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ABSTRACT

As FPGA-based systems including soft processors be-
come increasingly common, we are motivated to better un-
derstand the architectural trade-offs and improve the effi-
ciency of these systems. Previous work has demonstrated
that support for multithreading in soft processors can tol-
erate pipeline and I/O latencies as well as improve over-
all system throughput—however earlier work assumes an
abundance of completely independent threads to execute.
In this work we show that for real workloads, in particu-
lar packet processing applications, there is a large fraction
of processor cycles wasted while awaiting the synchroniza-
tion of shared data structures, limiting the benefits of a mul-
tithreaded design. We address this challenge by propos-
ing a method of scheduling threads in hardware that allows
the multithreaded pipeline to be more fully utilized with-
out significant costs in area or frequency. We evaluate our
technique relative to conventional multithreading using both
simulation and a real implementation on a NetFPGA board,
evaluating three deep-packet inspection applications that are
threaded, synchronize, and share data structures, and show
that overall packet throughput can be increased by 63%,
31%, and 41% for our three applications.

1. INTRODUCTION

Improving logic density and maximum clock rates of FPGAs
have led to an increasing number of FPGA-based system-
on-chip designs, which in turn increasingly contain one or
more soft processors—processors composed of program-
mable logic on the FPGA. Despite the raw performance
drawbacks, a soft processor has several advantages com-
pared to creating custom logic in a hardware-description
language: it is easier to program (e.g., using C), portable
to different FPGAs, flexible (i.e., can be customized), and
can be used to control or communicate with other compo-
nents/custom accelerators in the design.

Prior work [1–5] has demonstrated that supporting mul-
tithreading can be very effective for soft processors. In par-
ticular, by adding hardware support for multiple thread con-
texts (i.e., by having multiple program counters and logi-
cal register files) and issuing an instruction from a different
thread every cycle in a round-robin manner, a soft processor
can avoid stalls and pipeline bubbles without the need for

hazard detection logic [1, 3]: a pipeline with N stages that
supports N − 1 threads can be fully utilized without haz-
ard detection logic [3]. Such designs are particularly well-
suited to FPGA-based processors because (i) hazard detec-
tion logic can often be on the critical path and can require
significant area [6], and (ii) using the block RAMs provided
in an FPGA to implement multiple logical register files is
comparatively fast and area-efficient.

A multithreaded soft processor with an abundance of in-
dependent threads to execute is also compelling because it
can tolerate memory and I/O latency [4], as well as the com-
pute latency of custom hardware accelerators [5]. In prior
work it is generally assumed that such an abundance of com-
pletely independent threads is available—modeled as a col-
lection of independent benchmark kernels [1–5]. However,
in real systems, threads will likely share memory and com-
municate, requiring (i) synchronization between threads, re-
sulting in synchronization latency (while waiting to acquire
a lock) and (ii) critical sections (while holding a lock).

While a multithreaded processor provides an excellent
opportunity to tolerate the resulting synchronization latency,
the simple round-robin thread-issue schemes used previ-
ously fall short for two reasons: (i) issuing instructions from
a thread that is blocked on synchronization (e.g., spin-loop
instructions or a synchronization instruction that repeatedly
fails) wastes pipeline resources; and (ii) a thread that cur-
rently owns a lock and is hence in a critical section only
issues once every N −1 cycles (assuming support for N −1

thread contexts), exacerbating the synchronization bottle-
neck for the whole system.

1.1. Fast Critical Sections via Thread Scheduling with

Static Hazard Detection

In this work we demonstrate that implementing a thread-
scheduling policy that is more sophisticated than the round-
robin approach can significantly improve performance with
only a small area and frequency cost. The main goal of
our proposed scheduler is to de-prioritize any thread that
is awaiting a lock such that it cannot issue further instruc-
tions until the thread has an opportunity to acquire the lock.
While this solution makes intuitive sense, its implementa-
tion results in a significant challenge: assuming a pipeline
of N stages that supports N − 1 thread contexts, if one or
more threads is blocked awaiting synchronization then there



are no longer enough threads to naturally utilize the pipeline;
to do so, multiple instructions from a single thread must be
in flight, which once again requires a method of hazard de-
tection across instructions within that same thread.

We consider several methods for re-introducing hazard
detection. First, we could simply add hazard detection logic
to the pipeline—but this would increase area and reduce
clock frequency, and would also lead to stalls and bubbles
in the pipeline. Second, we could consult hazard detection
logic to find a hazard-free instruction to issue from any ready
thread—but this more complex approach requires the addi-
tion of an extra pipeline stage, and we demonstrate that it
does not perform well. A third solution, which we advo-
cate in this paper, is to perform static hazard detection by
identifying hazards at compile time and encoding hazard in-
formation into the instructions themselves. This approach
capitalizes on unused bits in block RAM words on FPGAs1

to store these hazard bits, allowing us to fully benefit from
more sophisticated thread scheduling.
Evaluation with a Realistic System: We evaluate our

thread scheduler with static hazard detection using realis-
tic parallel workloads that have shared memory, synchro-
nization, and critical sections. In particular, we measure
both simulation and real execution of several packet pro-
cessing workloads on a 4-way multithreaded, 5-stage, two-
processor system implemented on the NetFPGA develop-
ment platform [7]. We find that, with simple round-robin
thread scheduling, over 18% of all potential issue cycles are
wasted while blocked on synchronization. In contrast, our
scheduler with static hazard detection spends almost none
of the issue cycles blocked on synchronization, and exhibits
a 38% improvement in overall CPI and a 45% improvement
in total packet throughput relative to the default round-robin
scheme.

1.2. Related work

The closest work on thread scheduling for soft processors
that we are aware of is by Moussali et. al. [5] who use a
table of pre-determined worst-case instruction latencies to
avoid pipeline stalls. Our technique can handle the same
cases while additionally prioritizing critical threads and han-
dling unpredictable latencies. In the ASIC world, thread
scheduling is an essential part of multithreading with syn-
chronized threads [8]. The IXP [9] family of network pro-
cessors use non-preemptive thread scheduling where threads
exclusively occupy the pipeline until they voluntarily de-
schedule themselves when awaiting an event. Other exam-
ples of in-order multithreaded processors include the Ni-
agara [10] and the MIPS 34K [11] processors where in-
structions from each thread wait to be issued in a dedicated

1Extra bits in block RAMs are available across FPGA vendors: block
RAMs of almost all granularities are configured in widths that are multiples
of nine bits, while processors normally have busses multiples of eight bits
wide.

pipeline stage. While thread scheduling and hazard detec-
tion are well studied in general (operating systems provide
thread management primitives [12] and EPIC architectures,
such as IA-64 [13], bundle independent instructions to max-
imize instruction-level parallelism), our goal is to achieve
thread scheduling efficiently in the presence of synchroniza-
tion at the fine grain required to tolerate pipeline hazards.

1.3. Contributions

This paper makes the following contributions: (i) we demon-
strate that thread scheduling is crucial for multithreaded soft
processors executing synchronized workloads; (ii) we pro-
pose methods of thread scheduling and hazard detection that
significantly improve pipeline utilization without reducing
clock frequency; (iii) we evaluate our approach on both sim-
ulated and real packet-processing systems and demonstrate
improvements in critical section latency, packet latency vari-
ability, and overall packet throughput.

2. PACKET PROCESSING

Network packet processing is no longer limited solely to
routing, with many applications that require deep packet in-
spection becoming increasingly common and desired: ex-
amples include encryption / decryption, compression / de-
compression, content-based routing, traffic shaping, intru-
sion/virus detection, and more. The goal of such a packet
processing systems is often to process packets at line rate,
scaling up a system composed of processors and accelera-
tors to make full use of available bandwidth to and from
a given packet-buffer (i.e., memory channel). FPGAs are
increasingly used in these systems [14–16] due to several
advantages that they provide: (i) ease of design and fast
time-to-market; (ii) the ability to connect to a number of
memory channels and network interfaces, possibly of vary-
ing technologies; (iii) the ability to fully exploit parallelism
and custom accelerators; and (iv) the ability to field-upgrade
the hardware design.

To measure packet throughput, we need to define the
processing performed on each packet. In contrast with prior
work [17–19] we focus on stateful applications—i.e., appli-
cations in which shared, persistent data structures are mod-
ified during the processing of most packets. When the ap-
plication is composed of parallel threads, accesses to such
shared data structures must be synchronized. These de-
pendences make it difficult to pipeline the code into bal-
anced stages of execution to extract parallelism. Alter-
natively, we adopt the run-to-completion/pool-of-threads
model, where each thread performs the processing of a
packet from beginning-to-end, and where all threads essen-
tially execute the same program code.

2.1. Benchmark Applications

To take full advantage of the software programmability of
our processors, our focus is on control-flow intensive ap-



plications performing deep packet inspection (i.e., deeper
than the IP header). Network processing software is nor-
mally closely-integrated with operating system networking
constructs; because our system does not have an operating
system, we instead inline all low-level protocol-handling di-
rectly into our programs. To implement time-stamps and
time-outs we require the hardware to implement a device
that can act as the system clock. We have implemented the
following packet processing applications, as detailed in Ta-
ble 1 (Section 6.1).
UDHCP is derived from the widely-used open-source

DHCP server. The server processes a packet trace modeling
the expected DHCP message distribution of a network of
20000 hosts [20]. As in the original code, leases are stored
in a linearly traversed array and IP addresses are ping’ed
before being leased, to ensure that they are unused.
Classifier performs a regular expression matching on

TCP packets, collects statistics on the number of bytes trans-
fered and monitors the packet rate for classified flows to ex-
emplify network-based application recognition. In the ab-
sence of a match, the payloads of packets are reassembled
and tested up to 500 bytes before a flow is marked as non-
matching. As a use case, we configure the widely used
PCRE matching library [21] with the HTTP regular expres-
sion from the “Linux layer 7 packet classifier” [22] and ex-
ercise our system with a publicly available packet trace [23]
with HTTP server replies added to all packets presumably
coming from an HTTP server to trigger the classification.
NAT exemplifies network address translation by rewrit-

ing packets from one network as if originating from one ma-
chine, and appropriately rewriting the packets flowing in the
other direction. As an extension, NAT collects flow statistics
and monitors packet rates. Packets originate from the same
packet trace as Classifier, and like Classifier,
flow records are kept in a synchronized hash table.

3. MULTITHREADED SOFT MULTIPROCESSOR

ARCHITECTURE

Our base processor is a single-issue, in-order, 5-stage, 4-way
multithreaded processor, shown to be the most area efficient
compared to a 3- and 7-stage pipeline in earlier work [4].
We eliminate the hardware multipliers from our processors,
which are not heavily used by our applications. The proces-
sor is big-endian which avoids the need to perform network-
to-host byte ordering transformations.

As shown in Figure 1, the memory system is composed
of a private instruction cache for each processor, and three
data memories that are shared by all processors; this design
is sensitive to the two-port limitation of block RAMs avail-
able on FPGAs. The first memory is an input buffer that
receives packets on one port and services processor requests
on the other port via a 32-bit bus, arbitrated across proces-
sors. The second is an output memory buffer that sends
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Fig. 1. The architecture of a 2-processor soft packet multi-
processor.

packets to the NetFPGA output-queues on one port, and is
connected to the processors via a second 32-bit arbitrated
bus on the second port. Both input and output memories
are 16KB, allow single-cycle random access and are con-
trolled through memory-mapped registers; the input mem-
ory is read-only and is logically divided into ten fixed-sized
packet slots. The third is a shared memory managed as a
cache, connected to the processors via a third arbitrated 32-
bit bus on one port, and to a DDR2 SDRAM controller on
the other port. For simplicity, the shared cache performs 32-
bit line-sized data transfers with the DDR2 SDRAM con-
troller (similar to previous work [24]), which is clocked
at 200MHz. The SDRAM controller services a merged
load/store queue of 16 entries in-order; since this queue is
shared by all processors it serves as a single point of seri-
alization and memory consistency, hence threads need only
block on pending loads but not stores. Finally, each proces-
sor has a dedicated connection to a synchronization unit that
implements 16 mutexes.

Since our multiprocessor architecture is bus-based, in its
current form it will not easily scale to a large number of
processors. However, as we demonstrate later in Section 6,
our applications are mostly limited by synchronization and
critical sections, and not contention on the shared buses; in
other words, the synchronization inherent in the applications
is the primary roadblock to scalability.

4. IMPLEMENTING THREAD SCHEDULING

A multithreaded processor has the advantage of being able
to fully utilize the processor pipeline by issuing instructions
from different threads in a simple round-robin manner to
avoid stalls and hazards. However, for real workloads with
shared data and synchronization, one or more threads may
often spin awaiting a lock, and issuing instructions from
such threads is hence a waste of pipeline resources. Also,
a thread which holds a lock (i.e., is in a critical section)



can potentially be the most important, since other threads
are likely waiting for that lock; ideally we would allocate a
greater share of pipeline resources to such threads. Hence
in this section we consider methods for scheduling threads
that are more sophisticated than round-robin but do not sig-
nificantly increase the complexity nor area of our soft mul-
tithreaded processor.

The most sophisticated possibility would be to give pri-
ority to any thread that holds a critical lock, and otherwise
to schedule a thread having an instruction that has no haz-
ards with current instructions in the pipeline. However, this
method is more complex than it sounds due to the possibil-
ity of nested critical sections: since a thread may hold mul-
tiple locks simultaneously, and more than one thread may
hold different locks, scheduling such threads with priorities
is very difficult and could even result in deadlock. A correct
implementation of this aggressive scheduling would likely
also be slow and expensive.

Instead of giving important threads priority, in our ap-
proach we propose to only de-schedule any thread that is
awaiting a lock. In particular, any such thread will no longer
have instructions issued until any lock is released in the
system—at which point the thread may spin once attempting
to acquire the lock and if unsuccessful it is blocked again.2

Otherwise, for simplicity we would like to issue instructions
from the unblocked threads in round-robin order.

To implement this method of scheduling we must first
overcome two challenges. The first is relatively minor: to
eliminate the need to track long latency instructions, our pro-
cessors replay instructions that miss in the cache rather than
stalling [4]. With non-round-robin thread scheduling, it is
possible to have multiple instructions from the same thread
in the pipeline at once—hence to replay an instruction, all
of the instructions for that thread following the replayed in-
struction must be squashed to preserve the program order of
instructions execution.

The second challenge is greater: to support any thread
schedule other than round-robin means that there is a possi-
bility that two instructions from the same thread might issue
with an unsafe distance between them in the pipeline, po-
tentially violating a data or control hazard. We solve this
problem with an implementation of static hazard detection.

4.1. Static Hazard Detection

With the ability to issue from any thread not waiting for a
lock, the thread scheduler must ensure that dependences be-
tween the instructions from the same thread are enforced,
either from the branch target calculation to the fetch stage,
or from the register writeback to the register read. The easi-
est way to avoid such hazards is to support forwarding lines.
By supporting forwarding paths between the writeback and

2A more sophisticated approach that we leave for future work would
only unblock threads waiting on the particular lock that was released.
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Fig. 2. Example insertion of hazard distance values. Arrows
indicate register dependences, implying that the correspond-
ing instructions must be issued with at least two pipeline
stages between them. A hazard distance of one encoded
into the second instruction commands the processor to en-
sure that the third instruction does not issue until cycle 3,
and hence the fourth instruction cannot issue until cycle 4.

register-read stages of our pipeline, we can limit the max-
imum hazard distance between instructions from the same
thread to two stages.

Our scheduling technique consists of determining haz-
ards at compile-time and inserting hazard distances as part
of the instruction stream. Because our instructions are
fetched from off-chip DDR2 memory into our instruction
cache, it is impractical to have instructions wider than 32
bits. We therefore compress instructions to accommodate
the hazard distance bits in the program executable, and de-
compress them as they are loaded into the instruction cache.
We capitalize on the unused capacity of block RAMs, which
have a width multiple of 9 bits—to support 32-bit instruc-
tions requires four 9-bit block RAMs, hence there are 4
spare bits for this purpose.

To represent instructions in off-chip memory in fewer
than 32 bits, we compress them according to the three MIPS
instruction types [25]: for the R-type, we merge the func-
tion bit field into the opcode field and discard the original
function bit field; for the J-type instructions, we truncate
the target bit field to use fewer than 26 bits; and for the I-
type, we replace the immediate values by their index in a
lookup table that we insert into our FPGA design. To size
this lookup table, we found that there are usually more than
1024 unique 16-bit immediates to track, but that 2048 en-
tries is sufficient to accommodate the union of the immedi-
ates of all our benchmarks. Therefore, the instruction de-
compression in the processor incurs a cost of some logic
and 2 additional block RAMs3, but not on the critical path
of the processor pipeline. After compression, we can eas-
ily reclaim 4 bits per instruction: 2 bits are used to encode
the maximum hazard distance, and 2 bits are used to iden-
tify lock request and release operations. Our compiler au-
tomatically sets these bits accordingly when it recognizes
memory-mapped accesses for the locks.

An example of code with hazard distances is shown in
Figure 2: the compiler must account for the distances in-

3For ease of use, the immediate lookup table could be initialized as part
of the loaded program executable, instead of currently, the FPGA bit file.
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Fig. 3. Examples using hazard distance to schedule threads.
The pipeline stages are: F for fetch, R for register, E for
execute, M for memory, and W for write-back. The arrows
indicate potential branch target or register dependences.

serted between the previous instructions to avoid inserting
superfluous hazard distances. It first evaluates hazards with
no regard to control flow: if a branch is not-taken, the haz-
ards will be enforced by the hazard distance bits; if the
branch is taken, the pipeline will be flushed from instruc-
tions on the mispredicted path and hazards will be automat-
ically avoided. If we extended our processors to be able to
predict taken branches, we would have to recode the haz-
ard distance bits to account for both execution paths. As a
performance optimization, we insert a hazard distance of 2
for unconditional jumps to prevent the processor from fetch-
ing on the wrong path, as it takes 2 cycles to compute the
branch target (shown in Figure 3). In our measurements,
we found best not to insert any hazard distance on condi-
tional branches; an improvement would consist of using pro-
file feedback to selectively insert hazard distances on mostly
taken branches. With more timing margin in our FPGA
design, we could explore other possible refinements in the
thread scheduler to make it aware of load misses and poten-
tially instantiate lock priorities.

At runtime upon instruction fetch, the hazard distances
are loaded into counters that inform the scheduler about haz-
ards between instructions in unblocked threads as illustrated
in Figure 3. When no hazard-free instruction is available for
issue (Figure 3c), the scheduler inserts a pipeline bubble. In

our processors with thread scheduling, when two memory
instructions follow each other and the first one misses, we
found that the memory miss signal does not have enough
timing slack to disable the second memory access while
meeting our frequency requirements. Our solution is to
take advantage of our hazard distance bits to make sure that
consecutive memory instructions from the same thread are
spaced apart by at least one instruction.

Note that in off-the-shelf soft processors, the generic
hazard detection circuitry identifies hazards at runtime (po-
tentially with a negative impact on the processor frequency)
and inserts bubbles in the pipeline as necessary. To avoid
such bubbles in multithreaded processors, ASIC implemen-
tations [10,11] normally add an additional pipeline stage for
the thread scheduler to select hazard-free instructions. We
evaluate the performance of this approach along with ours
in the next section.

5. EVALUATION INFRASTRUCTURE

This section describes our evaluation infrastructure, includ-
ing compilation, our evaluation platform, and how we do
timing, validation, and measurement.
Compilation: Our compiler infrastructure is based on

modified versions of gcc 4.0.2, Binutils 2.16, and
Newlib 1.14.0 that target variations of the 32-bit MIPS
I [26] ISA. We modify MIPS to support 3-operand multi-
plies (rather than MIPS Hi/Lo registers [3,6]), and eliminate
branch and load delay slots. Integer division and multiplica-
tion are both implemented in software. To minimize cache
line conflicts in our direct-mapped data cache, we align the
top of the stack of each software thread to map to equally-
spaced blocks in the data cache.
Platform: Our processor designs are inserted inside

the NetFPGA 2.1 Verilog infrastructure [7] that man-
ages four 1GigE Media Access Controllers (MACs) and 4.5
Mbytes of on-board SRAM to buffer packets before they
are sent on the network. We added to this base frame-
work a memory controller configured through the Xilinx
Memory Interface Generator to access the 64 Mbytes of on-
board DDR2 SDRAM. The system is synthesized, mapped,
placed, and routed under high effort to meet timing con-
straints by Xilinx ISE 10.1.03 and targets a Virtex II Pro
50 (speed grade 7ns).
Timing: Our processors run at the clock frequency of

the Ethernet MACs (125MHz) because there are no free
PLLs (Xilinx DCMs) after merging-in the NetFPGA support
components. Due to these stringent timing requirements,
and despite some available area on the FPGA, (i) the private
instruction caches and the shared data write-back cache are
both limited to a maximum of 16KB, and (ii) we are also
limited to a maximum of two processors. These limitations
are not inherent in our architecture, and would be relaxed in
a system with more PLLs and a more modern FPGA.



Validation: At runtime in debug mode and in RTL
simulation (using Modelsim 6.3c the processors generate
an execution trace that has been validated for correctness
against the corresponding execution by a simulator built on
MINT [27]. We validated the simulator for timing accuracy
against the RTL simulation.
Measurement: We drive our design, for the packet echo

experiment, with a generator that sends copies of the same
preallocated packet through Libnet 1.4 and otherwise with
a modified Tcpreplay 3.4.0 that sends packet traces from
a Linux 2.6.18 Dell PowerEdge 2950 system, configured
with two quad-core 2GHz Xeon processors and a Broad-
com NetXtreme II GigE NIC connecting to a port of the
NetFPGA used for input and a NetXtreme GigE NIC con-
necting to another NetFPGA port used for output. We char-
acterize the throughput of the system as being the maximum
sustainable input packet rate obtained by finding, through a
bisection search, the smallest fixed packet inter-arrival time
where the system does not drop any packet when monitored
for five seconds—a duration empirically found long enough
to predict the absence of future packet drops at that input
rate. While we could enforce ordering in software, we allow
packets to be processed out-of-order because our application
semantics allow it.

6. EXPERIMENTAL RESULTS

We begin by evaluating the raw performance that our system
is capable of, when performing minimal packet processing
for tasks that are completely independent (i.e., unsynchro-
nized). We estimate this upper-bound by implementing a
packet echo application that simply copies packets from an
input port to an output port. With minimum-sized packets of
64B, the echo program executes 300±10 dynamic instruc-
tions per packet, and a single round-robin CPU can echo
124 thousand packets/sec (i.e., 0.07 Gbps). With 1518B
packets, the maximum packet size allowable by Ethernet,
each echo task requires 1300±10 dynamic instructions per
packet. With two CPUs and 64B packets, or either one or
two CPUs and 1518B packets, our PC-based packet genera-
tor cannot generate packets fast enough to saturate our sys-
tem (i.e., cannot cause packets to be dropped). This amounts
to more than 58 thousand packets/sec (>0.7 Gbps). Hence
the scalability of our system will ultimately be limited by the
amount of computation per packet/task and the amount of
parallelism across tasks, rather than the packet input/output
capabilities of our system.

To reduce the number of designs that we would pursue
in real hardware, and to gain greater insight into the bot-
tlenecks of our system, we developed a simulation infras-
tructure. While verified for timing accuracy, our simulator
cannot reproduce the exact order of events that occurs in
hardware, hence there is some discrepancy in the reported
throughput. For example, Classifier has an abundance

(a) Simulation results.

(b) Hardware results.

Fig. 4. Throughput (in packets per second) normalized to
that of a single round-robin CPU. Each design has either
round-robin scheduling (RR), our proposed scheduling (S),
or scheduling via an extra pipeline stage (E), and has either
1 or 2 CPUs.

of control paths and events that are sensitive to ordering such
as routines for allocating memory, hash table access, and as-
signment of mutexes to flow records. We depend on the sim-
ulator only for an approximation of the relative performance
and behavior of applications on variations of our system.

Figure 4(a) shows the maximum packet throughput of
our simulated system, normalized to that of a single round-
robin CPU; these results estimate speedups for our schedul-
ing on a single CPU (S1) of 61%, 57% and 47% for UDHCP,
Classifier and NAT respectively.4 We also used the
simulator to estimate the performance of an extra pipeline
stage for scheduling (E1 and E2, as described in Sec-
tion 4.1), but find that our technique dominates in every
case: the cost of extra squashed instructions for memory
misses and mispredicted branches for the longer pipeline
overwhelms any scheduling benefit—hence we do not pur-
sue that design in hardware.

Figure 4(b) shows the maximum packet throughput of
our (real) hardware system, normalized to that of a sin-
gle round-robin CPU. We see that with a single CPU our
scheduling technique (S1) significantly out-performs round-

4We will report benchmark statistics in this order from this point on.



Fig. 5. Average cycles breakdown for each instruction at the
respective maximum packet rates from Figure 4(a).

robin scheduling (RR1) by 63%, 31%, and 41% across the
three applications. However, we also find that our appli-
cations do not benefit significantly from the addition of a
second CPU due to increased lock and bus contention, and
reduced cache locality: for Classifier two round-robin
CPUs (RR2) is 16% better, but otherwise the second CPU
either very slightly improves or degrades performance, re-
gardless of the scheduling used. We also observe that our
simulator (Figure 4(a)) indeed captures the correct relative
behaviour of the applications and our system.

Comparing two-CPU full system hardware designs, the
round-robin implementation consumes 163 block RAMs
(out of 232, i.e., 70% of the total capacity) compared to
165 blocks (71%) with scheduling: two additional blocks
are used to hold the lookup table for instruction decoding
(as explained in Section 4.1). The designs occupy respec-
tively 15,891 and 15,963 slices (both 67% of the total ca-
pacity) when optimized with high-effort for speed. Consid-
ering only a single CPU, the synthesis results give an upper
bound frequency of 136MHz for the round-robin CPU and
129MHz for scheduling. Hence the overall overhead costs
of our proposed scheduling technique are low, with a mea-
sured area increase of 0.5% and an estimated frequency de-
crease of 5%.

6.1. Identifying the Bottlenecks

To obtain a deeper understanding of the bottlenecks of our
system, we use our simulator to obtain a breakdown of how
cycles are spent for each instruction, as shown in Figure 5.
In the breakdown, a given cycle can be spent executing
an instruction (busy), awaiting a new packet to process
(no packet), awaiting a lock owned by another thread
(locked), squashed due to a mispredicted branch or a
preceding instruction having a memory miss (squashed),
awaiting a pipeline hazard (hazard bubble), or aborted
for another reason (other, memory misses or bus con-
tention). Figure 5 shows that our thread scheduling is ef-

Benchmark Dyn. Instr. Dyn. Sync. Instr. Sync. Uniq. Addr. /pkt

×1000/pkt %/pkt Reads Writes

UDHCP 34.9±36.4 90±105 5000±6300 150±60
Classifier 12.5±35.0 94±100 150±260 110±200

NAT 6.0±7.1 97±118 420±570 60±60

Table 1. Application statistics (mean±standard-deviation)
per packet: dynamic instructions, dynamic synchronized in-
structions (i.e., in a critical section) and number of unique
synchronized memory read and write accesses.

fective at tolerating almost all cycles spent spinning for
locks. The fraction of time spent waiting for packets (no
packet) is reduced by 52%, 47%, and 48%, a result of
reducing the worst-case processing latency of packets: our
simulator reports that the task latency standard deviation de-
creases by 34%, 33%, and 32%. The fraction of cycles spent
on squashed instructions (squashed) becomes significant
with our proposed scheduling: recall that if one instruction
must replay that we must also squash and replay any instruc-
tion from that thread that has already issued. The fraction of
cycles spent on bubbles (hazard bubble) also becomes
significant: this indicates that the CPU is frequently execut-
ing instructions from only one thread, with the other threads
blocked awaiting locks.

In Table 1 we measure several properties of the com-
putation done per packet in our system. First, we observe
that task size (measured in dynamic instructions per sec-
ond) has an extremely large variance (the standard devia-
tion is larger than the mean itself for all three applications).
This high variance is partly due to our applications being
best-effort unpipelined C code implementations, rather than
finely hand-tuned in assembly code as packet processing ap-
plications often are. We note also that the applications spend
over 90% of the packet processing time either awaiting syn-
chronization or within critical sections (dynamic synchro-
nized instructions), which limits the amount of parallelism
and the overall scalability of any implementation, and in par-
ticular explains why our two CPU implementation provides
little additional benefit over a single CPU. These results mo-
tivate future work to reduce the impact of synchronization.

Our results so far have focused on measuring through-
put when zero packet drops are tolerated (over a five second
measurement). However, we would expect performance to
improve significantly for measurements when packet drops
are tolerated. In Figure 6, we plot throughput for NAT as
we increase the tolerance for dropping packets from 0 to
5%, and find that this results in dramatic performance im-
provements for both fixed round-robin and our more flexible
thread scheduling—confirming our hypothesis that task-size
variance is undermining performance.

7. CONCLUSIONS

In this paper, we have shown that previously studied mul-
tithreaded soft processors with fixed round-robin thread in-



Fig. 6. Throughput in packets per second for NAT as we
increase the tolerance for dropping packets from 0 to 5%.
Each design has either round-robin scheduling (RR) or our
proposed scheduling (S) and has either 1 or 2 CPUs.

terleaving can spend a significant amount of cycles spinning
for locks when all the threads contribute to the same applica-
tion and have synchronization around data dependences. We
presented a technique to implement a more advanced thread
scheduling that has minimal area and frequency overhead,
because it capitalizes on features of the FPGA fabric. Our
scheme builds on static hazard detection and performs bet-
ter than the scheme used in ASIC processors with hazard
detection logic because it avoids the need for an additional
pipeline stage. Our improved handling of critical sections
with thread scheduling improves the instruction through-
put which results in reduced processing latency average and
variability. Using a real FPGA-based network interface, we
measured packet throughput improvements of 63%, 31%
and 41% for our three applications.
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