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Abstract
Pointer analysis is a critical compiler analysis used to disambiguate
the indirect memory references that result from the use of pointers
and pointer-based data structures. A conventional pointeranalysis
deduces for every pair of pointers, at any program point, whether
a points-to relation between them (i)definitelyexists, (ii)definitely
does notexist, or (iii) maybeexists. Many compiler optimizations
rely on accurate pointer analysis, and to ensure correctness cannot
optimize in themaybecase. In contrast, recently-proposedspecu-
lative optimizationscan aggressively exploit themaybecase, espe-
cially if the likelihood that two pointers alias can be quantified. This
paper proposes aProbabilistic Pointer Analysis(PPA) algorithm
that statically predicts the probability of each points-torelation at
every program point. Building on simple control-flow edge profil-
ing, our analysis is both one-level context and flow sensitive—yet
can still scale to large programs including the SPEC 2000 integer
benchmark suite. The key to our approach is to compute points-to
probabilities through the use of linear transfer functionsthat are ef-
ficiently encoded as sparse matrices. We demonstrate that our anal-
ysis can provide accurate probabilities, even without edge-profile
information. We also find that—even without considering proba-
bility information—our analysis provides an accurate approach to
performing pointer analysis.

Categories and Subject Descriptors D.3.4 [Processors]: Compil-
ers

General Terms Algorithms, Performance

Keywords Dependence analysis, Pointer analysis, Speculative op-
timization

1. Introduction
Pointers are powerful constructs inC and other similar program-
ming languages that enable programmers to implement complex
data structures. However, pointer values are often ambiguous at
compile time, complicating program analyses and impeding opti-
mization by forcing the compiler to be conservative. Many pointer
analyses have been proposed which attempt to minimize pointer
ambiguity and enable compiler optimization in the presenceof
pointers [1, 2, 8, 12, 20, 25, 26, 30–32]. In general, the design of
a pointer analysis algorithm is quite challenging, with many op-
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tions that trade accuracy for space/time complexity. For example,
the most accurate algorithms often cannot scale in time and space
to accommodate large programs [12], although some progresshas
been made recently usingbinary decision diagrams[2, 30,32].

The fact that memory references often remain ambiguous even
after performing a thorough pointer analysis has motivateda class
of compiler-based optimizations calledspeculative optimizations.
A speculative optimization typically involves a code transforma-
tion that allows ambiguous memory references to be scheduled in a
potentially unsafe order, and requires a recovery mechanism to en-
sure program correctness in the case where the memory references
were indeed dependent. For example, EPIC instruction sets (eg.,
Intel’s IA64) provide hardware support that allows the compiler to
schedule a load ahead of a potentially-dependent store, andto spec-
ify recovery code that is executed in the event that the execution is
unsafe [11, 18]. Proposed speculative optimizations that allow the
compiler to exploit this new hardware support include speculative
dead store elimination, speculative redundancy elimination, specu-
lative copy propagation, and speculative code scheduling [7,21,22].

More aggressive hardware-supported techniques, such as thread-
level speculation [15,19,24,27] and transactional programming [14]
allow the speculative parallelization of sequential programs through
hardware support for tracking dependences between speculative
threads, buffering speculative modifications, and recovering from
failed speculation. Unfortunately, to drive the decision of when to
speculate many of these techniques rely on extensive data depen-
dence profile information which is expensive to obtain and often
unavailable. Hence we are motivated to investigate compile-time
techniques—to take a fresh look at pointer analysis with specula-
tive optimizations in mind.

1.1 Probabilistic Pointer Analysis

A conventional pointer analysis deduces for every pair of pointers,
at any program point, whether a points-to relation between them (i)
definitelyexists, (ii)definitely does notexist, or (iii) maybeexists.
Typically, a large majority of points-to relations are categorized as
maybe, especially if a fast-but-inaccurate approach is used. Unfor-
tunately, many optimizations must treat themaybecase the same as
thedefinitelycase to ensure correctness. However, speculative op-
timizations can capitalize on themaybecase—especially if we can
quantify the likelihood that two pointers alias.

We propose aProbabilistic Pointer Analysis(PPA) for which we
have the following three goals: (i) to accurately predict the prob-
ability of each points-to relation at every program point, without
the need for detailed data dependence profile information; (ii) to
scale to the SPEC 2000 integer benchmark suite; and (iii) to un-
derstand potential trade-offs between scalability and accuracy. We
have developed a PPA infrastructure, calledLinear One-Level In-
terprocedural Probabilistic Points-to(LOLIPoP), based an innova-
tive algorithm that is both scalable and accurate: buildingon simple
edge (control-flow) profiling, our analysis is both one-level context



and flow sensitive, yet can still scale to large programs. Thekey to
our approach is to compute points-to probabilities throughthe use
of linear transfer functions that are efficiently encoded assparse
matrices. LOLIPoP is very flexible, allowing us to explore the scal-
ability/accuracy trade-off space.

1.2 Related Work

Pointer analysis is a well-researched problem and many algorithms
have been proposed, yet no single approach has emerged as the
preferred choice [17]. A universal solution to pointer analysis
is prevented by the large trade-off between precision and scala-
bility, motivating different pointer analyses for different applica-
tions [16]. The most accurate algorithms are both context-sensitive
and control-flow-sensitive (CSFS) [12, 20, 31]; however, ithas yet
to be demonstrated whether these approaches can scale to large
programs. Context-insensitive control-flow-insensitive(CIFI) algo-
rithms [1,26] can scale almost linearly to large programs, but these
approaches are regarded as overly conservative and may impede
aggressive compiler optimization. Several approaches balance this
trade-off well by providing an appropriate combination of precision
and scalability [2, 8, 30, 32]. However, studies suggest that a more
accurate pointer analysis does not necessarily provide increased
optimization opportunities [10, 17] because ambiguous pointers
will persist. Hence speculative optimizations have recently been
proposed to bridge this persistent disparity between safety and op-
timization. However, none of these conventional pointer analyses
quantify the probability of potential points-to relations.

Several compiler analyses that support speculative optimiza-
tions have been proposed. In earlier work, Ramalingam [23] pro-
posed a generic dataflow frequency analysis framework that is able
to propagate edge frequencies interprocedurally, for use in opti-
mizations where such frequency information is beneficial. Ju et
al. [6] presented a probabilistic memory disambiguation framework
that quantifies the likelihood that two array references alias by an-
alyzing the array subscripts—but this approach is not applicable to
pointers. More recently, Chen et al. [4, 5] developed an intuitive
CSFS probabilistic point-to analysis algorithm. Their algorithm is
based on an iterative data flow analysis framework, which is mod-
ified such that probabilistic information is additionally propagated.
Their experimental results show that their technique can estimate
the probabilities of points-to relations in benchmark programs with
reasonable accuracy, although they model the heap as a single lo-
cation set and the benchmarks studied are relatively small.Further-
more, their interprocedural approach is based on Emami’s algo-
rithm [12] and is therefore not expected to scale to large programs.
Fernandez and Espasa [13] proposed a pointer analysis algorithm
that targets speculation by relaxing analysis safety. The key in-
sight is that such unsafe analysis results are acceptable because the
speculative optimization framework can tolerate them, converting a
safety concern into a performance concern. Finally, Bhowmik and
Franklin [3] present a similar unsafe approach that uses linear trans-
fer functions to achieve scalability. Unfortunately, neither of these
last two approaches provide the probability information needed to
compute cost/benefit trade-offs for speculative optimizations.

1.3 Contributions

This paper makes the following three contributions:

1. a novel algorithm for pointer analysis based on sparse transfor-
mation matrices;

2. an accurate, context-sensitive and flow-sensitive pointer analy-
sis that scales to SPEC integer benchmarks;

3. a method for computing points-to probabilities that doesnot
rely on dependence-profiling, and can optionally use edge-
profiling.

int x, y;
int *a, *b;

void main() {
S1: a = &x;
S2: b = &y;
S3: if(...)
S4: f();

S5: while(. . . ){
S6: g();
S7: . . . = *b;
S8: *a = . . . ;

}
}

void f() {
int *tmp;

S9: tmp = b;
S10: b = a;
S11: a = tmp;
S12: g();

}

void g() {
S13: if(...)
S14: a = &x;

}

Figure 1. In this sample program, global pointersa and b are
assigned in various ways. Theif statement atS3 is taken with
probability0.9, theif statement atS13 is taken with a probability
of 0.01, and thewhile loop atS5 iterates exactly 100 times.

2. A Scalable PPA Algorithm
This section describes our PPA algorithm in detail. We beginby
showing an example program. We then give an overview of our
PPA algorithm, followed by the matrix framework that it is built
on. Finally, we describe the bottom-up and top-down analyses that
our algorithm is composed of.

2.1 Example Program

For the remainder of this section, the example program in Figure 1
will be used to illustrate the operation of our algorithm. Inthis
sample program there are three pointer variables (a, b, andtmp)
and two variables that can be pointed at (x andy), each of which
is allocated a unique location set. We assume that edge profiling
indicates that theif statement atS3 is taken with probability0.9,
the if statement atS13 is taken with a probability of0.01, and
the while loop at S5 iterates exactly100 times (recall that our
algorithm can proceed using heuristics in the absence of profile
feedback). Initiallya andb are assigned to the addresses ofx and
y respectively. The functionf() is then potentially called, which
effectively swaps the pointer values ofa andb and then calls the
functiong(). The functiong() potentially assigns the pointera to
the address ofx, depending on the outcome of theif statement at
S13 which is taken 1% of the time.

For an optimizing compiler to safely target the loop atS5,
accurate knowledge about the dereferences atS7 and S8 is re-
quired. If both instructions always dereference the same location
(i.e.,∗a == ∗b), the dereferences can be replaced by a single tem-
porary variable. Conversely, if the dereference targets are always
different and also loop invariant then the corresponding derefer-
ence operations can be hoisted out of the loop. If the compiler can-
not prove either case to be true (which is often the result in practice
because of the difficulties associated with pointer analysis) then it
must be conservative and refrain from optimization. In thisparticu-
lar example, neither optimization is possible; however, itis possible
to perform either optimization speculatively so long as theopti-
mized code is guarded with a check and recovery mechanism [22].
To decide whether a speculative optimization is desirable for the
code involving the points-to relations atS7 andS8, we first require
the corresponding probabilities.



(a) Conventional points-to
graph.

(b) Probabilistic points-to graph

Figure 2. A points-to graph and the corresponding probabilistic
points-to graph, associated with the program point afterS4 and
initially into S5 (PS5) in the example found in Figure 1. A dotted
arrow indicates amaybepoints-to relation whereas a solid arrow
denotes adefinitepoints-to relation.UND is a special location set
used as the sink target for when a pointer’s points-to targetis
undefined.

2.2 Algorithm Overview

The main objective of our probabilistic pointer analysis isto com-
pute, at every program points the probability that any pointerα
points to any addressable memory locationβ. More precisely, given
every possible points-to relation〈α, ∗β〉, the analysis must solve
for the probability functionρ(s, 〈α, ∗β〉) for all program pointss.
The expected probability is defined by the following equation

ρ(s, 〈α, ∗β〉) =
E(s, 〈α, ∗β〉)

E(s)
(1)

whereE(s) is the expected execution count associated with pro-
gram points andE(s, 〈α, ∗β〉) is the expected frequency for which
the the points-to relation〈α, ∗β〉 holds dynamically at the program
point s [4]. Intuitively, the probability is largely determined bythe
control-flow path and the procedure calling context to the program
point s—hence an approach that is both control-flow and context
sensitive1 will produce the most probabilistically accurate results.

To perform pointer analysis, we must first construct an ab-
stract representation of addressable memory called astatic memory
model. For our PPA algorithm the static memory model is com-
posed oflocation sets[31].2 A location set can represent one or
more real memory locations, and can be classified as a pointer,
pointer-target, or both. A location set only tracks its approximate
size and the approximate number of pointers it represents, allow-
ing us to abstract away the complexities of aggregate data struc-
tures and arrays of pointers. For example, fields within aC struct
can either be merged into one location set, or else treated assepa-
rate location sets. Such options give us the flexibility to explore the
accuracy/complexity trade-off space without modifying the under-
lying algorithm. We also define a special location set calledUND as
the sink target for when a pointer’s points-to target is undefined.

Since a location set can be a pointer, a location set can pointto
another location set. Such a relation is called apoints-torelation,
and the set of all such relations is called apoints-to graph: a di-
rected graph whose vertices represent location sets. Specifically, a
directed edge from vertexα to vertexβ indicates that the pointerα
may point to the targetβ. In a flow-sensitive analysis where state-
ment order is considered when computing the points-to graph, ev-
ery point in the program may have a unique points-to graph. Our

1 A context-sensitivepointer analysis distinguishes between the different
calling contexts of a procedure, and acontrol-flow-sensitivepointer analysis
takes into account the order in which statements are executed within a
procedure.
2 Note that our algorithm itself is not necessarily dependenton this location-
set-based model.

PPA algorithm computes a probabilistic points-to graph which sim-
ply annotates each edge of a regular points-to graph with a weight
representing the probability that the points-to relation will hold.
Figure 2(a) shows an example points-to graph based on the exam-
ple code given in Figure 1, and Figure 2(b) gives the corresponding
annotated probabilistic points-to graph. It is important to note that
the sum of all outgoing edges for a given vertex is always equal to
one, to satisfy Equation 1.

To perform an inter-procedural context-sensitive analysis and to
compute probability values for points-to relations, our PPA algo-
rithm also requires as input aninterprocedural control flow graph
(ICFG) that is decorated with expected runtime frequency; we ex-
plain the construction of the ICFG in greater detail later inSec-
tion 3. The ICFG is a representation of the entire program that
contains the control flow graphs for all procedures, connected by
the overall call graph. Furthermore, all control-flow and invocation
edges in the ICFG are weighted with their expected runtime fre-
quency. These edge weights can be obtained through the use of
simple edge profiling (eg., the output fromgprof) or by static es-
timation based on simple heuristics.

Because our analysis is a control flow-sensitive analysis, at
every points the program is said to have a probabilistic points-
to graph denotedPs. Given a second point in the programs′ such
that a forward path froms to s′ exists, the probabilistic points-to
graphPs′ can be computed using a transfer function that represents
the changes in the points-to graph that occur on the path froms to
s′, as formulated by

Ps′ = fs→s′(Ps). (2)

2.3 Matrix-Based Analysis Framework

As opposed to conventional pointer analyses which are set-based
and can use analysis frameworks composed of bit vectors or BDDs,
a PPA requires the ability to track floating-point values forthe
probabilities. Conveniently, the probabilistic points-to graph and
transfer functions can quite naturally be encoded as matrices, al-
though the matrix formulation in itself is not fundamental to the
idea of PPA. The matrix framework is a simple alternative to prop-
agating frequencies in an iterative data flow framework [23]. We
choose matrices for several reasons: (i) matrices are easy to reason
about, (ii) they have many convenient and well-understood proper-
ties, and (iii) optimized implementations are readily available. Our
algorithm can now build on two fundamental matrices: a proba-
bilistic points-to matrixP , and alinear transformation matrixT .
Thus we have the fundamental PPA equation

Pout = Tin→out × Pin. (3)

One key to the scalability of our algorithm is the fact that the trans-
formation matrix is linear, allowing us to compute the probabilistic
points-to graph at any point in the program by simply performing
matrix multiplication—we do not require the traditional data flow
framework used by other flow-sensitive approaches [4].

2.3.1 Points-to Matrix

We encode a probabilistic points-to graph using anN ×M points-
to matrix whereM is the number of location set vertices that can
be pointed at, andN is the number of pointer location sets plus the
number of target location sets—therefore the vertices thatact both
as pointers and pointee-targets have two matrix row entriesand are
hence counted twice. The following equation formally defines the
points-to matrix format:
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ρ(s, 〈i′, j′〉) i ≤ N − M

1 i > N − M andi = j + (N − M)

0 otherwise

(4)

The rows1 to N − M are reserved for the pointer locations
sets and the rowsN − M + 1 to N are reserved for the tar-
get location sets. To determine the row associated with a given
pointer or pointee variable, therow id(α) function is used. Given
a pointer variableα, the functionrow id(α) is equal to the matrix
row mapped to the pointerα and the functionrow id(&α) is equal
to the matrix row mapped to the address ofα. For a points-to ma-
trix, pointer-target location sets are mapped to their corresponding
column number by computingrow id(&α)− (N −M). The inner
matrix spanning rows1 to N −M fully describes the probabilistic
points-to graph; the other inner matrix spanning rowsN − M + 1
to N is the identity matrix, and is only included to satisfy the fun-
damental PPA equation. Finally, but crucially, the matrix is main-
tained such that every row within the matrix sums to one—allowing
us to treat a row in the matrix as a probability vector

−→
P .

Example Consider the points-to graph depicted in Figure 2. We
assume thatrow id(a) = 1, row id(b) = 2,
row id(tmp) = 3, row id(&x) = 4, row id(&y) = 5,
androw id(UND) = 6. We also assume that the columns correspond
to x, y, and UND respectively. This produces the corresponding
points-to matrix:

PS5 =

x y UND

a

b

tmp

x

y

UND

2

6

6

6

6

6

4

0.101 0.889 0

0.9 0.1 0

0 0 1

1 0 0

0 1 0

0 0 1

3

7

7

7

7

7

5

2.3.2 Transformation Matrix

A transfer function for a given points-to matrix is encoded using an
N × N transformation matrix, whereN is the number of pointer
location sets plus the number of target location sets. Each row and
column is mapped to a specific location set using the equivalent
row id(α) function. Transformation matrices are also maintained
such that the values in every row always sum to one. Given any
possible instruction or series of instructions, there exists a trans-
formation matrix that satisfies Equation 3. If a statement has no
effect on the probabilistic points-to graph, then the corresponding
transformation matrix is simply the identity matrix. The following
sections describe how transformation matrices are computed.

2.4 Representing Assignment Instructions

In any C program there are four basic ways to assign a value to a
pointer, creating a points-to relation:

1. address assignment:a = &b;

2. pointer assignment:a = b;

3. load assignment:a = ∗b;

4. store assignment:∗a = b.

For each of the four cases there exists a corresponding transforma-
tion matrix. Types (1) and (2) generate a safe transformation ma-
trix, whereas types (3) and (4) are modeled using a one-levelunsafe
transformation. The dereferenced target that is introduced in type
(3) or (4) is modeled as a shadow variable and any ensuing shadow

variable aliasing is ignored, which is of course unsafe. If desired,
safety can be added by incorporating an additional lightweight alias
analysis (as will be discussed further in Section 2.8). For each of
the four cases, a transformation matrix is computed using the fol-
lowing equation:

T[α=β,p] =
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:

p i = row id(α) andj = row id(β)
1 − p i = j = row id(α)

1 i = j andi 6= row id(α)
0 otherwise

(5)

In this equation,α represents the pointer location set on the left
side of the assignment andβ denotes the location set (pointer or
target) on the right side of the assignment. The probabilityvaluep
represents the appropriate probability for the transformation and it
is equal to 1 divided by the approximate number of pointers rep-
resented by the pointer location setα as defined in Equation 6. A
pointer location set can represent multiple pointers. Sucha location
is required to represent the following cases: (1) an array ofpointers;
(2) pointers within recursive data structures are statically modeled
as a single location set; (3) pointers withinC structs are merged
when a field-insensitive approach is utilized; and (4) shadow vari-
able aliasing (as described in Section 2.8). A heuristic is used to
approximate how many pointers are represented by a given pointer
location set if this information cannot be determined statically. A
probability of p = 1 is equivalent to astrong updateused in a
traditional flow-sensitive pointer analysis, whereas a probability of
p < 1 is representative of aweak update.

p =
1

approx # of pointers inα
(6)

It is important to note that the transformation matrix used for
pointer assignment instructions is simply the identity matrix, with
the exception of one row that represents the left side of the assign-
ment.

Example The transformation matrices corresponding to the pointer
assignment statementsS1 andS10 from Figure 1 are:

TS1 = T[a=&x,1.0] =

2

6

4

0 0 0 1 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3

7

5

TS10 = T[b=a,1.0] =

2

6

4

1 0 0 0 0 0

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3

7

5

To compute the points-to matrix atS2 we useTS1 and the funda-
mental PPA equation as follows:

PS2 = TS1 · PS1

x y UND

a

b

tmp

x

y

UND

2

6

6

6

6

6

4

1 0 0

0 0 1

0 0 1

1 0 0

0 1 0

0 0 1

3

7

7

7

7

7

5

=

2

6

4

0 0 0 1 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3

7

5

2

6

4

0 0 1

0 0 1

0 0 1

1 0 0

0 1 0

0 0 1

3

7

5

The resulting points-to matrix atS2 shows that the points-to rela-
tion 〈a, &x〉 exists with probability 1, while all other pointers (b
andtmp) are undefined.



2.5 Representing Basic Blocks

For a basic block with a series of instructionsS1 . . . Sn whose
individual transformation matrices correspond to
T1 . . . Tn, we can construct a single transformation matrix that
summarizes the entire basic block using the following:

Tbb = Tn · . . . · T2 · T1 (7)

Therefore, given any points-to matrix at the inbound edge ofa basic
block, the points-to matrix at the outbound edge can be computed
simply by performing the appropriate matrix multiplications. Note
that the construction of a transformation matrix is a backward-flow
analysis: to solve for the transformation matrix that summarizes
an intraprocedural path froms to s′, the analysis starts ats′ and
traverses backwards until it reachess.

Example The basic block that contains statementsS1 andS2 from
Figure 1 can be summarized as:

Tbb(S1−S2) = TS2 · TS1
2

6

4

0 0 0 1 0 0

0 0 0 0 1 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3

7

5
=

2

6

4

1 0 0 0 0 0

0 0 0 0 1 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3

7

5

2

6

4

0 0 0 1 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3

7

5

Assume that we are given the points-to matrix for the start ofthe
basic block atS1 in Figure 1; also assume that all pointers are
undefined at that point. The points-to matrix at the end of thebasic
block (i.e., atS3) can be computed as follows:

PS3 = Tbb(S1−S2) · PS1 =

x y UND

a

b

tmp

x

y

UND

2

6

6

6

6

6

4

1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

0 0 1

3

7

7

7

7

7

5

The resulting points-to matrix indicates that atS3 the points-to
relations〈a, &x〉 and〈b, &y〉 exist with a probability of 1.

2.6 Representing Control Flow

The main objective of this matrix-based PPA framework is to sum-
marize large regions of code using a single transformation matrix.
To summarize beyond a single basic block, our transformation ma-
trices must be able to represent control flow. Recall that thecon-
struction of a transformation matrix proceeds backwards, from s′
backwards tos. When the start of a basic block is encountered dur-
ing this backwards analysis, the analysis must categorize all of that
basic block’s incoming edges. For now we consider the following
three non-trivial cases for each edge:

1. the edge is a forward edge (Figure 3(a));

2. the edge is a back-edge ands′ is outsidethe region that the
back-edge spans (Figure 3(b));

3. the edge is a back-edge ands′ is within the region that the back-
edge spans (Figure 3(c)).

The following considers each case in greater detail.

2.6.1 Forward Edges

When there exists a single incoming forward edge from another ba-
sic block the transformation matrix that results is simply the prod-
uct of the transformation matrices for the current basic block and
the incoming basic block. When there are exactly two incoming,
forward edges from basic blocksγ andδ, we compute the transfor-
mation matrix as follows:

Tif/else = p · Tγ + q · Tδ (8)

(a) Forward edge (b) Back-edge,s′ out-
side

(c) Back-edge,s′ in-
side

Figure 3. Control flow possibilities

Tγ andTδ represent the transformation matrices from the program
point s to the end of each basic blockγ andδ respectively. The
scalar probabilityp represents the fan-in probability from basic
block γ, andq represents the fan-in probability from basic block
δ, and we require thatp and q sum to 1. This situation of two
forward incoming edges typically arises from the use ofif/else
statements. In the more general case, we compute the transforma-
tion matrix as follows:

Tcond = pi

X

Ti (9)

This equation is simply a generalized version of Equation 8 with
the added constraint that

P

pi = 1.

Example From Figure 1 the functiong() can be fully summarized
using Equation 9:

Tg() = 0.01 · TS14 + 0.99 · I =

2

6

4

0.99 0 0 0.01 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3

7

5

The identity matrixI is weighted with a probability 0.99 since there
is noelse condition. Recall that theif statement atS13 is taken
1% of the time. This matrix indicates that after the functiong()
executes,a has a 1% chance of pointing atx and a 99% chance of
remaining unchanged.

2.6.2 Back-Edge withs′ Outside it’s Region

When a back-edge is encountered ands′ is outsidethe region that
the back-edge spans, we can think of the desired transformation
matrix as similar to that for a fully-unrolled version of theloop—
eg., the same transformation matrix multiplied with itselfas many
times as the trip-count for the loop. In the case where the loop
trip-count is constant, we can model the back-edge through simple
exponentiation of the transformation matrix. Assuming that Tx is
the transformation matrix of the loop body, andC is the constant
loop trip-count value, we can model this type of back-edge with the
following:

Tloop = Tx
C (10)

When the loop trip-count is not a constant, we estimate the
transformation matrix by computing the distributed average of all
possible unrollings for the loop. Assuming that the back-edge is
annotated with a lower-bound trip-count value ofL and an upper-
bound value ofU , the desired transformation matrix can be com-
puted efficiently as the geometric series averaged fromL to U :

Tloop =
1

U − L + 1

U
X

L

Tx
i (11)

Example Consider thewhile loop found at statementS5 in Fig-
ure 1. The transformation matrix for the path fromS5 to S8 is:



TS5→S8 = (TS6→S8)
100 = (Tg())

100 =
2

6

4

0.37 0 0 0.63 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3

7

5

This matrix indicates that after the loop fully iterates,a has a 63%
chance of pointing atx and a 37% chance of remaining unchanged.

2.6.3 Back-Edge withs′ Inside it’s Region

The final case occurs when the edge is a back-edge ands′ is inside
the region that the back-edge spans, as shown in Figure 3(c).Since
s′ is within the loop, the points-to relations ats′ may change for
each iteration of that loop. In this case we compute the desired
transformation matrix using a geometric series such thatU is the
maximum trip-count value:

Tloop =
1

U

U−1
X

0

Tx
i (12)

Example In Figure 1 this scenario occurs if we require the trans-
formation matrix for the pathS1 to S7, since in this cases′ is S7,
which is within thewhile loop atS5. The required transformation
matrix can be computed as follows:

TS1→S7 = Tg() · 1
100

P99
0 (TS6→S8)

i · TS1→S5

2.7 Bottom Up and Top Down Analyses

We have so far described a method for computing probabilistic
points-to information across basic blocks, and hence within a pro-
cedure. To achieve an accurate program analysis we need a method
for propagating a points-to matrix inter-procedurally. Toensure
that our analysis can scale to large programs, we have designed a
method for inter-procedural propagation such that each procedure
is visited no more than a constant number of times.

We begin by computing a transformation matrix for every pro-
cedure through a reverse topological traversal of the call graph
(eg., a bottom-up (BU) pass). Recursive edges in the call-graph are
weakened3 and procedures are then analyzed iteratively for a fixed
number of times to ensure that an accurate transformation matrix is
computed. The result of the bottom-up pass is a linear transforma-
tion matrix that probabilistically summarizes the behavior of each
procedure.

In the second phase of the analysis, we initialize a points-to
matrix by (i) computing the result of all statically defined pointer
assignments, and (ii) setting all other pointers to point atthe un-
definedlocation set (UND). We then propagate the points-to matrix
throughout the entire program using a forward topological traver-
sal of the call-graph (eg., a top-down (TD) pass). When a loador
store instruction is reached, the probability vector for that deref-
erence is retrieved from the appropriate row in the matrix. When a
call instruction is reached we store the points-to matrix atthat point
for future use. Finally, we compute the initial points-to matrix into
every procedure as the weighted average of all incoming points-to
matrices that were previously stored.

Example The call graph for our example dictates that in the
bottom-up phase of the analysis the procedure-level transforma-
tion matrices are computed in the following order:Tg(), Tf(), and
thenTmain(). This is intuitively necessary sinceTf() requiresTg();
andTmain() requires bothTf() andTg(). The algorithm then pro-
ceeds into the top-down phase which visits the procedures inthe

3 Weakening means that we iteratively tag edges within SCCs [28] as ‘weak-
ened’ and then ignore them for the purpose of topological traversal, since
such edges are recursion-causing invocation edges.

reverse order. Initially, the following input points-to matrix into
main() is used since there are no static declarations:

Pmain() in =

x y UND

a

b

tmp

x

y

UND

2

6

6

6

6

6

4

0 0 1

0 0 1

0 0 1

1 0 0

0 1 0

0 0 1

3

7

7

7

7

7

5

The algorithm propagates and updates this matrix forward until a
pointer dereference or a procedure call instruction is reached. At
S4, the points-to matrixPS4 is cached so that when the procedure
f() is analyzed the points-to matrix representing the initial state of
f() will be available.

Pf() in = PS4 =

x y UND

a

b

tmp

x

y

UND

2

6

6

6

6

6

4

1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

0 0 1

3

7

7

7

7

7

5

Similarly, the points-to matricesPS6 andPS12 are also stored to
analyze procedureg() during the top-down phase. These matrices
are later merged using a weighted sum based on the fan-in frequen-
cies from their respective callee procedures:

Pg() in = 100 × PS6 + PS12

2.8 Safety

At this point our algorithm does not necessarily compute a safe re-
sult in all circumstances: for certain code, the theoretical points-to
transfer function may contain non-linear side effects which are not
captured by our linear transformation matrix encoding. Non-linear
effects occur when multiple levels of dereferencing are used to as-
sign to pointers: (i) load assignment:a = ∗b; (ii) store assignment:
∗a = b.

We handle multi-level dereferencing by instantiatingshadow
variablepointer location sets, a technique that is similar to invisi-
ble variables [12]. These shadow variable location sets canpoten-
tially alias with other pointer location sets and cause unsafe be-
havior if ignored. To handle these non-linearities safely,we use
a lightweight, context-insensitive and flow insensitive unification-
based alias analysis [26] to precompute any shadow variablealias-
ing that can potentially occur. We assume that aliasing between lo-
cation sets occurs with a probability that is inversely-proportional
to the size of the aliasing set. All transformations involving shadow
variables that alias are extended to handle these non-linearities in a
safe manner. However, it is key to note that since we are support-
ing speculative optimizations, we also have the option of ignoring
safety.

3. The LOLIPoP PPA Infrastructure
Figure 4 shows a block diagram of the LOLIPoP infrastructure,
which operates onC source code. We have also developed a light-
weight edge-profiler which instrumentsC source code to track con-
trol flow edges, invocation edges, and indirect function call targets.
The foundation of LOLIPoP is a SUIF 1.3 compiler pass [29]. The
pass begins by building an Interprocedural Control Flow Graph
(ICFG) that is annotated with any available profile information.
The static memory model (SMM) is then built by extracting lo-
cation sets from SUIF’s symbol tables. For this paper, all memory
allocation call sites are treated as a single unique location set, and
all aggregate structures and arrays are merged into a singleloca-
tion set each. Recursive data structures are merged into onedata
structure after one level of recursion. We then perform the bottom-
up (BU) and top-down (TD) phases of the analysis as describedin
Section 2.7. We exploit the sparse matrix library availablethrough
MATLAB’s runtime library to perform all matrix operations.



Figure 4. The LOLIPoP infrastructure.

Table 1. Benchmark inputs used.
Benchmark Train Input Ref Input

S
P

E
C

in
t2

00
0

BZIP2 default default
CRAFTY default default
GAP default default
GCC default expr.i
GZIP default default
MCF default default
PARSER default default
PERLBMK diffmail.pl diffmail.pl
TWOLF default default
VORTEX default bendian1.raw
VPR default default

S
P

E
C

in
t9

5 COMPRESS default reduced to 5.6MB
GO default 9stone21.in
IJPEG default vigo.ppm
LI default default
M88KSIM default default
PERL jumble.pl primes.pl

For experiments when edge-profile information is not available,
we use the following three compile-time heuristics: (i) we assume
that fan-in probability is a uniform distribution between all incom-
ing branches; (ii) when the upper and lower bound for the tripcount
of a loop cannot be determined through a simple inspection ofthe
loop bounds, we assume that the lower bound is zero and the upper
bound is ten4; and (iii) we assume that fan-in call graph invocation
edge counts have a uniform distribution between all callee proce-
dures. We do not use a heuristic for indirect function call targets
and therefore require the edge-profiler to always provide that infor-
mation.

Finally, we put a great deal of effort into optimizing the exe-
cution of LOLIPoP. In particular we exploit sparse matrices, we
compress matrices before exponentiating, we perform aggressive
memoization of matrix results at the intra-procedural level, and we
use an efficient implementation for computing the geometricseries
for Equations 11 and 12 [9].

4. Evaluating LOLIPoP
In this section we evaluate LOLIPoP’s running-time, the accuracy
of the pointer analysis results in a conventional sense, andthe
accuracy of the computed probabilities.

4.1 Experimental Framework

The following describes our framework for evaluating LOLIPoP.
All timing measurements were obtained using a 3GHz Pentium

4 Fully exploring the impact of these default loop bounds is beyond the
scope of this work.

Table 2. LOLIPoP measurements, including lines-of-code (LOC)
and transformation matrix size N for each benchmark, as wellas
the running times for both the unsafe and safe analyses. The time
taken to obtain points-to profile information at runtime is included
for comparison.

Matrix Running Time (min:sec)
Benchmark LOC Size Unsafe Safe Profile

S
P

E
C

in
t2

00
0

BZIP2 4686 251 0:0.3 0:0.3 13:34
CRAFTY 21297 1917 0:5.5 0:5.5 14:47
GAP 71766 25882 54:56 83:38 55:56
GCC 22225 42109 309:40 N/A 39:58*
GZIP 8616 563 0:0.71 0:0.77 3:48
MCF 2429 354 0:0.39 0:0.61 19:46
PARSER 11402 2732 0:30.7 0:50.0 84:52
PERLBMK 85221 20922 44:15 89:43 N/A
TWOLF 20469 2611 0:16.6 0:20.6 N/A
VORTEX 67225 11018 3:59 4:56 0:0.7*
VPR 17750 1976 0:9.3 0:10.3 197:0

S
P

E
C

in
t9

5 COMPRESS 1955 97 0:0.1 0:0.1 1:55
GO 29283 651 0:2.9 0:3 5:58
IJPEG 31457 4491 0:23.4 0:24.9 7:12
PERL 4686 5395 5:3 7:49 8:37
LI 27144 3868 0:28.8 0:59.15 72:5
M88KSIM 19933 1932 0:4.9 0:5.24 0:0.2

*Note that for GCC and VORTEX the profiler is significantly faster because a reduced ref input set was used to make
the analysis tractable (see Table 1).

IV with 1GB of RAM. We report results for all of the SPECint95
and SPECint2000 benchmarks except for the following: 252.EON,
which is written in C++ and not handled by our compiler; 126.GCC,
which is similar to 176.GCC; and 147.VORTEX, which is identical
to 255.VORTEX. Table 1 describes both theref andtrain inputs
used for each benchmark.

4.2 Analysis Running-Time

LOLIPoP meets our objective of scaling to the SPECint95 and
SPECint2000 benchmark suites. Table 2 shows the running-times
for both the safe (where shadow variable alias analysis is per-
formed) and unsafe analyses. Each running-time includes the
bottom-up and top-down phases of the overall analysis, but ig-
nores the time taken to build the interprocedural control flow graph
and static memory model—but note that this time is negligible in
most cases. The runtimes range from less than a second for four
benchmarks up to 5 hours for most challenging benchmark (GCC).
These results are promising especially given that this is anaca-
demic prototype implementation of PPA.

For speculative optimizations, the alternative to pointeranalysis
is to use a points-to profiler which instruments the source code to
extract points-to frequency information at runtime; hencefor com-
parison purposes we have implemented a points-to profiler that in-
struments the source code so that the memory addresses of alllo-
cation sets can be tracked and queried at runtime. This involves
two key instrumentation techniques: (1) overloading library func-
tion calls toalloc andfree to track heap location set addresses;
and (2) storing the addresses of every stack variable (whosead-
dress is taken) when pushed on the program’s runtime stack. Every
pointer dereference is also instrumented with a wrapper function
that enables the points-to profiler to determine which location set
is being referenced during the dereference operation. The points-to
profiler queries the set of available addresses to determinewhich
runtime points-to relation is currently applicable to thataddress,
and the count of this points-to relation is then incremented. It is im-
portant to understand that a points-to profiler is only able to track
points-to relations that actually occur at runtime, and hence has
fewer possibilities to track than a static points-to analysis. In sum-
mary, points-to profiling is a computationally intense analysis and
furthermore has no ability to provide safety in the resulting alias
information it provides.



Table 3. LOLIPoP Measurements.
Avg.

Avg. Dereference Size Maximum
Benchmark Safe p > 0.001 Unsafe Certainty

BZIP2 1.00 1.00 1.00 1.00
COMPRESS 1.080 1.08 1.08 0.96
CRAFTY 1.830 1.40 1.83 0.95
GAP 143.84 77.61 6.21 0.78
GCC N/A N/A 2.64 0.96
GO 3.290 2.15 3.29 0.94
GZIP 1.41 1.31 1.45 0.90
IJPEG 6.740 2.46 1.33 0.90
LI 80.10 14.70 4.34 0.76
M88KSIM 1.82 1.66 1.84 0.83
MCF 1.51 1.51 1.51 0.92
PARSER 42.52 2.09 3.23 0.97
PERLBMK 18.48 5.45 3.10 0.79
PERL 88.98 8.40 35.35 0.87
TWOLF 1.26 1.25 1.19 0.90
VORTEX 6.06 3.61 6.13 0.91
VPR 1.18 1.10 1.09 0.95

The results in Table 2 show that in most cases, our analysis
approach is much faster than the profiler. In fact, for two cases
(PERLBMK and TWOLF) the profiler did not terminate after two
weeks of execution. It is also important to note that the profiling
approach is very dependent on the input set used, both in the results
it provides and on the profiler’s runtime. ForGCC and VORTEX
reduced reference input sets were used to ensure a tractableprofiler
time (described in Table 1)—in these cases the profiler outperforms
LOLIPoP because LOLIPoP must analyze the entire program while
the profiler only analyzes the subset of code that is exercised by
the reduced input set. For the more challenging benchmarks (GAP,
GCC, andPERLBMK), there is a significant increase in running-time
to compute safe results—i.e., to handle pointer assignments with
multiple levels of dereferencing as described in Section 2.8.

4.3 Pointer Analysis Accuracy

The accuracy of a conventional pointer analysis algorithm is typi-
cally measured and compared by computing the average cardinality
of the target location sets that can be dereferenced across all pointer
dereference sites in the program—in short, the average dereference
size. Table 3 shows the average dereference sizes for all bench-
marks studied, showing the safe result, the result when any points-
to relation with a probability less than 0.001 is ignored, and the
unsafe result (when shadow variable aliasing is ignored)—average
maximum certainty will be discussed later in Section 4.4.1.One
very interesting result is that the benchmarks with a relatively large
average dereference size for the safe analysis (GAP, LI , PARSER,
PERLBMK, PERL) show a dramatic decrease when unlikely points-
to relations are ignored (i.e., those for whichp < 0.001). This re-
sult suggests that many points-to relations are unlikely tooccur at
runtime, underlining the strong potential for speculativeoptimiza-
tions. As expected, a similar result is observed for the unsafe ver-
sion of the analysis since the safe analysis introduces manyinaccu-
racies through the flow-insensitive, context-insensitivepass that ad-
dresses shadow variable aliasing. These inaccuracies create many
low probability points-to relations that are unlikely to ever occur at
runtime. For example, the safe average dereference size forGAP is
relatively high at 143.84, while the unsafe size is only 6.21.

4.4 Probabilistic Accuracy

We now measure the accuracy of the probabilities computed by
LOLIPoP by comparing the two probability vectors

−→
P s and

−→
P d

at every pointer dereference point.
−→
P s, represents the probability

vector reported by LOLIPoP—the static probability vector.
−→
P d

represents the dynamic probability vector calculated by the points-
to profiler. In particular, we want to quantify the accuracy of the
probability vectors

−→
Ps that are statically computed at every pointer

dereference. For comparison, we use the results of the profiler
where each benchmark (using it’sref input) is instrumented to
track—for each pointer dereference location—a frequency vector
that indicates the frequency that each location set is the target.
Each resulting dynamic frequency vector is then normalizedinto a
dynamic probability vector (

−→
P d) so that it may be compared with

the corresponding probability points-to relation vector,as described
in Equation 1. To compare the two vectors in a meaningful way,we
compute thenormalized average Euclidean distance(NAED) as
defined by:

NAED =
1√
2
·

P ‖−→P s −
−→
P d‖

(# pointer dereferences)
(13)

This metric summarizes the average error uniformly across all
probability vectors at every pointer dereference on a scalethat
ranges from zero to one, where a zero means no discrepancy be-
tween dynamic and static vectors, and a one means there is always
a contradiction at every dereference.

Figure 5 shows the NAED for the SPECint95 and SPECint2000
benchmarks relative to the dynamic execution on theref input
set (results forGAP, PERLBMK, and TWOLF are omitted because
their dynamic points-to profile information could not be tractably
computed). In the first experiment (D) we distribute probability
uniformly to every target in the static points-to probability vector−→
Ps, making the naive assumption that all targets are equally likely.
This experiment is used to quantify the value-added of probability
information, and leads to an average NAED across all benchmarks
of 0.32 relative to the dynamic result. It is important to notice that
for BZIP2, COMPRESS, andGO even the uniform distribution (D) is
quite accurate.

The second experiment (Sr) plots the NAED for the safe analy-
sis using edge-profile information from theref input set. Compar-
ing the static and dynamic results using the same input set allows
us to defer the question of how representative the profiling input
set is. With LOLIPoP we improve the NAED to an average of 0.25
across all benchmarks, although that average can be misleading.
For about half of the benchmarks probability information does not
make a large difference (bzip2, compress, go, m88ksim, mcf,vpr),
while for the remaining benchmarks probability information sig-
nificantly improves the NAED. ForLI , the probability information
slightly increases the NAED. TheLI benchmark contains a tremen-
dous amount of shadow variable aliasing—we know this because
of the large gap between the safe and unsafe average dereference
sizes shown in Figure 3. The spurious points-to relations introduced
by the ‘safe’ analysis appear to corrupt the useful probability infor-
mation. A similar result would be expected forGAP. Using a more
accurate shadow variable analysis pass would help to reducethis
effect; applying field-sensitivity would also help becauseit would
drastically reduce the amount of shadow variable aliasing.

The next experiment (Ur) shows the NAED for the unsafe
analysis, also using edge-profile information from theref input
set. Comparing with the safe experiment (Sr), surprisingly we see
that on average the unsafe result is more accurate (with an NAED
of 0.24): this result implies that safety adds many false points-
to relations, and can actually be undesirable in the contextof
speculative optimizations. The exception to this isGZIP, where the
NAED deteriorates when transitioning from safe to unsafe. This
implies thatGZIP frequently utilizes and relies on many levels of
pointer dereferencing.

The final two experiments plot the NAED for the unsafe analy-
sis when using thetrain input set (Ut), and when using compile-
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Figure 5. Normalized Average Euclidean Distance (NAED) relative to the dynamic execution on theref input set.D is a uniform distribution
of points-to probabilities,Sr is the safe LOLIPoP result using theref input set, and theU bars are the unsafe LOLIPoP result using theref
(Ur) andtrain (Ut) input sets, or instead using compile-time heuristics (Un).

time heuristics instead of edge-profile information (Un). Surpris-
ingly, the average NAED when using thetrain input set (Ut) is
slightly more accurate than with theref input set (Ur): this indi-
cates that there are aliases which occur rarely during theref exe-
cution, which when profiled and fed back into LOLIPoP, becomea
source of inaccuracy compared to the lesser coverage of thetrain
input set. Finally, we see that the unsafe approaches are more
accurate with edge-profiling information than when compile-time
heuristics are used (Un), although even with heuristics LOLIPoP is
more accurate than the uniform distribution (D).

4.4.1 Average Maximum Certainty

To further evaluate the potential utility of the points-to probability
information provided by LOLIPoP, we measureaverage maximum
certainty:

Avg. Max. Certainty=

P

(Max Probability Value)
(# pointer dereferences)

(14)

This equation takes the maximum probability value associated
with all points-to relations at every pointer dereference and aver-
ages these values across all pointer dereference sites. Data spec-
ulative optimizations benefit from increased certainty that a given
points-to relation exists: since the probabilities acrossa probabil-
ity vector sum to one, if there is one large probability it implies
that the probabilities for the remaining location sets are small. In
other words, the closer the average maximum certainty valueis to
one, the more potential there is for successful speculativeoptimiza-
tion. The average maximum certainty for each SPEC benchmarkis
given in Table 3, and in general these values are quite high: the av-
erage value across all benchmarks is 0.899. This indicates that on
average, at any pointer dereference, there is likely only one domi-
nant points-to relation. Therefore a client analysis usingLOLIPoP
will be very certain of which points-to relation will exist at a given
pointer dereference.

5. Conclusions
As speculative optimization becomes a more widespread approach
for optimizing and parallelizing code in the presence of ambiguous
memory references, we are motivated to predict the likelihood of
points-to relations without relying on expensive dependence pro-
filing. We have presented LOLIPoP, a probabilistic pointer analy-
sis algorithm that is one-level context-sensitive and flow-sensitive,
yet can still scale to large programs including the SPECint2000
benchmark suite. The key to our approach is to compute points-to
probabilities through the use of linear transfer functionsthat are
efficiently encoded as sparse matrices.

We have used LOLIPoP to draw several interesting conclu-
sions. First, we found that—even without considering probability
information—LOLIPoP provides an accurate approach to perform-
ing pointer analysis. Second, we demonstrated that many points-to
relations are unlikely to occur at runtime, underlining thestrong
potential for speculative optimizations. Third, we found that the un-
safe version of our analysis is more probabilistically accurate than
the safe version, implying that safety adds many false points-to re-
lations and can actually be undesirable in the context of speculative
optimizations. Finally, we demonstrated that LOLIPoP can produce
accurate probabilities when using compile-time heuristics instead
of edge-profile information.
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