
1

Exploration and Customization of FPGA-Based
Soft Processors

Peter Yiannacouras,Member, IEEE J. Gregory Steffan,Member, IEEE and Jonathan Rose,Member, IEEE.

Abstract— As embedded systems designers increasingly use
FPGAs while pursuing single-chip designs, they are motivated
to have their designs also includesoft processors, processors
built using FPGA programmable logic. In this work we provide
(i) an exploration of the microarchitectural trade-offs for soft
processors, and (ii) a set of customization techniques that
capitalize on these trade-offs to improve the efficiency of soft
processors for specific applications. Using our infrastructure for
automatically generating soft processor implementations (which
span a large area/speed design space while remaining competitive
with Altera’s Nios II variations), we quantify tradeoffs within soft
processor microarchitecture and explore the impact of tuning
the microarchitecture to the application. In addition, we apply a
technique of subsetting the instruction set to use only the portion
utilized by the application. Through these two techniques we
can improve the performance-per-area of a soft processor for a
specific application by an average of 25%.

Index Terms— FPGA-based soft-core processors, processor
generator, design space exploration, customization.

I. I NTRODUCTION

FPGA vendors now support processors on their FPGA
devices to allow complete systems to be implemented on
a single programmable chip. Although some vendors have
incorporated fixedhard processors on their FPGA die, there
has been significant adoption ofsoft processors [1], [2] which
are constructed using the FPGA’s programmable logic itself.
When a soft processor can meet the constraints of a portion
of a design, the designer has the advantage of describing that
portion of the application using a high-level programming
language such as C/C++. More than 16% of all FPGA de-
signs [3] contain soft processors, even though a soft processor
cannot match the performance, area, and power of a hard
processor [4]. FPGA platforms differ vastly from transistor-
level platforms—hence previous research in microprocessor
architecture is not necessarily applicable to soft processors
implemented on FPGA fabrics, and we are therefore motivated
to revisit processor architecture in an FPGA context.

Soft processors are compelling because of the flexibility
of the underlying reconfigurable hardware in which they are
implemented. This flexibility leads to two important areas of
investigation for soft processor architecture that we address
in this article. First, we want to understand the architectural
trade-offs that exist in FPGA-based processors, by exploring a

Funding for this work was provided by NSERC and Altera Corp.
P. Yiannacouras, J. G. Steffan, and J. Rose are with the Edward S. Sr

Rogers Department of Electrical and Computer Engineering—University of
Toronto, Toronto, Canada (email:{yiannac,steffan,jayar}@eecg.utoronto.ca).

Copyright (c) 2006 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

broad range of high-level microarchitectural features such as
pipeline depth and functional unit implementation. Our long-
term goal is to move towards a CAD system which can decide
the best soft processor architecture for given area, power,
or speed constraints. Second, we capitalize on the flexibility
of the underlying FPGA by customizing the soft processor
architecture to match the specific needs of a given application:
(i) we improve the efficiency of a soft processor by eliminating
support for instructions that are unused by an application;
(ii) we also demonstrate how microarchitectural trade-offs can
vary across applications, and how these also can be exploited
to improve efficiency with application-specific soft processor
designs. Note that these optimizations are orthogonal to im-
plementing custom instructions that target custom functional
units/coprocessors, which is beyond the scope of this work.

To facilitate the exploration and customization of soft
processor architecture, we have developed the Soft Processor
Rapid Exploration Environment (SPREE) to serve as the core
of our software infrastructure. SPREE’s ability to generate
synthesizable Register-Transfer Level (RTL) implementations
from higher-level architecture descriptions allows us to rapidly
explore the interactions between architecture and both hard-
ware platform and application, as presented in two previous
publications [5], [6]. This article unifies our previous results
and includes the exploration of a more broad architectural
space.

A. Related Work

Commercial customizable processors are available from
Tensilica [7] for ASICs, Stretch [8] as an off-the-shelf part,
and others which allow designers to tune the processor with
additional hardware instructions to better match their applica-
tion requirements. Altera Nios [1] and Xilinx Microblaze [2]
are processors meant for FPGA designs which also allow cus-
tomized instructions or hardware, and are typically available
in only a few microarchitectural variants.

Research in adding custom hardware to accelerate a pro-
cessor has shown large potential. The GARP project [9] can
provide 2-24x speedup for some microkernels using a custom
coprocessor. More recent work [10] in generating custom
functional units while considering communication latencies
between the processor and custom hardware can achieve
41% speedup and similar energy savings. Dynamic custom
hardware generation [11] delivers 5.8x speedups and 57% less
energy. However these approaches which transform critical
code segments into custom hardware can also benefit from
the customizations in our own work: (i) additional real estate

2

can be afforded for custom hardware by careful architecting
of the processor and appropriate subsetting of the required
instruction-set using SPREE; (ii) once the custom hardware
is implemented, the criticality is more evenly distributed over
the application complicating the identification of worthwhile
custom hardware blocks. As a result, re-architecting is required
for the new instruction stream if more efficiency is sought, a
task SPREE is designed to facilitate.

The CUSTARD [12] customizable threaded soft processor is
an FPGA implementation of a parameterizable core supporting
the following options: different number of hardware threads
and types, custom instructions, branch delay slot, load delay
slot, forwarding, and register file size. While the available
architectural axes seem interesting the results show large
overheads in the processor design: clock speed varied only
between 20 and 30 MHz on the 0.15 micron XC2V2000, and
the single-threaded base processor consumed 1800 slices while
the commercial Microblaze typically consumes less than 1000
slices on the same device.

PEAS-III [13], EXPRESSION [14], LISA [15],
MADL [16], RDLC [17] and many others use Architecture
Description Languages (ADLs) to allow designers to build
a specific processor or explore a design space. However we
notice three main drawbacks in these approaches for our
purposes: (i) the verbose processor descriptions severely limit
the speed of design space exploration; (ii) the generated
RTL, if any, is often of poor quality and does not employ
necessary special constructs which encourage efficient FPGA
synthesis; and (iii) most of these systems are not readily
available or have had only subcomponents released. To the
best of our knowledge, no real exploration was done beyond
the component level [13], [14] and certainly not done in a
soft processor context.

Jan Gray has studied the optimization of CPU cores for
FPGAs [18]. In those processors synthesis and technology
mapping tricks are applied to all aspects of the design of a
processor from the instruction set to the architecture. While
that work documents constructs used for efficient synthesis,
our work is somewhat orthogonal: we are not focussed on
customizing the processor to its hardware platform and discov-
ering “free” FPGA optimizations, but rather we assume (and
have created) a variety of “good” FPGA-optimized hardware
configurations and explore their different benefits to different
applications. Once the best configuration is known, one can
apply synthesis tricks at the component level ontop of our
application-level customizations to further improve the effi-
ciency of SPREE generated processors.

II. GENERATING SOFT PROCESSORS WITHSPREE

The evaluations presented in this article use theSoft Pro-
cessor Rapid Exploration Environment (SPREE) [5], a system
we developed to allow the fast and easy generation of a large
number of soft processor designs. In particular, SPREE takes
as input a high-level, text-based description of the target ISA
and datapath, and generates an RTL description of a working
soft processor.

Figure 1 shows an overview of the SPREE system. Taking
a high-level description of an architecture as input, SPREE

RTL Simulator

1. Correctness
2. Cycle count

3. Area
4. Clock frequency
5. Power

Benchmarks

RTL CAD Flow

Description
Architecture

Synthesizable
RTL

SPREE

Fig. 1. Overview of the SPREE system.

automatically generates synthesizable RTL (in Verilog). We
then simulate the RTL description on benchmark applications
to both ensure correctness of the processor, and to measure the
total number of cycles required to execute each application.
The RTL is also processed by CAD tools which accurately
measure the area, clock frequency, and power of the generated
soft processor. The following discussion describes how SPREE
generates a soft processor in more detail—complete descrip-
tions of SPREE are available in previous publications [5], [19],
[20].

A. Input: The Architecture Description

The input to SPREE is a description of the desired pro-
cessor, composed of textual descriptions of both the target
ISA and the processor datapath. Each instruction in the ISA is
described as a directed graph of generic operations (GENOPs),
such asADD, XOR, PCWRITE, LOADBYTE, andREGREAD.
The graph indicates the flow of data from one GENOP to
another required by that instruction. SPREE provides a library
of basic components (e.g., a register file, adder, sign-extender,
instruction fetch unit, forwarding line, and more). A processor
datapath is described by the user as an interconnection of these
basic components. As we describe below, SPREE ensures that
the described datapath is capable of implementing the target
ISA.

The decision to use a structural architectural description in
SPREE reflects our goal of efficient implementation. Structural
descriptions provide users with the ability to better manage
the placement of all components including registers, and
multiplexers in the datapath. This management is crucial for
balancing the logic delay between registers to achieve fast
clock speeds. By analyzing the critical path reported by the
CAD tool, users can identify the components which limit the
clock frequency and take one of three actions: (i) reducing the
internal logic delay of a component, for example, making a
unit complete in two cycles instead of one; (ii) moving some
of the logic (such as multiplexers and sign-extenders) from
the high delay path into neighboring pipeline stages to reduce
the amount of logic in the high delay path; (iii) adding non-
pipelined registers in the high delay path causing a pipeline
stall. The latter two of these actions depend critically on this

3

ability to manually arrange the pipeline stages, referred to as
retiming, which is difficult for modern synthesis tools because
of the complexity in the logic for controlling the pipeline
registers. Without a good ability to optimize delay we risk
making incorrect conclusions based on poor implementations.
For example, one might conclude that the addition of a com-
ponent does not impact clock frequency because the impact is
hidden by the overhead in a poorly designed pipeline. For this
reason, architectural exploration in academia has traditionally
neglected clock frequency considerations.

B. Generating a Soft Processor

From the above inputs, SPREE generates a complete Verilog
RTL model of the desired processor in three phases: (i) dat-
apath verification, (ii) datapath instantiation, and (iii) control
generation. In the datapath verification phase, SPREE com-
pares the submitted ISA description and datapath description,
ensuring that the datapath is functionally capable of executing
all of the instructions in the ISA description. The datapath
instantiation phase automatically generates multiplexers for
sinks with multiple sources and eliminates any components
that are not required by the ISA. Finally, the control generation
phase implements the control logic necessary to correctly
operate the datapath, and emits the Verilog descriptions of the
complete processor design. Control generation is where the
SPREE environment adds the most value since it automatically
handles multi-cycle and variable cycle functional units, the
select signals for multiplexers, the operation codes for each
functional unit, the interlocking between pipeline stages, and
the complexities in branching including the proper handling
of branch delay slots.

C. Limitations

There are several limitations to the scope of soft processor
microarchitectures that we study in this article. For now we
consider simple, in-order issue processors that use only on-
chip memory and hence have no cache—since the relative
speeds of memory and logic on a typical FPGA are much
closer than for a hard processor chip, we are less motivated to
explore an on-chip memory hierarchy for soft processors. The
largest FPGA devices have more than one megabyte of on chip
memory which is adequate for the applications that we study
in this article—however, in the future we do plan to broaden
our application base to those requiring off-chip RAM, which
would motivate caches. We do not yet include support for
dynamic branch prediction, exceptions, or operating systems.
Finally, in this article we do not add new instructions to the
ISA, we restrict ourselves to a subset of MIPS-I and have
not modified the compiler, with the exception of evaluating
software versus hardware support for multiplication due to the
large impact of this aspect on cycle time and area.

The MIPS instruction-set was chosen tentatively due to the
abundance of available software tools (compilers, instruction
simulators, etc) available for it and because of its striking
similarities with the Nios II ISA. The appropriateness of
a C sequential programming model and sequential Harvard
architecture model for soft processors is not evaluated in this

work. In addition, we have not evaluated other ISAs, but we
expect similar RISC architectures to follow the same trends.

III. E XPERIMENTAL FRAMEWORK

Having described the SPREE system, we now describe our
framework for measuring and comparing the soft processors
that it produces. We present methods for verifying the proces-
sors, employing FPGA CAD tools, measuring and comparing
soft processors, and we discuss the benchmark applications
that we use to do so.

A. Processor Verification

SPREE verifies that the datapath is capable of executing the
target ISA—however, we must also verify that the generated
control logic and the complete system function correctly. We
implement trace-based verification by using a cycle-accurate
industrial RTL simulator (Modelsim) that generates a trace
of all writes to the register file and memory as it executes
an application. We compare this trace to one generated by
MINT [21] (a MIPS instruction set simulator) and ensure that
the traces match. SPREE automatically generates test benches
for creating traces and also creates debug signals to ease the
debugging of pipelined processors.

B. FPGAs, CAD, and Soft Processors

While SPREE itself emits Verilog which is synthesizable
to any target FPGA architecture, we have selected Altera’s
Stratix [22] device for performing our FPGA-based explo-
ration. The library of processor components thus targets Stratix
I FPGAs. We use Quartus II v4.2 CAD software for synthesis,
technology mapping, placement and routing. We synthesize
all designs to a Stratix EP1S40F780C5 device (a middle-sized
device in the family, with the fastest speed grade) and extract
and compare area, clock frequency, and power measurements
as reported by Quartus.

We have taken the following measures to counteract varia-
tion caused by the non-determinism of CAD tool output: (i)
we have coded our designs structurally to avoid the creation
of inefficient logic from behavioral synthesis; (ii) we have
experimented with optimization settings and ensured that
our conclusions do not depend on them, and (iii) for the
area and clock frequency of each soft processor design we
determine the arithmetic mean across 10 seeds (different initial
placements before placement and routing) so that we are 95%
confident that our final reported value is within 2% of the true
mean.

The difference between ASIC and FPGA platforms is large
enough that we are motivated to revisit the microarchitectural
design space in an FPGA context. However, FPGA devices
differ among themselves: across device families and vendors
the resources and routing architecture on each FPGA vary
greatly. We have focused on a single FPGA device, the Altera
Stratix, to enable efficient synthesis through device-specific
optimizations. Our hypothesis, is that in spite of differences in
FPGA architecture, the conclusions drawn about soft processor
architecture will be transferable between many FPGA families.

4

In the future, we plan to investigate this across a range of
different FPGA families. For now, we have migrated from
Stratix I to Stratix II and observed that there is some noise in
the results, but most of the conclusions still hold.

C. Metrics for Measuring Soft Processors

To measure area, performance, and efficiency, we must
decide on an appropriate set of specific metrics. For an FPGA,
one typically measures area by counting the number of re-
sources used. In Stratix, the main resource is theLogic Element
(LE), where each LE is composed of a 4-inputlookup table
(LUT) and a flip flop. Other resources, such as the hardware
multiplier block, and memory blocks can be converted into an
equivalent number of LEs based on the relative areas of each
in silicon.1 Hence we report actual silicon area of the design
including routing in terms ofequivalent LEs.

To measure performance, we account for both the clock
frequency and instructions-per-cycle (IPC) behavior of the
architecture by measuring either wall-clock-time or instruction
throughput per second in MIPS (millions of instructions per
second). Reporting either clock frequency or IPC alone can
be misleading and in this work we have the unique ability
to capture both accurately. To be precise, we multiply the
clock period (determined by the Quartus timing analyzer
after routing) with the number of cycles spent executing the
benchmark to attain the wall-clock-time execution for each
benchmark. Dividing the total number of instructions by the
wall-clock-time gives instruction throughput.

We measure the efficiency by computing the performance
gained in instruction throughput per unit area in LEs, thus it
is measured in units of MIPS/LE. This metric is analogous
to the inverse of area-delay product, an often used but de-
batable metric for simultaneously capturing area and speed.
The best processor for a specific application depends on that
application’s weighting of area and speed (as an extreme, some
application’s might care only about one and not the other), this
metric assumes a balanced emphasis on both area and speed.

D. Benchmark Applications

We measure the performance of our soft processors using
20 embedded benchmark applications from four sources (as
summarized in Table I). Some applications operate solely on
integers, and others on floating point values (although for
now we use only software floating point emulation); some are
compute intensive, while others are control intensive. Table I
also indicates any changes we have made to the application
to support measurement, including reducing the size of the
input data set to fit in on-chip memory (d), and decreasing
the number of iterations executed in the main loop to reduce
simulation times (i). Additionally, all file and other I/O were
removed since we do not yet support an operating system.

1The relative area of these blocks was provided by Altera [23] and are
proprietary.

TABLE I

BENCHMARK APPLICATIONS EVALUATED.

Dyn. Instr.
Source Benchmark Modified Counts

MiBench [24] BITCNTS di 26,175
CRC32 d 109,414
QSORT* d 42,754

SHA d 34,394
STRINGSEARCH d 88,937

FFT* di 242,339
DIJKSTRA* d 214,408
PATRICIA di 84,028

XiRisc [25] BUBBLE SORT 1,824
CRC 14,353
DES 1,516
FFT* 1,901
FIR* 822

QUANT* 2,342
IQUANT* 1,896
TURBO 195,914

VLC 17,860
Freescale [26] DHRY* i 47,564
RATES [27] GOL di 129,750

DCT* di 269,953
* Contains multiply
d Reduced data input set
i Reduced number of iterations

IV. COMPARISON WITH NIOS II VARIATIONS

To ensure that our generated designs are indeed interest-
ing and do not suffer from prohibitive overheads, we have
selected Altera’s Nios II version 1.0 family of processors
for comparison. Nios II has three mostly-unparameterized
variations:Nios II/e, a small unpipelined 6-CPI processor
with serial shifter and software multiplication;Nios II/s, a
5-stage pipeline with multiplier-based barrel shifter, hardware
multiplication, and instruction cache; andNios II/f, a
large 6-stage pipeline with dynamic branch prediction, and
instruction and data caches.

We have taken several measures to ensure that comparison
against the Nios II variations is as fair as possible. We have
generated each of the Nios processors with memory systems
identical to those of our designs: two 64KB blocks of RAM
are used for separate instruction and data memories. We do not
include cache area in our measurements, though some logic
required to support the caches will inevitably count towards
the Nios II areas. The Nios II instruction set is very similar
to the MIPS-I ISA with some minor modifications in favor
of Nios (for example, the Nios ISA has no tricky branch
delay slots)—hence Nios II and our generated processors are
very similar in terms of ISA. Nios II supports exceptions and
OS instructions, which are so far ignored by SPREE meaning
SPREE processors save on the hardware costs in implementing
these. Finally, like Nios II, we also usegcc as our compiler,
though we did not modify any machine specific parameters nor
alter the instruction scheduling. Despite these differences, we
believe that comparisons between Nios II and our generated
processors are relatively fair, and that we can be confident that
our architectural conclusions are sound.

For this experiment we generated all three Nios II variations

5

300

500

700

900

1100

1300

1500

1700

1900

500 700 900 1100 1300 1500 1700 1900

Area (Equivalent LEs)

G
eo

m
ea

n
 W

al
l C

lo
ck

 T
im

e
(u

s)
SPREE Processors
Altera Nios II/e
Altera Nios II/s
Altera Nios II/f

Fig. 2. Comparison of our generated designs vs the three Altera Nios II
variations.

in the manner outlined above and we also generated several
different SPREE processors that varied in their pipelines and
functional units. All of these processors are benchmarked
using the same applications from our benchmark set and
synthesized to the same device. Their area and performance
is measured using the measurement methodology outlined in
the previous section.

Figure 2 illustrates our comparison of SPREE generated
processors to the commercial Altera Nios II variations in the
performance-area space. SPREE’s generated processors span
the design space between Nios II variations, while allowing
more fine-grained microarchitectural customization. The figure
also shows that SPREE processors remain competitive with the
commercial Nios II. In fact, one of our generated processors
is both smaller and faster than theNios II/s—hence we
examine that processor in greater detail.

The processor of interest is an 80MHz 3-stage pipelined
processor, which is 9% smaller and 11% faster in wall-clock-
time than theNios II/s, suggesting that the extra area
used to deepenNios II/s’s pipeline succeeded in increas-
ing the frequency, but increased overall wall-clock-time. The
generated processor has full inter-stage forwarding support
and hence no data hazards, and suffers no branching penalty
because of the branch delay slot instruction in MIPS. The CPI
of this processor is 1.36 whereas the CPIs ofNios II/s
andNios II/f are 2.36 and 1.97 respectively. However, this
large gap in CPI is countered by a large gap in clock frequency:
Nios II/s andNios II/f achieve clock speeds of 120
MHz and 135 MHz respectively, while the generated processor
has a clock of only 80MHz. These results demonstrate the
importance of evaluating wall-clock-time over clock frequency
or CPI alone, and that faster frequency is not always better.

V. EXPLORING SOFT PROCESSORARCHITECTURE

In this section, we employ the SPREE soft processor gen-
eration system to explore the architectural terrain of soft pro-
cessors when implemented and executed on FPGA hardware.
The goal here is to seek and understand tradeoffs that may
be employed to tune a processor to its application. We vary
a number of core architectural parameters and measure their

effects on the processor. Additionally we attempt to attribute
non-intuitive exploratory results to fundamental differences
of an FPGA versus an ASIC: (i) Multiplexing is costly—
their high number of inputs and low computational density
means they generally map poorly to LUTs; (ii) Multiplication
is efficient—FPGA vendors now include dedicated multiplier
circuitry meaning performing multiplication can be done com-
paratively more efficient than in an ASIC (relative to other
logic on the same fabric); (iii) Storage is cheap—with every
lookup table containing a flip-flop and dedicated memory
blocks scattered throughout the device, storage space is abun-
dant in modern FPGAs; (iv) Memories are fast—the dedicated
memories on the device can be clocked as fast as a simple
binary counter [28] (v) More coarse-grained progression of
logic levels—in an FPGA a lookup table is considered a single
level of logic but in fact can encompass several levels of logic
worth of ASIC gates, however a steep inter-cluster routing
penalty is paid for connecting multiple LUTs.

A. Functional Units

The largest integer functional units in a soft processor are
the shifter, the multiplier, and the divider. The divider is
excluded from any study as it is too large (measured up to 1500
LEs compared to 1000 LEs for the rest of the processor), and it
seldomly appears in the instruction streams of our benchmarks
(only four benchmarks contain divides but in each case they
make up less then half a percent of the instruction stream).
Thus we eliminate the divider unit and support division using
a software subroutine. We hence focus on only the shifter and
the multiplier.

1) Shifter Implementation: The shifter unit can be imple-
mented in one of four ways: in a shift register which requires
one clock cycle for every bit shifted, in LUTs as a tree
of multiplexers, in the dedicated multipliers as a separate
functional unit, or in the dedicated multipliers as a shared
multiplier/shifter unit as used by Metzgen [29]. We implement
each of these in four different pipelines and contrast the
different processors with respect to their area, performance,
and energy on our set of benchmarks.

With respect to area, the processors with shared multiplier-
based shifter are 186 equivalent LEs smaller than the LUT-
based and 147 equivalent LEs smaller than the unshared
multiplier based shifter. The performance of the three were
very similar (save for minor variations in clock frequency).
This leads us to conclude that because of the large area savings
and matched performance, this implementation is generally
favorable over both the LUT-based shifter and the unshared
multiplier-based shifter.

Figure 3 shows the performance of all benchmarks on a
3-stage pipeline with either the serial shifter or multiplier-
based shifter. The processor with serial shifting is smaller
by 64 LEs, but it also pays a heavy performance penalty
when the shifter is used frequently. For example, theCRC,
TURBO, and VLC benchmarks are slowed by 3-4x. Hence
this application-specific trade-off is worthy of exploring as a
potential customization.

6

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

bu
bb

le
_s

or
t

cr
c

de
s fft fir

qu
an

t

iq
ua

nt

tu
rb

o

vl
c

bi
tc

nt
s

C
R

C
32

qs
or

t

sh
a

st
rin

gs
ea

rc
h

F
F

T

di
jk

st
ra

pa
tr

ic
ia go

l

dc
t

dh
ry

Benchmarks

P
er

fo
rm

an
ce

 (
M

IP
S

)

Serial Shifter
Multiplier-Based Shifter

Fig. 3. Performance of a 3-stage pipelined processor with two different
shifter implementations.

2) Multiplication Support: Whether multiplication is sup-
ported in hardware or software can greatly affect the area,
performance, and power of a soft processor. There may be
many variations of multiplication support which trade area
for cycle time; we consider only full multiplication support
using the dedicated multipliers in the FPGA. We make this
simplification because we found that the hard multipliers on
FPGAs are so area efficient that alternative implementations
made of LUTs and flip-flops (whether Booth, array, etc.) are
consistently less efficient.

The area of the hardware multiplier is generally 230 equiv-
alent LEs; however only 160 of those are attributed to the
actual multiplier. The remaining 70 LEs compose the glue
logic required to hook the functional unit into the datapath
including the MIPSHI/LO registers—the creators of the
MIPS ISA separated the multiplier from the normal datapath
by having it write its result to dedicated registers (HI and
LO) instead of to the register file. This decision was later
criticized [30], and we also find it to be a problem for FPGA
designs: since multiplication can be performed quickly in
FPGAs (only one or sometimes two cycles longer than an
adder), it doesn’t require special hardware to help overcome
its cycle latency. Rather, the special registers and multiplexing
prove to be wasted hardware, especially in the case of a shared
multiplier/shifter since the shift result must be written to the
register file anyway (hence the path from the multiply unit to
the register file exists in spite of the attempts by the ISA to
prevent it). We therefore agree with the approach taken in the
Nios II ISA where separate multiply instructions compute the
upper and lower words of the product.

Figure 4 indicates that the performance of a processor
that supports multiplication in hardware can vastly exceed
one with only software multiplication support. Half of our
twenty benchmarks do not contain multiplication, but for the
other half the results vary from suffering 8x more instructions
executed as forIQUANT to an insignificant 1.8% increase
for DIJKSTRA. Depending on the frequency of multiply in-
structions in the application, if any exist at all, a designer
may look more favorably on the reduced area of a software
implementation. We therefore deem multiplication support to

0%

100%

200%

300%

400%

500%

600%

700%

800%

di
jk

st
ra

qs
or

t

dh
ry fir

F
F

T

dc
t

qu
an

t fft

iq
ua

nt

Benchmark

P
er

ce
n

t
In

cr
ea

se
 in

 E
xe

cu
te

d
 In

st
ru

ct
io

n
s

Fig. 4. The increase in total executed instructions when using a software
multiplication subroutine instead of a single-instruction multipliy in hardware.

WBEX/M
F/D/R

(a) 2-Stage

F/D WBR/EX
/M

(b) 3-Stage

WBF EX
/MD

(c) 4-Stage

EX WBF D EX
/M

(d) 5-Stage

DF EX EX
/M WB2WB1

EX/R

(e) 7-Stage

EX
M
WB

− Execute
− Memory
− Writeback

F
D

LEGEND

Forwarding
Possible

Path

− Fetch
− Decode

R − Register

Fig. 5. Processor pipeline organizations studied. Arrows indicate possible
forwarding lines.

be an important potential customization axis.
Our study of functional units has identified and quantified

the hardware trade-offs in implementing different shifter and
multiplication support, which will both later be used to tune
a processor to its application. In addition, we have pointed
out the inappropriateness of MIPS to force separation of
multiplies from the normal datapath through the use of the
HI/LO registers: for FPGA-based designs where the multiplier
is not dramatically slower than any other functional unit this
“special case” handling of multiplication is unnecessary.

B. Pipelining

We now use SPREE to study the impact of pipelining in soft
processor architectures by generating processors with pipeline
depths between two and seven stages, the organizations of
which are shown in Figure 5. A 1-stage pipeline (or purely
unpipelined processor) is not considered since it provides no
benefit over the 2-stage pipeline: the writeback stage can be
pipelined with the rest of the execution of that instruction for
free, increasing the throughput of the system and increasing
the size of the control logic by an insignificant amount. This

7

0

200

400

600

800

1000

1200

1400

1600

2-stage 3-stage 4-stage 5-stage 7-stage

A
re

a
(E

q
u

iv
al

en
t

L
E

s)

Fig. 6. Area across different pipeline depths.

free pipelining arises from the fact that both the instruction
memory and register file are implemented in synchronous
RAMs which require registered inputs. Note that we similarly
do not consider a 6-stage pipeline since the 5-stage pipeline
has competing critical paths in the writeback stage and decode
stage which require both stages to be split to achieve a sig-
nificant clock frequency gain. For every pipeline, data hazards
are prevented through interlocking, branches are statically
predicted to be not-taken, and mis-speculated instructions are
squashed.

1) Pipeline Depth: Figure 6 shows (as expected) that area
increases with the number of pipeline stages due to the
addition of pipeline registers and data hazard detection logic.
However, we notice that the increase in area is mostly in
combinational logic and not registers: even the 7-stage pipeline
has only a dozen LEs occupied with only a register, while
601 LEs are occupied without a register. Register-packing
algorithms can typically combine these, but likely did not for
performance reasons. As such, there is plenty space for the
design to absorb flip flops invisibly, since we expect register
packing to place these in the 601 LEs occupied without a
register; but inserting these registers into the design breaks up
logic into smaller pieces which are less likely to be optimized
into LUTs. This causes combinational logic to be mapped into
more LUTs which increases area, along with the necessary
data hazard detection and stalling/squashing logic which also
contribute to the increased area.

Figure 7 shows the performance impact of varying pipeline
depth for four applications which are representative of several
trends that we observed. The performance is measured in
instruction throughput which accounts for both the frequency
of the processor and its cycles-per-instruction behavior. The
figure does not show the 2-stage pipeline as it performs poorly
compared to the rest: the synchronous RAMs in Stratix must
be read from in a single stage of the pipeline for this design,
hence it suffers a stall cycle to accommodate the registered
inputs of the RAM. The 7-stage pipeline also has a disadvan-
tage: branch delay slot instructions are much more difficult to
support in such a deep pipeline, increasing the complexity of
the control logic for this design. In contrast, the trends for the

0

10

20

30

40

50

60

70

3-stage 4-stage 5-stage 7-stage

Pipeline Depth

P
er

fo
rm

an
ce

 (
M

IP
S

)

des
sha
stringsearch
dhry

Fig. 7. Performance impact of varying pipeline depth for select benchmarks.

3, 4, and 5-stage pipelines vary widely by application. DES

experiences up to 17% improved performance as the pipeline
depth increases from 3 to 5 stages, while forSTRINGSEARCH

performance degrades by 18%. SHA maintains consistent
performance across the pipelines, which is a typical trend for
many applications. ForDHRY, performance decreases by only
2% and then increases by 11%. Pipeline depth is therefore
another application-specific trade-off, due to the fact that some
applications suffer more than others from branch penalties, and
data hazards of varying distances.

For most individual benchmarks, and when considering the
average across all benchmarks, the pipelines perform the same
for the three, four, and five stage pipelines, while the 7-stage
pipeline performs slightly worse for the reasons mentioned
above. As such we are inclined to conclude that the 3-stage
pipeline is most efficient since it performs equally well while
using less area. We suspect that this is caused partly by the
coarse-grained positioning of flip flops and the large logic
capacity of a LUT which is under-utilized when there is little
logic between registers. However there is another factor to
consider: there are many architectural features which SPREE
does not currently support that could be added to favor the
deeper pipelines, for example better branch prediction and
more aggressive forwarding. Nonetheless, this sentiment that
shorter pipelines are better is echoed by Xilinx’s Microb-
laze [2] which also has only 3-stages, and also Tensilica’s
Diamond 570T [7] processor which has only 5-stages (but is
designed for an ASIC process).

2) Pipeline Organization: Trade-offs exist not only in the
number of pipeline stages, but also in the placement of these
stages. While deciding the stage boundaries for our 3-stage
pipeline was obvious and intuitive, deciding how to add a
fourth pipeline stage was not. One can add a decode stage as
shown in Figure 5(c), or further divide the execution stage. We
implemented both pipelines for all three shifters and observed
that although the pipeline in Figure 5(c) is larger by 5%, its
performance is 16% better. Hence there is an area-performance
trade-off, proving that such trade-offs exist not only in pipeline
depth, but also in pipeline organization.

8

0

10

20

30

40

50

60

70

bu
bb

le
_s

or
t

cr
c

de
s fft fir

qu
an

t

iq
ua

nt

tu
rb

o

vl
c

bi
tc

nt
s

C
R

C
32

qs
or

t

sh
a

st
rin

gs
ea

rc
h

F
F

T

di
jk

st
ra

pa
tr

ic
ia go
l

dc
t

dh
ry

O
V

E
R

A
LL

Benchmark

P
er

fo
rm

an
ce

 (
M

IP
S

)

2-cycle shifter
3-cycle shifter

Fig. 8. The performance trade-off in implementing unpipelined multi-cycle
paths on a processor across the benchmark set.

3) Forwarding: We also examined the effect of implement-
ing the forwarding paths shown in figure 5 either for both
MIPS source operands, one of them, or none at all. Although
not shown, we found that the variance in trends between
applications for different forwarding paths is insignificant. We
found that forwarding can provide area/performance trade-
offs in general, but none that differ significantly on a per-
application basis. Typically forwarding is a “win” for all
applications sometimes providing 20% faster processors at
the expense of approximately 100 LEs. While this result
matches what is expected in ASIC-implemented processors,
we project that for deeper pipelines that more aggressive
forwarding would result in more costly multiplexing, leading
to unique FPGA-specific trade-offs that differ from those of
ASIC processors.

C. Unpipelined Multi-Cycle Paths

Adding pipeline registers increases frequency but can also
increase total CPI, as data hazards and branch penalties result
in additional pipeline stalls. Alternatively, registers can be used
in a more direct way for trading clock frequency and CPI:
registers can be insertedwithin a bottleneck pipeline stage
that occasionally prevents that stage from completing in a
single cycle, but that also allows the stage (and hence the
entire pipeline) to run at a higher clock frequency. Moreover,
with flip flops readily available in every LE and embedded
in the block RAMs and multipliers, this register insertion can
come with only small area increases.

As a concrete example, we consider the 5-stage pipeline
with 2-cycle multiplier-based barrel shifter. This processor
has a critical path through the shifter which limits the clock
speed to 82.0 MHz while achieving 1.80 average CPI across
the benchmark set. We can create another unpipelined multi-
cycle path by making the multiplier-based shifter a 3-cycle
unpipelined execution unit which results in a clock frequency
of 90.2 MHz and 1.92 average CPI. The 10% clock frequency
improvement is countered by an average CPI increase of 6.7%.
Figure 8 shows the instruction throughput in MIPS of both
processors for each benchmark and indicates that benchmarks

can favor either implementation. For example,BUBBLE SORT

achieves 10% increased performance when using the 3-cycle
multiplier-based shifter whileCRC achieves 6% increased
performance with the 2-cycle implementation. With respect
to area, the two processors differ in area by only a single
LE. Hence we can use unpipelined multi-cycle paths to make
application-specific trade-offs between clock frequency and
CPI. Note that this technique is not limited to the execution
stage, and can be applied anywhere in the processor pipeline.
In the set of explored processors this technique was explored in
large execution units (either the shifter or multiplier) whenever
these units lay in the critical path.

VI. T HE IMPACT OF CUSTOMIZING SOFT PROCESSORS

In this section we use the SPREE system to measure the
impact of customizing soft processors to meet the needs
of individual applications. We demonstrate the impact of
three techniques: (i) tuning the microarchitecture for a given
application by selecting architectural features which favor
that application but do no alter the ISA; (ii) subsetting the
ISA to eliminate hardware not used by the application (for
example if there is no multiplication we can eliminate the
multiplier functional unit); and (iii) the combination of these
two techniques.

A. Application-Tuned vs General Purpose

We have demonstrated that many microarchitectural axes
provide application-specific trade-offs that can be tuned in
soft processors to better meet application requirements. In
this section we use SPREE to implement all combinations of
these architectural axes—3 shifter implementations, 5 pipeline
depths, HW/SW multiplying, 4 forwarding configurations, 2-
3 separately adjusted functional unit latencies, as well as
miscellaneous pipeline organizations. We exhaustively search
for the best processor for each application in our benchmark
set. Specifically, we described each processor, generated it
using SPREE, synthesized and placed-and-routed it using
our CAD flow, and finally computed and compared the
performance-per-area for each benchmark and processor pair.
Performance-per-area is used as our metric since many of our
architectural axes trade area and performance (for example,
the benefit of using a serial shifter or software multiply is
in reducing area at the expense of performance). We call the
best processor theapplication-tuned processor, which ideally
is the processor a designer (or intelligent software) would
choose given the application and this set of processors. We
also determine the processor that performed best on average
over the complete benchmark set—this we refer to as the
general-purpose processor. We then analyze the difference
in efficiency between the general purpose processor and the
application-tuned processors and hence evaluate the potential
for making application-specific trade-offs in soft processor
microarchitecture.

Figure 9 shows the measured efficiency in MIPS/LE in
four bars: (i) the best-on-average (general-purpose) processor
of those we generated using SPREE—this processor (the 3-
stage pipeline with multiplier-based shifter) was found to

9

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

bu
bb

le
_s

or
t

cr
c

de
s fft fir

qu
an

t

iq
ua

nt

tu
rb

o

vl
c

bi
tc

nt
s

C
R

C
32

qs
or

t

sh
a

st
rin

gs
ea

rc
h

F
F

T

di
jk

st
ra

pa
tr

ic
ia go

l

dc
t

dh
ry

O
V

E
R

A
LL

Benchmark

P
er

fo
rm

an
ce

 p
er

 U
n

it
 A

re
a

(M
IP

S
/L

E
) SPREE General Purpose

SPREE Application-tuned

Nios II General Purpose

Nios II Application-tuned

``

Fig. 9. Performance-per-area for each benchmark for SPREE (i) best-on-
average (general-purpose) processor and (ii) best per benchmark (application-
tuned) processor as well as for Nios II (iii) general purpose and (iv) application
tuned.

provide the best geometric mean performance-per-area across
the entire benchmark set; (ii) the best per benchmark SPREE
processor; (iii) the best-on-average of the Nios II variations—
experiment showed it was theNios II/s; and (iv) the best
per benchmark of the Nios II variations from eitherNios
II/s, Nios II/e, or Nios II/f.

Focussing only on the SPREE processors in the first two
bars, we noticed only 6 of the 20 benchmarks achieve their
highest performance-per-area using the best overall proces-
sor; instead, the best processor for each benchmark varies
and offers significantly better efficiency. By choosing an
application-tuned processor, average performance-per-area is
improved by 14.1% over the best overall processor across the
entire benchmark set; furthermore,STRINGSEARCH, QSORT,
CRC32, andBUBBLE SORT improve performance-per-area
by approximately 30%. The results indicate that these ISA-
independent modifications made in the processor core can be
substantial and are certainly worth pursuing in a system-on-
programmable-chip platform where general purpose efficiency
is not a key design consideration and the reconfiguration of
the processor is free. In future work, we expect this benefit
to increase significantly when supporting more advanced ar-
chitectural axes such as datapath widths, branch predictors,
aggressive forwarding, caches, and VLIWs.

The best per-benchmark processors had many predictable
trends. Benchmarks without significant shifting benefited from
a smaller serial shifter, benchmarks with little or no multi-
plying utilized software multiplication instead of a multiplier
functional unit. Full forwarding on both operands was always
present except for three benchmarks which chose no forward-
ing. In terms of pipeline stages, all benchmarks used 3-stage
pipelines except for three (a different triplet than those with no
forwarding) which used 5-stage pipelines likely due to reduced
stress on the pipeline allowing those benchmarks to enjoy
the higher frequencies. In the future we hope to select the
appropriate architecture from analysis of the application.

We now compare our results with theNios II processor
variations shown in the latter two bars. For most of the

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

bu
bb

le
_s

or
t

cr
c

de
s fft fir

qu
an

t

iq
ua

nt

tu
rb

o

vl
c

bi
tc

nt
s

C
R

C
32

qs
or

t

sh
a

st
rin

gs
ea

rc
h

F
F

T

di
jk

st
ra

pa
tr

ic
ia go

l

dc
t

dh
ry

A
V

E
R

A
G

E

P
er

ce
n

t
o

f
IS

A
 U

se
d

Fig. 10. Instruction set utilization across benchmark set.

benchmarks, the application-tuned SPREE processors yields
significantly better performance-per-area than any of either the
general-purpose SPREE processor or the commercial Nios II
variants. On average across all benchmarks, the application-
tuned processors generated by SPREE are the most efficient,
yielding 16% better results than Nios II because of the more
fine-grained customization space afforded by SPREE—the
Nios II actually spans a larger design space than SPREE with
the Nios II/e being smaller and the Nios II/f being faster than
any current SPREE processor. This leads us to suggest that
many fine grain micro-architectural customizations can yield
better efficiencies than a few separate hand-optimized cores
targeting specific design space points.

B. ISA Subsetting

So far we have investigated microarchitectural customiza-
tions that favor an individual application but still fully support
the original ISA. In this section, we propose to capitalize
on situations where: (i) only one application will run on the
soft processor; (ii) there exists a reconfigurable environment
allowing the hardware to be rapidly reconfigured to support
different applications or different phases of an application.
We customize the soft processor by having it support only the
fraction of the ISA which is actually used by the application.
SPREE performs thisISA subsetting by parsing the applica-
tion binary to decide the subsetted ISA, removing unused
connections and components from the input datapath, and
then generating simpler control. Figure 10 shows the fraction
of the 50 MIPS-I instructions supported by SPREE that are
used by each benchmark, which is rarely more than 50%.
BUBBLE SORT, FIR, and CRC32 useonly about one quarter
of the ISA. With such sparse use of the ISA, we are motivated
to investigate the effect of eliminating the architectural support
for unused instructions.

To evaluate the impact of ISA subsetting, for each of the
20 benchmarks we subsetted three processor architectures: (i)
A 2-stage pipeline with LUT-based barrel shifting; (ii) The
3-stage pipeline with multiplier-based barrel shifting; (iii) a
5-stage pipeline with LUT-based barrel shifting. Note that the
processors with LUT-based shifting are somewhat contrived
since having the separate large LUT-shifter will emphasize

10

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

bu
bb

le
_s

or
t

cr
c

de
s fft fir

qu
an

t

iq
ua

nt

tu
rb

o

vl
c

bi
tc

nt
s

C
R

C
32

qs
or

t

sh
a

st
rin

gs
ea

rc
h

F
F

T
_M

I

di
jk

st
ra

pa
tr

ic
ia go

l

dc
t

dh
ry

A
V

E
R

A
G

E

Benchmark

F
ra

ct
io

n
 o

f
A

re
a

2-stage pipe, LUT-based barrel shift

3-stage pipe, multiplier-based barrel shift

5-stage pipe, LUT-based barrel shift

Fig. 11. The impact on area of ISA subsetting on three architectures.

the effects of subsetting; however such a situation may arise in
low-end devices which do not contain dedicated multipliers.
All three processors utilize hardware multiplication support.
Since the cycle-by-cycle execution of each benchmark is
unaffected by this experiment, we use clock frequency to
measure performance gain.

The relative area of each subsetted processor with respect to
its non-subsetted version is shown in Figure 11. In general on
our best processor, the 3-stage with multiplier-based shifting,
we can expect 12.5% area reductions. The three benchmarks
which use only 25% of the ISA (BUBBLE SORT, FIR, and
CRC32) obtain the most significant area savings. For the
contrived 2-stage architecture, these 3 benchmarks obtain a
60% area savings, while most other benchmarks save 10-
25% area. Closer inspection of these three benchmarks reveal
that they are the only benchmarks which do not contain shift
operations—shifters are large functional units in FPGAs, and
their removal leads to a large area savings. However the MIPS
ISA obstructs such a removal because there is no explicit
nop instruction, insteadnops are encoded as a shift-left-
by-zero. Therefore to remove the shifter, one must include
special hardware to handle thesenop instructions, or else re-
encode thenop. In this work nops are re-encoded asadd
zero (similar to Nios II) to allow for complete removal of the
shifter, since all benchmarks useadds. The savings are more
pronounced in the 2 and 5-stage pipeline where the shifter is
LUT-based and hence larger.

Figure 12 shows the clock frequency improvement for the
subsetted architectures. In general we see modest speedups
of 7% and 4% on average for the 2 and 5-stage pipelines,
respectively. The 3-stage pipeline is not improved at all, as
its critical path is in the data hazard detection logic and
hence cannot be removed. More positively, the modest clock
frequency speedups indicate that our pipelines have well-
balanced logic delays: when logic is removed from a given
path there is often another path to maintain the previous
critical path length, hence the odds of a given subsetting
reducing all paths is relatively small. However, there is notable
performance improvement in the 2-stage pipeline for the three
benchmarks without shifts,BUBBLE SORT, FIR, and CRC32.

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

bu
bb

le
_s

or
t

cr
c

de
s fft fir

qu
an

t

iq
ua

nt

tu
rb

o

vl
c

bi
tc

nt
s

C
R

C
32

qs
or

t

sh
a

st
rin

gs
ea

rc
h

F
F

T
_M

I

di
jk

st
ra

pa
tr

ic
ia go

l

dc
t

dh
ry

A
V

E
R

A
G

E

Benchmark

C
lo

ck
 F

re
q

u
en

cy
 S

p
ee

d
u

p

2-stage pipe, LUT-based barrel shift

3-stage pipe, multiplier-based barrel shift

5-stage pipe, LUT-based barrel shift

Fig. 12. The impact on clock speed of ISA subsetting on three architectures.

-10%

0%

10%

20%

30%

40%

50%

60%

70%

80%

bu
bb

le
_s

or
t

cr
c

de
s fft fir

qu
an

t

iq
ua

nt

tu
rb

o

vl
c

bi
tc

nt
s

C
R

C
32

qs
or

t

sh
a

st
rin

gs
ea

rc
h

F
F

T

di
jk

st
ra

pa
tr

ic
ia go
l

dc
t

dh
ry

Benchmarks

L
o

g
ic

 E
n

er
g

y
R

ed
u

ct
io

n

Fig. 13. Energy reduction of subsetting on 3-stage pipeline.

This is because the LUT-based shifter lay in the critical path
of the pipeline and caused poor balancing of logic delay.
Removing the shifter allows for a roughly 20% improvement
in clock frequency for these benchmarks.

Figure 13 shows the reduction in energy resulting from
ISA subsetting. Note that energy dissipated by the memory
is ignored since it accounts for 80-90% of the energy, and
it can never be removed by subsetting since all applications
fetch and write to memory. The figure demonstrates that
the removal of high-toggle rate components and simplified
control result in significant energy savings in the processor
pipeline. The subsetted processors of some benchmarks such
as FFT, BITCNTS, and CRC32 provide greater than 65%
energy savings. On average across all the subsetted processors,
approximately 27% of the non-memory energy can be saved. A
miniscule increase in energy was seen for theDCT benchmark
which we attribute to noise in the CAD system, total system
energy decreased very slightly but the fraction attributed to
logic increased unexpectedly.

C. Combining Customization Techniques

We have presented two methods for creating application-
specific soft processors: (i) architectural tuning, which alters
soft processor architecture to favor a specific benchmark;

11

0

10

20

30

40

50

60

70

80

bu
bb

le
_s

or
t

cr
c

de
s fft fir

qu
an

t

iq
ua

nt

tu
rb

o

vl
c

bi
tc

nt
s

C
R

C
32

qs
or

t

sh
a

st
rin

gs
ea

rc
h

F
F

T
_M

I

di
jk

st
ra

pa
tr

ic
ia go
l

dc
t

dh
ry

A
V

E
R

A
G

E

Benchmark

P
er

fo
rm

an
ce

 p
er

 A
re

a
(M

IP
S

/1
00

0L
E

s)

General purpose

Application-tuned

Subsetted general purpose

Subsetted application-tuned

Fig. 14. Performance-per-area of tuning, subsetting, and their combination.

and (ii) ISA subsetting, which removes architectural support
that is not utilized by the benchmark. In this section we
compare the effectiveness of the two techniques in terms
of performance-per-area both individually and combined. We
define the best general-purpose processor as the single pro-
cessor which achieves the greatest performance-per-area on
average across all benchmarks, and the best application-tuned
processors as the set of processors which achieve the best
performance-per-area for each benchmark. For each proces-
sor and benchmark we then perform ISA subsetting, and
measure the performance-per-area of the four combinations:
general-purpose, application-tuned, subsetted general-purpose,
and subsetted application-tuned.

Figure 14 shows the performance-per-area for all four
combinations. As shown previously, the application-tuned pro-
cessor is consistently better than the general-purpose pro-
cessor. ISA subsetting is more effective on the general-
purpose processor than on the application-tuned processors:
the performance-per-area is improved by 16.2% on average
for the general-purpose processor while by only 8.6% for
the application-tuned processor. This is intuitive since the
hardware which was eliminated during subsetting was likely
reduced in size during the tuning of the application-tuned
processor. For example,FIR uses no shifting, therefore a
small serial shifter is chosen during tuning and later removed
in subsetting, resulting in a less dramatic area reduction.
There is a large variation when deciding between these two
methods: some benchmarks such asFIR achieve up to 25%
increased performance-per-area by using the application-tuned
processor over the subsetted general-purpose processor, while
others such asQSORT achieve a 25% increase by using the
subsetted general-purpose processor over the application-tuned
processor (i.e., they are opposite). These two methods are very
competitive as summarized in Figure 14 by theAVERAGE
bars, which show the subsetted general-purpose processor
with slightly higher performance-per-area than the application-
tuned (by only 2.2%).

The subsetted application-tuned processor combines all
customizations (both the microarchitectural tuning and the
ISA subsetting) and therefore often achieves the highest

performance-per-area. In some cases a single technique ac-
tually does better but closer inspection reveals that these are
typically a result of the inherent noise in CAD algorithms.
For example, forFIR subsetting the general purpose processor
achieves a frequency improvement of 5.5% while subsetting
the tuned architecture actually resulted in a frequency decrease
of 3.2% which when combined created a less efficient proces-
sor in spite of any area savings. The combination of the two
techniques is mostly complementary: on average, subsetted
application-tuned processors achieve more than 10% better
performance-per-area across the benchmark set than either
microarchitectural tuning or ISA subsetting alone. However,
for each benchmark, either technique on its own can come to
within 4% of the combined approach. Overall, the combined
approach can improve performance-per-area by 24.5% on
average across all benchmarks.

VII. C ONCLUSIONS

The reconfigurability of soft processors can be exploited
to meet design constraints by making application-specific
trade-offs in their microarchitecture, a method that requires
a complete understanding of soft processor microarchitectures
and how they perform/map on/to FPGA devices. In this article
we use the soft processor RTL implementations generated by
the SPREE infrastructure to study soft processors on both of
these fronts: (i) we explore the influence of this new FPGA
hardware platform on the trade-offs within soft processor mi-
croarchitecture; and (ii) we explore the impact of customizing
soft processors to their applications including through the use
of our ISA subsetting technique which removes all hardware
not required by the application.

Using our SPREE soft processor generator, we explored
tuning the microarchitecture by selecting the best processor
from a large number of processor variants for a specific
application. We determined that the best of these application-
specific processors offers considerable advantages over the
best-on-average general-purpose processor: an improvement in
performance-per-area of 14.1% on average across all bench-
marks. This significant efficiency improvement will likely
increase as we consider additional architectural axes in future
work. Also, we saw that the wide range of processors provided
by SPREE were more efficiently mapped to applications than
the three Nios II variants which span a larger design space.

Finally we used the SPREE infrastructure to perform ISA
subsetting, where for each application the hardware support for
unused features of the ISA are removed. With this technique
we obtain large reductions in the area and power of the
resulting processors—reductions of approximately 25% for
each metric on average and up to 60% for some applications.
Combining our techniques for microarchitectural tuning with
ISA subsetting results in an even more dramatic benefit where
performance-per-area is improved by 24.5% on average across
all applications.

In the future we will explore a more broad set of customiza-
tions including branch prediction, caches, datapath width,
VLIW datapath parallelism, and other more advanced archi-
tectural features. We also plan to investigate more aggressive

12

customization of these processors, including changing the
ISA to encourage customization. Finally, we are interested in
exploring the benefits of tuning the compiler based on exact
knowledge of the target architecture.

REFERENCES

[1] “Nios II,” http://www.altera.com/products/ip/processors/nios2, Altera.
[2] “MicroBlaze,” http://www.xilinx.com/microblaze, Xilinx.
[3] J. Turley, “Survey: Who uses custom chips,”Embedded Systems Pro-

gramming, August 2005.
[4] I. Kuon and J. Rose, “Measuring the Gap Between FPGAs and ASICs,”

in FPGA ’06: Proceedings of the 2006 international symposium on
Field-programmable gate arrays. ACM Press, 2006.

[5] P. Yiannacouras, J. Rose, and J. G. Steffan, “The Microarchitecture of
FPGA Based Soft Processors,” inCASES’05: International Conference
on Compilers, Architecture and Synthesis for Embedded Systems. ACM
Press, 2005, pp. 202–212.

[6] P. Yiannacouras, J. G. Steffan, and J. Rose, “Application-specific cus-
tomization of soft processor microarchitecture,” inFPGA’06: Proceed-
ings of the International Symposium on Field Programmable Gate
Arrays. New York, NY, USA: ACM Press, 2006, pp. 201–210.

[7] D. Goodwin and D. Petkov, “Automatic generation of application
specific processors,” inProceedings of the international conference on
Compilers, architectures and synthesis for embedded systems. ACM
Press, 2003, pp. 137–147.

[8] J. M. Arnold, “S5: the architecture and development flow of a software
configurable processor,” inFPL’05: Proceedings of the International
Conference on Field Programmable Technology. IEEE, December 2005,
pp. 121–128.

[9] J. R. Hauser and J. Wawrzynek, “Garp: A MIPS processor with
a reconfigurable coprocessor,” inIEEE Symposium on FPGAs for
Custom Computing Machines, K. L. Pocek and J. Arnold, Eds.
Los Alamitos, CA: IEEE Computer Society Press, 1997, pp. 12–21.
[Online]. Available: citeseer.ist.psu.edu/hauser97garp.html

[10] P. Biswas, S. Banerjee, N. Dutt, P. Ienne, and L. Pozzi, “Performance
and energy benefits of instruction set extensions in an fpga soft core,” in
VLSID ’06: Proceedings of the 19th International Conference on VLSI
Design held jointly with 5th International Conference on Embedded
Systems Design. Washington, DC, USA: IEEE Computer Society, 2006,
pp. 651–656.

[11] R. Lysecky and F. Vahid, “A study of the speedups and competitiveness
of fpga soft processor cores using dynamic hardware/software partition-
ing,” in DATE ’05: Proceedings of the conference on Design, Automation
and Test in Europe. Washington, DC, USA: IEEE Computer Society,
2005, pp. 18–23.

[12] R. Dimond, O. Mencer, and W. Luk, “ CUSTARD - A Customisable
Threaded FPGA Soft Processor and Tools ,” inInternational Conference
on Field Programmable Logic (FPL), August 2005.

[13] M. Itoh, S. Higaki, J. Sato, A. Shiomi, Y. Takeuchi, A. Kitajima,
and M. Imai, “PEAS-III: An ASIP Design Environment,” Austin, TX,
September 2000.

[14] P. Mishra, A. Kejariwal, and N. Dutt, “Synthesis-driven Exploration of
Pipelined Embedded Processors.” inVLSI Design, 2004, pp. 921–926.

[15] G. Braun, A. Nohl, W. Sheng, J. Ceng, M. Hohenauer, H. Scharwachter,
R. Leupers, and H. Meyr, “A novel approach for flexible and consistent
ADL-driven ASIP design,” inDAC ’04: Proceedings of the 41st annual
conference on Design automation. New York, NY, USA: ACM Press,
2004, pp. 717–722.

[16] K. K. e. Matthias Gries,Building ASIPs: The Mescal Methodology.
Springer, 2005. [Online]. Available: http://www.gigascale.org/pubs/603.
html

[17] G. Gibeling, A. Schultz, and K. Asanovic, “RAMP Architecture De-
scription Language,” inWorkshop on Architecture Research using FPGA
Platforms in the 12th International Symposium on High-Performance
Computer Architecture, 2006.

[18] J. Gray, “Designing a simple fpga-optimized risc cpu and
system-on-a-chip,” 2000. [Online]. Available: citeseer.ist.psu.edu/article/
gray00designing.html

[19] P. Yiannacouras, “The Microarchitecture of FPGA-Based Soft
Processors,” Master’s thesis, University of Toronto, 2005,
http://www.eecg.toronto.edu/∼jayar/pubs/theses
/Yiannacouras/PeterYiannacouras.pdf.

[20] ——, “SPREE,” http://www.eecg.utoronto.ca/∼yiannac/SPREE/.
[21] “MINT simulation software,” http://www.cs.rochester.edu/u/veenstra/,

University of Rochester.

[22] D. M. Lewis and et al., “The StratixTM routing and logic architecture.”
in International symposium on Field-programmable gate arrays, 2003,
pp. 12–20.

[23] R. Cliff, “Altera Corporation,” Private Comm, 2005.
[24] M. Guthaus and et al., “ MiBench: A free, comercially representative

embedded benchmark suite,” inIn Proc. IEEE 4th Annual Workshop on
Workload Characterisation, December 2001.

[25] A. Lodi, M. Toma, and F. Campi, “A pipelined configurable gate array
for embedded processors,” inFPGA ’03: Proceedings of the 2003
ACM/SIGDA eleventh international symposium on Field programmable
gate arrays. New York, NY, USA: ACM Press, 2003, pp. 21–30.

[26] “Dhrystone 2.1,” http://www.freescale.com, Freescale.
[27] “RATES - A Reconfigurable Architecture TEsting Suite,”

http://www.eecg.utoronto.ca/∼lesley/benchmarks/rates/, University
of Toronto.

[28] “Stratix Device Handbook,” http://www.altera.com/literature/lit-stx.jsp,
Altera.

[29] P. Metzgen, “Optimizing a High-Performance 32-bit Processor for
Programmable Logic,” inInternational Symposium on System-on-Chip,
2004.

[30] J. Mashey, “Internet Nuggets,”Computer Architecture News, vol. 32,
no. 4, September 2004.

Peter Yiannacouras Peter Yiannacouras is a PhD
candidate at the University of Toronto ECE de-
partment. He completed his MASc from the same
department and received his BASc from the Engi-
neering Science program at U of T. He has also
worked at Intel Microarchitecture Research Labs.
His research interests include processor architecture,
embedded processing, FPGA logic architecture, and
automatic customization.

J. Gregory Steffan J. Gregory Steffan is currently
an Assistant Professor of Computer Engineering at
the University of Toronto. He received his B.A.Sc.
and M.A.Sc. in Computer Engineering from the
University of Toronto in 1995 and 1997 respectively,
and his Ph.D. in Computer Science from Carnegie
Mellon University in 2003. He has also worked
in the architecture groups of MIPS and Compaq.
His research interests include computer architecture
and compilers, distributed and parallel systems, and
reconfigurable computing.

Jonathan RoseJonathan Rose is a Professor and
Chair of the Edward S. Rogers Sr. Department of
Electrical and Computer Engineering at the Univer-
sity of Toronto. He received the Ph.D. degree in
Electrical Engineering in 1986 from the University
of Toronto. From 1986 to 1989, he was a Post-
Doctoral Scholar and then Research Associate in the
Computer Systems Laboratory at Stanford Univer-
sity. In 1989, he joined the faculty of the University
of Toronto. He spent the 1995-1996 year as a Senior
Research Scientist at Xilinx. In October 1998, he

co-founded Right Track CAD Corporation, which delivered architecture for
FPGAs and Packing, Placement and Routing software for FPGAs to FPGA
device vendors. He was President and CEO of Right Track until May 1, 2000.
Right Track was purchased by Altera, and became part of the Altera Toronto
Technology Centre, where Rose was Senior Director until April 30, 2003. His
research covers all aspects of FPGAs including their architecture, Computer-
Aided Design (CAD), Field-Programmable Systems, Soft Processors, and
graphics, vision and bio-informatic applications of programmable hardware.

