Generating Network Topologies That Obey Power Laws

Christopher R. Palmer
Computer Science Department
Carnegie Mellon University

Pittsburgh, PA, 15213

crpalmer@cs.cmu.edu

Abstract— Recent studies have shown that Internet graphs
and other network systems follow power-laws. Are these
laws obeyed by the artificial network topologies used in
network simulations? Does it matter? In this paper we
show that current topology generators do not obey all of
the power-laws, and we present two new topology genera-
tors that do. We also re-evaluate a multicast study to show
the impact of using power-law topologies.

I. INTRODUCTION

Recent studies have shown that Internet graphs follow
power laws [1]—i.e., certain graph metrics follow the dis-
tribution y < %. This phenomenon has been observed in
router topology, inter-domain topology [1], and the world-
wide-web [2], [3], [4], [5], [6]- Previous metrics used to char-
acterize Internet graphs have focussed on averages: for ex-
ample, average out-degree of routers. While these metrics
are important, they do not capture higher-order properties
such as the power-laws.

Network studies often simulate artificial network topolo-
gies to evaluate new ideas and schemes. There are several
topology generation algorithms that are commonly used,
but these are parameterized by average-based metrics and
do not necessarily produce topologies that follow the ob-
served power laws. It is therefore possible that the artificial
networks used in simulation-based studies are not “realis-
tic”, and that the corresponding conclusions are inaccurate.

We address this issue by answering the following three
questions. First, do current topology generators used in
network simulations produce artificial networks that obey
power laws? We show that commonly used topology gen-
erators do not. Second, how do we generate graphs that
obey power laws? We present two algorithms and compare
their power-law performance with that of the current topol-
ogy generators. Third, what impact do power-law topologies
have on simulation studies? We re-evaluate the STORM (7]
multicast scheme with both the current and new topology
generators, and show that topology does impact results.

The remainder of this paper is organized as follows. In
the next section, we review the power-laws and use them
to evaluate current topology generators. In Section III, we
present and evaluate two algorithms for generating power-
law topologies, and in Section IV we explore the impact
of power-law topologies on the STORM multicast scheme.
Finally, we conclude in Section V.

J. Gregory Steffan
Computer Science Department
Carnegie Mellon University

Pittsburgh, PA, 15213

steffan@cs.cmu.edu

II. PowER Laws AND ToPOLOGY (FENERATORS

In this Section, we describe the power-laws defined by
Faloutsos et al [1]. Then, we explain the commonly used
topology generators. Finally, we show that these topology
generators do not follow all of the power-laws.

A. The Faloutsos et al. Power-Laws

Faloutsos et al [1] define four power-laws: rank expo-
nent, out-degree exponent, hop-plot exponent, and eigen
exponent. For convenience, we repeat the definitions here.

Power-Law 1: rank exponent R The out-degree, d,,
of a node v, is proportional to the rank of the node, r,,
to the power of a constant, R: d, o< rX. This power-law
is evaluated by computing the out-degree for every node,
sorting the out-degrees in descending order, and plotting
in log-log space. Data for inter-domain graphs and router
graphs show a near-linear distribution, with a slight devi-
ation at either end.

Power-Law 2: out-degree exponent 0 The frequency,
fa, of an out-degree, d, is proportional to the out-degree to
the power of a constant, @: f; o< d©.

Power-Law 3: hop-plot exponent # The total num-
ber of pairs of nodes, P(h), within h hops, is proportional
to the number of hops to the power of a constant, #:

P(h) x h* h < 4, the diameter.

Power-Law 4: eigen exponent £ The eigenvalues, A;,
of a graph are proportional to the order, ¢, to the power of
a constant, £: A; o< i°.

Faloutsos et al suggest using these power-laws to measure

the realism of synthetic graphs [1].

B. Current Topology Generators

Topology generators currently used in simulation studies
are constructed to obtain a desired average out-degree, and
may even produce a strict hierarchy of sub-graphs. While
these techniques make intuitive sense, they do not neces-
sarily capture the power-law properties measured in real
internet graphs. For convenience, we now define the two
most common topology generation schemes.

Waxman Waxman’s [8] generator places random points
in Cartesian two-space. An edge is added between two
points u and v with a probability inversely proportional to
the distance between them, as given by

P(u,v) = ae=du,v/BL

bl

Out-degree vs. Rank

T

" 2-Tevel
exp(3.2054362472)/x"*-0.3165526235 (cor p=0.8097544)

Waxman X
exp(3.5756452042)*x**-0.4587380842 (cor p=0.8024123) -------

a) Out-degree vs Rank
Fig. 1.

where a and 3 are parameters, d , is the distance between
u and v, and L is the maximum inter-node distance.

N-level Hierarchical N-level hierarchical [9], [10] meth-
ods generate a collection of random graphs and connect
them in a hierarchy. There are many variants of this ap-
proach, including some that add extra random connections
across hierarchy levels.

C. Performance on Power-Laws

A power-law defines a line in log-log space. We evaluate
the performance of the existing topology generators with
respect to the power-law metrics by measuring the strength
of a linear relationship in log-log space. Specifically, a scat-
ter plot is constructed from the data, a line of minimum
least-square errors is plotted, and the linear correlation of
the log-transformed data is measured. We report absolute
values of the correlation p—this is equivalent to measuring
the quality of the least-squares line.

Random 200 node networks are generated using Wax-
man’s algorithm and the 2-level algorithm used in the
STORM [7] study. The rank exponent and out-degree ex-
ponent graphs for these generators appear in Fig. 1 while
the hop-plot exponent and eigen exponent plots have been
elided to save space. The hopcounts and the eigen values
graphs show strong power-law relationships, while the de-
gree based graphs (Fig. la and 1b) show no power law
relationships. In particular, the out-degree vs. rank graph
is definitely concave and not linear (p = .8). The frequency
vs. out-degree graph appears to define a bell-curve in log-
log space (p < .5). To summarize, neither Waxman’s algo-
rithm nor the 2-level hierarchical algorithm generate graphs
that pass all of the power-law tests.

III. NEw GENERATORS FOR POWER-LAW TOPOLOGIES

Here we present two new algorithms for generating net-
work topologies that do obey power-laws. The first method
uses a power-law to guide graph construction, while the sec-
ond method uses a recursive probability distribution. We
evaluate these new methods on the four power-laws.

Frequency vs. Out-degree

100

2Tevel +

exp(1.5195803178)"x*0.3927267922 (cor p=0.2303068) ——
Waxman x
exp(3.4421751750)*x**-0.5934467397 (cor p=0.4542197) -----

b) Frequency vs out-degree

Power-law plots for current topology generators.

A. Network Graphs

A network is a set of hosts with network links between
some subset of them. We can model such a structure as
an undirected graph G = (V, E) where £ C V x V such
that (u,v) € E = (v,u) € E. We further require that
(u,u) ¢ E for all u (i.e., there are no hosts that have an
external link to themselves). A common representation of
an undirected graph is the N by N adjacency matrix A, ,.
Our algorithms assume that we want to generate M edges.

B. Power-Law Qut-Degree Algorithm

A simple way to generate a graph that obeys a power-
law is to use that power-law to guide the construction of
the graph. Node out-degree is a straight-forward property
to manipulate (as opposed to hop-count), so our first al-
gorithm constructs a graph from a collection of nodes that
have a power-law distribution of out-degrees. We call this
the Power-Law Out-Degree algorithm, or PLOD.

The algorithm for PLOD 1is shown in Fig. 2. First, we
randomly assign to each node a number of out-degree cred-
its using the exponential distribution

gr=e

Second, we place edges in the adjacency matrix for the
graph such that every node obtains the assigned out-degree.
The edge placement loop picks a random pair of nodes
and assigns an edge if each node has remaining out-degree
credits and there is not already an edge between the nodes.
When an edge is placed between a pair of nodes, we also
decrement the out-degree credits for each node in the pair.
If this initial pair of nodes is not suitable for an edge, we
continue picking random pairs of nodes until we find one
that is suitable.

The selection of parameters @ and § for PLOD is impor-
tant, as they will produce vastly different distributions of
node out-degrees. We also want to obtain a certain number
of edges in the generated graph. The value of # controls the
y-intercept of the log-log plot (where z = 1, for the node
with largest out-degree). Once we have chosen [, we select
a value of a that produces the desired number of edges.

PLOD(N, M, A) =
FOR¢:1..N
z = uniform_random(1, N)
degree; = B~ ¢
FORi{:1.M
WHILE 1
r = uniform_random(1l, N)
¢ = uniform_random(1l, N)
IF r # ¢ AND degree,, AND degree. AND !A, .
degree,--, degree.-—-
Arc=1Ac,=1
BREAK

Fig. 2. Power-law out-degree generator

C. Recursive Topology Generator

The recursive topology generator has two components.
First, we define a probability distribution function that
randomly selects a pair of nodes. Second, we use this
function to produce a network graph with real-valued edge
weights.

The probability density function is a generalization of an
80-20 distribution. An 80-20 distribution splits the space
into two halves and places 80% of the values in the left half
and 20% of the values in the right half. For a 2-dimensional
array (adjacency matrix) we defined the quantities

(2 7]

with o + 8+ v + ¢ = 1. These values correspond to the
percentage of edges we want to place in each recursive sub-
array. The generator must take care to produce a symmet-
ric matrix with zero diagonal (bidirectional links and no
self-links in the network). Careful accounting of the num-
ber of non-zero entries is required. For example, consider
the 4 by 4 symmetric matrix. There are 12 potentially
non-zero values, but only 2 of them are in the upper left
quadrant. Also, notice that putting a link in the upper
right quadrant is equivalent to putting a link in the lower
left quadrant (due to symmetry).

Let Ni be the number of potentially non-zero values
in the upper-left/lower-right quadrants of the matrix and
Ny the number of potentially non-zero values in the top-
left /bottom-right quadrants. Define

Bty €
Py, X N7 Pe X 7

o
Poa X w7

to be the probability of a link in each quadrant.

Fig. 3 provides an algorithm, gensym, that will ran-
domly select an edge, (u,v), using the probability distri-
bution function we have defined. The selected edge will
always be in the upper triangle.

Our topology generator has parameters N and M (the
number of nodes and edges, respectively) and the proba-
bilities o, 8, v and €. It then generates a weighted graph
using the edge generator by repeatedly selecting a single
link and incrementing the weight of that link until such
time as we have M links. The details are given in Fig. 3.

It is up to the user to decide how to map the weightings
to network capabilities. For example, the experimental re-
sults presented in the following section have two classes of

gensym(n) =
Let N1 = (n/2)? — (n/2)
Let Ny = (n/2)?
Let k= 1/(g - o+ 2=(8+7) + 59
_ | A An
Let A = As Aoy

IF n = 2 THEN return (1, 2)
ELSE WITH PROBABILITY

- R = RETURN gensym(n/2)
(B+7)- % = RETURN gen(n/2)+ (0,n/2)
€ Ny = RETURN gen(n/2)+ (n/2,n/2)
gen(n) =
IF 1 THEN return (1,1)

n=
WITH PROBABILITY
o = RETURN gen(n/2)
8 = RETURN gen(n/2)+ (0,n/2)
v = RETURN gen(n/2) + (n/2,0)
e = RETURN gen(n/2)+ (n/2,n/2)
Recursive(N,M) =
Let A be an N by N zero matrix
WHILE A has fewer than M non-zero entries DO
(u,v) = gensym(N)
Auv = Avu = Auv +1
DONE
RETURN A

Fig. 3. Recursive topology generator

links: high latency and low latency. We have defined high
latency links to be the more heavily weighted ones (assum-
ing that weight corresponds to some measure of the traffic
passing through a link).

D. Evaluation

We evaluated PLOD and Recursive on the four power-
laws, as shown in Fig. 4. PLOD has a nearly perfect out-
degree vs. rank plot while Recursive appears as a charac-
teristic 80-20 curve (Fig. 4a). All other metrics (Fig. 4b-d)
exhibit excellent power-law relationships (p > .92). We
conclude that PLOD and Recursive capture Internet char-
acteristics far better than either Waxman or 2-level.

IV. IMPACT OF POWER-LAW TOPOLOGIES

In this section, we investigate the impact of power-law
topologies on simulation results. In particular, we re-
evaluate the STORM [7] multicast scheme and show that
results do vary by topology. We give a brief summary of
the STORM multicast scheme, describe how we ensure that
network graphs produced by the different topology gener-
ators are comparable, and finally we present the results of
our re-evaluation of STORM.

A. The STORM Multicast Scheme

The STORM multicast algorithm [7] provides a scalable
method of recovering lost multicast packets. Each receiver
(client) chooses a parent node from a set of neighboring
multicast participants. When a packet is late, the client
sends its parent a nack packet. The parent then responds
with a repair packet which, if received in time, is used to
replace the original missing packet.

Simulation was used in the STORM study to show that
the protocol overheads scaled as the number of clients in-

Out-degree vs. Rank

sive X

§ "PLOD

‘ €xp(3.9342322161)"-0.5104991791 (cor p=0.9861166)
Recur:

exp(s 1)x-0.9006622187 (cor p=0.8872023) -----

L L
1 10 100

a) Out-degree vs Rank

Hopcounts
100000

x & X x

10000

PLOD -

exp(7.8788447608)"0.8962096990 (cor p=0.9761962)
Recursive X

exp(8.0247916927)x**1.7386544765 (cor p=0.936350) -----

2000
1 10

c) Hopcounts

Frequency vs. Out-degree

; PLOD
exp(5.9744219421)*x"*-1.8359426735 (cor p=0.9292354)
Recursive x

(cor p=0.9197076) -----

exp(4.)x-11

100 |

x+

L
1 10

b) Frequency vs out-degree

Eigenvalues vs. Rank

i PLOD +
exp(2.5262981642)"-0.3623782152 (cor p=0.9754761)
R

ecursive X
exp(2.4555276658)*x**-0.3784400503 (cor p=0.9324769) -----

L
1 10

d) Eigenvalues vs rank

Fig. 4. Power-law plots for our new topology generators.

creased, and that the loss-distribution observed for the av-
erage client was reasonable. A random 2-level hierarchical
topology was used where every node in a random first-level
graph is connected to a separate random second level graph
by a single link. All second-level graphs have the same
number of nodes, and each node in a second-level graph is
attached to either a client or to the source by an additional

link.

B. Generating Comparable Topologies

For simulation results using different topologies to be
comparable, we must make all of our network graphs com-
parable to the graphs used in the original STORM study
(henceforth referred to as 2-level). The following five fea-
tures must be taken into consideration.

First, the number of nodes must be comparable. This is
a parameter to Waxman, PLOD, and Recursive, but Re-
cursive requires that the number of nodes be a power of
two. For each experiment, we use the value of N closest
to the corresponding 2-level graph. Second, we aligned
the average out-degree of all graphs. Third, in the 2-level
networks, multicast participants are linked to every second-
level node, while for the other three generation methods we
link participants to arbitrary nodes and ensure that there is
at most one participant per node. Fourth, the first-level of
a 2-level network is always composed of high-latency links,
while the second-level has low-latency links—we must en-

sure that this feature is modeled in the other topologies
as well. The Recursive algorithm provides a distinction
between high and low latency links, while Waxman and
PLOD do not. For these other two algorithms, we de-
vised an independent method of assigning low latency links
that ensures that all links near participant nodes are low-
latency, and assigns low-latency links randomly otherwise.
Finally, graphs generated by Waxman, PLOD, and Recur-
sive are not necessarily connected: we remedy this by re-
peatedly finding and identifying disconnected components
in the graph and randomly connecting the smallest to the
largest until only one component remains.

C. Re-FEvaluation

We now present our re-evaluation of the STORM multi-
cast scheme. The original study measured average packet
overhead for a varying number of clients, as well as the loss
distribution for a 100-client topology. For each of the topol-
ogy generators, Fig. 5 shows the ratio of protocol packets
received per packet recovered for an increasing number of
clients. For every experiment, we average over 5 random
topologies for each topology generator. We see that the
STORM scheme scales well for all topologies: the overhead
ratio is consistently near three, with the exception of the
results for 10-client topologies which are skewed because
the small graphs produce results with very high variance.
The breakdown of overhead into nacks and repairs is more

sl Nack
Repair

Packets received per packet recovered

10 50 100200 10 50 100200 10 50 100200
Waxman 2-Level PLOD

10 50 100200
Recursive

Fig. 5. STORM protocol overhead for varying numbers of clients.

Percent of protocol overhead per node
T

2-Level
PLOI

Recursive -----

1 10 100

Fig. 6. Percent of protocol overhead per node for 100 clients.

or less constant, each accounting for roughly half of the
overhead. However, these average results do not tell the
whole story.

Our intuition is that power-law topologies should pro-
duce the same average results as the corresponding non-
power-law topologies, but that the distributions for a given
measurement will vary significantly by topology. For each
topology generator, Fig. 6 shows the percent of protocol
overhead incurred per node in the network. The 2-level
generator used in the original STORM study has a vastly
different overhead distribution than the other generators.
The protocol overheads for the 2-level distribution appear
to have two distinct regions—these are likely related to this
topology’s two distinct levels. The other generators pro-
duce a more smooth distribution, perhaps indicating that
their topologies are more “natural.”

Finally, we measure the distribution of lost packets over
all nodes, as shown in Fig. 7. Again, we see that topology
has a large impact on the resulting loss distributions. Note
that we are not advocating that a given topology produces
more accurate results, but that the resulting distributions
are evidently closely tied to the underlying topology. This
suggests that selection of a topology generator is very im-
portant when performing a study which focuses on the dis-
tribution of a given metric. In most cases, a good solution
may be to repeat the experiment using a variety of topology
generators.

Loss Distribution for 100 clients
0.01 T

Waxman
2-Level ——--—-

Recursive -----
PLOD

0.001

Loss rate

0.0001

1e-05 L -
1 10 100
Rank

Fig. 7. Loss distribution for 100 clients.

V. CONCLUSIONS

Recent work has shown that power-laws govern the
topologies of real inter-networks, particularly the Inter-
net. This work and other work done concurrently [11]
show that the topology generators currently used for sim-
ulation studies produce topologies that do not follow all of
these power-laws, and present new methods for generating
topologies that do obey all four power-laws. To show that
topology is an important consideration in simulated net-
work experiments, we re-evaluated the STORM study on
several topologies, including our new power-law topologies.
Results show that average metrics are relatively unaffected
by topology, but that distributions vary significantly. This
suggests that if the distribution of a metric is important to
your conclusion, that topology must be chosen carefully—a
good strategy is to use multiple topology generators, in-
cluding those that obey power-laws.

REFERENCES

[1] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law
relationships of the internet topology,” in SIGCOMM, 1999.

[2] R. Albert, H. Jeong, and A.-L. Barabasi, “The diame-
ter of the world wide web,” Submitted and available at
http://www.nd.edu/"alb/public.html.

[3] Albert-L4szlé Barabasi and Réka Albert, “Emergence of scaling
in random networks,” Science, vol. 286, 1999.

[4] B. A. Huberman and L. A. Adamic, “Evolutionary dynamics
of the world wide web,” Tech. Rep., Xerox Palo Alto Research
Center, February 1999.

[5] Jon M. Kleinberg, Ravi Kumar, Prabhakar Raghavan, Sridhar
Rajagopalan, and Andrew S. Tomkins, “The web as a graph:
measurements, models and methods,” in Proceedings of the In-
ternational Conference on Combinatorics and Computing, 1999.

[6] S.R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins,
“Extracting large scale knowledge bases from the web,” in IEEE
International conference on Very Large Databases (VLDB), Ed-
inburgh, Scotland, 1999.

[7] X.R. Xu, A. C. Myers, H. Zhang, and R. Yavatkar, “Resilient
multicast support for continuous-media applications,” in NOSS-
DAV, 1997.

[8] B. M. Waxman, “Routing of multipoint connections,” [EEE J.
Selected Areas in Communications 6(9), December 1988.

[9] K.L.Calvert, M. B. Doar, and E. W. Zegura, “Modeling internet
topology,” IEEE Communications Magazine, June 1997.

[10] E. Zegura, K. Calvert, and M. Donahoo, “A quantitative com-
parison of graph-based models for internet topology,” Transac-
tions on Networking, December 1997.

[11] A. Medina, I. Matta, and J. Byers, “On the origin of power laws
in internet topologies,” Tech. Rep., Boston University, January
2000.

