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Abstract—Thread-level speculation (TLS) has proven to be a promising method of extracting parallelism from both integer and scientific

workloads, targeting speculative threads that range in size from hundreds to several thousand dynamic instructions and which have

minimal dependences between them. However, recent work has shown that TLS can offer compelling performance improvements when

targeting much larger speculative threads of more than 50,000 dynamic instructions per thread with many frequent data dependences

between them. To support such large and dependent speculative threads, the hardware must be able to buffer the additional speculative

state and must also address the more challenging problem of tolerating the resulting cross-thread data dependences. In this paper, we

present a chip-multiprocessor (CMP) support for large speculative threads that integrates several previous proposals for the TLS

hardware. We also present a support for subthreads: a mechanism for tolerating cross-thread data dependences by checkpointing

speculative execution. Through an evaluation that exploits the proposed hardware support in the database domain, we find that the

transaction response time for three of the five transactions from TPC-C (on a simulated four-processor chip-multiprocessor) speed up by

a factor of 1.9 to 2.9.

Index Terms—Multiprocessor systems, thread-level speculation, databases, cache coherence.
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1 INTRODUCTION

NOW that the microprocessor industry has shifted its
focus from simply increasing clock rate to increasing

the number of processor cores integrated onto a single chip,
an increasingly important research question is how to ease
the task of taking full advantage of these computational
resources. One potential answer is Thread-Level Speculation
(TLS) [1], [2], [3], [4], [5], which enables either a compiler [6],
[7] or the programmer [8], [9] to optimistically and
incrementally introduce parallelism into a program while
always maintaining functional correctness.

Although TLS has been the subject of many recent

research studies that have proposed a variety of different

ways to implement its hardware and software support [1],

[2], [3], [4], [5], a common theme in nearly all of the TLS

studies to date is that they have focused on benchmark

programs (for example, from the SPEC suite [10]), where the

TLS threads are of modest size, typically a few hundred to a

few thousand dynamic instructions per thread [6], [9], [11],

or on benchmarks with very infrequent data dependences

[12]. Despite these seemingly favorable conditions, TLS has

had limited success on SPEC applications, offering the

greatest benefits on scientific and CAD applications. In

addition, most of the mechanisms for supporting TLS that

have been proposed to date take an all-or-nothing approach

[1], [2], [3], [4], [5] in the sense that a given thread only

succeeds in improving overall performance if it suffers zero

interthread dependence violations. In the case of a single

violated dependence, the speculative thread is restarted at

the beginning. Although such an all-or-nothing approach

may make sense for the modest-sized and mostly indepen-

dent threads typically chosen from SPEC benchmarks, this

paper explores a far more challenging (and possibly more

realistic) scenario: how to effectively support TLS when the

thread sizes are much larger and where the complexity of

the threads causes interthread dependence violations to

occur far more frequently. With large threads and frequent

violations, the all-or-nothing approach will result in more

modest performance improvements at best.
In a recent paper [8], we demonstrated that TLS can be

successfully used to parallelize individual transactions in a

database system, improving transaction latency. This work

is important to database researchers for two reasons:

1) Some transactions are latency sensitive, such as financial

transactions in stock markets, and 2) reducing the latency of

transactions that hold heavily contended locks allows the

transactions to commit faster (and, hence, release their locks

faster). Releasing locks more quickly reduces lock conten-

tion, which improves transaction throughput [13]. In this

paper, we show that TLS support facilitates a nearly twofold

speedup on a simulated four-way chip multiprocessor (CMP)

for NEW ORDER, the transaction that accounts for almost

half of the TPC-C workload [14], as illustrated later in

Section 6.
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To achieve such an impressive speedup, we first needed
to overcome new challenges that did not arise for smaller
programs such as the SPEC benchmarks. In particular, after
breaking up the TPC-C transactions to exploit the most
promising sources of parallelism in the transaction code, the
resulting speculative threads were much larger than in
previous studies: The majority of the TPC-C transactions
that we studied had more than 50,000 dynamic instructions
per thread. Furthermore, there were far more interthread
data dependences than in previous TLS studies. These
dependences are due to internal database structures (that is,
not the SQL code). As a result, we observed no speedup
when we ran them on an existing all-or-nothing TLS
architecture.

1.1 Supporting Large and Dependent
Speculative Threads

For the TLS execution to speed up our speculatively
parallelized database transactions, we have to overcome
three major challenges. First, the baseline TLS hardware
needs to be able to buffer all of the state generated by large
speculative threads, as well as aggressively forward values
between speculative threads to reduce dependence viola-
tions. Second, to enable incremental parallelization, the
programmer needs to be able to identify data dependence
bottlenecks and eliminate them through a combination of
data dependence profiling feedback and the ability to
temporarily escape speculation. In this paper, we present a
unified design incorporating several hardware techniques
to address these two challenges, although, for some
techniques, similar ones have been demonstrated pre-
viously in isolation.

The third challenge is the most crucial. With all-or-
nothing TLS support, a dependence violation causes the
entire speculative thread to restart instead of just reexecut-
ing the instructions that misspeculated. Instead, we must be
able to tolerate frequent unpredictable dependences be-
tween speculative threads and continue to extract partial
parallelism in their presence. In this paper, we propose a
mechanism for tolerating failed speculation by using light-
weight checkpoints called subthreads to allow us to roll a
failed thread back to an intermediate point before specula-
tion failed.

Support for subthreads makes TLS more useful since it
allows the programmer to treat the parallelization of a
program as a performance tuning process. Without sub-
threads, TLS only provides a performance gain if a chosen
thread decomposition results in speculative threads with
infrequent data dependences between them. With sub-
threads, the programmer can engage in an iterative process:

1. decompose the program into speculative threads,
2. profile execution and observe which data depen-

dence causes the most execution to be rewound,
3. modify the program to avoid this data dependence,

and
4. iterate on this process (by returning to Step 2).

Without subthread support, removing a data dependence
can actually degrade performance: As shown in Fig. 1a,
removing the early dependence (through ?p) only delays
the inevitable reexecution of the entire speculative thread
because of the later dependence (through ?q). With subthread
support—and an appropriate choice of subthread boundar-
ies—each removed dependence will gradually improve
performance (Fig. 1b). With enough subthreads per thread,
TLS execution approximates an idealized parallel execution
(Fig. 1c) where parallelism is limited only by data depen-
dences, effectively stalling each dependent load until the
correct value is produced. In summary, subthreads allow TLS
to improve performance even when speculative threads have
unpredictable and frequent data dependences between them.

1.2 Related Work

To implement both our shared cache TLS support and our
subthread support, we store multiple versions of values in
the cache. We essentially propose centralized hardware
support for cache line versioning which is similar in spirit to
the original Address Resolution Buffer (ARB) of the Multi-
scalar Architecture [15]—however, in our approach, we
store speculative versions of lines in multiple levels of the
cache hierarchy, allowing us to take advantage of the larger
sizes and associativities of the caches further from the CPUs
and to avoid increasing the complexity and hit latency of
the first-level caches. Our experience with large and
dependent speculative threads is that simple schemes
without versioning and second-level storage are insuffi-
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Fig. 1. The use of subthreads enables a performance tuning process, where eliminating data dependences improves performance. (a) Eliminating

the dependence through ?p can potentially hurt performance with an all-or-nothing TLS execution. (b) Execution with subthreads. (c) Idealized

parallel execution.



cient. Approaches proposed since the ARB such as the
Speculative Versioning Cache (SVC) and the IACOMA [1],
[16] approach also support speculative versions in a more
generic cache hierarchy. By limiting the visibility of replicas
to just the CPUs sharing an L2 cache, we avoid the need for
the version ordering list used in SVC.

In this paper, we detail a design for a speculative victim
cache, which we find to be sufficient to capture cache set
overflows for our database applications. Two prior ap-
proaches address the problem of cache capacity overflow:
Prvulovic et al. proposed a technique that allows spec-
ulative state to overflow into the main memory [16], and
Cintra et al. proposed a hierarchical TLS implementation
that allows the oldest thread in a CMP to buffer speculative
state in the L2 cache (while requiring that the younger
threads running on a CMP be restricted to the L1 cache)
[17]. In this paper, we propose a similar hierarchical
implementation with one important difference from Cintra
et al.’s scheme: it allows all threads to store their speculative
state in the larger L2 caches. With this support, 1) all
threads can take advantage of the large size of the L2 cache,
2) threads can aggressively propagate updates to other
more recent threads, and 3) we can more easily implement
subthreads, described later in Section 3.

Subthreads are a form of checkpointing and, in this paper,
we use such checkpointing to tolerate failed speculation.
Prior work has used checkpointing to simulate an enlarged
reorder buffer with multiple checkpoints in the load/store
queue [18], [19] and a single checkpoint in the cache [20].
Martı́nez et al.’s checkpointing scheme [20] effectively
enlarges the reorder buffer and is also integrated with TLS
and is thus the most closely related work. The subthread
design we present in this paper could be used to provide a
superset of the features in Martı́nez et al.’s work at a higher
cost: subthreads could provide multiple checkpoints with a
large amount of state in a cache shared by multiple CPUs.
Tuck and Tullsen showed how thread contexts in a
simultaneous multithreading (SMT) processor could be used
to checkpoint the system and recover from failed value
prediction, expanding the effective instruction window size
[21]—the techniques we use to create subthreads could also
be used to create checkpoints at high-confidence prediction
points following Tuck and Tullsen’s method.

For TLS, tolerating failed speculation using subthreads
implies tolerating data dependences between speculative
threads. A recent alternative approach for tolerating cross-
thread dependences is selective reexecution [22], where only
the slice of instructions involved in a violated dependence is
reexecuted; although we do not evaluate this here, we may
be able to use subthreads in conjunction with selective
reexecution to help tolerate potentially unsafe slices. Other
studies have explored predicting and learning data depen-
dences and turning them into synchronization [23], [24],
[11] or have used the compiler to mark likely dependent
loads and tried to predict the consumed values at runtime
[11]. Initially, we tried to use an aggressive dependence
predictor like the one proposed by Moshovos et al. [24], but
found that only one of the several dynamic instances of the
same load PC caused the dependence—predicting which
instance of a load PC is more difficult since you need to
consider the outer calling context. Support for subthreads
provides a more elegant solution that is complementary to
hardware-based prediction and software-based synchroni-

zation techniques since using subthreads significantly
reduces the high cost of misspeculation.

The notion of using speculative execution to simplify
manual parallelization was first proposed by Prabhu and
Olukotun for parallelizing SPEC benchmarks on the Hydra
multiprocessor [2], [9]. The base Hydra multiprocessor uses
a design similar to the L2 cache design proposed in this
paper—the design in this paper extends the Hydra design
by adding support for mixing speculative and nonspecula-
tive work in a single thread, as well as allowing partial
rollback of a thread through subthreads. Hammond et al.
push the idea of programming with threads to its logical
extreme such that the program consists of nothing but
threads—resulting in a vastly simpler architecture [25], but
requiring changes to the programming model to accom-
modate that new architecture [26]. The architecture pre-
sented in this paper is closer to existing CMP architectures
and can execute both regular binaries and those that have
been modified to take advantage of TLS.

2 TWO-LEVEL SPECULATIVE STATE TRACKING AND

BUFFERING

TLS allows us to break a program’s sequential execution
into parallel speculative threads and ensures that data
dependences between the newly created threads are pre-
served. Any read-after-write dependence between threads
that is violated must be detected and corrected by restarting
the offending thread. Hardware support for TLS makes the
detection of violations and the restarting of threads
inexpensive [2], [3], [16], [27].

Our database benchmarks stress TLS hardware support
in new ways that have not been previously studied since the
threads are necessarily so much larger. In previous work,
speculative threads of various size ranges were studied
including 3.9-957.8 dynamic instructions [6], 140-7,735
dynamic instructions [9], 30.8-2,252.7 dynamic instructions
[11], and up to 3,900-103,300 dynamic instructions [12]. The
threads studied in this paper are quite large, with 7,574-
489,877 dynamic instructions. These larger threads present
two challenges. First, more speculative state has to be stored
for each thread: from 3 Kbytes to 35 Kbytes; the additional
state is required to store multiple versions of cache lines for
subthreads. Most existing approaches to TLS hardware
support cannot buffer this large amount of speculative state.
Second, these larger threads have many data dependences
between them that cannot be easily synchronized and
forwarded by the compiler [7], since they appear deep
within the database system in very complex and varied
code paths. This problem is exacerbated by the fact that the
database system is typically compiled separately from the
database transactions, meaning that the compiler cannot
easily use transaction-specific knowledge when compiling
the database system. This makes runtime techniques for
tolerating data dependences between threads attractive.

In this section, we describe the underlying CMP
architecture and how we extend it to handle large
speculative threads. We assume a CMP where each core
has a private L1 cache and multiple cores share a single
chip-wide L2 cache. For simplicity, in this paper, each CPU
executes a single speculative thread. We buffer speculative
state in the caches, detecting violations at a cache line
granularity. Both the L1 and L2 caches maintain speculative
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state: Each L1 cache buffers cache lines that have been
speculatively read or modified by the thread executing on
the corresponding CPU, whereas the L2 caches maintain
inclusion and buffer copies of all speculative cache lines
that are cached in any L1 on that same chip. The detection
of violations between speculative threads running on the
same chip is performed within the L2 cache through the two-
level protocol described below. For the detection of
violations between speculative threads running on different
chips, we assume support for an existing scheme for
distributed TLS cache coherence, such as the STAMPede
protocol [3].1

2.1 L1 Cache State

Our design has the following goals: 1) to reduce the number
of dependence violations by aggressively propagating store
values between threads and 2) to reduce the amount of time
wasted on failed speculation by ensuring that any depen-
dence violation is detected promptly. In our two-level

approach, the L2 cache is responsible for detecting

dependence violations and must therefore be informed of
loads and stores from all speculative threads.

In Fig. 2, we illustrate how to take a simple write-

through L1 cache line state transition diagram and enhance
it for use with our shared L2 cache design. In the following
discussion, we explain the new states and the functionality

they offer (Table 1).
To track the first speculative load of a thread, we add the

speculatively loaded (SpL) bit to each cache line in the L1

cache. The first time the processor tries to speculatively load
a line, this bit will be set and, if the load hits in the L1 cache,

a notify speculatively loaded (notifySpL) message will be sent
to the L2 cache informing it that a speculative load has
occurred. If the processor tries to speculatively load a line

that is not present in the L1 cache, it will trigger a speculative

miss (readSp) to the L2 cache.
The SpL bit acts as a filter—it ensures that the L2 cache is

not notified multiple times of a line being speculatively
loaded. The L2 cache learns of speculative loads through

the notifySpL message and readSp request. The readSp

request is blocking since the load that triggers it cannot

complete until the cache miss is serviced. The notifySpL

message is nonblocking, so the load that triggers it can
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Fig. 2. L1 cache line state transition diagram. Any transitions not shown
(for example, action R for a line in the state SpM) is due to an
impossible action: The tag match will fail and the transition will be treated
as a miss. Line states are explained in Table 1. Edges are labeled with
the processor action (Table 1), followed by the message to the L2 cache
in round brackets (Table 1). Square brackets show responses from the
L2 cache (Table 1). (a) Basic write-through protocol. (b) Enhanced with
TLS support.

TABLE 1
Protocol States, Actions, and Messages

1. In this paper, all experiments are within the boundaries of a single
chip; the amount of communication required to aggressively propagate all
speculative stores between chips is presumed to be too costly.



complete immediately. The purpose of the notifySpL
message is to allow the L2 cache to detect potential
violations. To avoid race conditions that would result in
missing a violation, all notifySpL messages must be
processed by the L2 cache before a speculative thread can
commit and any notifySpL messages in transit from the L1 to
the L2 cache must be compared against invalidations being
sent from the L2 to the L1 cache (this is similar to how a
store buffer must check for invalidations). An alternative to
using the notifySpL message is to instead always use a
readSp message for the first speculative load of a thread.
This effectively makes each speculative thread start with a
cold L1 cache—the notifySpL message is a performance
optimization, based on the assumption that the L1 cache
will rarely contain out-of-date cache lines (if the L2 cache
receives a notifySpL message for a line that has been
speculatively modified by an earlier thread, then this will
generate a violation for the loading thread). In Section 6.3,
we evaluate the performance impact of this optimization.

Detecting the last store to a memory location by a
speculative thread is more challenging. Although we do not
evaluate it here, a sophisticated design could combine a
write-back cache with a last-touch predictor [28] to notify the
L2 of only the last store performed by a thread. However,
for now, we take the more conservative approach of making
the L1 caches write-through, ensuring that store values are
aggressively propagated to the L2, where dependent
threads may load those values to avoid dependence
violations. Each L1 cache line also has a speculatively
modified (SpM) bit, which is set on the first speculative store
so that it can be flash-invalidated if the thread violates a
dependence (rather than relying on an invalidation from the
L2 cache).

In our design, when the L1 cache holds a line that is marked
speculative, we assume that it is up to date (that is, it contains
all changes made by older speculative threads). Since the
merging of writes from different speculative threads is
performed in the L2 cache, the L1 cache cannot transition a
Valid line into an SpM line without querying the L2 cache.
Because of this, in Fig. 2, you will see that a speculative write
to a Valid line invalidates the line so that any loads to that line
retrieve the correct line from the L2 cache.

When a speculative thread commits, the L1 cache can
simply clear all of the SpM and SpL bits since none of the
state associated with the committing thread or any earlier
thread is speculative. If multiple threads share a single L1
cache, then the SpM and SpL bits can be replicated, one per
thread, as is done for the shared cache TLS protocol
proposed in prior work [29].

The Stale state in Fig. 2 is used for temporarily escaping
speculation and is discussed further in Section 4.2.

2.2 L2 Cache State

The L2 cache buffers speculative state and tracks data
dependences between threads using the same techniques as
the TLS protocol proposed in prior work [29]. Instead of
observing each load and store from a CPU, the L2 cache
observes read, readSp, notifySpL, update, and updateSp
messages from the L1 caches. Each message from an L1
cache is tagged with a speculative thread number and these
numbers are mapped onto the speculative thread contexts in

the L2 cache. Each speculative thread context represents the
state of a running speculative thread. Each cache line has an
SpM bit and SpL bit per speculative thread context. The
dependences between threads sharing the same L2 cache
are detected when an update is processed by checking for
SpL bits set by later threads. The dependences between
threads running on different L2 caches are tracked using the
extended cache coherence proposed in prior work [29].

Given the large speculative threads that are found in
database transactions, we need to be able to store large
amounts of speculative state in the L2 cache from multiple
speculative threads. Often, there are two conflicting versions
of a line that need to be stored—for example, if a line is
modified by different threads, then each modification must
be tracked separately so that violations can efficiently undo
the work from a later thread without undoing the work of an
earlier thread. When conflicting versions of a line must be
stored, we replicate the cache line and maintain two versions.
Maintaining multiple versions of cache lines has been
previously studied in the Multiscalar project [1]; we present
our simpler replication scheme in detail in Section 2.3.

If a speculative line is evicted from the cache, then we
need to continue tracking the line’s speculative state. With
large speculative threads and cache line replication, this
becomes more of a problem than it was in the past: We use a
speculative victim cache [30], [31] to hold the evicted
speculative lines and track violations caused by these lines.
We have found that a small victim cache is sufficient to
capture the overflow state, but, if more space is required,
we could use a memory-based overflow area such as that
proposed by Prvulovic et al. [16].

2.3 Cache Line Replication

In a traditional cache design, each address in memory maps
to a unique cache set, and a tag lookup leads you to a
unique cache line. When we have several threads storing
their speculative state in the same cache, there can be replica
conflicts: A replica conflict occurs when two threads need to
keep different versions of a cache line to make forward
progress. There are three cases where a replica conflict can
arise. The first class of replica conflict is if a speculative
thread loads from a cache line and a more speculative
thread has speculatively modified that cache line. In this
case, we do not want the load to observe the more
speculative changes to the cache line since they are from a
thread that occurs later in the original sequential program
order. The second class of replica conflict is if a speculative
thread stores to a cache line that any other speculative
thread has speculatively modified. Since we want to be able
to commit speculative changes to memory one thread at a
time, we cannot mix the stores from two threads together.
The third class of replica conflict is if a speculative thread
stores to a cache line that any earlier thread has specula-
tively loaded. The problem is that a cache line contains both
a speculative state and a speculative metastate (the SpM and
SpL bits). In this case, we want to be able to quickly
completely discard the cache line (speculative state) if the
storing thread is later violated, but we do not want to
discard the SpL bits (the speculative metastate) if they are
set. To avoid this problem, we treat it as a replica conflict.
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What can we do if a replica conflict arises? Every replica
conflict involves two speculative threads: If the replica
conflict arises when a store is performed by the later thread,
then the later thread can be stalled until the earlier thread
commits; if the replica conflict arises when a load or store is
performed by the earlier thread, then it can be resolved by
violating the later thread. Alternative approaches are to stall
a thread until it is the oldest thread (that is, it will definitely
commit) when a replica conflict is detected and to violate a
thread when a replica conflict is detected. Both of these
approaches hurt performance severely if replica conflicts
occur frequently. Another approach is to replicate cache
lines—when a replica conflict arises, make a fresh copy of
the conflicting cache line and use the copy instead (Fig. 3).
As speculative threads commit, these replicas are combined
into a single line.

If there exist multiple replicas of a cache line, then any
access to the cache has to decide which of those replicas to use.
The correct answer is to use the most recent replica with
respect to the current thread. For example, if thread e is
accessing the cache, then it should access the replica that was
last speculatively modified by thread e or, if that does not
exist, then thread e� 1 or, if that does not exist, then thread
e� 2, and so forth. If the current thread has not speculatively
modified the line and no prior thread has speculatively
modified the line, then the clean replica is used. The clean
replica is the replica of the cache line that contains no
speculative modifications. Note that if the clean replica is not
present in the cache, then it can always be retrieved from the
next level of the memory hierarchy via a cache miss.

Because the most recent replica with respect to the
current thread must be located, the cache lookup for a
replicated line may be slightly more complex than a normal
cache lookup. To limit the impact of this to lines with
replicas, we add a replica bit to each cache line that indicates
that a replica of the line may exist, which is set whenever a
new replica is created.

Replicas are always created from the most recent replica.
A copy of the source line is made and the SpM, SpL, and
directory bits (which indicate which L1 caches above the L2
cache may have copies of the line) are copied as well. The
SpM, SpL, and directory bits representing speculative
threads that are older than the current thread are cleared

on the newly created line, whereas the bits representing the
current thread and newer threads are cleared on the source
line. This way, the responsibility for tracking speculative
state is divided so that the older state resides on the source
line and the newly created replica tracks the state associated
with the current and later threads.

The existence of replicas slightly complicates store
operations. When a store is performed, the changes must
be propagated to the newer replicas of the cache line. This
means that a store has to write to the most recent replica
and also to any newer replicas if they have not already
overwritten the same word in the line. The fine-grained
SpM bits (used for write merging between L2 caches)
specify which words in a cache line have been speculatively
written to, and they can be used to determine which (if any)
newer replicas need to be updated.2

When a thread commits, all speculatively modified cache
lines associated with the committing thread are trans-
formed into dirty cache lines, which become clean replicas
(since they no longer hold speculative modifications). There
may only be one clean replica of a cache line in the cache at
a time and we ensure this by having the commit operation
first invalidate any clean replicas that are made obsolete by
the commit operation. The lines that need to be invalidated
are tracked through the invalidation required buffer (IRB),
which operates in a similar fashion to the ownership
required buffer (ORB) [29]. There is one IRB per speculative
thread context. An IRB entry is simply a cache tag that says
“the cache line associated with this address and thread may
have an older replica.” When a replica is created, it may
generate up to two IRB entries. If there exists any replica
with a state older than the newly created replica’s state,
then an entry is added to the newly created replica’s IRB. If
there exist any replicas with a state newer than the newly
created replica’s state, then an entry is added to the IRB of
the oldest of the newer replicas. When a thread is violated,
the IRB for that thread is cleared. When a thread commits,
the cache first invalidates any clean replicas named by the
IRB entries and then clears the SpM and SpL bits associated
with the committing thread. We found that an IRB of
32 entries is sufficient to capture the majority of invalida-
tion-required information; should the IRB overflow, correct-
ness is preserved by violating the logically latest thread.

The L2 cache maintains inclusion and, also, directory bits
that track which L1 caches may have a replica of a given
line so that, when a replica is updated or invalidated, an
invalidation is sent to the appropriate L1 caches.

To briefly summarize the impact of our support, we have
added two bits per speculative context plus one bit per line to
indicate whether a replica exists. In our most aggressive
implementation, this results in 17 bits added per L2 cache line.
The L2 cache lookup latency may be slower when a replica
exists, since we now have to find the appropriate replica in
either the corresponding cache set or the victim cache.
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2. Alternatively, speculatively modified cache lines can be merged with
the clean replica at commit time. This is much harder to implement since
the clean replica can be evicted from the cache at any time if the cache is
short on space. This means that a committing thread may suffer cache
misses to bring those clean replicas back into the cache for merging.
Another alternative would be to pin the clean replicas of cache lines in the
cache until all replicas of a line are merged, but this wastes cache space.

Fig. 3. Step-by-step example demonstrating cache line replication for a

single cache line. Cache line replication avoids violations when a replica

conflict occurs.



In summary, this design supports the efficient buffering
of speculative state and dependence tracking for large
speculative threads, giving them access to the full capacity
of the L1 and L2 caches. Store values are aggressively
propagated between threads, reducing violations. A more
detailed description of our underlying hardware support is
available in a technical report [32].

3 TOLERATING DEPENDENCES WITH SUBTHREADS

The motivation for subthreads is to tolerate data depen-
dences between speculative threads. Previously proposed
hardware mechanisms that also tolerate data dependences
between speculative threads include data dependence pre-
dictors and value predictors [24], [11]. A data dependence
predictor automatically synchronizes a dependent store/
load pair to avoid a dependence violation, whereas a value
predictor provides a predicted value to the load, which can
then proceed independently from the corresponding store.
In our experience with database benchmarks, the resulting
large speculative threads contain between 20 and 75 depen-
dent loads per thread after iterative optimization and we
found that previous techniques for tolerating those depen-
dences were ineffective. However, we note that subthreads
are complimentary to prediction since the use of subthreads
reduces the penalty of any misprediction.

Subthreads are implemented by extending the L2 cache
such that, for every single speculative thread, the L2 cache can
maintain speculative state for multiple thread contexts. For
example, if we want to support two subthreads for each of
four speculative threads (eight subthreads total), then the L2
cache must be extended to maintain speculative state for eight
distinct thread contexts. At the start of a new subthread, the
register file is backed up and all subsequent speculative state
is saved in the next thread context. Although we do not model
a particular implementation of a register file back-up, this
could be accomplished quickly through shadow register files
or more slowly by backing up to the memory. New
subthreads can be created until all of the thread contexts
allocated to the corresponding speculative thread have been
consumed.

In our TLS hardware support, dependence violations are
detected between thread contexts; when subthreads are
supported, any violation will specify both the thread and
subthread that needs to be restarted. Within a speculative

thread, the subthreads execute serially and in-order; hence,
there are no dependence violations between them. Note
that, in our design so far, the L1 caches are unaware of
subthreads: Dependence tracking between subthreads is
performed at the L2 cache. Any dependence violation
results in the invalidation of all speculatively modified
cache lines in the appropriate L1 cache and any necessary
state can be retrieved from the L2 cache. To reduce these
L1 cache misses on a violation, the L1 cache could also be
extended to track subthreads; however, we have found this
support to be not worthwhile. In summary, no additional
hardware is required to detect dependence violations
between threads at a subthread granularity other than
providing the additional thread contexts in the L2 cache.

When a speculative thread violates a data dependence,
we call this a primary violation. Since logically, later
speculative threads may have consumed the incorrect
values generated by the primary violated thread, all of
these later threads must also be restarted through a
secondary violation. With support for subthreads, we can
do better, as shown in Fig. 4. In Fig. 4a, when the
dependence violation between thread 1 and subthread 2b
is detected, all of thread 3’s and 4’s subthreads are restarted
through secondary violations, even though subthreads 3a
and 4a completed before subthread 2b started. Since
subthreads 3a and 4a could not have consumed any data
from 2b, it is unnecessary to restart them. Hence, we prefer
the execution shown in Fig. 4b, which requires that we track
the temporal relationship between subthreads by having
every speculative thread maintain a subthread start table,
which is described next.

3.1 Subthread Start Table

To implement the desirable recovery model shown in Fig. 4b,
we need to track when subthreads start so that we know the
relative starting points of subthreads across different spec-
ulative threads—this is supported using the subthread start
table and a simple numbering of subthreads within each
speculative thread. When a speculative thread suffers a
dependence violation, it notifies all logically, later speculative
threads that they must also restart (that is, that they have
suffered a secondary violation) and indicates its own thread
ID and the subthread number it is currently executing. When
a logically-later speculative thread receives such a notifica-
tion of a secondary violation, it uses the received thread ID
and subthread number to look up in the table which of its own
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Fig. 4. The effect of secondary violations with and without subthread dependence tracking. (a) All later subthreads restart. (b) Only dependent

subthreads restart.



subthreads were executing when the indicated subthread
began execution and then rewinds its own execution to the
start of that subthread. To maintain this information, the
subthread start table must be notified whenever a speculative
thread starts, a subthread starts, or a violation occurs.

Later, in Section 6.2, we investigate the trade-offs in the
frequency of starting new subthreads and the total number
of subthreads supported. Next, we look at how our support
for large speculative threads and subthreads leads to an
elegant model for iterative feedback-driven parallelization.

4 EXPLOITING SUBTHREADS: TUNING PARALLEL

EXECUTION

We have applied TLS to the loops of the transactions in TPC-C
and found that the resulting threads are large (7,574-489,877
average dynamic instructions) and contain many interthread
data dependences (an average of 292 dependent dynamic
loads per thread for the NEW ORDER transaction), which
form a critical performance bottleneck. Our goal is to allow
the programmer to treat parallelization of transactions as a
form of performance tuning: A profile guides the programmer
to the performance hot spots, and performance is improved
by modifying only the critical regions of code. To support this
iterative parallelization process, we require the hardware to
provide a profile feedback reporting which store/load pairs
triggered the most harmful violations—those that caused the
largest amount of failed speculation.

4.1 Profiling Violated Interthread Dependences

Hardware support for profiling interthread dependences
requires only a few extensions to the basic TLS hardware
support. Each processor must maintain an exposed load table
[11]—a moderate-sized direct-mapped table of PCs, in-
dexed by a cache tag, which is updated with the PC of every
speculative load that is exposed (that is, has not been
preceded in the current subthread by a store to the same
location—as already tracked by the basic TLS support).
Each processor also maintains cycle counters that measure
the duration of each subthread. When the L2 dependence
tracking mechanism observes that a store has caused a
violation, 1) the store PC is requested from the processor
that issued the store and 2) the corresponding load PC is
requested from the processor that loaded the cache line (this
is already tracked by the TLS mechanism) and the cache
line tag is sent along with the request. That processor uses
the tag to look up the PC of the corresponding exposed load
and sends the PC along with the subthread cycles back to
the L2; in this case, the cycle count represents failed
speculation cycles. At the L2, we maintain a list of load/
store PC pairs and the total failed speculation cycles
attributed to each. When the list overflows, we want to
reclaim the entry with the least total cycles. Finally, we
require a software interface to the list to provide the
programmer with a profile of the problem load/store pairs,
who can use the cycle counts to order them by importance.

4.2 Hardware Support for Escaping Speculation

When parallelizing speculatively within database transac-
tions, there are often operations such as malloc that cause
unnecessary dependences between speculative threads: The
dependences are unnecessary because the order of these
operations across speculative threads is unimportant to the

semantics of the transaction. If there was a way to execute
such operations nonspeculatively, then any dependences
between them could be tolerated. Such an optimization also
requires that, in the case where the speculative thread fails,
the operation must be undone (for example, free). We call
operations for which this optimization is possible isolated
undoable operations (IUOs), which are described in further
detail in a previous publication [8].

To optimize IUOs, the TLS hardware must support a
method for escaping speculation by temporarily treating the
executing thread as nonspeculative. This means that any loads
by the escaped thread return committed to the memory state
and not the speculative memory state. Any stores performed
by the escaped thread are not buffered by the TLS mechanism
and are immediately visible to all other threads. A side effect
of this is that if an escaped thread writes to a location
speculatively loaded by any speculative thread, including
itself, it can cause that thread to be violated. The only
communication between the speculative execution preceding
the escaped speculation and the escaped thread is through
registers, which can be carefully checked for invalid values
caused by misspeculation. To avoid false dependences
caused by writing temporary variables and return addresses
to the stack, the escaped thread should use a separate stack
(using a mechanism such as stacklets [33], [34]).3 If an escaped
thread is violated, it does not restart until speculation
resumes—this way, the escaped code does not have to be
written to handle unexpected interrupts due to violations.

When an escaped thread loads data into the L1 cache, it
may perform loads that evict lines that were speculatively
modified by the current thread. If the thread resumes the
speculative execution and then loads the same line, it must
receive the speculative evicted copy of the line and not the
clean copy that just replaced it. To avoid this situation, we
add one more state bit to each cache line in the L1 cache,
called the stale bit. When a clean replica is retrieved from
the L2 cache (and a speculative version exists), then the L2
cache indicates that the line is stale in its response and the
stale bit gets set for this line in the L1 cache. The next
speculative read of this line will then miss to the L2 cache to
retrieve the proper speculative version.

We found that the use of the stale bit caused speculative
and clean replicas of cache lines to ping-pong to the
L2 cache, dramatically increasing the number of L1 cache
misses. This harmed performance, so, to avoid this
problem, we modified the L1 cache to allow a limited form
of replication—a set can hold both the speculative and clean
replica versions of a cache line (an alternative solution that
should have a similar performance is to put a victim cache
underneath the L1 cache to catch these ping-ponging lines).

Since the escaped code takes nonspeculative actions, the
wrapper around it has to be carefully written to avoid
causing harm to the rest of the program when misspecula-
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3. TLS already assumes that each executing speculative thread has a
private stacklet for storing local variables and the return addresses of called
functions. If two threads shared a common stack, then an action as simple as
calling a function would cause a violation since each thread would spill
registers, write return addresses, and write return values onto the stack. We
assume that local stack writes are not intended to be shared between
speculative threads (the compiler can check this assumption at compile
time) and give each speculative thread a separate stacklet to use while it
executes. To avoid conflicts between escaped execution and speculative
execution, we allocate another stacklet for use by a thread when it escapes
speculation.



tion happens. For example, a misspeculating thread may go
into an infinite loop allocating memory. The misspeculating
thread must not be allowed to allocate so much memory
that allocation fails for the least speculative thread. This
potential problem can be avoided through software: One
way is to place limits on the amount of memory allocated by
a speculative thread. Another solution is to have the least
speculative thread first violate any speculative threads
(and, hence, have them release all resources) before
allowing any allocation request to fail.

4.3 Tuning Parallelized Transactions

Previous work [8] has demonstrated an iterative process for
removing performance-critical data dependences:

1. execute the speculatively parallelized transaction on
a TLS system,

2. use profile feedback to identify the most perfor-
mance-critical dependences,

3. modify the database management system (DBMS)
code to avoid violations caused by those depen-
dences, and

4. repeat.

Going through this process reduces the total number of data
dependences between threads (from 292 dependent loads per
thread to 75 dependent loads for NEW ORDER) and, more
importantly, removes dependences from the critical path.

5 EXPERIMENTAL FRAMEWORK

In this section and the next, we evaluate subthreads and our
hardware support for large speculative threads in the
context of speculatively parallelized database transactions.

5.1 Benchmark Infrastructure

Our experimental workload is composed of the five
transactions from TPC-C (NEW ORDER, DELIVERY, STOCK

LEVEL, PAYMENT, and ORDER STATUS).4 We have paralle-
lized both the inner and outer loop of the DELIVERY

transaction and denote the outer loop variant as DELIVERY

OUTER. We have also modified the input to the NEW

ORDER transaction to simulate a larger order of between 50
and 150 items (instead of the default 5 to 15 items) and
denote that variant as NEW ORDER 150. All transactions are
built on top of BerkeleyDB 4.1.25. We use BerkeleyDB since
it is well written and is structured similarly to a modern
database system back end (supporting features such as
transactional execution, locking, a buffer cache, B-trees, and
logging). Evaluations of techniques to increase concurrency
in database systems typically configure TPC-C to use
multiple warehouses since transactions would quickly
become lock bound with only one warehouse. In contrast,
our technique is able to extract concurrency from within a
single transaction and, so, we configure TPC-C with only a
single warehouse. A normal TPC-C run executes a

concurrent mix of transactions and measures throughput;
since we are concerned with latency, we run the individual
transactions one at a time. Also, since we are primarily
concerned with parallelism at the CPU level, we model a
system with a memory-resident data set by configuring the
DBMS with a large (100 Mbytes) buffer pool.5 The
parameters for each transaction are chosen according to
the TPC-C run rules using the Unix random function and
each experiment uses the same seed for repeatability. The
benchmarks execute as follows:

1. start the DBMS,
2. execute 10 transactions to warm up the buffer pool,
3. start timing,
4. execute 100 transactions, and
5. stop timing.

All codes are compiled using gcc 2.95.3 with
O3 optimization on an SGI MIPS-based machine. The
BerkeleyDB database system is compiled as a shared
library which is linked with the benchmarks that contain
the transaction code. To apply TLS to each benchmark,
we started with the unaltered transaction, marked the
main loop within it as parallel, and executed it on a
simulated system with TLS support. In a previous paper
[8], we described how we iteratively optimized the
database system for TLS using the methodology described
in Section 4. We evaluate the hardware using fully
optimized benchmarks.

5.2 Simulation Infrastructure

We perform our evaluation using a detailed trace-driven
simulation of a CMP composed of four-way-issue out-of-
order superscalar processors similar to the MIPS R14000 [36],
but modernized to have a 128-entry reorder buffer. Each
processor has its own physically private data and instruction
caches, connected to a unified second-level cache by a
crossbar switch. The second-level cache has a 64-entry
speculative victim cache that holds speculative cache lines
that have been evicted due to conflict misses. Register
renaming, the reorder buffer, branch prediction, instruction
fetching, branching penalties, and the memory hierarchy
(including bandwidth and contention) are all modeled and
are parameterized as shown in Table 2. For now, we model a
zero-cycle latency for the creation of a subthread, including a
register backup. This is a user-level simulation: All instruc-
tions in the transactions and DBMS are simulated, whereas
the operating system code is omitted. Latencies due to disk
accesses are not modeled and, hence, these results are most
readily applicable to situations where the database’s working
set fits into the main memory.

6 EXPERIMENTAL RESULTS

6.1 Benchmark Characterization

We begin our evaluation by characterizing the benchmarks
themselves, so we can better understand them. Table 3 shows
some basic measurements of the benchmarks we study,
including the number of processor cycles to execute a
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4. Our workload was written to match the TPC-C spec as closely as
possible, but it has not been validated. The results we report in this paper
are speedup results from a simulator and not TPM-C results from an actual
system. In addition, we omit the terminal I/O, query planning, and wait-
time portions of the benchmarks. Because of this, the performance numbers
in this paper should not be treated as actual TPM-C results, but instead
should be treated as representative transactions.

5. This is roughly the size of the entire data set for a single warehouse.
This ensures that reads will not go to a disk and data updates are performed
at transaction commit time, consume less than 24 percent of execution time
[35], and can be executed in parallel with other transactions.



sequential version of each benchmark and the fraction of
execution time of each benchmark that has been speculatively
parallelized—which ranges from 30 percent to 99 percent.
Examining the speculative threads for each benchmark, we
see that they are indeed large: averaging from 8,000 instruc-
tions up to 490,000 instructions per speculative thread.
Finally, the number of parallel speculative threads per
instance of a transaction varies widely across the bench-
marks, from only two speculative threads for PAYMENT to
191.7 speculative threads for STOCK LEVEL.

As a starting point for comparison, in Fig. 5, we run each
original sequential benchmark, which shows the execution
time with no TLS instructions or any other software
transformations running on one CPU of the machine (which
has four CPUs). This SEQUENTIAL experiment is normal-
ized to 1.0 in Fig. 5—note that the large percentage of Idle is
caused by three of the four CPUs idling in a sequential
execution.

When we apply TLS without subthread support on a
four-CPU system, shown in the NO SUBTHREADS bars,
performance improves for the majority of the benchmarks.
In the NEW ORDER and DELIVERY benchmarks, we observe
that a significant fraction of the CPU cycles are spent idling:
NEW ORDER does not have enough threads to keep four
CPUs busy and, so, the NEW ORDER 150 benchmark is
scaled to increase the number of threads by a factor of 10
and, hence, avoids this performance bottleneck. In the
DELIVERY benchmark, we have parallelized an inner loop
with only 63 percent coverage—in DELIVERY OUTER, the
outer loop of the transaction is parallelized, which has
99 percent coverage, but increases the average thread size
from 33,000 dynamic instructions to 490,000 dynamic
instructions. With larger threads, the penalty for misspecu-
lation is much higher and this shows up as a much larger

Failed component in the NO SUBTHREAD bar of the
DELIVERY OUTER graph—in fact, we observed that every
speculative thread in every benchmark suffers a depen-
dence violation at least once. Performance gain is still
possible in this case since these violations can artificially
synchronize execution until it is staggered but still enjoying
a parallel overlap. The PAYMENT and ORDER STATUS

transactions do not improve with TLS since they lack
significant parallelism in the transaction code and, so, we
omit them from further discussion. By parallelizing the
execution over four CPUs, we also execute using four L1
caches. For the STOCK LEVEL transaction, this increases the
time spent servicing cache misses significantly as it shares
data between the L1 caches.

As an upper bound on performance, in the NO SPECULA-

TION experiment, we execute purely in parallel—incorrectly
treating all speculative memory accesses as nonspeculative
and, hence, ignoring all data dependences between threads.
This execution shows a sublinear speedup due to the
nonparallelized portions of execution (Amdahl’s law) and
due to a loss of locality and communication costs due to the
spreading of data across four caches [37]. This experiment
shows an upper bound on the performance of TLS since it
represents an execution with no dependence violations. From
this, we learn that all of our benchmarks except for PAYMENT

and ORDER STATUS can improve dramatically if the impact of
data dependences is reduced or removed.

The BASELINE experiment in Fig. 5 shows a TLS
execution with eight subthreads per speculative thread
and 5,000 instructions per subthread. The subthread
support is clearly beneficial, achieving a speedup of 1.9 to
2.9 for three of the five transactions. Subthreads reduce the
time spent on failed speculation for both NEW ORDER

variants, both DELIVERY variants, and STOCK LEVEL. The
resulting execution time for both NEW ORDER variants and
DELIVERY OUTER is very close to the NO SPECULATION

execution time, implying that further optimizations to
reduce the impact of data dependences are not likely to
be worthwhile for these benchmarks. For DELIVERY, STOCK

LEVEL, and ORDER STATUS, it appears in the graph that
there is still room for improvement, but a hand analysis
determined that the remaining time spent on failed
speculation is due to actual data dependences that are
difficult to optimize away in the code. The improvement
due to subthreads is most dramatic when the speculative
threads are largest: The DELIVERY OUTER benchmark
executes more than twice as quickly with subthread support
enabled than without. Subthreads do not have a large
impact on the time spent servicing cache misses: This shows
that the additional cache state required to support sub-
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threads does not exceed the capacity of the L2 cache. Note
that we will return to discussing the No NSL and No
Replication results later.

6.2 Choosing Subthread Boundaries

Subthreads allow us to limit the amount of execution
rewound on a misspeculation, but how frequently should
we start a new subthread and how many subthreads are
necessary for good performance? We want to minimize the
number of subthread contexts supported in the hardware
and we also want to understand the performance benefits of
increasing the number of contexts. Since interthread
dependences are rooted at loads from the memory, we
want to start new subthreads just before certain loads. This
leads to two important questions. First, is a given load likely
to cause a dependence violation? We want to start
subthreads before loads that frequently cause violations to

minimize the amount of correct execution rewound in the
common case; previously proposed predictors can be used
to detect such loads [11]. Second, if the load does cause a
violation, how much correct execution will the subthread
avoid rewinding? If the load is near the start of the thread or
a previous subthread, then a violation incurred at this point
will have a minimal impact on performance. Instead, we
would rather save the valuable subthread context for a
more troublesome load. A simple strategy that works well
in practice is to start a new subthread every nth speculative
instruction for a careful choice of n.

In Fig. 6, we show an experiment where we varied the
number of subthreads available to the hardware and varied
the spacing between subthread start points. We would
expect that the best performance would be obtained if the
use of subthreads is conservative since this minimizes the
number of replicate versions of each speculative cache line
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Fig. 5. Performance of optimized benchmarks on four CPUs run sequentially, without subthread support, without the notifySpL message, without

replication in the L1 cache, with full support, and with an upper bound where there is no speculation. (a) NEW ORDER. (b) NEW ORDER 150.

(c) DELIVERY. (d) DELIVERY OUTER. (e) STOCK LEVEL. (f) PAYMENT. (g) ORDER STATUS.



and, hence, minimizes cache pressure. Since each subthread
requires a hardware thread context, using a small number
of subthreads also reduces the amount of required hard-
ware. A subthread would ideally start just before the first
misspeculating instruction in a thread so that, when a
violation occurs, the machine rewinds no farther than
required.

If hardware could predict the first dependence very
accurately, then supporting two subthreads per thread would
be sufficient. With two subthreads, the first subthread would
start at the beginning of the thread and the second one would
start immediately before the load instruction of the predicted
dependence. In our experiments, we do not have such a
predictor and, so, instead, we start subthreads periodically as
the thread executes.

In Fig. 6, we vary both the number and size of the
subthreads used for executing each transaction. Surpris-
ingly, adding more subthreads does not increase cache
pressure enough to have a negative impact on performance
—instead, the additional subthreads serve to either increase
the fraction of the thread that is covered by subthreads
(and, hence, protected from a large penalty if a violation
occurs) or increase the density of subthread start points
within the thread (decreasing the penalty of a violation).

When we initially chose a distance between subthreads
of 5,000 dynamic instructions, it was somewhat arbitrary:

We chose a round number that could cover most of the
NEW ORDER transaction with eight subthreads per thread.
This value has proven to work remarkably well for all of
our transactions. A closer inspection of both the thread sizes
listed in Table 3 and the graphs in Fig. 6 reveals that,
instead of choosing a single fixed subthread size, a better
strategy may be to customize the subthread size such that
the average thread size for an application would be divided
evenly into subthreads.

One interesting case is DELIVERY OUTER, in Fig. 6d,
where a data dependence early in the thread’s execution
causes all but the nonspeculative thread to restart. With
small subthreads, the restart modifies the timing of the
thread’s execution such that a later data dependence occurs
in order, avoiding violations. Without subthreads or with
very large subthreads (such as the 25,000 case in Fig. 6d),
this secondary benefit of subthreads does not occur.

6.3 Sensitivity to L1 Cache Implementation

When implementing IUOs, we found that the L1 cache often
suffered from thrashing, caused by a line that was
repeatedly loaded by a speculative code and then loaded
by a suspended code. To combat this effect, we added
replication to the L1 cache, which lets an L1 cache hold both
a speculative version and a nonspeculative version of a
cache line simultaneously. In the NO REPL bar in Fig. 5, we
have removed this feature. If you compare it to the baseline,

12 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 8, AUGUST 2007

Fig. 6. Performance of optimized benchmarks on a four-CPU system when varying the number of supported subthreads per thread from two to eight,

varying the number of speculative instructions per subthread from 250 to 25,000. The BASELINE experiment has eight subthreads and

5,000 speculative instructions per thread. (a) NEW ORDER. (b) NEW ORDER 150. (c) DELIVERY. (d) DELIVERY OUTER. (e) STOCK LEVEL.



you can see that, once the benchmark has been optimized,
this feature is no longer performance critical.

In our baseline design, when the L1 cache receives a
request to speculatively load a line and a nonspeculative
version of the line already exists in the cache, then the line is
promoted to become speculative and the L2 cache is
notified through a notify speculative loaded (NSL) message.
This design optimistically assumes that the nonspeculative
line in the L1 cache has not been made obsolete by a more
speculative line in the L2. If our optimism is misplaced,
then a violation will result. To see if this was the correct
trade-off, in the NO NSL bar in Fig. 5, we remove this
message and cause a speculative load of a line that exists
nonspeculatively in the L1 cache to be treated as an L1
cache miss. We see that the NSL message offers a very
minor performance gain to NEW ORDER, NEW ORDER 150,
DELIVERY, and DELIVERY OUTER, but the optimism causes
a nontrivial slowdown for STOCK LEVEL. As a result, we
conclude that, unless the optimism that the NSL message
offers is tempered, the NSL bit is a bad idea.

6.4 Sensitivity to Victim Cache Implementation

Since we noticed that the cache line replication caused by
subthreads exacerbates the problem of failed speculation
caused by evicted speculative cache lines, we have added a
speculative victim to our design to avoid such violations. In
this study, we used a 64-entry victim cache but also measured
how many entries are actually used in the cache. With our
baseline four-way L2 cache and using a four-CPU machine,
we found that only one application (NEW ORDER 150) uses all
64 of the entries in the victim cache. If we increase the
associativity of the L2 cache to eight-way, then only four
victim cache entries are ever used and, with a 16-way L2, the
victim cache is never utilized. From this, we conclude that the
victim cache can be made quite small and remain effective. In
addition, our experiments have found that increasing the
L2 associativity (under the optimistic assumption that
changing the associativity has no impact on cycle time) has
a less than 1 percent impact on performance.

7 CONCLUSIONS

For speculative parallelism with large speculative threads,
unpredictable cross-thread dependences can severely limit
performance. When speculation fails under an all-or-nothing
approach to TLS support, the entire speculative thread must
be reexecuted, thereby limiting the overall applicability of
TLS to speculative threads that are either small or highly
independent. To alleviate such limitations, we propose
subthreads that allow speculative execution to tolerate
unpredictable dependences between large speculative
threads (that is,> 50; 000 dynamic instructions). The support
for subthreads can be implemented through simple exten-
sions to the previously proposed TLS hardware. Using
commercial database transactions, we demonstrated that
subthreads can be an important part of an iterative approach
to tuning the performance of speculative parallelization. In
particular, we showed that subthreads can be used to reduce
transaction latency, speeding up three of the five TPC-C
transactions considered by a factor of 1.9 to 2.9. We also
explored how to best break speculative threads into sub-
threads and found that having hardware support for eight

subthread contexts—where each subthread executes roughly

5,000 dynamic instructions—performed best on the average.

Given the large performance gains offered by subthreads for

an important commercial workload, we recommend that they

be incorporated into future TLS designs.
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