
Compiler Optimization of Scalar Value Communication
Between Speculative Threads

Antonia Zhai, Christopher B. Colohan, J. Gregory Steffan, and Todd C. Mowry
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213�
zhaia,colohan,steffan,tcm � @cs.cmu.edu

ABSTRACT
While there have been many recent proposals for hardware that sup-
ports Thread-Level Speculation (TLS), there has been relatively lit-
tle work on compiler optimizations to fully exploit this potential
for parallelizing programs optimistically. In this paper, we focus
on one important limitation of program performance under TLS,
which is stalls due to forwarding scalar values between threads that
would otherwise cause frequent data dependences. We present and
evaluate dataflow algorithms for three increasingly-aggressive in-
struction scheduling techniques that reduce the critical forwarding
path introduced by the synchronization associated with this data
forwarding. In addition, we contrast our compiler techniques with
related hardware-only approaches. With our most aggressive com-
piler and hardware techniques, we improve performance under TLS
by 6.2–28.5% for 6 of 14 applications, and by at least 2.7% for half
of the other applications.

1. INTRODUCTION
Multithreading within a chip is becoming increasingly common-

place: examples include the IBM Power4 [17], Sun MAJC [33],
Alpha 21464 [9], HP PA-8800, and Sibyte BCM-1250 [4]. While
using this multithreaded hardware to improve the throughput of a
workload is straightforward, using it to improve the performance
of a single application requires parallelization. The ideal solution
would be to convert sequential programs into parallel programs au-
tomatically, but unfortunately this is difficult (if not impossible) for
many general-purpose programs due to their use of pointers, com-
plex data and control structures, and run-time inputs.

Thread-Level Speculation (TLS) [1, 7, 13, 14, 15, 19, 20, 25,
30, 34] is a potential solution to this problem since it allows the
compiler to create parallel threads without having to prove that
they are independent. The underlying hardware ensures that inter-
thread dependences through memory are satisfied, and re-executes
any thread for which they are not.

The key to extracting parallelism from these programs and hence
improving performance is in the efficiency of speculative execu-
tion. While recent research has investigated hardware optimization
for TLS [7, 19, 21, 31, 23], there has been relatively little work
on compiler optimization in this area. One potential opportunity

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASPLOS X 10/02 San Jose, CA, USA
Copyright 2002 ACM 1-58113-574-2/02/0010 ...$5.00.

do �
work1();
wait(A);
if (condition(A)) �

A = A + *p;�
else �
B = 2;
work2();�

A = A + 1;
signal(A);
work3();�

while (1);

T
im

e

st
al

l

st
al

lC
ri

tic
al

 P
at

h = A

A=

C
ri

tic
al

 P
at

h = A

A=

C
ri

tic
al

 P
at

h = A

A=
signal(A)

wait(A)wait(A)

signal(A)

signal(A)

(a) Before instruction scheduling.

do �
work1();
wait(A);
if (condition(A)) �

A = A + *p;
A = A + 1;
signal(A);�

else �
A = A + 1;
signal(A);
B = 2;
work2();�

work3();�
while (1);

T
im

e

= A

st
al

l

st
al

l

= A

= A

A=

A=

A=

wait(A)

signal(A)

signal(A)

wait(A)

signal(A)

(b) After instruction scheduling.

Figure 1: Impact of scheduling on the critical forwarding path.

for optimization focuses on data dependences between speculative
threads that occur frequently: if the compiler is able to identify the
source and the destination of a frequent inter-thread data depen-
dence, then it is beneficial to insert synchronization and forward
that value explicitly to avoid failed speculation. Figure 1(a) shows
an example loop that the compiler has speculatively parallelized by
partitioning the loop into speculative threads (aka epochs). Since
the variable A is read and written in every iteration, the compiler de-
cides to synchronize and forward A by inserting a wait operation
before the first use of A, and a signal operation after the last def-
inition of A—we describe, implement, and evaluate this algorithm
in Section 3. The synchronization results in the partially-parallel
execution shown in Figure 1(a), where each epoch stalls until the
value of A is produced by the previous epoch. The flow of the value
of A between epochs serializes the parallel execution, and so we re-
fer to it as a critical forwarding path. In the next section, we show
that the overall performance of speculation is limited by the size of
this critical forwarding path.



|0

|50

|100

 

 

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

U P
compress

U P
crafty

U P
gap

U P
gcc

U P
go

U P
gzip

U P
ijpeg

U P
m88ksim

U P
mcf

U P
parser

U P
perlbmk

U P
twolf

U P
vortex

U P
vpr

fail
sync
other
busy

Figure 2: Potential impact of reducing the critical forwarding path. For each benchmark we show execution time on four proces-
sors for the speculatively parallelized regions of code normalized to that of the original sequential versions. U is the unscheduled
speculative version and P shows the impact of perfect prediction of forwarded values.

1.1 The Importance of Reducing the Critical
Forwarding Path

Although synchronization is better than speculation for a data de-
pendence that occurs frequently, the resulting serialization can still
limit performance. In fact, the performance of many applications
that exploit TLS is limited by the critical forwarding path. Figure 2
shows the potential impact of reducing the critical forwarding path
on a four-processor chip multiprocessor—we will explain the de-
tails of this experiment later in Section 2. The U bars show the
unscheduled TLS version of each application run speculatively in
parallel. Each bar is normalized to the execution time of the orig-
inal sequential version, such that bars less than 100 are speeding
up. The best we can possibly do with scheduling is to eliminate
the critical forwarding path altogether. We measure this ideal be-
havior with a model that can perfectly predict all forwarded values
such that there is no synchronization (P). We see that for most ap-
plications, removing the synchronization bottleneck results in great
performance improvements.

What can the compiler do to shrink the critical forwarding path?
The key idea is to reduce the number of instructions between each
wait/signal pair. However, this becomes more difficult in the
presence of conditional control flow. Figure 1(b) shows the exam-
ple loop after the compiler has scheduled the code to reduce the
critical forwarding path. The scheduling algorithm has duplicated
the computation of A=A+1 as well as the signal and moved them
into the conditional structure. If the condition on A is rarely true,
then less work will be performed before reaching each signal (by
deferring the computation of B=2 and work2()). As shown in the
figure, this reduces the stall time for each epoch, thereby improving
overall execution time. We describe an algorithm for reducing the
critical path in Section 4.1.

1.2 More Aggressive Instruction Scheduling
All of the transformations that we have described so far will

preserve the control and data dependences within each epoch: the
transformed code will perform the same operations as the original,
but possibly reordered within each control structure and between
ambiguous data dependences. However, it is potentially beneficial
to move code past control and data dependences [5, 10, 12, 24] to
further reduce the critical forwarding path. For example, if a cer-
tain path is executed more frequently than alternative paths, then
it is advantageous to speculatively schedule the critical forwarding
path to exploit this fact. To illustrate, if the else clause is more
frequently executed than the then clause in Figure 1(b), we could
schedule “A=A+1;signal(A);” from the else clause above the
if structure to further shrink the critical forwarding path in the com-
mon case. Thus our new schedule involves control speculation, and

requires the ability to recover whenever our speculation is incorrect.
Similarly, we can schedule code from the critical forwarding path
past ambiguous data dependences, given the additional hardware
support to detect when such speculation has failed. We describe
and evaluate schemes for scheduling the critical forwarding path
using intra-epoch control speculation and data dependence specu-
lation in Section 4.2.

1.3 Related Work
Parallelization of a loop where the compiler synchronizes a loop-

carried data dependence is known as a DOACROSS [8, 26] paral-
lelization and has been exploited in previous work [6, 22, 38]. All
schemes for TLS support include some form of DOACROSS syn-
chronization, although few use the compiler to optimize this aspect
of speculative execution.

The most relevant related work is the Wisconsin Multiscalar [11,
27, 35] compiler, which performs synchronization and scheduling
for register values [35]. (The Multiscalar effort also evaluated hard-
ware support for automatically detecting and synchronizing data
dependences [23].) The Multiscalar scheduler was designed with
Multiscalar tasks in mind, and these usually consist of a few basic
blocks that do not contain procedure calls or loops. In contrast, our
speculative threads (aka epochs) are much larger on average than
Multiscalar tasks and contain complex control flow. This inspired
the dataflow-based scheduler presented in this paper, which can
move instructions past inner loops and procedure calls. The Mul-
tiscalar compiler does not schedule code beyond the point within
a task where it is no longer critical, as determined by a simplified
machine model; in contrast, because we believe that accurate de-
termination of this point at compile-time is extremely difficult, we
schedule producer instructions as early as possible. Another dif-
ference is that our more general approach to scheduling handles
loop induction variables automatically (by scheduling them at the
top of the loop), rather than having to treat them as a special case.
A final difference is that we evaluate the benefits of speculatively
scheduling code past control and data dependences (as discussed
later in Section 4.2). We modified our scheduler to mimic the Mul-
tiscalar scheduler, and we contrast the performance impact of both
approaches later in Section 5.3.

Other schemes for TLS hardware support provide the means to
synchronize and forward values between speculative threads but do
not use the compiler to optimize loop-induction variables or syn-
chronize frequent dependences [1, 14, 15, 20], while others pro-
vide such support but do not schedule instructions to reduce the
critical forwarding path [7, 34]. Research on TLS hardware sup-
port has shown the importance of the critical forwarding path and
how the prediction of forwarded values may be used to increase



parallelism [21, 31]; it also showed that hardware is ineffective
at improving performance by scheduling the critical forwarding
path [31]. Other hardware techniques for improving the efficiency
of speculation include prediction of loads to memory, dynamic syn-
chronization, and squashing of silent stores (which overwrite mem-
ory with the same value that is already there) [1, 7, 20, 31].

Concurrent with our work, Zilles and Sohi [39] recently pro-
posed decomposing a program into speculative threads by having
a master thread execute a distilled version of the program that or-
chestrates and predicts values for slave threads. In this scheme,
values are precomputed by the master thread and distributed to
the slave threads (as opposed to being updated and forwarded be-
tween consecutive speculative threads). A potential advantage of
this master/slave approach is that it effectively removes interproces-
sor communication from the critical forwarding path. We note that
the scheduling techniques that we present later in this paper could
potentially be applied to the distilled code in the master thread.

Our algorithm for reducing the critical forwarding path builds
upon previous dataflow approaches to code motion, namely partial
redundancy elimination [18], path-sensitive dataflow analysis [16],
and hot paths [2]. Previous work on speculative code motion to ex-
ploit a frequently executed path includes trace scheduling [10] and
superblock scheduling [5]. There has also been work on aggres-
sive load/store reordering where the runtime check and recovery
are performed entirely in software [24] or through a hybrid hard-
ware/software approach [12].

1.4 Contributions
In the context of thread-level speculation, this work makes the

following contributions. First, we show that the critical forward-
ing path is a significant performance bottleneck for many applica-
tions. Second, we present novel dataflow scheduling algorithms
for reducing the critical forwarding path, and show that schedul-
ing loop induction variables and other scalars results in significant
performance gains for most applications. Finally, we compare and
contrast our compiler scheduling techniques with hardware tech-
niques for optimizing the critical forwarding path [31]; comparison
with hardware techniques for automatically synchronizing depen-
dences [23] is beyond the scope of this paper.

2. INFRASTRUCTURE FOR TLS
In this section we describe our compiler infrastructure and target

hardware support for TLS, as well as our simulation infrastructure
and experimental framework.

2.1 Compiler Infrastructure
Our compiler infrastructure is based on the Stanford SUIF 1.3

compiler system [32]. In addition to scheduling the critical for-
warding path, our compiler also performs the tasks described below
when automatically transforming a program to exploit TLS.

Deciding Where to Speculate: For this paper, we focus solely
on loops (at any nesting depth) as candidates for parallel execu-
tion (i.e. speculative regions), where loop iterations are the units of
parallelism. Based on profile information, we first discarded loops
which did not iterate, had a program coverage of less than 0.1%, ex-
ecuted fewer than 30 instructions per loop invocation, or had more
than 16384 instructions per iteration, since these were unlikely to
produce significant interesting parallelism. We then parallelized
each of the remaining loops and profiled them using a simple in-
order single instruction per cycle simulator. During this profiling
we ignored the effects of all synchronization, thereby measuring
an optimistic upper bound on performance—this assumes that the
techniques in this paper will remove any negative impact due to

Table 1: Simulation parameters.
Pipeline Parameters

Issue Width 4
Functional Units 2 Int, 2 FP, 1 Mem, 1 Branch
Reorder Buffer Size 128
Integer Multiply 12 cycles
Integer Divide 76 cycles
All Other Integer 1 cycle
FP Divide 15 cycles
FP Square Root 20 cycles
All Other FP 2 cycles
Branch Prediction GShare (16KB, 8 history bits)

Memory Parameters

Cache Line Size 32B
Instruction Cache 32KB, 4-way set-assoc
Data Cache 32KB, 2-way set-assoc, 2 banks
Unified Secondary Cache 2MB, 4-way set-assoc, 4 banks
Miss Handlers 16 for data, 2 for insts
Crossbar Interconnect 8B per cycle per bank
Minimum Miss Latency to 10 cycles
Secondary Cache
Minimum Miss Latency to 75 cycles
Local Memory
Main Memory Bandwidth 1 access per 20 cycles

synchronization. The loops that performed best under these ideal
conditions were then selected for use in this study. We found that
some of the loops chosen based on our simple simulator performed
poorly when run on a realistic simulator, since the simple simulator
takes neither communication latency nor the cost of thread creation
into account. We also show results for a subset of the loops that per-
form well—the details of the selection process are discussed below
in Section 2.2.

Inserting TLS-Specific Instructions: Once speculative regions
are chosen, the compiler inserts new TLS-specific instructions that
interact with hardware to create and manage epochs. The com-
piler allocates forwarded variables on a special portion of the stack
called the forwarding frame which supports the communication of
values between epochs, and inserts wait and signal primitives
according to the algorithms described in the remainder of this pa-
per. The wait and signal primitives combine synchronization
with communication, acting as loads from and stores to the for-
warding frame.

Generating Object Code: Our compiler outputs C source code
which encodes our new TLS instructions as in-line MIPS assembly
code using gcc’s “asm” statements. This source code is then com-
piled with gcc 2.95.2 using the “-O3” flag to produce optimized,
fully-functional MIPS binaries with TLS instructions.

2.2 Region Selection
Since some of the regions selected using the process above per-

formed poorly on our realistic simulator, we created a second set
of regions that elides poor performers so that the performance of
those regions with potential is not overwhelmed. Throughout this
paper we therefore evaluate performance on two sets of speculative
regions for each application: (i) a set selected by the criteria given
above (“all regions”), and (ii) a subset where we have pruned the
regions for which speculative parallelization is ineffective despite
the most aggressive compiler and hardware optimizations (“good
regions”). Our results show that most of the pruned regions were
not dominated by synchronization overhead, and hence they could
not benefit from the techniques described in this paper.

The GCC benchmark stands out as an exception: we pruned a
few loops (with a combined program coverage of 4.4%) which
were dominated by synchronization yet were not improved by our
techniques. Some of the corresponding critical forwarding paths



Table 2: Benchmark statistics.
All Regions Good Regions

Average Average
Portion Number Epoch Number Portion Number

of Dynamic of Unique Size of Epochs of Dynamic of Unique
Application Execution Parallelized (dynamic Per Dynamic Execution Parallelized

Suite Name Parallelized Regions insts) Region Instance Parallelized Regions

SpecINT2000 186.CRAFTY 28.7% 24 184.3 7.9 16.9% 8
254.GAP 10.9% 1 94.0 4.8 10.9% 1
176.GCC 43.2% 104 627.3 160.3 24.1% 57
164.GZIP 7.9% 2 40.5 27229.8 2.5% 1
181.MCF 49.9% 11 56.7 306.8 39.5% 3

197.PARSER 58.1% 36 579.2 23644.5 10.8% 17
253.PERLBMK 29.9% 10 363.9 405.0 16.3% 2

300.TWOLF 26.1% 12 212.3 4.3 11.1% 3
255.VORTEX 14.0% 6 4775.6 4.1 4.3% 4

175.VPR 78.5% 5 236.9 5.8 65.3% 2

SpecINT95 129.COMPRESS 38.5% 1 125.0 863.0 38.5% 1
099.GO 86.2% 73 1370.6 31.8 17.4% 24

132.IJPEG 95.1% 21 245.4 95.8 60.7% 13
124.M88KSIM 59.5% 6 790.1 60.3 54.6% 5

contained inner loops with a significant amount of computation,
while others contained lengthy function calls—hence our schedul-
ing techniques were unable to reorder the instructions effectively.

2.3 Underlying Hardware Support
TLS hardware support must implement two important features:

buffering speculative modifications from regular memory, and de-
tecting and recovering from failed speculation, which we imple-
ment using the first-level data caches and an extended version of
invalidation-based cache coherence [29, 30]. While we evaluate
our compiler support on this specific implementation of TLS, we
expect that our conclusions would be similar for other TLS hard-
ware implementations [1, 7, 13, 14, 15, 19, 20, 25, 30, 34].

2.4 Experimental Framework
We evaluate our compilation techniques using a detailed machine

model which simulates 4-way issue, out-of-order, superscalar pro-
cessors similar to the MIPS R10000 [36], but modernized to have
a 128-entry reorder buffer. Each processor has its own physically
private data and instruction caches, connected to a unified second
level cache by a crossbar switch. Register renaming, the reorder
buffer, branch prediction, instruction fetching, branching penalties,
and the memory hierarchy (including bandwidth and contention)
are all modeled, and are parameterized as shown in Table 1.

After skipping over the initialization phases, we simulate up to
the first billion instructions of the applications described in Table 2.
(Since the sequential and TLS versions of each application are com-
piled differently, the compiler instruments them to ensure that they
terminate at the same point in their executions relative to the source
code.) We simulate all of the SPECint95 and SPECint2000 bench-
marks [28] except for the following: 252.EON, which is written in
C++ and therefore not handled by SUIF; 126.GCC, which is simi-
lar to 176.GCC; 147.VORTEX, which is identical to 255.VORTEX;
and 256.BZIP2, 130.LI, and 134.PERL, the three of which have
no loops that both comprise an interesting portion of execution and
also are speculatively parallelizable by our current techniques.

3. INSERTING SYNCHRONIZATION
This section presents a general algorithm for inserting synchro-

nization to communicate values between epochs. In this paper, we
focus on the set of local (i.e. defined in the scope of the enclosing
procedure) communicating scalars, which we define as the subset
of local scalar variables that meet one of the following two crite-
ria. First, any scalar in the intersection of the set of scalars with

a downwards-exposed definition and an upwards-exposed use (i.e.,
the scalar is live between epochs). Second, any scalar that is live
when the loop exits. In contrast with local scalars, global scalar and
pointer references may be modified by calls to other procedures;
hence synchronizing them is beyond the scope of this paper.

For each synchronized scalar, the compiler inserts instructions
that perform the synchronization and communicate the value. This
is performed by the wait and signal instructions, each of which
is associated with the scalar in question through an architected
register. The wait instruction stalls execution until the value is
produced by the previous epoch, which communicates that value
through the signal instruction. For the first epoch of a speculatively-
parallelized loop, the wait instruction does not stall (since there
is no producer). In remainder of this section, we describe where to
place the synchronization instructions to ensure correct execution.

3.1 Constraints on Placement
The proper placement of wait and signal instructions can be

described by a series of constraints which we describe here for a
single synchronized scalar; the same constraints can be applied to
each synchronized scalar individually. First, we want the last write
to a scalar in an epoch to execute before the next epoch reads that
scalar, regardless of the path of execution taken by either epoch.
Hence we have the first two constraints:

1. a wait must occur before any use of the scalar on any path;

2. a signal must occur after the last definition of the scalar
on any path.

In reality, if a signal was omitted on a given path then the wait-
ing epoch could continue executing once all previous epochs were
complete (rather than stalling indefinitely)—however, we ignore
this to allow the placement algorithms to be symmetric. Hence,
we have the additional constraint:

3. a signal must occur for each synchronized scalar on every
possible path.

Given these first three constraints, a correct program can be cre-
ated by trivially placing all wait instructions at the top of each
epoch, and all signal instructions at the bottom of each epoch.
However, such a transformation would completely serialize execu-
tion. To remedy this situation, we apply two additional constraints
for the sake of improving performance:

4. each wait should be placed as late as possible;

5. each signal should be placed as early as possible.



3.2 Placement Algorithm
Intuitively, a placement algorithm for wait instructions would

involve putting a wait for a scalar at the top of the epoch, and then
pushing the wait downwards through the code. When a branch is
encountered, the wait can be duplicated and pushed down on ei-
ther side of the branch. The motion stops when a use of the scalar
is encountered. For placement of signal instructions, the con-
verse of this algorithm is used. Deciding which basic block should
contain a wait or signal can be implemented as a dataflow anal-
ysis (described in detail below): within a basic block, the wait is
placed directly above the first use of the scalar, and the signal is
placed directly below the last definition of the scalar.

We now present a dataflow algorithm for placing wait and sig-
nal instructions in accordance with the above constraints. While
we only show the algorithm for placing signal instructions, note
that the converse of this algorithm is used to place wait instruc-
tions. (A proof of the correctness of this algorithm can be found in
our technical report [37].)

We define our dataflow analysis over the set of communicating
scalars � on the control flow graph �������	��
��������� of the epoch
where � is the set of nodes which represent basic blocks, 
 is the
set of edges, and  and � are the unique start node and end node of� (note that the start node and end node contain no code). Since
critical edges (i.e. any edge connecting a node with more than one
successor to a node with more than one predecessor) would make
our analysis difficult, we break any such edges into two edges using
synthetic nodes [18].

At each node ����� we define a predicate ��������� �! #"$�&%'� to be
the set of communicating scalars that are defined at � . Since the
signal instruction that forwards the value of ()��� must occur
after the last definition to ( on all possible execution paths, we
define No-More-Definitions at node � ( *,+-�.�&%'� ) to be the set of
scalars that are not defined on any execution path from � to � . This
function can be computed using dataflow analysis on the following
equation:

*/+	�.�&%'�0�
12 3 � � � if �-�4�5687�9;:8<#<&=?>A@ �B*,+-�.�&CD�FEG��������� �! #"$�&CD��� otherwise

(1)

For the example in Figure 3, the shaded boxes in Figure 3(c) indi-
cate where *,+-�.�&%'� is true for the variable a. Note that there are
two definitions of a, hence H��I*,+-�.�&%'� for all nodes � domi-
nated by these two nodes.

While it would be correct to insert signal instructions at all
nodes � for which *,+-�.�&%'�-J� � � , this may cause a single exe-
cution path from � to � to have many signals. We avoid redun-
dant signals through the function C�KML�%N���O�&%'� which determines
the placement of signal instructions:

C�KML�%N���O�&%'�0�
12 3 � � if �-��*,+-�.�&%'��E 5P�7�Q8R#SUT�=?>A@ */+	�.�#V'� otherwise (2)

Figure 3(c) shows the synchronization points for variables a and b
for the original code in Figure 3(a).

3.3 Performance Evaluation
The U bars in Figure 2 show the performance of the applications

when synchronization is placed using the techniques described in
this section, using the good set of regions. Each bar is normalized
to the execution time of the original sequential version, such that
bars less than 100 are speeding up. The P bar shows the impact

while (condition()) �
if (a > b + c) �

if (++a > 10)
b = b + 2;

else
b = b + 3;

b = b + 4;�
else �
do �
b = b + 5;�
while (condition2());

++a;�
�

(a) Original code.

b = b + 5
condition2()

a = a + 1

a > b + c

b = b + 2

b = b + 4

end

start

b = b + 3

a > 10
a = a + 1

(b) Control flow graph.

b = b + 5
condition2()

start

a > b + c
wait(b)
wait(a)

end

a = a + 1
signal(a)

signal(b)

b = b + 4
signal(b)

b = b + 3b = b + 2

synthetic

synthetic
a > 10
signal(a)
a = a + 1

NMD(n) contains a

(c) Inserting waits and signals.

Figure 3: Example of how waits and signals are inserted.

of perfectly predicting all forwarded values—this shows an upper
bound on the gains we can realize by optimizing synchronization.

Each bar in Figure 2 is broken down into four segments explain-
ing what happened during all potential graduation slots. The num-
ber of graduation slots is the product of: (i) the issue width (4 in
this case), (ii) the number of cycles, and (iii) the number of proces-
sors (4 in this case). The fail segment represents all slots wasted on
failed thread-level speculation, and the remaining three segments
represent slots spent on successful speculation. The busy segment
is the number of slots where instructions graduate; the sync portion
represents slots spent waiting for synchronization for a forwarded
location; and the other segment is all other slots where instructions
cannot graduate.

As we see in Figure 2, synchronization is a significant bottle-
neck for most applications; hence placing the signal instructions
as early as possible and the wait instructions as late as possible
is not good enough—the critical forwarding path is still too large.



a = b+c

v = a

a = b + c
v = a

signal(v)

signal(v)

(a) Dependence exists.

q = b+c

v = a

v = a
signal(v)

signal(v)

(b) No dependence.

*q = b

v = *p
signal(v)

(c) Unresolved dependence.

. . . . . .a = b+c
signal(a) signal(a)

a = q
signal(a)

(d) Lattice.

Figure 4: Illustration of the ������% C?"� �� function (parts (a), (b), and (c)) used for computing the value of C�� ����� in equation (3), and the
lattice (part (d)) over which the C�� ����� dataflow analysis is defined.

There is much potential for improvement—as indicated by the P
bars—by reducing the critical forwarding path. It is interesting to
note that in half of the applications, eliminating the synchronization
bottleneck increases the amount of failed speculation, since the re-
sulting increase in parallel overlap can lead to new occurrences of
data dependence violations.

In many cases, the bulk of the computation in the critical for-
warding path is not directly related to the forwarded scalar in ques-
tion. If we can relocate this unrelated computation, the resulting
smaller critical forwarding path will lead to improved performance.
In the remainder of this paper, we investigate the use of code mo-
tion to reduce the critical forwarding path.

4. INSTRUCTION SCHEDULING
The compiler can improve the performance of speculatively par-

allelized code by using scheduling techniques to move the sig-
nal operations (and the code that these operations depend upon)
upwards through the control flow graph to reduce the length of the
critical forwarding path and expose more parallelism. For example,
closer examination of Figure 3 reveals that the forwarded value for
variable a depends only on the result of a single addition. While
the forwarding path between the wait and the signal shown in
Figure 3 contains many instructions, only the following three in-
structions are really necessary to wait for, compute, and forward
the new value of a:

wait(a);
a = a + 1;
signal(a);

In the next section, we describe a scheduling algorithm that achieves
this minimum critical forwarding path for this example.

4.1 Conservative Scheduling Algorithm
Similar to our algorithm for inserting synchronization, we also

define our conservative scheduling algorithm over the set of com-
municating scalars � on the control flow graph � � ���	��
��������� ,
with critical edges broken by synthetic nodes as described in the
previous section. We initialize the algorithm by placing all sig-
nals at the exit node � . (It is equivalent to start all signals in the
position indicated by our placement algorithm, but placing them at
the end node simplifies the proof of correctness significantly.) Note
that in our implementation of this algorithm, we have chosen only
to move signal instructions (and the instructions they depend
upon) upwards in the control flow graph; although the converse of
this algorithm can be applied to moving wait instructions (and the
instructions that depend upon them) downwards in the control flow
graph, our experiments with moving waits downward showed little

performance benefit since downward code motion is often blocked
by data-dependent control dependences. (A proof of correctness
for this algorithm can be found in our technical report [37].)

As we schedule the instructions, we must identify at each node
the computation that the eventual signal depends upon. Since
we cannot represent these computations as binary values, bit-vector
analysis is inadequate. Hence at each node � , we keep a stack—
denoted as C�� ����� �&%$��� � —of computation for each communicating
scalar. This stack records the computations necessary to produce
the value of a communicating scalar ( if it is to be sent from the
corresponding node.

The domain of the C�� ����� dataflow problem is the set of all pos-
sible configurations of the computation stack. This domain, along
with the meet operator (described later), defines a semi-lattice. All
nodes are initialized to 	 . If a given node is found to be a safe
place for the signal instruction then C�� ����� returns a non-empty
stack of computations, otherwise C�� ����� returns 
 . The following
dataflow equation computes C�� ����� �&%$��� � at the exit of each node:

C�� ����� �&%���� �0�
1���2 ���3

signal v if �-�4�


�/7�9;:8<#<&=?>A@ ������% CU"D �� ��� ��(N�C�� �����'��� ��( ��� otherwise

(3)

where the ����� � ��N��� function is defined as follows:
� If C�� ����� ���-��� �0��	 , then ������% CU"D �� ��	 .

� If the computation chain for ( in the stack C�� ����� ���-��� � de-
pends on a value � produced by node � , then the compu-
tation that produces � is added to the computation stack, as
illustrated in Figure 4(a).

� If the computation chain in the stack C�� ����� ���-��� � does not
depend on a value produced by the computation at node � ,
then ���&��% C?"� �� � C�� ����� ���-��� � , as illustrated in Figure 4(b).

� If we cannot resolve the dependence between the computa-
tion chain for ( and the computation in node � , we should
stop the code motion; hence ������% CU"D �����
 , as illustrated in
Figure 4(c).

� If a wait is issued for any exposed scalar in the computation
chain, the code motion should stop; hence ������% CU"D �� ��
 .

The meet operator


for the C�� ����� problem is defined over the
set of all possible configurations of the computation stack. The
lattice shown in Figure 4(d) defines the following operations for



earliest(b)

earliest(b)

earliest(b)

earliest(b)

earliest(b)

earliest(b)

earliest(b)

earliest(b)

earliest(b)

earliest(a)

earliest(a)

a > b + c
wait(b)
wait(a)

start

b = b + 2

signal(b)

b = b + 4 signal(a)

b = b + 4

signal(a)signal(b)

end

a > 10
a = a + 1

signal(b) signal(a)

signal(a)

a = a + 1

signal(a)

b = b + 3

signal(b)

b = b + 4 signal(a)

signal(a)

a = a + 1

b = b + 5
condition2()

signal(a)

a = a + 1

a = a + 1

signal(b) signal(a)

signal(a)

a = a + 1

(a) Solutions to the C�� ����� and  ����8� K  8C�� problems.

b = b + 5
condition2()

a > b + c
wait(b)

wait(a)
t1 = a + 1
signal(a, t1)

start

end

a > 10

b = t3
a = t1
signal(b, b)

t2 = b + 3

signal(b, t3)
b = t2

t3 = t2 + 4
t2 = b + 2

signal(b, t3)
b = t2

t3 = t2 + 4

(b) After code transformation.

Figure 5: Example of our conservative scheduling algorithm
applied to the code in Figure 3.

meet: if any input is 
 then the output is 
 ; if any input stack
differs from any other input stack, then the output is 
 ; otherwise,
the meet operator returns the input stack, or 	 if all inputs are 	 .
The meet operator combined with the domain of the C�� ����� function
defines a semi-lattice of height three, thus our dataflow problem is
well-defined.

We also define the dataflow problem  ���� � K  8C�� to find the earliest
synchronization point for each communicating scalar. �,��� � K  8C�� is
a bit-vector problem defined over the set of communicating scalars� on the control flow graph � . The  ����8� K  8C�� �&%$��� � function is true
at node � for ( if no node prior to � is a safe place to schedule the
signal on some execution path starting at  :
 ����8� K  8C�� �&%$��� �0�

1�2 �3 �����  if �	�4
�

�/7�Q8R#SUT�=?>A@ ��� C8�&"� ����-��� ��� ����8� K  8C�� ���	� � ��� otherwise
(4)

where C8�&"� ����-� � � � �&C�� ����� ���-��� �)J� 
 � , and all nodes are ini-
tialized to false.

Code Transformation: For each node that is both C �O"� and ����8� K  8C�� for a variable ( , we insert the contents of ( ’s stack either
at the beginning of the node, or immediately after the computa-
tion that stopped code motion (a wait instruction or ambiguous
pointer reference) if it exists. We replace references to ( with tem-
porary variables, and update the unscheduled computation to use
these temporaries.

Figure 5(a) illustrates solutions for C�� ����� and  ����8� K  8C�� for the ex-
ample shown earlier in Figure 3. �,��� � K  8C�� is true for variable a only
at the top node. The stack for the variable a at the top node contains
only the two instructions required to compute a—this matches the
optimal result we derived manually at the beginning of this section.
Figure 5(b) shows the transformed program. Note that this transfor-
mation can either expand code size (by duplicating computations at
join points), or reduce code size (by performing a form of common
subexpression elimination at branch points). We observe in our ex-
periments that the code segment size is increased by less than 1.3%
for all benchmarks.

4.2 Aggressive Scheduling Algorithms
In the scheduling algorithm that we just described, the backward

motion of signal operations (and the instructions on which they
depend) can be obstructed for the following two reasons:

Control Dependences: If incompatible computation stacks from
multiple execution paths meet at a single node during the
backwards dataflow analysis, then code motion stops. This
implies that our conservative scheduling algorithm cannot
move instructions out of the then or else parts of an if-
then-else statement unless those same instructions are ex-
ecuted along both conditional paths.

Data Dependences: A computation stack cannot be moved past a
store instruction whose target address may alias locations ref-
erenced in the computation stack. This scenario often arises
with writes through pointers or other forms of indirection.

Hence instructions are only scheduled at program points where
the intra-epoch control and data dependences mentioned above have
been resolved. Since both of these cases occur frequently in our
programs, we would like to make scheduling more aggressive. In
this section we will discuss both the compiler techniques and the
hardware support necessary to allow for instruction scheduling be-
yond intra-epoch control and data dependences.

4.2.1 Scheduling Past Control Dependences
Dataflow analysis conservatively assumes that all execution paths

are possible, and finds the minimal solution that satisfies all possi-
ble execution paths. In practice, however, only a small number
of execution paths are frequently executed at run-time. By taking
this into account, we can schedule instructions aggressively for the
common cases at the cost of possibly incurring an expensive re-
covery operation on the less frequently executed paths. Ball and
Larus [3] proposed efficient methods to record execution paths that
are taken by the program at run time, which allows us to identify
the frequently executed paths.

When we optimize for the common case, we will schedule code
as early as possible, and signal the values as soon as they are
available. If a less frequent path is taken, then this signal will
have forwarded the wrong value to the next epoch—we need a
mechanism to recover from this. For recovery, we first notify the
next epoch that it received an invalid value, and then we forward the



a = b + 1
signal(a)

signal(a)

a = b + 1

signal(a)

a = b + 1

signal(a)

a = b + 2

Si SjSi

signal(a)

violate_epoch(a)
a = b + 2

N

frequently executed path

infrequently executed path

(a) Modified meet operator for control speculation.

= speculatively scheduled past
a possibly dependent instruction

signal(a)

a = *p

signal(a)

a = *p

signal(a)

*q = 5

a = *p

(b) Modified transfer function for
data speculation.

*q = 5

t1 = *p
signal(a, t1)
mark_load(p)

unmark_load(p)
a = t1

(c) Code generation for data speculation.

Figure 6: Modified dataflow analysis for speculative instruction scheduling.

correct value to the next epoch. The notification of the next epoch
is done using the violate epoch instruction, which passes the
identity of the communicated scalar—this instruction first discards
the previously forwarded value, and then checks to see if the wrong
value has already been consumed. If the incorrect value was con-
sumed, then the epoch is violated and restarts; otherwise it is al-
lowed to proceed. When the epoch reaches a wait instruction,
it will stall until the correct value is received. If instructions are
speculatively scheduled past branches (e.g., NULL pointer checks),
then exceptions may occur in the scheduled code. When an ex-
ception occurs it should cause a violation, and a non-speculatively
scheduled copy of the code should then be executed to ensure that
the exception was real.

We have modified the scheduling algorithm from Section 4.1 to
speculate on control dependences. We make the algorithm more
aggressive by modifying the meet operator


used in the C�� �����

dataflow analysis in equation (3), and add new nodes on infrequent
edges which contain the recovery code. First, all possible execution
paths through an epoch are enumerated, and a profiling run reports
the number of times the epoch is executed as well as the number of
times each execution path is taken. An execution path is considered
frequently executed if the probability of taking this execution path
when the epoch is executed is greater than a certain threshold.

The meet operator


for C�� ����� is modified as shown in Fig-
ure 6(a). When evaluating the meet operator


at node � for the

scalar ( , we first operate on the set of successors, where the edge�;�F�8�� � is on a frequently executed path. Then for each node �� ,
where �;�F�  � � is not on any frequently executed path, we verify
whether ���&��% C?"� �� � �� ��(N� C�� �����'� �� ��( ��� is compatible with the par-
tially evaluated C�� ����� �;�0��( � . If this verification fails, then we add
a new node on the edge �;�F� ���� which contains a single vio-
late epoch instruction. We also make a minor change to the
definition of  ����8� K  8C�� (shown earlier in equation (4)): it is always
true for these new violate epoch nodes, thereby making the
scheduling algorithm automatically insert the signal stack at the
appropriate point on the execution paths starting at the edge �;�0���� � .
Figure 6(a) illustrates how the two compatible computations on the
frequently-executed nodes are scheduled above node N, while the
infrequently-executed node on the right causes the next thread to
be violated and re-executed with the correct value.

4.2.2 Scheduling Past Data Dependences
We now consider how our conservative scheduling algorithm

can be extended to allow code motion beyond potential data de-
pendences. Using the output from an automatic data dependence
profiling tool, our compiler can reason about the likelihood of data
dependence problems at run-time if the code associated with gen-
erating a particular signal operation is speculatively moved back
ahead of a given potentially-conflicting store instruction. If a data
dependence does occur at run-time, we must first detect this situa-
tion, and then recover from our misspeculation. We detect data de-
pendences by defining two new instructions: mark load instructs
the hardware to remember (i.e. “mark”) the specified memory lo-
cation. If any subsequent store modifies a marked location then the
speculation fails. Once we have reached a point where the potential
data dependence has been resolved then the unmark load clears
the mark on the memory location. If speculation fails or when an
exception occurs, we recover by violating the current epoch—when
the epoch restarts, it runs a different version of the code without
speculative scheduling past data dependences. It is worth noting
that this architectural support for speculative loads is quite similar
to the LD.A and CHK.A instructions [12] available in the Intel IA-
64 architecture. One important difference, however, is that when
the speculative code motion fails in our case, the underlying TLS
recovery mechanism rewinds execution to the start of the epoch; in
contrast, under IA-64 the results of an LD.A instruction must be
explicitly validated by a CHK.A instruction. (Further details on the
implementation of mark load and unmark load can be found
in our technical report [37].)

To implement scheduling across potential data dependences, we
modify the ������% CU"D �� function described earlier in Section 4.1 (and
used in equation (3)) as shown in Figure 6(b). When scheduling a
stack of instructions across a potentially dependent store, we mark
all potentially conflicting loads in the stack as being possibly con-
flicting. When two stacks are merged at node � through the meet
operator


, any possibly conflicting marks are merged using log-

ical or. At the time of code generation, we add a mark load
instruction after each possibly conflicting load. For all load instruc-
tions that are marked as possibly conflicting, an unmark load is
inserted at the original location of the load instruction.



while (cond1()) �
if (cond2(a))
a = a + 1;

else
*q = 5;

a = *p + a;� cond2(a)
wait(a)

a = a + 1 *q = 5

a = *p + a

end

start

(a) Original code.

infrequently executed path

frequently executed path

Control speculation

Data speculation

end

start

violate_epoch(a)

a possibly dependent instruction
= speculatively scheduled past

a = a + 1 *q = 5

signal(a)

signal(a)

a = *p + a

cond2(a)
wait(a)

signal(a)

a = *p + a

signal(a)

a = *p + a

signal(a)

a = *p + a

(b) Control flow graph.

short critical path}

recovery code{

start

cond2(a)

wait(a)

signal(a, t1)
mark_load(p)

t1 = *p + a

unmark_load(p)
violate_epoch(a)

signal(a, t1)
t1 = *p + a
a = a + 1

a = t1

end

*q = 5
unmark_load(p)

(c) Transformed code.

Figure 7: Illustration of how speculation on control and data dependences can be complementary.

|0

|50

|100

|150

|200

 

 

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

UE I AF
compress

UE I AF
crafty

UE I AF
gap

UE I AF
gcc

UE I AF
go

UE I AF
gzip

UE I AF
ijpeg

UE I AF
m88ksim

UE I AF
mcf

UE I AF
parser

UE I AF
perlbmk

UE I AF
twolf

UE I AF
vortex

UE I AF
vpr

fail
sync
other
busy

(a) All regions.

|0

|50

|100

 

 

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

UE I AF
compress

UE I AF
crafty

UE I AF
gap

UE I AF
gcc

UE I AF
go

UE I AF
gzip

UE I AF
ijpeg

UE I AF
m88ksim

UE I AF
mcf

UE I AF
parser

UE I AF
perlbmk

UE I AF
twolf

UE I AF
vortex

UE I AF
vpr

fail
sync
other
busy

(b) Good regions.

Figure 8: Impact of scheduling the critical forwarding path. For each benchmark, we show execution time for the speculatively
parallelized regions of code normalized to that of the original sequential versions. U is unscheduled, E builds on U with hardware
optimization of forwarded values, I schedules only loop induction variables, A schedules all forwarded variables, and F builds on A
with hardware optimization of forwarded values.

4.2.3 Complementary Effects
Control and data dependence speculation can be complementary.

Figure 7 shows an example where the combination of a control haz-
ard and a data hazard prevent the code from being scheduled early,
and where speculation on either type of hazard alone will not yield
any benefit. By speculating on both control and data dependences
in tandem, the computation of variable a can be moved upwards
next to the wait operation, thereby resulting in a much shorter
critical forwarding path for the common case.

5. EXPERIMENTAL RESULTS
We now present our experimental results to quantify the perfor-

mance impact of the scheduling algorithms described in the previ-
ous section. We include a comparison with hardware-based tech-
niques that are also designed to reduce synchronization stalls under
TLS [31], as well as a comparison between our conservative algo-
rithm and the Multiscalar scheduling algorithm [35].

5.1 Impact of Conservative Scheduling
Figure 8 shows the impact of our conservative scheduling algo-

rithm on parallelized region performance. (Recall the definitions of
“all regions” and “good regions” presented earlier in Section 2.2.)
Note that in most cases, the unscheduled version (U) slows down
relative to the original sequential version (i.e. the height of the bar
is greater than 100).



|0

|50

|100

|150

 

 

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

ACD F
compress

ACD F
crafty

ACD F
gap

ACD F
gcc

ACD F
go

ACD F
gzip

ACD F
ijpeg

ACD F
m88ksim

ACD F
mcf

ACD F
parser

ACD F
perlbmk

ACD F
twolf

ACD F
vortex

ACD F
vpr

fail
sync
other
busy

(a) All regions.

|0

|50

|100

 

 

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

ACD F
compress

ACD F
crafty

ACD F
gap

ACD F
gcc

ACD F
go

ACD F
gzip

ACD F
ijpeg

ACD F
m88ksim

ACD F
mcf

ACD F
parser

ACD F
perlbmk

ACD F
twolf

ACD F
vortex

ACD F
vpr

fail
sync
other
busy

(b) Good regions.

Figure 9: Impact of aggressive instruction scheduling and hardware optimization on region execution time. A is conservatively
scheduled, C has aggressive instruction scheduling past control dependences, D has aggressive instruction scheduling past both
control and data dependences, and F builds on D with hardware optimization of forwarded values.

We first evaluate the performance of a hardware technique (E)
that we described in an earlier publication [31] to schedule the
critical forwarding path and predict forwarded values for the sake
of eliminating synchronization stalls. We observe significant im-
provements for GAP, PERLBMK, and TWOLF, as well as for GO

when poor regions are pruned (i.e. good regions in Figure 8(b)).
When our scheduling algorithm is applied to loop induction vari-

ables alone (I), the synchronization stall times decrease signifi-
cantly (more than 50% for 9 of the 14 applications), and many ap-
plications now enjoy significant speedups. On average, all regions
are improved by 11.8% and the good regions by 13.6%. Only COM-
PRESS performs slightly worse under this optimization. We note
that reduction of synchronization stall time does not always trans-
late directly into improved performance. For example, synchro-
nization time is greatly reduced for GO when loop induction vari-
ables are scheduled (I), but the resulting increased parallel overlap
exposes more data dependences across threads, and failed specu-
lation becomes a new bottleneck that offsets much of the potential
performance gain.

When all forwarded variables are scheduled (A), we see in Fig-
ure 8 that many applications enjoy additional improvement, while
the performance of three applications is degraded. The worst degra-
dation occurs in M88KSIM for the same reason mentioned above:
the reduced critical forwarding path exposes inter-thread memory
dependences that previously were synchronized indirectly, thereby
resulting in a large increase in failed speculation for this particu-
lar case. This example illustrates the complex interactions that can
occur among different potential bottlenecks under TLS, and sug-
gests that there is still room for improvement in future research by
attacking these other bottlenecks.

We now consider the effectiveness of the compiler versus the
hardware at optimizing the critical forwarding path. Our first obser-
vation from Figure 8 is that our conservative scheduling algorithms

(I and A) outperform the hardware-only technique (E) in nearly ev-
ery case. To evaluate whether the compiler and the hardware are
complementary, we supplemented the compiler’s efforts with hard-
ware support (F) for optimizing forwarded values (as was done for
(E)). These hardware mechanisms offer a slight additional benefit
for only a few cases, suggesting that hardware mechanisms for op-
timizing the critical forwarding path are largely unnecessary given
proper compiler support.

In summary, we observe that code motion, even if it is conserva-
tive, is an effective way to reduce the critical forwarding path, and
that the compiler appears to be better suited to this optimization
than hardware. While most applications in Figure 8 have enjoyed
substantial reductions in synchronization stall times (sync), there
are still a handful of cases where this bottleneck remains signifi-
cant. We now investigate whether our more aggressive scheduling
algorithms (based on control and data dependence speculation) can
reduce these stall times further.

5.2 Impact of Aggressive Scheduling
Our control and data dependence speculation algorithms exploit

path frequency information and data dependence information gath-
ered from a profile of each application. For control speculation,
we consider any path through an epoch that was executed at least
5% of the time to be “frequently executed” (as discussed earlier in
Section 4.2.1). For data dependence speculation, we speculatively
move code back across stores or function calls unless there is more
than a 15% chance of this resulting in a data dependence violation.
Although experimentation with these threshold values showed that
the best values vary between applications, we chose to use these
fixed values throughout this paper.

Figure 9 shows the impact of aggressive instruction scheduling
and hardware optimization on region execution time. The first bar
(A) for each application shows the performance of conservative



for (insn = target; insn; insn = next) �
rtx this jump insn = insn;
next = NEXT INSN(insn);
switch (GET CODE(insn)) �

case ����� : �����

case INSN:
if (GET CODE(PATTERN(insn)) == USE) �

����� ; continue;�
else if (GET CODE(PATTERN(insn)) == CLOBBER) �
continue;�
else if (GET CODE(PATTERN(insn)) == SEQUENCE) �
for (i=0; i<XVECLEN(PATTERN(insn),0); i++) �

������
�

�
�

(a) Simplified loop from GCC (reorg.c:2680).

|0

|50

|100

 

 

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

M A
gcc

M A
go

fail
sync
other
busy

(b) Performance comparison.

Figure 10: Comparison with the Multiscalar scheduling algorithm. M approximates the Multiscalar scheduling technique, and A is
our conservative scheduling algorithm. Execution time of good regions in part (b) is normalized to A.

scheduling (as seen earlier in Figure 8); the sync portion of these
bars shows the potential gain from better scheduling, with GCC,
MCF, PARSER and TWOLF being the most significant. The sec-
ond bar (C) shows the performance of speculatively scheduling past
control dependences alone. We observe that performance improves
or degrades slightly for several applications, except for M88KSIM

and TWOLF (all regions) for which the degradation is more severe:
these contain cases where the code has not moved a significant dis-
tance, and where the benefits of the code motion are not sufficient
to overcome the costs of misspeculation. Our scheduling algorithm
could make more informed tradeoffs if it took this code motion
distance into account, rather than always moving code whenever
possible (as it does now).

For the good regions cases in Figure 8(b), speculatively schedul-
ing past both control and data dependences (D) decreases synchro-
nization time by an average of 19.8%. Speculative scheduling re-
sults in a 0.3% average performance degradation for the all re-
gions cases, and a 5.8% average performance improvement for the
good regions of applications for which more than 6% of execution
time is spent on synchronization—most notably, GCC, PARSER,
and TWOLF, which speed up by 17.1%, 19.1%, and 14.8% respec-
tively. These observations suggest that the overheads of speculative
scheduling are too large to apply this technique liberally, but that it
can be quite effective for certain regions of code (where synchro-
nization stalls remained a problem after conservative scheduling) if
applied selectively.

Finally, we again supplement the compiler’s efforts with hard-
ware support (F) that schedules the critical forwarding path and
predicts forwarded values to eliminate synchronization [31]. We
observe that improvements from this additional hardware support
are negligible, and that such hardware support is not necessary with
sufficiently aggressive compiler optimization.

5.3 Comparison of Conservative Scheduling
with the Multiscalar Algorithm

Since the Multiscalar scheduler [35] is essentially a dataflow al-
gorithm that only traverses the control flow diagram once, we can
estimate its operation by constraining our conservative schedul-
ing algorithm: we modify the meet operator such that it returns
 whenever 	 meets with any value that is not 	 —this way, the
modified dataflow analysis will converge during the first iteration.

Figure 10(a) shows a simplified version of a loop in GCC (at line

reorg.c:2680) that highlights the advantage of the more general
dataflow approach of our conservative scheduling algorithm over
the Multiscalar algorithm [35]. While the original version of this
loop has multiple variables that are forwarded, we focus on the
variable insn. The Multiscalar scheduler cannot move the update
and forward of insn above the inner loop in the case statement,
while our approach iterates to a dataflow solution where it can.

Figure 10(b) shows a performance comparison of our conser-
vative scheduling technique with that of the Multiscalar algorithm
for the good regions cases of the two applications where there was
a significant difference in performance: i.e. GCC and GO. Com-
pared with the Multiscalar algorithm, our conservative scheduling
approach reduces synchronization time by 10% for GCC and by
39% for GO, which in turn reduces the respective region execu-
tion times by 3.0% and 3.7% relative to the Multiscalar approach.
Again, this result is not surprising since the Multiscalar algorithm
was designed for smaller, simpler regions.

5.4 Impact on Overall Program Performance
The goal of TLS and our techniques for improving its efficiency

is to exploit chip multiprocessors and other multithreaded machines
to improve the performance of programs. Up to this point, we have
evaluated the performance of our optimizations on the regions of
each program that have been speculatively parallelized. Figure 11
shows the impact on program execution time of TLS with com-
piler and hardware optimization when only the good regions are
speculatively parallelized. The first bar (U) shows the unscheduled
version, the second (A) shows conservative scheduling. We observe
that IJPEG and VPR enjoy a tremendous benefit from conservative
scheduling while CRAFTY, GO, and M88KSIM show more modest
improvements. The third bar (D) shows aggressive scheduling past
control and data dependences, which shows a significant improve-
ment for GCC but degrades performance for several other applica-
tions, indicating that we must be more selective when applying this
technique. The fourth bar (H) shows the additional impact of hard-
ware optimization of both forwarded values and memory values [1,
7, 20, 31], which improves GCC, COMPRESS, IJPEG, and M88KSIM

significantly. For the remaining applications, our hardware tech-
niques cannot significantly improve upon the the performance of
the compiler. (Note that our hardware technique for automatically
synchronizing data dependences [31] is not the most aggressive ap-
proach possible [23].) With our most aggressive compiler and hard-



|0

|50

|100

 

 

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

UADH
compress

UADH
crafty

UADH
gap

UADH
gcc

UADH
go

UADH
gzip

UADH
ijpeg

UADH
m88ksim

UADH
mcf

UADH
parser

UADH
perlbmk

UADH
twolf

UADH
vortex

UADH
vpr

Figure 11: Impact on program execution time of aggressive instruction scheduling and hardware optimization when only the good
regions are speculatively parallelized. U is unscheduled, A is conservatively scheduled, D has aggressive instruction scheduling past
both control and data dependences, H builds on D with hardware optimization of memory and forwarded values.

ware techniques, we have improved program performance of 6 of
14 applications by 6.2–28.5%, and we improved half of the others
by 2.7–3.6%.

6. CONCLUSIONS
The critical forwarding path is an important bottleneck to over-

come when trying to extract parallelism from many important pro-
grams using TLS. In this paper, we have proposed and evaluated
a range of scheduling algorithms that the compiler can use to re-
duce the impact of the critical forwarding path. Loop induction
variables were the largest performance bottleneck, and our con-
servative scheduling technique effectively eliminates their impact
on performance. By applying conservative scheduling to all syn-
chronized variables, we saw additional performance gains. These
results demonstrate that the compiler can be effective in reducing
the performance impact of the critical forwarding path without re-
quiring any additional hardware support beyond what is normally
needed for TLS.

To further reduce the critical forwarding path for the handful of
applications where synchronization stalls were still a concern, we
proposed and evaluated scheduling techniques based upon specula-
tive code motion that require some additional hardware support to
preserve correctness. We found that scheduling speculatively past
control dependences alone offered little performance benefit. How-
ever, scheduling speculatively past both control and data depen-
dences resulted in substantial performance gains for a number of
applications. In particular, GCC—which is the most challenging ap-
plication among the set that we considered—was the largest bene-
factor from this speculative scheduling. GCC also highlighted the
performance advantages of our robust dataflow-based approach to
scheduling compared with the previous state-of-the-art technique.

The bottom line from this study is that the critical forwarding
path bottleneck for TLS is best addressed by the compiler rather
than through elaborate hardware mechanisms. If hardware resources
are to be devoted to this problem, they are best spent on implement-
ing the instructions necessary to support speculative scheduling of
signal operations (and the instructions they depend upon) past
both control and data dependences.

7. ACKNOWLEDGMENTS
This research is supported by grants from IBM, Intel, and NASA.

Todd C. Mowry is partially supported by an Alfred P. Sloan Re-
search Fellowship.

8. REFERENCES
[1] AKKARY, H., AND DRISCOLL, M. A Dynamic

Multithreading Processor. In MICRO-31 (December 1998).
[2] AMMONS, G., AND LARUS, J. R. Improving data-flow

analysis with path profiling. In Proc. ACM SIGPLAN 98
Conference on Programming Language Design and
Implementation (1998).

[3] BALL, T., AND LARUS, J. R. Efficient path profiling. In
Proceedings of Micro-29 (1996).

[4] BROADCOM CORPORATION. The Sibyte SB-1250
Processor. http://www.sibyte.com/mercurian.

[5] CHANG, P. P., WARTER, N. J., MAHLKE, S. A., CHEN,
W. Y., AND HWU, W. W. Three Superblock Scheduling
Models for Superscalar and Superpipelined Processors.
Center for Reliable and High-Performance Computing,
University of Illinois, Urbana-Champaign, 1991.

[6] CHEN, D. K., AND YEW, P. C. Statement re-ordering for
DOACROSS loops. In International Conference on Parallel
Processing (Aug. 1994), pp. 24–28.

[7] CINTRA, M., MARTÍNEZ, J. F., AND TORRELLAS, J.
Learning Cross-Thread Violations in Speculative
Parallelization for Scalar Multiprocessors. In Proceedings of
the 8th HPCA (February 2002).

[8] CYTRON, R. Doacross: Beyond vectorization for
multiprocessors. In International Conference on Parallel
Processing (1986).

[9] EMER, J. Ev8: The post-ultimate alpha.(keynote address). In
International Conference on Parallel Architectures and
Compilation Techniques (2001).

[10] FISHER, J. A. Trace scheduling: A technique for global
microcode compaction. IEEE Transactions on Computers 13
(June 1981).

[11] FRANKLIN, M. The Multiscalar Architecture. PhD thesis,
University of Wisconsin – Madison, 1993.

[12] GALLAGHER, D. M., CHEN, W. Y., MAHLKE, S. A.,
GYLLENHAAL, J. C., AND HWU, W. W. Dynamic Memory
Disambiguation Using the Memory Conflict Buffer. In
Proceedings of the 6th ASPLOS (October 1994),
pp. 183–195.

[13] GOPAL, S., VIJAYKUMAR, T., SMITH, J., AND SOHI, G.
Speculative Versioning Cache. In Proceedings of the 4th
HPCA (February 1998).

[14] GUPTA, M., AND NIM, R. Techniques for Speculative
Run-Time Parallelization of Loops. In Supercomputing ’98



(November 1998).
[15] HAMMOND, L., WILLEY, M., AND OLUKOTUN, K. Data

Speculation Support for a Chip Multiprocessor. In
Proceedings of ASPLOS-VIII (October 1998).

[16] HOLLEY, L. H., AND K. ROSEN, B. Qualified data flow
problems. IEEE Transactions on Software Engineering 7, 1
(Jan. 1981).

[17] KAHLE, J. Power4: A Dual-CPU Processor Chip.
Microprocessor Forum ’99 (October 1999).

[18] KNOOP, J., AND RUTHING, O. Lazy code motion. In Proc.
ACM SIGPLAN 92 Conference on Programming Language
Design and Implementation (92).

[19] KRISHNAN, V., AND TORRELLAS, J. The Need for Fast
Communication in Hardware-Based Speculative Chip
Multiprocessors. In Proceedings of PACT ’99 (October
1999).

[20] MARCUELLO, P., AND GONZLEZ, A. Clustered Speculative
Multithreaded Processors. In Proc. of the ACM Int. Conf. on
Supercomputing (June 1999).

[21] MARCUELLO, P., TUBELLA, J., AND GONZSSLEZ, A.
Value prediction for speculative multithreaded architectures.
In Proceedings of Micro-32 (Haifa, Israel, Nov. 1999).

[22] MIDKIFF, S. P., AND PADUA, D. A. Compiler algorithms
for synchronization. IEEE Transactions on Computers C-36,
12 (1987), 1485–1495.

[23] MOSHOVOS, A. I., BREACH, S. E., VIJAYKUMAR, T.,
AND SOHI, G. S. Dynamic speculation and synchronization
of data dependences. In Proceedings of the 24th ISCA (June
1997).

[24] NICOLAU, A. Run-time Disambiguation: Coping with
Statically Unpredictable Dependencies. IEEE Transactions
on Computers 38 (May 1989), 663–678.

[25] OPLINGER, J., HEINE, D., AND LAM, M. S. In Search of
Speculative Thread-Level Parallelism. In Proceedings of
PACT ’99 (October 1999).

[26] PADUA, D., KUCK, D., AND LAWRIE, D. High-speed
multiprocessors and compilation techniques. IEEE
Transactions on Computing (September 1980).

[27] SOHI, G. S., BREACH, S., AND VIJAYKUMAR, T.
Multiscalar processors. In Proceedings of the 22nd ISCA
(June 1995).

[28] STANDARD PERFORMANCE EVALUATION CORPORATION.
The SPEC Benchmark Suite. http://www.specbench.org.

[29] STEFFAN, J. G., COLOHAN, C. B., AND MOWRY, T. C.
Architectural Support for Thread-Level Data Speculation.
Tech. Rep. CMU-CS-97-188, School of Computer Science,
Carnegie Mellon University, November 1997.

[30] STEFFAN, J. G., COLOHAN, C. B., ZHAI, A., AND

MOWRY, T. C. A Scalable Approach to Thread-Level
Speculation. In Proceedings of the 27th ISCA (June 2000).

[31] STEFFAN, J. G., COLOHAN, C. B., ZHAI, A., AND

MOWRY, T. C. Improving Value Communication For
Thread-Level Speculation. In Proceedings of the 8th HPCA
(February 2002).

[32] TJIANG, S., WOLF, M., LAM, M., PIEPER, K., AND

HENNESSY, J. Languages and Compilers for Parallel
Computing. Springer-Verlag, Berlin, Germany, 1992,
pp. 137–151.

[33] TREMBLAY, M. MAJC: Microprocessor Architecture for
Java Computing. HotChips ’99 (August 1999).

[34] TSAI, J.-Y., HUANG, J., AMLO, C., LILJA, D., AND YEW,
P.-C. The Superthreaded Processor Architecture. IEEE
Transactions on Computers, Special Issue on Multithreaded
Architectures 48, 9 (September 1999).

[35] VIJAYKUMAR, T. Compiling for the Multiscalar
Architecture. PhD thesis, Computer Sciences Department,
University of Wisconsin-Madison, Jan. 1998.

[36] YEAGER, K. The MIPS R10000 superscalar microprocessor.
IEEE Micro (April 1996).

[37] ZHAI, A., COLOHAN, C. B., STEFFAN, J. G., AND

MOWRY, T. C. Compiler Optimizations to Accelerate Scalar
Value Communication Between Speculative Threads. Tech.
Rep. CMU-CS-02-162, School of Computer Science,
Carnegie Mellon University, August 2002.

[38] ZHU, C.-Q., AND YEW, P.-C. A scheme to enforce data
dependence on large multiprocessor systems. IEEE
Transactions on Software Engineering 13, 6 (June 1987),
726–739.

[39] ZILLES, C. B., AND SOHI, G. S. Master/Slave Speculative
Parallelization with Distilled Programs. Tech. Rep. TR-1438,
Computer Sciences Department, University of
Wisconsin-Madison, April 2002.


