How Has Forking Changed in the Last 20 Years?
A Study of Hard Forks on GitHub

Shurui Zhou
Carnegie Mellon University, USA

ABSTRACT

The notion of forking has changed with the rise of distributed ver-
sion control systems and social coding environments, like GITHUB.
Traditionally forking refers to splitting off an independent devel-
opment branch (which we call hard forks); research on hard forks,
conducted mostly in pre-GitHub days showed that hard forks were
often seen critical as they may fragment a community. Today, in so-
cial coding environments, open-source developers are encouraged
to fork a project in order to contribute to the community (which
we call social forks), which may have also influenced perceptions
and practices around hard forks. To revisit hard forks, we identify,
study, and classify 15,306 hard forks on GitHub and interview 18
owners of hard forks or forked repositories. We find that, among
others, hard forks often evolve out of social forks rather than being
planned deliberately and that perception about hard forks have
indeed changed dramatically, seeing them often as a positive non-
competitive alternative to the original project.

ACM Reference Format:

Shurui Zhou, Bogdan Vasilescu, and Christian Késtner. 2020. How Has
Forking Changed in the Last 20 Years? A Study of Hard Forks on GitHub.
In 42nd International Conference on Software Engineering (ICSE °20), May
23-29, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3377811.3380412

1 INTRODUCTION

The notion of forking in open-source has evolved: Traditionally,
forking was the practice of copying a repository and splitting off
new independent development, often under a new name; forking
was rare and was typically intended to compete with or supersede
the original project [14, 29, 31]. Nowadays, forks in distributed
version control systems are public copies of repositories in which
developers can make changes, potentially, but not necessarily, with
the intention of integrating those changes back into the original
repository.

With the rise of social coding and explicit support in (distributed)
version control systems, forking of repositories has been explicitly
promoted by sites like GiITHUB, BITBUCKET, and GITLAB, and has
indeed become very popular [18, 33]. For example, we identified
over 114,120 GITHUB projects with more than 50 forks, and over
9,164 projects with more than 500 forks as of June 2019, with num-
bers rising quickly. However, most of these modern forks are not

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE °20, May 23-29, 2020, Seoul, Republic of Korea

© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-7121-6/20/05.

https://doi.org/10.1145/3377811.3380412

Bogdan Vasilescu
Carnegie Mellon University, USA

Christian Kastner
Carnegie Mellon University, USA

source Popularity Trend .
2¢ since 2004 9 GitHub
E - -
Google code Bitbucket
Hard fork \ o
source \
: Hforge] \ I N—
T T T T T T T T T T 11T T 17T 17T 7T TT T.1

93 ‘99 ‘02 ‘05 ‘08 . . ‘1 14 17
oo 0 e

/ o i Hud | Jenkins i
esb ‘ L° g i}

Since Y

= |
~ ¢ 0
wr LibreOffice P

freeBSD
Figure 1: Timeline of some popular open-source forking events;
popularity approximated with Google Trends.

~
OpenOffice

forks in the traditional sense. As in our prior work [52], we distin-
guish between social forks, referring to creating a public copy of a
repository on a social coding site like GITHUB, often with the goal
of contributing to the original project, and hard forks, referring
to the traditional notion of splitting off a new development branch.

Hard forks have been discussed controversially throughout the
history of free and open-source software: On the one hand, free and
open-source licenses codified the right to create hard forks, which
was seen as essential for guaranteeing flexibility and fostering
disruptive innovations [14, 29, 31] and useful for encouraging a
survival-of-the-fittest model [47]. On the other hand, hard forks
were frequently considered as risky to projects, since they could
fragment a community and lead to confusion for both developers
and users [14, 25, 29, 35], and there was a strong norm against
forking; many well known hard forks exist (e.g., LibreOffice, Jenkins,
io.js; see Fig. 1), but there are not many well known cases where
both communities survived and are both healthy after a hard fork,
with a prominent exception being the BSD variants.

Prior research into forking of free and open-source projects
focused on the motivations behind hard forks (7, 11, 12, 25, 30, 38,
46], the controversial perceptions around hard forks [6, 14, 25, 29,
35, 48], and the outcomes of hard forks (including studying factors
that influence such outcomes) [38, 48]. However, essentially all that
research has been conducted before the rise of social coding, much
of it on SourceForge (GrTHUB was launched in 2008 and became
the dominant open-source hosting site around 2012; cf. Fig 1).

In this project, we argue that perceptions and practices around
forking could have changed significantly since SourceForge’s hey-
days. In contrast to the strong norm against forking back then, we
conjecture that the promotion of social forks on sites like GiTHUB,
and the often blurry line between social and hard forks, may have
encouraged forking and lowered the bar also for hard forks. At the
same time, advances in tooling, especially distributed version con-
trol systems like Git and transparency mechanisms on social coding
sites, may have enabled new opportunities and changed common

https://doi.org/10.1145/3377811.3380412
https://doi.org/10.1145/3377811.3380412

ICSE 20, May 23-29, 2020, Seoul, Republic of Korea

practices and perceptions. The professionalization of open-source

development and the increasing involvement of corporations or

even corporate ownership of open-source projects may have further
tilted perceptions.

Therefore, we argue that it is time to revisit, replicate, and ex-
tend research on hard forks, asking the central question of this
work: How have perceptions and practices around hard forks
changed? Updating and deepening our understanding regarding
practices and perceptions around hard forks can inform the design
of better tools and management strategies to facilitate efficient
collaboration. Furthermore, we attempt to automate the process
of identifying hard forks among social forks and quantifying how
frequent hard forks are across GrTHUB, which previous research
did not cover.

Using a mixed-methods empirical design, combining repository
mining with 18 developer interviews, we investigate:

e Frequency of hard forks: We attempt to quantify the fre-
quency of hard forks among all the (mostly social) forks on
GrTHus. Specifically, we design and refine a classifier to auto-
matically detect hard forks. We find 15,306 instances, showing
that hard forks are a significant concern, even though their rela-
tive numbers are low.

e Common evolution patterns of hard forks: We classify the
evolution of hard forks and their corresponding upstream repos-
itory to observe outcomes, including whether the fork and up-
stream repositories both sustain their activities and whether they
synchronize their development. We develop our classification by
visualizing and qualitatively analyzing evolution patterns (us-
ing card sorting) and subsequently automate the classification
process to analyze all detected hard forks. We find that many
hard forks are sustained for extended periods and a substantial
number of hard forks still at least occasionally exchange commits
with the upstream repository.

o Perceptions of hard forks: In interviews with 18 open-source
maintainers of forks and corresponding upstream repositories,
we solicit practices and perceptions regarding hard forks and ana-
lyze whether those align with ones reported in pre-social-coding
research. We find that the ‘stigma’ often reported around hard
forks is largely gone, indeed forks including hard forks are gen-
erally seen as a positive, with many hard forks complementing
rather than competing with the upstream repository. Futhermore,
with social forking encouraging forks as contribution mecha-
nism, we find that many hard forks are not deliberately planned
but evolve slowly from social forks.

Overall, we contribute (1) a method to identify hard forks, (2) a

dataset of 15,306 hard forks on GiTHUB, (3) a classification and

analysis of evolution patterns of hard forks, and (4) results from
interviews with 18 open source developers about the reasons for
hard forks, interactions across forks, and perceptions of hard forks.

Our research focuses on development practices on GiTHUB,
which is by far the dominant open-source hosting platform (cf.
Fig. 1) and has been key in establishing the social forking phenome-
non. Even large projects primarily hosted on other sites often have
a public mirror on GiTHuUB, allowing us to gather a fairly repre-
sentative picture of the entire open-source community. Our main
research instruments are semi-structured interviews with open-
ended questions and repository mining with GHTORRENT [19] and

Shurui Zhou, Bogdan Vasilescu, and Christian Kastner

the GiTHuB APIL While our research is not planned as an exact
replication of prior work and exceeds the scope of prior studies
by comparing social and hard forks, many facets seek to replicate
prior findings (e.g., regarding motivations and outcomes of hard
forks) and can be considered a conceptual replication [23, 42].

2 PAST RESEARCH ON FORKING

2.1 Types of Forking

What is popularly understood by ‘forking a project’ has changed
in the last decades, which, in line with our prior work [52], we
distinguish as hard forks and social forks:

o Hard forks: Traditionally, forking refers to copying a project
in order to continue a separate, often competing line of devel-
opment; the name and the direction of the project also typically
change. Developers might fork a project, e.g., when they are
unhappy with the direction or governance, deciding to create
a divergent version more in line with their own vision [14]. In
pre-GiTHUB days, ways to contribute to an open-source project
varied widely, but rather than using public forks one would typi-
cally create local copies to make changes and then send those as
patch files.

o Social forks: Popularized through GiTHus, ‘forking’ now also
refers to public copies of open-source repositories that are often
created for short-term feature implementation, often with the
intention of contributing back to the upstream repository. A fork
on GITHUB is thus typically not intended to start an independent
development line, but as a uniform mechanism for distributed
development and third-party contribution (i.e., pull requests) [9,
18]. In fact, the forking function on GrTHUB is frequently used
even just as a bookmarking mechanism to keep a copy of a
project without intention of performing any changes [24].

On GrTHUB, nowadays, both forms of forking exist, and we con-

jecture that the vast majority of forks are social forks, however it
is not obvious how to distinguish the two kinds without a closer
analysis.

At a technical level, forks can be created by cloning of reposito-
ries in distributed version control systems, in which case the fork
maintains the history of the upstream project, or simply by copying
files over and starting a new history (the latter was more common
in pre-GiTHUB days). If forks are created directly on GiTHUB, a
clone is automatically created, and GiITHUB tracks and visually
shows the relationship between fork and upstream projects.

There is significant research on both hard forks and social forks.
The hard-forking research is typically older, conducted almost ex-
clusively before GiTHUB and social forking. Research on social
forking is more recent, but focuses much more on the contribu-
tion process and issues around managing contributions in a single
project.

2.2 Motivations for Forking

Reasons why developers might create a hard fork of an existing
open-source project vary widely. Motivations for such forks have
been studied primarily on SourceForge before the advent of social
coding environment [7, 11, 12, 25, 30, 38, 46]. As per Robles and
Gonzalez-Barahona [38], the most common motivations for hard
forks were:

How Has Forking Changed?

o Technical. Variants targeting specific needs or user segments
that are not accommodated by the upstream project are the most
common motivation [30]. As a project grows and matures, the
contributors’ goals or perspectives may diverge, and some may
want to take the project in a different direction. If taken to the
extreme, hard forks can be used for variant management, in
which multiple related but different projects originating from
the same source are maintained separately [3, 12, 13, 44].

e Governance disputes. Some contributors created hard forks when
they feel their feedback is not heard or maintainers are accepting
patches too slowly in the original project. A hard fork, or even
just the threat of creating one, can help developers negotiate in
governance disputes [16]; recent examples of hard forks caused
by governance disputes include Node.js [41, 49] and Docker [50].
Other common forms of disputes occur when companies are
involved and try to influence the direction of the project or try to
close-source or monetize future versions of the project, as with
Hudson and OpenOffice.

o Discontinuation of the original project. A hard fork can revive a
project when the original developers have ceized to work on it.
For example, back in the 1990s, the Apache web server project
took over for the abandoned NCSA HTTPd project.

o Commercial forks. Companies sometimes fork open-source projects
to create their own branded version of the project, sometimes
enhanced with closed-source features. An example is Apple’s
fork of KDE’s KHTML rendering engine as Webkit.

o Legal reasons. A project might consider different licenses, a trade-
mark dispute may arise, or changes in laws (e.g., regarding en-
cryption) require technical changes. Hard forks can be used to
split development for different jurisdictions.

o Personal reasons. Interpersonal disputes and irreconcilable dif-
ferences of a non-technical nature lead to a rift between various
parties, so the project forks. OpenBSD is a classic example.

In contrast to the older work on hard forks, more recent work has

also investigated the motivation and practices behind social forks.

For example, Fung et al. [15] report that only 14 percent of all active

forks of nine popular JavaScript GITHUB projects integrated back

any changes. Subsequently, researchers studied social forks at larger
scale and reported that around 50 percent of forks on GITHUB never

integrate code changes back [22, 52]. In addition, Jiang et al. [22]

reported that 10 percent of their study participants used forks for

backup purposes.

In our study, we revisit the question about the motivation for
hard forks and explore whether they have changed with the rise of
social coding.

2.3 Outcomes of Hard Forks

Wheeler [48] and Robles and Gonzélez-Barahona [38] distinguish
five possible outcomes of hard forks:

o Successful branching, typically with differentiation. Both the orig-
inal project and the fork succeed and remain active for a pro-
longed period of time, fragmenting the community into smaller
subcommunities. The BSD variants are notable examples.

o Fork merges back into the upstream project. The fork does not
sustain independence but merges changes back into the upstream

ICSE 20, May 23-29, 2020, Seoul, Republic of Korea

project, e.g., after resolving a dispute that triggered the hard fork
in the first place, as in the io.js fork of Node.js [49].

e Discontinuation of the fork. The fork is initially active, but does
not sustain its activity. For example, when libc split off from
glibe, the glibc maintainers invested in improvements to win
back users and the fork failed.

o Discontinuation of the upstream project. The fork outperforms the
upstream project such that the upstream project is discontinued
(or the fork revives an already dead upstream project). For ex-
ample, XFree86 moved away from a GPL-compatible license, so
the project forked and created X.org, which was quickly adopted
by most developers and users; soon after, the XFree86 core team
disbanded and development ceased on the project.

o Both fail. Both projects fail (or the fork fails to revive a dead
project).

Wheeler [48] conjectured that it is rare for both the fork and the up-

stream project to sustain activities. Robles and Gonzalez-Barahona

[38] quantified the frequency of each outcome in a sample of 220

forked open-source projects referenced from Wikipedia in 2011 (i.e.,

selection biased toward well-known projects that have achieved

a certain level of success) and found that successful branching

was most common (43.6%), followed by discontinuation of the fork

(29.8%) and discontinuation of the upstream project (13.8%); failure

of both and merges were relatively rare (8.7% and 3.2%).

2.4 Pros and Cons of Hard Forks

Hard forks have long been discussed controversially. In the 90s and
2000s, forking was seen as an important right but also as something
to avoid if at all possible, unless it is a last resort. There was a strong
norm against forking, as it fragments communities and can cause
hard feelings for the people involved. The free software movement
has traditionally seen forking as something to avoid: forks split
the community, introduce duplicate effort, reduce communication,
and may produce incompatibilities [38]. Specifically, it can tear a
community apart, meaning people in the community have to pick
sides [6, 14, 25, 29, 35, 48]. Such fragmentation can also threaten
the sustainability of open-source projects, as scarce resources are
additionally scattered and changes need to be performed redun-
dantly across multiple projects; e.g., the 3D printer firmware Marlin
fixed an issue (PR #10119) two years after the same problem was
fixed in its hard fork Ultimaker (PR #118). At the same time, the
right to forking is also seen as an important political tool of the
community: The threat of a fork alone can cause project leaders to
pay attention to issues they may ignore otherwise, should those
issues actually be important and potentially improve their current
practices [48].

In contrast, social forks are seen as something almost exclusively
positive and are actively encouraged [4]. They are a mechanism
to contribute to a project, and most open-source projects actively
embrace external contributors [18, 45]. Although some maintainers
complain about the burden of dealing with so many third-party
contributions [20, 45] and some researchers warn about inefficien-
cies regarding lost contributions or duplicate work [37, 51, 52], we
are not aware of any calls to constrain social forking.

ICSE 20, May 23-29, 2020, Seoul, Republic of Korea

o 0 o 0 0 @O - . 7

'11-4 '12-1 '12-2 '12-3 '12-4 '13-1 '13-2 '13-3 '13-4 '14-1 '14-2 '14-3 'l14-4 '15-1 '15-2 '15-3

Shurui Zhou, Bogdan Vasilescu, and Christian Kastner

'15-4 'l6-1 'l16-2 'l16-3 'l6-4 'l17-1 '17-2 '17-3 '17-4 '18-1 '18-2 '18-3 '18-4 '19-1 '19-2

Figure 2: An example of commit history graph of fork tmyroadctfig/jnode

Importantly though, as our study will show, the distinction be-
tween social and hard forks is fluent. Social coding platforms con-
tain both kinds of forks and they are not always easy to distin-
guish. Diffusion of efforts and fragmentation of communities, as
always feared in discussions of hard forks, can be observed also
on GITHUB: Many secondary forks (i.e., forks of forks) contribute
to other forks, but not to the original repository, and forks slowly
drift apart [15, 44]. A key question is, thus, whether the popularity
of social forking encourages also hard forks and causes similar
fragmentation and sustainability challenges feared in the past.

We believe it is necessary to revisit hard forking after the rise of
social coding and GITHUB. Specifically, we aim to understand the
hard-fork phenomenon in a current social-forking environment,
and understand how perceptions and practices may have changed.

3 RESEARCH QUESTIONS AND METHODS

As described in Sec. 2, the conventional use of the term forking
as well as corresponding tooling have changed with the rise of
distributed version control and social coding platforms, and we
conjecture that this also influenced hard forks. Hence, our over-
all research question is How have perceptions and practices
around hard forks changed?

We explore different facets of hard forks, including motivations,
outcomes, and perceived stigma (cf. Sec. 2). We also attempt to iden-
tify how frequent hard forks are across GiTHUB, and discuss how
developers navigate the tension and often blurry line between social
and hard forks. We adopt a concurrent mixed-method exploratory
research strategy [8], in which we combine repository mining - to
identify hard forks and their outcomes — with interviews of main-
tainers of both forks and upstream projects - to explore motivations
and perceptions. Mixing multiple methods allows us to explore the
research question simultaneously from multiple facets and to trian-
gulate some results. In addition, we use some results of repository
mining to guide the selection of interviewees.

We explicitly decided against an exact replication [23, 42] of
prior work, because contexts have changed significantly. Instead,
we guide our research by previously explored facets of hard forks,
revisit those as part of our repository mining and interviews, and
contrast our findings with those reported in pre-GrTHUB studies. In
addition, we do not limit our research to previously explored facets,
but explicitly explore new facets, such as the tension between social
and hard forks, that have emerged from technology changes or that
we discovered in our interviews.

3.1 Instrument for Visualizing Fork Activities

We created commit history graphs, a custom visualization of commit
activities in forks, as illustrated in Figure 2, to help develop and

debug our classifiers (Sec. 3.2 and 3.3), but also to prepare for inter-
views. Given a pair of a fork and corresponding upstream reposito-
ries, we clone both and analyze the joint commit graph between the
two, assigning every commit to one of five states: (1) created before
the forking point, (2) only upstream (not synchronized), (3) only in
fork (unmerged), (4) created upstream but synchronized to the fork,
and (5) created in the fork but merged into upstream. Technically, in
anutshell, we build on our prior commit graph analysis [52], where
merge edges are assigned weight 1 and all other edges weight 0,
and the shortest path from the commit to any branch in either fork
or upstream repository identifies where the commit originates and
whether it has been merged (and in which direction).!

We subsequently plot activities in the two repositories over time,
aggregated in three-month intervals; larger dots indicate more
commiits. In these plots, we include additional arrows for synchro-
nization (from upstream into the fork) and merge (from fork to
upstream) activities. With these plots, we can quickly visually in-
spect development activities before and after the forking point as
well whether the fork and the upstream repository interact.

3.2 Identifying Hard Forks

Identifying hard forks reliably is challenging. Pre-GiTHuB work
often used keyword searches in project descriptions, e.g., ‘software
fork’, or relied on external curated sources (e.g., Wikipedia) [38].
Today, on sites like GrTHUB, hard forks use the same mechanisms
as social forks without any explicit distinction.

Classifier development. For this work, we want to gather a large
set of hard forks and even approximate the frequency of hard forks
among all 47 million forks on GiTHUB. To that end, we need a
scalable, automated classifier. We are not aware of any existing
classifier except our own prior work [52], in which we classified
forks as hard forks if they have at least two own pull requests or
at least 100 own, unmerged commits and the project’s name has
been changed. Unfortunately, we found that this classifier missed
many actual hard forks (false negatives), thus we went back to the
drawing board to develop a new one.

We proceeded iteratively, repeatedly trying, validating, and com-
bining various heuristics. That is, we would try a heuristic to detect
hard forks and manually sample a significant number of classified
forks to identify false positives and false negatives, revising the
heuristic or combining it with other steps. Commit history graphs
(cf. Sec. 3.1) and our qualitative analysis of forks (Sec 3.3 below)
were useful debugging devices in the process. We iterated until we
reached confidence in the results and a low rate of false positives.

There are a few nuances in the process due to technicalities of Git and GrTHus. For
example, if the upstream repository deletes a branch after forking, the joint commit
graph would identify the code as exclusive to the fork; to that end, we discard commits
that are older than the forking timestamp on GiTHUB. Such details are available in our
open-source implementation (https://github.com/shuiblue/VisualHardFork).

https://github.com/shuiblue/VisualHardFork

How Has Forking Changed?

Our final classifier proceeds in two steps: first, we use multiple
simple heuristics to identify candidate hard forks; second, we use
a more detailed and more expensive analysis to decide which of
those candidates are actual hard forks.

In the first step, we identify as candidate hard forks, among all
repositories labeled as forks on GiTHuUB, those that:

e Contain the phrase “fork of” in their description (Hy). We use
Gi1THUB’s search API to find all repositories that contain the
phrase “fork of” in their project description and are a fork of
another project. The idea, inspired by prior work [30], is to look
for projects that explicitly label themselves as forks (defined as
“self-proclaimed forks”), i.e., developers explicitly change their de-
scription after cloning the upstream repository. To work around
Gi1THUB’s API search limit of 1000 results per query, we parti-
tioned the query based on different time ranges in which the
repository was created. Next, we compare the description of the
fork and its upstream project to make sure the description is not
copied from the upstream, i.e., that the upstream project is not
already a self-proclaimed fork.

o Received external pull requests (Hz). Using the June 2019 GrTHUB

dataset [17], we identified all GITHUB repositories that are la-

beled as forks and have received at least three pull requests

(excluding pull requests issued by the fork’s owner to avoid

counting developers who use a process with feature branches).

We consider external contributions to a fork as a signal that the

fork may have attracted its own community.

Have substantial unmerged changes (Hs3). Using the same GHTOR-

RENT dataset, we identify all forks that have at least 100 own

commits, indicating significant development activities beyond

what is typical for social forks.

e Have at least 1-year of development activity (Hy). Similar to the

previous heuristic, we look for prolonged development activities

beyond what is common for social forks. Specifically, we identify
those forks as candidates in which the time between the first
and the last commit spans more than one year.

Have changed their name (Hs). We check if the fork’s name in

GiTHuUB has been changed from the upstream repository’s name

(with Levenshtein distance > 3). This heuristic comes from the

observation that most social forks do not change names, but

that forks intending to go in a different direction and create a

separate community tend to change names more commonly (e.g.,

Jenkins forked Hudson).

Each repository that meets at least one of these criteria is considered

as a candidate. We show how many candidates each heuristic iden-

tified in the second column of Fig. 3b. Note, for all heuristics that
use GHTORRENT, we additionally validated the results by check-
ing whether the fork and upstream pair still exist on GiTHUB and
whether the measures align with those reported by the GrtTHuB

APL?

In the second step, we performed more detailed (and expen-
sive) analyses of commit graphs and repository metadata in each
candidate hard fork, to filter false positives:

o In line with prior work [24, 52], we remove repositories using
GrTHuUB for document storage or course project submission —

2We include this step after identifying occasional errors in GHTORRENT in our valida-
tion steps, such as switched fork-upstream relations between two repositories.

ICSE 20, May 23-29, 2020, Seoul, Republic of Korea

.

<)
/ / | H4

/ / ‘
[H5 /// / | Rule
[|

\

Candidates Actual

\ / /
\ i/ / H,; 10,609 551
! = H, 23,109 7,043

H1 H3) A / H; 14,956 810
\ Hy 33,073 11,268
Hs 20,358 5,568
Total 63,314 15,306

(a) Overlap between the heuristics. (b) Hard forks identified.
Figure 3: Statistics on identified candidate hard forks and ac-
tual hard forks. Small intersections omitted for readability.

some of which are among the most forked projects on GiTHUB.
Specifically, after manual review, we discard repositories con-
taining the keywords ‘homework’, ‘assignments’, ‘course’, ‘code-
camp’, or ‘documents’ in their description; we discard reposi-
tories whose name starts with ‘awesome-’ (usually document
collections); and we discard repositories with no programming-
language-specific files (as per GITHUB’s language classification
queried through the API).

e We discard candidates with fewer than three stars on GiITHUB.
Stars are a lightweight mechanism for developers to indicate
their interest in a project and a common measure of popularity. A
threshold of three stars is very low, but still requires a minimum
amount of public interest. According to GHTORRENT data, of
the 125 million GitHub repositories, 2 million repositories (1.6 %)
have three or more stars.

o We discard candidates without any own commits after the fork,
typically projects that only performed a name change as the
single post-fork action.

e We discard candidates in which 30 % or more of all commits
in the fork have been merged upstream, which indicates social
forks with active contributions to the upstream project.

o For candidates identified with 100 commits or 1 year of activ-
ity, we discard those where the thresholds are not met when
considering only unmerged commits exclusive to the fork.

e We discard candidates owned by developers who contributed
more than 30 % of the commits or pull requests of the upstream
repository, which typically indicates core team members of the
upstream project using social forks for feature development.

o We discard candidates if the fork was created right after the up-
stream stopped updating if the fork is owned by an organization
account and the upstream is owned by a user account. This is a
common pattern we observed, indicating the ownership transfer.

Our classifier identifies a total of 15,306 hard forks across GiTHUB.

In Fig. 3b, we show which heuristics identified the hard forks and

the overlap between the different heuristics in Fig. 3a.

Classifier validation. To validate the precision of our classifier,
we manually inspected a random sample of 300 detected hard forks.
By manually analyzing the fork’s and the upstream repository’s
history and commit messages, we classified 14 detected hard forks

ICSE 20, May 23-29, 2020, Seoul, Republic of Korea

as likely false positives, suggesting an acceptable accuracy of 95 %.
Note that manual labeling is a best effort approach as well, as the
distinction between social and hard fork is not always clear (see
also our discussion of interview results in Sec. 4.4).

Analyzing false negatives (recall) is challenging, because hard
forks are rare, projects listed in previous papers are too old to
detect in our GitHub dataset, and we are not aware of any other
labeled dataset. We have manually curated a list of known hard
forks from mentions in web resources and from mentions during
our interviews. Of the 3 hard forks of which both the fork and the
upstream repository are on GitHub, we detect all with our classifier,
but the size of our labeled dataset is too small to make meaningful
inferences about recall.

3.3 Classifying Evolution Patterns

We identified different evolution patterns among the analyzed forks
using an iterative approach inspired by card sorting [43]. Evolution
patterns describe how a hard fork and the corresponding upstream
project coevolve and can help to characterize forking outcomes. In
addition, we used evolution patterns to diversify interviewees.

Specifically, we printed cards with commit history graphs of 100
randomly selected hard forks (see Sec. 3.2), then all three authors
jointly grouped the cards and identified a few common patterns.
Our card-sorting was open, meaning we had no predefined groups;
the groups emerged and evolved during the analysis process. Af-
terward, we manually built a classifier that detects the forks for
each identified pattern. We then applied this classifier to the entire
dataset, inspected that the automatically classified forks actually fit
the patterns as intended (refining the classifier and its thresholds
if needed). We then picked another 100 hard forks that fit none of
the previously defined patterns and sorted those again, looking for
additional patterns. We similarly proceeded within each pattern,
looking at 100 hard forks to see whether we can further split the
pattern. We repeated this process until we could not identify any
further patterns.

After several iterations, we arrived at a stable list of 15 patterns
with which we could classify 97.7 % of all hard forks. We list all pat-
terns with a corresponding example commit history graph in Tab. 2.
The patterns use characteristics that relate to previously found
outcomes, such as fork or upstream being discontinued, but also
consider additional characteristics corresponding to features that
were not available or easily observable before distributed version
control, e.g., whether the fork and upstream merge or synchronize.
We present the patterns in a hierarchical form, because our process
revealed a classification with a fairly obvious tree structure, not
because we were specifically looking for a hierarchical structure.

3.4 Interviews

To solicit views and perceptions, we conducted 18 semi-structured
interviews with developers, typically 20 to 40 minutes. Despite
reaching fewer developers, we opted for interviews rather than
surveys due to the exploratory nature of our research: Interviews
allow more in-depth exploration of emerging themes.

Interview protocol. We designed a protocol [2] that covers the
relevant dimensions from earlier research and touches on expected
changes, including reasons for forking, perceived stigma of forking,

Shurui Zhou, Bogdan Vasilescu, and Christian Kastner

Table 1: Background information of participants.

Par. Domain #Stars(U) #Stars(F) LOC Role Exp.(yr)

P1 Blockchain <20 <10 10K F 19
P2 Reinforcement learning 10K 1K 30K F 3
P3 Mobile processing - 70 20K F 6
P4 Video recording - 100 300K F 18
P5 Helpdesk system 2K <10> 800K F 5
P6 CRM system 30 200 800K F 10
P7 Physics engine - 300 100K F 15
P8 Social platform 500 230 500K F 20
P9 Reinforcement learning <20 <20 30K 2nd-F 3
P10 Game Engine 500 <10 200K 2nd-F 21
P11 Networking 300 100 500K F 10
P12 Email library - 10K 20K F/U 32
P13 Game engine 3K 70 20K F 11
P14 Machine learning 30K 50 60K F 8
P15 Image editing 70 <10 20K F 20
P16 Image editing 70 <10 20K U 10
P17 Microcontrollers 9K 1K 300K U 6
P18 Maps 400 <10 100K U 9

F: Hard Fork Owner; U: Upstream Maintainer; 2nd-F: Fork of the Hard Fork
*Some of the upstream projects are not in GITHUB, so the number of stars is unknown.
Numbers rounded to one significant digit.

and the distinction and possible tensions between social and hard
forks. We asked fork owners about their decision process that lead
to the hard fork, their practices afterward (e.g., why they renamed
the projects), their current relationship to the upstream project (e.g.,
whether they still monitor or even synchronize), and their future
plans. In contrast, we asked owners of upstream projects to what
extent they are aware of, interact with, or monitor hard forks; and
to what degree they are concerned about such forks or even take
steps to avoid them. In addition, we asked all participants with a
long history of open-source activity if they observed any changes
in their practices or perceptions and that of others over time.

All interviews were semi-structured, allowing for exploration
of topics that were brought up by the participants. Our interview
protocol evolved with each interview, as we reacted to confusion
about questions and insights found in earlier interviews. That is,
we refined and added questions to explore new insights in more
detail in subsequent interviews — for example, after the first few
interviews we added questions about the tradeoff between being
inclusive to changes versus risking hard forks and questions re-
garding practices and tooling to coordinate across repositories. To
ground each interview in concrete experience rather than vague
generalizations, we focused each interview on a single repository
in which the interviewee was involved, bringing questions back to
that specific repository if the discussion became too generic.

Participant recruitment. We selected potential interviewees among
the maintainers of the 15,306 identified hard forks and correspond-
ing upstream repositories. We did consider maintainers with public
email address on their GITHUB profile that were active in the an-
alyzed repositories within the last 2 years (to reduce the risk of
misremembering). We sampled candidates from all evolution pat-
terns (Sec. 3.3) and sent out 242 invitation emails.

Overall, 18 maintainers volunteered to participate in our study
(7 % response rate). Ten opted to be interviewed over email, one

3We unfortunately could not recruit interviewees in all roles for all patterns. For
example, for ‘reviving a dead project’ we would not find any upstream maintainers
that were active in the last 2 years.

How Has Forking Changed?

through a chat app, and all others over phone or teleconferencing.
In Table 2, we map our interviewees to the evolution pattern for
the primary fork discussed (though interviewees may have mul-
tiple roles in different projects). Naturally, our interviewees are
biased toward hard forks that are still active. Our response rate
was also lower among maintainers of upstream repositories, who
were maybe less invested in talking about forking. In Table 1, we
list information about our interviewees and the primary hard fork
we discussed. All interviewees are experienced open-source devel-
opers, specifically, many with more than 10 years experience of
participating in open-source community, meaning they have inter-
acted with earlier open-source platform such as Sourceforge. Our
interviews reached saturation, in that the last interviews provided
only marginal additional insights.

Analysis. We analyzed the interviews using standard qualita-
tively research methods [40]. After transcribing all interviews, two
authors coded the interviews independently, then all authors sub-
sequently discussed emerging topics and trends. Questions and
disagreements were discussed and resolved together, if needed ask-
ing follow up questions to some interviewees.

3.5 Threats to Validity and Credibility

Our study exhibits the threats to validity and credibility that are
typical and expected of this kind of exploratory interview studies
and the used analysis of archival GitHub data.

Distinguishing between social and hard forks is difficult, even
for human raters, as the distinction is primarily one of intention. In
our experience, we can make a judgment call with high inter-rater
reliability for most forks, but there are always some repositories
that cannot be accurately classified without additional information.
We build and evaluate our classifiers based on a best effort strategy,
as discussed.

While we check later steps with data from the GiTHus API,
early steps to identify candidate hard forks may be affected by
missing or incorrect data in the GHTorrent dataset. In addition, the
history of Git repositories is not reliable, as timestamps may be
incorrect and users can rewrite histories after the fact. In addition,
merges are difficult to track if code changes are merged as a new
commit or through ‘squashing’ rather than through a traditional
merge commit. As a consequence, despite best efforts, there will
be inaccuracies in our classification of hard forks and individual
commits, which we expect will lead to some underreporting of hard
forks and to some underreporting of merged code.

We analyze data with right-censored time series data, in which
we can detect that projects have seized activity in the past, but
cannot predict the future, thus seeing a larger chance for older
forks to be discontinued.

Our study is limited to hard forks of which both fork and up-
stream repository are hosted on GitHub and of which the forking
relationship is tracked by GitHub. While GitHub is by far the most
dominant hosting service for open source, our study does not cover
forks created of (typically older) projects hosted elsewhere and
forks created by manually cloning or copying source code to a new
repository. In addition, our interviews, as typical for all interview
studies in our field, is biased toward answer from developers who

ICSE 20, May 23-29, 2020, Seoul, Republic of Korea

chose to make their email public and chose to answer to our in-
terview request, which underrepresented maintainers of upstream
repositories in our sample.

4 RESULTS

We explore practices and perceptions around hard forks along four
facets that emerged from our interviews and data.

4.1 Frequency of Hard Forks

Our classifier identified 15,306 hard forks, confirming that hard
forks are generally a rare phenomenon. As of June 2019, GiTHUB
tracks 47 million repositories that are marked as forks over 5 million
distinct upstream repositories among GITHUB’s over 125 million
repositories.

Among those, the vast majority of forks has no activity after
the forking point and no stars. Most active forks have only very
limited activity indicative of social forks. Only 0.2 % of GITHUB’s
47 million forks have 3 or more stars.

As our analysis of evolution patterns (Tab. 2) reveals, cases where
both the upstream repository and the hard fork remain active for
extended periods of time are not common (patterns 2, and 4-7;
779 hard forks, 5 %). Most hard forks actually survive the upstream
project, if the upstream project was active when the fork was cre-
ated (patterns 8-11; 7280 hard forks, 47.6 %), but many also run out
of steam eventually (patterns 3 and 12-15; 6671 hard forks, 43.6 %).

While most hard forks are created as forks of active projects
(patterns 4-15; 14254 hard forks, 93 %), there are a substantial num-
ber of cases where hard fork are created to revive a dead project
(pattern 1-3; 1052 hard forks, 6.8 %), in some cases even triggering
or coinciding with a revival of the upstream project (pattern 2; 56
hard forks, 0.36 %), but also here not all hard fork sustain activity
(pattern 3; 420 hard forks, 2.7 %).

Discussion and implications. Even though the percentage of hard
forks is low, the total number of attempted and sustained hard forks
is not. Considering the significant cost a hard fork can put on a com-
munity through fragmentation, but also the potential power a com-
munity has through hard forks, we argue that hard forks are an im-
portant phenomenon to study even when they are comparably rare.
Whereas previous work typically looked at only a small number
of hard forks, and research on tooling around hard-fork issues
typically focus on few well known projects, such as the variants
of BSD [34] or Marlin [27] or artificial or academic variants [13,
21], we have detected a significant number of hard forks, many of
them recent, using many different languages, that are a rich pool
for future research. We release the dataset of all hard forks with
corresponding visualizations as dataset with this paper [2].

4.2 Why Hard Forks Are Created (And How to
Avoid Them)

At a first glance, the interviewees give reasons for creating hard
forks that align well with prior findings, including especially con-
tinuing discontinued projects or projects with unresponsive main-
tainers (P1, P2, P8), disagreements around project governance (P2,
P12), and diverging technical goals or target populations (P3, P5,

ICSE 20, May 23-29, 2020, Seoul, Republic of Korea

Shurui Zhou, Bogdan Vasilescu, and Christian Kastner

Table 2: Evolution patterns of hard forks

Id Category Total Sub-category Example Count Interviewees
Success - . i
1 (F. active > 2 QL) 632 Upstream remains inactive \ 576 P12
Revive)) ° o . .
2 Dead Upstream active again N\ 56
Project
Not success o o -
3 (F active <= 2 Qt) 420 \0—0— 420
[
4 only merge b \. LA e 26 P10
. ® o @ 3 : : 3 3
5 Both Alive 723 only sync o 107 P2, P13, P15
° - L 2
6 merge & sync i b 28 P9
° . .
7 no interation L4 \. 562 P1, P3, P4, P5, P7, P14
L3 o o » @
8 only merge \ 174
Fork .
9 Lived 7280 only sync \ 686
Longer
Forking ° » .
10 Active merge & sync \ 107
Project
. . ® e - o
11 no interaction 6313 Pe, P8, P11
12 only merge oo \’ eoooe 388
Fork
does not [J L BN
13 out live 6251 only sync 762
upstream
. . e o o
14 merge & sync 199
15 no interaction i \. eos00o 4902

P6, P11, P13, P14, P17). As discussed, we identified 1052 hard forks
(Tab. 2, patterns 1-3, 6.8 %) that forked an inactive project.

An interesting common theme that emerged in our interviews
though was that many hard forks were not deliberately created as
hard forks initially. More than half of our interviewees described
that they initially created a fork with the intention of contributing to
the upstream repository (social fork), but when they faced obstacles
they decided to continue on their own. Common obstacles were
unresponsive maintainers (P1, P2, P8) and rejected pull requests
(P11, P13, P14), typically because the change was considered beyond
the scope of the project. For example, P2 described that “before
forking, we started by opening issues and pull requests, but there
was a lack of response from their part. [We] got some news only 2
months after, when our fork was getting some interest from others.”
Similarly, some maintainers reported that a fork initially created

for minor personal changes evolved into a hard fork as changes
became more elaborate and others found them useful (P2, P14,
P17); for example, P14 described that the upstream project had been
constantly evolving and the code base became quickly incompatible
with some libraries, so he decided to fix this issue while also adding
functionality, after which more and more people found his fork and
started to migrate.

Several maintainers also had explicit thoughts about how to
avoid hard forks (both maintainers of projects that have been forked
and fork owners who themselves may be forked), and they largely
mirror common reasons for forking, i.e., transparent governance,
being responsive, and being inclusive to feature requests. For ex-
ample, P2 suggests that their project is reactive to the community,
thus he considers it unlikely to be forked; similarly P16 decided to
generally “respond to issues in a timely manner and make a good

How Has Forking Changed?

faith effort to incorporate PRs and possibly fix issues and add features
as the needs arrives” to reduce the need for hard forks. Beyond
these, P2 also mentioned that they created a contributing guide and
issue templates to coordinate with contributors more efficiently;
P14 suggested to “credit the contributors” explicitly in release notes
in order to keep contributors stay in the community.

Discussion and Implications. Whereas forking was typically seen as
a deliberate decision in pre-GrTHUB days that required explicit steps
to set up a repository for the fork and find a new name, nowadays
many hard forks seem to happen without much initial deliberation.
Social coding environments actively encourage forking as a contri-
bution mechanism, which significantly lowers the bar to create a
fork in the first place without having to think about a new name or
potential consequences like fragmenting communities. Once the
fork exists (initially created as social fork), there seems to be often
a gradual development until developers explicitly consider their
fork a separate development line. In fact, many hard forks seem to
be triggered by rather small initial changes. These interview results
align with the observation that only about 36 % of the detected hard
forks on GITHUB have changed the project’s name (cf. Fig. 3a).*

More importantly, a theme emerged throughout our interviews
that hard forks are not likely to be avoidable in general, because
of a project’s tension between being specific and begin general. On
the one hand, projects that are more inclusive to all community
contributions risk becoming so large and broad that they become
expensive to maintain (e.g., as P17 suggests, the project maintainers
need to take over maintenance of third-party contributions for niche
use cases) and difficult to use (e.g., lots of configuration options and
too much complexity). On the other hand, projects staying close to
their original vision and keeping a narrow scope may remain more
focused with a smaller and easier to maintain code base, but they
risk alienating users who do not fit that original vision, who then
may create hard forks. One could argue that hard forks are a good
test bed for contributions that diverge from the original project
despite their costs on the community: If fork dies it might suggest
a lack of support and that it may have been a good decision not to
integrate those contributions in the main project.

In this context, a family of related projects that serve slightly
different needs or target populations but still coordinate may be a
way to overcome this specificity-generality dilemma in supporting
multiple projects that each are specific to a mission, but together
target a significant number of uses cases. However, current tech-
nology does not support coordination across multiple hard forks
well, as we discuss next.

4.3 Interactions between Fork and Upstream
Repository

Many interviewees indicate that they are interested in coordinating
across repositories, either for merging some or all changes back up-
stream eventually or to monitor activity in the upstream repository
to incorporate select or all changes. Some hard fork owners did not
see themselves competing with the upstream project, but rather

4 An intervieweed hard-fork owners explained that they did not change the fork’s
name as a way to give credits to the upstream project, so not all hard forks without
name changes should be automatically interpreted as being created through a gradual
transition from social forks.

ICSE 20, May 23-29, 2020, Seoul, Republic of Korea

being part of a larger project. For instance, although fork owner
P13 has over 1500 commits ahead of the upstream project, he still
said that “I would not consider it independent because I am relying on
what they (upstream) are doing. I could make it independent and stop
getting their improvements, but it’s to their credit they make it very
easy for their many hundreds of developers to contribute patches and
accept patches from each other. They regulate what goes into their
project very well, and that makes [merging changes] into my fork
much easier” Some (P4 and P11) indicate that they would like to
merge, once the reason for the hard fork disappears (typically gov-
ernance practices or personal disputes). Also upstream maintainers
tend to be usually interested in what happens in their forks; for
example, P17, a maintainer of a project with thousands of (mostly
social) forks, said “I try to be aware of the important forks and try to
get to know the person who did the fork. I will follow their activities
to some extent.”

However, even though many interviewees expressed intentions,
we see little evidence of actual synchronization or merging across
forks in the repositories: For example, P1, P4, P8, and P11 mention
that they are interested in eventually merging back with the up-
stream repository, but they have not done so yet and do not have
any concrete plans at this point. Similarly, P2, P6, and P10 indicate
that they are interested in changes in upstream projects, but do not
actually monitor them and have not synchronized in a long time.
Our evolution patterns similarly show that synchronization (from
upstream to fork) and merging (from fork to upstream) are rare.
Only 16.18 % of all hard forks with active upstream repositories
ever synchronize or merge (Tab. 2, patterns 4-6, 8-10, and 12-14).

What might explain this difference between intentions and ob-
served actions is that synchronization and merging becomes diffi-
cult once two repositories diverge substantially and that monitoring
repositories can becoming overwhelming with current tools. For
example, P2 reports to only occasionally synchronize minor im-
provements, because the fork has diverged too much to synchronize
larger changes; P10 has experienced problems of synchronizing too
frequently and thus being faced with incomplete implementations
and now only selectively synchronizes features of interest. In line
with prior observations on monitoring change feeds [5, 9, 32, 51],
interviewees report that systematically monitoring changes from
other repositories is onerous and that current tools like GITHUB’s
network graph are difficult to use and does not scale (P11, P16).

Discussion and Implications. Tooling has changed significantly since
the pre-GiTHUB days of prior studies on hard forks which may allow
new forms of collaboration across forks: Git specifically supports
merges across distributed version histories, as well as selectively
integrating changes through a ‘cherry picking’ feature. GiTHUB
and similar social coding pages track forks, allowing developers
to subscribe to changes in select repositories, and generally make
changes in forks transparent [9, 10, 51]. Essentially all interviewees
were familiar with GITHUB’s network view [1] that visually shows
contributions over time across forks and branches.

Even though advances in tooling provide new opportunities
for coordination across multiple forks and project maintainers are
interested in coordinating and considering multiple forked projects
as part of a larger community, current tools do not support this use
case well. Current tools work well for short-term social forks but

ICSE 20, May 23-29, 2020, Seoul, Republic of Korea

tend to work less well for coordinating changes across repositories
that have diverged more significantly.

This provides opportunities for researchers to explore tooling
concepts that can monitor, manage, and integrate changes across a
family of hard forks. Recent academic tools for improved monitor-
ing [32, 51] or cross-fork change migration [34, 36] are potentially
promising but are not yet accessible easily to practitioners. Also
more experimental ideas about virtual product-line platforms that
unify development of multiple variants of a project [3, 13, 28, 39, 44]
may provide inspiration for maintaining and coordinating hard
forks, though they typically do not currently support the distributed
nature of development with competing hard forks. A technical so-
lution could solve the specificity-generality dilemma (cf. Sec. 4.2),
allowing subcommunities to handle more specific features with-
out overloading the upstream project and without fragmenting
the overall community. We believe that our dataset of 15,306 hard
forks can be useful to develop and evaluate such tools in a realistic
setting.

4.4 Perceptions of Hard Forking

Our discussion with maintainers confirmed that the line between
hard forks and social forks is somewhat subjective, but, when
prompted, they could draw distinctions that largely mirror our
definition (long-term focus, extensive changes, fork with own com-
munity). For example, P2 agree that his fork is independent from the
upstream project because they have different goals, and suggests
the fork has better code quality, and better community manage-
ment practices; the only remaining connection are upstream bug
fixes that he incorporates from time to time. Also, P6 considers his
fork as independent, given a quicker release cycle and significantly
refactorings to the code base.

For most interviewees, the dominant meaning of a fork is that
of a social fork. When asked about perceptions of forks, most inter-
viewees initially thought of social forks and have strong positive
associations, e.g., others contributing to a project, onboarding new-
comers and finding collaborators, and generally fostering innova-
tion. For instance, P6 described the advantages of social forking as
“it encourages developers to go in a direction that the original project
may not have gone,” and similarly P9 thought that “it could boost the
creative ideas of the communities.” One interviewee also mentioned
that for young projects primarily focus on growth, having been
forked is a positive signal meaning the project is useful to other
people. Social forks were so dominant in the interviewees’ mind as
a default, that we had to frequently refocus the interview on hard
forks. When asked specifically about hard forks, several intervie-
wees raised concerns about potential community fragmentation
(P4, P6, P17), worried about incompatibilities and especially confus-
ing end users (P3, P9, P14, P17), and would have preferred to see
hard-fork owners to contribute to the upstream project instead (P3,
P8, P12). However, concerns were mostly phrased as hypotheticals
and contrasted with positive aspects.

Many interviewed owners of hard forks do not see themselves
competing with the upstream repository, as they consider that they
address a different problem or target a different user population. For
example, P10 described his fork as a “light version” of the upstream
project targeting a different group of users.

Shurui Zhou, Bogdan Vasilescu, and Christian Kastner

While it is understandable that hard-fork owners see their forks
as justified, also some interviewed owners of upstream projects had
positive opinions about such forks. For example, P17 expressed that
forks are good if there is a reason (such as a focus on a different
target population, in this case beginners), and that those forks may
benefit the larger community by bringing in more users to the
project; P18 suggested even that he would support and contribute
forks of his own project by occasionally contributing to them as
long as it will benefit the larger community.

Discussion and Implications. Overall, we see that the perception of
forking has significantly changed compared to perceptions reported
in earlier work. Forking used to have a rather negative connotation
in pre-GITHUB days and was largely regarded as a last resort to be
avoided to not fragment the community and confuse users. With
GiTHUB’s rebranding of the word forking, the stigma around hard
forking seems to have mostly disappeared; the word has mostly
positive connotations for developers, associated positively with
external contributors and community. While there is still some
concern about community fragmentation, it is rarely a concrete
concern if there are actual reasons behind a hard fork. Transparent
tooling seems to help with acceptance and with considering mul-
tiple hard forks as part of a larger community that can mutually
benefit from each other.

We expect that a more favorable view, combined with lower
technical barriers (Sec. 4.2) and higher expectations of coordination
(Sec. 4.3) makes hard forks a phenomenon we should expect to see
more of. However, positive expectations can turn into frustration
(and disengagement of valuable contributors to sustain open source)
if fragmentation leads to competition, confusion, and coordination
breakdowns due to insufficient tooling.

With the right tooling for coordination and merging, we think
hard forks can be a powerful tool for exploring new and larger
ideas or testing whether there is sufficient support for features
and ports for niche requirements or new target audiences (e.g.,
solving the specificity-generality dilemma discussed in Sec. 4.2 with
a deliberate process). To that end though, it is necessary to explicitly
understand (some) hard forks as part of a larger community around
a project and possibly even explicitly encourage hard forks for
specific explorations beyond the usual scope of social forks. We
believe that there are many ways to support development with
hard forks and to coordinate distributed developers beyond what
social coding site offer at small scale today. Examples include (1) an
early warning system that alerts upstream maintainers of emerging
hard forks (e.g., external bots), which maintainers could use to
encourage collaboration over competition and fragmentation if
desired, (2) a way to declare the intention behind a fork (e.g., explicit
GiTHUB support) and dashboard to show how multiple projects
and important hard forks interrelate (e.g., pointing to hard forks
that provide ports for specific operating systems), and (3) means to
identify the essence of the novel contributions in forks (e.g., history
slicing [26] or code summarization [51]).

5 CONCLUSION

With the rise of social coding and explicit support in distributed
version control systems, forking of repositories has been explic-
itly promoted by sites like GiTHUB and has become very popular.

How Has Forking Changed?

However, most of these modern forks are not hard forks in the tradi-
tional sense. In this paper, we automatically detected hard forks and
their evolution patterns and interviewed open-source developers
of forks and upstream repositories to study perceptions and prac-
tices. We found that perceptions and practices have indeed changed
significantly: Among others, hard forks often evolve out of social
forks rather than being planned deliberately and developers are less
concerned about community fragmentation but frequently perceive
hard forks a positive noncompetitive alternatives to the original
projects. We also outlined challenges and suggested directions for
future work.

Acknowledgements. Zhou and Kéastner have been supported in
part by the NSF (awards 1552944, 1717022, and 1813598) and AFRL
and DARPA (FA8750-16-2-0042). Vasilescu has been supported in
part by the NSF (awards 1717415 and 1901311) and the Alfred P.
Sloan Foundation.

REFERENCES

(1]

[2
[3

[

=
X0

[10

[11]

[12]

=
&

[14]

[15

[16]

=
=

(18]

[19

[20

2008. GitHub Network View. https://help.github.com/en/articles/viewing-a-
repositorys-network.

2020. Appendix. https://github.com/shuiblue/ICSE20-hardfork-appendix.
Michat Antkiewicz, Wenbin Ji, Thorsten Berger, Krzysztof Czarnecki, Thomas
Schmorleiz, Ralf Lammel, Stefan Stanciulescu, Andrzej Wasowski, and Ina Schae-
fer. 2014. Flexible Product Line Engineering with a Virtual Platform. In Comp.
Int’l Conf. Software Engineering (ICSE). ACM, 532-535.

Matt Asay. 2014. Why you should fork your next open-source project. Blog
Post. https://www.techrepublic.com/article/why-you-should-fork-your-next-
open-source-project/

Christopher Bogart, Christian Késtner, James Herbsleb, and Ferdian Thung. 2016.
How to Break an API: Cost Negotiation and Community Values in Three Software
Ecosystems. In Proc. Int’l Symposium Foundations of Software Engineering (FSE).
ACM, 109-120.

Pete Bratach. 2017. Why Do Open Source Projects Fork? Blog Post.
//thenewstack.io/open-source-projects-fork/

Bee Bee Chua. 2017. A Survey Paper on Open Source Forking Motivation Reasons
and Challenges. In 21st Pacific Asia Conference on Information Systems (PACIS).
75.

John W Creswell and J David Creswell. 2017. Research design: Qualitative, quan-
titative, and mixed methods approaches. Sage publications.

Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. 2012. Social coding
in GitHub: transparency and collaboration in an open software repository. In
Proc. Conf. Computer Supported Cooperative Work (CSCW). ACM, 1277-1286.
Laura Dabbish, Colleen Stuart, Jason Tsay, and James Herbsleb. 2013. Leveraging
transparency. IEEE Software 30, 1 (2013), 37-43.

James Dixon. 2009. Forking Protocol: Why, When, and How to Fork an Open
Source Project. Blog Post. https://jamesdixon.wordpress.com/2009/05/07/
forking-protocol-why-when-and-how- to-fork-an-open-source-project/

Neil A Ernst, Steve Easterbrook, and John Mylopoulos. 2010. Code forking in
open-source software: a requirements perspective. arXiv preprint arXiv:1004.2889
(2010).

Stefan Fischer, Lukas Linsbauer, Roberto Erick Lopez-Herrejon, and Alexander
Egyed. 2014. Enhancing clone-and-own with systematic reuse for developing
software variants. In Proc. Int’l Conf. Software Maintenance (ICSM). IEEE, 391-400.
Karl Fogel. 2005. Producing open source software: How to run a successful free
software project. O'Reilly Media, Inc.

Kam Hay Fung, Aybiike Aurum, and David Tang. 2012. Social Forking in Open
Source Software: An Empirical Study. In Proc. Int’l Conf. Advanced Information
Systems Engineering (CAiSE) Forum. Citeseer, 50-57.

Jonas Gamalielsson and Bjorn Lundell. 2014. Sustainability of Open Source
Software Communities beyond a Fork: How and Why has the LibreOffice Project
Evolved? Journal of Systems and Software 89 (2014), 128-145.

Georgios Gousios. 2013. The GHTorent dataset and tool suite. In Proc. Working
Conf. Mining Software Repositories (MSR). IEEE Press, 233-236.

Georgios Gousios, Martin Pinzger, and Arie van Deursen. 2014. An exploratory
study of the pull-based software development model. In Proc. Int’l Conf. Software
Engineering (ICSE). ACM, 345-355.

Georgios Gousios, Bogdan Vasilescu, Alexander Serebrenik, and Andy Zaidman.
2014. Lean GHTorrent: GitHub data on demand. In Proc. Working Conf. Mining

Software Repositories (MSR). ACM, 384-387.
Georgios Gousios, Andy Zaidman, Margaret-Anne Storey, and Arie Van Deursen.

2015. Work Practices and Challenges in Pull-Based Development: The Integrator’s

https:

[21

[22]

[23

[24

[25

[26]

[27

[28

[29

@
=

[31

[32

[33

&
=

[35

[36]

(37]

[38

=
&

ICSE 20, May 23-29, 2020, Seoul, Republic of Korea

Perspective. In Proc. Int’l Conf. Software Engineering (ICSE), Vol. 1. 358-368.
Wenbin Ji, Thorsten Berger, Michal Antkiewicz, and Krzysztof Czarnecki. 2015.
Maintaining Feature Traceability with Embedded Annotations. In Proc. Int’l
Software Product Line Conf. (SPLC). ACM, 61-70.

Jing Jiang, David Lo, Jiahuan He, Xin Xia, Pavneet Singh Kochhar, and Li Zhang.
2017. Why and how developers fork what from whom in GitHub. Empirical
Software Engineering 22, 1 (2017), 547-578.

Natalia Juristo and Omar S Goémez. 2010. Replication of software engineering
experiments. In Empirical software engineering and verification. Springer, 60-88.
Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M
German, and Daniela Damian. 2016. An in-depth study of the promises and perils
of mining GitHub. Empirical Software Engineering 21, 5 (2016), 2035-2071.
Andrew M St Laurent. 2004. Understanding Open Source and Free Software Licens-
ing: Guide to Navigating Licensing Issues in Existing & New Software. O’Reilly
Media, Inc.

Yi Li, Chenguang Zhu, Julia Rubin, and Marsha Chechik. 2017. Semantic slicing
of software version histories. IEEE Trans. Softw. Eng. (TSE) 44, 2 (2017), 182-201.
Max Lillack, Stefan Stinciulescu, Wilhelm Hedman, Thorsten Berger, and Andrzej
Wasowski. 2019. Intention-based Integration of Software Variants. In Proceedings
of the 41st International Conference on Software Engineering (ICSE '19). IEEE Press,
Piscataway, NJ, USA, 831-842.

Leticia Montalvillo and Oscar Diaz. 2015. Tuning GitHub for SPL development:
branching models & repository operations for product engineers. In Proceedings
of the 19th International Conference on Software Product Line. ACM, 111-120.
Linus Nyman. 2014. Hackers on forking. In Proc. Int’l Symposium on Open
Collaboration (OpenSym). ACM, 6.

Linus Nyman and Tommi Mikkonen. 2011. To Fork or not to Fork: Fork Moti-
vations in SourceForge Projects. In Proc. IFIP Int’l Conf. on Open Source Systems.
Springer, 259-268.

Linus Nyman, Tommi Mikkonen, Juho Lindman, and Martin Fougeére. 2012. Per-
spectives on Code Forking and Sustainability in Open Source Software. Open
Source Systems: Long-Term Sustainability (2012), 274-279.

Rohan Padhye, Senthil Mani, and Vibha Singhal Sinha. 2014. NeedFeed: Taming
Change Notifications by Modeling Code Relevance. In Proc. Int’l Conf. Automated
Software Engineering (ASE). ACM, 665-676.

Ayushi Rastogi and Nachiappan Nagappan. 2016. Forking and the Sustainabil-
ity of the Developer Community Participation-An Empirical Investigation on
Outcomes and Reasons. In Proc. Int’l Conf. Software Analysis, Evolution, and
Reengineering (SANER), Vol. 1. IEEE, 102-111.

Baishakhi Ray, Miryung Kim, Suzette Person, and Neha Rungta. 2013. Detecting
and characterizing semantic inconsistencies in ported code. In Proc. Int’l Conf.
Automated Software Engineering (ASE). IEEE, 367-377.

Eric S Raymond. 2001. The Cathedral & the Bazaar: Musings on linux and open
source by an accidental revolutionary. O’Reilly Media, Inc.

Luyao Ren. 2019. Automated Patch Porting Across Forked Projects. In Proc. Int’l
Symposium Foundations of Software Engineering (FSE). ACM, New York, NY, USA,
1199-1201.

Luyao Ren, Shurui Zhou, Christian Késtner, and Andrzej Wasowski. 2019. Iden-
tifying Redundancies in Fork-based Development. In Proc. Int’l Conf. Software
Analysis, Evolution, and Reengineering (SANER). IEEE, 230-241.

Gregorio Robles and Jesus M. Gonzalez-Barahona. 2012. A Comprehensive Study
of Software Forks: Dates, Reasons and Outcomes. In Proc. IFIP Int’l Conf. on Open
Source Systems. 1-14.

Julia Rubin and Marsha Chechik. 2013. A framework for managing cloned
product variants. In Proceedings of the 2013 International Conference on Software
Engineering. IEEE Press, 1233-1236.

Johnny Saldafa. 2015. The coding manual for qualitative researchers. Sage.
Anand Mani Sankar. 2015. Node.js vs io.js: Why the fork?!? Blog Post. http:
//anandmanisankar.com/posts/nodejs-iojs-why-the-fork/

Stefan Schmidt. 2009. Shall we really do it again? The powerful concept of
replication is neglected in the social sciences. Review of General Psychology 13, 2
(2009), 90-100.

Donna Spencer. 2009. Card sorting: Designing usable categories. Rosenfeld Media.
Stefan Stanciulescu, Thorsten Berger, Eric Walkingshaw, and Andrzej Wasowski.
2016. Concepts, operations, and feasibility of a projection-based variation control
system. In Proc. Int’l Conf. Software Maintenance and Evolution (ICSME). IEEE,
323-333.

Igor Steinmacher, Gustavo Pinto, Igor Scaliante Wiese, and Marco Aurélio Gerosa.
2018. Almost there: A study on quasi-contributors in open-source software
projects. In Proc. Int’l Conf. Software Engineering (ICSE). IEEE, 256-266.

Robert Viseur. 2012. Forks impacts and motivations in free and open source
projects. International Journal of Advanced Computer Science and Applications 3,
2(2012), 117-122.

Steve Weber. 2004. The success of open source. Harvard University Press.

David A. Wheeler. 2015. Why Open Source Software/Free Software (OSS/FS,
FLOSS, or FOSS)? Look at the Numbers! Blog Post. https://dwheeler.com/
ossgsyhy.html

https://help.github.com/en/articles/viewing-a-repositorys-network
https://help.github.com/en/articles/viewing-a-repositorys-network
https://github.com/shuiblue/ICSE20-hardfork-appendix
https://www.techrepublic.com/article/why-you-should-fork-your-next-open-source-project/
https://www.techrepublic.com/article/why-you-should-fork-your-next-open-source-project/
https://thenewstack.io/open-source-projects-fork/
https://thenewstack.io/open-source-projects-fork/
https://jamesdixon.wordpress.com/2009/05/07/forking-protocol-why-when-and-how-to-fork-an-open-source-project/
https://jamesdixon.wordpress.com/2009/05/07/forking-protocol-why-when-and-how-to-fork-an-open-source-project/
http://anandmanisankar.com/posts/nodejs-iojs-why-the-fork/
http://anandmanisankar.com/posts/nodejs-iojs-why-the-fork/
https://dwheeler.com/oss_fs_why.html
https://dwheeler.com/oss_fs_why.html

ICSE 20, May 23-29, 2020, Seoul, Republic of Korea

[49] Owen Willams. 2015. Node.js and io.js are settling their differences, merging
back together. Blog Post. https://thenextweb.com/dd/2015/06/16/node-js-and-
io-js-are-settling- their-differences-merging-back-together/

[50] Alex Williams and Joab Jackson. 2016. A Docker Fork: Talk of a Split Is Now on
the Table. Blog Post. https://thenewstack.io/docker-fork-talk-split-now-table/

[51] Shurui Zhou, S$tefan Stanciulescu, Olaf Le8enich, Yingfei Xiong, Andrzej Wa-
sowski, and Christian Kastner. 2018. Identifying Features in Forks. In Proc. Int’l

Shurui Zhou, Bogdan Vasilescu, and Christian Kastner

Conf. Software Engineering (ICSE). ACM Press, 105-116.

[52] Shurui Zhou, Bogdan Vasilescu, and Christian Kastner. 2019. What the Fork:
A Study of Inefficient and Efficient Forking Practices in Social Coding. In Proc.
Europ. Software Engineering Conf./Foundations of Software Engineering (ESEC/FSE).
ACM Press, New York, NY, 350-361.

https://thenextweb.com/dd/2015/06/16/node-js-and-io-js-are-settling-their-differences-merging-back-together/
https://thenextweb.com/dd/2015/06/16/node-js-and-io-js-are-settling-their-differences-merging-back-together/
https://thenewstack.io/docker-fork-talk-split-now-table/

	Abstract
	1 Introduction
	2 Past Research on Forking
	2.1 Types of Forking
	2.2 Motivations for Forking
	2.3 Outcomes of Hard Forks
	2.4 Pros and Cons of Hard Forks

	3 Research Questions and Methods
	3.1 Instrument for Visualizing Fork Activities
	3.2 Identifying Hard Forks
	3.3 Classifying Evolution Patterns
	3.4 Interviews
	3.5 Threats to Validity and Credibility

	4 Results
	4.1 Frequency of Hard Forks
	4.2 Why Hard Forks Are Created (And How to Avoid Them)
	4.3 Interactions between Fork and Upstream Repository
	4.4 Perceptions of Hard Forking

	5 Conclusion
	References

