COMPILER SUPPORT FORFINE-GRAIN SOFTWARE-ONLY CHECKPOINTING

by

Chuck (Cheng Yan) Zhao

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy
Graduate Department of Computer Science
University of Toronto

Copyright(© 2013 by Chuck (Cheng Yan) Zhao

Abstract

Compiler Support for Fine-grain Software-only Checkpinigt

Chuck (Cheng Yan) Zhao
Doctor of Philosophy
Graduate Department of Computer Science
University of Toronto

2013

Checkpointing support allows program execution to roltdbdo an earlier program position,
discarding any modifications made since that point. Exgssoftware-based checkpointing methods
are mainly library-based, snapshot a program’s entire iwgrknemory, and hence have prohibitive
overhead for many potential applications. This dissenagiroposes a lightweight and fine-grain
checkpointing framework implemented entirely in softwatlerough compiler transformations and
optimizations. In our framework, the programmer can spemibitrary checkpoint regions via a simple
API, and the compiler automatically transforms the codertabée checkpointing and optimizes for
checkpointing overhead reduction.

Our fine-grain software-only checkpointing is based on d@mpnstrumentation toback-up
program-state changes on a per-store basis within usetsted program regions. An individual
backup action is performed for a given memory location ohthére is a corresponding write to that
memory location, thus our checkpointing scheme naturaligpés to the program’s behavior. This
scheme respects user-inserted program annotations fgrapnopartitioning into checkpoint regions,
and supports regions containing complex program constraath as function callsites, function
pointers, and recursions. Our comprehensive compilenagdition framework employs aggressive
compiler optimization algorithms and conducts programmgfarmations to minimize checkpointing
overhead. The compiler transformation and optimizatidrastructure is sufficiently robust to enable
user-level checkpointing over large real-world applicasi and preserves the correctness of the original
program even under pathological corner cases.

We explore three application areas for our fine-grain cheickimg support. First, we utilize our

efficient software-only checkpointing to support overliagpexecution with delinquent loads through

the prototyping and evaluation of both control-specutatamd data-speculation transformations. We
further propose a theoretical timing model and confirm itsaiveness with a real-machine workload.
Second, we investigate its application to debugging, itiqdar by providing the ability for a debugger
to rewind to an arbitrarily-placed point within the execoutiof a buggy program. A study using
BugBench applications shows that our compiler-based fiagrgheckpointing has more than a factor of
100 less overhead than full-process, unoptimized chenkpgi Finally, we demonstrate that compiler-
based checkpointing support can be leveraged to free tlgegmoner from manually implementing and
maintaining detailed software rollback mechanisms whelingpa backtracking algorithm for a realistic

CAD application, with runtime overhead of only 15% compai@the manual implementation.

Acknowledgements

I would like to deeply thank my advisors—Professor Gregfatefind Professor Cristiana
Amza for all the guidance to me over the years of my Ph.D. jeur©Our weekly meetings
are a critical component in directing and guiding me over esearch. | appreciate the time
and occasions we meet, think hard and deep into the diffic@stipns, looking for potential
solutions from the seemingly impossibles. Thanks for digonumerous paper draft writings

and revisions, practice talks and rehearsals.

My committee including Professor Abdelrahman and Professashovos provided useful

insights, suggestions and feedbacks for filling out thiskwor

| want to deeply thank my parents—my mom and dad. Althougly tive in a different
continent that is 12 hours ahead of my time in Toronto, we rdai¢y email/phone/chat
communications. It is their love and support that makes mesigtent. It is their
encouragement that helps me sustain and successfully teaadnd of the extremely long
and seemingly for-ever lasting journey. It is especialjuahle and important when | was

facing the darkest period of my life—going through divorce.

Throughout the 9 years at University of Toronto, | spend 6 A&+305 with the PACRAT
group. | want to thank all my colleagues and friends for hajpme through the difficult
process: deep discussions of both academic and non-acadssuies, friendship and
couragement to face both daily challenge and dynamic futlvhg colleagues and friends:
Mihai Burcea, Diego Huang, Yi Wang, Alex Chooong, Nick Ni,fdéai, Xin Tong, Davor

Capalija. Too many names that | can't fully list here.

Contents

[List of Figured
List of Tabled

[Glossary

[1__Introduction|

[1.1 _Checkpointidg

[1.2__Applications of Checkpointing

1.3 ResearchGoals

2.1

Checkpointing Basics

2.2

Hardware-based Checkooinhng

2.3

Software-Only Checkpointing

2.4

Compiler Optimizations for Checkoointing

2.5

Systems and Mechanisms that | everage Checkpainting

[25.2 Speculation

13.3

Checkpointing Analysis
[3.3.1__Identifying Checkpointing Regions

[3.3.2 _Single-File Applications

[3.3.3 Callsite Analysis

13.4

Checkpointing Transformations

[3.4.1 Intra-procedural Transformations .
[3.4.2 Inter-procedural Transformations .

[3.4.3 Handling Special Cases

g W o NE

© o o P

CONTENTS 2

| ind a4

4.1 _Checkpointing Optimization Framework v v veee 34

4.2 Redundancy EMINAGANS o oot 35

14.2.1 Regional Redundancy Elimination(RRE) 35
14.2.2 _Function-Private Redundancy Elimination (FB

Pri RE) 37

l4.2.3 Hoistable Redundancy Elimination (HRE) 39
40
4.4 AQQregation 44

[4.41 Basic AQQregalibno 44

[4.4.2 Advanced Aggregation 45
4.5 __Non-Rollback-Exposed Store Elimination (NRESE) 48
4.6 _Dynamic Memory (DynMem) Optimization v w 48
4.7 Array OptmMIzation oo 51

4.8 Miscellaneous Optimizatidns . . « . v v v v v v 55
49 summaly, 55

I5__Checkpaint Buffer Implementation 56
.1 Undo-log vs. Write BUFFEr o 56

I5.2__One-Dimensional Array-Based Undolog oo ... 58
5.3 HashTable-based Undolog.o 59
I5.3.1 Pointer-To-Data (PTD) Nd

-To- de e 62

[5.32 Inline/Union Node 62
i -Si e 63
[5.3.4 Buffer Efficiency ANalySis« o oo 63

5.4 Redundancy RAte 65
.5 _Evaluatioh 65
B6 Summaly 67

CONTENTS

[7.4.2__Checkpoint Region Propertiescccc. .. 100
[7.5__Static Evaluation of Checkpointing Optimizations . . . - 101
.6 _Comparison with Existing Checkpointing Solutions . 102

[7.6.1 Comparison with ibCKBTo 102

[7.6.2 ComparisonWith ICCSTIM 106
[7.7__Effectiveness of Checkpointing Optimizationso oo oo oot .. 107

[7.7.1 _Optimization Orderifg 108

i i jon e 109

[7.7.3 _Backup Operation Reducfion 112

[77.4 ImpactonRedundancy Rate 113
[2.8_Checkpointing Performance on MPR 115

[7.8.1 Performance of Different Buffer Scheimes 116

[7.8.2__Fine Tuning on Hash-Table Schelmes 117
2.9 Summaly 118

I8 Conclusion and Future Work 120
8.1 Contributions o 121
8.2 CONCIUSIONS . « « o v v o e e e e e 123
|8.3 Future Wodk 124

18.3.1 Support for Incremental Checkpointing 124

18.3.2 _Allowing More User Control 125

18.3.3 _Exploiting More-Precise Pointer Analysis 125

18.3.4 Extending Checkpointing to I/O Devites 126

|A_Checkpointing APId 127
IB_Special System Handling Functiorls 129
... 129
B2 Memset 129
B3 MEMMOVE . .« « o oo e 130
B4 Strepy . . . o 130
B5 Stncply 130
B.6 Strcdt 131
BZ SUNcat o, 131
B8 Sprntf 132
B9 Vsprnto, 132
B0 Snprntf o 133

CONTENTS 4

[Bibliographyl 134

List of Figures

3.1 Overview of enabling checkpointihg., 19

3.2 Three code-transformation actions to enable checlipgin. 23
13.3__Code sample for callsite analy'sisot 26
3.4 _Algorithm of callsite analysis 26
13.5__Sample code with checkpointing enabled 29
3.6_Functionpointercallslte 30
oN . .. 31

ork 35

4.2 Regional Redundancy Elimination (RRE) optimization 36
4.3 Regional Redundancy Elimination (RRE) algorithm < 14

l4.4 Function-Private Redundancy Elimination (EPRE) timnatl_o.ﬂl 38
4.5 __Function-Private Redundancy Elimination (FPRE) atgot 38
l4.6 Hoistable Redundancy Elimination (HRE) transfornmtio. 39

4.7 __Hoistable Redundancy Elimination (HRE) algorithm 40

4.8 Hoisting optimization transformati

4.9 Hoisting optimization algorithm 41

4.10 Simple aggregation transformation 43

4.11 Simple aggregation algorithm 43
wop—r .

46

47

47

14,16 _DynMem optimization transformatfon 49
4.17 DynMem optimization algorithmo 49
14.18 Array optimization transformation 51
[4.19 Array optimization algorithno 52
I5.1 _One-Dimensional array buffer scheme. oo 57
I5.2__Sample of checkpoint-enabled dode 60
5.3 Design options for an undo-log implementation. 61
' ' ions . 66

Iﬁ_.l_OJLQDLLQML_[Q_LQLalLﬂg DL with speculative execution 69
l6.2__Persistence of DLs across architectures and benchmyauisi MCF 73
6.3 Persistence of DLs across architectures and benchmgutsi VPR 73

LIST OF FIGURES 6

ing . T - V4

: on 114
7.17 Oot|m|zat|on |moactonredundancvrate Lregion. 114

List of Tables

Chapter 1

Introduction

Checkpointing is the process of taking a program snapshahatoprogram state can be safely and
precisely restored to this snapshot should any error, r&gilor misspeculation occur during future
execution. Depending on available hardware support, ctioreal checkpointing methods include
both software and hardware solutions, with hardware sugdpgng rare and only available on high-
end enterprise-class proprietary systems. Most existoftyvare checkpointing solutions back-up
program changes at a coarse granularity by copying eitleegritire process’s memory or at least many
objects. While software instrumentation for program clpedkting is not new, the applicability of such

checkpointing techniques is limited by prohibitive softe@verheads.

In this dissertation we design, implement, and experinlignevaluate novel compiler-driven
techniques for program instrumentation and overhead dgation of fine-grain software checkpointing.
We show that we can significantly reduce software checkimgjrtverhead by conducting checkpointing
at a fine granularity—i.e., on a per-memory-store-openaliasis. We show that our fine-grain check-
pointing scheme provides ample opportunities for progratinazations and that our checkpointing
optimization framework can effectively eliminate up to 9886 software checkpointing overhead.
With the support of our efficient and compiler-driven cheaikging framework, we further explore
the possibility and feasibility of enabling checkpointing performance-sensitive applications where
checkpointing was previously considered impossible angractical. We show that checkpointing-

enabled applications enjoy unique features and propdh#&san improve programmer productivity.

CHAPTER 1. INTRODUCTION 2

1.1 Checkpointing

Checkpointing [[20, 3%, 39, 48,56,161/62] is a technique tckh# program state such that execution
can later revert to the back-up and recover from unpredietabogram failures. While proposed
hardware-based checkpointing solutions [%, 31] show psmgiperformance, they are limited by the
available hardware buffer space. More importantly, harévsaipport for checkpointing is normally not
available in commodity systems. Software-based checkipgirsolutions [[35, 39, 50, 62] can be used
on commodity hardware, thus they are immediately more epiplé and affordable. However, they
normally come with prohibitive software overhead as they tgpically coarse-grained, meaning that
they back-up large ranges of memory or even the entire psanesge.

In this dissertation, we present a software-only methodckackpointing program execution that
is implemented in a compiler. In particular, our transfotioras implement checkpointing at the
finest level of granularity—individual variables, as oppdgo previous work that checkpoints entire
ranges of memory or entire objects[[5]20,/35, 50]. The iwmtmits that such fine-grain checkpointing
can (i) be a better fit for the nature of many applications esittacheckpointsonly the memory that
is changed, (ii) provide many opportunities for optimipat that reduce redundancy and increase
efficiency, and (i) facilitate uses of checkpointing théémand minimal overhead. We present
a complete checkpointing framework and optimization isifinacture that can (i) enable software-
only checkpointing over arbitrarily large and complex pag regions and (ii) leverage compiler
optimizations to reduce overhead. We show that our fineaggelheme is more efficient than coarse-
grain approaches, and that up td®®f checkpoint buffer space and up to%®®f backup memory

service calls can be eliminated.

1.2 Applications of Checkpointing

We demonstrate the usability of our compiler-based chdokipg infrastructure via three key appli-
cations that leverage this support. The first applicaticio isupport speculative execution overlapping
with delinquent loads, where a compiler helps to schedulkwmat can potentially overlap with the
long cycles of last-level cache misses. We conduct an ithdgpdy using a delinquent-load intensive
application fICF). Depending on different locations where delinquent laady reside, we present both
control speculation and data speculation as compilerfoansition schemes to tolerate the long cache-
miss latency caused by the delinquent load. As part of a cete@oftware speculation model, we

study various types of value predictions and propose a mattieal timing model that matches well

CHAPTER 1. INTRODUCTION 3

with timing behaviors of real-machine applications. Thglécation is a limit-test for the applicability
of our lightweight checkpointing technique. Unfortungtele find that for this case the opportunities
for speculative optimization are too rare and fine-graireednhortize the checkpointing and prediction
overhead, and hence cannot demonstrate speedup.

The second application is support for debugging, in pddichy giving a programmer the ability
to roll-back execution to repeatedly examine the state abgram prior to the manifestation of a bug.
We study several flawed applications from the BugBehch [4itfsand demonstrate the low overhead
of checkpointing support for rollback.

The third application is support for backtracking algamth where a programmer can avoid im-
plementing manual support for rewinding data-structubgdeveraging compiler-based checkpointing
to provide it automatically instead. We study VPR [[9] 54], particular the simulated-annealing-
based place-and-route algorithm for FPGAs, which opticadly swaps blocks and either keeps or
discards the swap depending on whether a cost function ireprdBy comparing the original manual
implementation of backtracking support to our automatimpier-based approach, we demonstrate the

benefits that our automatic checkpointing infrastructwae grovide.

1.3 Research Goals

In this dissertation, we plan to explore the techniques &bknfine-grain software-only checkpointing
and aggressively reduce checkpointing overhead by exgi@nd exercising compiler techniques. In
particular, we will focus on introducing compiler trangfmations to enable checkpointing, adopting
existing compiler optimizations to make it effective foredkpointing, and inventing new checkpoint-

specific compiler optimizations. We strive for the folloginesearch goals.

1. Enable checkpointing over arbitrary program regions.

We will investigate the process that enables fine-grain aftivare-only checkpointing over
programmer-annotated regions of arbitrary size and cotitple In addition to introducing
general schemes to enable checkpointing on common scerfesim a region with potentially
unbounded size, we will also discuss detailed steps to bgmathological corner cases to make

our checkpointing scheme complete.

2. Improve checkpointing performance through compiler optimizations.

We will explore software-only techniques to improve chaaikfing performance by employing

CHAPTER 1. INTRODUCTION 4

compiler optimizations to aggressively reduce checkpugnbverhead. In particular, we will
focus on evaluating the effectiveness of existing compiletimizations in the software-only
checkpointing domain, and inventing new compiler optirties that are specially designed
to harness the new optimization opportunities that are erfyosed through the software-only
process of enabling fine-grain checkpointing. Since we tiagecomplete knowledge of the
entire application (including the checkpoint-enabled goam region), we expect significant

performance improvements over alternative coarse-gairnisns.

3. Support key applications.

Leveraging our efficient software-only checkpointing feamork, we attempt to enable check-
pointing service on three key applications. A checkpomdi®ed application will either require
new functionality that is otherwise impossible or impraatj or obtain improvements that will
ultimately benefit programmers who choose to adopt them. lAle @ explore two coarse-
grain applications: checkpoint-enabled debugger, andkgtment-support for automatic software
backtracking usingyPR. Even more aggressively, we will attempt a high-risk casg tises an

application-level technique (software-only checkpaigji to explore speculative optimization

related to a micro architecture-level feature (delinqueatls).

4. Enable future research.

Our compiler-based checkpointing infrastructure has lmecgtable, mature and is capable of
handling large user applications. We are publicly relegasive entire source code package (all
compiler passes, compiler driver, complete sanity tesktiaghess, complete source codes of
checkpointing-enabled applications, tips for effectMaliilding compiler passes for transforming

and optimizing large-scale applications, suggestionsotid and bug-free software development

practice, etc.), to encourage future benefit from the fraomkw

1.4 Thesis Limitations

Any academic work has limitations and our work is not an ekoep In this thesis, we explore a user-
level checkpointing approach that can only checkpoint o whose source codes are available—for
situations where source code is unavailable, such as ome®ststem services and library calls, we
provide a mechanism for the user to describe the impact ockpbéting of the service/call. When

such outlining is not possible, checkpointing cannot bepetied. We design our checkpointing buffer

CHAPTER 1. INTRODUCTION 5

to favour run-time performance over storage efficiency, la@dce do not directly pursue methods of
purely reducing storage requirements at the cost of pedno@. Finally, our checkpointing method can
only support single-threaded applications having a singtstanding checkpoint at any given time; we
have not yet considered support checkpointing within aistiileaded environment, checkpoints with
multiple rollback points, nor support for nested checksiiVe do not support rollback to a checkpoint

that has already been committed.

1.5 Thesis Organization

The rest of the thesis is organized as following. In chaptew@ conduct a thorough review of
existing background work related to software-only cheakiiog, deterministic re-execution, compiler
optimization, and other closely related areas. In chapfews discuss the detailed analysis and
transformations to enable software-only checkpointingrany user-annotated program regions. In
chaptef ¥, we present full details of existing checkpomspecific compiler optimizations that target
maximum overhead reduction through aggressive compile-tanalysis and transformations. In
chapter b, we show detailed analysis of the checkpointibgfer schemes: the selection between
undo-log and write-buffer schemes, various undo-log lbuffgolementations, as well as performance-
storage tradeoff comparisons. In chapter 6, we introduedirt key checkpoint-enabled application
that attempts to overlap program execution with delinqlesds (DLs). In addition to identifying DL
locations, we conduct both theoretical modeling and prategvaluation for checkpointing over fine-
grain DL's granularity. In chaptdr 7, we illustrateo additional key applications that benefit directly
from our low-overhead software-only checkpointing infrasture. These applications either gain novel
functionality that won'’t exist otherwise, or ultimately refit users through improved programmer’s
productivity. We finally conclude in chapter 8 by summarigthe entire thesis and give suggestions on

potential future research directions.

Chapter 2

Background

Checkpointing[[211, 35, 48, 56, 62] is the process of takingi@shot of program execution, so that if
there is a subsequent program failure, error, mispredictio other unwanted event, the program can
be rewound to the snapshot to recover and start over. Chietikgpis often provided as a low-level
service in high-end computer systems, supported by haedarahe operating system itself—to ensure
high reliability and availability, providing security eahcement and improving fail-over support.

The techniques presented in this dissertation leveragewwark in related areas that are summarized
in this chapter, including program checkpointing, commpilgtimizations for checkpointing, thread-level
speculation LS, transactional memoryM), deterministic re-execution, and program backtracking—

especially when used for software debugging.

2.1 Checkpointing Basics

We provide an example to illustrate the checkpointing psede Figurd 2J1. A program’s sequential
execution is partitioned to have pre-defined checkpointdeaignated program locations (frapd to

P5). At each of these locations, the program can either coitimaicurrent checkpoint and immediately
start a new one upon successfully completing the curregéstéthout any error, or rollback the existing
checkpoint and restart it after recovering an abnormal it@nd The program starts its normal execution

at program locatio®1 along the path of .normal execution. An unexpected error occurs at runtime.

At checkpointP3, this error is detected and the program needs to recowver iftoThe checkpointing
recovery process is activated to safely rewind executiark lia its latest start-checkpoint location
along the patl2. checkpoint recovery. This process restores the memory changes captured in the

checkpointing buffer. Upon completion of the checkpoigtrecovery, the program resumes its normal

CHAPTER 2. BACKGROUND 7

1. normal gxecution o ““Z3Checkpoints

. o
. }Y) 2. checkpoint recovery S
i S
=
Q
v p 3
I m
&
. o
3. continue hormal c
execution ; g
=}
v X

Figure 2.1: Overview of Checkpointing

execution from positio®2 as if it arrives at this location for the first time without aesror. Execution
continues as normal after checkpoint recovery along thik phB.continue normal execution.
The same checkpointing process repeats for each addifwogiam failure captured throughout the
rest of the execution. Between consecutive checkpoin&skgointing needs to preserve program states
in preparation for potential program failures and recovérkis involves copying memory at runtime
that results in overhead if the program behaves normaltyjraplementing checkpointing optimization

methods that minimize this overhead.

Prior research has investigated hardware-based chetikgpjBl, 31/46] and software-only check-
pointing [11,12] 36, 39, 50, 62]. Hardware-based schemfs ae hardware support to buffer
checkpointing states and facilitate recovery. Howeveeckpointing hardware has limited resources
(usually limited buffer size) and is often not available onmamodity platforms. This not only restricts
the applicable range of code that can be effectively chaokga, but also puts the long term prospects
of hardware schemes under question. Software-only chaukpp schemes exhibit flexibility by
removing the dependence on checkpointing hardware, asdrimediately becomes more applicable
on a wider range of systems that demand checkpointing servidowever, existing software-only
checkpointing schemes suffer from prohibitive overheadcbpying a large amount of memory at
runtime. These schemes often employ heavy-weight chectipgi processes that operate at the
application level [[11, 12], operating system leviel|[34,[80] or virtual-machine level[[62]. They

focus on providing software checkpointing service to ewkasystem robustness and reliability, thus

CHAPTER 2. BACKGROUND 8

performance of checkpoint-enabled applications is notpifi@ary concern. Coarse-grain software-
only checkpointing introduces prohibitive overhead. Taege of quantified overhead is between 15
times slower to over 1@00 times slower [40]. As a result, coarse-grain softwary-oheckpointing is
not suitable for performance-critical applications thatéreal-time responsiveness requirements.

In contrast to existing approaches, we propose a lightwedgid software-only checkpointing
scheme that will work on fine granularity. It heavily leveeagthe compiler to aggressively optimize
checkpointing performance, resulting in a checkpointingplementation that is more suitable for

performance-sensitive applications.

2.2 Hardware-based Checkpointing

Hardware-based checkpointing implementations providieenaardware support for basic checkpoint-
ing services. There are various schemes available undardtegory, ranging from using checkpointing
to repair computing engines [31], using checkpointing wuee ReOrder BufferROB) overhead|[5],
and using hardware checkpointing to improve system effigid46].

Hwu et al. [31] proposed a hardware solution to checkpoint computingirees to known good
states, and use it later to recover from a program'’s ill-biga caused by exceptions and branch
mispredictions. Their approach presented theoreticaigiiens and proved numerous theorems dealing
with maximum estimated checkpoint buffer size, algorithmgerform the exact actions, and even
high-level hardware design diagrams ready for implemamtat However, this approach did not
estimate the extra hardware cost as well as its related mggigation complexity. Although the authors
mentioned that the performance impact cannot be preciselyeq, it still lacks performance analysis
and comparison when their reference designs were to benmepiied either in real hardware or inside
a simulator.

Modern CPU designs employ two critical techniques to mainkagh performance: (i) out-of-
order execution to exploit instruction-level paralleligiioP), and (ii) reorder buffer (ROB) to guarantee
correctness. ROB requires a linear FIFO structure to gteeaits instruction’s commit sequence.
This puts challenges on various design concerns, inclugingme table entry, instruction retirement
control, and register reclamatiomkkary et al.[5] proposed a hardware-based checkpoint scheme to
alleviate major ROB overhead. Their scheme only generdieskpoints at branch instructions that
have high likelihood of misprediction. Every instructianthe program will need to map to a particular

checkpoint, increase its corresponding counter when itiisgoexecuted and decrease the counter after

CHAPTER 2. BACKGROUND 9

it retires. This guarantees a global total ordering for cattimg checkpoints in the right sequence.
The checkpoint will not commit until all instructions retgsed with it have committed. In addition,
each memory instruction needs to have extra counters tfemttoethe instruction’s uses. This poses a
relatively large ISA change and hardware complexity. Tlisesne also proposed various hardware
changes for increasing ROB performance through checkpgintHowever, many of the proposed
features need to significantly modify existing architeefuvhich makes it prohibitive. They did not
address the design complexity, nor potential cost and pedonce impact when implementing the
design.

When an individual checkpoint needs to cover a huge numhbaswtictions (e.g., hundreds millions
or even billions of instructions), the size of the checkpdircomes a major storage and efficiency
bottleneck. Moshovos et al[46] proposed a novel checkpoint compression scheme fa-gigle,
coarse-grain checkpoint/restore. They observe valuditypdeom both in-memory data and address
streams and the effectiveness of their compression is laséte exploitation of such locality. Based
on previously proposed dictionary-based hardware corapreghat are both expensive and slow, they
observe that simpler mechanisms can offer similar commedsenefits with a much smaller and
simpler direct mapped structure. The newly proposed cosspreaequires few resources and can easily
be pipelined to achieve one full block compression per msaecycle. When used alone, it can reduce
checkpoint storage to 52% of its original size. When comiinéth previously proposed hardware-
based compression, it improves overall compression rabée wignificantly reducing on-chip buffer
requirements. Even with hardware’s assistance to compresskpointing, the checkpointing process
is nevertheless coarse grain with significant overhead.

All hardware-based checkpointing schemes rely on availabkckpointing hardware to conduct
their designed activity. On one hand, this improves necgssecution efficiency by providing native
hardware support. On the other hand, the amount of avaisaiglport is strictly limited by the dedicated
checkpointing hardware that might not be available for caity servers. This restricts the applicable
domains that the checkpointing service can apply. Ovenegrauch constraints leads to the design of

software-only checkpointing.

2.3 Software-Only Checkpointing

Due to problems of checkpointing hardware’s limitationsd amailability, software-only checkpointing

schemes are much more popular than hardware-based chetikgoPlank et al.[34,[50] presented a

CHAPTER 2. BACKGROUND 10

user-directed checkpointing approach for manually inmsgrtheckpointing directives at programmer-
designated source-code locations. The compiler procélssemnnotated code, and converts directives
into checkpointing library calls. The checkpointing librainterface includes calls to identify
inclusive memory regions, exclusive memory regions, amectives to force a checkpoint at certain
program locations. They developed techniques using slate-flow analysis to optimize sizes of the
checkpointing regions. Their contribution is a detailedkveard all-path data-flow algorithm, which
incorporates a normal control-flow analysis to build thegpams call graphQG), partitions the CG into
sub CGsCG’) where eaclCG’ includes only one single force-checkpointing directivésabeginning,
builds relevant sets on each statement inside the CG, snsentory-inclusive and memory-exclusive
calls, and iterates until the process finally stabilizes.isTdpproach presents a compiler analysis
leading to refining coarse-grain checkpoint region parigj so that each incremental checkpoint will
only backup chunks of memory that are changed between two consecut®ekpbints. However,
their scheme is still coarse grain whose granularity lgrgidpends on the programmer’s intuitive
understanding of the program’s checkpointing region. @éligjh optimizations can reduce overhead,
this scheme does not provide performance comparison thasures checkpointing efficiency against
previous approaches. In addition, this approach only egperan FORTRAN programs, which are

known to have more regularity and less un-predictable digaies.

Li et al. [39] proposed Compiler Assisted Techniques for CHeckpognfCATCH—a full program
checkpointing solution that can automatically identifyeckpoint locations. The CATCH scheme
includes a CATCH filter (compiler passes) and a CATCH runtilibeary, both are built into a
modified version of GCC. CATCH identifies potential checkypdiocations at either the beginning
of a procedure or the first statement inside a loop. For eatdmpal location, the system calculates
its current checkpointing interval and evaluates costs.eWVd set of pre-defined conditions hold on
a potential checkpointing location, an actual checkpasninarked at the location, where the entire
memory footprint of the running process is written into akdige. Not satisfied with poor initial
performance, the authors then aggressively apply opttinizéechniques. This includes checkpoint file
compression, adaptive checkpointing, profile-guidednojition, etc. The optimizations effectively
reduce checkpoint time from 212 sec/ckpt to 30 sec/ckpt, raddce checkpointing overhead from
78.52% to 2074%, respectively. The CATCH approach shows that comppénuzation is an effective
tool to reduce checkponting overhead. CATCH works effidyefur coarse-grained checkpointing that
focuses on reliability enhancement and fault toleranceetip However, due to the long latency and

large amount of memory that needs to checkpoint, this appraganot suitable for applications with

CHAPTER 2. BACKGROUND 11

critical real-time performance requirements.

Whaley[62] introduced a complete virtual-machine level chechping scheme using Java reflection
and program analysis. Java reflection marks all necessédy fieside each relevant object. When the
object is removed from memory, all fields marked necessayvaitten into permanent storage on disk,
so that they can recover thoroughly and safely from disk vtherobject later needs to be reconstructed.
The scheme performs a simple flow-insensitive and contesdrisitive pointer analysis, so that every
object in the virtual machine and each field in the object asekad necessary whenever there is a
reaching path from the beginning of the program to the objedield. The checkpointing scheme
stops the program when its execution reaches its main famchiuilds the objects reaching set using
the program analysis, writes all relevant memory into a éllskand then continues normal execution.
Each subsequent program launching is equivalent to a chettkigcovery which essentially reads the
disk file and populates its contents to memory. After theéahdverhead of conducting program analysis
and checkpoint building, Whaley’s checkpointing approsicbws improved memory usage and speed
up in programs launching (startup) time. It is especiallgfuksfor early JVMs that have significant
application startup delays. However, there is no evalodiio the cost of checkpointing on both the
checkpoint file size and checkpointing’s performance impadhe original application. This approach
concentrates on virtual-machine level coarse-grain staglplication checkpointing. It lacks support

for multiple checkpoints and checkpointing under finer gtarity.

Due to changes in data set size and improvements in alg@ijtlanprogram’s average running
time has become longer than normal hardware’s Mean Time &atvirailuresNITBF). This implies
that certain hardware components are guaranteed to faldef program runs to its completion. A
solution needs to protect such long-running programs framtare failures and minimize service
interruptions. Bronevetsky et al[11],[12] proposed using compiler techniques to implement an
application-level, non-blocking, coordinated global ckmointing solution for MPI-based programs
on distributed-memory parallel computing clusters. Therse program is preprocessed by a compiler
where manually annotated checkpoint macros are convertedheckpoint library calls. This separates
the implementation of the checkpointing library from the NBrary. A redesigned protocol exchanges
messages on request to build checkpoints for each indiMdBéaprocess and collaborates with the rest
of the MPI protocol. The solution focuses on the design anglémentation of an enhanced protocol
on top of the MPI layer, guarantees consistency, and haddfesent types of MPl messages properly.
However, the major problem is the excessive checkpointiggheead. In addition, this approach works

over coarse-grain process isolation through manual atiootaf program’s checkpointing locations.

CHAPTER 2. BACKGROUND 12

In contrast to existing software checkpointing approatchaswork on coarse granularity and incur
prohibitive overhead, we propose a lightweight checkpoghscheme that will work on fine granularity.
For performance-sensitive applications, tracking progchanges on page, object, cache-line or array-
level of granularity is still overly coarse grain. We will gore finer checkpointing granularity by
tracking on a per-store basis through source-code institatien. We believe this is relatively the finest
possible tracking granularity that a user-guided programgrtool can perform on source-program level
and is a field that has not been fully explored previously. ifigications, difficulties and benefits of

such fine-grain tracking is largely unknown to the reseamhraunity.

2.4 Compiler Optimizations for Checkpointing

A compiler [3[4[6] is a computer program that converts paogidescriptions between different levels
of abstractions. Often it translates a program from a hayell source-code format into a low-level
machine-code description suitable for executing on aqdéi target platform. A compiler’s traditional
focus [3[4] is automata-based parsing and semantic asaff/sont end) that handles different
language syntax and completes the translation proces® Moently, compilers [6] have become more
focused on improving code quality and application perfarogaby exploring, identifying and reducing
redundancy in application codes through program restrincfifpack end).

Recent work [[11, 12, 14, 50, 52] show that compiler optimiarag are important in reducing
checkpointing overheadPlank et al.[561],/52] pioneered using a compiler to identify memory regio
that are not changed between consecutive checkpoints ahading such regions from incremental
checkpointing. Choi et al. [14] noticed that normally only a small number of memory magee
modified DIRTY pages) between nearby checkpoints and checkpointing ch@ath save only the
DIRTY pages. This reduces full-process memory checkpuintnto checkpoint only the memory
pages that are modified between consecutive checkpdmntmevetsky et a[l11,[12] used a compiler
to analyze ranges of an array that are modified between aatsecheckpoints. They developed
compiler optimizations that identify first-write and lagtite array indexes, and checkpoint only the
modified range of the array.

Comparing with existing work, we plan to expand the use of piters as the critical tool to further
advance software-only checkpointing. We plan to explorerfaheckpointing granularity by lowering
the memory tracking unit from page, memory object or arraglléo per-store level—a degree of fine-

grain checkpointing that hasn't been explored. A compiléraentinue play a key role to both enable

CHAPTER 2. BACKGROUND 13

checkpointing through compiler transformations and redtleeckpointing overhead through compiler
optimizations. We will design, implement and evaluate h@eenpiler optimizations that particularly

target overhead costs and opportunities brought by thegfiaier checkpointing scheme.

2.5 Systems and Mechanisms that Leverage Checkpointing

Other checkpointing-related systems and mechanisms @tisly leverage the checkpointing principle
for different design goals or functionalities. They inctudeterministic re-execution, speculation, and

software backtracking.

2.5.1 Deterministic Re-Execution

Deterministic re-execution allows a multi-threaded pamgrto restore to a previous program location
and re-execute it under a deterministic order. One of thgufrat uses of deterministic re-execution is
to debug or profile parallel applications. A complete detarstic re-execution scheme includes two
components: (i) checkpointing of a parallel applicatiord &in) deterministic replay. We focus our
discussion more on the parallel checkpointing portion ¢édrinistic re-execution.

Feldman et al[21] presenriGOR—a system capable of conducting full-process checkpajntind
optimize it to incrementally checkpoint only dirty pagets dleterministic re-execution is coarse-grain
and only precise up to the nearest program location whereckphbint is taken. IGOR has high software
overhead: checkpointing causes applications to slowdoithinithe range of 40% to 370%, depending
on checkpointing frequency.

King's time-traveling virtual machineT(TVM) [33] discusses an OS-level debugging facility by
checkpointing entire OS states into disk files. This incl@fU state, complete virtual memory and
virtual disks, multiple user applications, and all systerviEes. Coupled with light-weight fine-grain
forward replays, TTVM's deterministic re-execution camacak any precise program location between
two consecutive full checkpoints. Designed as an OS-legbudging tool, its overhead is also high.
TTVM reports 7% runtime overhead with 25 MB/sec disk-writeaughput when conducting one full
VM checkpoint every 10 seconds.

Xu et al.[64] demonstrate a re-tracing todt¢Tracé that is built on top of VMWare’s deterministic
replay technique to collect only non-deterministic evehtsng program execution and later expanding
the event collection into full program traces using rephllware’s deterministic replay provides per-

instruction precision, but ReTrace comes with prohibiseéware overhead especially in the expansion

CHAPTER 2. BACKGROUND 14

stage. Thus ReTrace is normally used as an offline profiling tm analyze trace-based program
behaviors or generate various types of precise traces.

Comparing with existing deterministic re-execution apmtees that checkpoint entire VM or
application to disk, we will instead checkpoint on a perstgranularity to memory within a
single application only. Checkpointing overhead seemsotoetate closely with the checkpointing
granularity—the coarser grain of checkpointing, the higbeerhead it causes. Thus we decide
to checkpoint over the finest-possible granularity and epeuch reduced overhead. We plan to
provide a per-instruction level precision when deterntinise-execution takes place. In addition,
we will guarantee that precise application context be restdor the deterministic replay stage. This
includes CPU registers, the application’s complete mencontents, precise exception state, and any
application-level global variable that may have been medifiue to side effects of the checkpoint-
enabled application’s execution. However, since we wilidiect in-memory user-level checkpointing,
we cannot precisely restore states in I/O devices, as wasliadss that are changed in system codes. In
contrast to existing work, we strive to build a high-perfamie checkpointing framework with a heavy

emphasis on maximium overhead reduction.

2.5.2 Speculation

Thread-level speculation [16,127,/59T(S and optimistic implementations of Transactional Mem-
ory [28,29[57] TM) are optimistic program executions whose result might mohbeded (and thus
discarded). Both TLS and TM provide for each optimistic #tteupport to checkpoint before execution
and rollback when an error occurs. Dependency tracking andlict detection are necessary to make
the optimistic parallel execution model complete.

Depending on available hardware support, there existgya kxploration space for implementing
this speculative parallel model. Hardware-based solstfdii M) [28/30,65] often provide enhancement
on cache protocols and thus can partially reuse L1 or L2 cashthe speculative buffer. Conflict
detection and rollback are also implemented in hardwanes tlardware-based solutions can often
provide higher performance. However, it is non trivial tsidg@ and implement a simple yet efficient
cache-protocol extension that guarantees both correctares efficiency. These schemes also face the
challenge of overflowed buffers that ultimately limit theagularity of speculative work. Software-
only solutions [[2, 29, 57]%TM remove the hardware dependency by implementing the €eotjie
in software. They are thus not limited in buffer capacity,t lsuffer from prohibitive software

instrumentation overhead. In between there exist hybridtisns [8/18] 44] HyTM) that attempt to

CHAPTER 2. BACKGROUND 15

combine the best of both sides—make the common case (smuadlairtions) fast by using HTM, and
make the uncommon case (large transactions) safe by dedeiltM.

In contrast to many TM or TLS solutions that use hardwaredoirffy for multi-thread workloads,
we instead focus on using software buffering for singledlor applications. This allows us to focus
entirely on doing the best-possible work for checkpointedgne and remove any dependency on
checkpointing hardware that doesn’t exist. Existing safewonly checkpointing solutions suffer from
prohibitive checkpointing overhead, thus we strive to mdihe overhead by conducting checkpointing
at the finest-possible granularity. We exploit the compdsrthe key tool to enable software-only
checkpointing by instrumenting on a per-store granulariye further explore aggressive compiler
analysis and optimizations over the distinct opportugsipeovided only by the compiler-driven program
instrumentation. Build upon our efficient software-onlyechpointing infrastructure, we plan to support
a few important single-thread speculative applicationsdeanain that needs further and thorough

investigation.

2.5.3 Software Backtracking

Software Backtracking [24, 25, 836] allows a program to ekedackwards from the current location.
Common uses of backtracking include reverse execution iebagber or a virtual-machine environ-
ment, and individual applications that exercise backiragklgorithms.

Program debugging often demands frequently revisitingg@program locations and states when
attempting to analyze and isolate the root cause of a bug ckttzeking-enabled debugger can greatly
simplify the reverse-execution debugging process by ahtitig the need for program restart, as well
as avoiding all problems associated with reproducing teeipe bug-trigger environment.

Agrawal et al.[24],[25] presented a prototype debugging tool that is basedyoamic program
slicing and execution back-tracking. It provides a struadiuview of dynamic events through run-time
traces, but is constrained by storage limitations.

Ding et al.[19,[66] pioneered behavior-oriented parallelizati@OP) that attempts to parallelize
applications with unpredictable control flow, indirectalatcess, and input-dependent paralleliB@P
allows a program to be parallelized based on partial inféionaabout a program’s behavior and user
hints. BOP is based on programmable software speculation, where aousar analysis tool marks
possibly parallel regions in the code, and the run-timeesgstxecutes these regions speculatively in
parallel. BOP uses process consistency where the operating system spadslative execution by

forking the current non-speculative process and makingesopf each existing memory pages. This

CHAPTER 2. BACKGROUND 16

imposes high software overhead by conducting processnigr&nd thus forces implicit coarse-grain

speculative regions.

Recent versions of the gnu debuggébX) [22] allow reverse program execution by conducting
instruction-wise program replay. It generates the reptay by conducting a per-instruction check-
pointing inside its replay buffer for each individual insition once the debugger is in the reverse-
execution mode. For each instruction, the checkpointiroggss copies the memory contents that the
instruction is about to overwrite, and also selectivelyesasufficient CPU registers that are necessary to
reconstruct loss-free CPU state upon a rollack requests, fhueach instruction, the replay will restore
the saved per-instruction checkpoint memory contents laaPU register states. This per-instruction
checkpointing comes with prohibitive overhead becausel@ieigger has to preserve sufficiently large
machine states and original memory contents in order toigalgcreconstruct each instruction-wise
machine state after a per-instruction restore. This schadateallocates a fixed-size replay buffer and
limits the replay distance for up to 200K instructicﬂwplacing an implicit constraint on the maximum

size of code region that can be checkpointed and replayed.

In contrast to existing backtracking applications, oue#it-based checkpoint-enabled debugger will
not have such limitations. In addition to offering featureduding unlimited retries, our checkpointing
scheme allocates its buffer in heap memory so that it can gnevbuffer dynamically when needed.
This allows our checkpoint-enabled debugger to suppodrsevexecution over regions with potentially
unbounded size. The key feature that differentiates ougddsom the rest is the ability to conduct
code optimizations after performing aggressive prograalyais when implementing the support for
backtracking inside a compiler. Our compiler has a complates of the entire application’s source
code, thus it is capable of making better optimization dens We do not quantitatively compare with
a reverse-execution enabled debugger because such deboghebecome available towards the end

of this research.

We further extend support of program backtracking on socoozke level. We expose the
checkpointing functionality to the user via a set of simplelg, so that programmers can have explicit
control of program backtracking by specifying the preciseakpoint region location through a pair of
region delimiters at the source-program level. Rather thgaporting all tedious and error-prone details
of conducting manual backtracking on each individual stooeir compiler-based scheme automates the

entire enable-backtracking process and frees the progeartmninstead focus more on other important

120K instructions is the default replay buffer count on GDB 7

CHAPTER 2. BACKGROUND 17

issues. This will help to reduce the develop-run-debugecyiohe and convert the improvement made

on the development process into improved programmer’syatodity.

Chapter 3

Enabling Checkpointing

As previously introduced in chaptel 2, checkpointing! [3B(5E6/62] is the process of taking program
snapshots to facilitate failure recovery on potential feforogram errors. In contrast with previous work
on hardware-support for checkpointing or coarse-graitwswe-only checkpointing based on copying
large memory regions or cloning entire objects in softwamethis chapter we discuss a lightweight

compiler-based software-only solution to checkpointimat bperates at the level of individual variables.

We plan to leverage compiler techniques to enable chectipgiron its finest granularity and
aggressively optimize the checkpointing-enabled codenexximum efficiency. By choosing a software-
only scheme, we avoid all problems related to the checkimginbhardware that may not exist in
a given system. By proposing a lightweight and fine-grainesafy, we target performance-critical
applications with rapid recovery from potentially frequieiibehaviors. We plan to further explore
checkpointing overhead reduction by aggressively apglgiompile-time analysis and optimizations.
To our best knowledge, this is the first such attempt on firgagsoftware-only schemes. We plan to
enable software-only checkpointing over individual sseré¢he finest source-code level checkpointing
granularity that naturally adapts to program behaviorvieres work [12} 14, 50] shows that a compiler
can play a key role in building an efficient checkpointingusioin by eliminating checkpointing
overhead. We rely on a compiler to provide precise data tydeseze information, and conduct compile-
time analysis to extract critical information that exhsbfiotential optimization opportunities that are
normally not available at runtime. In addition, compileencutomate program transformations that
will free users from tedious and error-prone manual aniwtatespecially over large program regions
with complex constructs. We plan to leverage compiler teples to automate the checkpointing-

enabling process and aggressively optimize our propogedase-only checkpointing solution targeting

18

CHAPTER 3. ENABLING CHECKPOINTING 19

«— C/C++—] LLVM IR E
—.JAnnotated—J} Enable Optimize
source | Checkpointing Checkpointing
Source [
code [LLVM frontend ‘
,‘ | LLVM
‘ Callsite Analysis ‘ 1 Backend
‘ Inter-procedural Transformations ‘ /\

|

: ‘ Intra-procedural Transformations ‘ B

|

‘ Handle Corner Cases L

Power

x86 ‘ -

Figure 3.1: Overview of enabling checkpointing.

maximum overhead reduction.

We plan to relax the constraints on applicable regions thapotentially be checkpointed. We grant
the user the ability to indicate a region of arbitrary sizd eomplexity. A checkpointable region can be
as small as one line of source code, or as big as the entireaiih. A user only needs to identify the
region by marking both boundaries, with the rest of the medeally automated by the compiler. We
will further provide a robust checkpointing infrastruauio enable novel features on key applications

that can benefit directly from the efficient software-onleckpointing support.

3.1 Overview

Figure[3.1 presents an overview of our checkpointing syeKPT), with detailed steps on compiler
analysis and transformations to enable checkpointing. Shiséem takes as input a source program,
with annotations that indicate the locations where a chackpegion begins and ends, as well as code
that decides whether the checkpoint should be committedveound when the current checkpointing
process is about to complete. The only required user acti¢o identify the checkpointing program
region by inserting a pair of region delimiters, then our piar automates the rest of the process to

enable checkpointing.

The entire enable-checkpointing process consists of f@jomnsteps:

CHAPTER 3. ENABLING CHECKPOINTING 20

Step-1 converts th&€/C++ language source code to an intermediate representalibn tijat
LLVM [37,38] operates and manipulates on. We choose to work onifii¢ IR level to gain language,
compiler and platform independence. In Figlrel 3.1, we shaoly 0/C++ inputs because our test
applications happen to be written in these languages. lityglere is no limitations on the selections
of programming languages a user can build applications #@och enjoy the benefits offered by our
checkpointing framework. Despite a large number of exgstiompilers that already suppam.vM, any
compiler that provides a frontend that can convert souncguage code intaLvM IR will be able to
utilize our checkpointing framework.

Step-2 Callsite Analysi¥ analyzes callsites that reside in the user-defined chéukpg region.
Using a callsite analysis algorithm, it recursively visdt$ function callsites within the checkpointing
region and discovers all user-defined functions that maynmked directly or indirectly from the region.
This information becomes a vital prerequisite that enasties-3 to complete the checkpointing enabling
process for any user-annotated program region.

Step-3 [nter-procedural Transformationgonducts program restructurings to enable checkpointing
on all participating user-defined functions. For each fiamctdentified by the callsite-analysis phase,
our compiler generates a checkpoint-enabled version thekists with its original version.

And finally, step-4 Intra-procedural Transformationsconducts program transformations that
enable checkpointing inside the annotated region only.

After these four steps of compiler analysis and transfaionai we produce a program that is
checkpoint-enabled with respect to the user-annotatedrgmo region and functionally equivalent to
the original program. We will unveil further details on s$epnd actions of enabling checkpointing
later in the chapter. Our checkpointing transformationsd @ptimizations are implemented as custom
LLVM [37,[38] passes, with each pass targeting a particular sisaly transformation action. We use
an existing pass manager frathvM to establish a pass-execution order that naturally resaitenter-
pass dependencies. This pass manager guarantees that eacltustomLLVM passes will be visited
at least once while respecting all dependencies among @akphinting-specific transformation and
optimization passes.

When the checkpointing framework completes its transftiong, it produces transformed.VM
IR that has checkpointing enabled over the user-annotategtgmoregion. This transformdd.vM IR
also preserves the behavior and correctness of the origpmication. This code can then proceed to
optimizations and further target multiple native platferthat LLVM infrastructure supports. LLVM’s

platform support includes X86, X64, and ARM where the natisde generators are production quality.

CHAPTER 3. ENABLING CHECKPOINTING 21

LLVM includes a large number of platform targets (PowerP@a8s, MIPS, XCore, PTX, AMD, etc.)
where the current support is still experimental. In additioLVM provides aC backend that can convert
optimizedLLVM IR back toC source code. This source-to-source approach improvespmrtility

and allows us to further capitalize on all optimizations afive back-end compilers.

3.2 Compiler Infrastructure

Our development of checkpointing compiler analysis andnupations is based on well-established
open-source research compiler infrastructures. As weadedltribe in the following sections, we initially
used SUIF because of its stability, good ANSI-C standardpt@mce and source-to-source compilation

path. However, we were later motivated to migrate our workligM.

3.2.1 SUIF

SUIF [7,26] is a open-source compiler infrastructure aoradly developed at Stanford University. It
provides a solid platform for compiler research. SUIF has twain components: a small, well-
documentedkerne] and atoolkit composed of compiler passes that operate on the kernel. &rhelk
defines SUIF’s intermediate representatitiR) that specifies the details of the language and provides
functions to access and manipulate tReThe toolkit include< andFortran front ends that convert
source codes written in these languages into SUIF IR, a lleagl-parallelism and locality optimizer, a
MIPS back end, and helper tools for compiler developmentei@nhancements includeSJIF-to-C
backend that converBUIF IR to low-levelC code, as well as work that improves language compliance
of the produced code to ANSIC standard.

We started our compiler-based checkpointing using SUIFs{@e 13.0.5)— an available version
that is considered most stable and C-standard compliankekr, active development and support of
SUIF ceased in 1997. While we developed a large amount of gsithg the SUIF infrastructure, the
lack of support, existing expertise, and bug fixes prevengeflom making timely progress—hence we

migrated our compiler infrastructure from SUIF to LLVM.

3.2.2 LLVM

LLVM [87]B8] is an open-source software infrastructuret fmavides modular and reusable components
for building compilers and programming tools. LLVM’s buihdj-block components are ideally

language and target independent. Using LLVM, one can aacts new compiler with a selection

CHAPTER 3. ENABLING CHECKPOINTING 22

of the right components that exist, glue code, plus any corapis that are not currently available (need
to be written). This software development using librargdzh composition model reduces the time and
cost to construct a particular compiler and allows existiognponents to be shared across different
compilers over different platforms. Improvements maderte compiler can implicitly benefit all other

compilers that use LLVM’s building-block components.

LLVM includes a small, carefully-designed, easy-to-urstignd and well-documented intermediate
representationlR), and a large number of existing program analysis, trangition and optimization
passes that manipulate the IR. Many frontends exist thatoccawert language source code, (
C++, Java, Fortran, Python, etc.) to LLVM IR. LLVM’'s middle-end includes a large number
of robust program analysis and transformations that arellpopn most modern compilers. This
covers scalar optimizations, loop-based optimizatiomstriiction combining and simplifications,
instrumentation for performance debugging, advancediingdi various forms of alias analysis and
inter-procedural optimizations (IPO) that rely on the jweaesults of alias analysis. Important recent
development includes automatic vectorization on bothddakick level and loop level, as well as
support for OpenMP and PolyHedral framewdrkl[10, 23]. Platf backends are available that generate
architecture-specific machine code, including x86, x64 MARowerPC, MIPS, etc. Many of these
platforms’ native code generators are considered robuspearduction-quality. LLVM also provides

solid just-in-time (JIT) compilation for many of the supted platforms.

LLVM is extremely well documented and makes it easy to disc@ertain design features, coding
patterns and tips that can avoid errors. Online discussiomarchived daily and are available for easy
search. LLVM is sufficiently mature and is released as corsralproduct and being actively serviced
by Apple (Clang, XCode, etc). LLVM is currently under actiglevelopment with a 6-month release
cycle. There is a large, friendly and responsive LLVM comitwthat is helpful in leveraging existing

expertise and dealing with project-specific problems.

We migrated our checkpointing compiler development fromFstd LLVM. It turned out to be a
vital step that not only eliminated all problems SUIF bringst also greatly enhanced development
experience and improved productivity. Although we coultireoise most of the code that we originally

developed for SUIF, the ideas and algorithms are well l@yextaand lead to a rapid transition.

CHAPTER 3. ENABLING CHECKPOINTING 23

start_ckpt(); ... start_ckpt(); ...

backup(&a, sizeof(a)); (1)
a=.; M la=.
memcpy(d, s, len); (2) handleMemcpy(...); ()

memcpy(d, s, len);

foo(); (3) foo_ckpt(); (3)b
stop_ckpt(c); stop_ckpt(c);
foo(...{ /* body of foo() */ } foo(...){ /* body of foo() */}
foo_ckpt(...){ (3)-a
I* body of foo_ckpt()
* }...
(a) BEFORE (b) AFTER

Figure 3.2: Three code-transformation actions to enal@elgiointing

3.3 Checkpointing Analysis

Before our checkpointing system can conduct program toamsftions to enable checkponting, the
compiler must first analyze the user code both inside anddeutsf the checkpointing region. This
analysis collects program information, understands pmogstructure, makes plans and decisions on
code transformation, and guides the remaining transfaomatrocess. Thus on the highest level, we
separate the process to enable checkpointing into rouglolsteps: (i) checkpointing analysis and (ii)

checkpointing transformation.

3.3.1 Identifying Checkpointing Regions

Users of the checkpointing system only need to identify tec&pointing region boundaries, and the
rest of the checkpoint-enabling process is fully automatedur compiler. A programmer can insert a
pair of special function callsites to identify the checkyoig region:start_ckpt () to mark the begin
of the checkpoint region, argbop_ckpt (bool cond_code) to mark the end of the checkpoint region,
respectively. The checkpointing region can be arbitraldiyge and may contain complex program
constructs, including pointers, function callsites, Isgmcursions, etc.

We establish the following two requirements for the placenwod checkpoint region markers:

CHAPTER 3. ENABLING CHECKPOINTING 24

1. start_ckpt mustdominate stop_ckpt;

2. start_ckpt andstop_ckpt must be on the same lexical scope.

These two dominating requirements guarantee that a prég@ntrol flow will reach the end of
the checkpoint region after visiting the begin of the ch&ikiing region if the control flow doesn'’t
prematurely terminate within the checkpointing regione3étwo dominating requirements also imply
that both thestart_ckpt and thestop_ckpt markers are within the same funcjgn.

Note thatstop_ckpt takes a boolean argumentofnid code), which instructs the checkpointing
system to further conduct a checkpoatiort or commitoperation. If a boolean valueue is provided,
the checkpointing system will commit the current checkpoi®therwise, if a boolean valuialse
is provided, the checkpointing system will abort the cutrelmeckpoint and rewind execution back
to the checkpoint-begin location. We use this method toaaboprogrammer to communicate with
the checkpointing system and to control the post-checkipgiraction through an argument over the
published checkpointing APl once execution reaches th@gctteckpoint region. We give the complete
checkpointing API in append[x]A.

A run-away checkpoins a thread that has started a checkpoint region withoungriti Although
we can dynamically grow the checkpoint buffer in main memaryun-away checkpoint will likely
completely exhaust available memory and fail due to lack @fmary. We thus establish requirements on
(i) pairing the checkpoint-region markers over a domirgtielationship and (ii) forcing them to appear
within the same lexical level. These requirements guaeatitat the checkpoint-enabled application is
free of run-away checkpoints.

The compiler can potentially provide feedback if a user gdathestop_ckpt marker at an
inappropriate position (e.g., not on the same lexical legghestart_ckpt marker). The compiler can
suggest nearby alternative positions that satisfy the enragplacement requirements, or force to insert a
stop_ckpt marker at the correct location if the compiler has high canfa of its action. Alternatively,
if a user’s real intention is to enable run-away checkpoimtthe user can pass this requirement through
a compile-time flag so that the compiler will skip the anaysh the placement of thetop_ckpt
marker.

We can further instruct the compiler to allow multipleop_ckpt markers. A user can selectively

place more than onetop_ckpt marker in multiple program locations (e.g., both paths frcontrol

1placing both checkpoint region boundaries inside the sametibn is a necessary requirement. Otherwise, the compile
can not guarantee a correct execution order becausgtipeckpt can potentially be invoked beforgart_ckpt.

CHAPTER 3. ENABLING CHECKPOINTING 25

branch). Our compiler can collect altop_ckpt marker locations and analyze their combined intent:
if it is equivalent to placing a singletop_ckpt marker (e.g., placing twetop_ckpt markers on both
paths from a control branch is the same as placing a sirglp_ckpt marker on the dominating path of
the control branch) on the same lexical level assbert _ckpt marker, the enable-checkpoint process
will proceed as normal.

There are alternative methods to allow a programmer to iigeatspecific program region. This
usually includes usingragma or language-extension primitives. For simplicity we aglia pair of

special user-space function callsites as region delimitteavoid modifying the LLVM front-end.

3.3.2 Single-File Applications

A modern software project is normally composed of a large lmemof files residing in various (often
nested) directories. This is a preferred design for gootivemé engineering practice. However, this
also creates difficulties for our compiler-based checkjmjwork. Since the checkpointing framework
needs to process all user-defined callsites within the guak region, it must identify the location
(file name and line number) of potentially each user-defingttfon. This unnecessarily complicates
the checkpointing analysis with virtually no benefit. We sh@esimple and effective answer for this
problem.

We propose a solution called Single-File Applicati®8). For each project, 8FAis basically one
giant file that contains full details of all participatingefdl regardless of directory nesting. Since it is the
only file of the project, all user-defined functions will appénside this file. SFA is a way to ease the
complexity to perform whole-program analysis. SFA savemgaificant amount of work that needs to
locate the proper file under nested directory structureswibrk that needs to parse the file to identify
a function in need, as well as linking all relevant LLVM IR (geparated files) to the caller (the file
that defines the checkpointing region). For the vast mgjaftour test applications, building a SFA
manually for an existing application is a straight-forwéard labour-intensive process. Some difficulties
arise in dealing witlstatic data andstatic functions. Fortunately, we manage to work around them

with some careful manual efforts.

3.3.3 Callsite Analysis

Our compiler needs precise knowledge on all user-definedtiims that may be called directly or
indirectly from the checkpointing region. We call the pregeof discovering all such user-defined

functions callsite analysis Callsite analysis is an LLVM analysis pass that visits apliaption’s

CHAPTER 3. ENABLING CHECKPOINTING

start_ckpt(); 1. foo();
“f-oo(); 2. bar();

if (C) bar(); 3. func();
4. func2();
stop_ckpt(c);

foo(void){ printf(“foo\n”); }

bar(void){ func1();

... if(C1) func2(); ...
}
Code to enable List of all functions that need
checkpointing checkpointing

Figure 3.3: Code sample for callsite analysis

INPUT: CFG of the input program
OUTPUT: listed of functions that need to have CKPT-enabled version
INTERMEDIATE: List of Callsites ListCS (Initialized to NULL)
List of Functions ListF (Initialized to NULL)
r BEGIN
~ // 1. collect All user-defined callsites in CKPT region
foreach CallSite CS within CKPT Region do
L if (! isDeclaration (CS)) insert (CS, ListCS)

~ 11 2. recursively visit each involved user-defined function:
while (! empty (ListCS)) do
CS1 = pop (ListCS); F = getFunction (CS1); insert (F, ListF);
foreach CallSite CS in F do
if (lisDeclaration (CS) AND !visited (CS, ListF, ListCS))
insert (CS, ListCS)

/I 3. result appears in ListF:
- END.

Figure 3.4: Algorithm of callsite analysis

CHAPTER 3. ENABLING CHECKPOINTING 27

SFA LLVM IR, performing program analysis but doesn’t commuity program transformation. LLVM
maintains the analysis result and will provide it when aro#mnalysis or transformation pass requests it
later. The callsite analysis pass visits each node in thiicagipn’s partial call graph that originates from
the annotated checkpointing region. It proceeds by realysidentifying all user-defined functions in
this partial call graph and mark them as functions that meqthe creation of a checkpoint-enabled
version. We give an example of callsite analysis in FiguBea®id present its algorithm in Figure B.4.
Figure[3.8 shows a code sample with user annotations thad tharcheckpointing region. The
checkpointing region contains a user-defined callsit®) on all paths and a user-defined callsitex)
on a conditional path. Function implementations of bothcltsites are available. The callsite analysis
algorithm starts by pushing all user-defined function d@akswithin the checkpointing regiorf §o
and bar) onto an empty listIi{istCS, Figure[3.4, step 1). WhileistCSs is not empty, the algorithm
proceeds by isolating the first callsite from top of the I&t{ which holdsfoo), and pushing all user-
defined function callsites found inside its implementatizatk onto the list{istCS). Each time the
algorithm visits a new callsite, the same callsite is alseited into a result containeti(stF). Before
processing a new callsite, we check the result containesdertain that it has not yet been processed.
This extra step helps to avoid indirect recursions. Note¢ ithd&oo, the callsiteprintf is not a user-
defined function because its function implementation isavailable in the current SFA. Thusrintf
will not be pushed into either list. The algorithm continitsdbreadth-first callgraph traversal until there
is no callsite candidate remainkigtCS becomes empty, in Figufe 3.4, step 2). When the algorithm
finally convergesListF contains the result of the callsite analysis—all user-@efifunctions that will
be called directly or indirectly from the checkpoint regiarthe curreniSFA Each function in this result

list (ListF) needs to have a checkpoint-enabled version that will sbe¥th its original version.

3.4 Checkpointing Transformations

Once callsite analysis completes its work and generatesisthef functions it identified through its

analysis algorithm, the compiler can proceed to enablelgiuiating through program transformations.

3.4.1 Intra-procedural Transformations

The compiler converts code inside the user-annotatedrrégiits checkpoint-enabled equivalent version
in three steps. Step-1 is to precede each write with codedkulpathe write location into a checkpoint

buffer. Figurd_3.P step-1 shows that variahles modified and thus preceded wittbackup operation

CHAPTER 3. ENABLING CHECKPOINTING 28

which copies its contents into the checkpoint buffer imragaly before the corresponding write. The
backup activities occur inside thgackup(char * addr, int len) function call. Thebackup
interface takes two arguments: caar * addr that indicates the memory address of the memory
contents to be copied, and ant len that shows the length of the to-copy memory contents. The
transformation in step-1 generatesackup call with the proper starting address and precise length to
cover the memory contents that need to be protected thrdwegbackup operation. All activities inside
the backup operation are handled within twkup call. We encapsulate its details inside a run-time

checkpointing support library that we will introduce in gher[5.

Step-2 is to handle certain system functions that have aibpiiemory writes. Figuré_312-(2)
illustrates the handling for one of such routinesncpy) by placing a special handling function
(handleMemcpy) immediately before it. Thé&andleMemcpy understands the expected behaviors of
memcpy and will properly backup memory contents that may be ovetriinsidememcpy. There
are a limited number of system functions that need speciadliey for checkpointing. We provide
an exhaustive list of all supported special system funstiand their respective handling routines in
Table[3.1. We further provide details on relevant impleragons of all available handling routines in
appendix{B.

Step-3 is to rename any user-defined function callsite tohiekpoint-enabled version inside the
checkpointing region. Figuie3.2-(3b) shows that a user callsit&oo) is renamed to its checkpoint-
enabled equivalentfoo_ckpt) by appending ckpt on its name. All user-defined functions residing
inside the checkpoint region need to rename to their cheakpoabled equivalent to comply with
correct checkpointing semantic. However, the same udaredefunction may also be called outside
of the checkpointing region. In this case, the original i@rswill remain unchanged. Thus for each
user-defined function that is identified through the calsibalysis process, we generate a checkpoint-
enabled version that co-exists with its original functiéng., Figuré_3.2-(3- a) shows an automatically
generated functionfeo_ckpt) that is the checkpoint-enabled version of a user-definadtion (foo).
The respective callsite is renamed to its checkpoint-etabérsion only inside the checkpointing region

or any other checkpoint-enabled functions.

Note that the actions conducted inside intra-proceduraisformations deal with only the code
within the user-annotated checkpoinitng region. We iniaeda separate transformation process—inter-
procedural transformations, to generate the checkpoialled version for any user-defined functions
that may be called directly or indirectly from the checkpinig region (the user-defined function list

identified by the callsite-analysis phase).

CHAPTER 3. ENABLING CHECKPOINTING 29

start_ckpt(); foo_ckpt(void){ printf(“foo\n”); }

foo_ckpt(); bar_ckpt(void){ func1_ckpt();
... if(C1) func2_ckpt(); ...
if (C) bar_ckpt(); }

. func1_ckpt(void){... }
stop_ckpt(c);
func2_ckpt(void){... }

foo(void){ printf(“foo\n”); }

bar(void){ func1();

... if(C1) func2(); ...}
func1 (void){... }
func2 (void){... }

(a) Code region with (b) List of all generated
checkpointing enabled functions during checkpointing

Figure 3.5: Sample code with checkpointing enabled

3.4.2 Inter-procedural Transformations

The final step is to enable checkpointing on all user-defimedinmes that may be called directly or
indirectly from the checkpointing region. Recall thesetimes are identified through theallsite-
analysisphase. Each callsite to this list of functions inside theckpeint region has been renamed
to its checkpoint-enabled version. For each function is ithéntified function list, we clone its function
body and rename it by appendingkpt to its original name, as shown in Figure]3.2-(3). Inside the
body of the cloned function, we recursively and repetitivegply the same three principles introduced
in section3.4.11: (i) precede each store withaxkup operation, (ii) handle special system functions
that have implicit memory writes by inserting a special Hemgdroutine, and (iii) handle user-defined
function callsites through renaming. With some carefutwafe engineering practice, we can reuse
most of the code developed for section 3.4.1. When the psamaspletes, we produce a checkpoint-
enabled version for every user-defined function that caeniiatly be called from the checkpointing
region.

Figure[35 presents the checkpointing-enabled sample wiaese original version is given in
Figure[3.3. As shown in Figure_3.5-(a), the transformatias henamed all user-defined function
callsites within the checkpointing regiotioo becomesfoo_ckpt, andbar becomesar _ckpt. The
checkpointing code region is relatively simple and the otive types of enabling transformations (han-
dling special system functions and generaaekup call per store) are not applicable. Callsite-analysis

process identifies a total of four functions that need to geretheir respective checkpoint-enabled

CHAPTER 3. ENABLING CHECKPOINTING 30

FP fp; // func ptr decl FP fp; // func ptr decl
|f .(C) fp = &foo; |f -(C) fp = &foo;
else fp = &bar;... else fp = &bar;...
start_ckpt(); start_ckpt();
*fp(); // funcptr call “f-p_wrapper(fp); /Inon-fpr call
stop_ckpt(c); stop_ckpt(c);
-fb-_wrapper(FP fp)X
if(fp == foo) foo();
else if (fp == bar) bar();
else ...
}
(a) BEFORE (b) AFTER

Figure 3.6: Function pointer callsite

versions. These functions aréoo, bar, funcl and func2. As a result of the inter-procedural
transformation, in Figure_3.5-(b) we present their corogsfing checkponit-enabled versions. These
newly generated functions af®o_ckpt, bar ckpt, funcl ckpt, and func2 ckpt. The list of
functions is generated through the callsite-analysis gg®aiven in Figur€_3l3. These checkpoint-
enabled functions are thus generated according to thelisbtd rules presented in sectibn 314.2.
Notice that in the checkpointing-enabled code, both thgimal functions and their checkpoint-enabled
versions coexist. This will unavoidably increase the cdde. However, since we limit these functions
to those that are identified through the callsite-analysisgss, only a small fraction of all user-defined

functions are applicable for the transformation.

3.4.3 Handling Special Cases

In addition to the analysis and transformations presengetiee in this chapter, there are special
conditions that may prevent our compiler-based checkimgjritom completing its tasks. These special
conditions need special treatments to work around them. &Ve thus identified two special cases:

function pointer callsite and premature return.

3.4.3.1 Function Pointer Callsite

Special cases exist during the checkpoint-enable procgsse our checkpointing scheme proceeds

with cloning user-defined functions, the compiler needslemiify the precise callee function for each

CHAPTER 3. ENABLING CHECKPOINTING

31

foo(...

start_ckpt();

return k;

foo(...){
int flag, TO;

start_ckpt();

mflag=1;T0=k;
stop_ckpt(c); goto LO;
} Lo:
stop_ckpt(c);
if(flag) { return TO;}
}
(a) BEFORE (b) AFTER

Figure 3.7: Premature return from checkpointing region

Index

System Function

Checkpont Support Function

=

© 00 N o o b~ W DN

[EnY
o

memcpy(i8*, i8*, i32)
memmove(i8*, i8*, i32)
memset(i8*, i32, i32)
strcpy(i8*, i8*)
strcat(i8*, i8*)
strncpy(i8*, i8*, i32)
strncat(i8*, i8*, i32)
sprintf(i8*, i8*, va_arg)
vsprintf(i8*, i8*, va_arg)

snprintf(i8*, i8*, vaLarg)

handleMemcpy(i8*, i8*, i32)
handleMemmove(i8*, i8*, i32)
handleMemset(i8*, i32, i32)
handleStrcpy(i8*, i8%)
handleStrcat(i8*, i8*)
handleStrncpy(i8*, i8*, i32)
handleStrncat(i8*, i8*, i32)
handleSprintf(i8*, i8*, vaarg)
handleVsprintf(i8*, i8*, vaarg)
handleSnprintf(i8*, i8*,vaarg)

Table 3.1: Supported System Functions

CHAPTER 3. ENABLING CHECKPOINTING 32

involved user callsite at compile time. Calls through fumetpointers won't satisfy this requirement
because the precise callee function is only resolved aimnentWe give an example of call-through-
function-pointer callsite in Figule 3.6-(a).

We handle this function pointer callsite ambiguity by chiaggfrom a function pointer callsite to
a normal function callsite with the function pointer wragpes an argument. If there are arguments
from the original function pointer callsite, they will be §sd as additional arguments on the wrapper
function. Within the wrapper function, each possible @l{any function that has its address taken
within the entire SFA) is explicitly examined through a liftparameter-match candidates. As shown
in Figure[3.6-(b), we change from the original function gemcallsite ¢fp) into a normal function
wrapper callsitefp_wrapper (£p)), with the function pointer wrapped as an argument on thepea
function. Inside the wrapper function, we exhaustivelyraiee all functions that have their addresses
taken across the entire program. E.g., both funcfies and functionbar have their addresses taken
within the currentSFA. We thus explicitly examine both of their addresses indigevirapper function,
trying to match the precise function callsite. Once we gt match, we will make a normal function
call to this matched function (implementation of wrappendtion fp_wrapper ()). This may seem to
be overwhelming in the beginning. But in practice, we fincesonably easy and straight-forward to
implement. In addition, the number of all functions thatééweir addresses taken is relatively small in

our testing applications.

3.4.3.2 Premature Optional Return

An other special case deals with early exits from the cheicking region, as shown in Figute 3.7-(a).
A return statement within the checkpoint region may prematurelyieste the program’s execution
without visiting thestop_ckpt marker. Visiting thestop_ckpt marker is essential to complete the
current checkpointing processing, thus an optional prereatturn violates the rule that the checkpoint
region markers must be visited in pairs and will put the aurodheckpointing process in an unknown or
inconsistent state.

Figure[3.7-(b) suggests a possible solution. It reservesagipropriate return value (in variable
T0) and transforms the code with a mandatgnto statement and thus forces execution to branch to
the stop_ckpt marker. We further introduce a boolean variali@«g) that controls the return value,
in preparation for the originateturn statement that may optionally returns a value. Note that bot
special-handling cases are rare in our test applications.tis only conduct the necessary changes

through manual steps rather than building compiler passagtbmate the special-case handling.

CHAPTER 3. ENABLING CHECKPOINTING 33

3.5 Summary

In this chapter, we introduce the detailed steps to enab&ckgointing for any user-annotated
program region. A user only needs to mark the region’s boteslaand our compiler automatically
completes the rest of the checkpointing-enablement psod&smpiler analysis examines the marked
checkpointing region to discover all user-defined functitrat may be called directly or indirectly from
the checkpointing region. Compiler transformations peacé generate aackup call immediately
preceding each individual memory store, as well as renamsgy-defined function callsites and
handling special library functions. The same principlephapo both the checkpointing region and
all participating functions that need to have their chedkipenabled versions. We will provide results
of program partition and checkpointing region formatiorcihaptet Y.

This process enables fine-grain software-only checkpmrin a per-store granularity. It supports
arbitrarily large checkpointing regions because we buffergram states in main memory and can
dynamically increase this buffer when necessary. It is apil@mdriven automatic process that frees
users from the tedious and error-prone details of condychianual checkpointing. However, itis also a
user-level process that can only checkpoint code that italato the compiler. Default checkpointing
overhead is relative to the intensity of memory stores inctickpoint-enabled program region. Thus
a checkpoint-enabled program will often have ample oppitras for compiler optimizations, and we

will discus these optimization details in chagdiér 4.

Chapter 4
Optimizing Checkpointing

The basic transformations described in the previous chapteble checkpointing on any user-annotated
program region by backing up memory contents before eachicéxpr implicit write, handling
certain system functions, and dealing with all user-defifigtttion callsites that are called directly
or indirectly within the checkpointing region. This prosesreates a large number Backup calls
that are potentially redundant or unnecessary, and leawpkeapportunities for program optimizations
to reduce checkpointing overhead. In this chapter, we v@fiadibe checkpointing-specific compiler

optimizations that are organized as a checkpointing op#itiun framework.

4.1 Checkpointing Optimization Framework

We present a detailed overview of the compiler checkpayntoptimization framework in Fig-
ure[4.1. The framework takes as input checkpointing-emable/M IR, performs checkpointing-
specific analyses and optimizations, and produces chadipgpioptimizedLLVM IR that can further
target multiple backend platforms. Each individual opsation is a standalone LLVM pass. All
available optimizations operate in a pipeline fashion whitre output of an immediately previous
optimization becomes input for the current optimizatiorheTramework includes numerous analysis
passes and a total of 12 different optimizations organizedrdered LLVM passes respecting their
explicit or implicit dependency. In the rest of this chaptee introduce them in the order of importance.
Note that LLVM supports a large number of native backendf@lats including x86, x64, ARM,
SPARC, PowerPC, and more. LLVM’s code generator is able tib production-quality binary code
on x86, x64 and ARM platforms. In addition, LLVM providesand C++ backends that allows the

conversion of optimizedLVM IR back to low-level or C++ source code, while respecting the language

34

CHAPTER 4. OPTIMIZING CHECKPOINTING 35

— C/C++-~<7LLVM IR }

—{Annotated|— Enable

Optimize Checkpointip”é

source Checkpointing
Source \ 1. CKi’T Inlining \
code 7]
‘ 2./Pre Optimize |
T LLVM
‘ 3. Redundancy Eliminations Backend

\ /4. Hoisting |
| / /\
‘ 5. Aggregation ‘ !
| ;

K v
\ 6. Non‘Rollback Exp0fed Store Elimination

‘ 7. Heap Optimize |/
7 i

‘ ' 8. Array Optimize ‘

\ 9. Post Optimize i

Figure 4.1: Overview of checkpointing optimization franww

syntax and semantics—improving code portability, prawidan alternative path for verification, and

helping to capitalize on any available native backend ctergi

4.2 Redundancy Eliminations

As we demonstrate later in Chapliér 7, the most importantmipditions are three cases of redundancy
elimination that try to discover, isolate, and eliminatéeafent types of redundancies amobgckup
operations within the checkpoint-enabled region or cherkpenabled user functions. In this section,
we introduce three forms of redundancy elimination: regiardundancy eliminatiorRRB, function-

private redundancy eliminatiorPRE), and hoistable redundancy eliminatiddRE).

4.2.1 Regional Redundancy Elimination (RRE)

Figure[4.2 shows the detailed steps for performing regimediindancy eliminatiorRRE analysis and
transformations, and we give its compiler algorithm in Fejd.3.

RRE usesdominating relationships amon@ackup calls and the transformations are organized
into four consecutive steps. Step one (Fidure 4]2(a)) i®tognize albackup operations within the
checkpoint-enabled region or function that are suitabldrieEtype of redundancy elimination. In the
given code sampleRREidentifies three suitableackup calls because they all operate on the same
address &a: address of variablea) with the same lengths{zeof(a): size of variabla in memory.

Since they all ar@ackup functions operating on the same address and length, we giveaenumerical

CHAPTER 4. OPTIMIZING CHECKPOINTING 36

start_ckpt();

start_ckpt(); start_ckpt();
@ backup(&a, sizeof(a)); £ 9 @ backup(&a, sizeof(a)); £l 9
if (C)))
@) ba_cku_p(&a, sizeof(a)); if (O it (CX
}a =5 (D)| backup(&a, sizeof(a)); (") sackupiiarsizestiap:
a=..; a=..;

@ .b.éckup(&a, sizeof(a)); } }

a=..; a=..;

a=... a=..; / a=...; /
(3) backup(8a, sizeof(a)); } (3| backup(&a, sizeof(a)) ()| backuptarsizactiap:
a=...;

@

stop_ckpt(c); stop_ckpt(c); stop_ckpt(c);

(a) step1 (b) step 2 (c) step 3-4

Figure 4.2: Regional Redundancy Elimination (RRE) optatian

ID (from 1 to 3) to better identify and differentiate amongeith, and will use their numerical ID to
precisely identify individuabackup calls throughout this sectionRREthen establishedominating
relationships between each individaglckup operation and thetop_ckpt region marker. As shown
in Figure[4.2(d), botlackup (2) andbackup (3) dominate thestop_ckpt region marker, bubackup
(1) doesn't.

Step two is to recognize keading backup call and attempt to hoist it to a position as early as
possible within the region. This hoisting step needs togetsall checkpointing semantics and language
syntax. In step one, we have identified that b¢th and (3) dominate the region-end marker, thus
they form a chain of backup operations. Siri2gis the first call in this chain, we name it tfeading
backup call (a.k.a, theeade). If the leader has no further dependency or limitation, wisthit to a
location immediately after the start-region marker—thdiest position within a checkpoint-enabled
region that a compiler optimization can potentially proean individualbackup operation to. As
shown in Figurd 4.2(b)(2) is hoisted to be positioned right-after teart _ckpt marker. Due to
various constraints, an attempt to hoideaderto the earliest position within the checkpointing region
may not always be successful—e.q., if a variable is defingdinva checkpointing region, its earliest

hoistable target location will not be able to cross its dé&éiniposition.

Step three is to re-establistominatingrelationships among relevabckup calls after hoisting the
leader. For allbackup calls that operate on the same address and length (aratixep call chain), we
re-establish a pair-wisdominatingrelationship between tHeaderand the rest of the relevabackup

call(s). Figurg¢ 4.2(B) shows that afteaderpromotion,(2) (theleade)) dominates botl{1) and(3).

CHAPTER 4. OPTIMIZING CHECKPOINTING 37

INPUT: CFG of the CKPT Region or Function
OUTPUT: RRE optimized CFG
Intermediate: Leading Backup CallSet: LS = ¢, Promoted CallSet: PS = ¢,

— BEGIN
/I 1. identify leading backup calls on the same address:
— group backup calls according to their backup address and length
foreach backup call bkp in group g within region do
L if (bkp dominate stop_ckpt) insert (bkp, LS)
— // 2. promote leading backup calls:
foreach backup call bkp € LS do
L if (def(bkp) ¢ region) AND (bkp ¢ PS) insert (bkp, PS)
—// 3. re-build dominators, and eliminate non-leading backup calls:
foreach unique backup call bkp? € (PS or LS) do
foreach backup call bkp2 e region do
if ((bkp1 dominate bkp2) AND (bkp1 + bkp2))
remove (bkp2)

L END.

Figure 4.3: Regional Redundancy Elimination (RRE) aldyonit

Step four (the final step) is to keep tleaderand eliminate all non-leadingackup call(s) on the
call chain that théeaderdominates within the checkpointing region. Figire Z]2te)ves that both1)
and(3) are non-leadingackup calls and dominated b§2) (the leade) on the same call chain, thus
RREeliminates both{1) and(3).

We presenRREs compiler algorithm in Figurg 413, which closely resensitiee four transformation
steps we have introduced. We patrtition the algorithm intedlsections: (i) analyze code and establish
dominating relationships with respect to $p_ckpt marker, (ii) identify and promotelaaderwithin
eachbackup call chain, and (iii) re-establish dominating relatiomslimongbackup calls inside the
same call chain, keep tHeaderand eliminate all non-leadingackup calls. Notice the seemingly
optional leader-promotion step: the transformations wiill be correct withoutleader promotion,
however this missing step will cause the algorithm to coveicimfewer applicable cases. Without
the critical leader-promotion step, theckup call in (1) will not be eliminated in Figure 412 because
the leader-dominatebackup call chain will instead only includé2) and(3). Promoting the identified
leaderenables the algorithm to eliminagdl relevantbackup call(s) available in the same call chain,

regardless of its relative position.

4.2.2 Function-Private Redundancy Elimination (FPRE)

Function-Private Redundancy EliminatioRRRE) identifies allbackup calls operating on functions’

non-pointer type local variables (user data that is alkdtain a function’s stack storage) and eliminates

CHAPTER 4. OPTIMIZING CHECKPOINTING

38

start_ckpt(); start_ckpt();

foo_ckpt(); foo_ckpt();

stop_ckpt(c); stop_ckpt(c);

foo_ckpt(void){ foo_ckpt(void){
int a; int a;

. -ka_memory(&a, sizeof(a)); . W);

a=...; a=...;

(a) BEFORE (b) AFTER

Figure 4.4: Function-Private Redundancy Elimination (EPRansformation

INPUT: CFG of a CKPT Function
OUTPUT: FPRE optimized CFG
INTERMEDIATE:

— BEGIN

/I identify and remove backup on local variables

foreach backup call bkp within a ckpt-enabled function do
v = bkp_addr (bkp);
if (isLocalAddr (v)) remove (bkp)

— END.

Figure 4.5: Function-Private Redundancy Elimination (ERlgorithm

CHAPTER 4. OPTIMIZING CHECKPOINTING 39

/ \

backup(&a, sizeof(a)); backup(&a, sizeof(a));
= : a= ...; ...

backup(&a, sizeof(a));

(b) AFTER

Figure 4.6: Hoistable Redundancy Elimination (HRE) transfation

suchbackup calls. Since any stack-allocated local variables have nmaong footprint outside of the
function’s calling context (when the function is not beingiled), it is safe to removeackup calls
operating on local variables in a checkpoint-enabled fonctvithout impacting the correctness of
checkpointing. Figuré_4l4(b) shows that theckup call operating on local variable is eliminated.
FPREs compiler algorithm is relatively straightforward and weesent it in Figure_4]5. Different from
RREthat covers both checkpointing-enabled functions andregyithe applicable domain 6PREis

limited to checkpointing-enabled functions only.

4.2.3 Hoistable Redundancy Elimination (HRE)

Hoistable Redundancy EliminatiotHRE) conducts transformations similar to a normal compiler
optimization on common sub-expression eliminatiddSH by searching for duplicatedbackup
operations in both control paths diverged from a branchwshim Figure[4.6). Once it finds a pair
of matching (duplicatedyackup calls that operate on exactly the same address and lengtitl, hibist
one of thebackup calls into the immediate common dominator block for botthpatind remove the
other one from its original location.

Figure[4.6 shows thatiRE identifies abackup call on both control-flow paths from a direct
dominator block. This is a suitable case f8RE, and thus the optimization consolidates them into
a singlebackup operation and place it into the common dominating block doatrs both paths.

We present HRE's algorithm in Figuke #.7. For ease of impletatéon, we group albackup calls

CHAPTER 4. OPTIMIZING CHECKPOINTING 40

INPUT: CFG of the CKPT Region or Function
OUTPUT: HRE optimized CFG

~ BEGIN
/0. identify identical backup calls:
group backup calls according to their backup address and length
r // 1. identify to-promote backup call pairs inside each group:
foreach backup call bkp1 in group g within region r do
foreach backup call bkp2 in group g within region r do
~ if ((bkp1 # bkp2) and (bkp1!dom bkp2) and (bkp2 !dom bkp1)
and (i_dom (bkp1) == i_dom (bkp2))
and (num_dom (i_dom (bkp1)) == 2))
/I 2. promote backup calls:
rep_bkp = replicate (bkp1) ; i_dom_bb =i_dom (bkp1)
insert (rep_bkp, i_dom_bb)
/I 3. remove both of original backup calls:
remove (bkp1)
remove (bkp2)
LEND.

Figure 4.7: Hoistable Redundancy Elimination (HRE) altion

within the checkpointing region or function according teitltarget backup address and length (step-0).
We then proceed with a doubly nested loop that visits eackilplescombinations dbackup call pairs
that every group may have (step-1). For this potemtiakup-backup call combination, the algorithm
checks for the following conditions. First, they cannot dioaite each other. This guarantees that they
reside in different basic blocks on the divergence pattgirated from the same branch. Second, they
must share the same immediate (common) dominator. Thignelies all possibleackup pairs that are
far apart in distance (further down in the control-flow grapbt sharing the same immediate dominator).
And third, the common immediate dominator can only have twmediate children. This limits the
search paths to only two immediate basic block successoms the brancH. When all the conditions
hold, we create a replica of the identifiedckup call and insert it into the common dominator block

(step-2) and remove both participatingckup calls from their original locations (step-3).

4.3 Hoisting

Checkpointing hoisting optimizatiom@isting aims to harness optimization opportunities inside loops,
with a focus on thoseackup calls that can potentially be moved into a loop’s preheatlés. give a
hoisting example in Figuie 4.8. Koistingoptimization attempts to promotackup operations written

unconditionally within a loop (variable in Figure[4.8) to the outside of that loop (by default the fsop

1The algorithm will ignore code that contains multi-way brhas generated from the lowering ofsaitch-case
statement—this is the root cause of some performance degwadhat we encountered in development.

CHAPTER 4. OPTIMIZING CHECKPOINTING

foo(){ foo()
intx,y, z; intx,y, z;
start_ckpt(); start_ckpt();
fc-)-r(...){ i)-e-ackup(&z, sizeof(z));
for(...{
backup(&z, sizeof(z)); .
= z= ...
if(...) { if(...) {
backup(&y, sizeof(y)); backup(&y, sizeof(y));
y=..; y=..;
} }
.. ..
stop_ckpt(c); stop_ckpt(c);
}// end of foo() j\))end of foo()
(a) BEFORE (b) AFTER

Figure 4.8: Hoisting optimization transformation

INPUT: CFG of the CKPT Region or Function
OUTPUT: CKPT Hoist Optimized CFG
IMMEDIATE: Set of Loop Exit Basic Blocks: ES = ®; Preheader Block of a Loop: P =®;

~ BEGIN
/1 0. initialize temp data:
ES=®, P=®;
— // 1. identify potential hoist-able backup calls
~foreach backup call bkp within a loop L (use depth-1st traversal) do
ES = getExitBlocks (L);
P =getPreHeader (L);
if (isLooplnvAddr (bkp) and (bkp dominate ES))
/I 2. insert a copy of the backup call into the loop’s preheader:
rep_bkp = replicate (bkp);
insert (rep_bkp, P);

/I 3. remove the original backup call: bkp
L~ remove (bkp);
— END.

Figure 4.9: Hoisting optimization algorithm

CHAPTER 4. OPTIMIZING CHECKPOINTING 42

preheader). Thus for all unconditionally-hoisted backpprations, this optimization ideally brings the
benefit ofN-to-1 reduction on checkpointing overhead whisres the loop’s trip count. Such hoisting
would not be performed by a normal compiler hoisting pass. (&op-invariant code motion-CM)

since the write to the variable is not necessarily loop iiaver

The decision on hoisting conditionally modifieshckup calls remains interesting because we
encounter cases that produce results on both sides of tf@mmpance impact. Due to the difficulty
in precisely predicting branch behaviors statically at pdentime, it is hard to generalize such cases
and abstract them into an algorithm that leads to solid pedoce benefits. After conducting intensive
empirical experiments, we decide not to hoist variaplie the given example because hoisting such
cases often results in more overhead than beHeWe qualify this condition as hoistingnly backup

calls that dominatall of the loop’s exits.

We present theoistingalgorithm in Figuré 419 that focuses only on handling undtmhl backup
operations inside a loop. The algorithm starts by examieimghbackup calls inside a loop following
a depth-first traversal order (step-1). For anaykup call inside the loop, the algorithm identifies the
loop’s preheader and collects all of the loop’s exits. Inthpeoceeds by examining the address that
the backup call performs checkpointing on. If the backup address ip lmwariant and théackup
call dominatesall of the loop’s exits, it hoists thisackup call into the loop’s preheader by making a
replication of thebackup call and inserting it into the loop’s preheader (step-2) #ren removing the

original backup callsite (step-3) from inside the loop.

The hoistingoptimization focuses on promoting.ckup calls that operate olmop-invariant (loop-
inv) addresses into the loop’s preheader.loAp-invariant address denotes an object whose address
doesn’t change within different iterations of a loop. Thigplies that all items that participate in the
address-generation calculation are either a constanfioedeutside of the loop and not being redefined
within the IoopH For eachbackup operation inside a loop, the algorithm in Figlrel4.9 checkstiver
() the backup address is loop invariant, and (ii) theckup calls dominatesll exits of the said loop. If

both conditions hold, the hoisting algorithm proceeds to@thebackup call into the loop’s preheader.

CHAPTER 4. OPTIMIZING CHECKPOINTING

43

foo(){ foo()
intx,y, z; intx,y, z;
start_ckpt(); start_ckpt();
backup(&x, sizeof(x)); backup(&x, sizeof(x)+sizeof(y));
backup(&y, sizeof(y)); baekupt&y-sizeofyhi—
X = X =
y=.. y=..
stop_ckpt(c); stop_ckpt(c);
} }
(a) BEFORE (b) AFTER

Figure 4.10: Simple aggregation transformation

INPUT: CFG of the CKPT Region or Function
OUTPUT: CKPT Simple Aggregation optimized CFG
INTERMEDIATE:

- BEGIN
/I 1. identify each pair of backup calls within a basicblock:
~ foreach backup call bkp1 in basicblock bb do
foreach backup call bkp2 in basicblock bb do

/1 2. check conditions for simple aggregation:

if ((bkp1 = bkp2) and (isSimplyAdjacent (bkp1, bkp2)))
/I 3. aggregate bkp1 and bkp2 into bkp_aggr:
aggregate (bkp1, bkp2, bkp_aggr)

- END.

Figure 4.11: Simple aggregation algorithm

CHAPTER 4. OPTIMIZING CHECKPOINTING 44

4.4 Aggregation

The aggregationoptimization examinedackup operations for variables whose addresses are adjacent
in memory, and consolidates multifdeckup operations over adjacent memory addresses into a single
one that covers the entire memory range. An advanced veofiaggregation can even potentially

rearrange the layout of the variables to ensure that thegdiaeent.

4.4.1 Basic Aggregation

Figure[4.10 shows that two individuakckup operations (on variable and variabley) have adjacent
memory addresses through variable declaration and thusecarerged into a singligackup operation,
covering the entire memory range for both variaeAfter the basic-aggregation transformation (in
Figure[4.10-(b)), we notice that only omeckup call remains, and thisackup operation covers the
memory range of both original participating variakland variabley. Different architectures may allow
the stack to grow in opposite directions. The simple-agafieg optimization is capable of performing
some simple tests that identify the participating variakién low memory address. In Figute 4110, the
compiler recognizes that variahtes the one that has lower starting address on stack, andtusethie
starting address for the fusedckup operation.

Simple aggregation optimization relies on the fact thatrttemory layout for both participating
variables be adjacent. We call thhasic aggregatioroptimization. Figuré 4.1 presents its algorithm
that attempts to aggregate twackup calls from each basic block that resides in a checkpoinbleda
region or a checkpoint-enabled function. Within the basick, the algorithm compares each possible
pair of addresses thatckup calls operate on. Once it finds that there are two addresaearthadjacent
in their memory layout, the basic aggregation proceeds &indthe two participatingackup calls into
a single one that covers the entire memory range.

Basic Aggregatiorimits its search to only stack-allocatéshckup addresses whose layouts are
already adjacent in memory (by default, through the vagisibdleclaration order). It will not perform
declaration reordering to harness more opportunities iatstage. We will soon introduce a more
powerful and capable revision of the aggregation optinopathat can do declaration reordering to

reach more potential aggregation opportunities. Notegludtal variables may have different available

2Consider a branch that resides inside a loop, if this branameier taken, hoisting sackup call inside this branch
effectively introduces only checkpointing overhead. Nplé levels of loop nesting often exacerbates the situation

3All loop-invariant code by default operates on loop-inaati addresses.

4Note that for a source-to-source transformation this isneoessarily a safe optimization as the back-end compilgr ma
further rearrange the variable layout—an implementatioa single unified compiler would not have this problem.

CHAPTER 4. OPTIMIZING CHECKPOINTING 45

foo(){ foo()}

intx, y, z; int x, z, y; // reordered
start_ckpt(); start_ckpt();

backup(&x, sizeof(x)); backup(&x, sizeof(x) + sizeof(z));
backup(&z, sizeof(z)); —si ;

X= .. X= .

Z= .. z=

q=...; q=

stop_ckpt(c);
stop_ckpt(c); ..

}

}

(a) BEFORE (b) AFTER

Figure 4.12: Advanced aggregation transformation

life spans and seemingly adjacent global variables maymeixest at runtime. We thus exclude global
variables from the candidates for aggregation optimizat@nd instead focus entirely on stack-allocated

local variables.

4.4.2 Advanced Aggregation

Comparing withbasic aggregationa more complex form of aggregation optimization change®tier

of variable declaration orders to make otherwise non-adjficariables adjacent in the memory address
layout. We present its transformation in Figlire 4.12 antkli complex form of aggregatioadvanced
aggregation Figurd 4. 1P shows that two individushckup addresses (on variahteand variablez) can

be merged into one adjacent address range, covering bdthigeting variables{ andz). Note that

in the original variables’ declaration orderandz are not adjacent (there is a varialien between).
Advanced aggregation optimization understands the metagout order on stack, and rearranges the
order (from:x, y, z to: x, z, y),such thatthe participating variables énd z) occupy a range

of adjacent memory address space after the declaratiodenog.

In Figure[4.18, we provide an algorithm to condadivanced aggregatioanalysis and transforma-
tion. It begins by collecting all stack-based addressesdfgipatingbackup operations on basic-block
granularity (step 1). It then builds an internal stack mddetxamine the possibilities of making two
stack addresses adjacent by changing the order of variablardtions (step 2 and step 3). If there are

more than two participating addresses, the algorithm teptslf based on its previous discovery and

CHAPTER 4. OPTIMIZING CHECKPOINTING 46

INPUT: CFG of the CKPT Region or Function

OUTPUT: CKPT Advanced Aggregation optimized CFG
- BEGIN
/I 1. identify ALL backup addresses within a basicblock:
foreach backup call bkp within basicblock bb do

addr = getAddr(bkp); collect (addr);
_ 1/ 2. evaluate all possible variable ordering on stack:
foreach bkp address order 07 do

benefit b1 = evaluate (01);

save (pair<b1, 01>)
r // 3. sort according to benefits and pick the highest benefit:
sort (collection<benefit, order>, DECR);
L pair<b, o> = select (collection<benefit, order>, MAXIMUM);
- // 4. perform aggregation:
if (b=0)

select (bkp1, 0); select (bkp2, 0);
L aggregate (bkp1, bkp2, bkp_aggr);
L END.

Figure 4.13: Advanced aggregation algorithm

attempts to generate an adjacent order that covers as mditygading addresses as possible. Note that
in this case, the algorithm may produce multiple optimalisohs. (E.g., in Figure 4.12, the declaration
order ofx, z, y; z, x, y; ¥, 2z, x; and y, x, z; are all equally good, provided variables
and z are adjacent.) Finally, the advanced aggregation algorékhaustively evaluates each possible
combination of variable declaration order, saves a coséfitepair for each order it evaluates, and selects
the order that yields the highest benefit to conduct aggmygatinsformations. In case of ties, it selects

the first saved order within all candidates that have thestep(4).

Aggregation reduces checkpoint buffer-management oaerbg combining two or more adjacent
backup operations into a single one, potentially reorder dedlamatto make them adjacent. From
the perspective of checkpointing’s buffer managemenpriisolidates multiple meta-data management
records into a single record—a scheme that reduces bothdatasize and the number of meta-data
records. However, there are no savings in the checkpoistidgta buffer. Memory contents from
multiple participatingbackup operations will be copied into the data buffer regardlesaggfregation
As a result, this optimization can be treated as optimizorgrieta-data efficiency. Due to possibility of
different life-time span on global variables, we limit thenclidates of aggregation optimization only to

data allocated on stack and thus exclude all global vasdbden aggregation optimization.

CHAPTER 4. OPTIMIZING CHECKPOINTING

a7

int a;

start_ckpt();

/* no use of a on any path
from start_ckpt() */

backup(&a, sizeof(a));
a=..;

stop_ckpt(c);

int a;
start_ckpt();
/* no use of a on any path

from start_ckpt() */

backupt&asizeofta))

a=..;

stop_ckpt(c);

(a) BEFORE

(b) AFTER

Figure 4.14: NRESE transformation

INPUT: CFG of the CKPT Region or Function

OUTPUT: NRESE optimized CFG

Intermediate: AliasSet AS = ®; cond1= false, cond2 = true

BEGIN

/I 1. analyze each possible backup call:
- foreach backup call bkp within CKPT region or CKPT Function do
cond1= false, cond2 = true;
[// 2. analyze backup address alias:
addr = getAddr (bkp);
AS = getAliasSet (addr);
Lif (AS == @) cond1 = true;
[/] 3. check for read access on any path through linear scan:
foreach instruction ins between start_ckpt and bkp do
foreach operand op in instruction ins do
if (use(op, addr)) cond2 = false;
r// 4. operate on NRESE:

if (cond1 && cond2) remove (bkp);
- END.

Figure 4.15: NRESE algorithm

CHAPTER 4. OPTIMIZING CHECKPOINTING 48

4.5 Non-Rollback-Exposed Store Elimination (NRESE)

Given any variable that is being written inside a checkpointregion, if alongany path from the
beginning of the region, there i® read from the variable and its address doesn't alias to amyth
(a.k.a. empty points-to set), an optimization can remowe réspectiveébackup operation on this
variable without impacting checkpointing correctness. dak this optimizationnon-rollback-exposed
store elimination(NRESE. To the best of our knowledge, this optimization has newsmbpresented
or explored previously in related contexts. Figlre #.14sengs an example dfRESEprogram
transformation and we give its corresponding compiler @ilga in Figure 4.15.

Notice that thebackup operation on variabla can be safely removed throut\RESE since there
is no direct or aliased read from variakd@long any path from the beginning of the checkpoint region
to the respective store. For any checkpoint that commitsessfully, whether we remove tiackup
operation on variable is irrelevant. For any checkpoint that is aborted, the valfigariablea is
recomputed each time after abort and this re-computatiessisntially independent of the current value
of variablea (since there is no use of variabdeon any path from the start of the region, the current
value of variablea has no impact on generating its new value). As a resultpb#ag&up operation on
variablea is not necessary and eliminating thisckup operation has no impact on the correctness of
the program’s checkpointing behavior.

As shown in Figuré 2. 13y RESEs algorithm starts by examining eabackup operation in the given
checkpointing region or checkpointing-enabled functiste 1). It then leverages existing pointer alias
analysis framework that the LLVM compiler infrastructureoyides and verifies that the address of
the currentbackup operation is not aliased to anything (points-to set is einfdtep 2). It further
examines each instruction between the start of the chetkpegion gtart_ckpt) and the respective
store instruction (on variable) to ensure that there is mead accesson the address of variabke
(step 3). If both conditions hold, the algorithm proceedsetaove the correspondingickup operation

(step 4).

4.6 Dynamic Memory (DynMem) Optimization

Opportunities exist for anpackup call that operates on dynamically allocated memory (heHphe

heap allocation is within the checkpointing region, Haekup call operates on this allocated heap, and

5Since the generateshckup calls are not part of the original code, the examining preaesrains from checking the
backup operation’s function callsite, or any part of its interrmalglementations.

CHAPTER 4. OPTIMIZING CHECKPOINTING

49

start_ckpt(); start_ckpt();
{ {
|nt *p = (int *) malloc(...); |nt *p = (int *) malloc(...);

“backup(&p[il, sizeof(pli])); | | -baekupiSnii-sizeokptiti-
pli] = ...; plil = ...;

} }
;s-t-op_ckpt(c); ;s-t-op_ckpt(c);
(a) BEFORE (b) AFTER

Figure 4.16: DynMem optimization transformation

INPUT: CFG of the CKPT Region or Function
OUTPUT: DynMem (Heap) optimized CFG

~ BEGIN
/I 1. perform reaching definition analysis for each dynamic-memory
/I allocation site in the CKPT region or function:
foreach CKPT region r or CKPT-enabled Function f do
dyn_allocs = collect (malloc, calloc, realloc, free, r/f);
foreach dyn_alloc in dyn_allocs do
DataFlowAnalysis (Reaching_Definition, dyn_alloc, r/f);

/I 2. analyze backup address alias:
foreach backup call bkp within a CKPT region r or a CKPT Function f do
foreach each dynamic allocation site dyn_alloc do
addr = getAddr (bkp)
if (isDynMem (addr) and reach (dyn_alloc, bkp, r/f) and
dominate(dyn_alloc, bkp)) then
remove (bkp)

~ END.

Figure 4.17: DynMem optimization algorithm

CHAPTER 4. OPTIMIZING CHECKPOINTING 50

the heap allocation reaches and dominate®#uup operation, then theackup call operating on the

heap-allocated memory can be safely eliminated.

Figure[4.16 demonstrates the process of removing.eup operation on heap-allocated array
variablep. Because the heap allocation happens within the checkpegion, the heap-allocated
contents have no memory footprint before the checkpoimtsst&ince there is no need to checkpoint
memory contents that are irrelevant (or invisible) withpesst to the checkpointing process, it is always
safe to remove thidackup call (backup(pl[i]l, sizeof(p[i])) that operates on heap-allocated

memoryp.

We present the dynamic-memoi®ynMen) optimization algorithm in Figure'4.17 that contains two
major steps. Step one performs reaching-definit®b)(analysis for each dynamic-memory allocation
site residing in a checkpoint region or checkpoint-enablecfion. A dynamic memory allocation site
(via C interface) includes three function calisalloc, calloc andrealloc; and a dynamic memory
reclamation site (vi@ interface) includes just one function catlree. Each dynamic memory allocation
site starts a new dynamic-memory range on its starting addrad length; while a dynamic memory
reclamation site ends its respective dynamic-memory raNgéce that the special catkalloc is both
an allocation and reclamation site. It ends the currenvactynamic memory range and immediately
starts a new one with the same starting address but a pditewdifferent length. Arealloc call
with zero length effectively terminates a dynamic-memaapge as well. Step two analyzes each
applicablebackup call that operates on heap-allocated memory. If thekup call operates on a
dynamically-allocated memory within the checkpointingiom or checkpoint-enabled function, the
dynamic memory allocation site inside the respective megiofunction, and thé&ackup operation is
within the reach of an active dynamic-memory coverage redioe algorithm can proceed to remove

the respectivackup operation.

Our DynMemoptimization focuses ohackup calls operating over dynamically allocated memory
whose allocation site is within the respective checkpoimtiegion or checkpoint-enabled function.
Under such conditions, the dynamically allocated memoignisible before the checkpointing region
begins. It is safe not tdackup memory content that is not visible for the current applmati
from the persective of checkpointing. However, the sitrattan be vastly different if the dynamic
memory allocation is outside of the checkpointing regiorclmeckpoint-enabled function, because the
dynamically-allocated memory is visible even before theaipoint region begins. Skipping backup
operations on writes to this memory will produce inconsisimemory states after a checkpoint abort

operation. Thus, th®ynMemalgorithm refrains from eliminatingackup operations on dynamically

CHAPTER 4. OPTIMIZING CHECKPOINTING

51

int A[N]; // array decl

start_ckpt();

for(i=0; i<N: ++i{

int A[N]; // array decl
start_ckpt();

“t->ackup(&A[0], sizeof(A));
for(i=0; i<N; ++i)}

backup(&A[i1], sizeof(A[i1])); backopte&AfitisizeoftAfit]));
Al = ... Alit] = ...

backup(&AT[i2], sizeof(A[i2])); | | backupiAfidh-sizoottafi2]));
Ali2l= Ali2]=..; ...

} }

stop_ckpt(c); stop_ckpt(c);

(a) BEFORE (b) AFTER

Figure 4.18: Array optimization transformation

allocated memory whose allocation site is out of the curcbetkpointing region or checkpoint-enabled

function.

4.7 Array Optimization

More interesting opportunities exist amobgckup calls that operate on array-based addresses inside a
loop, and we give an example in Figlire 4.18. Both writes intayabased addresses[(1] andA[i2])

are correlated with the loop’s index (variahi¢. Hoisting cannot remove any backup redundancy
because the address is not loop-invariant in either casevetdw, keeping bottvackup operations
inside the loop has potentially high overhead. With a largedount and a relatively small array size,
the amount of accumulated back-up contents can potenkiallyigger than backing up the entire array.
In such cases, it is normally beneficial to merge multiplekibas on individual array elements into a
single backup operation, potentially covering a contirmisub range of the array’s memory space or
even the entire array. Since the array’s starting addrelsofsinvariant, moving this singleackup
operation out-of the loop (into the loop’s preheader) cathér eliminate anpackup call that operates
within the array’s address range inside the loop. Thus imrfeigt.I8(b), both of the originalackup
calls are consolidated into a singtackup call that covers the entire memory range of the given
array gizeof (a[l)). Because the array’s starting address is loop invariaig,singlebackup call

is further hoisted out of the loop and placed into the loop&hpader. We call this transformatiarray

optimization (ArrayOpti)

CHAPTER 4. OPTIMIZING CHECKPOINTING 52

INPUT: CFG of the CKPT Region or Function
OUTPUT: Array optimized CFG
INTERMEDIATE: store_instances = 0, array_size = 0, trip_count = 0,

BEGIN tolerance_factor = 0.5, array_addr = 0, bArrayOptil..] = false;

[//1. obtain backup call and loop-related info for array analysis:
foreach backup call bkp in loop L do
trip_count = getLooplinfo (L, TRIP_COUNT); addr = getAddr (bkp);
if (isArrayAddr (addr, unique)) do
store_instances += getLooplinfo (L, STORE_INSTANCE, addr);
array_size = getArraySize (addr); array_addr = getArrayAddr (addr, 0);

_ /| 2. perform array analysis and optimization:
if (trip_count * store_instances >= tolerance_factor * array_size) do
array_bkp = create_bkp (array_addr, array_size);

insert (array_bkp, L.getPreheader ()); bArrayOptifarray _addr] = true;
—// 3. remove any participating backup call on the reference array:
foreach backup call bkp in loop L do

if (isArrayAddress (getAddr(bkp), array_addr)) and
- (bArrayOptilarray_addr]) do remove (bkp)

_END.

Figure 4.19: Array optimization algorithm

We present an algorithm for array optimization in Figured4.lt considers not only tharray size
the loop’strip count and store intensity but also atolerance factorthat a user can control through
command-line options. Writes to non-adjacent regionglassne array may happen when the program
executes inside a loop, thus the tolerance factor spechiesamount of checkpoint buffer storage

tradeoff that a user may allow, in return for improved chexikping efficiency.

We present detailed analysis of thay optimizationalgorithm below.

Let trip_countdenote to the number of iterations for a given loop where wenith to perform array
optimization. If the loop’s trip count cannot be obtaineobtigh static analysis at compile time (missing
either known lower bound or upper bound of the given loop)ug&a numerical value 10 as a best-effort

estimate for the loop’s default trip count.

Let store instancegdenote to the intensity of all statieackup operations that a loop contains. Within
each iteration, we give one point for teeore instanceof any backup operation that dominates all of
the loop’s exits; and .8 otherwise (best-effort compile-time estimates for brabehavior). The loop’s
storeinstancess the accumulation of eadtore instanceassociated with individualackup operations
within the loop’s body. This represents a best-effort statitimate of th@ackup operation’s execution
frequency and their potential impact on the array withinhelaop iteration.

For example, in Figure_4.18(a), botlackup operations dominate the loop’s exits, thus they each

CHAPTER 4. OPTIMIZING CHECKPOINTING 53

have astore instancevalue ofonewithin each iteration. Assuming these are the drdykup operations

within the given loop’s body, thus the loos$ore.instanceds valuetwo.

Let array_sizedenote to the number of elements in a given array,

and
Lettolerancefactor denote to a degree of tolerance that a user agrees to traahewfbry for improved
checkpointing efficiency.

Thetolerancefactoris a floating-point value betweeseroandone Valueoneof atolerancefactor
indicates no tolerance at all, val@e5 for a tolerancefactor indicates that a user agrees to trade
off 50% of the buffer size in return of improved checkpoigtiefficiency, whereas valueero of a
tolerancefactor indicates complete tolerance without any constraint. Inartay optimizationLLVM
compiler transformation, we preset a defaolerancefactor of 0.5. This default value can easily be

overwritten using a command-line option.

We abstract the key component of the array-optimizatioorétym into the following equation:

f = trip_countx store.instances- tolerance factorx array_size (4.2)

The decision on whether to perform array optimization isdasn the algorithmic evaluation result

of function f, as:

>0 vyes, perform array optimization
f= (4.2)

<0 otherwise

The value oktoreinstancesstatically estimates the number of occurrence that therpanegonducts
backup operations on a per-iteration basis, tep_count * storeinstancespredicts the total number
(size) ofbackup operations across the entire loop. At the same titokerancefactor * array_size
approximates the size of the array that taekup operation(s) can potentially have impact on. Thus
equatioi 4.R conducts comparative evaluation betweenréukgbed totabackup size and the estimated
size of the array that also includes a user’s willingnessradet off checkpointing buffer space for
improved checkpointing efficiency. When the predictedltoteckup Size is bigger than the estimated

size of the affected region of the array, the algorithm desic perform array optimization.

CHAPTER 4. OPTIMIZING CHECKPOINTING 54

We present the complete array optimization algorithm iruFéfd. 19, which is a loop-basé&d.vM
transformation that contains three major steps. For eaghtlwat contains at last oneckup call that
operates on an array-based address, step one identifieadkep operation and obtains its starting
address. If the starting address is part of an array-baseéressl space, the algorithm proceeds by
accumulating and estimating istore.instances Step one also extracts related information from the
loop and the array involved, including the loop’s trip cquantray size and the array’s starting address.
Step two performs the key array-optimization analysisoibines allstore instancedor any backup
call that operates on the same array’s address range irsidd®ap's body. It then evaluates the
algorithm according to our previous discussion in equdfidhand [4.R. If the result is positive, the
array optimization algorithm creates a n&ackup call that operates on the starting address of the
array, and covers the entire memory address range of theasaig (backup the entire array). It then
inserts this newly createshckup operation into the preheader basic block of the loop, andksriare
for the (loop, starting address, length) tuple. Step thsemptional and is active only upon at least one
successfuairray optimizationtransformation in step two. When this condition holds, ik®@again scans
the original loop’s body and identifies easickup operation whose starting address and length fall into
the array that has just been promoted into the loop’s praedreattithin the loop’s body, it eliminates

each identifiebackup call that satisfies the given condition.

Array optimization seeks the best-possible checkpoiniagormance by trading off memory for
potentially reducedackup overhead. When array optimization proceeds, it generasgéggéebackup
operation that potentially covers the entire array. It thites this newly generatéeckup operation
outside of the loop before the loop begins (into the loop&hpader). This renders abyckup operation
on any of this array’s valid address range irrelevant, and tie eliminated from the loop’s body. The
tolerancefactoris a user-controllable knob that represents the amountexfiace that a user allows, in
return to trade off memory for improved checkpointing effiity. It is a floating-point value spanning
between the range of@and 10, with a default set to.6. This indicates that a user agrees to have a
50% backup buffer memory overhead on the affected arrayturm for eliminating albackup calls

that operate on that array within the loop.

Due to the use dtolerance factorand its checkpointing efficiency trade-off, array optintiza can
sometimes be storage inefficient. Thus a programmer hasekibility to fine tune the behavior of
array optimization through a command-line interface oerhce factor for important loops, aiming
for maximum checkpointing overhead reduction. Since we daramically grow the checkpointing

buffer in memory, we consider the memory trade off worth tfierewhen the main goal is to improve

CHAPTER 4. OPTIMIZING CHECKPOINTING 55

checkpointing efficiency.

Array optimization limits its matching capacity within ta&vM array-type IR. Thus it is currently
incapable to handle any pointer arithmetic operationsitbas array syntax. Thé.vM frontend will turn
such operations into direct memory load/store IRs rathesn rray IRs. We will address this limitation

in our future-work section.

4.8 Miscellaneous Optimizations

Miscellaneous optimizations are mainly used for setup dadnup of the optimization framework.
For exampleInlining inlines all special system handling routines. This helparibox thebackup
operations originally hidden inside system handling roegi and allows the optimizer to instead focus
exclusively on analyzing and eliminating only theckup operations. Pre Optimize and Post
Optimize perform miscellaneous clean-up operations (e.g., remeve-lengthbackup calls). Any
future or newly-discovered clean-up or maintenance opeEiwill likely fit into the miscellaneous

optimizations category.

4.9 Summary

In this chapter, we introduce a large and comprehensivekplo@tting optimization framework that
targets checkpointing overhead reduction through agges®mpile-time analysis and transforma-
tions. It examines checkpointing overhead from differemigpam aspects and attempts to remove as
much checkpointing overhead as possible while still maimtg the correct behaviors of checkpointing-
enabled programs. For each individual optimization, wa@néa detailed transformation example with
discussions on its respective algorithm. In particular,inteoduceNRESEoptimization that is brand
new to our best knowledge. We will provide testing detail®ath individual optimization as well as
combined efforts of all available optimizations in sec{iai.

In the next chapter, we will discuss details of the checkipmgnbuffering schemes with focus on

both buffer efficiency and runtime performance.

Chapter 5

Checkpoint Buffer Implementation

Our fine-grain checkpointing scheme buffers program chagi® a checkpointing buffer while the

program proceeds. As we will demonstrate, the buffer deaighimplementation has a critical impact
on checkpointing efficiency. In this chapter, we introdueeesal designs of checkpointing buffering,
analyze the trade-offs among them, and discuss the impattgisions made to balance execution

efficiency and storage utilization.

5.1 Undo-log vs. Write Buffer

The most important design decision in a checkpointing sehisnthe approach to buffering: whether
it will be based onwrite-buffer[28,43] or alternatively amindo-log[32,47]. A write-buffer approach
buffers all writes from main memory, and therefore requtred the write-buffer be searched on every
read. Should the checkpoint commit, the write-buffer mwstcbmmitted to main memory; should
the checkpoint fail, the write-buffer can simply be dis@td Hence for a write-buffer approach the
checkpointed code proceeds more slowly, but with the betigfitparallel threads of execution can be
effectively checkpointed and isolated (e.g., for some foafoptimistic transactional memory [28]45]).
An undo-log approach maintains a buffer of previous valdesadified memory locations, and allows
the checkpointed code to otherwise read or write main mewoggtly. Should the checkpoint commit,
the undo-log is simply discarded; should the checkpoirtta® undo-log must be used to rewind main
memory. Hence for an undo-log approach the checkpointed cad proceed much more quickly than
a write-buffer approach.

We conducted a preliminary study to compare runtime perdoice of undo-log and write-buffer

approaches, while checkpointing loops of integer-sortipglications. Compared with undo-log, the

56

CHAPTER 5. CHECKPOINT BUFFER IMPLEMENTATION 57

data buffer: empty

meta buffer: empty

| idx |
addr
(a) Empty checkpointing buffers
data buffer:
al 127 31
\ meta buffer:
&a| &b | &c
chara = ‘a’;
intb =127,
short ¢ = 31;
backup backup(&a, sizeof(a));

actions backup(&b, sizeof(b));
backup(&c, sizeof(c));

(b) Checkpointing buffers populated with backup data

Figure 5.1: One-Dimensional array buffer scheme.

CHAPTER 5. CHECKPOINT BUFFER IMPLEMENTATION 58

write-buffer scheme suffered severe performance penadtyally ranging between 10X and 100X. In
this thesis, since we are considering only a single threagketution with emphasis on performance,

we thus focus our future discussions only on the undo-loebstheme.

5.2 One-Dimensional Array-Based Undo Log

As discussed in Sectidn 3.%.1, the interface of conductingezkpoint backup operation is through a
backup function call, which takes as arguments a pointer to the-stacopy address and its to-backup
length in bytes. We give the full checkpointing APIs in apgierfAl Figure[5.1(d) illustrates our initial
design of an undo-log buffer based on one-dimensional dedg €l-D array buffel). In this scheme, we
divide the undo-log buffer into two structures: (i) a datdfé@uwhich is a concatenation of all backup
data values of arbitrary sizes; and (ii) a meta-data buffexté buffer) which stores pairs of the starting
address and length of each backup data recoedd datdthat appears in the data buffer. As an example,
Figure[5.1(B) shows the contents of the undo-log after exegthreebackup calls to variables, b,
andc, respectively. Notice that both the data buffer and the rdata buffer are now populated, with an
address-value pair in the meta buffer maintaining bookikegimformation for each data record appears
in the data buffer. When a checkpoint commits, we simply ntbeedata buffer and meta buffer pointers
back to the start of each buffer—effectively discardinghatents in both buffers. When a checkpoint
must be rewound, we use the address-value records in thebféta to walk backwards through the
data buffer, replacing each backed-up memory location igtariginal value.

The one-D array buffer lays down its contents linearly in mem The buffer-append action
dominates all buffer activities. Buffer-append operati@iways occur at content-insert location and
result in linear growth of both data buffer and meta-datddoufThus the undo-log scheme based on
one-D array buffer benefits from both extremely simple desigd cache friendline@. However, its
main drawback is that it can suffer from data redundancgesinultiple versions of the same backed-up
memory location might reside in the buffer. A one-D arraylddue maintained in a redundancy-free
manner by performing a linear search prior to eashert operation. Alternatively, the one-D array
buffer could be maintained in a sorted order. Preliminagluation found that the performance penalty
of linear scan for inserting is between 50X to 100X. This nieggerformance impact is far beyond our

level of tolerance for checkpointing on performance-gemsapplications.

1Since one-D array buffer grows linearly, for buffer-inseperations, one cache miss will lead to cache hits for up to
cache-line size buffer length. But for hash-table basetetaifdue to the unpredictability of a hash-node’s addesssh insert
operation is more likely to be a cache miss.

CHAPTER 5. CHECKPOINT BUFFER IMPLEMENTATION 59

one-dimensional array hash table
insert 0() O(N)
search O(N) O(N)
delete O(N) O(N)
reset 0() O(N)

Table 5.1: Comparison of worst-case buffer-operation iefiicy

For a fair comparison with one-D array implementation, wechan alternative implementation that
natively and implicitly incorporates redundancy eliminatwhen inserting data records. We select a

hashtable-based buffering design for this purpose.

5.3 HashTable-based Undo Log

Rather than searching or sorting a linear list, demonstrtdebe infeasible in the previous section,
another method worthy of consideration is to maintain a hable of backup entries. A hash table
(HT) is a data structure that maps keys to values through a hastida. In the context of the undo-log
buffer design, it maps an address (key) to its associatedameaontent (value). Popular hash-table
designs implement hash bucket list with chaining. When ipleldifferent addresses map to the same
hash-table target location (hash collision), the hash siade chained together into a linked list. For any
address that is mapped into a non-empty linked list, a sdzashd traversal is necessary to identify the
correct data and resolve any conflict. We implement an uagstheme using both 1-D array and hash

table. For an easy comparison, we present the worst-cafeg bpgration efficiency in Table5.1.

Under the one-D array implementation, batisert andreset operations ar€®(1). Insert will
always append at the end of array arsket only adjust buffer counters, so they both take constant
time to complete. Since the one-D array buffer is not sorsedrch anddelete will need to iterate
linearly across the entire meta buffer to identify the matghndex in the data buffer, thus they are both
O(N). Under the hashtable-based implementation, each openatieds to map its key (address) to a
value (hash node) that may reside on a non-empty linkedfligte desired hash node doesn't exist, we
need to create the hash node and insert it to the right lotatioa non-empty linked list exists after
the hash mapping, the scheme needs to iterate over eacibdwaibde on the linked list. Thus under a

hashtable-based undo-log buffer scheme, all worst-cas@tipns have cost @(N).

CHAPTER 5. CHECKPOINT BUFFER IMPLEMENTATION 60

inti;
charc;
long double Id;

start_ckpt();
backup(&i, sizeof(i));
i=..

b;ckup(&c, sizeof(c));
c=..;

backup(&ld, sizeof(ld));
d=..;

stop_ckpt(c);

Figure 5.2: Sample of checkpoint-enabled code

Notice thatinsertis the most frequently used operation in checkpointing.eGidata available in
Table[5.1, we can safely predict that an array-based bufbetdwnormally outperform (higher runtime
efficiency) its hashtable-based counterpart, at the expeinsuffer storage size (potential redundancy).
We will present more details of further analysis on buffdicegncy and storage trade-offs later in this

chapter.

A hashtable-based undo-log scheme always conducts arcihgglarch either before inserting a new
node (if an address does not already exist) or attemptingetatify the right value (if an address exists
in the linked list already), thus it has perfect storage biend0% redundancy). When it needs to insert
a new node, it will perform a series of actions—allocatingnmoey for the new hash node, populating
the new node with data, and linking the node at the propetitotaf the linked list. All of these actions
involve runtime overhead and will negatively impact chemkting performance. One way to alleviate
the overhead is to reduce the total number of needed dynasriwony allocations when creating a new

hash node. This motivates various hash node designs witretit performance trade-offs.

As illustrated in Figur& 513, we consider three hash-tabighs that are based on the options for the
different designs of hash nodes, includiqginter-to-data(PTD), that stores a pointer to dynamically-
allocated data storag@line/union (union), that stores a union field that can be used either to directly
store a 32-bit value inline, or instead as a pointer to dynatytallocated data storage larger than 32
bits; andfixed-siz€fixed, that always stores 32 bits of data per node and requiresaf inodes to store

data values longer than 32 hits.

CHAPTER 5. CHECKPOINT BUFFER IMPLEMENTATION 61

bucket array

backup of data i

0
— ; |
int * addr; ! _>| & | 4 | I/ |
2
char * data;
struct hashNode * next;
N
hash node hashtable design

(a) Hashtable with pointer-to-data node

bucket array

0
int * addr; ! __)| &i | 4 | data_i I/ |
int len; z

|&c| 4 |data_c| |

union { char * data_ptr;
char data[4]; }

struct hashNode * next;
N [aa[4] T [=L

hash node hashtable design

(b) Hashtable with inline/union node

bucket array

“
node

int * addr; 1 __)| &y_i/lz |
int len; 3 | lec|4afaacl | }n;‘ge

char data[4]; —
[T [omaE]

struct hashNode * next; “Id”

v | &w date i | nodes
| &ld | 4 |data_|d | \|

L

hash node hashtable design

(c) Hashtable with fixed-size node

Figure 5.3: Design options for an undo-log implementation.

CHAPTER 5. CHECKPOINT BUFFER IMPLEMENTATION 62

5.3.1 Pointer-To-Data (PTD) Node

Figure[5.3(d) presents our basic hash node despmpinter-to-data(PTD) that stores a pointer to
dynamically-allocated data storag®.TD is a structure that contains all necessary fields to fatglita
a backup operation: eharx* field to store the backup address,iart field to store the backup length, a
charx field to store the pointer of explicitly allocated memorytthalds the backup data, andaruct
hashNode * next pointer to maintain a singly linked list with other nodes.t<hat the backup data
is allocated and managed through the expliaidir* data field. This indicates that foeachnewPTD
hash node, there will bigvo explicit dynamic memory allocations: one for the hash naskelfi another
for the explicit data field.

Figure[5.2 gives a checkpointing-enabled code sampleustifite the impact of different hash-node
designs on checkpointing buffer efficiency. This sampleecoéeds to perforrhackup operations on
three addresses with various backup lengths: four bytegitablei (int type), one byte for variable
¢ (char type), and 12 bytes for variablel (long-double type). To simplify the scenario, we perform
abackup operation on each unique address once.

Figure[5.3(d) shows one possible (worst-case) memory tagfter performing all thre@ackup
operations. Since each hash node needs two dynamic menmrgteins (mallocg, there is a total of

six mallocs that are necessary to satisfy the requirementscofamodating all three hash nodes.

5.3.2 Inline/Union Node

Figure[5.3(0) presents an improved hash node design usiing/imion node @nion), that stores a
union field that can be used either to directly store a (uB®bit value inline, or instead as a pointer
to dynamically-allocated data storage larger than 32 Gitsnparing withPTD, auniontype hash node
overlaps a pointer to explicitly allocated static data vatlixed-size array of four bytes. When the
backup data is less than or equal to four bytes, the data aitdye used; otherwise when the backup
data is larger than four bytesinion node will fall back to explicitly allocating and managingédpe
storage for the data (sameRED).

We consideunionnode an optimization to reduce dynamic memory managemenhesad through
using statically allocated buffer as appropriate. Whenntiagority of backup operations are less than
four bytes long (true for our test applications that are d@ated by integer arithmetic operationgjjon
node design improves checkpointing efficiency by reducheyriumber of needed dynamic memory

allocations.

CHAPTER 5. CHECKPOINT BUFFER IMPLEMENTATION 63

5.3.3 Fixed-Size Node

The third hash-node design aims to completely eliminatentred for a separate data pointer, as well
as explicitly allocating memory and managing backup daigurie[5.3(c) presents thfsxed-sizefixed
hash node design that always stores (up-to) 32 bits of datie per node and may require a list of
nodes to store data that is longer than 32 bRsced hash node is a simplified version ohion — it
removes the overlapped data pointer and allows only datagsoup to four bytes per node. If the
backup data is larger than four bytes, the backup schemaéll to have a linked list difxednodes to

fully accommodate the backup data.

5.3.4 Buffer Efficiency Analysis

In this section, we present an analytical comparison amioa@ different hash-node designs.

Let M be the number of bytes thabackup operation needs to copy;

LetC be the maximum number of bytes that a sinijtednode can accommodate;

Let N be the number dfixednode(s) that need to successfully accommodat®dk&up operation, we

have

N = [M/C| + [(M%C)/C] (5.1)

It is clear that wheriM > C, N > 2.

Thus for anybackup operation whose data length is bigger than the maximum ahafistorage
that a singldixednode can accommodate, we need at ledst€tlhash nodes to complete theckup
operation. We conduct an empirical comparison among treetdifferent hash node designs when
conducting thre@ackup operations on the code sample provided in Fifure 5.2. Weptdise result on
the number of needed hash nodes and the number of requiracthitymemory allocations in Takle 5.2.
The results suggest that the hash table designs basediamtype hash nodes have the lowest number

of malloc requests. Next we present a more generalized sisaly

Let A; be the total number dfackup operations on (integer type);

CHAPTER 5. CHECKPOINT BUFFER IMPLEMENTATION 64

PTD | Union | Fixed

hash nodes 3 3 5
data pointerg 3 1 0
total # mallocs| 6 4 5

Table 5.2: Dynamic memory allocation overhead comparisnars three different hash designs.

PTD Union Fixed
hash nodes AL +Ac+ Az Al+Ac+As | AL +Ax+3A3

data pointerg A1+ A+ A3 O0+0+As 0+0+0
total # mallocs| 2A1 +2A; +2A3 | A1 +Ax+2A3 | A1 +Ax+ 3A3

Table 5.3: Generic analysis on dynamic memory allocaticrioyad comparison

Let A, be the total number dfackup operations ort (char type);

Let Az be the total number dfackup operations oid (long double type);

Table[5.B demonstrates the analysis results on the totabewmf needed dynamic memory
allocations fallocg among three different hash node designs under the conslititA;, A, andAg. It
is apparent thatnionhash-node design has the lowest total number of malloc$yiveyrour claim. The
reduction on the total number of malloc calls is mainly thguieof overlapping the data pointer with
statically allocated memory inside ti@iondesign given the appropriate conditions wherelthekup

lengths fit.

ThePTDnode is the fundamental design that maintains a dedicaiatepto dynamically allocated
data per node, thus it has the highest overhead on the nurhieguared dynamic memory allocations.
Union node improves dynamic memory usage by overlapping the aeaéep with static storage. This
can remove a large number of dynamic memory allocations &b dtorage without increasing the
number of needed hash nodes if a significant amount of backigpisl less than or equal to four-bytes
long. We expect it to deliver the best runtime performanceragrall three hash node designs. Tixed

node completely removes the need to maintain dedicatedpdatters. However, it also increases the

CHAPTER 5. CHECKPOINT BUFFER IMPLEMENTATION 65

number of needed hash nodes, as well as the necessary ekpri@egge and maintain data consistency.
Thus we expect that a hashtable composeiiketinodes may generally improve over the baseline with
PTD nodes when the data length is short, but may also have pofarpance forbackup calls when
average backup data lengths is longer than the pre-detednsiae (4B in the case offxednode). In

general, thdixedtype shall never perform better than tin@ontype.

5.4 Redundancy Rate

To compare the potential undo-log buffer designs acrosgaai$ible implementations, we introduce a

measurement called redundancy r&&)(

Let Acces$R) denote the total number of backups of a particular vari&leat is written at least
once within the checkpointing region, the redundancy rRt® for the region that containR can be

defined as

RR= 21 | (5.2)

wheren is the total number of unique addresses that are checkpowiiihin the region. RR
guantifies the amount of checkpointing redundancy as a ffilgaibint value between zero and one.
In an ideal region where each unique variable address ikpbeted exactly once, itRRrate will be
zero. The higher thRRrate, the more redundancy remains in the given checkpghainmabled region.

The redundancy rate is a metric to measure the amount of deday available in a checkpointing
region. It is especially helpful to evaluate various opsation’s effectiveness after performing certain
type of redundancy eliminations. It is also a good indicdatorestimate the remaining amount of

redundancy and can serve as a guideline for future improneme

5.5 Evaluation

Recall from Sectiofi 512 and Sectibn]5.3 that we have a totfdwf different buffer implementations
for conducting software checkpointing based on undo-ldgs®: one-D arrap TD hash tableunion
hash table, anfixed-sizehash table. Former analysis suggests that the lookup-freébacarray buffer
has the highest runtime performance despite existing ddiadancy. By always appending to the end

of the buffer, one-D array has extremely simple and efficieriter-insert operations, excellent cache

CHAPTER 5. CHECKPOINT BUFFER IMPLEMENTATION 66

35

—Pointer-To-Data

—Inline/Union

25 Fixed-Size

slower

Normalized Backup Performance

Redundancy Rate: 1% - 99%

Figure 5.4: Performance comparison of buffer implememniesti

behavior, and thus avoids all cache-related problems ia$edavith hashtable-based implementations.
This is true when the redundancy is low and overhead from-tedsk lookup and increased cache miss
dominates. However, under conditions of high or extreméijn hedundancy, things may well change.
Thus we are interested in discovering and understandingdiative performance of all buffering

schemes under a wide range of all possible redundancy rates.

To conduct quantitative comparisons among different uoddsuffer implementations, we develop
a simple micro benchmark application that performs intensackup operations at random locations
of a large integer array. By fixing the number of unigiskup addresses (array elements) and varying

the total number obackup operations, we can easily obtain any desired redundaney rat

In Figure(5.4 we present relative performance of all avégladbiffer implementations using the micro
benchmark. We vary the micro-benchmark’s access pattepretiuce a wide range of redundancy rates
and report checkpointing performance comparison restie Xaxis represents redundancy rate from
1% to 99%; the y-axis is the relative checkpointing perfanoeaof the three hashtable-based buffer
implementations. Performance data is normalized to thasioig an one-D array buffer, thus all curves
that reside beyond row-one are considesknver. The figure represents checkpointing operations with
1024 unique backup addresses, with only four-byte backogtte(due to the limitation using a static

array).

Overall, the implementation based on one-D array buffeioatralways outperforms any hashtable-

based solution (higher than one on y axis). All three curkeslftable-based implementations) converge

CHAPTER 5. CHECKPOINT BUFFER IMPLEMENTATION 67

at a very highRRrate (close to 95%). When the redundancy rate increasepgetfmmance difference
among different backup schemes decreases. The threeediffeashtable-based implementations have
perfect storage behavior; however this comes at a perfareneost, mainly due to poor cache locality
of link-list accesses within the mandatory hashtable |patperationsUnion andfixedare both heavily
optimized for dynamic memory management, thus their pevéoice is considerably and consistently
better thanPTD. When the redundancy rate is extremely high95%), performance differences of
various buffer schemes diminish. Although undesirable, thge amount of redundancy in the one-
D array buffer amortizes all cache-related overhead undehn sonditions. In practice, we expect
no real-world applications to exhibit such extremely-higllundancy rates. Because of the superior
performance of one-D array buffer implementation over aewathge of possible redundancy rates, we

select it as the default implementation for all undo-logféxing for the remainder of this thesis.

5.6 Summary

We describe undo-log and write buffer schemes for implemgntheckpoint buffering, but focus
on undo-log approaches because they are better-suitechgte-thread roll-back applications like
checkpointing. We discuss a total of four different undg-buffer implementations: one-D arrdyTD
hash tableunionhashtable, anfixedhashtable. We defimedundancy rates an evaluation metric and
evaluate the behaviors of all four available buffer scheameabackup-intensive micro benchmark. We
conclude that despite data redundancy, the one-D arragriuafplementation is the most efficient due
to its low runtime overhead. For all three different hastgdiased designsiniontype hash node is a
clear winner because it successfully minimizes dynamic orgrmanagement related overhead.

For the next two chapters, we will begin to introduce threerigsting applications that leverage the
efficient software-only checkpointing support to gain idist features. In particular, in chapfer 6, we

will present thelstkey application—tolerating delinquent loads via checkjiog.

Chapter 6

Tolerating Delinquent Loads via

Checkpointing

A delinquent loadDL) [15,49] is a particular type of memory load in a program firaguently misses

in a cache—typically the last-level cache on-chip. For mapglications, we observe that DLs from a

small number of source-program locations contribute aelénaction of all last-level cache load misses.
Hence DLs, should they be reasonably persistent acrosst @arghitectures, may pose an interesting
checkpointing application. In this chapter, we introduce first checkpointing-enabled application—

overlapping execution with delinquent loads.

6.1 Overview

Figure[6.1(a) illustrates the challenge presented by a B2 miss latency for a DL can be lengthy,
and the computation that follows the Diidrk ()) likely depends on the DL's result valug)(Thus the
execution time that involves BL simply becomes the accumulation of both the DL’s latency the
cycles of thework that needs the precise value from the DL. Rather than alepaisystem to staying
idle and waiting for the DL’s value to return from the londdacy main memory system, Figurel6.1(b)
provides an overview of the techniques to tolerate a DL bylapping the DL's miss latency with
speculative execution of the subsequent code using a peddialue ¢). The DL is scheduled to issue
as early as possible, followed by the value prediction (

The computation proceeds using the predicted valuwer{(v)), with that computation being
checkpointed along its execution path to support programmnece When the computation is complete,

we compare the predicted value with the actual value. If they equal then we can commit the

68

CHAPTER 6. TOLERATING DELINQUENT LOADS VIA CHECKPOINTING 69

load x (DL) T ‘ load x (DL) f ‘ [joad x kDL)
' | i dv.=predict(); | i dv.=predict();
! | < |startckpt | < |startckpt
' | § [woriv | § Tworiv
! 2 Y work (v, 2 Y work (v,
1 | = , | ® |
1 [- 0 1
| 2 i | &

; | E ; | E|

time} i | 3 ; | 3 i
! | i | !
! | ! | i

1
' | ; | '
! v i i v i !
L ... ¥ "'..,,,f ,,,,,,, !,,_-7717777
work (x)
: commit_ckpt(); / x ==v rewind_ckpt(); / x I=v
i work(x);
1
W : performance gain
v
performance loss

(a) normal execution (b) successful speculation (c) failed speculation

Figure 6.1: Overview: tolerating DL with speculative exgon

checkpoint (as shown in Figute 6.1(b)). Ideally such a ss&foé effort of prediction and speculation
will result in a performance gain relative to the non-spatiué original code. Should the value
be mispredicted, as illustrated in Figurel6.1(c), then westmewind the checkpoint and re-perform
the computation with the correct result value of the Dlofk(x)). The combined overheads of
checkpointing as well as rewinding and retrying the comjutiecan result in a performance loss relative
to the original code.

In this chapter, we introduce two key compiler transformadi that leverage compiler-based fine-
grain checkpointing to tolerate DLs, namely data speauiadnd control speculation. For single-
threaded speculation, we must make a prediction on the ftealue of a DL and execute code
that uses that prediction to make forward progress ratrer pgause the execution and wait for the
DL's value to return from off-chip. This approach exploitetparallelism provided by a wide-issue
superscalar processor that can execute instructions wathary access in parallel without the need
of an explicit or implicit parallel thread or process. ldgahe latency of the DL is hidden when the
prediction is correct, but execution can rewind and re-eteecising the correct DL value should the

prediction be incorrect.

6.2 Overlapping Execution with Delinquent Loads

A complete software-only speculative system is composetheffollowing three components: (i) a

checkpointing system that backs up program changes alengxécution path and helps to recover

CHAPTER 6. TOLERATING DELINQUENT LOADS VIA CHECKPOINTING 70

from failed speculation, (ii) speculative compiler trasrshations that aggressively rearrange program
layout that will normally be considered unsafe in order talda speculative execution, and (iii) a value
prediction system that generates a predicted value andstlre speculative system to optimistically
make forward progress based on this prediction. We will ltetailed discussions for each individual
component and its particular nature in the context of DL sgfaimon later in this chapter. In order to
enable speculative execution overlapping with DLs, we rteeidentify the precise location of each

individual DL that contributes for the speculative system.

6.2.1 DL ldentification

We identify DLs by profiling second-level (L2) cache missstng a PIN [42]-based cache simulator
that we developed for this work. The PIN framework providesrdrastructure to allow injecting 3rd-
party user code at arbitrary program locations to condustiocn program analysis or transformations at
runtime. The custom program analysis codes are thus PINgirnd (also called pintools) that can
be loaded dynamically into memory on demand. Our pintogkedacache simulation is a detailed
functional cache simulator that properly mimics two levefsconfigurable cache hierarchies with
separated L1 data cache and L1 instruction cache, as welslarad L2 cache. The PIN framework
recognizes each memory-access instruction from the apjolicand redirects them to a software cache
model established in the cache simulator pintool. Withitheaemory access, the software cache model
captures necessary access signatures (read vs. wrigdjveffmemory address, length of data, etc.) and
performs functional cache simulation. All cache transargiare recorded: both cache-miss and cache-
hit events will update statistical counters within the @aohodel. A cache-miss event triggers cache
behavior that bring in the missing data from higher levelse Tache simulator enforces inclusiveness—
data in a lower cache level is guaranteed to be included igleehicache level. The simulator also brings
in the missing data by evicting a cache line based on a coafigicache-replacement policy when no
cacheline within the corresponding cache block is avalablote that due to the nature of the PIN
framework, our cache simulator currently can simulate #ehe behaviors of only one application at a
time. The software cache model is easily configurable wheatirdewith various cache architectures,
including total levels of cache, cache size, cache-line, siegree of associativity, replacement policy,
etc.

One compelling feature of the PIN infrastructure is that,ewta benchmark is compiled with
debug information enabled, it allows us to directly asgeciaad and store instructions with their

corresponding source code location. Hence the simulatorelably map each load instruction that

CHAPTER 6. TOLERATING DELINQUENT LOADS VIA CHECKPOINTING 71

Index | Line-size | Assoc.
0 32B 2
1 32B 4
2 32B 8
3 32B 16
4 64B 2
5 64B 4
6 64B 8
7 64B 16
8 128B 2
9 128B 4

10 128B 8
11 128B 16

Table 6.1: L2 cache configuration space explored (acrossgeraf L2 cache sizes)

is responsible for a large fraction of L2 cache misses batkdmffending source code location. This
is a critical feature that can help us identify the DL locaimn the source-program level.

For the rest of this chapter, we will consider a particuladanstruction to be a delinquent load if it
is responsible for greater than 5% of all L2 cache misses imgram. We will also refer to the actual
percentage of L2 cache misses asstuymificanceof that delinquent load (i.e., a load that is responsible

for all of a program’s L2 cache misses would have a signifieanfcl00%).

6.2.2 DL Persistence

We measure a wide range of L2 cache architectures, with g@rgsg from 256KB to 4MB, cache-line
size varying from 32B to 128B, and associativity varyingiira ways to 16 ways. Table 6.1 summarizes
the cache configurations that we have studied for each hlaitache size. This L2-cache exploration
space covers a large number of cache configurations foirexiSPUs that are commercially available.
The index on the first column indicates the relative ordermgrihe possible cache configurations, and

is the implicit order on x-axis data for the figures to appeahis section.

We use SPEC2000INT[17] benchmarks, compiled with compidévarious vendorggccandicc),
versions ¢cc 3.4.4, 40.4, 41.2, 42.4, 43.2, andicc 9.1), and optimization levelsQ0, O2 andO3)

CHAPTER 6.

TOLERATING DELINQUENT LOADS VIA CHECKPOINTING

App Name Input Data | % L2 misses | DL's Source Position
mcf inp.in | DLO: 14.4% mcfutil.c:88
(refinput) | DL1: 31.1% implicit.c:250
DL2: 23.7% implicit.c:252
DL3: 9.7% implicit.c:80
DL4: 5.4% pbeampp.c:191
DL5: 5.3% pbeampp.c:41
total: 89.6%
bzip2 | input.program| DLO: 16.8% bzip2.c:1260
(refinput) | DL1: 12.2% bzip2.c:2688
DL2: 18.3% bzip2.c:2688
DL3: 14.9% bzip2.c:2282
total: 62.2%
vortex (refinput) | DLO: 15.7% bmtobj.c:831
DL1: 12.6% mem10.c:752
DL2: 11.5% mem10.c:596
total: 39.8%
parser ref.in | DLO: 10.4% parser.c:194
(refinput) | DL1: 18.6% xalloc.c:122
total: 29.0%
vpr (ref input) | DLO: 13.6% place.c:2002
total: 13.6%

Table 6.2: Properties of significant DLs in the SPEC2000INmdhmark suite

CHAPTER 6. TOLERATING DELINQUENT LOADS VIA CHECKPOINTING

—+DLO:mcfutil.c:88 —+—DLO:mcfutil.c:88
—=- DL 1:implicit.c:250 —= DL1:implicit.c:250

—+DL5:pbeampp.c:41 —+—DL5:pbeampp.c:41 \ |

— DL2:implicit.c:252 ——DL2:implicit.c:252
—- DL3:implicit.c:80 | — DL3:implicit.c:80 |
50 —+DL4:pbeampp.c:191 \ 50 —+DL4:pbeampp.c:191 ‘\

Delinquent Load Significance
Delinquent Load Significance

10 | \“"\" —
raw O

& - s - & * & -
S By & ® & & & c

L2 Configurations L2 Configurations

(a) MCF:ref (b) MCF:train

Figure 6.2: Persistence of DLs across architectures anchbeark inputs: MCF

——DLO:place.c:2002 ——DLO:place.c:2002

8

Delinquent Load Significance
Delinquent Load Significance

%
%

g
B
&

7
%,
2
%,
s,
-

L2 Configurations L2 Configurations

(@) VPR:ref (b) VPR:train

Figure 6.3: Persistence of DLs across architectures anthb@ark inputs: VPR

CHAPTER 6. TOLERATING DELINQUENT LOADS VIA CHECKPOINTING

74

Delinquent Load Significance

——DLO:bzip2.c:1260
—=—DL1:bzip2.c:2688

[|~ DL2:bzip2.c:2688
DL3:bzip2.c:2282

o
e/ /»-/\f
S

& s & = &
¢ ot S o o
8 & & & S
L2 Configurations

(a) BZIP2:ref

Delinquent Load Significance

——DLObzip2.c:1260
= DL1:bzip2.:1866

—— DL2:bzip2.c:1867
DL3:bzip2.c:1874

—*—DL4:bzip2.c:1875
——DL5:bzip2.c:1882

—— DL6:bzip2.c:1883
— DL7:bzip2.c:1890

DL8:bzip2.c:1891
—— DLObzip2.c:2172

L2 Configurations

(b) BZIP2:train

Figure 6.4: Persistence of DLs across architectures anchbeark inputs: BZIP2

Delinquent Load Significance

Ol
o

L2 Cache Configuration Space

&

B
&

(@) PARSER:ref

+
S
S

Delinquent Load Significance

— DLO:xalloc.c:12:

iV

K

&
s
®

P
2,
2

(b) PARSER:train

Figure 6.5: Persistence of DLs across architectures anthbeark inputs: PARSER

CHAPTER 6. TOLERATING DELINQUENT LOADS VIA CHECKPOINTING

75

Delinquent Load Significance

~+— DLO:bmtobj.c:831
~=-DL1:mem10.c:752
—+DL2:mem10.c:596

N A

Janl Lt
- (7 A e
, W T

g‘./,./ /

et

e
V

s

\ A

e

~ \5\/\\/*\/_‘,
0
& & o & &
+* < & o &

L2 Configurations

(@) VORTEX:ref

Delinquent Load Significance

—DL0:mem10.c:752
-+ DL1:mem10.c:596
—+DL2:?(systemlib) [

L2 Configurations

(b) VORTEX:train

Figure 6.6: Persistence of DLs across architectures anthb@ark inputs: VORTEX

Delingent Load Significance

~+—DLO:mcfutil.c:88

60 —=DL1:implicit.c:250
—+ DL2:implicit.c:252
DL3:implicit.c:80

50 —-DL4:pbeampp.c:191 T
——DL5:pbeampp.c:41 ‘

L2 Configuration

(a) MCF:ref,gcc4.0.4-02

Delinquent Load Significance

—— DLO:mcfutil.c:88

—=— DL1:implicit.c:250

—+— DL2:implicit.c:252
—=— DL3:implicit.c:258

—%-DL4:pbeampp.c:191
——DL5:pbeampp.c:196

N S
» &
& &

L2 Configuration

(b) MCF:ref,icc10.1-02

Figure 6.7: Persistence of DLs across compilers: MCF

CHAPTER 6. TOLERATING DELINQUENT LOADS VIA CHECKPOINTING 76

to study DL locations and properties. We configure the Plskebdacache simulator with 2-level cache
(separated data and instruction L1 cache and unified L2 y#tdiecovers large variations of cache size,
cache line size and degree of associativity. We give the gorgiion details of the cache simulator in

Table[6.1.

We conduct our initial investigation on all SPEC2000IMTenchmarks using bottiaining and
referenceinputs. We find that only a subset of the applications conifdis with significance of five
percent or higher. We call a particular Ddersistentif its offending source-code location remains
unchanged when other conditions change. To consider gptighDLs in a compiler, the DLs need to
be persistent—they cannot be sensitive and shift positiiesto a particular configuration of the L2
cache. In this section we measure fleesistencef L2 load misses (DLs) in our benchmark applications
across a broad range of L2 cache architectures. We also mgaansistence across program inputs, as

well as compiler vendors, versions and optimization levels

In Table[6.2 we list existing SPEC2000INT applications veitpnificant DLs, as well as individual
DL with its associated significance inside each benchmdirkipder thereferencenput. In this setup,
we use a 256KB L2 cache configured with 32B cache lines andy2setzassociativity. As shown in the
table, DLs from a small number of source-code locations espansible for a very large fraction of all

L2 cache misses in these applications, ranging fror6%3VPR) to 896% (MCF).

We present detailed results of our DL's persistence arsigs sequence of figures: from Figlrel6.2
for MCF to Figure[6.6 foiVORTEX. We use FigurE 612 as an example for explanation. Figutedsavio
sub figures: Figurie8.2(a) shows the MCF DL's significancedéerence input and Figure 6.2(b) shows
the MCF DL’s significance for training input. When we zoomairigure[6.2(a), it presents sbi.’'s
significance curves, representing the six identified DLs we provide earlier in Table 8.2. The X axis
of Figure[6.2(a) is the configuration space of L2 cache andstlteen partitioned into five sections,
representing 256KB, 512KB, 1024KB, 2048KB and 4096KB of laZlwe size, respectively. Within
each partitioned section, there are a total of 12 differéntéche configurations. We provide individual
configuration details in Table 8.1 (index 0-11). The Y axi§wfure[6.2(a) is the DL's significance value
in percentage.

Figure[6.2(a) shows a general trend that a DL's significamaduglly reduces when the size of L2
cache increases. With a larger cache, more loads will hitdlshe rather than issue a long-latency main-
memory fetch. Notice that most DL's significance remain &t range of five percent—our definition
of asignificant DL. For those SPEC2000INT applications withs, the nature of significance is

persistent across different L2 cache size and configuratidamverify each SPEC2000INT benchmark

CHAPTER 6. TOLERATING DELINQUENT LOADS VIA CHECKPOINTING 77

application with significant DLs, present their DL's signdince graphs from Figulre .2 until Figlrel6.6,
and testify that our claim actually holds.

We conduct one additional verification @l.’s persistent natures over compilers with different
vendor, version and optimization levels. We present oneltres Figure[6.7 that compare4CF’s DLs
using gcc-40.4 and icc-101, both at optimization level O2. These two compilers werthatstate-of-
art state when we performed the measurement. Figule 6.7sshat¥CF DL maintains its persistence
across different compilers.

According to our analysis and discovery using SPEC2000IWTU®enchmark suite, we find that
not all applications in this benchmark suite h&e with significance of five percent of higher. Within

the subset of applications that contain significant DLshs have the following persistent properties:

e the DLs are persistent across various L2 cache configusa(gire, line size, ways of associativ-

ity), as long as the working set doesn’t entirely fit into tHzdache;

e the DLs are persistent across different compilers, inclgidiendors, versions and optimization

levels;

e the DLs are persistent across inputs (training or refedence

Through our analysis [6/7, 70], we find that DLs are more likelyappear in unexpected locations
that compilers cannot normally predict. E.g., for integgensive applications in SPEC2000INT, they
often appear at pointer-dereference locations to a steigthose size is bigger than the current cache-
line size, or in multiple levels of pointer deference sitéldern CPU’s cache architectures do excellent
work in prefetching predictable access patterns, thus abmemory accesses whose access distances
fall within the size of cache line will have good cache bebavHowever, for those that do not follow
this pattern, DLs will be more likely to appear. As long as therent program’s working set does not
entirely fit into the last-level cache, DLs appear persiﬂa}@neven with different input data sets. We
thus call this propertpL persistenceAs a result for DL's difficult-to-predict nature, existimgmpilers
cannot statically identify DLs’ locations at compile time merform effective transformations to hide
the long DL latency. Thus DLs kegmersistentacross different compiler's vendors, versions and even

optimization levels.

Iprograms with persistent DLs may slightly shift the locatiovhere DLs appear because the associated significance may
change when given different inputs. However, a DL's pegsisé remains provided the program’s working set do notedtir
fitinto cache.

CHAPTER 6. TOLERATING DELINQUENT LOADS VIA CHECKPOINTING 78

: t=P->a; /l issue DL
1 v = predict(); // value prediction
. start_ckpt(); // start ckpt

A WO N =

. work(v); /Ispeculative execution

work(P->a); // DL cif(t==v){ [/l check prediction

o O

commit_ckpt();
}
else{

7: rewind_ckpt();

4

work(t); /I normal re-execute

}

(a) original code (b) with data speculation

Figure 6.8: Data speculation

Given the DLs are persistent, we can further leverage cemfsiinsformations to enable potential

execution overlapping with the DL.

6.2.3 Data Speculation

The first method of tolerating DL latency iata speculatio{DS) where we make a prediction on the
result value of the DL and use it to continue execution spaiualy, as illustrated in Figufe 8.8. After
issuing the DL as early as possibB,(predicting the DL's data value), starting the checkpoingj,
and performing speculative execution based on that pestlichlue 4), we then attempt to commit
the speculation. The commit process first checks whetheptbdiction was correct by comparing
the predicted value with the DL's valug(: if so then the checkpoint is committe)(otherwise the
checkpoint is rewound7j and the computation is re-executed non-speculativelygusie correct DL

result value 8).

6.2.4 Control Speculation

Whenever the result value of a DL is ussalelywithin a conditional control statement (E.g., a branch),
as shown in Figure 6.9(a), we have an interesting oppoytunitther than predicting the exact result
value of the DL we can instead merely predict the booleanltre$the conditional—condition taken

or not taken, which ideally will more easily be an accuratedmtion than predicting the exact result

value. We call this form of speculatiarontrol speculation (C$which is essentially a special case of

CHAPTER 6. TOLERATING DELINQUENT LOADS VIA CHECKPOINTING 79

1: t=P->3; /l issue DL
2: start_ckpt(); // start ckpt
3: work1(); // speculative execution
if(P->a){
/I DL, commonly true 4: if(t == predict() }{ //check prediction
work1(); //“no use of P->a” 5. commit_ckpt();
))
else{ else{
work2(); // “no use of P->a” 6 rewind_ckpt():
} 7: work2(); /I normal execution
}
(a) original code (b) with control speculation

Figure 6.9: Control speculation

data speculation.

We present the control speculation’s compiler transfoionatin Figurd 6.9(b). When a DL resides
on a control-flow branch, we have an opportunity to hoist tleekwecarried within the frequently-used
branch to be earlier than the DL, as suggested in Flgute @@(borkl1. Similar to the data-speculation
case, we issue the delinquent load as early as possiblenfhgdiately followed with start checkpointing
(2), and the speculatively hoisted work item (3). Note thdtl) we introduce a new temporary variable
(t) to hold the return value of the delinquent load. At this poime compare the predicted value with
the DL's return value (4). If they are the same, the prediotakes a good prediction and we are ready
to commit the speculatiorb). Otherwise, if the predicted value is not the same as the Biturn value,
the prediction has failed in this situation. The scheme mékd to abort the current checkpoifj that
effectively undoesiork1, and execute the less-frequently executed branehk?) in non-speculative

mode {).

Modern processors perform branch prediction and specelatexecute instructions beyond the
branch—however this speculation is limited to the size aggressiveness of the processor’s issue
window that can contain a small and limited number of indtams. The available independent
instructions within this limited window are further coratred. With compiler-assisted control
speculation, we can ideally speculate more deeply, allpwmore instructions and greater opportunity

for tolerating all of the latency of a DL.

CHAPTER 6. TOLERATING DELINQUENT LOADS VIA CHECKPOINTING 80

6.2.5 Value Prediction

Both data speculation and control speculation need highracy value predictions [13,140,/55,58,
[60]. Since the value prediction’s accuracy directly catet to checkpointing’s commit ratio, highly
accurate value prediction is a must to guarantee high clodukpommit rate—a vital step necessary for
performance gains through speculative execution. Howdlrercomputations involved in generating
the predicted value are on the critical path and thus muselaéed as part of the speculation overhead.
As aresult, the competing goals of value prediction in th&ext of checkpointing-enabled applications
are two-fold: (i) to maintain very high prediction accuraapd simultaneously (ii) to minimize involved
computational and storage overheads.

We study a wide range of value prediction methods, from stngoinstant-value prediction, last-
known value prediction, constant stride value predictiormore complex and storage-intensive table-
based context-aware value predictioris | [40, 58], as welldaing confidence as a method to throttle
the prediction result and increase prediction accuracy. odiosurprise, we find that simple last-
known value prediction and constant-stride value preahstiwork fairly well and satisfy most of
our needs in value prediction for speculation. The more esige, complex and computationally-
intensive value predictors (e.qg., table-driven contexét@ predictors) do not necessarily deliver higher
prediction accuracy, but at the expense of much more corputand storage overhead. As a result, we
utilize only constant-stride value predictor and lastiknovalue predictor to service the speculation’s

prediction demand for the rest of this chapter.

6.3 Theoretical Performance Modeling

Figure [6.10 illustrates the ideal speculative timing mot® overlapping execution with DLs.
Figure[6.10(a) is the normal sequential model where thé &x@cution time is the accumulation of
both DL'’s latency cycles and the work’s latency cycles, dmdontinuation of work relies on DL. This
represents the conditions where the DL's value is immelgiateeded to allow execution to proceed
with inside work, thus the program stalls until the DL's valteturns from the high-latency memory
system.

Under the speculatively overlapped model given in Figui€l@), the program continues with the
predicted value while the memory system is simultaneoustyisg the DL. This resembles a form of
memory-level parallelism though there is no explicit pitahread needed to fetch the DL's value from

main memory. Thus under this model, the total execution fsrtbe maximumof the two individual

CHAPTER 6. TOLERATING DELINQUENT LOADS VIA CHECKPOINTING

81

X X X x X X
s | s | 8
S| S | 2
a : a : c <
1 time time v i 5
T L=

? ;

[0) v v
o

&)

= C

(<]

=

v ¢
(a). sequential model (b). speculative (overlapped) model

Figure 6.10: DL ideal timing model

Speedup Overlap DL1

60

50

IS
S

Speedup (%)

~
3
=R

10%

— ‘
O % 0 20 & R P P DD ER DR FEEDE @A AR

#OF CPU Cycles

Figure 6.11: Overlap execution with L1 cache only (20 cycleciche miss latency)

CHAPTER 6. TOLERATING DELINQUENT LOADS VIA CHECKPOINTING

82

Theoretical Speedup of Overlapping L2

607

509

NN IR OERN DD O N T O OPO - ND IO BB =N T B O~ D
R R A SRR R - R i e
_____ SREN2A5885393¢23838833858TRRR

of Cycles to overlap with

Figure 6.12: Overlap execution with L2 cache only (500 cy@ecache miss latency)

Speedup of Overlapping DLs

50%]

40%|

——Overlap L1 only
— Overlap L2 only
— Overlap L1 and L2

Speedup (%)

207

10%]

Figure 6.13: Overlap execution with both L1-and-L2 cacHergalusive)

CHAPTER 6. TOLERATING DELINQUENT LOADS VIA CHECKPOINTING 83

participating components. This models the cases whenrdfieeDL's value is not being immediately

needed or the DL is being used to make a predictable contnldlecision and therefore its precise

value is less important.

We now present a theoretical performance modeling of spieely overlapping execution with up

to two levels of cache.

Let CL denote the cycles of a cache miss (DL) andQedenote the cycles of work that overlaps

with the DL, we have

TsequentiaI: CL+C

Ts peculate— max(C L, C)

Let Sdenote the relative speedup of overlapping execution withvize give the definition oBas

S— Tsequential_ Tspeculate: CL+C— max(C L>C) (6 1)
Tsequential CL+C .

Thus the ideal theoretical relative speedup for overlagppiith only L1 cache is

. CL;+C—- max(CLl,C)

S

CL1—|—C
C .
_ Jenre FC<Cl
ool fC>CL

Similarly the ideal theoretical relative speedup for oapding with only L2 cache is

CHAPTER 6. TOLERATING DELINQUENT LOADS VIA CHECKPOINTING 84

~ CL+C—-maxCL,,C)

& CL2—|—C

C .
m, |fC<CL2

oois, ifC>Cly

In addition, we obtain the theoretical relative speedupofaerlapping with combined L1 and L2

cache by aggregating individual speedups:

ooc tees f0<C<Clh

S=5+S= C&%—FCLZ% if CLy <C < CLy

cils + o2, ifC>CLy

We present three theoretical relative speedup figures #rtlihee possibilities of overlapping
execution with DL: with a L1 cache miss only (Figlre 8.11)ttwa L2 cache miss only (Figute 6]12),
and with a combined L1-and-L2 cache miss (Fidure16.13),eesgely. The figures show both overall
similarity and individual differences. For ease of compan, we fix L1 cache miss latency to 20
cycles CL; = 20) and L2 cache miss latency to 500 cycles = 500). For each figure, on x-scale
we give the number of work cycles that are suitable to sp&ealg overlap with the DL, and on y-
scale we give the maximum theoretical relative speedupherréspective case of overlapping with
a cache miss. Figufe 6]13 is an all-inclusive figure that shallvthree participating curves together.
It presents the composition process that overlaps andpiisges Figuré 6.11 and Figure 6.12, and
produces Figure 6.13.

In Figure[6.11, the relative speedup that overlaps with hfi~evorkload goes sharply to its peak
from zero toCL; (20) cycles in the beginning. Since the L1-miss-and-L2ckidles are relatively short,
the curve has only limited room to stretch before reachiaghtoretical peak, which is predicted to
be 50% when the overlapped cycle€?) (s equal to L1-miss-and-L2-hit cycle€L,). In Figure[6.1P,
the relative speedup that overlaps with L2-only work canrbated as horizontally scaling the curve
in Figure[6.11 to match with L2-miss-and-memory-hit cyc{€4,) and its theoretical performance

upper-bound is also 50%. Given ideal workloads, the tworttaal speedups can further combine and

CHAPTER 6. TOLERATING DELINQUENT LOADS VIA CHECKPOINTING 85

Speedup Overlapping with DL1

50%

40%

—4—4K Nodes

Relative Speedup

3>
=

0 ‘/\V T
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

of INT-ADDs

Figure 6.14: Real DL Speedup: L1

generate an aggregated effect that can cross the 50% thitephesented as thel,-centered triangle-

like area in Figuré 6.13. Since multiple levels of cache wmidether in a real machine, one cannot
easily separate and observe the L1 cache-miss only or LZeaaws only effects, the combined L1-
and-L2 effect (presented in Figure 6.13) is the one that weexgect from fine-grain speculation in

real-world workloads.

6.4 Micro Benchmark and Practical Performance

Software-only speculation that overlaps fine-grain exeoutvith DLs is a field that doesn’'t have
established or well-known workloads. We are thus in need esfichmark or micro-benchmark
applications that have significant DLs as well as sufficientiwtems that are suitable for the fine-grain

overlapping. This section is devoted to the efforts of hagdsuch applications.

6.4.1 Micro Benchmarks

We develop a set of synthetic benchmarks for real-machiaduation. This includes a linked list
(LINKLIST), a binary search tree, a B-tree, a red-black tree, an AW, tiad a hashtable. They behave
similarly in that accesses to dynamically allocated datacsires result in frequent last-level cache
misses (DLs). We useiNKLIST as the representative workload for this study. We make eade m

the LINKLIST larger than the cache-line size on the machine we used taicbtite evaluation. Within

CHAPTER 6. TOLERATING DELINQUENT LOADS VIA CHECKPOINTING 86

Speedup of Overlapping with DL2

60

——2M-Nodes

50¢

40

30%4

2004

Relative Speedup

109

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800

of INT-ADDs

Figure 6.15: Real DL Speedup: L1 and L2

the nodes, we also make frequent accesses to fields whosediffances to the begin of the node are
larger than the cacheline size. As a result, most DLs willeappvhen traversing theiNKLIST—a
step that simplifies the need to precisely identify DL losasi. For the workload that can be used to
overlap with DLs, we use a simple integer accumulator thinoadoop (NT-ADDS. By varying the
loop’s trip count, we can easily control the granularity loé tworkload to make it ideally suitable for
tolerating L1-miss only latency, L1-hit-and-L2-miss latg, or L1-and-L2-miss latency. We make this
workload independent of the DL's return value so the spéivel@verlapping has the potential to scale
up to the limit of the respective cache-miss cycles. We mh&ddop’s trip count an input-dependent
parameter to destroy potential compiler optimizationdiapple on this critical workload-control loop.
To exacerbate the situation, we randomize the startingeaddif each node, which helps to undermine
the hardware prefetcher. By adjusting the number of noddéiseinINKLIST, we achieve the effect of
either polluting only the L1 cache (L1-DL), or polluting twot.1-and-L2 caches (L1L2-DL) through
a single linklist traversal. The empirical list size we use4K nodes for L1-DL and 2M nodes for

L1L2-DL, respectively. We usBDTSC|1,63] for fine-grain time measurement.

The machine used for evaluating the micro benchmarks hagkesiore GHz Pentium-1V CPU,
with a 16KB 4-way set-associative L1 data cache, a 12KB 8-s&yassociative L1 instruction cache,
and a 512KB 8-way set-associative shared L2 cache. Theiaehgize is consistent at 64B across all

levels of cache. Each measurement data point is the arithenatrage of at least five independent runs.

CHAPTER 6. TOLERATING DELINQUENT LOADS VIA CHECKPOINTING 87

6.4.2 Performance of Micro Benchmark

Figure[6.1% shows the relative speedup of overlapping L1 BibgiLINKLIST with 4K nodes. The
workload to overlap with DL is a loop performing accumulatiof integer adds (INTADDs, the loop’s
trip count is shown on the x-axis), while the y-axis givesrtlative speedup. Figute 6114 is very similar
to the theoretical prediction of L1 speedup curve given guké{6.11. It reaches its maximum at around
45% relative speedup while overlapping roughly 70 INTADDs.

When performing testing on real machines, a workload thédjes the L2 cache must already have
the L1 cache polluted. It is difficult to obtain the perforroarfigure with a workload that overlaps with
only the L2 cache (L2 DL). We thus focus on workloads that lapes with L1-and-L2 (L1-L2) DL.

Figure[6.15 shows the relative speedup result when ovengppith L1-L2 DLs using 2M nodes.
The workload to overlap with DL is the same integer-accumimtaloop as the one used in Figlire 8.14.
The difference is on the loop’s trip count, which simulates granularity of the workload that overlaps
with the DL. Figure[6.I5 roughly contains two stages. In stage, the curve reaches around 35%
speedup at roughly 70 INTADDs. This agrees with our own messant given in Figure 6.14 and it
is the effect of mostly overlapping L1 DL. In stage two, thesgup curve maintains its stability over
35% until roughly 750 cycles, with a maximum reaching veysel to the 50% theoretical peak. This
closely matches the L1-and-L2 prediction given in FiguE3ewhere a wide range of 35%+ relative

performance is expected after stage one.

6.5 Challenge with Real-World Applications

We give theoretical analysis and predictions on spec@aierformance for overlapping execution with
various levels of cache. We verify this claim with micro blenmarks that can reach very close to the
theoretical peak and largely represent the performancel tteat the theoretical model predicts. These
results are obtained under ideal conditions that (i) theneoi failed speculation because the involved
predictor can yield 100% prediction accuracy, (ii) there ao cache misses within the simulated
workload that is used to overlap with the origiraL, (iii) the checkpointing framework generates
minimal overhead because the speculative workload haspendency on the predicted value of Die,

and (iv) the speculative workload is only fine-grain enoughuifficiently overlap with the targetingL.

However, such ideal situations may not always hold undergymthetic benchmarks on real machines.

We further investigate the possibility and feasibility gbpdying control speculation and data

speculation transformations we introduced earlier in thiapter to real-world applications (e.g., the

CHAPTER 6. TOLERATING DELINQUENT LOADS VIA CHECKPOINTING 88

DL-intensive applications in the SPEC2000INT suite). Wgest some major challenges. First,
even with all checkpointing optimizations enabled, chedkfing overhead is non trivial and cannot
be ignored. Second, the success rate from branch predictiealue prediction plays an important
role because failed predictions will directly translatéoifailed speculation and trigger the expensive
checkpointing abort and recovery process. Thus a relgtiogl speculation success rate can render
the entire speculative scheme uninteresting. Third, timepder needs to find work that is coarse-grain
enough and can potentially overlap with the entire latericthe identifiedDL. This ideally suitable
workload may not exist in real-world applications. Finalllge compiler needs to recognize an ideal
sweet spot to terminate speculative execution and maxipuotential speculation benefit. This is no

clear indicator on the exact location for such sweet spots.

6.6 In-depth Study Using MCF

MCF is a benchmark application from the SPEC2000INT smi@F. frequently operates over linklist-like
type data structures and is known to have intensive DLs. We $elecMCF to conduct an in-depth
case study that aims to explore manually enabled specatiecution overlapping with the significant

MCF DLs.

6.6.1 Insights of Significant MCF DLs

Due to its pointer-intensive nature, MCF is known to havetipl@ static significant DLs across its
entire code base. Using the same pintool-based cache somul@ present the top six most-significant
MCF DLs in Figurd 6.16 and provide insights and analysis eirtbharacteristics.

First, most DLs reside within a pointer access that atteruptstch a field within a node structure.
Examining source code indicates that most DLs belong to toaleis part of a linklist traversal. All
linklist nodes are dynamically allocated with node sizegkeigthan the size of a cache line on the CPU
architecture that MCF runs. This indicates little intedacspatial locality and implies that conventional
prefetching techniques will not likely be effective for #geDLs. Second, the majority of DLs are within
one level of pointer access (DLO to DL4), with the only exéapton DL5 whose behavior is through
multiple levels of pointer indirections. This matches thdesof single-level linklist where most actions
happen within the single node that is currently being agmks$hird, DLs are more likely to happen
within a frequently-accessed field of a big node structuresetsize is larger than the cache-line size.

Knowing the size ofarc is 32B (DL1 to DL5) and the size afodein MCF is 60B (DLO), they are

CHAPTER 6. TOLERATING DELINQUENT LOADS VIA CHECKPOINTING 89

while(node != root }{
while(node){
if(node->orientation == UP) /I DLO
node->potential = node->basic_arc->cost + node->pred->potential;
else{
node->potential = (node->pred)->potential -node->basic_arc->cost;
checksum++;

}

:
(a) DLO: mcfutil.c:86

while(arcin
tail = arcin->tail, /I DL 1
if(tail->time + arcin->org_cost > latest){ // DL 2

arcin = (arc_t *)tail->mark;
continue;

}
(b). DL1: implicit.c:250, DL2: implicit.c:252

cost_t compute_red_cost(cost_t cost, node_t *tail, cost_t head_potential)
cost_t cost; node_t *tail; cost_t head_potential;
{

}
(c) DL3: mcfutil.c:80

return (cost - tail->potential + head_potential); // DL3

for(; arc < stop_arcs; arc += nr_group)

{
if(arc->ident > BASIC) { // DL4

red_cost = bea_compute_red_cost(arc);

}
}

(d) DL4: pbeampp.c:191

cost_t bea_compute_red_cost(arc_t *arc){
return(arc->cost - arc->tail->potential + arc->head->potential); // DL5
}

(e) DL5: pbeampp.c:41

Figure 6.16: Significant DL locations in MCF

either equal-to or larger-than the cache-line size (32Bthefmachine that we conduct analysis and
evaluations. Loading a different linklist node is more liko cause cache misses on such architectures
because it is difficult for the cache sub system to predicthed prefetch the address of thextlinklist
node when the nodes are dynamically allocated. Finallyyvthere are multiple levels of pointer access

(DL5), it is more likely to be a DL because such accesses are ordikely to remain in cache.

CHAPTER 6. TOLERATING DELINQUENT LOADS VIA CHECKPOINTING 90

Predictor | Accuracy | Speculative Performance
pred+ckpt+nousepred 100% -0.14%
branch always taken 96.35% -0.51%
const value(l) 94.66% -1.33%

last value 91.3% -1.36%

const value(0) 3.65% -1.49%

const value(2) 1.69% -2.43%
always predict wrong 0.0% -2.45%

Table 6.3: Prediction accuracy and performance impact {GFNDL4

6.6.2 Speculation over MCF DLs

We further investigate the potential for compiler-basethdspeculation and control speculation to
tolerate DL latency, focusing on these significant DLs in M&Ry speculation over DL that delivers
performance benefits has to satisfy a critical conditioe: @h's value must be highly predictable. Any
low value prediction accuracy effectively renders the sfsion unattractive due to the overwhelmingly
expensive recovery overhead from failed speculationsh®fhiree DLs best-suited for data speculation
in MCF (DL1, DL3, and DL5), their data values are too sparsgramdom. As an unfortunate result, all
three have prediction accuracies that are too low to justifther exploration. For the three control
speculation cases (DLO, DL2, and DL4), DLO and DL2 are also uapredictable; however DL4
presents an interesting case. Although it appears to beteotepeculation, this DL has only three
different integer data values (0 :65% 1 : 9466% 2 : 1.69%) across the entire MCF execution. In
Table[6.8, we present all branch predictions and value gieds we have explored on DL4, as well as
their respective prediction accuracy. It is easy to seedlsitic branch predictor that always predicts
taken (true) yields the highest DL4’s prediction accuré@§35%) in reality.

The 100% accuracy (pred+ckpt+nousepred) represents ahddse where prediction and check-
pointing are both enabled and aggressively optimized, teitpredicted value is not actually used.
Hence this case merely measures the speculation (chetikgoamd value prediction) overhead without
benefiting from any speculative overlapping. This caselt®sn only a tiny slowdown of (4%,
highlighting the combined efficiency of our checkpointimgrhework and the value prediction. Various
predictors yield vastly different prediction accuraciemging from 9635% for a static always-taken

branch predictor (always predicts true), to.@8P6 for a constant value predictor (always predicts

CHAPTER 6. TOLERATING DELINQUENT LOADS VIA CHECKPOINTING 91

a constant value one), to @2 last-known value predictor (always predicts the lasuealwith
an immediate value update for any incorrect prediction)3.86% for a constant value predictor
(always predicts a constant value zero), and finally 89% of a constant value predictor (always
predicts a constant value two). All predictions that yiedglistic accuracies are from real predictors
(prediction accuracy range between 0% and 100% in Table&Bgdded in fully functional speculative
execution environments with error checking and failure@vecy enabled. Thepeculative performance
column shows steady performance degradations with the da@easing prediction accuracy. This
matches our expectation that low prediction accuracy éngdailed speculations that can potentially be

overwhelmingly expensive.

A small overall slowdown of 23% (with 169% prediction accuracy) is derived from a much
larger slowdown factor within the function where the spatioh occurs. This is the worst case of a
realistic low-accuracy predictor can cause in MCF. The ratin @.0% prediction accuracy is achieved
by constantly predicting a wrong value (data value of -1)ichlis neither in the distribution of available
values (Tabl€ 6]3) for value prediction, nor contributearty success in branch prediction (Figure 6.16,
DL4 case). Thus the global slowdown o0#48% represents the worst-case performance lower bound

that an always-failing speculation over DL can possiblyseau

A few critical conditions need to be satisfied simultanepuslorder for a speculative scheme to
gain potential performance. This includ€y highly-biased branch prediction or extremely accurate
value prediction toward selected speculative regi@j;overlapping code region that is coarse-grain
enough to closely match the speculation (DL) latency andpasmsate checkpointing overhea@®)
no control-flow terminating instructions within the oveguang code region which can prematurely
terminate speculative executiof#f) no reuse of DL's value within the speculative region, #6dno
additional hidden DLs in the speculative region that areeced by a leading DL. Among the three MCF
control-speculation cases (DLO, DL2 and DL4), DL4 is theyamie that yields prediction accuracy high
enough and worthwhile to conduct further investigationfddtunately, DL4 has only a small amount of
computation to potentially overlap with (Figure 6.16). Fkbde region is too fine-grain to completely
hide the long-latency the DL caused while tolerating theveafe checkpointing overhead. In addition,
DL4 is aleading DL—a DL that covers additional memory loads whose code déga to DL4 are
within the cache-line size. Compiler transformations talde speculative execution on DL4 breaks
its delinquent-load nature, but exposes additional DL$ #in@ otherwise hidden and covered by the
leading DL (DL4). Leverage over control speculation or dsp@culation, we manage to eliminate

the leading DL (DL4) which comes at the expense of exposirtitiadal DLs that used to be hidden

CHAPTER 6. TOLERATING DELINQUENT LOADS VIA CHECKPOINTING 92

under shadow. As a result, control speculation on DL4 giwepasitive performance despite its high

prediction accuracy and our highly efficient software clpegiting framework.

6.7 Summary

In this chapter, we conduct a thorough investigation of ast tiheckpointing application—overlapping
speculative execution with delinquent loads. We presestrttical performance analysis that models
speculative execution overlapping with DLs. Based on tlagleh, we predict that the relative theoretical
speedups will be around 50% for overlapping with L1-and-B2he misses. We verify this theoretical
prediction with synthetic benchmarks that can achieve edrge to the predicted peak performance.
The verification results are obtained using a macro bendhorareal machines under ideal speculative
conditions. Motivated by the feedbacks from the micro bematk, we further conduct an in-depth
study of real-world software-only speculation using alkgible significant DLs in MCF, including
various predictors, speculative transformations, andiefft software-only checkpointing. We find
that not all DLs are suitable candidates for speculationthWithose suitable candidates, the amount
of computation that can overlap for speculative execut®fikely too fine-grain to compensate for

checkpointing and value prediction overhead.

Chapter 7

Checkpoint-Enabled Debugging and
Backtracking

In chaptei_ B and chaptkl 4, we introduce a large and compsieecheckpointing transformation and
optimization framework that enables fine-grain checkpoghand reduces its associated checkpointing
overhead through aggressive compile-time analysis arichizattions. Our compiler-based fine-grain
checkpointing infrastructure provides a low-cost andvgalfe-only platform that is necessary to support
many applications. In chaptet 6, we give a detailed analykisur first checkpointing application—
overlapping execution with delinquent loads. In this ckapive introduce two more interesting
applications that leverage our checkpointing support tb bain distinct functionality and benefit from
much reduced overhead. These applications include chetlqugpport for debugging, and checkpoint-

enabled automatic software backtracking.

7.1 Checkpoint-enabled Debugger

7.1.1 Overview

A debugger is a software program that helps programmersetttifyd and resolve software bugs. A
normal debugging session begins with a user placing bréat{gpat designated program location(s)
before launching a program inside a debugger. When the gmogtarts its execution and stops at
each breakpoint location, the programmer can examine tpkcapon’'s logic and states, trying to
identify the root cause of the bug that is under investiggtias well as attempting a fix. However,

once execution passes a certain breakpoint, it is usudflgudi to rewind execution back to a previous

93

CHAPTER 7. CHECKPOINT-ENABLED DEBUGGING AND BACKTRACKING 94

e 1. safe point, literally earlier than P, the
td .

a program can reach through checkpoint
R recovery

! (1)

(3) \ O P: root cause of a bug

(@)

Q: place where the bug manifests

®

(a user or programmer notices the bug
at this point)

Figure 7.1: Overview: checkpointing support for debugging

program location, although a user may often find that the caose of a bug is likely located close
to the location of a previous breakpoint that execution hest passed by. Frequently restarting
execution can be impractical in occasions where it may takarhitrarily long time to again reach

the suspicious bug location. Moreover, the bug may not beysweproducible under some certain

execution environments.

Debuggers enhanced with our checkpointing support candlielgate this situation. We expose the
checkpointing APIs on the source-code level so that a prograr can selectively mark a checkpoint
region that likely contains the root cause of the bug. Theg@mmer first inserts an end-region
marker slightly after the location where the bug manifestis is an easy step because the bug’s
triggering location is well known to the programmer. Thisu®ially the place where the programmer
notices the application’s abnormal behavior: generatingra dump, triggering an assert, issuing some
error or warning messages to the console, printing someagessthat are apparently wrong, etc.
Properly identifying a start-region position that justlirdes the root cause of the bug requires some
understanding of the code as well as an educated guess. gibe reeeds to be big enough to contain
the root cause of the bug, but at the same time cannot be daegl/so that the programmer gets lost in
an overwhelming amount of unrelated details. Even thougimitial begin checkpoint-region marker
placement may not always be ideal, we find through our ownréqee that it will quickly converge to
the right position within very few iterations. In practioge often place breakpoints overlapping with

the checkpoint region boundaries. Once execution reableesnid of a checkpoint region, the matching

CHAPTER 7. CHECKPOINT-ENABLED DEBUGGING AND BACKTRACKING 95

Index | Checkpoint Function| Explanation
1 startckpt() begin a new checkpoint region
2 stop.ckpt(bool b) finish current checkpoint region by either commit or abodatpoint
3 commitckpt() commit current checkpoint
4 abortckpt() abort current checkpoint

Table 7.1: Checkpointing APIs exposed to debugger

breakpoint will stop the program’s execution. At this momehe programmer has the opportunity
to decide the next action to take over the debugger's comnmedace: finish debugging this region
by issuing astop_ckpt command, or rewind execution to the beginning of the regiprsbuing an
abort_ckpt command. This process iterates until the root cause of thesdsuccessfully uncovered.

Figure[Z.1 shows the checkpointing-enhanced debuggingepsooperating over a user-identified
checkpointing region. When a normal program executionhesgrogram pointT (the checkpoint
begin position), checkpoint-enabled execution startsogRim pointT needs to be a position earlier
than the root cause of the bug. When program is executingsatigqoT, we consider it is in a bug-
free mode. Execution propagates along checkpoint-engtddidl (1) covering the root cause of the
bug P. Note that the root cause of the bug is triggered, but doasaitifest imnmediately. Execution
continues after the root-cause position along path (2)fiaatly reached the program positi@nwhere
the programmer notices the bug (bug manifestation pointle frogrammer can conduct any normal
debugging activities along the execution paths after axgehe checkpoint-enabled region. At program
locationQ, the programmer can selectively decide the next actiorhelfprogrammer decides to finish
the current checkpoint and resume normal executieepait_ckpt command is issued. Alternatively,
if the programmer plans to rewind execution to the begin efc¢heckpoint region (along path 3) and
re-examine code in this section with more debugging aE&jitanabort_ckpt command is issued.

We present the set of relevant checkpointing APIs in TalleWe provide these APIs in the form of
C programing language source code prototype, thus a usenwakei a particular checkpointing service
by calling its function’s name on the debuger's command-iimerface. Functiostart _ckpt starts
a new checkpointing region by resetting all internal budfand be ready to conduct backup actions.
Function stop_ckpt (bool) finishes the current checkpoint region, with a boolean tymgiraent
indicating the proper action. When the boolean argumetrui the system will commit the current
checkpoint; otherwise when the boolean argumefdlsg the system will abort the current checkpoint
and rewind execution to the begin of the checkpoint regidre ffrogrammer is responsible for making

the proper decision on whether to commit or abort the curthatkpoint. We provide two additional

CHAPTER 7. CHECKPOINT-ENABLED DEBUGGING AND BACKTRACKING 96

(a) BEFORE (b) AFTER

2
blocks /‘\

nets ———"
~ 1

Algorithm:
< 1) Start with random placement of blocks
2) Randomly pick a pair of blocks to swap

3) Keep new placement if an improvement

Figure 7.2: Overview: checkpoint-enabled software badkiing using VPR

API functions to further refine and simplify theop_ckpt processicommit_ckpt commits the current

checkpoint, andbort_ckpt aborts the current checkpoint, respectively.

7.1.2 Benefit

Debuggers enhanced with our checkpointing support gainathity to rewind execution to a
previously specified program location that a programmentifies. It allows rewinding over regions
of unconstrained size because our checkpointing schenmogapegions with arbitrary granularity
and complexity. Our checkpointing scheme buffers finergraiogram changes into main memory
and can dynamically grow the checkpoint buffer under demdie checkpointing infrastructure also
supports unlimited retries. This helps avoid all probleated with repetitively reproducing the bug
under a precise bug-trigger environment, as well aslahg-latencyprocess related with restarting
the application. A checkpoint-enhanced debugger helpsdoce develop-run-debug cycle time. This
enhanced functionality and increased ease in debuggingasily convert into improved programmer’s

productivity in the process of identifying, isolating anxiifig software bugs.

7.2 Automatic Backtracking Support for VPR

Backtracking refers to a set of algorithms that search flutiems in a given space of possible choices.
The final solution of a backtracking algorithm is built uposemuence of incrementally improved partial

solutions, where each step either makes a guaranteed tbpragress or maintains its current state

CHAPTER 7. CHECKPOINT-ENABLED DEBUGGING AND BACKTRACKING 97

that is free of regressions. When evaluating an individogb shat can potentially make a positive
contribution to the final solution, the partial result iheit committed (incorporated into existing partial
solution) or discarded, depending on the evaluation régmged on this individual step. Because the
backtracking may perform intensive access to global datectstres, the implementation of a back-
tracking algorithm usually cannot be contained in any staeéed design. We conduct our 3rd case

study of checkpointing-supported applications using matic software backtracking algorithmVPR

7.2.1 Overview

Versatile Placement and RoutéRR) [9]54] is a software CAD tool for generating high-qualityowiit
layouts on array-based FPGAs. VPR places and routes on avarikty of FPGAs and facilitate
comparisons among different architectures. VPR’s placémpkase denotes to the process of placing
various circuit components at different locations on threuwt board, where the routing phase is the
process of connecting placed components through wirintewespecting all limitations and constraints
in a given FPGA board. VPR implements a software backtracklgorithm in its placement phase and
we present a simplified view of this backtracking processigufe[7.2.

VPR’s simulated annealing-based placement begins itsepsing with a set of circuit blocks in
their original locations. The algorithm involves choosiagair of blocks at random, swapping their
positions, and evaluating the impact of this swap on a chosstfunction. E.g., Figufe 4.2-(a) presents
a given set of circuit board that has a total of four circubdils @ to D) requesting a placement.
Among these available circuit blocks, VPR’s placement @tllgm randomly selects two circuit blocks
(circuit A and circuitB) for swapping. If these two circuit blocks happen to resideddferent nets,
the pending swapping (backtracking) action will have a bighossibility of success, although the
placement algorithm is not aware of this fact. The algorigfnoceeds by evaluating the newly generated
circuit based on this attempted swap. Evaluation criteridude estimating new placement cost when
trying to fit the new circuit, power and heat dissipation lohsa the swap, as well as any impact on
clock frequency and resource constraints. Depending omtpact (evaluation result), the swap may
either be accepted or rejected. We show in Figurke 7.2-(IbYhlesattempted swap of circuit blocksand
B is accepted. Thus this temporary swap becomes permanemtdryporating this partial order into the
current solution. This process repeats until the cost fanaonverges to a satisfactory value.

Current implementation of VPR’s backtracking algorithmede tomanually save all necessary
program states before attempting a swap, as well as backtgngiorary results along all program

paths when evaluating the attempted swap. Shall a discapeha itmanually restores all saved

CHAPTER 7. CHECKPOINT-ENABLED DEBUGGING AND BACKTRACKING 98

program states from various complex data structures to tmelattempted swapping action. The code
that implements VPR’s backtracking algorithm is within they_swap function—segments af source
code that are reasonably big and span across roughly 3G0) liitlh access to global variables, loops,
pointer-chasing data structures and user-defined functdisites. Each user-defined function callsite
within try_swap function needs to invoke its checkpoint-enabled versidmclwvcoexists with its non-
checkpoint enabled version that will be called from outgifithe checkpoint region.

Under the currentVPR implementation, it is not an easy task to manually enableungentation
over such a coarse-grain code region while providing ctmess guarantees. It can easily become a
maintenance nightmare for future development if a developerely has the code but lacks sufficient
training or background on the existing algorithm and itatesdl data-structure implementations. VPR
designers need to understand not only the placement dlgyritiata structures, but also pay close
attention to the details of manually saving and restoringeasary program states. Maintaining this
manually-instrumented backtracking code will easily meeoa major productivity and backward-
compatibility bottleneck when a programmer attempts tiseethe evaluation algorithm or improve the
associated data structures. This is a tedious and erroemmcess that often has a negative impact on

productivity, especially when improving the algorithm tih@sults in necessary data structure changes.

7.2.2 Benefit

By exposing the compiler-friendly checkpointing APIs ae thource-program level, our fine-grain
checkpointing framework releases VPR designers from gabout fine details of conducting manual
checkpointing instrumentation over the backtracking aeggon that can potentially be arbitrarily large
and complex. VPR designers can ignore all details of martuatkpointing and instead simply mark
the entire back-tracking function or region as a checkjmgnprogram construct. Our checkpointing
framework will then automatically transform the code to ldeaand optimize checkpointing over the
region. This is a simple and straightforward process of mhregion marking followed by automatic
tool transformation. It greatly simplifies the previouskdious actions that a programmer has to
manually instrument over all possible code paths that theclgioint-enabled VPR program may
exercise. VPR designers can instead focus on improving Itf@ithm itself and leave all tedious
details to our compiler—a step that simplifies applicatiomgpamming interface, reduces programming
difficulties, lowers the possibilities of introducing budse to the overwhelming amount of details and
complexity that a programmer has to face when conductinguadanstrumentation, thus improving

overall end-user productivity.

CHAPTER 7. CHECKPOINT-ENABLED DEBUGGING AND BACKTRACKING 99

7.3 Test Environment

Our compiler-based checkpointing framework builds on th&NM [87] B8] open-source compiler
infrastructure reIease.QEl. All analyses, transformations, and optimizations areoized as LLVM
passes with explicitly specified dependencies using LLVMidt-in pass manager. This guarantees
not only the proper ordering among the passes from our clogakpg framework, but also the smooth
interactions with a large number of existing LLVM passed tra designed for general optimizations
and have no particular design goal for checkpointing. Wedadmig builds for development and sanity
test and release builds for the performance test. For eadueheckpointing support on debugging, we
use BugBencHh [41]—a collective suite containing variousvkn software bugs with program inputs that
trigger individual bugs. We select five BugBench appliaagidhat are both single-threaded programs
and contain only buffer-overflow bugs. To evaluate applicet with checkpoint-enabled software
backtracking support, we use the most recently releasesloveof VPR-502 [9], as described in
section[Z.2. We conduct all measurements on an Intel phatferith a Core i7- 920 CPU, 4GB of
DDR3-1600 RAM, running a fully patched Debian-6-i386 (k&lr@.6.32) with g++ version 44.5. All

other prerequisite packages for LLVM are on their highe&tlkof supported versions.

7.4 Program Partition for Checkpointing Regions

The automatic checkpointing process relies on a manualtstpprtition programs for checkpointing
regions. We manually convert each of our test applicatiom $ingle-File Application $FA form and

create checkpointing regions with respect to individualgpams.

7.4.1 Checkpoint Region Partition

We partition each suitable application into three levelgrahularity for checkpointing: small (S) region,
medium (M), and large (L). After converting each sele@egdBench application into itsSFA form, we
enclose the root cause and manifestation point of each kageigion setup with minimal code span. We
call this the small §) region. We then grow the small region by both forward extegénd backward
extending the region boundaries, covering increased gatyuand complexity of the source code. The

result is a mediumN]) region that contains a significant portion of the progrand a large I() region

I\We started our checkpointing work when LLVM was on it Pelease. LLVM has two new releases every year, thus we
have kept upgrading our work when a new release became laleaild/e finish the intensive coding stage and stabilize the
checkpinting framework when LLVM was in its2release.

CHAPTER 7. CHECKPOINT-ENABLED DEBUGGING AND BACKTRACKING 100

Applications Region | Avg. insts| Avg. source lines Execution Entries

S 22K 3 3
bc-1.05 M 208 K 430* 1

L 305K 1200* 1

S 0.9K 1 1
gzip-1.24 M 2.7K 89* 1

L 194 M 119* 1

S 14K 14 1
man-1.5h1 M 1.6K 30* 1

L 645 K 89* 1

S 0.8K 2 1
ncompress-4.2 | M 149 K 149* 1

L 231K 163* 1

S 15K 2 1
polymorph-0.4.0] M 3.1K 49* 1

L 148 K 76* 1
VPR-5.02 M&L | 67.1K 268* 371K

Table 7.2: Benchmarks and Checkpoint Region Properties

that is even coarser grain and can potentially cover theeeagiplication.VPR has only one checkpoint
region for properly implementing the back-tracking algfum within itstry_swap placement function.
However, forVPR in particular, we have two checkpointing regions: a med{lut) region and a large
(L) region, depending on whether the region is marked from thetion callee’s perspectivé) or the

caller’s perspectivel(), respectively.

7.4.2 Checkpoint Region Properties

Table 7.2 summarizes the checkpoint regions’ propertiesdoh benchmark application after its region
partition. Checkpoint regions are vastly different in siEer example, a small region usually contains
around 1000 instructions and spans two or three lines otsawgde, while a large region can contain up

to 195 million instructions (the entire gzip2é when running under its given input) and covers 1000+

CHAPTER 7. CHECKPOINT-ENABLED DEBUGGING AND BACKTRACKING 101

Apps Region | Inline | RRE | FPRE | HRE | Hoist | Aggr | NRESE | DynOpti | ArrayOpti
S 0 0 0 0 0 0 0 0 0
bc-1.05 M 17 21 56 3 2 9 0 70 0
L 63 68 63 12 2 9 0 114 0
S 1 0 0 0 0 0 0 0 0
gzip-1.24 M 2 35 16 9 10 0 1 0 0
L 2 35 16 10 10 0 1 0 0
S 7 0 0 0 0 0 0 0 0
man-1.5h1 M 8 0 0 0 0 0 0 0 0
L 79 2 19 0 0 0 0 18 0
S 1 0 0 0 0 0 0 0 0
ncompress-4.2 M 3 0 0 0 0 0 0 0 0
L 18 7 3 0 0 0 0 0 0
S 1 0 0 0 0 0 0 0 0
polymorph-0.4.0 M 1 0 0 0 0 0 0 0 0
L 6 2 3 0 0 0 1 0 0
VPR-5.02 M 0 20 0 7 0 0 0 0 0
L 0 20 0 7 0 0 0 0 0

Table 7.3: Compile-time statistics of individual checkpoig optimizations

lines of source code (bcﬂS)H Our region partition scheme is flexible because we are capaibl
supporting program regions with arbitrary size and coniplexJsers can extend or shrink checkpoint
regions to match the requirement, provided the begin-regiarker étart_ckpt) alwaysdominates
the stop-region markerstop_ckpt). More details on checkpoint region-partition requiremseare

available in section 3.3.1.

7.5 Static Evaluation of Checkpointing Optimizations

Once a compiler optimization identifies an opportunity thetisfies the condition(s) it is examining, it
will perform the designated transformation(s) on that apputy at compile time. Each optimization
pass keeps a number of counters to track important optimieagirinciples and will increase the
corresponding counter each time when the optimization Imeste suitable principle after completing a

designated transformation. Thus when a optimization pashés the processing of a SFA application

2Note thatM and L regions always contain user-defined functions within olected BugBench applications, thus the
number of source lines presented in Tdblé 7.2 marked witHy* iodicates the lower bound of possible source-code span.

CHAPTER 7. CHECKPOINT-ENABLED DEBUGGING AND BACKTRACKING 102

at its input, it can quickly discover whether this optimirat is effective by examining its internal
counters. We call these compile-time counter statistits After compiling a test application, a
LLVM pass can simply check the respective counter’s valug rapidly discover the effectiveness of
the optimization. The higher the counter value(s), the ni@guent the compiler caught opportunities
from the given input program and performs desired transétions. When the counter shows value
zero (no hits), it indicates the respective transformatioesn’t catch any opportunity (not effective)
after processing the given test input.

Table[Z.3 gives théhits values for each testing application under all availableckpeinting
partitions. These are the compiler's compile-time staBstvhen our checkpointing infrastructure
independently performs individual optimizations on SFALts with checkpointing region partitions.
It provides a quick statistical preview of whether an optation is effective on certain benchmarks and
sets expectations of different optimizations on input egapilons. We consider a particular optimization
a successf the hit counts in any given column is not always zero. Even a low aauwalue could
indicate a significant transformation event (e.g., a trmmsétion that happens within a loop could be
potentially significant, however we cannot tell from the dounter statistics alone.). The only always-
zero column is array optimizatioA(rayOpti). Despite its aggressive algorithm by desigmrayOpti
doesn't catch any suitable opportunity from the given BugBeprograms on the provided input data.
All other checkpointing optimizations effectively penfortransformations and we can quantitively

measure their results through testing.

7.6 Comparison with Existing Checkpointing Solutions

In this section we compare our compiler-based checkpagrdimlution with two alternative software-
only approaches to checkpointing that are both consideatel af the art in their own respect: a coarse-
grain checkpointing library, and a fine-grain software setional memory scheme supported by a

commercial compiler.

7.6.1 Comparison with libCKPT

Library-based checkpointing schemes backup all memory dse the running process, thus the
checkpointing overhead closely correlates to the size ahamg the process uses (memory footprint)
at checkpointing time. We use libCKPT [53] as a represerdaif a recent library-based software-only

checkpointing solution.

CHAPTER 7. CHECKPOINT-ENABLED DEBUGGING AND BACKTRACKING 103

mtime to take a ckpt
mtime to restore
mckpt buffer size
100KX Oins to take ckpt
[Z]
4
8
10KX
£
[
3
h
g KX
E
‘s
o 100X
(]
E
-
10X
o U

bc-1.05- bc-1.05- bc-1.05- gzip-1.2.4 man-1.5h1 ncompress- polymorph- average
bug1 bug2 bug3 4.2 0
BugBench Applications

Figure 7.3: Overall Coarse-grain comparison: our basekgiwéeting solution vs. lIbCKPT

49
-

£ s
5

o

<

[3]

2

S a7
©

$2

838 46
oo

o2

E 2

F0 45
w2

@8

c

g

S 44
>

e

o

£

= 43l

bc-1.05- bc-1.05- bc-1.05- gzip-1.2.4 man-1.5h1 ncompress- polymorph- average
bug1 bug2 bug3 424 0.4.0

BugBench Applications

Figure 7.4: Improvement on time to take a checkpoint

CHAPTER 7. CHECKPOINT-ENABLED DEBUGGING AND BACKTRACKING

104

Improvement: time to restore a checkpoint

5,
4.5 1
N EEEE YN
NI EEEREREER
T 3
EEEEEREEDR
» 25
e AEEEEERDBE
-
Qo 24
2 AEEEEERDBE
-
A A RERER
1,
Si B EEEEEN

bc-1.05- bc-1.05- bc-1.05- gzip-1.2.4 man-1.5h1 ncompress- polymorph- average
bug1 bug2 bug3 424 0.4.0

BugBench Applications

Figure 7.5: Improvement on time to restore a checkpoint

Improvements: checkpoint buffer size

w
()]
I

w
I

N
o
\

N
I

reduction
(LOG10 Scale)

N
(S,
I

05 +—| — —

bc-1.05- bc-1.05- bc-1.05- gzip-1.2.4 man-1.5h1 ncompress- polymorph- average
bug1 bug2 bug3 424 0.4.0

BugBench Applications

Figure 7.6: Improvement on checkpoint buffer-size redurcti

CHAPTER 7. CHECKPOINT-ENABLED DEBUGGING AND BACKTRACKING 105

3.5 -
-
£
8- —_—
& 3
[3]
Q
S
© 25 +—— _—
g3
23 o T -
.o
(2] -
ZG 15 —
o 51 —
*3a
s
c
@ 14— — —
£
[}
>
S 051 — —
E

bc-1.05- bc-1.05- bc-1.05- gzip-1.2.4 man-1.5h1 ncompress- polymorph- average
bug1 bug2 bug3 424 0.4.0

BugBench Applications

Figure 7.7: Improvement on number of instructions to takbeckpoint

140 X
time to ckpt

120 X @ ckpt buffer size
» O#INS to take ckpt
8
= 100 X
(2]
=]
T eox
14
©
8 eox
=
e
[
> 40 X
o
L3
(=]
g 20 X

N
£ I . B
= o L= = [= BN B
bc-1.05- bc-1.05- be-1.05- gzip-1.2.4 man-1.5h1 ncompress- polymorph- average
bug1 bug2 bug3 2. 40

BugBench Apps

Figure 7.8: Fine-grain comparison: with ICCSTM

CHAPTER 7. CHECKPOINT-ENABLED DEBUGGING AND BACKTRACKING 106

Figure[[Z.8 shows an overall comparison between our compised fine-grain checkpointing
scheme andibCKPT's library-based coarse-grain checkpointing approach. Vseepkhe selected
BugBench applications on x axis, and examine on y axis ingmmmnts over a total of four different
checkpointing performance-related aspects from eachcapph: (i) time to take a checkpoint, (ii)
time to restore a checkpoint, (iii) checkpointing buffezesiand (iv) number of instructions needed
to conduct a checkpoint. Figure 7.3 presents improvemeatdenfrom our fine-grain checkpointing
scheme over thBbCKPT baseline. Due to the significance of the performance impnevd, all data
presented in Figure_4.3 are on logarithmic scale. Note tineeswe are conducting checkpointing
performance analysis between a fine-grain scheme and seegais approach, Figute T.3 represents
only our checkpointing compiler transformations withootieating any checkpointing optimization(s).
Figure[Z.B also provides arithmetic averages for each ontefgpr a quick overall comparison. We
further separate Figufe 7.3 into four individual figuresg(Fe[Z.4 - Figuré_7]7 respectively), each
representing its own category for detailed zoom-in views.

Figure [Z.83 shows that our fine-grained checkpointing amtroean provide over 1000X im-
provement when comparing with coarse-grain libary-badeetkpointing, for both the time-to-take
a checkpoint and the time-to-restore a checkpoint. Theargiment in checkpoint buffer size and the
number of instructions needed to service a checkpoint afémthe range of 100X to 1000X.

This huge improvement on overhead reduction is mainly frovo aspects. First, it is the
difference between checkpointing to permanent storaged (dak, in the case ofibCKPT) and
checkpointing to main memory (our fine-grain checkpointinghe performance difference between
the two storage systems reflects into the difference of gywnking performance. Second, it is the
difference between coarse-grain checkpointiligGQKPT) and fine-grain checkpointing (our scheme).
Coarse-grain checkpointing has high overhead by copyitigeememory range or complete objects.
In libCKPT, it copies the entire range of the running process’s memaoypfint. In our fine-grain
checkpointing, we only copy a memory location to our backuffep if and only if there is at least
one write into it. Thus we checkpoint only the bare minimuntdoilitate a loss-free recovery. A
comprehensive optimization framework aims to further cedthis overhead. The huge overhead

reduction shows great performance potential for condgathreckpointing over fine granularity.

7.6.2 Comparison with ICCSTM

We further compare fine-grain software checkpointing osachthrough supporting single-threaded

speculative optimization between Intel's Software Tratisaal Memory [2/57] (CCSTM and our

CHAPTER 7. CHECKPOINT-ENABLED DEBUGGING AND BACKTRACKING 107

compiler-based checkpointing solutionlCCSTMis a software solution for supporting optimistic
parallelism and bases its support on Intel's productioalityu C/C++ compiler. Just like other STM
systems,ICCSTM supports speculative parallel execution through writieloing and dependence
tracking on read set and write set from individual threadroitiple threads at run-time. The differences
in performance between the two software packages are expexrcome from the different focus and
specialization on their respective main use cases.

Figure[Z.8 compare$CCSTMto our baseline compiler-based checkpointing solutionth(vmio
optimizations). We find that our solution outperforf@CSTMin almost all cases. On average, our
solution outperforms the time-to-take a checkpointlf@€STMby 5X, and the number of instructions
needed to take a checkpoint by 8X. The largest differenaeiimproving (reducing) checkpoint buffer
size, adCCSTMs buffer is almost 60X larger than that used for our scheme.

ICCSTMis mainly optimized to support program parallelization dzhsn relatively short transac-
tional regions while our checkpointing scheme is optimitedupport single-thread speculation, or
debugging for larger program regions. Based on the limitescdption available[]2, 57])CCSTM
uses only basic compiler optimizations such as inlining anery simple form of partial redundancy
elimination while our checkpointing scheme employs a cahpnsive optimization framework, trying
to reduce overhead from all possibilities. Furthermorghtobest of our knowledgeéCCSTMdoesn’t
optimize for the single-threaded speculative executi@e cén this special case of speculation support,
tracking of a single thread’s read-set could be safely eahittin contrast, our checkpointing scheme
benefits from being specialized for the single-thread c&gecifically, we track only the write set for
the speculative thread via an efficient implementation ¢hase undo-logging. In the common case
where speculation is successful, undo-logging avoids resipe lookups on reads for matching prior
writes, and also the copies of writes to shared memory on gamm

Overall, it is expected that our fine-grain checkpoint suppill have lower overheads, and/or better
cache behavior than a write-buffering STM such@SSTM Due to our undo-log design and aggressive
compiler optimizations under the single-thread applarattnvironment, our fine-grain checkpointing

scheme outperforms Intell€CSTMby a large margin.

7.7 Effectiveness of Checkpointing Optimizations

To evaluate our checkpointing optimization framework, we each individual optimization over every

testing application’sM and L regions. We gradually increase the number of optimizatiomsach

CHAPTER 7. CHECKPOINT-ENABLED DEBUGGING AND BACKTRACKING 108

r BEGIN
bool bCont = true;
~ while (bCont) do
/I preparation stage:
bCont = false; bCont |= dolnline (); bCont |= doPreOpti ();
/I Redundancy Eliminations:
bCont |= doRRE (); bCont |= doFPRE (); bCont |= doHRE ();
/I Hoisting:
bCont |= doHoist ();
/I Aggregations:
bCont |= doSimpleAggr (); bCont |= doComplexAggr ();
/I NRESE:
bCont |= doNRESE ();
/I Dynamic Optimization and Array Optimization:
bCont |= doDynOpti (); bCont |= doArrayOpti ();
/I Post Optimizations:
bCont |= doPostOpti ();
- end
— END.

Figure 7.9: Algorithm of checkpointing optimization ordey

checkpoint region until all available optimizations ardnaustively applied. We focus our evaluation
on the effectiveness of checkpointing overhead reducttomeasured by the following three metrics:
checkpoint buffer size reduction, reduction in the numbesaekup service calls, and optimization(s)’

impact on redundancy rate.

7.7.1 Optimization Ordering

Inline — PreOpti— RRE— FPRE — HRE — Hoist — Aggr

— NRE SE— DynMeOQO pti— ArrayO pti — PostO pti (7.2)

When conduct testing on checkpointing optimizations, wegk incrementally perform applicable
optimizations in a known-good order. This order needs toamby intuitively satisfy all implicit and
explicit dependencies among different checkpointingrojation passes, but also naturally cooperate
with LLVM’s existing non-checkpointing optimizations. Weresent the optimization’s ordering
algorithm in Figuré_79.

As shown in Figuré 719, the optimization ordering algoritbomtains a kewhile loop, where all
available checkpointing optimizations appear inside ltog in a pre-determined order. Checkpointing
optimization passes perform their designated activispecting the order they appear inside the while

loop. Each individual optimization will return a boolediue value if it hits any opportunity and

CHAPTER 7. CHECKPOINT-ENABLED DEBUGGING AND BACKTRACKING 109

% of Buffer Size Reduction INLINE
® +RRE
90%
80Y +FPRE
70 Y
m +HRE
60 % *
0,
507 +Hoist
40%
30 % —] m +Aggr
209, — -
o +NRESE
] il ’
[T T T T T T ' = +DynOpti
< .
< éyQ &Q’Q @"% o&\ ‘@Q- Vs%
eo& o\& +ArrayOpti
< <

Figure 7.10: Optimization impact on checkpointing bufferes M region

performs a designated transformation, &alde otherwise. Thus the keyhile loop in Figure 7.D will
break only if none of the existing checkpointing optiminatconducts any effective transformation. We
also present the explicit single-pass checkpointing apétion order in formula 711 (the explicit order
within the keywhile loop).

Formula[Z1 is the default order to apply checkpointing mjations and it naturally resolves all
implicit or explicit dependencies among optimization @assThis order is generated by LLVM's pass
manager, but it is by no means the only applicable order. Ttienation framework is flexible to
adopt any optimization order that resolves existing depeai@s. For ease of comparison, the rest of

the evaluation on checkpointing compiler optimizationdl mispect this simple optimization ordering.

7.7.2 Checkpoint Buffer Size Reduction

Figure[7.10 and Figufe 7.111 shows the compiler optimizaiigpact on checkpoint buffer size when all
optimizations are incrementally and accumulatively agaphivhile we follow the default optimization
order. The effectiveness of the optimizations depends emegion size, program structure (especially
loops and user-defined functions that hasekup operations), as well as store intensity within the
region. A larger region usually has more opportunities fatiraization, thus we normally observe that
overall optimizations are more effective on large chechkiiog regions than on medium regions. We
notice thalRRE is the most-effective single optimization among all adalgeoptimizations in the entire

framework. This is mainly due to its aggressive algorithrharced by the leader-hoisting step. As

CHAPTER 7. CHECKPOINT-ENABLED DEBUGGING AND BACKTRACKING

110

% of Buffer Size Reduction INLINE
120
® +PRE
10
LA +FPRE
Q07 I .. m+HRE
/(i
(?/ +Hoist
6] [
u +Aggr
%
40 — — - ~ +NRESE
%
0
HeapOpti
20 4]) 7. +HeapOpti
+ArrayOpti
o amlE , . . ! !
& - > & g ot &
< & & & S A ¥
& oﬁé\
N <

Figure 7.11: Optimization impact on checkpointing buffezes L region

% of Buffer Size Reduction

120
100% INLINE
8001
60
0,
4070
% = +RRE
0
20
o : - : : : :
V] p <>] >
© QZ}’& & Q@% S «’\QQ;' Yﬁ%
oo& oﬁé\

¢ <

Figure 7.12: Optimization impact zoom (L region): beforeREP(Inline + RRE)

CHAPTER 7. CHECKPOINT-ENABLED DEBUGGING AND BACKTRACKING 111

% of Buffer Size Reduction » +FPRE
9
8 5 +HRE
7
® +Hoist
6
5 " +Aggr
4
3 +NRESE
2 I +DynOpti
P I] ' I
(0] ’-—v—v—v—v-—L +Array0pti
¢ R T T
© & & Q@%’ S & ¥
I
§ N

Figure 7.13: Optimization impact zoom (L region): after FP@PRE + HRE + ...+ ArrayOpti)

shown in Figureg 7.10 and 7]11 respectiv&REreduces the checkpoint buffer size by almost 80% in
man (Medium region) and 92% ipolymorph (Large region). When optimizations are incrementally
applied, we observe a stable trend of buffer size reductiotdthM andL regions. The performance
results show that our compiler optimizations either exptgiportunities for optimization and hence
improve checkpointing efficiency after the optimizatioartsformation, or keep existing checkpointing
performance without introducing negative effects thatarmine the established gains (regressions).
We investigate and fine tune all checkpointing optimizatidgiorithms to guarantee the regression-free
property. Overall, the optimizations reduce checkpoirffdiusize by an average of 52% for the

regions and 22% for thil regions.

SinceRREis the single most-effective optimization, we are intezdsin observing its individual
contribution, as well as separating it from other optimmatpasses and analyzing the individual and
combined behaviors of the rest of the available optimizegio Figure 7,12 shows zoom-ineffect
that isolates)RREfrom the remaining optimizations. By grouping the optintizas into two segments,
Figure[Z.1P shows the optimization impact by only perforgrimine andRRE while Figurd 7,18 shows
the post-RREmpact for all remaining optimizations (frolPREto ArrayOpti). Notice that we group
Inline andRREtogether and makimline precedeRREbecausénline is a prerequisite oRRE We thus
make them reside in the same group while respecting thegdmeed optimization ordering discussed

in sectior_Z.71.

Figure[Z.12 confirms our previous observation tR&Eis the single most-effective optimization

CHAPTER 7. CHECKPOINT-ENABLED DEBUGGING AND BACKTRACKING 112

Percentage of backup() call Reduction

60 7

509%

400

30%

20%

°

10

F @Q

INLINE

® +RRE

+FPRE

® +HRE

+Hoist

m +Aggr

+NRESE

= +DynOpti

+ArrayOpti

Figure 7.14: Optimization impact on backup call reductibhregion

among all available optimizationsRRE alone reduces checkpointing buffer size by up to 92% in

polymorph (L) and more than 80% iman (L). On averageRREreduces around 50% of checkpointing

buffer redundancy ir. regions. Figuré 7,13 presents the pBREeffect. It shows the behaviors and

performance of all remaining optimizations and the resalésnormalized aftédRRE In postRREera,

all optimizations matter. However, we cannot find any singiimization that has a similar impact.

E.g.,DynMemOptidelivers around 6% in bc, while FPREdelivers almost 8% iman. The potential

impact largely depends on the nature of the testing appitand the optimization opportunities the

checkpointing region exposes. When an optimization disoa matching opportunity, it transforms

the code and makes the performance impact (BgaMemOptin bc and FPREIN man). Otherwise

it maintains its regression-free property. Combined pRRE optimizations deliver an accumulative

average of slightly more than 3% famregions. It has similar impact afregions.

7.7.3 Backup Operation Reduction

In addition to buffer size reduction, our compiler optintieas also reduce the total numbertafckup

calls—another metric for estimating and evaluating thénogation impact on checkpointing overhead

reduction. Reduction on the total numbergfckup calls closely correlates with the reduction of

checkpointing buffer size, since the optimizations achibeth goals when reducing checkpointing

overhead. Though the correlation may not be precisely djin@a expect that they will be close

enough to present similar behaviors in optimization impadtigure 7.16 and Figufe 7]14 show that

CHAPTER 7. CHECKPOINT-ENABLED DEBUGGING AND BACKTRACKING 113

Percentage of backup() call Reduction
INLINE

m +RRE
1000
+FPRE
80% —]
m +HRE
600/ I
+Hoist
%
40 E— m +Aggr
%
20 - S _ ~ +NRESE
(0] T ki T T T T T ! # +DynOpti
S S S S)
© & & Q&% S L A +ArrayOpti
co& 0\4&
<9

Figure 7.15: Optimization impact on backup call reductibmegion

our optimizations reduce the total numbemakkup calls by an average of 36% for theregions and
an average of 15% for thigl regions respectively, after all optimizations have beepliag following
the same scheduling order discussed in se€tion]7.7.1. WeertbatRREis the most effective single
optimization within the entire optimization framework inth cases. This confirms with our observation
in sectior Z.7.P. Theackup call reduction closely correlates to the optimization irctpan buffer size

reduction presented in Figure 7111 and Fidurel7.10.

7.7.4 Impact on Redundancy Rate

After exhaustively applying all available optimizatioris,is important to understand the amount of
remaining redundancy in the checkpoint buffer. This is a suesment to predict potential future
optimization opportunities that may remain. We quantifig thy studying the optimizations’ impact on
the region'sedundancy rat¢éRR), as defined earlier in sectibn b.4. Figure 7.16 and Figdré ifustrate
the changes dRRmade by the optimization framework for bathandL regions while incrementally
applying available optimizations.

Figure[Z.1®6 indicates that our optimizations are more @ffedn reducing redundancy rate M
regions, since th&Rreductions inM regions are more significant and the highB&in M regions
is around 18%nm{an) after all optimizations. This is because there are femstkup calls (and less
redundancies) iM regions. Thus an optimization that removes a smaller nurmbeackup calls can

potentially generate a bigger impact on redundancy ratectemh. Comparing withM regions, the

CHAPTER 7. CHECKPOINT-ENABLED DEBUGGING AND BACKTRACKING

114

300/
25Y% SN --BC
\ \ ><GzIP
209
\ XD—D—D—D—D—D_MAN
15 Y -+-NCOMPRESS
—POLYMORPH
10 9%
\ <FVPR
%) - = - = - * .
o ‘ e — — — - - - - - - A
N > O 5 & SN >
S L PSS
& x xg, XV‘*‘Q

Figure 7.16: Optimization impact on redundancy rate: Margi

100 % =—a<
8094
—_——
60 %
40 %Aza:a:a:a:%ﬁ
209 —
e oo o
0 : \ 7 7 7 ‘ ‘
\0\%& \é\& £ L)gé“;\ R éqfé"olﬁo‘?&\,s\o‘?b
& x B 4 XVSK

-e-BC

-&-GZIP

==MAN

--NCOMPRESS

——POLYMORPH

-<VPR

Figure 7.17: Optimization impact on redundancy rate: Lorgi

CHAPTER 7. CHECKPOINT-ENABLED DEBUGGING AND BACKTRACKING 115

1800% 1800 %
m1D_NO_OPTI W 1D_NO_OPTI

1600 1600 %
m1D_OPTI

= 1D_OPTI

1400% 1400 %

= PTD-NO_OPTI = PTD_NO_OPTI

1200% 1200 %

m PTD_OPTI 1000 ¥

10007 = PTD_OPTI

800

= UNION_NO_OPTI 800 ¢ = UNION_NO_OPTI

600% 600 ¥

= UNION_OPTI = UNION_OPTI

4009,
FS-NO_OPTI
200% 2009

= FS_OPTI

W FS_NO_OPTI

uFS_OPTI
0

Large Region Medium Region Large Region Medium Region

(a) default (b) with custom-free list (CFL)

Figure 7.18: Checkpoint buffering overhead on VPR’sswap function

optimizations can normally remove mobackup calls inL regions. However, since there are many
more redundancies to eliminate, the optimization’s eifeciess on reducing redundancy rate is not
as significant as those il regions. Notice that in the case bfregions, three applicationgip,
ncompress, andman) still have very highRR even after applying all available optimizations (92%
for bzip, 72% forncompress, and 39% forman). For each case, we manually examine haM
produced code after applying all available optimizationd attempt to analyze the root cause of this
high redundant rate. We conclude that this remaining-Rgs due to redundancy caused by extensive
use of pointers that our current optimization frameworkisapable of handling. Effectively handling
backup operations over memory regions passed by pointers strawgigests the need of a precise
pointer analysis over a checkpointing region. The remgihighRRalso suggests potentially abundant
work that future research may continue to explore. We wghtight this as a potential future direction

in section8.

7.8 Checkpointing Performance on VPR

Software-only checkpointing is not free: it comes with at@ysconducting memoryackup operations
that can potentially have negative impact on an applicaiperformance when the checkpointing
service is enabled. In this section, we report the perfoomaasult orvPR with activated checkpointing

service.

CHAPTER 7. CHECKPOINT-ENABLED DEBUGGING AND BACKTRACKING 116

160 % 160 %

= 1D_NO_OPTI = 1D_NO_OPTI

=1D_OPTI =1D_OPTI
= PTD_NO_OPTI = PTD_NO_OPTI

®PTD_OPTI W PTD_OPTI

= UNION_NO_OPTI = UNION_NO_OPTI

H UNION_OPTI B UNION_OPTI

W FS_NO_OPTI " FS_NO_OPTI

=FS_OPTI =FS_OPTI

Large Region Medium Region Large Region Medium Region

(a) default (b) with custom-free list (CFL)

Figure 7.19: Checkpoint buffering overhead across entP&V

7.8.1 Performance of Different Buffer Schemes

Software checkpointing has negative performance impactvek because checkpointing incurs
software-only overhead that is not part of the original aapion. We present the negative performance
impact on checkpointing-enabl&®R on the granularity of its placement functiotrfy _swap) and over

the execution of the entirePR in Figure[7.18 and Figufe 7.119 respectively. For bothiki's M region
andL region, we report the slowdowns @PR’s application performance after enabling checkpointing
when using all available buffering schemes, with and withcheckpointing optimizations for each
possible buffering. We examine a total of four availableféxifig schemes: one-D arraly,TD hash
table, Union hash table, anfixed-size(FS) hash table. Please refer to chapter 5 for more details on
individual buffering schemes. Under each available buftescheme, we measure performance once
with all checkpointing optimizations turned ofNO_OPTI), and measure performance again with all
checkpointing optimizations turned o®@PTI). Thus the values presented on y-axis are slowdowns
(in percentage), indicating the amount of relative ovedheaused by checkpointing using different
buffering schemes. Figute 7]18 shows the performance niaedato VPR's backtracking algorithm
(try_swap function) only, and Figure 7.19 shows the same overheadalm®d across the entitePR.

It is clear that the one-D array buffer delivers the best algrerformance (the smallest amount
of checkpointing overhead) for checkpoint-enabl&® among all available buffering schemes. This
confirms with our previous analysis in sectfon]5.5 that onarfay performs the best when comparing
with hashtable-based schemes. When normalizedPRs backtracking function try_swap), one-

D array causes the mildest slowdown of around 50% (withouimopation) and 45% (with full

CHAPTER 7. CHECKPOINT-ENABLED DEBUGGING AND BACKTRACKING 117

optimizations). Optimizations have a relatively small BcponVPR because the performance difference
between unoptimized/PR and fully optimized VPR is relatively insignificant. Among the three
hashtable-based buffering schemes, the one Witlon-type hash node performs the best. This again
complies with our former report on buffer-scheme analysisdctioi 5.6 thalinion hashtable delivers
the best overall performance among all hashtable-basekbningmtations. Notice that thougmion-
hash table outperforms the other two hashtable-basedr liidementations, its raw performance still
lags far behind one-D array buffering (600% vs. 50%).

Figure[7.19 presents the same information as those giveigimdEZ. 18, but under different scaling.
Figure[7.I9 shows that the checkpointing overhead is nazathiglobally (across the entiréPR’s
execution), while Figure_7.18 shows the same checkpoirmtirghead that is normalized locally (over
the try_swap backtracking function only). Figule 7119 shows that undebal scale, one-D array
buffer indefinitely and universally exhibits the best oVlectheckpointing performance after applying all

available optimizations: a mild slowdown of 15% over bothdinen and large regions.

7.8.2 Fine Tuning on Hash-Table Schemes

Our checkpointing optimization framework shows non-umifty distributed optimization effects: its
impact onVPR is less significant comparing with most applications in BagBench suite. We intend
to explore further potential on reducing checkpointingfubverhead by injecting application-specific
knowledge and conducting fine-grain and manual applicatetific performance tuning.

We qualify that hashtable-based buffer schemes suffer fonmajor performance bottlenecks:
(i) cache misses, and (ii) dynamic-memory management eaerh We thus focus our application-
specific fine-tuning efforts on these two aspects. First, edopm prefetching on hash table. We
gain checkpoint region-specific knowledge on the numbem@jue backup memory addresses from
profiling. By prefixing the number of hash buckets to slightipre than the total number of unique
backup addresses, we guarantee that the average length of eacét lohekn will not be more than
one (one or less). Second, we develop a custom dynamic mamanmgiger: managing an in-memory
custom-free list CFL) through the use of a doubly linked lidtnklist) of hash nodes. This custom
memory manager intercepts all dynamic memory managemést(galloc, calloc, realloc, and
free), and redirects them to the CFL whenever possible. Fregirexisting hash node will insert it at
the head of the CFL, while allocating a new hash node will gsveheck for an available and suitable
node from the head of the CFL. If there is any available nodeenCFL, that node is returned instead

of mandating a real dynamic memory allocation at the runtiByebuilding a custom dynamic memory

CHAPTER 7. CHECKPOINT-ENABLED DEBUGGING AND BACKTRACKING 118

allocator, we eliminate most of the overhead related witeaiyic memory management (allocation and
free).

Figure[7.18(H) and Figufe 7.19[b) present the results ohestive manual efforts for application-
specific performance tuning. Theion hashtable benefits the most from fine tuning: overhead
reduction from 600% to 300% (improves around 50% in FiguEB({R]). ThePDT hashtable also
benefit from this tuning effort: 970% to 550% (improves amw8% in Figurd 7.18(b)). However,
fixed hashtable doesn’'t benefit from the custom tuning becaudetsnmng efforts have already been
built into its implementation details. By desighixed hashtable already employs a custom memory
manager to complete its operations as necessary. Furthrer itsoimplementation detail is necessarily
and unavoidably conducting a form of the bucket-array pebf®peration. Notice in Figuife 7.19]b)
that for the most efficient hashtable-based scheme&dn-node hash table) enhanced with all possible
application-specific fine-tuning efforts, its performarstill lags behind one-D array buffering by a fair

margin: 19% to 15%, respectively.

7.9 Summary

In this chapter, we introduce two additional interestinglagations, namely checkpointing support
for debugging Debuggey and checkpointing-enabled software backtracking usiRiRMVPR. With
our efficient software-only checkpointing support, the legghons are either obtaining improved
performance Debugger, VPR gaining new functionality that is not normally availabi¢herwise
(Debuggey), orimproving programmer’s productivitf)/PR). With our fine-grain checkpointing support,
Debuggernow supports reverse execution, with unlimited number bfe® and no need for program
restart. With our software-only checkpointing supportt thaturally adapts to program chang®@®R
developers can instead focus more on the algorithm and qrodpgic, thus convert the automatic
compiler support for reduced development cycle time intpriored productivity.

We present the checkpointing region partitioning schent gine details on the checkpointing
region properties. We compare our software-only checkjmjrwork with existing solutions, including
a coarse-grain approach based IamCKPT and a fine-grain approach based IECSTM. We show
significant gains through overhead reductions by compawity 1ibCKPT. We also show that by
focusing on aggressive compiler optimizations, we canertpm the highly competitivé CCSTM by a
large margin.

We selectBugBench and VPR as our representative benchmarks and evaluate checkpmpinti

CHAPTER 7. CHECKPOINT-ENABLED DEBUGGING AND BACKTRACKING 119

performance through our compiler transformations andwp#tions. We show that the optimizations
are effective to reduce up to 98% of checkpointing buffee sind remove up to 95% afackup
service calls fronBugBench, at expense of 15% checkpointing overhead fierR. We further conduct
detailed comparison among all available buffer schemesanclude that one-D array buffer is the most
efficient buffer scheme at expense of data redundancy. I cages, one-D array buffer significantly
outperforms all hashtable-based buffers even after ther letceive heavy custom optimizations and

application-specific fine tuning.

Chapter 8

Conclusion and Future Work

Checkpointing is conventionally used as a system-levetmmehto improve failover, and to enhance
reliability and security. The vast majority of checkpoingi implementations are implemented in
software to checkpoint the entire application’s memory ipersistent storage (normally hard disks)
and restore from the saved checkpoints to facilitate egoovery. Traditional checkpointing schemes

incur prohibitive overhead that render them inapplicableainy performance-sensitive application.

In this thesis, we propose a fine-grain software-only cheitking scheme that is based on per-
store instrumentation enabled by compiler transformatiolm addition, we design and implement a
comprehensive compiler optimization framework that tadesckpoint-enabled code and aggressively
optimizes it from many different perspectives, aiming tduee checkpointing overhead to its minimum.
Our fine-grain software-only checkpointing scheme outpens a state-of-the-art library-based coarse-
grain software-only approach by exhibiting 1000X+ lessrbead. Our compiler optimizations further

improve our baseline checkpoint-enabled code by elinmgatip to 98% checkpointing overhead.

We further explore three key applications that leveragefimg-grain and compiler-based check-
pointing framework to enable unique functionality. Thes$eakpoint-enabled applications expose
checkpointing APIs to user level to gain detailed user adnallow program backtrack to a previously
specified location for unlimited number of retires and fréeestart, remove programmers from tedious
details of manual checkpointing instrumentation and bédtteus on improving the application itself.
The new functionality and enhancements made for progragariad debugging tools can easily convert

into improved programmer productivity.

This thesis lead to the publication of a number of papérs[I6f-and the public release of

ChuckPoint—source code of our fine-grain and compiler-driven cheakng transformation and

120

CHAPTER 8. CONCLUSION AND FUTURE WORK 121

optimization framework based drLVvM, together with a PIN-based runtime library. The PIN-based
runtime library focuses on checkpointing functionalityrifieation, profile-driven redundancy analysis,
and provides a handy platform for new opportunity explarati The package release also includes
full source codes of benchmark applicatioBaigBenchand our micro applications) instrumented with

various checkpoint-region partitions.

8.1 Contributions

This dissertation makes the following contributions.

1. A comprehensive compiler-based checkpointing framework.

We present a software-only fine-grain checkpointing fraorwthat is based on compiler
transformations and optimizations usindg VM. This system is completely independent of
any checkpointing hardware support. Compiler transfoionatenable checkpointing on any
user-annotated program region with arbitrary size and dexitp. We pay close attention to
details on handling corner cases including function-poiciallsites and premature returns from
checkpointing region. A large and comprehensive compifgmazation framework operates
on the checkpointing-enabled user program, attemptinggtwessively reduce checkpointing
overhead from many possible perspectives. To our best laugel this is the first checkpointing
work that is based on compiler-driven program instrumésaand optimization for fine-grain

checkpointing.

2. Effective optimizations for reducing checkpointing overtead.

We demonstrate that the checkpointing framework can be tseslipport iterative reverse
execution for debugging purposes. By exposing checkpmnfPls on application’s level,
a programmer can directly involke checkpointing APIls asrdsgl commands to conduct
respective checkpointing activities inside a debuggeis maturally extends a debugger’s support
to checkpointing and allows an easy entry for programmers mged to try out or utilize the
checkpointing functionality without prepackaged OS ordware support. Comparing with a
library-based coarse-grain checkpointing approach, vikeae significant overhead reduction:
1000X+times less overhead. We also consistently outperforial's state-of-the-art software

transactional memory solutiohGCSTM by up to60X.

CHAPTER 8. CONCLUSION AND FUTURE WORK 122

3. Demonstration of the limitations of an overly fine-grain andperformance-sensitive applica-

tion of compiler-based checkpointing.

We illustrate some inefficiency of the checkpointing framekvwhen trying to support an
ultra fine-grain application—overlapping program exemutivith delinquent loads iNCF. We
conduct detailed analysis on identifying significant dgliant loads through PIN-based dynamic
instrumentation. We discover thgersistentproperties ofMCF’s significant DLs. We explore
value predictions under the context of software speculatind find that simple last-known
value predictor and constant-value predictor performeemély well to satisfy the demand of the
speculation scheme. We further perform manual progransfitamation to enable speculative
execution utilizing both control-speculation and dataespation schemes, while performing all
analysis and testing on real machines. We conclude that a&ften heavy optimizations, the
checkpointing overhead is still considered too high for-finain micro architectural level events
such as delinquent loads. Lack of sufficiently coarse-gnairkload that is suitable for fine-grain

speculation in the real-world test applicatiof€¥) exacerbates the situation.

4. Demonstration of the potential for compiler-based checkpmting in providing automated

support for backtracking.

We show that by exposing simple checkpointing APIs to scoome level, a user-initiated and
compiler-driven automatic checkpointing scheme can renpoegrammers from the overwhelm-
ing and tedious details of manual checkpointing. WeiEfeas the case study to checkpoint its
backtracking algorithm in placement phase. We show thatbeckpointing scheme is useful in
dealing with checkpointing across a large chunk of sourcke @ath complex program constructs
that is otherwise difficult and error-prone to handle malyualThis immediately benefits a
programmer who can instead better focus on improving thedtggrithm and its supporting
data structures—a step that converts enhanced progranafficigncy, increased ease of use and

reduced develop-run-debug cycle time into improved pnognar’'s productivity.

5. An LLVM-based infrastructure and implementation of compil er-based checkpointing.

To assist and encourage collaborative research, we releasenplete source-code package
that contains all building-block components that we degwetb over the course of the thesis.
This includes a.LVM-based compiler checkpointing transformation and opttion framework,

a PIN-based runtime toolset for instrumentation verifaati opportunistic exploration, and

redundancy analysis, as well as testing benchmark suiec{esdBugBench programs and our

CHAPTER 8. CONCLUSION AND FUTURE WORK 123

own micro benchmarks) with various granularity of checkpioig region partitions. We will
further investigate the possibility and contribute to gree our checkpointing work with top-of-
treeLLVM release. This will make it easier to leverage over our exgstiontributions made in this

thesis and help the research community for potential fugqmoration and collaboration.

8.2 Conclusions

In this thesis, we design, implement and evaluate a coragiileen software-only checkpointing
infrastructure that operates independently without angware support. The checkpointing scheme
works on per-store based fine granularity. A user identifilgg@gion with arbitrary size and complexity,
a compiler then automates the remaining process to enableg@timize checkpointing on the user-
identified region.

Comparing with a recent library-based coarse-grain ch@okipg approach (ibCKPT), our
compiler-driven fine-grain checkpointing achieves morenthO00X improvement on overhead reduc-
tions. Even when comparing with a state-of-the-art finesg®TM solution including Intel'$CCSTM
we show significant improvement due to our undo-log chealtpag buffer design and aggressive and
effective compiler optimizations. We present full detafsthe compiler optimizations and show that
the optimizations can further reduce upd8% of checkpointing buffer size and eliminate upa6%
of backup service routines over our fine-grain baseline checkpaintin

In principle, similar compiler-based optimizations asdhdhat we present in this thesis could
be applied to write-buffer based solutions, including let&TM compiler/run-time solution. In this
respect, our work is a proof of concept that pioneers theoeapbn that effective compiler optimizations
can further reduce STM overhead. Since the STM overheadriently recognized as the main
bottleneck that prevents wide-spread uses of STM, efiegtiveducing STM overhead will make a
big impact in STM-based parallelization of realistic apations.

It may also be possible to design an STM which for sequenteigns of transactions switches to
an undo-buffer approach, potentially improving STM ovexthewherever such sequential portions are
part of long-running transactions.

The techniques presented in this thesis can be furthereahipliconjunction with any application that
needs support for speculative execution, including foptilvposes of 1/O prefetching, value-prediction,
control-flow prediction, and so on. Particularly with thax{ple) addition of multiple roll-back points,

such applications stand to benefit tremendously from boghetficiency and the simplicity of this

CHAPTER 8. CONCLUSION AND FUTURE WORK 124

lightweight checkpointing approach.

We leverage support from the checkpointing infrastructarenable applications to obtain unique
features or functionalities. We show that a checkpoingngbled debugger gains new functionality of
reverse execution, with added benefits including unboumeeerse-execution window size, unlimited
number of retries, and free from application restarts. Wanstinat a checkpointing-enhanced applica-
tion (VPR) frees programmers from tedious details of conducting rabipacktracking and instead allow
programmers to better focus on improving the backtrackiggrahm and associated data structures.
This improvement on rapid-application development pre@ssily converts automatic checkpointing
into improved programmer’s productivity. Enabling autdgimaoftware-only checkpointing ovPR's
backtracking algorithm comes with a mild performance ogathof only 15%.

Even with aggressive compiler optimizations, the finefgm@eckpointing overhead may still be
considered too high in certain speculative applications.fiither show that overlapping execution with
delinquent loads generate no performance gains in a Dlriceeal-world applicationCF), mainly
due to lack of suitable workload that are coarse-grain eha@a@mortize the checkpointing and value-

prediction overhead.

8.3 Future Work

The work on compiler-based checkpointing described in thissertation could be improved and

extended in the following ways.

8.3.1 Support for Incremental Checkpointing

One immediate future work is to support and evaluate thenpiatefor incremental checkpointing
by allowing multiple rollback points (sub checkpoints) fwit a single checkpoint region, as well as
allowing a user to selectively rollback to one of the muktigib checkpoints. Under this multiple sub-
checkpoint scenario, both of the two original requiremdatssingle-restore point checkpointing still
hold: (i) thestart_ckpt marker must dominate thecop_ckpt marker, and (i) botlstart_ckpt and
stop_ckpt markers need to be on the same lexical level. The multipkack point scenario can
be implemented as a sequence of single rollback points,endessh individual rollback point needs to
satisfy the previously established requirements. Sineedhback action now has multiple potential
targets (sub checkpoints), the precise rollback targedsieebe identified as additional argument over

thestop_ckpt API.

CHAPTER 8. CONCLUSION AND FUTURE WORK 125

The checkpoint buffer scheme proposed in this dissertatieeds minimal change to support
incremental checkpointing. When utilizing the one-dimenal array buffer, the meta buffer needs a
sub-checkpoint counter to identify individual incremestab-checkpoint, while the data buffer remains
unchanged. This minimal design change allowstthekup operations to proceed as normal other than
incrementing the sub-checkpoint counter when reachingrasub-checkpoint location. This minimal

change would allow a checkpoint abort operation to rolllbd@ciny prior sub-checkpoint.

8.3.2 Allowing More User Control

An alternative immediate future work is to allow direct anetalled user control over an otherwise
checkpoint-enabled program region. During program deweknt of this thesis research, we find
multiple cases where a relatively small code block is notable for checkpointing (e.g., program
initialization phase) within a big checkpoint-enabled graom region. A suitable solution will allow
user direct control to programmably disable checkpointiitlin a sub region over a large checkpoint-
enabled program region.

Identifying a non-checkpointable section will be similaithe process of delimiting a checkpointing
region, except we will need a different pair of region detars. The analysis, transformations and
optimizations participating in the checkpointing framekvuwill need to make necessary adaptions and

adjustments to accommodate this new requirement.

8.3.3 Exploiting More-Precise Pointer Analysis

Our current checkpointing optimization framework is inable of further optimizingbackup oper-
ations that operate on data stored through pointers, asestgghin sectioh _7.71.4. Most existing
optimizations cannot decide whether theckup operation into a pointer-based address is a suitable
candidate for its optimizing scenario, and thus are forocamdke a conservative assumption and not to
perform optimizations on such cases.

This places an immediate need for a precise pointer analygi®se results can be used to
disambiguate between the currérickup address and the address or address range that an existing
optimization is interested in. Because the pointer anslysay need to populate across both non-
checkpoint region and checkpoint region, initially we sesjga flow-sensitive and context-sensitive
analysis. Since the checkpointing optimizations happethimithe compilation process, we have

relatively more tolerance for longer compile time. Notibattthe checkpoint region is often relatively

CHAPTER 8. CONCLUSION AND FUTURE WORK 126

small and contains known program constructs, we can leeethy knowledge and reduce the
complexity of the potential pointer analysis.

Once the pointer analysis results become available, mastirex optimizations can immediately
benefit from this improved memory disambiguation. EAyrayOpti can use the result and decide
whether the pointer-baseshckup operation actually access a valid array range, and thusnalies
the originalbackup operation if the array address range coverstthekup memory address through
pointer accessHoist can also leverage this knowledge and decide whether théepdiasetackup
operation is accessing an address that is loop invariadthars can make an informed decision to better
optimizebackup operations within the loop. We may even leverage the peemalysis result to invent

novel optimizations that are otherwise impossible givendihrrent situation.

8.3.4 Extending Checkpointing to I/O Devices

In future, we will investigate the possibilities and tedjures that extend our in-memory checkpointing
framework to operate on input-outpat/Q) devices. Comparing with in-memory operations device
operations usually have much longer latency. Micro-aechitral level events such as delinquent loads
usually have a latency of few dozen to few hundred cycles,ntagching speculative workload will
ideally have similar latency. Typical/0 events (including disk/0, NUMA memoryI/0, or network
1/0) often have latency of thousands or even millions of cyclégs much longer latency can ideally
be used to tolerate more aggressive coarser-grain workldhds have better performance potentials.
One way to enable checkpointing oVEf0 devices is to use double buffering—the participatintg
device won't consider the current operation complete uatieiving a commit command issued from

theI/0 controller.

Appendix A

Checkpointing APIs

[*

mark the begin location of a checkpoint region
*/

void start.ckpt ();

[*

mark the end location of a checkpoint region
integer conditional code: c

1: commit checkpoint

0: abort checkpoint

x/

void stop_ckpt(int c);

[*
force to commit the current checkpoint
*/

void commit_.ckpt ();

[*
force to abort the current checkpoint
x/

127

APPENDIXA. CHECKPOINTING APIS 128

void abortckpt ();

[*

perform backup action, starting from addr location, for theength of len bytes
*/

void backup (char « addr, int len);

Appendix B

Special System Handling Functions

Our current checkpointing system supports a total of 10iapeystem functions. We show the
exhaustive list with code skeleton on each supported fongti
B.1 Memcpy

I

«/ [/ void handleMemcpy(char dst, char *x src, int len);

/I Compile-time resource to perform backup before a call to memcpy();
/! char = memcpy(charx dst, char * src, int len);
[* */

void handleMemcpy ¢har « dst, char = src, int len){
/I 1. do memory backup:

bkp_memory(dst, len);

/I 2. do profile/runtime tracking:

11
}
B.2 Memset
[* */
/l/void handleMemset(chak addr, char val, int rep);

/I Compile-time resource to perform backup before a call to memset();

/! void memset(charx dst, char val, int len);
I */
void handleMemset¢har « addr, char val, int len){

Ln order to reduce code verbosity, profiling related codesnat included.

129

APPENDIX B. SPECIAL SYSTEM HANDLING FUNCTIONS 130

/!l 1. do memory backup:

bkp_memory(addr, len);

/1 2. do profile/runtime tracking:
/1

B.3 Memmove

[* */

//void handleMemmove(chakdst, char xsrc, int len);

/I Compile-time resource to perform backup before a call to memmove();
/1 void memmove(char dst, char xsrc, int len);

I */

void handleMemmove¢har =dst, char xsrc, int len){
/Il 1. do memory backup:

bkp_memory(dst, len);

/I 2. do profile/runtime tracking:
/1

B.4 Strcpy

[* */

/Ivoid handleStrcpy(charx dst, char x src);
/I Compile-time resource to perform backup before a call to strcpy();
I/l char = strcpy(char x dst, char *x src);

[* */

void handleStrcpy ¢har « dst, char = src){
I/l 1. obtain the str length:

int len = strlen(src);

/Il 2. perform the backup, start from dst’'s address:

bkp_memory(dst, len);

/1 3. do profile/runtime tracking:
11

B.5 Strncpy

[* */

/lvoid handleStrncpy(chart dst, char x src, int len);

APPENDIX B. SPECIAL SYSTEM HANDLING FUNCTIONS 131

I/l Compile-time resource to perform backup before a call to strncpy ();
/1 char = strncpy (char« dst, charx src, int len);
[* */
void handleStrncpy¢har = dst, char = src, int len){

/l 1. Setup:

/' min_len: the min between len and strlen(src)

int min_len=0;
int src_len = strlen(src);
if (src_len > len){ min_len = len; }

else{ min_len = srclen; }

/Il 2. perform the backup, start from dst’'s address:

bkp_memory(dst, minlen);

/1l 3. do profile/runtime tracking:
11

B.6 Strcat

I */

/lvoid handleStrcat(charx dst, char x src);

/I Compile-time resource to perform backup before a call to strcat();
/I char = strcat(char = dst, char x src);

[* */

void handleStrcat¢har = dst, char = src){
/1l 1. figure out how big the buffer will be used, after the foam
int src_len = strlen(src);

int dst.len = strlen(dst);

I/l 2. perform the backup, start from dst’s ending address:

bkp_-memory(dst + dstlen , srclen);

/!l 3. do profile/runtime tracking:
/1

B.7 Strncat

[* */

/lIvoid handleStrncat (charx dst, char x src, int len);

I/l Compile-time resource to perform backup before a call to strncat();
I/l char = strncat(char = dst, char x src, int len);

[* */

void handleStrncat¢har = dst, char = src, int len){

APPENDIX B. SPECIAL SYSTEM HANDLING FUNCTIONS

/1l 1. figure out the actual length of src that will be copied:
int min_len=0;

int dst.len = strlen(dst), srclen = strlen(src);

if (src_len > len){ min_len = len; }

else{ min_len = srclen; }

I/l 2. perform the backup, start from dst’'s ending address:

bkp_memory(dst + dsilen, min.len);

/1 3. do profile/runtime tracking:
11

B.8 Sprintf

[* */
/l/void handleSprintf(charx buf, char xformat);

/I Compile-time resource to perform backup before a call to sprintf();

/1

/!l The handling function provided is an approximate to theatestring length
/I for sprintf (...) with var args.

/1

/1 int sprintf(char x buf, char « fmt, ...);

[* */

void handleSprintfchar = buf, char xformat){
I/l 1. figure out the actual size of the buffer used, after thermat:
// USE a new heuristic:
int len = strlen(buf)x 1.25;
/l'int len = (strlen(buf) + strlen(format))*x 1.25;

/Il 2. perform the backup:
bkp_memory (buf, len);

/!l 3. do profile/runtime tracking:
/1

B.9 Vsprintf

[* */

/1 void handleVsprintf(charx buf, char fmt);

/!l Compile-time resource to perform backup before a call to vsprintf();
/1 int vsprintf (char x str, const charx format, valist arg);

[* */

void handleVsprintfchar x buf, charx fmt){

132

/1l 1. figure out the actual size of the buffer used, after thermat:

/I USE a new heuristic:
/l'int len = strlen(buf) x 1.25;

int len = (strlen(buf) + strlen(format))x 1.25;

I/l 2. perform the backup:
bkp_memory (buf, len);

/1 3. do profile/runtime tracking:
11

B.10 Snprintf

/%
/1
/1
/1
/1
/1
/1
/%

*/

void handleSnprintf(charx buf, int len, chax fmt);

Compile-time resource to perform backup before a

call to snprintf();

int snprintf(char xbuffer, int buffsize, const charxformat, ...);

write into target buffer through snprintf(), at the mostbuff_size

bytes can be written

x/

void handleSnprintf €har = buf, int len, charx fmt){

/1l 1. figure out how big the buffer will be used,

/1 known from the cmdline option already

/Il 2. perform the backup:
bkp_memory (buf, len);

/1 3. do profile/runtime tracking:
/1

133

after the foam

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

Using the rdtsc instruction for performance monitotitgPentium Il Processor Application Notes,
Intel Corporation(1997).

ADL-TABATABAI, A., LEwis, B. T., MENON, V. S., MURPHY, B. R., SAHA, B., AND
SHPEISMAN, T. Compiler and runtime support for efficient software gactional memory. In
ACM SIGPLAN conference on Programming language designraptémentation (PLDIj2006).

AHO, A. V., SETHI, R.,AND ULLMAN, J. D. Compilers: Principles, techniques, and tools, first
edition. InThe Red Dragon Boo{d.986).

AHO, A. V., AND ULLMAN, J. D. Compilers: Principles, techniques, and toolsThe Green
Dragon Book(1977).

AKKARY, H., RAJWAR, R., AND SRINIVASAN, S. Checkpoint processing and recovery: An
efficient, scalable alternative to reorder buffersIEEE Computer Societ§2003).

ALFRED V. AHO, RAvI SETHI, J. D. U.,AND LAM, M. S. Compilers: Principles, techniques,
and tools, second edition. TFhe Purple Dragon Book2006).

AMARASINGHE, S. P., AADERSON J. M., LAM, M. S.,AND TSENG, C. W. The suif compiler
for scalable parallel machines. Iroceedings of the Seventh SIAM Conference on Parallel
Processing for Scientific Computirigebruary 1995).

ANANIAN, C., AsaNoviIc, K., KuszmAuL, B., LEISERSON C., AND LIE, S. Unbounded
transactional memory. IHigh-Performance Computer Architecture (HPQ2D05).

BETz, V., AND ROSE, J. Vpr: A new packing, placement and routing tool for fpgsech. In
International Workshop on Field Programmable Logic and Kggtions (1997).

BONDHUGULA, U., HARTONO, A., RAMANUJAM, J., AND SADAYAPPAN, P. A practical
automatic polyhedral parallelizer and locality optimizém Programming Language Design and
Implementation (PLDI{Jun. 2008).

BRONEVETSKY, G., MARQUES, D., PNGALI, K., AND RUGINA, R. Compiler enhanced
incremental checkpointing. lhanguage and Compilers for Parallel Computing (LCRE907).

BRONEVETSKY, G., MARQUES, D., PNGALI, K., RUGINA, R., AND McKE, S. A. Compiler-
enhanced incremental checkpointing for openmp applicatitn International Conference on
SupercomputingJune 2008).

CALDER, B., REINMAN, G.,AND TULLSEN, D. M. Selective value prediction. limternational
Symposium on Computer Architecture archj¥899).

134

BIBLIOGRAPHY 135

[14] CHol, S.,AND DEITZ, S. Compiler support for automatic checkpointing.High Performance
Computer Architecture (HPCAR002).

[15] CoLLINS, J., WANG, H., TULLSEN, D., HUGES, C., LEE, Y.-F., LAVERY, D., AND SHEN,
J. Speculative precomputation: Long-range prefetchindetihquent loads. IMCM SIGARCH
Computer Architecture Neway 2001).

[16] COLOHAN, C. B., AILAMAKI , A., STEFFAN, J. G.,AND MOWRY, T. C. Tolerating dependences
between large speculative threads via sub-threadslntarnational Symposium on Computer
Architecture (ISCAJJune 2006).

[17] CORPORATION S. P. E. Spec2000 integer benchmark suites.

[18] DAMRON, P., FEDOROVA, A., LEV, Y., LUCHANGCO, V., MOIR, M., AND NUSSBAUM,
D. Hybrid transactional memory. IArchitectural Support for Programming Languages and
Operating Systems (ASPLQO@D06).

[19] DING, C., SHEN, X., KELSEY, K., TICE, C., HUANG, R., ,AND ZHANG, C. Software behavior
oriented parallelization. IRroceedings of ACM SIGPLAN Conference on Programming Lagegu
Design and Implementation (PLDJune. 2007).

[20] ELNOZAHY, W., JOHNSON, D., AND ZWAENEPOEL W. The performance of consistent
checkpointing. Inl1th Symposium on Reliable Distributed Systems, pp. 3@4ibber 1992).

[21] FELDMAN, S. I., AND BROWN, C. I. Igor: A system for program debugging via reversible
execution. INPACM SIGPLAN Notices, Workshop on Parallel and DistributezblDgging(1989).

[22] FOUNDATION, F. S. InGDB: the Gnu Debugger Manual 7(2009).

[23] GROSSER T., ZHENG, H., ALOOR, R., SMBRGER, A., GRLINGER, A., AND POUCHET, L.-
N. Polly - polyhedral optimization in llvm. Innternational Symposium Code Generation and
Optimization (CGO)YMarch 2011).

[24] H., A.,R., D.,AND E.:, S. An execution-backtracking approach to debuggin¢=[EE Software,
vol. 8, no. 3, pp. 21-26May-June 1991).

[25] H., A., R., D.,AND E., S. Debugging with dynamic slicing and backtracking. Sloftware:
Practice and Experienc@ctober 2006).

[26] HALL, M. W., ANDERSON J. M., AMARASINGHE, S. P., MURPHY, B. R., Lia0o, S.-W.,
BUGNION, E.,AND LAM, M. S. Maximizing multiprocessor performance with the sumpiler.
In IEEE Compute(December 1996).

[27] HAMMOND, L., WILLEY, M., AND OLUKOTUN, K. Data speculation support for a chip
multiprocessor. IIACM SIGOPS Operating Systefidecember 1998).

[28] HAMMOND, L., WONG, V., CHEN, M., CARLSTROM, B., Davis, J., HERTZBERG, B.,
PRABHU, M., WIJAYA, H., KOozYRAKIS, C., AND OLUKOTUN, K. Transactional memory
coherence and consistency. @M SIGARCH Computer Architecture Ne(iarch 2004).

[29] HERLIHY, M., LUCHANGCO, V., MOIR, M., AND SCHERER W. N. Software transactional
memory for dynamic-sized data structures. The Twenty-Second Annual Symposium On
Principles Of Distributed Computin¢2003).

BIBLIOGRAPHY 136

[30] HERLIHY, M., AND MoOss J. E. Transactional memory: architectural support fok{fvee data
structures. Innternational symposium on computer architecture (ISC&P3).

[31] Hwu, W., AND PATT, Y. Checkpoint repair for out-of-order execution machings Computer
Science Division, University of California at Berkley, ACM87(1987).

[32] JAGADISH, H. V., SLBERSCHATZ, A., AND SUDARSHAN, S. Recovering from main-memory
lapses. IrProcs. of the International Conf. on Very Large Databasds¥B) (1993).

[33] KING, S. T., DUNLAP, G. W., AND CHEN, P. M. Debugging operating systems with time-
traveling virtual machines. IAnnual USENIX Technical Conferen(2005).

[34] KINGSLEY, G., BECK, M., , AND PLANK, J. Compiler-assisted checkpoint optimization using
suif. In First SUIF Compiler Workshof1995).

[35] KINGSLEY, G., BECK, M., AND PLANK, J. Compiler-assisted checkpoint optimization using
suif. In First SUIF Compiler Workshofi1995).

[36] KrRAwCZUK, V. Distributed debugging based on deterministic re-etienu— methology and
design of a working prototype. Iklaster of Computer Science Thegseptember 1992).

[37] LATTNER, C., AND ADVE, V. Llvm: A compilation framework for lifelong program anais
& transformation. InProc. of the 2004 International Symposium on Code Generasiod
Optimization (CGO)YMarch 2004).

[38] LATTNER, C., AND ADVE, V. The llvm compiler framework and infrastructure tutdrialn
LCPC’04 Mini Workshop on Compiler Research Infrastrucs(®ept. 2004).

[39] LI, C., STEWART, E., AND FucHs, W. Compiler-assisted full checkpointing. Boftware-
practice and Experience, Vol 24(10), 871-8&5ctober 1994).

[40] LipAsTI, M. H., WILKERSON, C. B.,AND SHEN, J. P. Value locality and load value prediction.
In ACM SIGOPS Operating Systems ReiP@cember 1996).

[41] Lu, S., L, Z.,Q, F., BN, L., ZHOU, P.,AND Y., Y. Z. Bugbench: Benchmarks for evaluating
bug detection tools. IkVorkshop on the Evaluation of Software Defect DetectionsT@005).

[42] Luk, C.-K., COHN, R., MUTH, R., RATIL, H., KLAUSER, A., LOWNEY, G., WALLACE, S.,
ReDDI, V. J., AND HAZELWOOD, K. Pin: building customized program analysis tools with
dynamic instrumentation. IRLDI 05: Proceedings of the 2005 ACM SIGPLAN conference on
Programming language design and implementatidew York, NY, USA, 2005), ACM, pp. 190—
200.

[43] MCDONALD, A., CHUNG, J., CARLSTROM, B. D., MINH, C. C., GHAFI, H., KOZYRAKIS,
C., AND OLUKOTUN, K. Architectural semantics for practical transactionamory. InACM
SIGARCH Computer Architecture Ne(2906).

[44] MINH, C. C., TRAUTMANN, M., CHUNG, J., McDONALD, A., BRONSON N., CASPER J.,
KozYRAKIS, C., AND OLUKOTUN, K. An effective hybrid transactional memory system with
strong isolation guarantees. limternational Symposium on Computer Architecture (ISAP7).

[45] MOORE, K., BoBBA, J., MORAVAN, M., HiLL, M., AND WooOD, D. Logtm: Log-based
transactional memory. IHigh-Performance Computer Architecture (HPGRDO06).

BIBLIOGRAPHY 137

[46] MosHovOos A., AND KosTopouLoS A. Cost-effective, high-performance giga-scale
checkpoint/restore. I@omputer Engineering Group Technical Rep@fbovember 2004).

[47] Moss J. E. B. Log-based recovery for nested transactions. Prrceedings of the 13th
International Conference on Very Large Data BagE337).

[48] NG, W., AND CHEN, P. The symmetric improvement of fault tolerance in the i@ ¢ache. In
Proceedings of 1999 Fault Tolerance Computing (FTT999).

[49] PANAIT, V., SASTURKAR, A., AND WONG, W.-F. Static identification of delinquent loads. In
International Symposium on Code Generation and Optinorgtvlarch 2004).

[50] PLANK, J., BECcK, M., AND KINGSLEY, G. Compiler-assisted memory exclusion for fast
checkpointing. IMEEE Technical Committee on Operating System and AppdicdEnvironments,
Special Issue on Fault-Toleran¢&995).

[51] PLANK, J.,AND ELWASIF, W. Experimental assessment of workstation failures aail thnpact
on checkpointing systems. &8th international conference on fault tolerant Comput{thg§98).

[52] PLANK, J., L, K., , AND PUENING, M. Diskless checkpointing. IhEEE Transactions on
parallel and distributed systen{®ct. 1998).

[53] PLANK, J. S., EEcK, M., KINGSLEY, G.,AND LI, K. Libckpt: Transparent checkpointing under
unix. In Usenix Winter Technical Conferen¢E995).

[54] RosE, V. B. J., AND MARQUARDT, A. Architecture and cad for deep-submicron fpgas. In
Kluwer Academic Publisher@005).

[55] RycHLIK, B., RaIsTL, J., KRUG, B., AND SHEN, J. Efficacy and performance impact of value
prediction. InParallel Architectures and Compilation Techniques (PACID98).

[56] S., C. An evaluation of recovery related propertiesasfigare faults. InPh.D. thesig2004).

[57] SAHA, B., ADL-TABATABAI, A.-R., HUDSON, R. L., AND AND, C. C. M. Mcrt-stm: A high
performance software transactional memory system for dicade runtime. InPrinciples and
Practice of Parallel Programming(PPOPR2006).

[58] SAzEIDES, Y., AND SMITH, J. E. The predictability of data values. B80th International
Symposium on Microarchitectuf@997).

[59] STEFFAN, J. G., @WLOHAN, C. B., ZHAI, A., AND MOWRY, T. C. A scalable approach to
thread-level speculation. Imternational Symposium on Computer Architecture (ISChAine
2000).

[60] WANG, K., AND FRANKLIN, M. Highly accurate data value prediction using hybrid jpctmts. In
Proceedings of the 30th annual ACM/IEEE international sgaipm on Microarchitectur¢1997).

[61] WANG, Y., HUANG, Y., VO, K., CHUNG, P., AND KINTALA, C. Checkpointing and its
applications. 1IR25th Int. Symp. On Fault-Tol. Comp., pp. 22{3lLne 1995).

[62] WHALEY, J. System checkpointing using reflection and program arsaly

[63] WORK, P., AND NGUYEN, K. Measure code sections using the enhanced timernt&i(R)
Software Network2008).

BIBLIOGRAPHY 138

[64] Xu, M., MALYUGIN, V., SHELDON, J., VENKITACHALAM , G., AND WEISSMAN, B. Retrace:
Collecting execution trace with virtual machine deterrsiiici replay. In3rd Workshop on
Modeling, Benchmarking and Simulation, ISC®07).

[65] YEN, L., BoBBA, J., MARTY, M., MOORE, K., VoLos, H., HiLL, M., SwIFT, M., AND
Woob, D. Logtm-se: Decoupling hardware transactional memogmfrcaches. IrHigh
Performance Computer Architecture (HPCRPO7).

[66] ZHANG, C., DING, C., Gu, X., KELSEY, K., BAI, T., AND FENG, X. Continuous speculative
program parallelization in software. Rrinciple and Practise of Parallel Programming (PPOPP)
(January 2010).

[67] ZHAO, C., STEFFAN, G., AMzA, C., AND KIELSTRA, A. Tolerating delinquent loads with
speculative execution. IWorkshop on Parallel Execution of Sequential Programs ottidare
Architectures (PESPMAYune. 2009).

[68] ZHAO, C., STEFFAN, G., AMzA, C., AND KIELSTRA, A. Compiler support for fine-grain
software only checkpointing. I@ompiler Construction 2012 (CC-12March. 2012).

[69] ZHAO, C., STEFFAN, G., AMzA, C.,AND WU, Y. Lengthening traces to improve opportunities
for dynamic optimization. InWorkshop on Improving Interactions between Compilers and
Computer Architecture (Interact), HPG#&keb. 2008).

[70] ZHAO, C. C., SEFFAN, G., AND AMZA, C. Compiler-based checkpointing and the potential
for tolerating delinquent loads. Ifechnical Report, Department of Electrical and Computer
Engineering, University of Toron2009).

	Contents
	List of Figures
	List of Tables
	Glossary
	Introduction
	Checkpointing
	Applications of Checkpointing
	Research Goals
	Thesis Limitations
	Thesis Organization

	Background
	Checkpointing Basics
	Hardware-based Checkpointing
	Software-Only Checkpointing
	Compiler Optimizations for Checkpointing
	Systems and Mechanisms that Leverage Checkpointing
	Deterministic Re-Execution
	Speculation
	Software Backtracking

	Enabling Checkpointing
	Overview
	Compiler Infrastructure
	SUIF
	LLVM

	Checkpointing Analysis
	Identifying Checkpointing Regions
	Single-File Applications
	Callsite Analysis

	Checkpointing Transformations
	Intra-procedural Transformations
	Inter-procedural Transformations
	Handling Special Cases
	Function Pointer Callsite
	Premature Optional Return

	Summary

	Optimizing Checkpointing
	Checkpointing Optimization Framework
	Redundancy Eliminations
	Regional Redundancy Elimination (RRE)
	Function-Private Redundancy Elimination (FPRE)
	Hoistable Redundancy Elimination (HRE)

	Hoisting
	Aggregation
	Basic Aggregation
	Advanced Aggregation

	Non-Rollback-Exposed Store Elimination (NRESE)
	Dynamic Memory (DynMem) Optimization
	Array Optimization
	Miscellaneous Optimizations
	Summary

	Checkpoint Buffer Implementation
	Undo-log vs. Write Buffer
	One-Dimensional Array-Based Undo Log
	HashTable-based Undo Log
	Pointer-To-Data (PTD) Node
	Inline/Union Node
	Fixed-Size Node
	Buffer Efficiency Analysis

	Redundancy Rate
	Evaluation
	Summary

	Tolerating Delinquent Loads via Checkpointing
	Overview
	Overlapping Execution with Delinquent Loads
	DL Identification
	DL Persistence
	Data Speculation
	Control Speculation
	Value Prediction

	Theoretical Performance Modeling
	Micro Benchmark and Practical Performance
	Micro Benchmarks
	Performance of Micro Benchmark

	Challenge with Real-World Applications
	In-depth Study Using MCF
	Insights of Significant MCF DLs
	Speculation over MCF DLs

	Summary

	Checkpoint-Enabled Debugging and Backtracking
	Checkpoint-enabled Debugger
	Overview
	Benefit

	Automatic Backtracking Support for VPR
	Overview
	Benefit

	Test Environment
	Program Partition for Checkpointing Regions
	Checkpoint Region Partition
	Checkpoint Region Properties

	Static Evaluation of Checkpointing Optimizations
	Comparison with Existing Checkpointing Solutions
	Comparison with libCKPT
	Comparison with ICCSTM

	Effectiveness of Checkpointing Optimizations
	Optimization Ordering
	Checkpoint Buffer Size Reduction
	Backup Operation Reduction
	Impact on Redundancy Rate

	Checkpointing Performance on VPR
	Performance of Different Buffer Schemes
	Fine Tuning on Hash-Table Schemes

	Summary

	Conclusion and Future Work
	Contributions
	Conclusions
	Future Work
	Support for Incremental Checkpointing
	Allowing More User Control
	Exploiting More-Precise Pointer Analysis
	Extending Checkpointing to I/O Devices

	Checkpointing APIs
	Special System Handling Functions
	Memcpy
	Memset
	Memmove
	Strcpy
	Strncpy
	Strcat
	Strncat
	Sprintf
	Vsprintf
	Snprintf

	Bibliography

