/feature/12-of-the-best-large-language-models
https://www.techtarget.com/whatis/feature/12-of-the-best-large-language-models
https://zapier.com/blog/best-llm/
https://openai.com/
https://cohere.com/
https://github.com/amazon-science/alexa-teacher-models
https://github.com/amazon-science/alexa-teacher-models
https://www.anthropic.com/claude
https://www.deepseek.com/
https://falconllm.tii.ae/
https://github.com/google-deepmind/gemma
https://github.com/google-deepmind/gemma
https://blog.google/technology/ai/lamda/
https://huggingface.co/TheBloke/Marcoroni-7b-GGUF
https://huggingface.co/TheBloke/Marcoroni-7b-GGUF
https://chat.mistral.ai/
https://huggingface.co/beberik/Nyxene-v3-11B
https://huggingface.co/beberik/Nyxene-v3-11B
https://ai.google.dev/palm_docs/palm
https://ai.google.dev/palm_docs/palm

[51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]
[60]

[61]

[62]
[63]
[64]
[65]
[66]
[67]
[68]
[69]
[70]
[71]

[72]

Alibaba Cloud, “Qwen,” 2024, https://qwenlm.github.io/, Last accessed
on 2024-11-05.

together.ai, “Redpajama, a project to create leading open-source models,
starts by reproducing llama training dataset of over 1.2 trillion tokens,”
2024.

Valiant Labs, “Valiant labs,” 2024, https://www.valiantlabs.ca/, Last
accessed on 2024-11-05.

stability.ai, “Meet stable beluga 1 and stable beluga 2, our large and
mighty instruction fine-tuned language models,” 2024, https://stability.ai/
news/stable-beluga-large-instruction-fine-tuned-models, Last accessed
on 2024-11-05.

Stability AI, “Stablelm: Stability ai language models,” 2024, https:/
github.com/Stability- Al/StableLM, Last accessed on 2024-11-05.
Banghua Zhu, Evan Frick, Tianhao Wu, Hanlin Zhu, Jiantao Jiao,
“Starling-7b: Increasing 1lm helpfulness harmlessness with rlaif,” 2024,
https://starling.cs.berkeley.edu/, Last accessed on 2024-11-05.
Huggingface, “fblgit/una-xaberius-34b-v1beta,” 2024, https:
/huggingface.co/fblgit/una-xaberius-34b-vlbeta, Last accessed on
2024-11-05.

Vicuna Team, “Vicuna: An open-source chatbot impressing gpt-4 with
90% chatgpt quality,” 2023, https://Imsys.org/blog/2023-03-30-vicuna/,
Last accessed on 2024-11-05.

Al Danial, “cloc,” 2024, https://github.com/AlDanial/cloc, Last accessed
on 2024-11-05.

AppFlowy-10, “Appflowy.io,” 2024, |https://github.com/AppFlowy-10/
AppFlowy, Last accessed on 2024-11-05.

futo-org, “Futo keyboard,” 2024, |https://github.com/futo-org/
android-keyboard?tab=readme-ov-file, Last accessed on 2024-11-
05.

virtualwizl, “Wizgpt,” 2024, https://github.com/virtualwiz1/
wizGPT-flutter, Last accessed on 2024-11-05.

flyun, “Chatair,” 2024, https://github.com/flyun/chatAir, Last accessed
on 2024-11-05.

itsskyballs, “Oldgpt,” 2024, |https://github.com/itsskyballs/OldGPT, Last
accessed on 2024-11-05.

Mohamed Hassan, “Ai study assistant,” 2024, https://github.com/mhss1/
AlStudyAssistant, Last accessed on 2024-11-05.

HuggingChat, “Huggingchat,” 2024, https://huggingface.co/chat/, Last
accessed on 2024-11-05.

OpenAl, “Rate limits,” 2024, https://platform.openai.com/docs/guides/
rate-limits, Last accessed on 2024-11-05.

matt haigh, “Chatgpt app,” 2024, https://github.com/matthaigh27/
ChatGPT-android-app, Last accessed on 2024-11-05.

Mike Thongvanh, “amallo,” 2024, https://github.com/mthongvanh/
amallo, Last accessed on 2024-11-05.

ggerganov, “whisper.cpp,” 2024, https://github.com/ggerganov/whisper.
cpp, Last accessed on 2024-11-05.

ronith256, “Localgpt-android,” 2024, https://github.com/ronith256/
LocalGPT- Android, Last accessed on 2024-11-05.

Mobile Artificial Intelligence Distribution, “Maid,” 2024, |https://github.
com/Mobile-Artificial-Intelligence/maid, Last accessed on 2024-11-05.

https://qwenlm.github.io/
https://www.valiantlabs.ca/
https://stability.ai/news/stable-beluga-large-instruction-fine-tuned-models
https://stability.ai/news/stable-beluga-large-instruction-fine-tuned-models
https://github.com/Stability-AI/StableLM
https://github.com/Stability-AI/StableLM
https://starling.cs.berkeley.edu/
https://huggingface.co/fblgit/una-xaberius-34b-v1beta
https://huggingface.co/fblgit/una-xaberius-34b-v1beta
https://lmsys.org/blog/2023-03-30-vicuna/
https://github.com/AlDanial/cloc
https://github.com/AppFlowy-IO/AppFlowy
https://github.com/AppFlowy-IO/AppFlowy
https://github.com/futo-org/android-keyboard?tab=readme-ov-file
https://github.com/futo-org/android-keyboard?tab=readme-ov-file
https://github.com/virtualwiz1/wizGPT-flutter
https://github.com/virtualwiz1/wizGPT-flutter
https://github.com/flyun/chatAir
https://github.com/itsskyballs/OldGPT
https://github.com/mhss1/AIStudyAssistant
https://github.com/mhss1/AIStudyAssistant
https://huggingface.co/chat/
https://platform.openai.com/docs/guides/rate-limits
https://platform.openai.com/docs/guides/rate-limits
https://github.com/matthaigh27/ChatGPT-android-app
https://github.com/matthaigh27/ChatGPT-android-app
https://github.com/mthongvanh/amallo
https://github.com/mthongvanh/amallo
https://github.com/ggerganov/whisper.cpp
https://github.com/ggerganov/whisper.cpp
https://github.com/ronith256/LocalGPT-Android
https://github.com/ronith256/LocalGPT-Android
https://github.com/Mobile-Artificial-Intelligence/maid
https://github.com/Mobile-Artificial-Intelligence/maid

	Introduction
	Related Work
	Studies on ML-enabled Systems
	On-Device LLM Deployment
	Third-Party Libraries in Mobile Apps

	Data Collection
	Search criterion 1: Matching keywords in repository names, descriptions, or issue/PR discussions
	Search criterion 2: Searching for Android repositories

	RQ1: What are the characteristics of LLM-related apps?
	Methodology
	Results

	RQ2: What main integration strategies are used to adopt LLMs into apps?
	Methodology
	Results
	Strategy 1: Using Third-party API Calls
	Strategy 2: Using Third-party Website
	Strategy 3: Hosting LLMs on Back-end Servers
	Strategy 4: Hosting LLMs on User Devices
	Strategy 5: Mixing Multiple Integration Strategies

	RQ3: What drives developers to update LLM-related code?
	Methodology
	Results

	Threats to Validity
	Conclusion
	Acknowledgments
	References

