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Checkpointing support allows program execution to roll-back to an earlier program position,

discarding any modifications made since that point. Existing software-based checkpointing methods

are mainly library-based, snapshot a program’s entire working memory, and hence have prohibitive

overhead for many potential applications. This dissertation proposes a lightweight and fine-grain

checkpointing framework implemented entirely in software, through compiler transformations and

optimizations. In our framework, the programmer can specify arbitrary checkpoint regions via a simple

API, and the compiler automatically transforms the code to enable checkpointing and optimizes for

checkpointing overhead reduction.

Our fine-grain software-only checkpointing is based on compiler instrumentation toback-up

program-state changes on a per-store basis within user-annotated program regions. An individual

backup action is performed for a given memory location only if there is a corresponding write to that

memory location, thus our checkpointing scheme naturally adapts to the program’s behavior. This

scheme respects user-inserted program annotations for program partitioning into checkpoint regions,

and supports regions containing complex program constructs such as function callsites, function

pointers, and recursions. Our comprehensive compiler optimization framework employs aggressive

compiler optimization algorithms and conducts program transformations to minimize checkpointing

overhead. The compiler transformation and optimization infrastructure is sufficiently robust to enable

user-level checkpointing over large real-world applications and preserves the correctness of the original

program even under pathological corner cases.

We explore three application areas for our fine-grain checkpointing support. First, we utilize our

efficient software-only checkpointing to support overlapping execution with delinquent loads through

ii



the prototyping and evaluation of both control-speculation and data-speculation transformations. We

further propose a theoretical timing model and confirm its effectiveness with a real-machine workload.

Second, we investigate its application to debugging, in particular by providing the ability for a debugger

to rewind to an arbitrarily-placed point within the execution of a buggy program. A study using

BugBench applications shows that our compiler-based fine-grain checkpointing has more than a factor of

100 less overhead than full-process, unoptimized checkpointing. Finally, we demonstrate that compiler-

based checkpointing support can be leveraged to free the programmer from manually implementing and

maintaining detailed software rollback mechanisms when coding a backtracking algorithm for a realistic

CAD application, with runtime overhead of only 15% comparedto the manual implementation.
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Chapter 1

Introduction

Checkpointing is the process of taking a program snapshot sothat program state can be safely and

precisely restored to this snapshot should any error, failure, or misspeculation occur during future

execution. Depending on available hardware support, conventional checkpointing methods include

both software and hardware solutions, with hardware support being rare and only available on high-

end enterprise-class proprietary systems. Most existing software checkpointing solutions back-up

program changes at a coarse granularity by copying either the entire process’s memory or at least many

objects. While software instrumentation for program checkpointing is not new, the applicability of such

checkpointing techniques is limited by prohibitive software overheads.

In this dissertation we design, implement, and experimentally evaluate novel compiler-driven

techniques for program instrumentation and overhead optimization of fine-grain software checkpointing.

We show that we can significantly reduce software checkpointing overhead by conducting checkpointing

at a fine granularity—i.e., on a per-memory-store-operation basis. We show that our fine-grain check-

pointing scheme provides ample opportunities for program optimizations and that our checkpointing

optimization framework can effectively eliminate up to 98%of software checkpointing overhead.

With the support of our efficient and compiler-driven checkpointing framework, we further explore

the possibility and feasibility of enabling checkpointingon performance-sensitive applications where

checkpointing was previously considered impossible and impractical. We show that checkpointing-

enabled applications enjoy unique features and propertiesthat can improve programmer productivity.

1



CHAPTER 1. INTRODUCTION 2

1.1 Checkpointing

Checkpointing [20, 35, 39, 48, 56, 61, 62] is a technique to back-up program state such that execution

can later revert to the back-up and recover from unpredictable program failures. While proposed

hardware-based checkpointing solutions [5, 31] show promising performance, they are limited by the

available hardware buffer space. More importantly, hardware support for checkpointing is normally not

available in commodity systems. Software-based checkpointing solutions [35, 39, 50, 62] can be used

on commodity hardware, thus they are immediately more applicable and affordable. However, they

normally come with prohibitive software overhead as they are typically coarse-grained, meaning that

they back-up large ranges of memory or even the entire process image.

In this dissertation, we present a software-only method forcheckpointing program execution that

is implemented in a compiler. In particular, our transformations implement checkpointing at the

finest level of granularity—individual variables, as opposed to previous work that checkpoints entire

ranges of memory or entire objects [5, 20, 35, 50]. The intuition is that such fine-grain checkpointing

can (i) be a better fit for the nature of many applications since it checkpointsonly the memory that

is changed, (ii) provide many opportunities for optimizations that reduce redundancy and increase

efficiency, and (iii) facilitate uses of checkpointing thatdemand minimal overhead. We present

a complete checkpointing framework and optimization infrastructure that can (i) enable software-

only checkpointing over arbitrarily large and complex program regions and (ii) leverage compiler

optimizations to reduce overhead. We show that our fine-grain scheme is more efficient than coarse-

grain approaches, and that up to 98% of checkpoint buffer space and up to 95% of backup memory

service calls can be eliminated.

1.2 Applications of Checkpointing

We demonstrate the usability of our compiler-based checkpointing infrastructure via three key appli-

cations that leverage this support. The first application isto support speculative execution overlapping

with delinquent loads, where a compiler helps to schedule work that can potentially overlap with the

long cycles of last-level cache misses. We conduct an in-depth study using a delinquent-load intensive

application (MCF). Depending on different locations where delinquent loadsmay reside, we present both

control speculation and data speculation as compiler transformation schemes to tolerate the long cache-

miss latency caused by the delinquent load. As part of a complete software speculation model, we

study various types of value predictions and propose a mathematical timing model that matches well
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with timing behaviors of real-machine applications. This application is a limit-test for the applicability

of our lightweight checkpointing technique. Unfortunately we find that for this case the opportunities

for speculative optimization are too rare and fine-grained to amortize the checkpointing and prediction

overhead, and hence cannot demonstrate speedup.

The second application is support for debugging, in particular by giving a programmer the ability

to roll-back execution to repeatedly examine the state of a program prior to the manifestation of a bug.

We study several flawed applications from the BugBench [41] suite and demonstrate the low overhead

of checkpointing support for rollback.

The third application is support for backtracking algorithms, where a programmer can avoid im-

plementing manual support for rewinding data-structures,by leveraging compiler-based checkpointing

to provide it automatically instead. We study VPR [9, 54], inparticular the simulated-annealing-

based place-and-route algorithm for FPGAs, which optimistically swaps blocks and either keeps or

discards the swap depending on whether a cost function improves. By comparing the original manual

implementation of backtracking support to our automatic compiler-based approach, we demonstrate the

benefits that our automatic checkpointing infrastructure can provide.

1.3 Research Goals

In this dissertation, we plan to explore the techniques to enable fine-grain software-only checkpointing

and aggressively reduce checkpointing overhead by exploring and exercising compiler techniques. In

particular, we will focus on introducing compiler transformations to enable checkpointing, adopting

existing compiler optimizations to make it effective for checkpointing, and inventing new checkpoint-

specific compiler optimizations. We strive for the following research goals.

1. Enable checkpointing over arbitrary program regions.

We will investigate the process that enables fine-grain and software-only checkpointing over

programmer-annotated regions of arbitrary size and complexity. In addition to introducing

general schemes to enable checkpointing on common scenarios from a region with potentially

unbounded size, we will also discuss detailed steps to handle pathological corner cases to make

our checkpointing scheme complete.

2. Improve checkpointing performance through compiler optimizations.

We will explore software-only techniques to improve checkpointing performance by employing
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compiler optimizations to aggressively reduce checkpointing overhead. In particular, we will

focus on evaluating the effectiveness of existing compileroptimizations in the software-only

checkpointing domain, and inventing new compiler optimizations that are specially designed

to harness the new optimization opportunities that are onlyexposed through the software-only

process of enabling fine-grain checkpointing. Since we havethe complete knowledge of the

entire application (including the checkpoint-enabled program region), we expect significant

performance improvements over alternative coarse-grain solutions.

3. Support key applications.

Leveraging our efficient software-only checkpointing framework, we attempt to enable check-

pointing service on three key applications. A checkpoint-enabled application will either require

new functionality that is otherwise impossible or impractical, or obtain improvements that will

ultimately benefit programmers who choose to adopt them. We plan to explore two coarse-

grain applications: checkpoint-enabled debugger, and checkpoint-support for automatic software

backtracking usingVPR. Even more aggressively, we will attempt a high-risk case that uses an

application-level technique (software-only checkpointing) to explore speculative optimization

related to a micro architecture-level feature (delinquentloads).

4. Enable future research.

Our compiler-based checkpointing infrastructure has become stable, mature and is capable of

handling large user applications. We are publicly releasing the entire source code package (all

compiler passes, compiler driver, complete sanity testingharness, complete source codes of

checkpointing-enabled applications, tips for effectively building compiler passes for transforming

and optimizing large-scale applications, suggestions on solid and bug-free software development

practice, etc.), to encourage future benefit from the framework.

1.4 Thesis Limitations

Any academic work has limitations and our work is not an exception. In this thesis, we explore a user-

level checkpointing approach that can only checkpoint programs whose source codes are available—for

situations where source code is unavailable, such as operating system services and library calls, we

provide a mechanism for the user to describe the impact on checkpointing of the service/call. When

such outlining is not possible, checkpointing cannot be supported. We design our checkpointing buffer
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to favour run-time performance over storage efficiency, andhence do not directly pursue methods of

purely reducing storage requirements at the cost of performance. Finally, our checkpointing method can

only support single-threaded applications having a singleoutstanding checkpoint at any given time; we

have not yet considered support checkpointing within a multi-threaded environment, checkpoints with

multiple rollback points, nor support for nested checkpoints. We do not support rollback to a checkpoint

that has already been committed.

1.5 Thesis Organization

The rest of the thesis is organized as following. In chapter 2, we conduct a thorough review of

existing background work related to software-only checkpointing, deterministic re-execution, compiler

optimization, and other closely related areas. In chapter 3, we discuss the detailed analysis and

transformations to enable software-only checkpointing over any user-annotated program regions. In

chapter 4, we present full details of existing checkpointing-specific compiler optimizations that target

maximum overhead reduction through aggressive compile-time analysis and transformations. In

chapter 5, we show detailed analysis of the checkpointing’sbuffer schemes: the selection between

undo-log and write-buffer schemes, various undo-log buffer implementations, as well as performance-

storage tradeoff comparisons. In chapter 6, we introduce the first key checkpoint-enabled application

that attempts to overlap program execution with delinquentloads (DLs). In addition to identifying DL

locations, we conduct both theoretical modeling and practical evaluation for checkpointing over fine-

grain DL’s granularity. In chapter 7, we illustratetwo additional key applications that benefit directly

from our low-overhead software-only checkpointing infrastructure. These applications either gain novel

functionality that won’t exist otherwise, or ultimately benefit users through improved programmer’s

productivity. We finally conclude in chapter 8 by summarizing the entire thesis and give suggestions on

potential future research directions.



Chapter 2

Background

Checkpointing [21, 35, 48, 56, 62] is the process of taking a snapshot of program execution, so that if

there is a subsequent program failure, error, misprediction, or other unwanted event, the program can

be rewound to the snapshot to recover and start over. Checkpointing is often provided as a low-level

service in high-end computer systems, supported by hardware or the operating system itself—to ensure

high reliability and availability, providing security enhancement and improving fail-over support.

The techniques presented in this dissertation leverage prior work in related areas that are summarized

in this chapter, including program checkpointing, compiler optimizations for checkpointing, thread-level

speculation (TLS), transactional memory (TM), deterministic re-execution, and program backtracking—

especially when used for software debugging.

2.1 Checkpointing Basics

We provide an example to illustrate the checkpointing process in Figure 2.1. A program’s sequential

execution is partitioned to have pre-defined checkpoints atdesignated program locations (fromP1 to

P5). At each of these locations, the program can either committhe current checkpoint and immediately

start a new one upon successfully completing the current stage without any error, or rollback the existing

checkpoint and restart it after recovering an abnormal condition. The program starts its normal execution

at program locationP1 along the path of1.normal execution. An unexpected error occurs at runtime.

At checkpointP3, this error is detected and the program needs to recover from it. The checkpointing

recovery process is activated to safely rewind execution back to its latest start-checkpoint location

along the path2.checkpoint recovery. This process restores the memory changes captured in the

checkpointing buffer. Upon completion of the checkpointing recovery, the program resumes its normal

6
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Figure 2.1: Overview of Checkpointing

execution from positionP2 as if it arrives at this location for the first time without anyerror. Execution

continues as normal after checkpoint recovery along the path of 3.continue normal execution.

The same checkpointing process repeats for each additionalprogram failure captured throughout the

rest of the execution. Between consecutive checkpoints, checkpointing needs to preserve program states

in preparation for potential program failures and recovery. This involves copying memory at runtime

that results in overhead if the program behaves normally, and implementing checkpointing optimization

methods that minimize this overhead.

Prior research has investigated hardware-based checkpointing [5, 31, 46] and software-only check-

pointing [11, 12, 35, 39, 50, 62]. Hardware-based schemes rely on hardware support to buffer

checkpointing states and facilitate recovery. However, checkpointing hardware has limited resources

(usually limited buffer size) and is often not available in commodity platforms. This not only restricts

the applicable range of code that can be effectively checkpointed, but also puts the long term prospects

of hardware schemes under question. Software-only checkpointing schemes exhibit flexibility by

removing the dependence on checkpointing hardware, and thus immediately becomes more applicable

on a wider range of systems that demand checkpointing service. However, existing software-only

checkpointing schemes suffer from prohibitive overhead bycopying a large amount of memory at

runtime. These schemes often employ heavy-weight checkpointing processes that operate at the

application level [11, 12], operating system level [34, 39,50] or virtual-machine level [62]. They

focus on providing software checkpointing service to enhance system robustness and reliability, thus
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performance of checkpoint-enabled applications is not theprimary concern. Coarse-grain software-

only checkpointing introduces prohibitive overhead. The range of quantified overhead is between 15

times slower to over 10,000 times slower [40]. As a result, coarse-grain software-only checkpointing is

not suitable for performance-critical applications that have real-time responsiveness requirements.

In contrast to existing approaches, we propose a lightweight and software-only checkpointing

scheme that will work on fine granularity. It heavily leverages the compiler to aggressively optimize

checkpointing performance, resulting in a checkpointing implementation that is more suitable for

performance-sensitive applications.

2.2 Hardware-based Checkpointing

Hardware-based checkpointing implementations provide native hardware support for basic checkpoint-

ing services. There are various schemes available under this category, ranging from using checkpointing

to repair computing engines [31], using checkpointing to reduce ReOrder Buffer (ROB) overhead [5],

and using hardware checkpointing to improve system efficiency [46].

Hwu et al. [31] proposed a hardware solution to checkpoint computing engines to known good

states, and use it later to recover from a program’s ill-behaviors caused by exceptions and branch

mispredictions. Their approach presented theoretical predictions and proved numerous theorems dealing

with maximum estimated checkpoint buffer size, algorithmsto perform the exact actions, and even

high-level hardware design diagrams ready for implementation. However, this approach did not

estimate the extra hardware cost as well as its related implementation complexity. Although the authors

mentioned that the performance impact cannot be precisely proved, it still lacks performance analysis

and comparison when their reference designs were to be implemented either in real hardware or inside

a simulator.

Modern CPU designs employ two critical techniques to maintain high performance: (i) out-of-

order execution to exploit instruction-level parallelism(ILP), and (ii) reorder buffer (ROB) to guarantee

correctness. ROB requires a linear FIFO structure to guarantee its instruction’s commit sequence.

This puts challenges on various design concerns, includingrename table entry, instruction retirement

control, and register reclamation.Akkary et al.[5] proposed a hardware-based checkpoint scheme to

alleviate major ROB overhead. Their scheme only generates checkpoints at branch instructions that

have high likelihood of misprediction. Every instruction in the program will need to map to a particular

checkpoint, increase its corresponding counter when it is being executed and decrease the counter after
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it retires. This guarantees a global total ordering for committing checkpoints in the right sequence.

The checkpoint will not commit until all instructions registered with it have committed. In addition,

each memory instruction needs to have extra counters that refer to the instruction’s uses. This poses a

relatively large ISA change and hardware complexity. This scheme also proposed various hardware

changes for increasing ROB performance through checkpointing. However, many of the proposed

features need to significantly modify existing architecture, which makes it prohibitive. They did not

address the design complexity, nor potential cost and performance impact when implementing the

design.

When an individual checkpoint needs to cover a huge number ofinstructions (e.g., hundreds millions

or even billions of instructions), the size of the checkpoint becomes a major storage and efficiency

bottleneck. Moshovos et al.[46] proposed a novel checkpoint compression scheme for giga-scale,

coarse-grain checkpoint/restore. They observe value locality from both in-memory data and address

streams and the effectiveness of their compression is basedon the exploitation of such locality. Based

on previously proposed dictionary-based hardware compressors that are both expensive and slow, they

observe that simpler mechanisms can offer similar compression benefits with a much smaller and

simpler direct mapped structure. The newly proposed compressor requires few resources and can easily

be pipelined to achieve one full block compression per processor cycle. When used alone, it can reduce

checkpoint storage to 52% of its original size. When combined with previously proposed hardware-

based compression, it improves overall compression rates while significantly reducing on-chip buffer

requirements. Even with hardware’s assistance to compresscheckpointing, the checkpointing process

is nevertheless coarse grain with significant overhead.

All hardware-based checkpointing schemes rely on available checkpointing hardware to conduct

their designed activity. On one hand, this improves necessary execution efficiency by providing native

hardware support. On the other hand, the amount of availablesupport is strictly limited by the dedicated

checkpointing hardware that might not be available for commodity servers. This restricts the applicable

domains that the checkpointing service can apply. Overcoming such constraints leads to the design of

software-only checkpointing.

2.3 Software-Only Checkpointing

Due to problems of checkpointing hardware’s limitations and availability, software-only checkpointing

schemes are much more popular than hardware-based checkpointing. Plank et al.[34, 50] presented a
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user-directed checkpointing approach for manually inserting checkpointing directives at programmer-

designated source-code locations. The compiler processesthe annotated code, and converts directives

into checkpointing library calls. The checkpointing library interface includes calls to identify

inclusive memory regions, exclusive memory regions, and directives to force a checkpoint at certain

program locations. They developed techniques using staticdata-flow analysis to optimize sizes of the

checkpointing regions. Their contribution is a detailed backward all-path data-flow algorithm, which

incorporates a normal control-flow analysis to build the programs call graph (CG), partitions the CG into

sub CGs (CG’) where eachCG’ includes only one single force-checkpointing directive atits beginning,

builds relevant sets on each statement inside the CG, inserts memory-inclusive and memory-exclusive

calls, and iterates until the process finally stabilizes. This approach presents a compiler analysis

leading to refining coarse-grain checkpoint region partitions, so that each incremental checkpoint will

only backup chunks of memory that are changed between two consecutive checkpoints. However,

their scheme is still coarse grain whose granularity largely depends on the programmer’s intuitive

understanding of the program’s checkpointing region. Although optimizations can reduce overhead,

this scheme does not provide performance comparison that measures checkpointing efficiency against

previous approaches. In addition, this approach only operates on FORTRAN programs, which are

known to have more regularity and less un-predictable dependencies.

Li et al. [39] proposed Compiler Assisted Techniques for CHeckpointing (CATCH)—a full program

checkpointing solution that can automatically identify checkpoint locations. The CATCH scheme

includes a CATCH filter (compiler passes) and a CATCH runtimelibrary, both are built into a

modified version of GCC. CATCH identifies potential checkpoint locations at either the beginning

of a procedure or the first statement inside a loop. For each potential location, the system calculates

its current checkpointing interval and evaluates costs. When a set of pre-defined conditions hold on

a potential checkpointing location, an actual checkpoint is marked at the location, where the entire

memory footprint of the running process is written into a disk file. Not satisfied with poor initial

performance, the authors then aggressively apply optimization techniques. This includes checkpoint file

compression, adaptive checkpointing, profile-guided optimization, etc. The optimizations effectively

reduce checkpoint time from 212 sec/ckpt to 30 sec/ckpt, andreduce checkpointing overhead from

78.52% to 20.74%, respectively. The CATCH approach shows that compiler optimization is an effective

tool to reduce checkponting overhead. CATCH works efficiently for coarse-grained checkpointing that

focuses on reliability enhancement and fault tolerance support. However, due to the long latency and

large amount of memory that needs to checkpoint, this approach is not suitable for applications with
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critical real-time performance requirements.

Whaley[62] introduced a complete virtual-machine level checkpointing scheme using Java reflection

and program analysis. Java reflection marks all necessary fields inside each relevant object. When the

object is removed from memory, all fields marked necessary are written into permanent storage on disk,

so that they can recover thoroughly and safely from disk whenthe object later needs to be reconstructed.

The scheme performs a simple flow-insensitive and context-insensitive pointer analysis, so that every

object in the virtual machine and each field in the object are marked necessary whenever there is a

reaching path from the beginning of the program to the objector field. The checkpointing scheme

stops the program when its execution reaches its main function, builds the objects reaching set using

the program analysis, writes all relevant memory into a diskfile, and then continues normal execution.

Each subsequent program launching is equivalent to a checkpoint recovery which essentially reads the

disk file and populates its contents to memory. After the initial overhead of conducting program analysis

and checkpoint building, Whaley’s checkpointing approachshows improved memory usage and speed

up in programs launching (startup) time. It is especially useful for early JVMs that have significant

application startup delays. However, there is no evaluation for the cost of checkpointing on both the

checkpoint file size and checkpointing’s performance impact on the original application. This approach

concentrates on virtual-machine level coarse-grain single-application checkpointing. It lacks support

for multiple checkpoints and checkpointing under finer granularity.

Due to changes in data set size and improvements in algorithms, a program’s average running

time has become longer than normal hardware’s Mean Time Between Failures (MTBF). This implies

that certain hardware components are guaranteed to fail before a program runs to its completion. A

solution needs to protect such long-running programs from hardware failures and minimize service

interruptions. Bronevetsky et al.[11, 12] proposed using compiler techniques to implement an

application-level, non-blocking, coordinated global checkpointing solution for MPI-based programs

on distributed-memory parallel computing clusters. The source program is preprocessed by a compiler

where manually annotated checkpoint macros are converted into checkpoint library calls. This separates

the implementation of the checkpointing library from the MPI library. A redesigned protocol exchanges

messages on request to build checkpoints for each individual MPI process and collaborates with the rest

of the MPI protocol. The solution focuses on the design and implementation of an enhanced protocol

on top of the MPI layer, guarantees consistency, and handlesdifferent types of MPI messages properly.

However, the major problem is the excessive checkpointing overhead. In addition, this approach works

over coarse-grain process isolation through manual annotation of program’s checkpointing locations.
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In contrast to existing software checkpointing approachesthat work on coarse granularity and incur

prohibitive overhead, we propose a lightweight checkpointing scheme that will work on fine granularity.

For performance-sensitive applications, tracking program changes on page, object, cache-line or array-

level of granularity is still overly coarse grain. We will explore finer checkpointing granularity by

tracking on a per-store basis through source-code instrumentation. We believe this is relatively the finest

possible tracking granularity that a user-guided programming tool can perform on source-program level

and is a field that has not been fully explored previously. Theimplications, difficulties and benefits of

such fine-grain tracking is largely unknown to the research community.

2.4 Compiler Optimizations for Checkpointing

A compiler [3, 4, 6] is a computer program that converts program descriptions between different levels

of abstractions. Often it translates a program from a high-level source-code format into a low-level

machine-code description suitable for executing on a particular target platform. A compiler’s traditional

focus [3, 4] is automata-based parsing and semantic analysis (front end) that handles different

language syntax and completes the translation process. More recently, compilers [6] have become more

focused on improving code quality and application performance by exploring, identifying and reducing

redundancy in application codes through program restructuring (back end).

Recent work [11, 12, 14, 51, 52] show that compiler optimizations are important in reducing

checkpointing overhead.Plank et al.[51, 52] pioneered using a compiler to identify memory regions

that are not changed between consecutive checkpoints and excluding such regions from incremental

checkpointing. Choi et al. [14] noticed that normally only a small number of memory pages are

modified (DIRTY pages) between nearby checkpoints and checkpointing can instead save only the

DIRTY pages. This reduces full-process memory checkpointing into checkpoint only the memory

pages that are modified between consecutive checkpoints.Bronevetsky et al.[11, 12] used a compiler

to analyze ranges of an array that are modified between consecutive checkpoints. They developed

compiler optimizations that identify first-write and last-write array indexes, and checkpoint only the

modified range of the array.

Comparing with existing work, we plan to expand the use of compilers as the critical tool to further

advance software-only checkpointing. We plan to explore finer checkpointing granularity by lowering

the memory tracking unit from page, memory object or array level to per-store level—a degree of fine-

grain checkpointing that hasn’t been explored. A compiler will continue play a key role to both enable
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checkpointing through compiler transformations and reduce checkpointing overhead through compiler

optimizations. We will design, implement and evaluate novel compiler optimizations that particularly

target overhead costs and opportunities brought by the fine-grain checkpointing scheme.

2.5 Systems and Mechanisms that Leverage Checkpointing

Other checkpointing-related systems and mechanisms exist. They leverage the checkpointing principle

for different design goals or functionalities. They include deterministic re-execution, speculation, and

software backtracking.

2.5.1 Deterministic Re-Execution

Deterministic re-execution allows a multi-threaded program to restore to a previous program location

and re-execute it under a deterministic order. One of the frequent uses of deterministic re-execution is

to debug or profile parallel applications. A complete deterministic re-execution scheme includes two

components: (i) checkpointing of a parallel application and (ii) deterministic replay. We focus our

discussion more on the parallel checkpointing portion of deterministic re-execution.

Feldman et al.[21] presentIGOR—a system capable of conducting full-process checkpointing, and

optimize it to incrementally checkpoint only dirty pages. Its deterministic re-execution is coarse-grain

and only precise up to the nearest program location where a checkpoint is taken. IGOR has high software

overhead: checkpointing causes applications to slowdown within the range of 40% to 370%, depending

on checkpointing frequency.

King’s time-traveling virtual machine (TTVM) [33] discusses an OS-level debugging facility by

checkpointing entire OS states into disk files. This includeCPU state, complete virtual memory and

virtual disks, multiple user applications, and all system services. Coupled with light-weight fine-grain

forward replays, TTVM’s deterministic re-execution can reach any precise program location between

two consecutive full checkpoints. Designed as an OS-level debugging tool, its overhead is also high.

TTVM reports 7% runtime overhead with 25 MB/sec disk-write throughput when conducting one full

VM checkpoint every 10 seconds.

Xu et al.[64] demonstrate a re-tracing tool (ReTrace) that is built on top of VMWare’s deterministic

replay technique to collect only non-deterministic eventsduring program execution and later expanding

the event collection into full program traces using replay.VMware’s deterministic replay provides per-

instruction precision, but ReTrace comes with prohibitivesoftware overhead especially in the expansion
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stage. Thus ReTrace is normally used as an offline profiling tool to analyze trace-based program

behaviors or generate various types of precise traces.

Comparing with existing deterministic re-execution approaches that checkpoint entire VM or

application to disk, we will instead checkpoint on a per-store granularity to memory within a

single application only. Checkpointing overhead seems to correlate closely with the checkpointing

granularity—the coarser grain of checkpointing, the higher overhead it causes. Thus we decide

to checkpoint over the finest-possible granularity and expect much reduced overhead. We plan to

provide a per-instruction level precision when deterministic re-execution takes place. In addition,

we will guarantee that precise application context be restored for the deterministic replay stage. This

includes CPU registers, the application’s complete memorycontents, precise exception state, and any

application-level global variable that may have been modified due to side effects of the checkpoint-

enabled application’s execution. However, since we will conduct in-memory user-level checkpointing,

we cannot precisely restore states in I/O devices, as well asstates that are changed in system codes. In

contrast to existing work, we strive to build a high-performance checkpointing framework with a heavy

emphasis on maximium overhead reduction.

2.5.2 Speculation

Thread-level speculation [16, 27, 59] (TLS) and optimistic implementations of Transactional Mem-

ory [28, 29, 57] (TM) are optimistic program executions whose result might not be needed (and thus

discarded). Both TLS and TM provide for each optimistic thread support to checkpoint before execution

and rollback when an error occurs. Dependency tracking and conflict detection are necessary to make

the optimistic parallel execution model complete.

Depending on available hardware support, there exists a large exploration space for implementing

this speculative parallel model. Hardware-based solutions (HTM) [28,30,65] often provide enhancement

on cache protocols and thus can partially reuse L1 or L2 cacheas the speculative buffer. Conflict

detection and rollback are also implemented in hardware, thus hardware-based solutions can often

provide higher performance. However, it is non trivial to design and implement a simple yet efficient

cache-protocol extension that guarantees both correctness and efficiency. These schemes also face the

challenge of overflowed buffers that ultimately limit the granularity of speculative work. Software-

only solutions [2, 29, 57] (STM) remove the hardware dependency by implementing the entirelogic

in software. They are thus not limited in buffer capacity, but suffer from prohibitive software

instrumentation overhead. In between there exist hybrid solutions [8, 18, 44] (HyTM) that attempt to
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combine the best of both sides—make the common case (small transactions) fast by using HTM, and

make the uncommon case (large transactions) safe by defaultto STM.

In contrast to many TM or TLS solutions that use hardware buffering for multi-thread workloads,

we instead focus on using software buffering for single-thread applications. This allows us to focus

entirely on doing the best-possible work for checkpointingalone and remove any dependency on

checkpointing hardware that doesn’t exist. Existing software-only checkpointing solutions suffer from

prohibitive checkpointing overhead, thus we strive to reduce the overhead by conducting checkpointing

at the finest-possible granularity. We exploit the compileras the key tool to enable software-only

checkpointing by instrumenting on a per-store granularity. We further explore aggressive compiler

analysis and optimizations over the distinct opportunities provided only by the compiler-driven program

instrumentation. Build upon our efficient software-only checkpointing infrastructure, we plan to support

a few important single-thread speculative applications—adomain that needs further and thorough

investigation.

2.5.3 Software Backtracking

Software Backtracking [24, 25, 36] allows a program to execute backwards from the current location.

Common uses of backtracking include reverse execution in a debugger or a virtual-machine environ-

ment, and individual applications that exercise backtracking algorithms.

Program debugging often demands frequently revisiting passed program locations and states when

attempting to analyze and isolate the root cause of a bug. A backtracking-enabled debugger can greatly

simplify the reverse-execution debugging process by eliminating the need for program restart, as well

as avoiding all problems associated with reproducing the precise bug-trigger environment.

Agrawal et al.[24, 25] presented a prototype debugging tool that is based on dynamic program

slicing and execution back-tracking. It provides a structured view of dynamic events through run-time

traces, but is constrained by storage limitations.

Ding et al. [19, 66] pioneered behavior-oriented parallelization (BOP) that attempts to parallelize

applications with unpredictable control flow, indirect data access, and input-dependent parallelism.BOP

allows a program to be parallelized based on partial information about a program’s behavior and user

hints. BOP is based on programmable software speculation, where a useror an analysis tool marks

possibly parallel regions in the code, and the run-time system executes these regions speculatively in

parallel. BOP uses process consistency where the operating system startsspeculative execution by

forking the current non-speculative process and making copies of each existing memory pages. This
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imposes high software overhead by conducting process forking and thus forces implicit coarse-grain

speculative regions.

Recent versions of the gnu debugger (GDB) [22] allow reverse program execution by conducting

instruction-wise program replay. It generates the replay log by conducting a per-instruction check-

pointing inside its replay buffer for each individual instruction once the debugger is in the reverse-

execution mode. For each instruction, the checkpointing process copies the memory contents that the

instruction is about to overwrite, and also selectively saves sufficient CPU registers that are necessary to

reconstruct loss-free CPU state upon a rollack request. Thus, for each instruction, the replay will restore

the saved per-instruction checkpoint memory contents and the CPU register states. This per-instruction

checkpointing comes with prohibitive overhead because thedebugger has to preserve sufficiently large

machine states and original memory contents in order to precisely reconstruct each instruction-wise

machine state after a per-instruction restore. This schemealso allocates a fixed-size replay buffer and

limits the replay distance for up to 200K instructions,1 placing an implicit constraint on the maximum

size of code region that can be checkpointed and replayed.

In contrast to existing backtracking applications, our thread-based checkpoint-enabled debugger will

not have such limitations. In addition to offering featuresincluding unlimited retries, our checkpointing

scheme allocates its buffer in heap memory so that it can growthe buffer dynamically when needed.

This allows our checkpoint-enabled debugger to support reverse execution over regions with potentially

unbounded size. The key feature that differentiates our design from the rest is the ability to conduct

code optimizations after performing aggressive program analysis when implementing the support for

backtracking inside a compiler. Our compiler has a completeview of the entire application’s source

code, thus it is capable of making better optimization decisions. We do not quantitatively compare with

a reverse-execution enabled debugger because such debuggers only become available towards the end

of this research.

We further extend support of program backtracking on source-code level. We expose the

checkpointing functionality to the user via a set of simple APIs, so that programmers can have explicit

control of program backtracking by specifying the precise checkpoint region location through a pair of

region delimiters at the source-program level. Rather thansupporting all tedious and error-prone details

of conducting manual backtracking on each individual stores, our compiler-based scheme automates the

entire enable-backtracking process and frees the programmer to instead focus more on other important

1200K instructions is the default replay buffer count on GDB 7.0
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issues. This will help to reduce the develop-run-debug cycle time and convert the improvement made

on the development process into improved programmer’s productivity.



Chapter 3

Enabling Checkpointing

As previously introduced in chapter 2, checkpointing [35, 48, 56, 62] is the process of taking program

snapshots to facilitate failure recovery on potential future program errors. In contrast with previous work

on hardware-support for checkpointing or coarse-grain software-only checkpointing based on copying

large memory regions or cloning entire objects in software,in this chapter we discuss a lightweight

compiler-based software-only solution to checkpointing that operates at the level of individual variables.

We plan to leverage compiler techniques to enable checkpointing on its finest granularity and

aggressively optimize the checkpointing-enabled code formaximum efficiency. By choosing a software-

only scheme, we avoid all problems related to the checkpointing hardware that may not exist in

a given system. By proposing a lightweight and fine-grain scheme, we target performance-critical

applications with rapid recovery from potentially frequent ill-behaviors. We plan to further explore

checkpointing overhead reduction by aggressively applying compile-time analysis and optimizations.

To our best knowledge, this is the first such attempt on fine-grain software-only schemes. We plan to

enable software-only checkpointing over individual stores—the finest source-code level checkpointing

granularity that naturally adapts to program behavior. Previous work [12,14,50] shows that a compiler

can play a key role in building an efficient checkpointing solution by eliminating checkpointing

overhead. We rely on a compiler to provide precise data type and size information, and conduct compile-

time analysis to extract critical information that exhibits potential optimization opportunities that are

normally not available at runtime. In addition, compilers can automate program transformations that

will free users from tedious and error-prone manual annotations especially over large program regions

with complex constructs. We plan to leverage compiler techniques to automate the checkpointing-

enabling process and aggressively optimize our proposed software-only checkpointing solution targeting

18
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Figure 3.1: Overview of enabling checkpointing.

maximum overhead reduction.

We plan to relax the constraints on applicable regions that can potentially be checkpointed. We grant

the user the ability to indicate a region of arbitrary size and complexity. A checkpointable region can be

as small as one line of source code, or as big as the entire application. A user only needs to identify the

region by marking both boundaries, with the rest of the process fully automated by the compiler. We

will further provide a robust checkpointing infrastructure to enable novel features on key applications

that can benefit directly from the efficient software-only checkpointing support.

3.1 Overview

Figure 3.1 presents an overview of our checkpointing system(CKPT), with detailed steps on compiler

analysis and transformations to enable checkpointing. Thesystem takes as input a source program,

with annotations that indicate the locations where a checkpoint region begins and ends, as well as code

that decides whether the checkpoint should be committed or rewound when the current checkpointing

process is about to complete. The only required user action is to identify the checkpointing program

region by inserting a pair of region delimiters, then our compiler automates the rest of the process to

enable checkpointing.

The entire enable-checkpointing process consists of four major steps:
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Step-1 converts theC/C++ language source code to an intermediate representation (IR) that

LLVM [37,38] operates and manipulates on. We choose to work on theLLVM IR level to gain language,

compiler and platform independence. In Figure 3.1, we show only C/C++ inputs because our test

applications happen to be written in these languages. In reality, there is no limitations on the selections

of programming languages a user can build applications fromand enjoy the benefits offered by our

checkpointing framework. Despite a large number of existing compilers that already supportLLVM, any

compiler that provides a frontend that can convert source language code intoLLVM IR will be able to

utilize our checkpointing framework.

Step-2 (Callsite Analysis) analyzes callsites that reside in the user-defined checkpointing region.

Using a callsite analysis algorithm, it recursively visitsall function callsites within the checkpointing

region and discovers all user-defined functions that may be invoked directly or indirectly from the region.

This information becomes a vital prerequisite that enablesstep-3 to complete the checkpointing enabling

process for any user-annotated program region.

Step-3 (Inter-procedural Transformations) conducts program restructurings to enable checkpointing

on all participating user-defined functions. For each function identified by the callsite-analysis phase,

our compiler generates a checkpoint-enabled version that co-exists with its original version.

And finally, step-4 (Intra-procedural Transformations) conducts program transformations that

enable checkpointing inside the annotated region only.

After these four steps of compiler analysis and transformations, we produce a program that is

checkpoint-enabled with respect to the user-annotated program region and functionally equivalent to

the original program. We will unveil further details on steps and actions of enabling checkpointing

later in the chapter. Our checkpointing transformations and optimizations are implemented as custom

LLVM [37, 38] passes, with each pass targeting a particular analysis or transformation action. We use

an existing pass manager fromLLVM to establish a pass-execution order that naturally resolves all inter-

pass dependencies. This pass manager guarantees that each of our customLLVM passes will be visited

at least once while respecting all dependencies among our checkpointing-specific transformation and

optimization passes.

When the checkpointing framework completes its transformations, it produces transformedLLVM

IR that has checkpointing enabled over the user-annotated program region. This transformedLLVM IR

also preserves the behavior and correctness of the originalapplication. This code can then proceed to

optimizations and further target multiple native platforms that LLVM infrastructure supports. LLVM’s

platform support includes X86, X64, and ARM where the nativecode generators are production quality.
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LLVM includes a large number of platform targets (PowerPC, Solaris, MIPS, XCore, PTX, AMD, etc.)

where the current support is still experimental. In addition, LLVM provides aC backend that can convert

optimizedLLVM IR back toC source code. This source-to-source approach improves codeportability

and allows us to further capitalize on all optimizations of native back-end compilers.

3.2 Compiler Infrastructure

Our development of checkpointing compiler analysis and optimizations is based on well-established

open-source research compiler infrastructures. As we willdescribe in the following sections, we initially

used SUIF because of its stability, good ANSI-C standard compliance and source-to-source compilation

path. However, we were later motivated to migrate our work toLLVM.

3.2.1 SUIF

SUIF [7, 26] is a open-source compiler infrastructure originally developed at Stanford University. It

provides a solid platform for compiler research. SUIF has two main components: a small, well-

documentedkernel, and atoolkit composed of compiler passes that operate on the kernel. The kernel

defines SUIF’s intermediate representation (IR) that specifies the details of the language and provides

functions to access and manipulate theIR. The toolkit includesC andFortran front ends that convert

source codes written in these languages into SUIF IR, a loop-level parallelism and locality optimizer, a

MIPS back end, and helper tools for compiler development. Later enhancements include aSUIF-to-C

backend that convertsSUIF IR to low-levelC code, as well as work that improves language compliance

of the producedC code to ANSIC standard.

We started our compiler-based checkpointing using SUIF (version 1.3.0.5)— an available version

that is considered most stable and C-standard compliant. However, active development and support of

SUIF ceased in 1997. While we developed a large amount of codeusing the SUIF infrastructure, the

lack of support, existing expertise, and bug fixes preventedus from making timely progress—hence we

migrated our compiler infrastructure from SUIF to LLVM.

3.2.2 LLVM

LLVM [37,38] is an open-source software infrastructure that provides modular and reusable components

for building compilers and programming tools. LLVM’s building-block components are ideally

language and target independent. Using LLVM, one can construct a new compiler with a selection
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of the right components that exist, glue code, plus any components that are not currently available (need

to be written). This software development using library-based composition model reduces the time and

cost to construct a particular compiler and allows existingcomponents to be shared across different

compilers over different platforms. Improvements made to one compiler can implicitly benefit all other

compilers that use LLVM’s building-block components.

LLVM includes a small, carefully-designed, easy-to-understand and well-documented intermediate

representation (IR), and a large number of existing program analysis, transformation and optimization

passes that manipulate the IR. Many frontends exist that canconvert language source code (C,

C++, Java, Fortran, Python, etc.) to LLVM IR. LLVM’s middle-end includes a large number

of robust program analysis and transformations that are popular in most modern compilers. This

covers scalar optimizations, loop-based optimizations, instruction combining and simplifications,

instrumentation for performance debugging, advanced inlining, various forms of alias analysis and

inter-procedural optimizations (IPO) that rely on the precise results of alias analysis. Important recent

development includes automatic vectorization on both basic-block level and loop level, as well as

support for OpenMP and PolyHedral framework [10,23]. Platform backends are available that generate

architecture-specific machine code, including x86, x64, ARM, PowerPC, MIPS, etc. Many of these

platforms’ native code generators are considered robust and production-quality. LLVM also provides

solid just-in-time (JIT) compilation for many of the supported platforms.

LLVM is extremely well documented and makes it easy to discover certain design features, coding

patterns and tips that can avoid errors. Online discussionsare archived daily and are available for easy

search. LLVM is sufficiently mature and is released as commercial product and being actively serviced

by Apple (Clang, XCode, etc). LLVM is currently under activedevelopment with a 6-month release

cycle. There is a large, friendly and responsive LLVM community that is helpful in leveraging existing

expertise and dealing with project-specific problems.

We migrated our checkpointing compiler development from SUIF to LLVM. It turned out to be a

vital step that not only eliminated all problems SUIF brings, but also greatly enhanced development

experience and improved productivity. Although we could not reuse most of the code that we originally

developed for SUIF, the ideas and algorithms are well leveraged and lead to a rapid transition.
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(a) BEFORE (b) AFTER

start_ckpt(); …

a = …;

memcpy(d, s, len);

foo(); 

…

stop_ckpt(c);

foo(…){ /* body of foo() */ }

…

start_ckpt(); …

backup(&a, sizeof(a));

a = …;

handleMemcpy(…);

memcpy(d, s, len);

foo_ckpt(); 

…

stop_ckpt(c);

foo(…){ /* body of foo() */}

foo_ckpt(…){ 

/* body of foo_ckpt() 

*/  }…

(1)
(1)

(2) (2)

(3) (3)-b

(3)-a

Figure 3.2: Three code-transformation actions to enable checkpointing

3.3 Checkpointing Analysis

Before our checkpointing system can conduct program transformations to enable checkponting, the

compiler must first analyze the user code both inside and outside of the checkpointing region. This

analysis collects program information, understands program structure, makes plans and decisions on

code transformation, and guides the remaining transformation process. Thus on the highest level, we

separate the process to enable checkpointing into roughly two steps: (i) checkpointing analysis and (ii)

checkpointing transformation.

3.3.1 Identifying Checkpointing Regions

Users of the checkpointing system only need to identify the checkpointing region boundaries, and the

rest of the checkpoint-enabling process is fully automatedby our compiler. A programmer can insert a

pair of special function callsites to identify the checkpointing region:start ckpt() to mark the begin

of the checkpoint region, andstop ckpt(bool cond code) to mark the end of the checkpoint region,

respectively. The checkpointing region can be arbitrarilylarge and may contain complex program

constructs, including pointers, function callsites, loops, recursions, etc.

We establish the following two requirements for the placement of checkpoint region markers:
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1. start ckpt mustdominatestop ckpt;

2. start ckpt andstop ckpt must be on the same lexical scope.

These two dominating requirements guarantee that a program’s control flow will reach the end of

the checkpoint region after visiting the begin of the checkpointing region if the control flow doesn’t

prematurely terminate within the checkpointing region. These two dominating requirements also imply

that both thestart ckpt and thestop ckpt markers are within the same function.1

Note thatstop ckpt takes a boolean argument (cond code), which instructs the checkpointing

system to further conduct a checkpointabort or commitoperation. If a boolean valuetrue is provided,

the checkpointing system will commit the current checkpoint. Otherwise, if a boolean valuefalse

is provided, the checkpointing system will abort the current checkpoint and rewind execution back

to the checkpoint-begin location. We use this method to allow a programmer to communicate with

the checkpointing system and to control the post-checkpointing action through an argument over the

published checkpointing API once execution reaches the endof checkpoint region. We give the complete

checkpointing API in appendix A.

A run-away checkpointis a thread that has started a checkpoint region without ending it. Although

we can dynamically grow the checkpoint buffer in main memory, a run-away checkpoint will likely

completely exhaust available memory and fail due to lack of memory. We thus establish requirements on

(i) pairing the checkpoint-region markers over a dominating relationship and (ii) forcing them to appear

within the same lexical level. These requirements guarantee that the checkpoint-enabled application is

free of run-away checkpoints.

The compiler can potentially provide feedback if a user places thestop ckpt marker at an

inappropriate position (e.g., not on the same lexical levelas thestart ckpt marker). The compiler can

suggest nearby alternative positions that satisfy the marker-replacement requirements, or force to insert a

stop ckpt marker at the correct location if the compiler has high confidence of its action. Alternatively,

if a user’s real intention is to enable run-away checkpointing, the user can pass this requirement through

a compile-time flag so that the compiler will skip the analysis on the placement of thestop ckpt

marker.

We can further instruct the compiler to allow multiplestop ckpt markers. A user can selectively

place more than onestop ckpt marker in multiple program locations (e.g., both paths froma control

1Placing both checkpoint region boundaries inside the same function is a necessary requirement. Otherwise, the compiler
can not guarantee a correct execution order because thestop ckpt can potentially be invoked beforestart ckpt.



CHAPTER 3. ENABLING CHECKPOINTING 25

branch). Our compiler can collect allstop ckpt marker locations and analyze their combined intent:

if it is equivalent to placing a singlestop ckpt marker (e.g., placing twostop ckpt markers on both

paths from a control branch is the same as placing a singlestop ckpt marker on the dominating path of

the control branch) on the same lexical level as thestart ckpt marker, the enable-checkpoint process

will proceed as normal.

There are alternative methods to allow a programmer to identify a specific program region. This

usually includes usingpragma or language-extension primitives. For simplicity we utilize a pair of

special user-space function callsites as region delimiters to avoid modifying the LLVM front-end.

3.3.2 Single-File Applications

A modern software project is normally composed of a large number of files residing in various (often

nested) directories. This is a preferred design for good software engineering practice. However, this

also creates difficulties for our compiler-based checkpointing work. Since the checkpointing framework

needs to process all user-defined callsites within the checkpoint region, it must identify the location

(file name and line number) of potentially each user-defined function. This unnecessarily complicates

the checkpointing analysis with virtually no benefit. We need a simple and effective answer for this

problem.

We propose a solution called Single-File Application (SFA). For each project, aSFAis basically one

giant file that contains full details of all participating files regardless of directory nesting. Since it is the

only file of the project, all user-defined functions will appear inside this file. SFA is a way to ease the

complexity to perform whole-program analysis. SFA saves a significant amount of work that needs to

locate the proper file under nested directory structures, the work that needs to parse the file to identify

a function in need, as well as linking all relevant LLVM IR (inseparated files) to the caller (the file

that defines the checkpointing region). For the vast majority of our test applications, building a SFA

manually for an existing application is a straight-forwardbut labour-intensive process. Some difficulties

arise in dealing withstatic data andstatic functions. Fortunately, we manage to work around them

with some careful manual efforts.

3.3.3 Callsite Analysis

Our compiler needs precise knowledge on all user-defined functions that may be called directly or

indirectly from the checkpointing region. We call the process of discovering all such user-defined

functions callsite analysis. Callsite analysis is an LLVM analysis pass that visits an application’s
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start_ckpt();

…

foo();

…

if (C) bar();

…

…

stop_ckpt(c);

foo(void){ printf(“foo\n”); }

bar(void){ func1();

… if(C1) func2(); …

}

Code to enable 

checkpointing

List of all functions that need 

checkpointing

1. foo();

2. bar();

3. func1();

4. func2();

Figure 3.3: Code sample for callsite analysis

INPUT: CFG of the input program

OUTPUT: listed of functions that need to have CKPT-enabled version

INTERMEDIATE: List of Callsites ListCS (Initialized to NULL)

List of Functions ListF (Initialized to NULL)

BEGIN

// 1. collect All user-defined callsites in CKPT region

foreach CallSite CS within CKPT Region do

if ( ! isDeclaration (CS)) insert (CS, ListCS)

// 2. recursively visit each involved user-defined function:

while (! empty (ListCS) ) do

CS1 = pop (ListCS);  F = getFunction (CS1); insert (F, ListF);  

foreach CallSite CS in F do

if ( !isDeclaration (CS) AND !visited (CS, ListF, ListCS)) 

insert (CS, ListCS)

// 3. result appears in ListF:

END.

Figure 3.4: Algorithm of callsite analysis
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SFA LLVM IR, performing program analysis but doesn’t commitany program transformation. LLVM

maintains the analysis result and will provide it when another analysis or transformation pass requests it

later. The callsite analysis pass visits each node in the application’s partial call graph that originates from

the annotated checkpointing region. It proceeds by recursively identifying all user-defined functions in

this partial call graph and mark them as functions that require the creation of a checkpoint-enabled

version. We give an example of callsite analysis in Figure 3.3 and present its algorithm in Figure 3.4.

Figure 3.3 shows a code sample with user annotations that mark the checkpointing region. The

checkpointing region contains a user-defined callsite (foo) on all paths and a user-defined callsite (bar)

on a conditional path. Function implementations of both thecallsites are available. The callsite analysis

algorithm starts by pushing all user-defined function callsites within the checkpointing region (foo

and bar) onto an empty list (ListCS, Figure 3.4, step 1). WhileListCS is not empty, the algorithm

proceeds by isolating the first callsite from top of the list (CS1 which holdsfoo), and pushing all user-

defined function callsites found inside its implementationback onto the list (ListCS). Each time the

algorithm visits a new callsite, the same callsite is also inserted into a result container (ListF). Before

processing a new callsite, we check the result container to ascertain that it has not yet been processed.

This extra step helps to avoid indirect recursions. Note that in foo, the callsiteprintf is not a user-

defined function because its function implementation is notavailable in the current SFA. Thus,printf

will not be pushed into either list. The algorithm continuesits breadth-first callgraph traversal until there

is no callsite candidate remains (ListCS becomes empty, in Figure 3.4, step 2). When the algorithm

finally converges,ListF contains the result of the callsite analysis—all user-defined functions that will

be called directly or indirectly from the checkpoint regionin the currentSFA. Each function in this result

list (ListF) needs to have a checkpoint-enabled version that will coexist with its original version.

3.4 Checkpointing Transformations

Once callsite analysis completes its work and generates thelist of functions it identified through its

analysis algorithm, the compiler can proceed to enable checkpointing through program transformations.

3.4.1 Intra-procedural Transformations

The compiler converts code inside the user-annotated region to its checkpoint-enabled equivalent version

in three steps. Step-1 is to precede each write with code to backup the write location into a checkpoint

buffer. Figure 3.2 step-1 shows that variablea is modified and thus preceded with abackup operation
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which copies its contents into the checkpoint buffer immediately before the corresponding write. The

backup activities occur inside thebackup(char * addr, int len) function call. Thebackup

interface takes two arguments: achar * addr that indicates the memory address of the memory

contents to be copied, and anint len that shows the length of the to-copy memory contents. The

transformation in step-1 generates abackup call with the proper starting address and precise length to

cover the memory contents that need to be protected through the backup operation. All activities inside

the backup operation are handled within thebackup call. We encapsulate its details inside a run-time

checkpointing support library that we will introduce in chapter 5.

Step-2 is to handle certain system functions that have implicit memory writes. Figure 3.2-(2)

illustrates the handling for one of such routines (memcpy) by placing a special handling function

(handleMemcpy) immediately before it. ThehandleMemcpy understands the expected behaviors of

memcpy and will properly backup memory contents that may be overwritten insidememcpy. There

are a limited number of system functions that need special handling for checkpointing. We provide

an exhaustive list of all supported special system functions and their respective handling routines in

Table 3.1. We further provide details on relevant implementations of all available handling routines in

appendix B.

Step-3 is to rename any user-defined function callsite to itscheckpoint-enabled version inside the

checkpointing region. Figure 3.2-(3−b) shows that a user callsite(foo) is renamed to its checkpoint-

enabled equivalent(foo ckpt) by appending ckpt on its name. All user-defined functions residing

inside the checkpoint region need to rename to their checkpoint-enabled equivalent to comply with

correct checkpointing semantic. However, the same user-defined function may also be called outside

of the checkpointing region. In this case, the original version will remain unchanged. Thus for each

user-defined function that is identified through the callsite-analysis process, we generate a checkpoint-

enabled version that co-exists with its original function.E.g., Figure 3.2-(3−a) shows an automatically

generated function (foo ckpt) that is the checkpoint-enabled version of a user-defined function (foo).

The respective callsite is renamed to its checkpoint-enabled version only inside the checkpointing region

or any other checkpoint-enabled functions.

Note that the actions conducted inside intra-procedural transformations deal with only the code

within the user-annotated checkpoinitng region. We introduce a separate transformation process—inter-

procedural transformations, to generate the checkpoint-enabled version for any user-defined functions

that may be called directly or indirectly from the checkpointing region (the user-defined function list

identified by the callsite-analysis phase).
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start_ckpt();

…

foo_ckpt();

…

if (C) bar_ckpt();

…

…

stop_ckpt(c);

foo(void){ printf(“foo\n”); }

bar(void){ func1();

… if(C1) func2(); …}

func1 (void){… }

func2 (void){… }

(a) Code region with 

checkpointing enabled

(b) List of all generated 

functions during checkpointing

foo_ckpt(void){ printf(“foo\n”); }

bar_ckpt(void){ func1_ckpt();

… if(C1) func2_ckpt(); …

}

func1_ckpt(void){… }

func2_ckpt(void){… }

Figure 3.5: Sample code with checkpointing enabled

3.4.2 Inter-procedural Transformations

The final step is to enable checkpointing on all user-defined routines that may be called directly or

indirectly from the checkpointing region. Recall these routines are identified through thecallsite-

analysisphase. Each callsite to this list of functions inside the checkpoint region has been renamed

to its checkpoint-enabled version. For each function in this identified function list, we clone its function

body and rename it by appendingckpt to its original name, as shown in Figure 3.2-(3). Inside the

body of the cloned function, we recursively and repetitively apply the same three principles introduced

in section 3.4.1: (i) precede each store with abackup operation, (ii) handle special system functions

that have implicit memory writes by inserting a special handling routine, and (iii) handle user-defined

function callsites through renaming. With some careful software engineering practice, we can reuse

most of the code developed for section 3.4.1. When the process completes, we produce a checkpoint-

enabled version for every user-defined function that can potentially be called from the checkpointing

region.

Figure 3.5 presents the checkpointing-enabled sample codewhose original version is given in

Figure 3.3. As shown in Figure 3.5-(a), the transformation has renamed all user-defined function

callsites within the checkpointing region:foo becomesfoo ckpt, andbar becomesbar ckpt. The

checkpointing code region is relatively simple and the other two types of enabling transformations (han-

dling special system functions and generate abackup call per store) are not applicable. Callsite-analysis

process identifies a total of four functions that need to generate their respective checkpoint-enabled
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FP fp;  // func ptr decl

…

if (C) fp = &foo;

else fp = &bar;…

…

start_ckpt();

…

*fp(); // funcptr call

…

stop_ckpt(c);

(a) BEFORE (b) AFTER

FP fp; // func ptr decl

…

if (C) fp = &foo;

else fp = &bar;…

…

start_ckpt();

…

fp_wrapper(fp); //non-fpr call

…

stop_ckpt(c);

…

fp_wrapper(FP fp){

if(fp == foo) foo();

else if (fp == bar) bar(); 

else …

}

Figure 3.6: Function pointer callsite

versions. These functions are:foo, bar, func1 and func2. As a result of the inter-procedural

transformation, in Figure 3.5-(b) we present their corresponding checkponit-enabled versions. These

newly generated functions arefoo ckpt, bar ckpt, func1 ckpt, and func2 ckpt. The list of

functions is generated through the callsite-analysis process given in Figure 3.3. These checkpoint-

enabled functions are thus generated according to the established rules presented in section 3.4.2.

Notice that in the checkpointing-enabled code, both the original functions and their checkpoint-enabled

versions coexist. This will unavoidably increase the code size. However, since we limit these functions

to those that are identified through the callsite-analysis process, only a small fraction of all user-defined

functions are applicable for the transformation.

3.4.3 Handling Special Cases

In addition to the analysis and transformations presented earlier in this chapter, there are special

conditions that may prevent our compiler-based checkpointing from completing its tasks. These special

conditions need special treatments to work around them. We have thus identified two special cases:

function pointer callsite and premature return.

3.4.3.1 Function Pointer Callsite

Special cases exist during the checkpoint-enable process.Since our checkpointing scheme proceeds

with cloning user-defined functions, the compiler needs to identify the precise callee function for each
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foo(…){

...

start_ckpt();

…

return k;

…

stop_ckpt(c);

…

}

(a) BEFORE (b) AFTER

foo(…){

int flag, T0;

...

start_ckpt();

…

flag = 1; T0 = k; 

goto L0;

…

L0:

stop_ckpt(c);

if(flag) { return T0;}

…

}

Figure 3.7: Premature return from checkpointing region

Index System Function Checkpont Support Function

1 memcpy(i8*, i8*, i32) handleMemcpy(i8*, i8*, i32)

2 memmove(i8*, i8*, i32) handleMemmove(i8*, i8*, i32)

3 memset(i8*, i32, i32) handleMemset(i8*, i32, i32)

4 strcpy(i8*, i8*) handleStrcpy(i8*, i8*)

5 strcat(i8*, i8*) handleStrcat(i8*, i8*)

6 strncpy(i8*, i8*, i32) handleStrncpy(i8*, i8*, i32)

7 strncat(i8*, i8*, i32) handleStrncat(i8*, i8*, i32)

8 sprintf(i8*, i8*, va arg) handleSprintf(i8*, i8*, vaarg)

9 vsprintf(i8*, i8*, va arg) handleVsprintf(i8*, i8*, vaarg)

10 snprintf(i8*, i8*, va arg) handleSnprintf(i8*, i8*,vaarg)

Table 3.1: Supported System Functions
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involved user callsite at compile time. Calls through function pointers won’t satisfy this requirement

because the precise callee function is only resolved at runtime. We give an example of call-through-

function-pointer callsite in Figure 3.6-(a).

We handle this function pointer callsite ambiguity by changing from a function pointer callsite to

a normal function callsite with the function pointer wrapped as an argument. If there are arguments

from the original function pointer callsite, they will be passed as additional arguments on the wrapper

function. Within the wrapper function, each possible callee (any function that has its address taken

within the entire SFA) is explicitly examined through a listof parameter-match candidates. As shown

in Figure 3.6-(b), we change from the original function pointer callsite (*fp) into a normal function

wrapper callsite (fp wrapper(fp)), with the function pointer wrapped as an argument on the wrapper

function. Inside the wrapper function, we exhaustively examine all functions that have their addresses

taken across the entire program. E.g., both functionfoo and functionbar have their addresses taken

within the currentSFA. We thus explicitly examine both of their addresses inside the wrapper function,

trying to match the precise function callsite. Once we identify a match, we will make a normal function

call to this matched function (implementation of wrapper functionfp wrapper()). This may seem to

be overwhelming in the beginning. But in practice, we find it reasonably easy and straight-forward to

implement. In addition, the number of all functions that have their addresses taken is relatively small in

our testing applications.

3.4.3.2 Premature Optional Return

An other special case deals with early exits from the checkpointing region, as shown in Figure 3.7-(a).

A return statement within the checkpoint region may prematurely terminate the program’s execution

without visiting thestop ckpt marker. Visiting thestop ckpt marker is essential to complete the

current checkpointing processing, thus an optional premature return violates the rule that the checkpoint

region markers must be visited in pairs and will put the current checkpointing process in an unknown or

inconsistent state.

Figure 3.7-(b) suggests a possible solution. It reserves the appropriate return value (in variable

T0) and transforms the code with a mandatorygoto statement and thus forces execution to branch to

thestop ckpt marker. We further introduce a boolean variable (flag) that controls the return value,

in preparation for the originalreturn statement that may optionally returns a value. Note that both

special-handling cases are rare in our test applications. We thus only conduct the necessary changes

through manual steps rather than building compiler passes to automate the special-case handling.
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3.5 Summary

In this chapter, we introduce the detailed steps to enable checkpointing for any user-annotated

program region. A user only needs to mark the region’s boundaries and our compiler automatically

completes the rest of the checkpointing-enablement process. Compiler analysis examines the marked

checkpointing region to discover all user-defined functions that may be called directly or indirectly from

the checkpointing region. Compiler transformations proceed to generate abackup call immediately

preceding each individual memory store, as well as renaminguser-defined function callsites and

handling special library functions. The same principles apply to both the checkpointing region and

all participating functions that need to have their checkpoint-enabled versions. We will provide results

of program partition and checkpointing region formation inchapter 7.

This process enables fine-grain software-only checkpointing on a per-store granularity. It supports

arbitrarily large checkpointing regions because we bufferprogram states in main memory and can

dynamically increase this buffer when necessary. It is a compiler-driven automatic process that frees

users from the tedious and error-prone details of conducting manual checkpointing. However, it is also a

user-level process that can only checkpoint code that is available to the compiler. Default checkpointing

overhead is relative to the intensity of memory stores in thecheckpoint-enabled program region. Thus

a checkpoint-enabled program will often have ample opportunities for compiler optimizations, and we

will discus these optimization details in chapter 4.



Chapter 4

Optimizing Checkpointing

The basic transformations described in the previous chapter enable checkpointing on any user-annotated

program region by backing up memory contents before each explicit or implicit write, handling

certain system functions, and dealing with all user-definedfunction callsites that are called directly

or indirectly within the checkpointing region. This process creates a large number ofbackup calls

that are potentially redundant or unnecessary, and leaves ample opportunities for program optimizations

to reduce checkpointing overhead. In this chapter, we will describe checkpointing-specific compiler

optimizations that are organized as a checkpointing optimization framework.

4.1 Checkpointing Optimization Framework

We present a detailed overview of the compiler checkpointing optimization framework in Fig-

ure 4.1. The framework takes as input checkpointing-enabled LLVM IR, performs checkpointing-

specific analyses and optimizations, and produces checkpointing-optimizedLLVM IR that can further

target multiple backend platforms. Each individual optimization is a standalone LLVM pass. All

available optimizations operate in a pipeline fashion where the output of an immediately previous

optimization becomes input for the current optimization. The framework includes numerous analysis

passes and a total of 12 different optimizations organized as ordered LLVM passes respecting their

explicit or implicit dependency. In the rest of this chapter, we introduce them in the order of importance.

Note that LLVM supports a large number of native backend platforms including x86, x64, ARM,

SPARC, PowerPC, and more. LLVM’s code generator is able to emit production-quality binary code

on x86, x64 and ARM platforms. In addition, LLVM providesC andC++ backends that allows the

conversion of optimizedLLVM IR back to low-levelC or C++ source code, while respecting the language

34
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Annotated

source 

Enable 

Checkpointing
Optimize Checkpointing

2. Pre Optimize

3. Redundancy Eliminations

4. Hoisting

6. Non Rollback Exposed Store Elimination

Source 

code

C/C++ LLVM IR

1. CKPT Inlining

7. Heap Optimize

8. Array Optimize

9. Post Optimize

5. Aggregation

LLVM 

Backend

x86 … Power

Figure 4.1: Overview of checkpointing optimization framework

syntax and semantics—improving code portability, providing an alternative path for verification, and

helping to capitalize on any available native backend compilers.

4.2 Redundancy Eliminations

As we demonstrate later in Chapter 7, the most important optimizations are three cases of redundancy

elimination that try to discover, isolate, and eliminate different types of redundancies amongbackup

operations within the checkpoint-enabled region or checkpoint-enabled user functions. In this section,

we introduce three forms of redundancy elimination: regional redundancy elimination (RRE), function-

private redundancy elimination (FPRE), and hoistable redundancy elimination (HRE).

4.2.1 Regional Redundancy Elimination (RRE)

Figure 4.2 shows the detailed steps for performing regionalredundancy elimination (RRE) analysis and

transformations, and we give its compiler algorithm in Figure 4.3.

RRE usesdominating relationships amongbackup calls and the transformations are organized

into four consecutive steps. Step one (Figure 4.2(a)) is to recognize allbackup operations within the

checkpoint-enabled region or function that are suitable for RRE-type of redundancy elimination. In the

given code sample,RRE identifies three suitablebackup calls because they all operate on the same

address (&a: address of variablea) with the same length (sizeof(a): size of variablea in memory).

Since they all arebackup functions operating on the same address and length, we give each a numerical
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(a) step 1 (b) step 2 (c) step 3-4

Figure 4.2: Regional Redundancy Elimination (RRE) optimization

ID (from 1 to 3) to better identify and differentiate among them, and will use their numerical ID to

precisely identify individualbackup calls throughout this section.RREthen establishesdominating

relationships between each individualbackup operation and thestop ckpt region marker. As shown

in Figure 4.2(a), bothbackup (2) andbackup (3) dominate thestop ckpt region marker, butbackup

(1) doesn’t.

Step two is to recognize aleading backup call and attempt to hoist it to a position as early as

possible within the region. This hoisting step needs to respect all checkpointing semantics and language

syntax. In step one, we have identified that both(2) and (3) dominate the region-end marker, thus

they form a chain of backup operations. Since(2) is the first call in this chain, we name it theleading

backup call (a.k.a, theleader). If the leader has no further dependency or limitation, we hoist it to a

location immediately after the start-region marker—the earliest position within a checkpoint-enabled

region that a compiler optimization can potentially promote an individualbackup operation to. As

shown in Figure 4.2(b),(2) is hoisted to be positioned right-after thestart ckpt marker. Due to

various constraints, an attempt to hoist aleaderto the earliest position within the checkpointing region

may not always be successful—e.g., if a variable is defined within a checkpointing region, its earliest

hoistable target location will not be able to cross its definition position.

Step three is to re-establishdominatingrelationships among relevantbackup calls after hoisting the

leader. For allbackup calls that operate on the same address and length (on thebackup call chain), we

re-establish a pair-wisedominatingrelationship between theleaderand the rest of the relevantbackup

call(s). Figure 4.2(b) shows that afterleaderpromotion,(2) (the leader) dominates both(1) and(3).
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INPUT: CFG of the CKPT Region or Function

OUTPUT: RRE optimized CFG

Intermediate: Leading Backup CallSet: LS =  ; Promoted CallSet: PS =  ;

BEGIN

// 1. identify leading backup calls on the same address:

group backup calls according to their backup address and length

foreach backup call bkp in group g within region do

if (bkp dominate stop_ckpt) insert (bkp, LS)

// 2. promote leading backup calls:

foreach backup call bkp  LS do

if (def(bkp) ! region ) AND (bkp ! PS) insert (bkp, PS)

// 3. re-build dominators, and eliminate non-leading backup calls:

foreach unique backup call bkp1  (PS or LS) do

foreach backup call bkp2  region do

if ( (bkp1 dominate bkp2) AND (bkp1 " bkp2) )

remove (bkp2)

END.

Figure 4.3: Regional Redundancy Elimination (RRE) algorithm

Step four (the final step) is to keep theleaderand eliminate all non-leadingbackup call(s) on the

call chain that theleaderdominates within the checkpointing region. Figure 4.2(c) shows that both(1)

and(3) are non-leadingbackup calls and dominated by(2) (the leader) on the same call chain, thus

RREeliminates both(1) and(3).

We presentRRE’s compiler algorithm in Figure 4.3, which closely resembles the four transformation

steps we have introduced. We partition the algorithm into three sections: (i) analyze code and establish

dominating relationships with respect to thestop ckptmarker, (ii) identify and promote aleaderwithin

eachbackup call chain, and (iii) re-establish dominating relationship amongbackup calls inside the

same call chain, keep theleader and eliminate all non-leadingbackup calls. Notice the seemingly

optional leader-promotion step: the transformations willstill be correct withoutleader promotion,

however this missing step will cause the algorithm to cover much fewer applicable cases. Without

the critical leader-promotion step, thebackup call in (1) will not be eliminated in Figure 4.2 because

the leader-dominatedbackup call chain will instead only include(2) and(3). Promoting the identified

leaderenables the algorithm to eliminateall relevantbackup call(s) available in the same call chain,

regardless of its relative position.

4.2.2 Function-Private Redundancy Elimination (FPRE)

Function-Private Redundancy Elimination (FPRE) identifies allbackup calls operating on functions’

non-pointer type local variables (user data that is allocated on a function’s stack storage) and eliminates
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start_ckpt();

…

foo_ckpt();

…

stop_ckpt(c);

foo_ckpt(void){

int a;

…

bkp_memory(&a, sizeof(a));

a = …;

…

}

(a) BEFORE (b) AFTER

start_ckpt();

…

foo_ckpt();

…

stop_ckpt(c);

foo_ckpt(void){

int a;

…

bkp_memory(&a, sizeof(a));

a = …;

…

}

Figure 4.4: Function-Private Redundancy Elimination (FPRE) transformation

INPUT: CFG of a CKPT Function

OUTPUT: FPRE optimized CFG

INTERMEDIATE:

BEGIN

//  identify and remove backup on local variables

foreach backup call bkp within a ckpt-enabled function do

v = bkp_addr (bkp);

if ( isLocalAddr (v) ) remove (bkp)

END.

Figure 4.5: Function-Private Redundancy Elimination (FPRE) algorithm
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backup(&a, sizeof(a));

a= …; …

…

backup(&a, sizeof(a));

a= …; …

…

(a) BEFORE

(b) AFTER

backup(&a, sizeof(a));

a= …;

…

…

backup(&a, sizeof(a));

a= …;

…

backup(&a, sizeof(a));

…

Figure 4.6: Hoistable Redundancy Elimination (HRE) transformation

suchbackup calls. Since any stack-allocated local variables have no memory footprint outside of the

function’s calling context (when the function is not being called), it is safe to removebackup calls

operating on local variables in a checkpoint-enabled function without impacting the correctness of

checkpointing. Figure 4.4(b) shows that thebackup call operating on local variablea is eliminated.

FPRE’s compiler algorithm is relatively straightforward and wepresent it in Figure 4.5. Different from

RREthat covers both checkpointing-enabled functions and regions, the applicable domain ofFPREis

limited to checkpointing-enabled functions only.

4.2.3 Hoistable Redundancy Elimination (HRE)

Hoistable Redundancy Elimination (HRE) conducts transformations similar to a normal compiler

optimization on common sub-expression elimination (CSE) by searching for duplicatedbackup

operations in both control paths diverged from a branch (shown in Figure 4.6). Once it finds a pair

of matching (duplicated)backup calls that operate on exactly the same address and length, itwill hoist

one of thebackup calls into the immediate common dominator block for both paths, and remove the

other one from its original location.

Figure 4.6 shows thatHRE identifies abackup call on both control-flow paths from a direct

dominator block. This is a suitable case forHRE, and thus the optimization consolidates them into

a singlebackup operation and place it into the common dominating block thatcovers both paths.

We present HRE’s algorithm in Figure 4.7. For ease of implementation, we group allbackup calls
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INPUT: CFG of the CKPT Region or Function

OUTPUT: HRE optimized CFG

BEGIN

// 0. identify identical backup calls:

group backup calls according to their backup address and length

// 1. identify to-promote backup call pairs inside each group:

foreach backup call bkp1 in group g within region r do

foreach backup call bkp2 in group g within region r do

if ( (bkp1  bkp2) and (bkp1 !dom bkp2) and (bkp2 !dom bkp1)

and (i_dom (bkp1)   i_dom (bkp2))  

and (num_dom (i_dom (bkp1))   2) )

// 2. promote backup calls:

rep_bkp = replicate (bkp1) ;  i_dom_bb = i_dom (bkp1)   

insert (rep_bkp, i_dom_bb)

// 3. remove both of original backup calls:

remove (bkp1)

remove (bkp2)

END.

Figure 4.7: Hoistable Redundancy Elimination (HRE) algorithm

within the checkpointing region or function according to their target backup address and length (step-0).

We then proceed with a doubly nested loop that visits each possible combinations ofbackup call pairs

that every group may have (step-1). For this potentialbackup-backup call combination, the algorithm

checks for the following conditions. First, they cannot dominate each other. This guarantees that they

reside in different basic blocks on the divergence paths originated from the same branch. Second, they

must share the same immediate (common) dominator. This eliminates all possiblebackup pairs that are

far apart in distance (further down in the control-flow graph, not sharing the same immediate dominator).

And third, the common immediate dominator can only have two immediate children. This limits the

search paths to only two immediate basic block successors from the branch1. When all the conditions

hold, we create a replica of the identifiedbackup call and insert it into the common dominator block

(step-2) and remove both participatingbackup calls from their original locations (step-3).

4.3 Hoisting

Checkpointing hoisting optimization (hoisting) aims to harness optimization opportunities inside loops,

with a focus on thosebackup calls that can potentially be moved into a loop’s preheader.We give a

hoisting example in Figure 4.8. Ahoistingoptimization attempts to promotebackup operations written

unconditionally within a loop (variablez in Figure 4.8) to the outside of that loop (by default the loop’s

1The algorithm will ignore code that contains multi-way branches generated from the lowering of aswitch-case
statement—this is the root cause of some performance degradation that we encountered in development.
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foo(){

int x, y, z;

start_ckpt();

…

for(…){

…

backup(&z, sizeof(z));

z = …; … 

if(…) { 

backup(&y, sizeof(y));

y = …;

}

…

} …

stop_ckpt(c);  

…

}// end of foo()

(a) BEFORE (b) AFTER

foo(){

int x, y, z;

start_ckpt();

…

backup(&z, sizeof(z));

for(…){

…

z = …; …

if(…) { 

backup(&y, sizeof(y));

y = …;

}

…

} …

stop_ckpt(c); 

…

}//end of foo()

Figure 4.8: Hoisting optimization transformation

INPUT: CFG of the CKPT Region or Function

OUTPUT: CKPT Hoist Optimized CFG

IMMEDIATE: Set of Loop Exit Basic Blocks: ES =  ; Preheader Block of a Loop: P = ;

BEGIN

// 0. initialize temp data:

ES =  , P =  ;

// 1. identify potential hoist-able backup calls

foreach backup call bkp within a loop L (use depth-1st traversal) do

ES = getExitBlocks (L);

P = getPreHeader (L);

if ( isLoopInvAddr (bkp) and (bkp dominate ES) )

// 2. insert a copy of the backup call into the loop’s preheader:

rep_bkp = replicate (bkp);

insert (rep_bkp, P);

// 3. remove the original backup call: bkp

remove (bkp);

END.

Figure 4.9: Hoisting optimization algorithm
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preheader). Thus for all unconditionally-hoisted backup operations, this optimization ideally brings the

benefit ofN-to-1 reduction on checkpointing overhead whereN is the loop’s trip count. Such hoisting

would not be performed by a normal compiler hoisting pass (e.g., loop-invariant code motion—LICM)

since the write to the variable is not necessarily loop invariant.

The decision on hoisting conditionally modifiedbackup calls remains interesting because we

encounter cases that produce results on both sides of the performance impact. Due to the difficulty

in precisely predicting branch behaviors statically at compile time, it is hard to generalize such cases

and abstract them into an algorithm that leads to solid performance benefits. After conducting intensive

empirical experiments, we decide not to hoist variabley in the given example because hoisting such

cases often results in more overhead than benefit.2 We qualify this condition as hoistingonly backup

calls that dominateall of the loop’s exits.

We present thehoistingalgorithm in Figure 4.9 that focuses only on handling unconditional backup

operations inside a loop. The algorithm starts by examiningeachbackup calls inside a loop following

a depth-first traversal order (step-1). For anybackup call inside the loop, the algorithm identifies the

loop’s preheader and collects all of the loop’s exits. It then proceeds by examining the address that

the backup call performs checkpointing on. If the backup address is loop invariant and thebackup

call dominatesall of the loop’s exits, it hoists thisbackup call into the loop’s preheader by making a

replication of thebackup call and inserting it into the loop’s preheader (step-2), and then removing the

original backup callsite (step-3) from inside the loop.

Thehoistingoptimization focuses on promotingbackup calls that operate onloop-invariant(loop-

inv) addresses into the loop’s preheader. Aloop-invariant address denotes an object whose address

doesn’t change within different iterations of a loop. This implies that all items that participate in the

address-generation calculation are either a constant or defined outside of the loop and not being redefined

within the loop.3 For eachbackup operation inside a loop, the algorithm in Figure 4.9 checks whether

(i) thebackup address is loop invariant, and (ii) thebackup calls dominatesall exits of the said loop. If

both conditions hold, the hoisting algorithm proceeds to move thebackup call into the loop’s preheader.
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foo(){

int x, y, z;

start_ckpt();

…

backup(&x, sizeof(x));

backup(&y, sizeof(y));

…

x = …;

y = …;

stop_ckpt(c); 

…

}

(a) BEFORE (b) AFTER

foo(){

int x, y, z;

start_ckpt();

…

backup(&x, sizeof(x)+sizeof(y));

backup(&y, sizeof(y));

…

x = …;

y = …;

stop_ckpt(c); 

…

}

Figure 4.10: Simple aggregation transformation

INPUT: CFG of the CKPT Region or Function

OUTPUT: CKPT Simple Aggregation optimized CFG

INTERMEDIATE:

BEGIN

// 1. identify each pair of backup calls within a basicblock:

foreach backup call bkp1 in basicblock bb do

foreach backup call bkp2 in basicblock bb do

// 2. check conditions for simple aggregation:

if ( ( bkp1  bkp2) and (isSimplyAdjacent (bkp1, bkp2) ) )

// 3. aggregate bkp1 and bkp2 into bkp_aggr:

aggregate (bkp1, bkp2, bkp_aggr)

END.

Figure 4.11: Simple aggregation algorithm
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4.4 Aggregation

Theaggregationoptimization examinesbackup operations for variables whose addresses are adjacent

in memory, and consolidates multiplebackup operations over adjacent memory addresses into a single

one that covers the entire memory range. An advanced versionof aggregation can even potentially

rearrange the layout of the variables to ensure that they areadjacent.

4.4.1 Basic Aggregation

Figure 4.10 shows that two individualbackup operations (on variablex and variabley) have adjacent

memory addresses through variable declaration and thus canbe merged into a singlebackup operation,

covering the entire memory range for both variables.4 After the basic-aggregation transformation (in

Figure 4.10-(b)), we notice that only onebackup call remains, and thisbackup operation covers the

memory range of both original participating variablex and variabley. Different architectures may allow

the stack to grow in opposite directions. The simple-aggregation optimization is capable of performing

some simple tests that identify the participating variablewith low memory address. In Figure 4.10, the

compiler recognizes that variablex is the one that has lower starting address on stack, and uses it as the

starting address for the fusedbackup operation.

Simple aggregation optimization relies on the fact that thememory layout for both participating

variables be adjacent. We call thisbasic aggregationoptimization. Figure 4.11 presents its algorithm

that attempts to aggregate twobackup calls from each basic block that resides in a checkpoint-enabled

region or a checkpoint-enabled function. Within the basic block, the algorithm compares each possible

pair of addresses thatbackup calls operate on. Once it finds that there are two addresses that are adjacent

in their memory layout, the basic aggregation proceeds by fusing the two participatingbackup calls into

a single one that covers the entire memory range.

Basic Aggregationlimits its search to only stack-allocatedbackup addresses whose layouts are

already adjacent in memory (by default, through the variables’ declaration order). It will not perform

declaration reordering to harness more opportunities at this stage. We will soon introduce a more

powerful and capable revision of the aggregation optimization that can do declaration reordering to

reach more potential aggregation opportunities. Note thatglobal variables may have different available

2Consider a branch that resides inside a loop, if this branch is never taken, hoisting abackup call inside this branch
effectively introduces only checkpointing overhead. Multiple levels of loop nesting often exacerbates the situation.

3All loop-invariant code by default operates on loop-invariant addresses.
4Note that for a source-to-source transformation this is notnecessarily a safe optimization as the back-end compiler may

further rearrange the variable layout—an implementation in a single unified compiler would not have this problem.
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foo(){

int x, y, z;

start_ckpt();

…

backup(&x, sizeof(x));

backup(&z, sizeof(z));

…

x = …;

z = …;

q = …;

stop_ckpt(c); 

…

}

(a) BEFORE (b) AFTER

foo(){

int x, z, y; // reordered

start_ckpt();

…

backup(&x, sizeof(x) + sizeof(z) );

backup(&z, sizeof(z));

…

x = …;

z = …;

q = …;

stop_ckpt(c); 

…

}

Figure 4.12: Advanced aggregation transformation

life spans and seemingly adjacent global variables may not co-exist at runtime. We thus exclude global

variables from the candidates for aggregation optimizations and instead focus entirely on stack-allocated

local variables.

4.4.2 Advanced Aggregation

Comparing withbasic aggregation, a more complex form of aggregation optimization changes the order

of variable declaration orders to make otherwise non-adjacent variables adjacent in the memory address

layout. We present its transformation in Figure 4.12 and call this complex form of aggregationadvanced

aggregation. Figure 4.12 shows that two individualbackup addresses (on variablex and variablez) can

be merged into one adjacent address range, covering both participating variables (x andz). Note that

in the original variables’ declaration order,x andz are not adjacent (there is a variabley in between).

Advanced aggregation optimization understands the memorylayout order on stack, and rearranges the

order (from:x, y, z to: x, z, y), such that the participating variables (x and z) occupy a range

of adjacent memory address space after the declaration reordering.

In Figure 4.13, we provide an algorithm to conductadvanced aggregationanalysis and transforma-

tion. It begins by collecting all stack-based addresses of participatingbackup operations on basic-block

granularity (step 1). It then builds an internal stack modelto examine the possibilities of making two

stack addresses adjacent by changing the order of variable declarations (step 2 and step 3). If there are

more than two participating addresses, the algorithm repeats itself based on its previous discovery and
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INPUT: CFG of the CKPT Region or Function

OUTPUT: CKPT Advanced Aggregation optimized CFG

BEGIN

// 1. identify ALL backup addresses within a basicblock:

foreach backup call bkp within basicblock bb do

addr = getAddr(bkp); collect (addr);

// 2. evaluate all possible variable ordering on stack:

foreach bkp address order o1 do

benefit b1 = evaluate (o1);

save (pair<b1, o1>)

// 3. sort according to benefits and pick the highest benefit:

sort (collection<benefit, order>, DECR);

pair<b, o> = select (collection<benefit, order>, MAXIMUM);

// 4. perform aggregation:

if ( b  0)

select (bkp1, o); select (bkp2, o);

aggregate (bkp1, bkp2, bkp_aggr);

END.

Figure 4.13: Advanced aggregation algorithm

attempts to generate an adjacent order that covers as many participating addresses as possible. Note that

in this case, the algorithm may produce multiple optimal solutions. (E.g., in Figure 4.12, the declaration

order ofx, z, y; z, x, y; y, z, x; and y, x, z; are all equally good, provided variablesx

and z are adjacent.) Finally, the advanced aggregation algorithm exhaustively evaluates each possible

combination of variable declaration order, saves a cost-benefit pair for each order it evaluates, and selects

the order that yields the highest benefit to conduct aggregation transformations. In case of ties, it selects

the first saved order within all candidates that have the tie (step 4).

Aggregation reduces checkpoint buffer-management overhead by combining two or more adjacent

backup operations into a single one, potentially reorder declarations to make them adjacent. From

the perspective of checkpointing’s buffer management, it consolidates multiple meta-data management

records into a single record—a scheme that reduces both meta-data size and the number of meta-data

records. However, there are no savings in the checkpointing’s data buffer. Memory contents from

multiple participatingbackup operations will be copied into the data buffer regardless ofaggregation.

As a result, this optimization can be treated as optimizing for meta-data efficiency. Due to possibility of

different life-time span on global variables, we limit the candidates of aggregation optimization only to

data allocated on stack and thus exclude all global variables from aggregation optimization.
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int a;

…

start_ckpt();

…

/* no use of a on any path

from start_ckpt() */   

backup(&a, sizeof(a));

a = …;

…

…

stop_ckpt(c);

(a) BEFORE (b) AFTER

int a;

…

start_ckpt();

…

/* no use of a on any path

from start_ckpt() */   

backup(&a, sizeof(a));

a = …;

…

…

stop_ckpt(c);

Figure 4.14: NRESE transformation

INPUT: CFG of the CKPT Region or Function

OUTPUT: NRESE optimized CFG

Intermediate: AliasSet AS =  ; cond1= false, cond2 = true

BEGIN

// 1. analyze each possible backup call:

foreach backup call bkp within CKPT region or CKPT Function do

cond1= false, cond2 = true;

// 2. analyze backup address alias:

addr = getAddr (bkp);

AS = getAliasSet (addr);

if (AS ==  ) cond1 = true;

// 3. check for read access on any path through linear scan:

foreach instruction ins between start_ckpt and bkp do

foreach operand op in instruction ins do      

if ( use(op, addr ) ) cond2 = false;

// 4. operate on NRESE:

if ( cond1 && cond2 )  remove (bkp);

END.

Figure 4.15: NRESE algorithm
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4.5 Non-Rollback-Exposed Store Elimination (NRESE)

Given any variable that is being written inside a checkpointing region, if alongany path from the

beginning of the region, there isno read from the variable and its address doesn’t alias to anything

(a.k.a. empty points-to set), an optimization can remove the respectivebackup operation on this

variable without impacting checkpointing correctness. Wecall this optimizationnon-rollback-exposed

store elimination(NRESE). To the best of our knowledge, this optimization has never been presented

or explored previously in related contexts. Figure 4.14 presents an example ofNRESEprogram

transformation and we give its corresponding compiler algorithm in Figure 4.15.

Notice that thebackup operation on variablea can be safely removed throughNRESE, since there

is no direct or aliased read from variablea along any path from the beginning of the checkpoint region

to the respective store. For any checkpoint that commits successfully, whether we remove thebackup

operation on variablea is irrelevant. For any checkpoint that is aborted, the valueof variablea is

recomputed each time after abort and this re-computation isessentially independent of the current value

of variablea (since there is no use of variablea on any path from the start of the region, the current

value of variablea has no impact on generating its new value). As a result, thebackup operation on

variablea is not necessary and eliminating thisbackup operation has no impact on the correctness of

the program’s checkpointing behavior.

As shown in Figure 4.15,NRESE’s algorithm starts by examining each⁀backup operation in the given

checkpointing region or checkpointing-enabled function (step 1). It then leverages existing pointer alias

analysis framework that the LLVM compiler infrastructure provides and verifies that the address of

the currentbackup operation is not aliased to anything (points-to set is empty) (step 2). It further

examines each instruction between the start of the checkpoint region (start ckpt) and the respective

store instruction (on variablea) to ensure that there is noread accesson the address of variablea 5

(step 3). If both conditions hold, the algorithm proceeds toremove the correspondingbackup operation

(step 4).

4.6 Dynamic Memory (DynMem) Optimization

Opportunities exist for anybackup call that operates on dynamically allocated memory (heap).If the

heap allocation is within the checkpointing region, thebackup call operates on this allocated heap, and

5Since the generatedbackup calls are not part of the original code, the examining process refrains from checking the
backup operation’s function callsite, or any part of its internal implementations.
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start_ckpt();

{

…

int * p = (int *) malloc(…);

…

backup(&p[i], sizeof(p[i]));

p[i] = …;

…

}

…

stop_ckpt(c);

(a) BEFORE (b) AFTER

start_ckpt();

{

…

int * p = (int *) malloc(…);

…

backup(&p[i], sizeof(p[i]));

p[i] = …;

…

}

…

stop_ckpt(c);

Figure 4.16: DynMem optimization transformation

INPUT: CFG of the CKPT Region or Function

OUTPUT: DynMem (Heap) optimized CFG

BEGIN

// 1. perform reaching definition analysis for each dynamic-memory 

//     allocation site in the CKPT region or function:

foreach CKPT region r or CKPT-enabled Function f do

dyn_allocs = collect (malloc, calloc, realloc, free, r/f);

foreach dyn_alloc in dyn_allocs do

DataFlowAnalysis (Reaching_Definition, dyn_alloc, r/f);

// 2. analyze backup address alias:

foreach backup call bkp within a  CKPT region r or a CKPT Function f do

foreach each dynamic allocation site dyn_alloc do

addr = getAddr (bkp)

if ( isDynMem (addr) and reach (dyn_alloc, bkp, r/f) and

dominate(dyn_alloc, bkp)) then

remove (bkp)

END.

Figure 4.17: DynMem optimization algorithm



CHAPTER 4. OPTIMIZING CHECKPOINTING 50

the heap allocation reaches and dominates thebackup operation, then thebackup call operating on the

heap-allocated memory can be safely eliminated.

Figure 4.16 demonstrates the process of removing abackup operation on heap-allocated array

variable p. Because the heap allocation happens within the checkpointregion, the heap-allocated

contents have no memory footprint before the checkpoint starts. Since there is no need to checkpoint

memory contents that are irrelevant (or invisible) with respect to the checkpointing process, it is always

safe to remove thisbackup call (backup(p[i], sizeof(p[i])) that operates on heap-allocated

memoryp.

We present the dynamic-memory (DynMem) optimization algorithm in Figure 4.17 that contains two

major steps. Step one performs reaching-definition (RD) analysis for each dynamic-memory allocation

site residing in a checkpoint region or checkpoint-enable function. A dynamic memory allocation site

(via C interface) includes three function calls:malloc, calloc andrealloc; and a dynamic memory

reclamation site (viaC interface) includes just one function call:free. Each dynamic memory allocation

site starts a new dynamic-memory range on its starting address and length; while a dynamic memory

reclamation site ends its respective dynamic-memory range. Notice that the special callrealloc is both

an allocation and reclamation site. It ends the current active dynamic memory range and immediately

starts a new one with the same starting address but a potentially different length. Arealloc call

with zero length effectively terminates a dynamic-memory range as well. Step two analyzes each

applicablebackup call that operates on heap-allocated memory. If thebackup call operates on a

dynamically-allocated memory within the checkpointing region or checkpoint-enabled function, the

dynamic memory allocation site inside the respective region or function, and thebackup operation is

within the reach of an active dynamic-memory coverage region, the algorithm can proceed to remove

the respectivebackup operation.

Our DynMemoptimization focuses onbackup calls operating over dynamically allocated memory

whose allocation site is within the respective checkpointing region or checkpoint-enabled function.

Under such conditions, the dynamically allocated memory isinvisible before the checkpointing region

begins. It is safe not tobackup memory content that is not visible for the current application

from the persective of checkpointing. However, the situation can be vastly different if the dynamic

memory allocation is outside of the checkpointing region orcheckpoint-enabled function, because the

dynamically-allocated memory is visible even before the checkpoint region begins. Skipping backup

operations on writes to this memory will produce inconsistent memory states after a checkpoint abort

operation. Thus, theDynMemalgorithm refrains from eliminatingbackup operations on dynamically
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int A[N];  // array decl

…

start_ckpt();

…

for(i=0; i<N; ++i){

backup(&A[i1], sizeof(A[i1]));

A[i1] = …;

…

backup(&A[i2], sizeof(A[i2]));

A[i2] = …;   …

}

…

stop_ckpt(c);

(a) BEFORE (b) AFTER

int A[N];  // array decl

…

start_ckpt();

…

backup(&A[0], sizeof(A));      

for(i=0; i<N; ++i){

backup(&A[i1], sizeof(A[i1]));

A[i1] = …;

…

backup(&A[i2], sizeof(A[i2]));

A[i2] = …;  …

}

…

stop_ckpt(c);

Figure 4.18: Array optimization transformation

allocated memory whose allocation site is out of the currentcheckpointing region or checkpoint-enabled

function.

4.7 Array Optimization

More interesting opportunities exist amongbackup calls that operate on array-based addresses inside a

loop, and we give an example in Figure 4.18. Both writes into array-based addresses (A[i1] andA[i2])

are correlated with the loop’s index (variablei). Hoisting cannot remove any backup redundancy

because the address is not loop-invariant in either case. However, keeping bothbackup operations

inside the loop has potentially high overhead. With a large trip count and a relatively small array size,

the amount of accumulated back-up contents can potentiallybe bigger than backing up the entire array.

In such cases, it is normally beneficial to merge multiple backups on individual array elements into a

single backup operation, potentially covering a continuous sub range of the array’s memory space or

even the entire array. Since the array’s starting address isloop-invariant, moving this singlebackup

operation out-of the loop (into the loop’s preheader) can further eliminate anybackup call that operates

within the array’s address range inside the loop. Thus in Figure 4.18(b), both of the originalbackup

calls are consolidated into a singlebackup call that covers the entire memory range of the given

array (sizeof(a[])). Because the array’s starting address is loop invariant, this singlebackup call

is further hoisted out of the loop and placed into the loop’s preheader. We call this transformationarray

optimization (ArrayOpti).
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INPUT: CFG of the CKPT Region or Function

OUTPUT: Array optimized CFG

INTERMEDIATE: store_instances = 0, array_size = 0, trip_count = 0,

tolerance_factor = 0.5, array_addr = 0, bArrayOpti[..] = false;
BEGIN

// 1. obtain backup call and loop-related info for array analysis:

foreach backup call bkp in loop L do

trip_count = getLoopInfo (L, TRIP_COUNT); addr = getAddr (bkp);

if (isArrayAddr (addr, unique) ) do

store_instances += getLoopInfo (L, STORE_INSTANCE, addr);

array_size = getArraySize (addr); array_addr = getArrayAddr (addr, 0);

// 2. perform array analysis and optimization:

if ( trip_count * store_instances >= tolerance_factor * array_size) do

array_bkp = create_bkp ( array_addr, array_size);

insert (array_bkp, L.getPreheader () ); bArrayOpti[array_addr] = true;

// 3. remove any participating backup call on the reference array:

foreach backup call bkp in loop L do

if ( isArrayAddress (getAddr(bkp), array_addr)) and

(bArrayOpti[array_addr] ) do remove (bkp)

END.

Figure 4.19: Array optimization algorithm

We present an algorithm for array optimization in Figure 4.19. It considers not only thearray size,

the loop’s trip count and store intensity, but also atolerance factorthat a user can control through

command-line options. Writes to non-adjacent regions inside the array may happen when the program

executes inside a loop, thus the tolerance factor specifies the amount of checkpoint buffer storage

tradeoff that a user may allow, in return for improved checkpointing efficiency.

We present detailed analysis of thearray optimizationalgorithm below.

Let trip countdenote to the number of iterations for a given loop where we intend to perform array

optimization. If the loop’s trip count cannot be obtained through static analysis at compile time (missing

either known lower bound or upper bound of the given loop), weuse a numerical value 10 as a best-effort

estimate for the loop’s default trip count.

Let store instancesdenote to the intensity of all staticbackup operations that a loop contains. Within

each iteration, we give one point for thestore instanceof anybackup operation that dominates all of

the loop’s exits; and 0.5 otherwise (best-effort compile-time estimates for branch behavior). The loop’s

store instancesis the accumulation of eachstore instanceassociated with individualbackup operations

within the loop’s body. This represents a best-effort static estimate of thebackup operation’s execution

frequency and their potential impact on the array within each loop iteration.

For example, in Figure 4.18(a), bothbackup operations dominate the loop’s exits, thus they each
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have astore instancevalue ofonewithin each iteration. Assuming these are the onlybackup operations

within the given loop’s body, thus the loop’sstore instancesis valuetwo.

Let array sizedenote to the number of elements in a given array,

and

Let tolerancefactor denote to a degree of tolerance that a user agrees to trade offmemory for improved

checkpointing efficiency.

Thetolerancefactor is a floating-point value betweenzeroandone. Valueoneof a tolerancefactor

indicates no tolerance at all, value0.5 for a tolerancefactor indicates that a user agrees to trade

off 50% of the buffer size in return of improved checkpointing efficiency, whereas valuezero of a

tolerancefactor indicates complete tolerance without any constraint. In our array optimizationLLVM

compiler transformation, we preset a defaulttolerancefactor of 0.5. This default value can easily be

overwritten using a command-line option.

We abstract the key component of the array-optimization algorithm into the following equation:

f = trip count∗store instances− tolerance f actor∗array size (4.1)

The decision on whether to perform array optimization is based on the algorithmic evaluation result

of function f , as:

f =











≥ 0 yes, perform array optimization

< 0 otherwise
(4.2)

The value ofstore instancesstatically estimates the number of occurrence that the program conducts

backup operations on a per-iteration basis, sotrip count * storeinstancespredicts the total number

(size) ofbackup operations across the entire loop. At the same time,tolerancefactor * array size

approximates the size of the array that thebackup operation(s) can potentially have impact on. Thus

equation 4.2 conducts comparative evaluation between the predicted totalbackup size and the estimated

size of the array that also includes a user’s willingness to trade off checkpointing buffer space for

improved checkpointing efficiency. When the predicted total backup size is bigger than the estimated

size of the affected region of the array, the algorithm decides to perform array optimization.
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We present the complete array optimization algorithm in Figure 4.19, which is a loop-basedLLVM

transformation that contains three major steps. For each loop that contains at last onebackup call that

operates on an array-based address, step one identifies thebackup operation and obtains its starting

address. If the starting address is part of an array-based address space, the algorithm proceeds by

accumulating and estimating itsstore instances. Step one also extracts related information from the

loop and the array involved, including the loop’s trip count, array size and the array’s starting address.

Step two performs the key array-optimization analysis. It combines allstore instancesfor anybackup

call that operates on the same array’s address range inside the loop’s body. It then evaluates the

algorithm according to our previous discussion in equation4.1 and 4.2. If the result is positive, the

array optimization algorithm creates a newbackup call that operates on the starting address of the

array, and covers the entire memory address range of the saidarray (backup the entire array). It then

inserts this newly createdbackup operation into the preheader basic block of the loop, and marks true

for the (loop, starting address, length) tuple. Step three is optional and is active only upon at least one

successfularray optimizationtransformation in step two. When this condition holds, it once again scans

the original loop’s body and identifies eachbackup operation whose starting address and length fall into

the array that has just been promoted into the loop’s preheader. Within the loop’s body, it eliminates

each identifiedbackup call that satisfies the given condition.

Array optimization seeks the best-possible checkpointingperformance by trading off memory for

potentially reducedbackup overhead. When array optimization proceeds, it generates asinglebackup

operation that potentially covers the entire array. It thenplaces this newly generatedbackup operation

outside of the loop before the loop begins (into the loop’s preheader). This renders anybackup operation

on any of this array’s valid address range irrelevant, and thus be eliminated from the loop’s body. The

tolerancefactor is a user-controllable knob that represents the amount of tolerance that a user allows, in

return to trade off memory for improved checkpointing efficiency. It is a floating-point value spanning

between the range of 0.0 and 1.0, with a default set to 0.5. This indicates that a user agrees to have a

50% backup buffer memory overhead on the affected array, in return for eliminating allbackup calls

that operate on that array within the loop.

Due to the use oftolerance factorand its checkpointing efficiency trade-off, array optimization can

sometimes be storage inefficient. Thus a programmer has the flexibility to fine tune the behavior of

array optimization through a command-line interface on tolerance factor for important loops, aiming

for maximum checkpointing overhead reduction. Since we candynamically grow the checkpointing

buffer in memory, we consider the memory trade off worth the effort when the main goal is to improve
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checkpointing efficiency.

Array optimization limits its matching capacity within theLLVM array-type IR. Thus it is currently

incapable to handle any pointer arithmetic operations thatuses array syntax. TheLLVM frontend will turn

such operations into direct memory load/store IRs rather than array IRs. We will address this limitation

in our future-work section.

4.8 Miscellaneous Optimizations

Miscellaneous optimizations are mainly used for setup and cleanup of the optimization framework.

For example,Inlining inlines all special system handling routines. This helps tounbox thebackup

operations originally hidden inside system handling routines and allows the optimizer to instead focus

exclusively on analyzing and eliminating only thebackup operations. Pre Optimize and Post

Optimize perform miscellaneous clean-up operations (e.g., remove zero-lengthbackup calls). Any

future or newly-discovered clean-up or maintenance operations will likely fit into the miscellaneous

optimizations category.

4.9 Summary

In this chapter, we introduce a large and comprehensive checkpointing optimization framework that

targets checkpointing overhead reduction through aggressive compile-time analysis and transforma-

tions. It examines checkpointing overhead from different program aspects and attempts to remove as

much checkpointing overhead as possible while still maintaining the correct behaviors of checkpointing-

enabled programs. For each individual optimization, we present a detailed transformation example with

discussions on its respective algorithm. In particular, weintroduceNRESEoptimization that is brand

new to our best knowledge. We will provide testing details ofeach individual optimization as well as

combined efforts of all available optimizations in section7.7.

In the next chapter, we will discuss details of the checkpointing buffering schemes with focus on

both buffer efficiency and runtime performance.



Chapter 5

Checkpoint Buffer Implementation

Our fine-grain checkpointing scheme buffers program changes into a checkpointing buffer while the

program proceeds. As we will demonstrate, the buffer designand implementation has a critical impact

on checkpointing efficiency. In this chapter, we introduce several designs of checkpointing buffering,

analyze the trade-offs among them, and discuss the important decisions made to balance execution

efficiency and storage utilization.

5.1 Undo-log vs. Write Buffer

The most important design decision in a checkpointing scheme is the approach to buffering: whether

it will be based onwrite-buffer [28, 43] or alternatively anundo-log[32, 47]. A write-buffer approach

buffers all writes from main memory, and therefore requiresthat the write-buffer be searched on every

read. Should the checkpoint commit, the write-buffer must be committed to main memory; should

the checkpoint fail, the write-buffer can simply be discarded. Hence for a write-buffer approach the

checkpointed code proceeds more slowly, but with the benefitthat parallel threads of execution can be

effectively checkpointed and isolated (e.g., for some forms of optimistic transactional memory [28,45]).

An undo-log approach maintains a buffer of previous values of modified memory locations, and allows

the checkpointed code to otherwise read or write main memorydirectly. Should the checkpoint commit,

the undo-log is simply discarded; should the checkpoint fail, the undo-log must be used to rewind main

memory. Hence for an undo-log approach the checkpointed code can proceed much more quickly than

a write-buffer approach.

We conducted a preliminary study to compare runtime performance of undo-log and write-buffer

approaches, while checkpointing loops of integer-sortingapplications. Compared with undo-log, the

56
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…

…
idx

addr
…

meta buffer: empty

data buffer: empty

(a) Empty checkpointing buffers

a …127 31

…
0

&a

1

&b

5

&c

meta buffer:

data buffer:

char a = ‘a’;

int b = 127;

short c = 31;

…

backup(&a, sizeof(a));

backup(&b, sizeof(b));

backup(&c, sizeof(c));

…

backup 

actions

(b) Checkpointing buffers populated with backup data

Figure 5.1: One-Dimensional array buffer scheme.
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write-buffer scheme suffered severe performance penalty,usually ranging between 10X and 100X. In

this thesis, since we are considering only a single thread ofexecution with emphasis on performance,

we thus focus our future discussions only on the undo-log buffer scheme.

5.2 One-Dimensional Array-Based Undo Log

As discussed in Section 3.4.1, the interface of conducting acheckpoint backup operation is through a

backup function call, which takes as arguments a pointer to the start-to-copy address and its to-backup

length in bytes. We give the full checkpointing APIs in appendix A. Figure 5.1(a) illustrates our initial

design of an undo-log buffer based on one-dimensional data array (1-D array buffer). In this scheme, we

divide the undo-log buffer into two structures: (i) a data buffer which is a concatenation of all backup

data values of arbitrary sizes; and (ii) a meta-data buffer (meta buffer) which stores pairs of the starting

address and length of each backup data record (meta data) that appears in the data buffer. As an example,

Figure 5.1(b) shows the contents of the undo-log after executing threebackup calls to variablesa, b,

andc, respectively. Notice that both the data buffer and the meta-data buffer are now populated, with an

address-value pair in the meta buffer maintaining bookkeeping information for each data record appears

in the data buffer. When a checkpoint commits, we simply movethe data buffer and meta buffer pointers

back to the start of each buffer—effectively discarding thecontents in both buffers. When a checkpoint

must be rewound, we use the address-value records in the metabuffer to walk backwards through the

data buffer, replacing each backed-up memory location withits original value.

The one-D array buffer lays down its contents linearly in memory. The buffer-append action

dominates all buffer activities. Buffer-append operations always occur at content-insert location and

result in linear growth of both data buffer and meta-data buffer. Thus the undo-log scheme based on

one-D array buffer benefits from both extremely simple design and cache friendliness.1 However, its

main drawback is that it can suffer from data redundancy, since multiple versions of the same backed-up

memory location might reside in the buffer. A one-D array could be maintained in a redundancy-free

manner by performing a linear search prior to eachinsert operation. Alternatively, the one-D array

buffer could be maintained in a sorted order. Preliminary evaluation found that the performance penalty

of linear scan for inserting is between 50X to 100X. This negative performance impact is far beyond our

level of tolerance for checkpointing on performance-sensitive applications.

1Since one-D array buffer grows linearly, for buffer-insertoperations, one cache miss will lead to cache hits for up to
cache-line size buffer length. But for hash-table based buffers, due to the unpredictability of a hash-node’s address,each insert
operation is more likely to be a cache miss.
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one-dimensional array hash table

insert O(1) O(N)

search O(N) O(N)

delete O(N) O(N)

reset O(1) O(N)

Table 5.1: Comparison of worst-case buffer-operation efficiency

For a fair comparison with one-D array implementation, we need an alternative implementation that

natively and implicitly incorporates redundancy elimination when inserting data records. We select a

hashtable-based buffering design for this purpose.

5.3 HashTable-based Undo Log

Rather than searching or sorting a linear list, demonstrated to be infeasible in the previous section,

another method worthy of consideration is to maintain a hashtable of backup entries. A hash table

(HT) is a data structure that maps keys to values through a hash function. In the context of the undo-log

buffer design, it maps an address (key) to its associated memory content (value). Popular hash-table

designs implement hash bucket list with chaining. When multiple different addresses map to the same

hash-table target location (hash collision), the hash nodes are chained together into a linked list. For any

address that is mapped into a non-empty linked list, a search-based traversal is necessary to identify the

correct data and resolve any conflict. We implement an undo-log scheme using both 1-D array and hash

table. For an easy comparison, we present the worst-case buffer operation efficiency in Table 5.1.

Under the one-D array implementation, bothinsert andreset operations areO(1). Insert will

always append at the end of array andreset only adjust buffer counters, so they both take constant

time to complete. Since the one-D array buffer is not sorted,search anddelete will need to iterate

linearly across the entire meta buffer to identify the matching index in the data buffer, thus they are both

O(N). Under the hashtable-based implementation, each operation needs to map its key (address) to a

value (hash node) that may reside on a non-empty linked list.If the desired hash node doesn’t exist, we

need to create the hash node and insert it to the right location. If a non-empty linked list exists after

the hash mapping, the scheme needs to iterate over each available node on the linked list. Thus under a

hashtable-based undo-log buffer scheme, all worst-case operations have cost ofO(N).
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int i;

char c;

long double ld;

…

start_ckpt();

…

backup(&i, sizeof(i));

i = …;

…

backup(&c, sizeof(c));

c = …;

…

backup(&ld, sizeof(ld));

ld = …;

… 

…

stop_ckpt(c);

Figure 5.2: Sample of checkpoint-enabled code

Notice thatinsert is the most frequently used operation in checkpointing. Given data available in

Table 5.1, we can safely predict that an array-based buffer would normally outperform (higher runtime

efficiency) its hashtable-based counterpart, at the expense of buffer storage size (potential redundancy).

We will present more details of further analysis on buffer efficiency and storage trade-offs later in this

chapter.

A hashtable-based undo-log scheme always conducts an implicit search either before inserting a new

node (if an address does not already exist) or attempting to identify the right value (if an address exists

in the linked list already), thus it has perfect storage behavior (0% redundancy). When it needs to insert

a new node, it will perform a series of actions—allocating memory for the new hash node, populating

the new node with data, and linking the node at the proper location of the linked list. All of these actions

involve runtime overhead and will negatively impact checkpointing performance. One way to alleviate

the overhead is to reduce the total number of needed dynamic memory allocations when creating a new

hash node. This motivates various hash node designs with different performance trade-offs.

As illustrated in Figure 5.3, we consider three hash-table designs that are based on the options for the

different designs of hash nodes, including:pointer-to-data(PTD), that stores a pointer to dynamically-

allocated data storage;inline/union (union), that stores a union field that can be used either to directly

store a 32-bit value inline, or instead as a pointer to dynamically-allocated data storage larger than 32

bits; andfixed-size(fixed), that always stores 32 bits of data per node and requires a list of nodes to store

data values longer than 32 bits.
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Figure 5.3: Design options for an undo-log implementation.
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5.3.1 Pointer-To-Data (PTD) Node

Figure 5.3(a) presents our basic hash node design:pointer-to-data (PTD) that stores a pointer to

dynamically-allocated data storage.PTD is a structure that contains all necessary fields to facilitate

a backup operation: achar* field to store the backup address, anint field to store the backup length, a

char* field to store the pointer of explicitly allocated memory that holds the backup data, and astruct

hashNode * next pointer to maintain a singly linked list with other nodes. Note that the backup data

is allocated and managed through the explicitchar* data field. This indicates that foreachnewPTD

hash node, there will betwo explicit dynamic memory allocations: one for the hash node itself, another

for the explicit data field.

Figure 5.2 gives a checkpointing-enabled code sample to illustrate the impact of different hash-node

designs on checkpointing buffer efficiency. This sample code needs to performbackup operations on

three addresses with various backup lengths: four bytes forvariablei (int type), one byte for variable

c (char type), and 12 bytes for variableld (long-double type). To simplify the scenario, we perform

abackup operation on each unique address once.

Figure 5.3(a) shows one possible (worst-case) memory layout after performing all threebackup

operations. Since each hash node needs two dynamic memory allocations (mallocs), there is a total of

six mallocs that are necessary to satisfy the requirements of accommodating all three hash nodes.

5.3.2 Inline/Union Node

Figure 5.3(b) presents an improved hash node design using inline/union node (union), that stores a

union field that can be used either to directly store a (up-to)32-bit value inline, or instead as a pointer

to dynamically-allocated data storage larger than 32 bits.Comparing withPTD, aunion type hash node

overlaps a pointer to explicitly allocated static data witha fixed-size array of four bytes. When the

backup data is less than or equal to four bytes, the data arraywill be used; otherwise when the backup

data is larger than four bytes,union node will fall back to explicitly allocating and managing heap

storage for the data (same asPTD).

We considerunionnode an optimization to reduce dynamic memory management overhead through

using statically allocated buffer as appropriate. When themajority of backup operations are less than

four bytes long (true for our test applications that are dominated by integer arithmetic operations),union

node design improves checkpointing efficiency by reducing the number of needed dynamic memory

allocations.
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5.3.3 Fixed-Size Node

The third hash-node design aims to completely eliminate theneed for a separate data pointer, as well

as explicitly allocating memory and managing backup data. Figure 5.3(c) presents thisfixed-size(fixed)

hash node design that always stores (up-to) 32 bits of staticdata per node and may require a list of

nodes to store data that is longer than 32 bits.Fixed hash node is a simplified version ofunion – it

removes the overlapped data pointer and allows only data storage up to four bytes per node. If the

backup data is larger than four bytes, the backup scheme willneed to have a linked list offixednodes to

fully accommodate the backup data.

5.3.4 Buffer Efficiency Analysis

In this section, we present an analytical comparison among the 3 different hash-node designs.

Let M be the number of bytes that abackup operation needs to copy;

LetC be the maximum number of bytes that a singlefixednode can accommodate;

Let N be the number offixednode(s) that need to successfully accommodate thebackup operation, we

have

N = ⌊M/C⌋+ ⌈(M%C)/C⌉ (5.1)

It is clear that whenM >C, N ≥ 2.

Thus for anybackup operation whose data length is bigger than the maximum amount of storage

that a singlefixednode can accommodate, we need at least 2fixedhash nodes to complete thebackup

operation. We conduct an empirical comparison among the three different hash node designs when

conducting threebackup operations on the code sample provided in Figure 5.2. We present the result on

the number of needed hash nodes and the number of required dynamic memory allocations in Table 5.2.

The results suggest that the hash table designs based onunion-type hash nodes have the lowest number

of malloc requests. Next we present a more generalized analysis.

Let A1 be the total number ofbackup operations oni (integer type);
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PTD Union Fixed

# hash nodes 3 3 5

# data pointers 3 1 0

total # mallocs 6 4 5

Table 5.2: Dynamic memory allocation overhead comparison among three different hash designs.

PTD Union Fixed

# hash nodes A1+A2+A3 A1+A2+A3 A1+A2+3A3

# data pointers A1+A2+A3 0+0+A3 0+0+0

total # mallocs 2A1+2A2+2A3 A1+A2+2A3 A1+A2+3A3

Table 5.3: Generic analysis on dynamic memory allocation overhead comparison

Let A2 be the total number ofbackup operations onc (char type);

Let A3 be the total number ofbackup operations onld (long double type);

Table 5.3 demonstrates the analysis results on the total number of needed dynamic memory

allocations (mallocs) among three different hash node designs under the conditions ofA1, A2 andA3. It

is apparent thatunionhash-node design has the lowest total number of mallocs, verifying our claim. The

reduction on the total number of malloc calls is mainly the result of overlapping the data pointer with

statically allocated memory inside theuniondesign given the appropriate conditions where thebackup

lengths fit.

ThePTDnode is the fundamental design that maintains a dedicated pointer to dynamically allocated

data per node, thus it has the highest overhead on the number of required dynamic memory allocations.

Union node improves dynamic memory usage by overlapping the data pointer with static storage. This

can remove a large number of dynamic memory allocations for data storage without increasing the

number of needed hash nodes if a significant amount of backup data is less than or equal to four-bytes

long. We expect it to deliver the best runtime performance among all three hash node designs. Thefixed

node completely removes the need to maintain dedicated datapointers. However, it also increases the



CHAPTER 5. CHECKPOINT BUFFER IMPLEMENTATION 65

number of needed hash nodes, as well as the necessary expenseto manage and maintain data consistency.

Thus we expect that a hashtable composed offixednodes may generally improve over the baseline with

PTD nodes when the data length is short, but may also have poor performance forbackup calls when

average backup data lengths is longer than the pre-determined size (4B in the case of afixednode). In

general, thefixedtype shall never perform better than theunion type.

5.4 Redundancy Rate

To compare the potential undo-log buffer designs across allpossible implementations, we introduce a

measurement called redundancy rate (RR).

Let Access(R) denote the total number of backups of a particular variableR that is written at least

once within the checkpointing region, the redundancy rate (RR) for the region that containsR can be

defined as

RR=
∑n

1(Access(Ri)−1)

∑n
1Access(Ri)

(5.2)

where n is the total number of unique addresses that are checkpointed within the region. RR

quantifies the amount of checkpointing redundancy as a floating point value between zero and one.

In an ideal region where each unique variable address is checkpointed exactly once, itsRRrate will be

zero. The higher theRRrate, the more redundancy remains in the given checkpointing-enabled region.

The redundancy rate is a metric to measure the amount of redundancy available in a checkpointing

region. It is especially helpful to evaluate various optimization’s effectiveness after performing certain

type of redundancy eliminations. It is also a good indicatorto estimate the remaining amount of

redundancy and can serve as a guideline for future improvement.

5.5 Evaluation

Recall from Section 5.2 and Section 5.3 that we have a total offour different buffer implementations

for conducting software checkpointing based on undo-log scheme: one-D array,PTDhash table,union

hash table, andfixed-sizehash table. Former analysis suggests that the lookup-free one-D array buffer

has the highest runtime performance despite existing data redundancy. By always appending to the end

of the buffer, one-D array has extremely simple and efficientbuffer-insert operations, excellent cache
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Figure 5.4: Performance comparison of buffer implementations

behavior, and thus avoids all cache-related problems associated with hashtable-based implementations.

This is true when the redundancy is low and overhead from hash-table lookup and increased cache miss

dominates. However, under conditions of high or extremely high redundancy, things may well change.

Thus we are interested in discovering and understanding therelative performance of all buffering

schemes under a wide range of all possible redundancy rates.

To conduct quantitative comparisons among different undo-log buffer implementations, we develop

a simple micro benchmark application that performs intensive backup operations at random locations

of a large integer array. By fixing the number of uniquebackup addresses (array elements) and varying

the total number ofbackup operations, we can easily obtain any desired redundancy rate.

In Figure 5.4 we present relative performance of all available buffer implementations using the micro

benchmark. We vary the micro-benchmark’s access patterns to produce a wide range of redundancy rates

and report checkpointing performance comparison result. The x-axis represents redundancy rate from

1% to 99%; the y-axis is the relative checkpointing performance of the three hashtable-based buffer

implementations. Performance data is normalized to that ofusing an one-D array buffer, thus all curves

that reside beyond row-one are consideredslower. The figure represents checkpointing operations with

1024 unique backup addresses, with only four-byte backup length (due to the limitation using a static

array).

Overall, the implementation based on one-D array buffer almost always outperforms any hashtable-

based solution (higher than one on y axis). All three curves (hashtable-based implementations) converge
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at a very highRRrate (close to 95%). When the redundancy rate increases, theperformance difference

among different backup schemes decreases. The three different hashtable-based implementations have

perfect storage behavior; however this comes at a performance cost, mainly due to poor cache locality

of link-list accesses within the mandatory hashtable lookup operations.Unionandfixedare both heavily

optimized for dynamic memory management, thus their performance is considerably and consistently

better thanPTD. When the redundancy rate is extremely high (≥ 95%), performance differences of

various buffer schemes diminish. Although undesirable, the huge amount of redundancy in the one-

D array buffer amortizes all cache-related overhead under such conditions. In practice, we expect

no real-world applications to exhibit such extremely-highredundancy rates. Because of the superior

performance of one-D array buffer implementation over a wide range of possible redundancy rates, we

select it as the default implementation for all undo-log buffering for the remainder of this thesis.

5.6 Summary

We describe undo-log and write buffer schemes for implementing checkpoint buffering, but focus

on undo-log approaches because they are better-suited to single-thread roll-back applications like

checkpointing. We discuss a total of four different undo-log buffer implementations: one-D array,PTD

hash table,unionhashtable, andfixedhashtable. We defineredundancy rateas an evaluation metric and

evaluate the behaviors of all four available buffer schemeson abackup-intensive micro benchmark. We

conclude that despite data redundancy, the one-D array buffer implementation is the most efficient due

to its low runtime overhead. For all three different hashtable-based designs,union type hash node is a

clear winner because it successfully minimizes dynamic memory management related overhead.

For the next two chapters, we will begin to introduce three interesting applications that leverage the

efficient software-only checkpointing support to gain distinct features. In particular, in chapter 6, we

will present the1stkey application—tolerating delinquent loads via checkpointing.



Chapter 6

Tolerating Delinquent Loads via

Checkpointing

A delinquent load (DL) [15,49] is a particular type of memory load in a program thatfrequently misses

in a cache—typically the last-level cache on-chip. For manyapplications, we observe that DLs from a

small number of source-program locations contribute a large fraction of all last-level cache load misses.

Hence DLs, should they be reasonably persistent across target architectures, may pose an interesting

checkpointing application. In this chapter, we introduce our first checkpointing-enabled application—

overlapping execution with delinquent loads.

6.1 Overview

Figure 6.1(a) illustrates the challenge presented by a DL: the L2 miss latency for a DL can be lengthy,

and the computation that follows the DL (work()) likely depends on the DL’s result value (x). Thus the

execution time that involves aDL simply becomes the accumulation of both the DL’s latency, and the

cycles of thework that needs the precise value from the DL. Rather than allowing a system to staying

idle and waiting for the DL’s value to return from the long-latency main memory system, Figure 6.1(b)

provides an overview of the techniques to tolerate a DL by overlapping the DL’s miss latency with

speculative execution of the subsequent code using a predicted value (v). The DL is scheduled to issue

as early as possible, followed by the value prediction (v).

The computation proceeds using the predicted value (work(v)), with that computation being

checkpointed along its execution path to support program rewind. When the computation is complete,

we compare the predicted value with the actual value. If theyare equal then we can commit the

68
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Figure 6.1: Overview: tolerating DL with speculative execution

checkpoint (as shown in Figure 6.1(b)). Ideally such a successful effort of prediction and speculation

will result in a performance gain relative to the non-speculative original code. Should the value

be mispredicted, as illustrated in Figure 6.1(c), then we must rewind the checkpoint and re-perform

the computation with the correct result value of the DL (work(x)). The combined overheads of

checkpointing as well as rewinding and retrying the computation can result in a performance loss relative

to the original code.

In this chapter, we introduce two key compiler transformations that leverage compiler-based fine-

grain checkpointing to tolerate DLs, namely data speculation and control speculation. For single-

threaded speculation, we must make a prediction on the potential value of a DL and execute code

that uses that prediction to make forward progress rather than pause the execution and wait for the

DL’s value to return from off-chip. This approach exploits the parallelism provided by a wide-issue

superscalar processor that can execute instructions with memory access in parallel without the need

of an explicit or implicit parallel thread or process. Ideally the latency of the DL is hidden when the

prediction is correct, but execution can rewind and re-execute using the correct DL value should the

prediction be incorrect.

6.2 Overlapping Execution with Delinquent Loads

A complete software-only speculative system is composed ofthe following three components: (i) a

checkpointing system that backs up program changes along its execution path and helps to recover
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from failed speculation, (ii) speculative compiler transformations that aggressively rearrange program

layout that will normally be considered unsafe in order to enable speculative execution, and (iii) a value

prediction system that generates a predicted value and allows the speculative system to optimistically

make forward progress based on this prediction. We will havedetailed discussions for each individual

component and its particular nature in the context of DL speculation later in this chapter. In order to

enable speculative execution overlapping with DLs, we needto identify the precise location of each

individual DL that contributes for the speculative system.

6.2.1 DL Identification

We identify DLs by profiling second-level (L2) cache misses using a PIN [42]-based cache simulator

that we developed for this work. The PIN framework provides an infrastructure to allow injecting 3rd-

party user code at arbitrary program locations to conduct custom program analysis or transformations at

runtime. The custom program analysis codes are thus PIN’s plugins (also called pintools) that can

be loaded dynamically into memory on demand. Our pintool-based cache simulation is a detailed

functional cache simulator that properly mimics two levelsof configurable cache hierarchies with

separated L1 data cache and L1 instruction cache, as well as ashared L2 cache. The PIN framework

recognizes each memory-access instruction from the application and redirects them to a software cache

model established in the cache simulator pintool. Within each memory access, the software cache model

captures necessary access signatures (read vs. write, effective memory address, length of data, etc.) and

performs functional cache simulation. All cache transactions are recorded: both cache-miss and cache-

hit events will update statistical counters within the cache model. A cache-miss event triggers cache

behavior that bring in the missing data from higher levels. The cache simulator enforces inclusiveness—

data in a lower cache level is guaranteed to be included in a higher cache level. The simulator also brings

in the missing data by evicting a cache line based on a configurable cache-replacement policy when no

cacheline within the corresponding cache block is available. Note that due to the nature of the PIN

framework, our cache simulator currently can simulate the cache behaviors of only one application at a

time. The software cache model is easily configurable when dealing with various cache architectures,

including total levels of cache, cache size, cache-line size, degree of associativity, replacement policy,

etc.

One compelling feature of the PIN infrastructure is that, when a benchmark is compiled with

debug information enabled, it allows us to directly associate load and store instructions with their

corresponding source code location. Hence the simulator can reliably map each load instruction that
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Index Line-size Assoc.

0 32B 2

1 32B 4

2 32B 8

3 32B 16

4 64B 2

5 64B 4

6 64B 8

7 64B 16

8 128B 2

9 128B 4

10 128B 8

11 128B 16

Table 6.1: L2 cache configuration space explored (across a range of L2 cache sizes)

is responsible for a large fraction of L2 cache misses back tothe offending source code location. This

is a critical feature that can help us identify the DL locations on the source-program level.

For the rest of this chapter, we will consider a particular load instruction to be a delinquent load if it

is responsible for greater than 5% of all L2 cache misses in a program. We will also refer to the actual

percentage of L2 cache misses as thesignificanceof that delinquent load (i.e., a load that is responsible

for all of a program’s L2 cache misses would have a significance of 100%).

6.2.2 DL Persistence

We measure a wide range of L2 cache architectures, with sizesvarying from 256KB to 4MB, cache-line

size varying from 32B to 128B, and associativity varying from 2 ways to 16 ways. Table 6.1 summarizes

the cache configurations that we have studied for each available cache size. This L2-cache exploration

space covers a large number of cache configurations for existing CPUs that are commercially available.

The index on the first column indicates the relative order among the possible cache configurations, and

is the implicit order on x-axis data for the figures to appear in this section.

We use SPEC2000INT [17] benchmarks, compiled with compilers of various vendors (gccandicc),

versions (gcc 3.4.4, 4.0.4, 4.1.2, 4.2.4, 4.3.2, andicc 9.1), and optimization levels (O0, O2 andO3)
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App Name Input Data % L2 misses DL’s Source Position

mcf inp.in DL0: 14.4% mcfutil.c:88

(ref input) DL1: 31.1% implicit.c:250

DL2: 23.7% implicit.c:252

DL3: 9.7% implicit.c:80

DL4: 5.4% pbeampp.c:191

DL5: 5.3% pbeampp.c:41

total: 89.6%

bzip2 input.program DL0: 16.8% bzip2.c:1260

(ref input) DL1: 12.2% bzip2.c:2688

DL2: 18.3% bzip2.c:2688

DL3: 14.9% bzip2.c:2282

total: 62.2%

vortex (ref input) DL0: 15.7% bmtobj.c:831

DL1: 12.6% mem10.c:752

DL2: 11.5% mem10.c:596

total: 39.8%

parser ref.in DL0: 10.4% parser.c:194

(ref input) DL1: 18.6% xalloc.c:122

total: 29.0%

vpr (ref input) DL0: 13.6% place.c:2002

total: 13.6%

Table 6.2: Properties of significant DLs in the SPEC2000INT benchmark suite
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Figure 6.2: Persistence of DLs across architectures and benchmark inputs: MCF
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Figure 6.3: Persistence of DLs across architectures and benchmark inputs: VPR
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Figure 6.4: Persistence of DLs across architectures and benchmark inputs: BZIP2
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Figure 6.5: Persistence of DLs across architectures and benchmark inputs: PARSER
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Figure 6.6: Persistence of DLs across architectures and benchmark inputs: VORTEX
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Figure 6.7: Persistence of DLs across compilers: MCF
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to study DL locations and properties. We configure the PIN-based cache simulator with 2-level cache

(separated data and instruction L1 cache and unified L2 cache) that covers large variations of cache size,

cache line size and degree of associativity. We give the configuration details of the cache simulator in

Table 6.1.

We conduct our initial investigation on all SPEC2000INTC benchmarks using bothtraining and

referenceinputs. We find that only a subset of the applications containDLs with significance of five

percent or higher. We call a particular DLpersistentif its offending source-code location remains

unchanged when other conditions change. To consider optimizing DLs in a compiler, the DLs need to

be persistent—they cannot be sensitive and shift positionsdue to a particular configuration of the L2

cache. In this section we measure thepersistenceof L2 load misses (DLs) in our benchmark applications

across a broad range of L2 cache architectures. We also measure persistence across program inputs, as

well as compiler vendors, versions and optimization levels.

In Table 6.2 we list existing SPEC2000INT applications withsignificant DLs, as well as individual

DL with its associated significance inside each benchmark, all under thereferenceinput. In this setup,

we use a 256KB L2 cache configured with 32B cache lines and 2-way set associativity. As shown in the

table, DLs from a small number of source-code locations are responsible for a very large fraction of all

L2 cache misses in these applications, ranging from 13.6% (VPR) to 89.6% (MCF).

We present detailed results of our DL’s persistence analysis in a sequence of figures: from Figure 6.2

for MCF to Figure 6.6 forVORTEX. We use Figure 6.2 as an example for explanation. Figure 6.2 has two

sub figures: Figure 6.2(a) shows the MCF DL’s significance forreference input and Figure 6.2(b) shows

the MCF DL’s significance for training input. When we zoom into Figure 6.2(a), it presents sixDL’s

significance curves, representing the six identifiedMCF DLs we provide earlier in Table 6.2. The X axis

of Figure 6.2(a) is the configuration space of L2 cache and it has been partitioned into five sections,

representing 256KB, 512KB, 1024KB, 2048KB and 4096KB of L2 cache size, respectively. Within

each partitioned section, there are a total of 12 different L2 cache configurations. We provide individual

configuration details in Table 6.1 (index 0-11). The Y axis ofFigure 6.2(a) is the DL’s significance value

in percentage.

Figure 6.2(a) shows a general trend that a DL’s significance gradually reduces when the size of L2

cache increases. With a larger cache, more loads will hit thecache rather than issue a long-latency main-

memory fetch. Notice that most DL’s significance remain above the range of five percent—our definition

of a significant DL. For those SPEC2000INT applications withDLs, the nature of significance is

persistent across different L2 cache size and configuration. We verify each SPEC2000INT benchmark
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application with significant DLs, present their DL’s significance graphs from Figure 6.2 until Figure 6.6,

and testify that our claim actually holds.

We conduct one additional verification onDL’s persistent natures over compilers with different

vendor, version and optimization levels. We present one result in Figure 6.7 that comparesMCF’s DLs

using gcc-4.0.4 and icc-10.1, both at optimization level O2. These two compilers were atthe state-of-

art state when we performed the measurement. Figure 6.7 shows thatMCF DL maintains its persistence

across different compilers.

According to our analysis and discovery using SPEC2000INT CPU benchmark suite, we find that

not all applications in this benchmark suite haveDLs with significance of five percent of higher. Within

the subset of applications that contain significant DLs, theDLs have the following persistent properties:

• the DLs are persistent across various L2 cache configurations (size, line size, ways of associativ-

ity), as long as the working set doesn’t entirely fit into the L2 cache;

• the DLs are persistent across different compilers, including vendors, versions and optimization

levels;

• the DLs are persistent across inputs (training or reference).

Through our analysis [67, 70], we find that DLs are more likelyto appear in unexpected locations

that compilers cannot normally predict. E.g., for integer-intensive applications in SPEC2000INT, they

often appear at pointer-dereference locations to a structure whose size is bigger than the current cache-

line size, or in multiple levels of pointer deference sites.Modern CPU’s cache architectures do excellent

work in prefetching predictable access patterns, thus normal memory accesses whose access distances

fall within the size of cache line will have good cache behavior. However, for those that do not follow

this pattern, DLs will be more likely to appear. As long as thecurrent program’s working set does not

entirely fit into the last-level cache, DLs appear persistently 1 even with different input data sets. We

thus call this propertyDL persistence. As a result for DL’s difficult-to-predict nature, existingcompilers

cannot statically identify DLs’ locations at compile time or perform effective transformations to hide

the long DL latency. Thus DLs keeppersistentacross different compiler’s vendors, versions and even

optimization levels.

1Programs with persistent DLs may slightly shift the locations where DLs appear because the associated significance may
change when given different inputs. However, a DL’s persistence remains provided the program’s working set do not entirely
fit into cache.
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(a) original code (b) with data speculation

…

work(P->a); // DL

…

1:  t = P->a; // issue DL

2:  v = predict();   // value prediction

3:  start_ckpt();    // start ckpt

4:  work(v); //speculative execution

5:  if( t == v ){      // check prediction

6:  commit_ckpt();

}

else{

7:  rewind_ckpt();

8:  work(t);         // normal re-execute

}

Figure 6.8: Data speculation

Given the DLs are persistent, we can further leverage compiler transformations to enable potential

execution overlapping with the DL.

6.2.3 Data Speculation

The first method of tolerating DL latency isdata speculation(DS) where we make a prediction on the

result value of the DL and use it to continue execution speculatively, as illustrated in Figure 6.8. After

issuing the DL as early as possible (1), predicting the DL’s data value (2), starting the checkpoint (3),

and performing speculative execution based on that predicted value (4), we then attempt to commit

the speculation. The commit process first checks whether theprediction was correct by comparing

the predicted value with the DL’s value(5) : if so then the checkpoint is committed (6), otherwise the

checkpoint is rewound (7) and the computation is re-executed non-speculatively using the correct DL

result value (8).

6.2.4 Control Speculation

Whenever the result value of a DL is usedsolelywithin a conditional control statement (E.g., a branch),

as shown in Figure 6.9(a), we have an interesting opportunity: rather than predicting the exact result

value of the DL we can instead merely predict the boolean result of the conditional—condition taken

or not taken, which ideally will more easily be an accurate prediction than predicting the exact result

value. We call this form of speculationcontrol speculation (CS), which is essentially a special case of
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(a) original code (b) with control speculation

if(P->a){

// DL, commonly true

work1(); //“no use of P->a”

}

else{

work2();  // “no use of P->a”

}

1:  t = P->a; // issue DL

2:  start_ckpt();  // start ckpt

3: work1(); // speculative execution

4:  if( t == predict() ){ //check prediction

5:  commit_ckpt();  

}

else{

6:  rewind_ckpt();   

7:  work2(); // normal execution

}

Figure 6.9: Control speculation

data speculation.

We present the control speculation’s compiler transformations in Figure 6.9(b). When a DL resides

on a control-flow branch, we have an opportunity to hoist the work carried within the frequently-used

branch to be earlier than the DL, as suggested in Figure 6.9(b) for work1. Similar to the data-speculation

case, we issue the delinquent load as early as possible (1), immediately followed with start checkpointing

(2), and the speculatively hoisted work item (3). Note that in (1) we introduce a new temporary variable

(t) to hold the return value of the delinquent load. At this point, we compare the predicted value with

the DL’s return value (4). If they are the same, the predictormakes a good prediction and we are ready

to commit the speculation (5). Otherwise, if the predicted value is not the same as the DL’s return value,

the prediction has failed in this situation. The scheme willneed to abort the current checkpoint (6) that

effectively undoeswork1, and execute the less-frequently executed branch (work2) in non-speculative

mode (7).

Modern processors perform branch prediction and speculatively execute instructions beyond the

branch—however this speculation is limited to the size and aggressiveness of the processor’s issue

window that can contain a small and limited number of instructions. The available independent

instructions within this limited window are further constrained. With compiler-assisted control

speculation, we can ideally speculate more deeply, allowing more instructions and greater opportunity

for tolerating all of the latency of a DL.
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6.2.5 Value Prediction

Both data speculation and control speculation need high-accuracy value predictions [13, 40, 55, 58,

60]. Since the value prediction’s accuracy directly correlates to checkpointing’s commit ratio, highly

accurate value prediction is a must to guarantee high checkpoint commit rate—a vital step necessary for

performance gains through speculative execution. However, the computations involved in generating

the predicted value are on the critical path and thus must be treated as part of the speculation overhead.

As a result, the competing goals of value prediction in the context of checkpointing-enabled applications

are two-fold: (i) to maintain very high prediction accuracy, and simultaneously (ii) to minimize involved

computational and storage overheads.

We study a wide range of value prediction methods, from simple constant-value prediction, last-

known value prediction, constant stride value prediction,to more complex and storage-intensive table-

based context-aware value predictions [40, 58], as well as adding confidence as a method to throttle

the prediction result and increase prediction accuracy. Toour surprise, we find that simple last-

known value prediction and constant-stride value predictions work fairly well and satisfy most of

our needs in value prediction for speculation. The more expensive, complex and computationally-

intensive value predictors (e.g., table-driven context-aware predictors) do not necessarily deliver higher

prediction accuracy, but at the expense of much more computation and storage overhead. As a result, we

utilize only constant-stride value predictor and last-known value predictor to service the speculation’s

prediction demand for the rest of this chapter.

6.3 Theoretical Performance Modeling

Figure 6.10 illustrates the ideal speculative timing modelfor overlapping execution with DLs.

Figure 6.10(a) is the normal sequential model where the total execution time is the accumulation of

both DL’s latency cycles and the work’s latency cycles, and the continuation of work relies on DL. This

represents the conditions where the DL’s value is immediately needed to allow execution to proceed

with inside work, thus the program stalls until the DL’s value returns from the high-latency memory

system.

Under the speculatively overlapped model given in Figure 6.10(b), the program continues with the

predicted value while the memory system is simultaneously serving the DL. This resembles a form of

memory-level parallelism though there is no explicit parallel thread needed to fetch the DL’s value from

main memory. Thus under this model, the total execution timeis themaximumof the two individual
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(a). sequential model (b). speculative (overlapped) model 
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Figure 6.10: DL ideal timing model
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Theoretical Speedup of Overlapping L2
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Figure 6.12: Overlap execution with L2 cache only (500 cycleL2 cache miss latency)
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participating components. This models the cases when either the DL’s value is not being immediately

needed or the DL is being used to make a predictable control-flow decision and therefore its precise

value is less important.

We now present a theoretical performance modeling of speculatively overlapping execution with up

to two levels of cache.

Let CL denote the cycles of a cache miss (DL) and letC denote the cycles of work that overlaps

with the DL, we have

Tsequential=CL+C

Tspeculate= max(CL,C)

Let Sdenote the relative speedup of overlapping execution with DL, we give the definition ofSas

S=
Tsequential−Tspeculate

Tsequential
=

CL+C−max(CL,C)
CL+C

(6.1)

Thus the ideal theoretical relative speedup for overlapping with only L1 cache is

S1 =
CL1+C−max(CL1,C)

CL1+C

=











C
CL1+C, if C <CL1

CL1
CL1+C, if C ≥CL1

Similarly the ideal theoretical relative speedup for overlapping with only L2 cache is
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S2 =
CL2+C−max(CL2,C)

CL2+C

=











C
CL2+C, if C <CL2

CL2
CL2+C, if C ≥CL2

In addition, we obtain the theoretical relative speedup foroverlapping with combined L1 and L2

cache by aggregating individual speedups:

S= S1+S2 =



























C
CL1+C + C

CL2+C, if 0 ≤C<CL1

CL1
CL1+C + C

CL2+C, if CL1 ≤C<CL2

CL1
CL1+C + CL2

CL2+C, if C≥CL2

We present three theoretical relative speedup figures for the three possibilities of overlapping

execution with DL: with a L1 cache miss only (Figure 6.11), with a L2 cache miss only (Figure 6.12),

and with a combined L1-and-L2 cache miss (Figure 6.13), respectively. The figures show both overall

similarity and individual differences. For ease of comparison, we fix L1 cache miss latency to 20

cycles (CL1 = 20) and L2 cache miss latency to 500 cycles (CL2 = 500). For each figure, on x-scale

we give the number of work cycles that are suitable to speculatively overlap with the DL, and on y-

scale we give the maximum theoretical relative speedup for the respective case of overlapping with

a cache miss. Figure 6.13 is an all-inclusive figure that shows all three participating curves together.

It presents the composition process that overlaps and interpolates Figure 6.11 and Figure 6.12, and

produces Figure 6.13.

In Figure 6.11, the relative speedup that overlaps with L1-only workload goes sharply to its peak

from zero toCL1 (20) cycles in the beginning. Since the L1-miss-and-L2-hitcycles are relatively short,

the curve has only limited room to stretch before reaching its theoretical peak, which is predicted to

be 50% when the overlapped cycles (C) is equal to L1-miss-and-L2-hit cycles (CL1). In Figure 6.12,

the relative speedup that overlaps with L2-only work can be treated as horizontally scaling the curve

in Figure 6.11 to match with L2-miss-and-memory-hit cycles(CL2) and its theoretical performance

upper-bound is also 50%. Given ideal workloads, the two theoretical speedups can further combine and
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Figure 6.14: Real DL Speedup: L1

generate an aggregated effect that can cross the 50% threshold, presented as theCL2-centered triangle-

like area in Figure 6.13. Since multiple levels of cache worktogether in a real machine, one cannot

easily separate and observe the L1 cache-miss only or L2 cache-miss only effects, the combined L1-

and-L2 effect (presented in Figure 6.13) is the one that we can expect from fine-grain speculation in

real-world workloads.

6.4 Micro Benchmark and Practical Performance

Software-only speculation that overlaps fine-grain execution with DLs is a field that doesn’t have

established or well-known workloads. We are thus in need of benchmark or micro-benchmark

applications that have significant DLs as well as sufficient work items that are suitable for the fine-grain

overlapping. This section is devoted to the efforts of building such applications.

6.4.1 Micro Benchmarks

We develop a set of synthetic benchmarks for real-machine evaluation. This includes a linked list

(LINKLIST ), a binary search tree, a B-tree, a red-black tree, an AVL tree, and a hashtable. They behave

similarly in that accesses to dynamically allocated data structures result in frequent last-level cache

misses (DLs). We useLINKLIST as the representative workload for this study. We make each node in

theLINKLIST larger than the cache-line size on the machine we used to conduct the evaluation. Within
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Figure 6.15: Real DL Speedup: L1 and L2

the nodes, we also make frequent accesses to fields whose offset distances to the begin of the node are

larger than the cacheline size. As a result, most DLs will appear when traversing theLINKLIST —a

step that simplifies the need to precisely identify DL locations. For the workload that can be used to

overlap with DLs, we use a simple integer accumulator through a loop (INT-ADDs). By varying the

loop’s trip count, we can easily control the granularity of the workload to make it ideally suitable for

tolerating L1-miss only latency, L1-hit-and-L2-miss latency, or L1-and-L2-miss latency. We make this

workload independent of the DL’s return value so the speculative overlapping has the potential to scale

up to the limit of the respective cache-miss cycles. We make the loop’s trip count an input-dependent

parameter to destroy potential compiler optimizations applicable on this critical workload-control loop.

To exacerbate the situation, we randomize the starting address of each node, which helps to undermine

the hardware prefetcher. By adjusting the number of nodes inthe LINKLIST , we achieve the effect of

either polluting only the L1 cache (L1-DL), or polluting both L1-and-L2 caches (L1L2-DL) through

a single linklist traversal. The empirical list size we use is 4K nodes for L1-DL and 2M nodes for

L1L2-DL, respectively. We useRDTSC [1,63] for fine-grain time measurement.

The machine used for evaluating the micro benchmarks has a single-core 3.0GHz Pentium-IV CPU,

with a 16KB 4-way set-associative L1 data cache, a 12KB 8-wayset-associative L1 instruction cache,

and a 512KB 8-way set-associative shared L2 cache. The cache-line size is consistent at 64B across all

levels of cache. Each measurement data point is the arithmetic average of at least five independent runs.
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6.4.2 Performance of Micro Benchmark

Figure 6.14 shows the relative speedup of overlapping L1 DL using LINKLIST with 4K nodes. The

workload to overlap with DL is a loop performing accumulation of integer adds (INTADDs, the loop’s

trip count is shown on the x-axis), while the y-axis gives therelative speedup. Figure 6.14 is very similar

to the theoretical prediction of L1 speedup curve given in Figure 6.11. It reaches its maximum at around

45% relative speedup while overlapping roughly 70 INTADDs.

When performing testing on real machines, a workload that pollutes the L2 cache must already have

the L1 cache polluted. It is difficult to obtain the performance figure with a workload that overlaps with

only the L2 cache (L2 DL). We thus focus on workloads that overlaps with L1-and-L2 (L1-L2) DL.

Figure 6.15 shows the relative speedup result when overlapping with L1-L2 DLs using 2M nodes.

The workload to overlap with DL is the same integer-accumulation loop as the one used in Figure 6.14.

The difference is on the loop’s trip count, which simulates the granularity of the workload that overlaps

with the DL. Figure 6.15 roughly contains two stages. In stage one, the curve reaches around 35%

speedup at roughly 70 INTADDs. This agrees with our own measurement given in Figure 6.14 and it

is the effect of mostly overlapping L1 DL. In stage two, the speedup curve maintains its stability over

35% until roughly 750 cycles, with a maximum reaching very close to the 50% theoretical peak. This

closely matches the L1-and-L2 prediction given in Figure 6.13 where a wide range of 35%+ relative

performance is expected after stage one.

6.5 Challenge with Real-World Applications

We give theoretical analysis and predictions on speculative performance for overlapping execution with

various levels of cache. We verify this claim with micro benchmarks that can reach very close to the

theoretical peak and largely represent the performance trend that the theoretical model predicts. These

results are obtained under ideal conditions that (i) there is no failed speculation because the involved

predictor can yield 100% prediction accuracy, (ii) there are no cache misses within the simulated

workload that is used to overlap with the originalDL, (iii) the checkpointing framework generates

minimal overhead because the speculative workload has no dependency on the predicted value of theDL,

and (iv) the speculative workload is only fine-grain enough to sufficiently overlap with the targetingDL.

However, such ideal situations may not always hold under non-synthetic benchmarks on real machines.

We further investigate the possibility and feasibility of applying control speculation and data

speculation transformations we introduced earlier in thischapter to real-world applications (e.g., the
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DL-intensive applications in the SPEC2000INT suite). We expect some major challenges. First,

even with all checkpointing optimizations enabled, checkpointing overhead is non trivial and cannot

be ignored. Second, the success rate from branch predictionor value prediction plays an important

role because failed predictions will directly translate into failed speculation and trigger the expensive

checkpointing abort and recovery process. Thus a relatively low speculation success rate can render

the entire speculative scheme uninteresting. Third, the compiler needs to find work that is coarse-grain

enough and can potentially overlap with the entire latency of the identifiedDL. This ideally suitable

workload may not exist in real-world applications. Finally, the compiler needs to recognize an ideal

sweet spot to terminate speculative execution and maximizepotential speculation benefit. This is no

clear indicator on the exact location for such sweet spots.

6.6 In-depth Study Using MCF

MCF is a benchmark application from the SPEC2000INT suite.MCF frequently operates over linklist-like

type data structures and is known to have intensive DLs. We thus selectMCF to conduct an in-depth

case study that aims to explore manually enabled speculative execution overlapping with the significant

MCF DLs.

6.6.1 Insights of Significant MCF DLs

Due to its pointer-intensive nature, MCF is known to have multiple static significant DLs across its

entire code base. Using the same pintool-based cache simulator, we present the top six most-significant

MCF DLs in Figure 6.16 and provide insights and analysis of their characteristics.

First, most DLs reside within a pointer access that attemptsto fetch a field within a node structure.

Examining source code indicates that most DLs belong to codethat is part of a linklist traversal. All

linklist nodes are dynamically allocated with node size bigger than the size of a cache line on the CPU

architecture that MCF runs. This indicates little inter-node spatial locality and implies that conventional

prefetching techniques will not likely be effective for these DLs. Second, the majority of DLs are within

one level of pointer access (DL0 to DL4), with the only exception on DL5 whose behavior is through

multiple levels of pointer indirections. This matches the style of single-level linklist where most actions

happen within the single node that is currently being accessed. Third, DLs are more likely to happen

within a frequently-accessed field of a big node structure whose size is larger than the cache-line size.

Knowing the size ofarc is 32B (DL1 to DL5) and the size ofnode in MCF is 60B (DL0), they are
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(b). DL1: implicit.c:250, DL2: implicit.c:252

while( arcin ){

tail = arcin->tail; // DL 1

if( tail->time + arcin->org_cost > latest ){ // DL 2

arcin = (arc_t *)tail->mark;

continue;

}

…

}

(a) DL0: mcfutil.c:86

while( node != root ){

while( node ){

if( node->orientation == UP ) // DL0

node->potential = node->basic_arc->cost + node->pred->potential;

else{

node->potential = (node->pred)->potential -node->basic_arc->cost;

checksum++;

}

…

}

(c) DL3: mcfutil.c:80

cost_t compute_red_cost( cost_t cost, node_t *tail, cost_t head_potential )

cost_t cost; node_t *tail; cost_t head_potential;

{

return (cost - tail->potential + head_potential);   // DL3

}

(d) DL4: pbeampp.c:191

for( ; arc < stop_arcs; arc += nr_group )

{

if(arc->ident > BASIC ) { // DL4

red_cost = bea_compute_red_cost( arc );

…

}

}

(e) DL5: pbeampp.c:41

cost_t bea_compute_red_cost( arc_t *arc ){

return( arc->cost - arc->tail->potential + arc->head->potential); // DL5

}

Figure 6.16: Significant DL locations in MCF

either equal-to or larger-than the cache-line size (32B) ofthe machine that we conduct analysis and

evaluations. Loading a different linklist node is more likely to cause cache misses on such architectures

because it is difficult for the cache sub system to predict andthen prefetch the address of thenextlinklist

node when the nodes are dynamically allocated. Finally, when there are multiple levels of pointer access

(DL5), it is more likely to be a DL because such accesses are more unlikely to remain in cache.
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Predictor Accuracy Speculative Performance

pred+ckpt+nousepred 100% -0.14%

branch always taken 96.35% -0.51%

const value(1) 94.66% -1.33%

last value 91.3% -1.36%

const value(0) 3.65% -1.49%

const value(2) 1.69% -2.43%

always predict wrong 0.0% -2.45%

Table 6.3: Prediction accuracy and performance impact for MCF:DL4

6.6.2 Speculation over MCF DLs

We further investigate the potential for compiler-based data speculation and control speculation to

tolerate DL latency, focusing on these significant DLs in MCF. Any speculation over DL that delivers

performance benefits has to satisfy a critical condition: the DL’s value must be highly predictable. Any

low value prediction accuracy effectively renders the speculation unattractive due to the overwhelmingly

expensive recovery overhead from failed speculations. Of the three DLs best-suited for data speculation

in MCF (DL1, DL3, and DL5), their data values are too sparse and random. As an unfortunate result, all

three have prediction accuracies that are too low to justifyfurther exploration. For the three control

speculation cases (DL0, DL2, and DL4), DL0 and DL2 are also too unpredictable; however DL4

presents an interesting case. Although it appears to be a control speculation, this DL has only three

different integer data values (0 : 3.65%,1 : 94.66%,2 : 1.69%) across the entire MCF execution. In

Table 6.3, we present all branch predictions and value predictions we have explored on DL4, as well as

their respective prediction accuracy. It is easy to see thata static branch predictor that always predicts

taken (true) yields the highest DL4’s prediction accuracy (96.35%) in reality.

The 100% accuracy (pred+ckpt+nousepred) represents an ideal case where prediction and check-

pointing are both enabled and aggressively optimized, but the predicted value is not actually used.

Hence this case merely measures the speculation (checkpointing and value prediction) overhead without

benefiting from any speculative overlapping. This case results in only a tiny slowdown of 0.14%,

highlighting the combined efficiency of our checkpointing framework and the value prediction. Various

predictors yield vastly different prediction accuracies,ranging from 96.35% for a static always-taken

branch predictor (always predicts true), to 94.66% for a constant value predictor (always predicts
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a constant value one), to 91.3% last-known value predictor (always predicts the last value, with

an immediate value update for any incorrect prediction), to3.65% for a constant value predictor

(always predicts a constant value zero), and finally to 1.69% of a constant value predictor (always

predicts a constant value two). All predictions that yield realistic accuracies are from real predictors

(prediction accuracy range between 0% and 100% in Table 6.3)embedded in fully functional speculative

execution environments with error checking and failure recovery enabled. Thespeculative performance

column shows steady performance degradations with the everdecreasing prediction accuracy. This

matches our expectation that low prediction accuracy triggers failed speculations that can potentially be

overwhelmingly expensive.

A small overall slowdown of 2.43% (with 1.69% prediction accuracy) is derived from a much

larger slowdown factor within the function where the speculation occurs. This is the worst case of a

realistic low-accuracy predictor can cause in MCF. The row with 0.0% prediction accuracy is achieved

by constantly predicting a wrong value (data value of -1), which is neither in the distribution of available

values (Table 6.3) for value prediction, nor contributes toany success in branch prediction (Figure 6.16,

DL4 case). Thus the global slowdown of 2.45% represents the worst-case performance lower bound

that an always-failing speculation over DL can possibly cause.

A few critical conditions need to be satisfied simultaneously in order for a speculative scheme to

gain potential performance. This includes(1) highly-biased branch prediction or extremely accurate

value prediction toward selected speculative region;(2) overlapping code region that is coarse-grain

enough to closely match the speculation (DL) latency and compensate checkpointing overhead;(3)

no control-flow terminating instructions within the overlapping code region which can prematurely

terminate speculative execution,(4) no reuse of DL’s value within the speculative region, and(5) no

additional hidden DLs in the speculative region that are covered by a leading DL. Among the three MCF

control-speculation cases (DL0, DL2 and DL4), DL4 is the only one that yields prediction accuracy high

enough and worthwhile to conduct further investigation. Unfortunately, DL4 has only a small amount of

computation to potentially overlap with (Figure 6.16). This code region is too fine-grain to completely

hide the long-latency the DL caused while tolerating the software checkpointing overhead. In addition,

DL4 is a leading DL—a DL that covers additional memory loads whose code distances to DL4 are

within the cache-line size. Compiler transformations to enable speculative execution on DL4 breaks

its delinquent-load nature, but exposes additional DLs that are otherwise hidden and covered by the

leading DL (DL4). Leverage over control speculation or dataspeculation, we manage to eliminate

the leading DL (DL4) which comes at the expense of exposing additional DLs that used to be hidden
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under shadow. As a result, control speculation on DL4 gives no positive performance despite its high

prediction accuracy and our highly efficient software checkpointing framework.

6.7 Summary

In this chapter, we conduct a thorough investigation of our first checkpointing application—overlapping

speculative execution with delinquent loads. We present theoretical performance analysis that models

speculative execution overlapping with DLs. Based on this model, we predict that the relative theoretical

speedups will be around 50% for overlapping with L1-and-L2 cache misses. We verify this theoretical

prediction with synthetic benchmarks that can achieve veryclose to the predicted peak performance.

The verification results are obtained using a macro benchmark on real machines under ideal speculative

conditions. Motivated by the feedbacks from the micro benchmark, we further conduct an in-depth

study of real-world software-only speculation using all possible significant DLs in MCF, including

various predictors, speculative transformations, and efficient software-only checkpointing. We find

that not all DLs are suitable candidates for speculation. Within those suitable candidates, the amount

of computation that can overlap for speculative execution is likely too fine-grain to compensate for

checkpointing and value prediction overhead.



Chapter 7

Checkpoint-Enabled Debugging and

Backtracking

In chapter 3 and chapter 4, we introduce a large and comprehensive checkpointing transformation and

optimization framework that enables fine-grain checkpointing and reduces its associated checkpointing

overhead through aggressive compile-time analysis and optimizations. Our compiler-based fine-grain

checkpointing infrastructure provides a low-cost and software-only platform that is necessary to support

many applications. In chapter 6, we give a detailed analysisof our first checkpointing application—

overlapping execution with delinquent loads. In this chapter, we introduce two more interesting

applications that leverage our checkpointing support to both gain distinct functionality and benefit from

much reduced overhead. These applications include checkpoint support for debugging, and checkpoint-

enabled automatic software backtracking.

7.1 Checkpoint-enabled Debugger

7.1.1 Overview

A debugger is a software program that helps programmers to identify and resolve software bugs. A

normal debugging session begins with a user placing breakpoint(s) at designated program location(s)

before launching a program inside a debugger. When the program starts its execution and stops at

each breakpoint location, the programmer can examine the application’s logic and states, trying to

identify the root cause of the bug that is under investigation, as well as attempting a fix. However,

once execution passes a certain breakpoint, it is usually difficult to rewind execution back to a previous

93



CHAPTER 7. CHECKPOINT-ENABLED DEBUGGING AND BACKTRACKING 94

32

P: root cause of a bug

Q: place where the bug manifests

(a user or programmer notices the bug 

at this point)
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(1)

(2)

(3)

Figure 7.1: Overview: checkpointing support for debugging

program location, although a user may often find that the rootcause of a bug is likely located close

to the location of a previous breakpoint that execution has just passed by. Frequently restarting

execution can be impractical in occasions where it may take an arbitrarily long time to again reach

the suspicious bug location. Moreover, the bug may not be always reproducible under some certain

execution environments.

Debuggers enhanced with our checkpointing support can helpalleviate this situation. We expose the

checkpointing APIs on the source-code level so that a programmer can selectively mark a checkpoint

region that likely contains the root cause of the bug. The programmer first inserts an end-region

marker slightly after the location where the bug manifests.This is an easy step because the bug’s

triggering location is well known to the programmer. This isusually the place where the programmer

notices the application’s abnormal behavior: generating acore dump, triggering an assert, issuing some

error or warning messages to the console, printing some messages that are apparently wrong, etc.

Properly identifying a start-region position that just includes the root cause of the bug requires some

understanding of the code as well as an educated guess. The region needs to be big enough to contain

the root cause of the bug, but at the same time cannot be overlylarge so that the programmer gets lost in

an overwhelming amount of unrelated details. Even though aninitial begin checkpoint-region marker

placement may not always be ideal, we find through our own experience that it will quickly converge to

the right position within very few iterations. In practice,we often place breakpoints overlapping with

the checkpoint region boundaries. Once execution reaches the end of a checkpoint region, the matching
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Index Checkpoint Function Explanation

1 start ckpt() begin a new checkpoint region

2 stopckpt(bool b) finish current checkpoint region by either commit or abort checkpoint

3 commit ckpt() commit current checkpoint

4 abort ckpt() abort current checkpoint

Table 7.1: Checkpointing APIs exposed to debugger

breakpoint will stop the program’s execution. At this moment, the programmer has the opportunity

to decide the next action to take over the debugger’s commandinterface: finish debugging this region

by issuing astop ckpt command, or rewind execution to the beginning of the region by issuing an

abort ckpt command. This process iterates until the root cause of the bug is successfully uncovered.

Figure 7.1 shows the checkpointing-enhanced debugging process operating over a user-identified

checkpointing region. When a normal program execution reaches program pointT (the checkpoint

begin position), checkpoint-enabled execution starts. Program pointT needs to be a position earlier

than the root cause of the bug. When program is executing at position T, we consider it is in a bug-

free mode. Execution propagates along checkpoint-enabledpath (1) covering the root cause of the

bug P. Note that the root cause of the bug is triggered, but doesn’tmanifest immediately. Execution

continues after the root-cause position along path (2), andfinally reached the program positionQ where

the programmer notices the bug (bug manifestation point). The programmer can conduct any normal

debugging activities along the execution paths after entering the checkpoint-enabled region. At program

locationQ, the programmer can selectively decide the next action. If the programmer decides to finish

the current checkpoint and resume normal execution, acommit ckpt command is issued. Alternatively,

if the programmer plans to rewind execution to the begin of the checkpoint region (along path 3) and

re-examine code in this section with more debugging activities, anabort ckpt command is issued.

We present the set of relevant checkpointing APIs in Table 7.1. We provide these APIs in the form of

C programing language source code prototype, thus a user can invoke a particular checkpointing service

by calling its function’s name on the debuger’s command-line interface. Functionstart ckpt starts

a new checkpointing region by resetting all internal buffers and be ready to conduct backup actions.

Function stop ckpt(bool) finishes the current checkpoint region, with a boolean type argument

indicating the proper action. When the boolean argument istrue, the system will commit the current

checkpoint; otherwise when the boolean argument isfalse, the system will abort the current checkpoint

and rewind execution to the begin of the checkpoint region. The programmer is responsible for making

the proper decision on whether to commit or abort the currentcheckpoint. We provide two additional
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Algorithm:
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Figure 7.2: Overview: checkpoint-enabled software backtracking using VPR

API functions to further refine and simplify thestop ckpt process:commit ckpt commits the current

checkpoint, andabort ckpt aborts the current checkpoint, respectively.

7.1.2 Benefit

Debuggers enhanced with our checkpointing support gain theability to rewind execution to a

previously specified program location that a programmer identifies. It allows rewinding over regions

of unconstrained size because our checkpointing scheme supports regions with arbitrary granularity

and complexity. Our checkpointing scheme buffers fine-grain program changes into main memory

and can dynamically grow the checkpoint buffer under demand. The checkpointing infrastructure also

supports unlimited retries. This helps avoid all problems related with repetitively reproducing the bug

under a precise bug-trigger environment, as well as thelong-latencyprocess related with restarting

the application. A checkpoint-enhanced debugger helps to reduce develop-run-debug cycle time. This

enhanced functionality and increased ease in debugging caneasily convert into improved programmer’s

productivity in the process of identifying, isolating and fixing software bugs.

7.2 Automatic Backtracking Support for VPR

Backtracking refers to a set of algorithms that search for solutions in a given space of possible choices.

The final solution of a backtracking algorithm is built upon asequence of incrementally improved partial

solutions, where each step either makes a guaranteed forward progress or maintains its current state
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that is free of regressions. When evaluating an individual step that can potentially make a positive

contribution to the final solution, the partial result is either committed (incorporated into existing partial

solution) or discarded, depending on the evaluation resultbased on this individual step. Because the

backtracking may perform intensive access to global data structures, the implementation of a back-

tracking algorithm usually cannot be contained in any stack-based design. We conduct our 3rd case

study of checkpointing-supported applications using automatic software backtracking algorithm inVPR.

7.2.1 Overview

Versatile Placement and Route (VPR) [9, 54] is a software CAD tool for generating high-quality circuit

layouts on array-based FPGAs. VPR places and routes on a widevariety of FPGAs and facilitate

comparisons among different architectures. VPR’s placement phase denotes to the process of placing

various circuit components at different locations on the circuit board, where the routing phase is the

process of connecting placed components through wiring while respecting all limitations and constraints

in a given FPGA board. VPR implements a software backtracking algorithm in its placement phase and

we present a simplified view of this backtracking process in Figure 7.2.

VPR’s simulated annealing-based placement begins its processing with a set of circuit blocks in

their original locations. The algorithm involves choosinga pair of blocks at random, swapping their

positions, and evaluating the impact of this swap on a chosencost function. E.g., Figure 7.2-(a) presents

a given set of circuit board that has a total of four circuit blocks (A to D) requesting a placement.

Among these available circuit blocks, VPR’s placement algorithm randomly selects two circuit blocks

(circuit A and circuitB) for swapping. If these two circuit blocks happen to reside on different nets,

the pending swapping (backtracking) action will have a higher possibility of success, although the

placement algorithm is not aware of this fact. The algorithmproceeds by evaluating the newly generated

circuit based on this attempted swap. Evaluation criteria include estimating new placement cost when

trying to fit the new circuit, power and heat dissipation based on the swap, as well as any impact on

clock frequency and resource constraints. Depending on theimpact (evaluation result), the swap may

either be accepted or rejected. We show in Figure 7.2-(b) that the attempted swap of circuit blocksA and

B is accepted. Thus this temporary swap becomes permanent by incorporating this partial order into the

current solution. This process repeats until the cost function converges to a satisfactory value.

Current implementation of VPR’s backtracking algorithm needs tomanually save all necessary

program states before attempting a swap, as well as backup all temporary results along all program

paths when evaluating the attempted swap. Shall a discard happen, it manually restores all saved
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program states from various complex data structures to undothe attempted swapping action. The code

that implements VPR’s backtracking algorithm is within thetry swap function—segments ofC source

code that are reasonably big and span across roughly 300 lines, with access to global variables, loops,

pointer-chasing data structures and user-defined functioncallsites. Each user-defined function callsite

within try swap function needs to invoke its checkpoint-enabled version, which coexists with its non-

checkpoint enabled version that will be called from outsideof the checkpoint region.

Under the currentVPR implementation, it is not an easy task to manually enable instrumentation

over such a coarse-grain code region while providing correctness guarantees. It can easily become a

maintenance nightmare for future development if a developer merely has the code but lacks sufficient

training or background on the existing algorithm and its related data-structure implementations. VPR

designers need to understand not only the placement algorithm, data structures, but also pay close

attention to the details of manually saving and restoring necessary program states. Maintaining this

manually-instrumented backtracking code will easily become a major productivity and backward-

compatibility bottleneck when a programmer attempts to revise the evaluation algorithm or improve the

associated data structures. This is a tedious and error-prone process that often has a negative impact on

productivity, especially when improving the algorithm that results in necessary data structure changes.

7.2.2 Benefit

By exposing the compiler-friendly checkpointing APIs at the source-program level, our fine-grain

checkpointing framework releases VPR designers from caring about fine details of conducting manual

checkpointing instrumentation over the backtracking coderegion that can potentially be arbitrarily large

and complex. VPR designers can ignore all details of manual checkpointing and instead simply mark

the entire back-tracking function or region as a checkpointing program construct. Our checkpointing

framework will then automatically transform the code to enable and optimize checkpointing over the

region. This is a simple and straightforward process of manual region marking followed by automatic

tool transformation. It greatly simplifies the previously tedious actions that a programmer has to

manually instrument over all possible code paths that the checkpoint-enabled VPR program may

exercise. VPR designers can instead focus on improving the algorithm itself and leave all tedious

details to our compiler—a step that simplifies application programming interface, reduces programming

difficulties, lowers the possibilities of introducing bugsdue to the overwhelming amount of details and

complexity that a programmer has to face when conducting manual instrumentation, thus improving

overall end-user productivity.
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7.3 Test Environment

Our compiler-based checkpointing framework builds on the LLVM [37, 38] open-source compiler

infrastructure release 2.9 1. All analyses, transformations, and optimizations are organized as LLVM

passes with explicitly specified dependencies using LLVM’sbuilt-in pass manager. This guarantees

not only the proper ordering among the passes from our checkpointing framework, but also the smooth

interactions with a large number of existing LLVM passes that are designed for general optimizations

and have no particular design goal for checkpointing. We usedebug builds for development and sanity

test and release builds for the performance test. For evaluating checkpointing support on debugging, we

use BugBench [41]—a collective suite containing various known software bugs with program inputs that

trigger individual bugs. We select five BugBench applications that are both single-threaded programs

and contain only buffer-overflow bugs. To evaluate applications with checkpoint-enabled software

backtracking support, we use the most recently released version of VPR-5.02 [9], as described in

section 7.2. We conduct all measurements on an Intel platform, with a Core i7− 920 CPU, 4GB of

DDR3-1600 RAM, running a fully patched Debian-6-i386 (kernel 2.6.32) with g++ version 4.4.5. All

other prerequisite packages for LLVM are on their highest levels of supported versions.

7.4 Program Partition for Checkpointing Regions

The automatic checkpointing process relies on a manual stepto partition programs for checkpointing

regions. We manually convert each of our test application into Single-File Application (SFA) form and

create checkpointing regions with respect to individual programs.

7.4.1 Checkpoint Region Partition

We partition each suitable application into three levels ofgranularity for checkpointing: small (S) region,

medium (M), and large (L). After converting each selectedBugBench application into itsSFA form, we

enclose the root cause and manifestation point of each bug ina region setup with minimal code span. We

call this the small (S) region. We then grow the small region by both forward extending and backward

extending the region boundaries, covering increased granularity and complexity of the source code. The

result is a medium (M ) region that contains a significant portion of the program, and a large (L ) region

1We started our checkpointing work when LLVM was on its 2.7 release. LLVM has two new releases every year, thus we
have kept upgrading our work when a new release became available. We finish the intensive coding stage and stabilize the
checkpinting framework when LLVM was in its 2.9 release.
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Applications Region Avg. insts Avg. source lines Execution Entries

bc-1.05

S 2.2 K 3 3

M 208 K 430* 1

L 305 K 1200* 1

gzip-1.24

S 0.9 K 1 1

M 2.7 K 89* 1

L 194 M 119* 1

man-1.5h1

S 1.4 K 14 1

M 1.6 K 30* 1

L 645 K 89* 1

ncompress-4.2

S 0.8 K 2 1

M 149 K 149* 1

L 231 K 163* 1

polymorph-0.4.0

S 1.5 K 2 1

M 3.1 K 49* 1

L 148 K 76* 1

VPR-5.02 M & L 67.1 K 268* 371 K

Table 7.2: Benchmarks and Checkpoint Region Properties

that is even coarser grain and can potentially cover the entire application.VPR has only one checkpoint

region for properly implementing the back-tracking algorithm within itstry swap placement function.

However, forVPR in particular, we have two checkpointing regions: a medium(M) region and a large

(L) region, depending on whether the region is marked from the function callee’s perspective (M) or the

caller’s perspective (L), respectively.

7.4.2 Checkpoint Region Properties

Table 7.2 summarizes the checkpoint regions’ properties for each benchmark application after its region

partition. Checkpoint regions are vastly different in size. For example, a small region usually contains

around 1000 instructions and spans two or three lines of source code, while a large region can contain up

to 195 million instructions (the entire gzip-1.24 when running under its given input) and covers 1000+
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Apps Region Inline RRE FPRE HRE Hoist Aggr NRESE DynOpti ArrayOpti

bc-1.05

S 0 0 0 0 0 0 0 0 0

M 17 21 56 3 2 9 0 70 0

L 63 68 63 12 2 9 0 114 0

gzip-1.24

S 1 0 0 0 0 0 0 0 0

M 2 35 16 9 10 0 1 0 0

L 2 35 16 10 10 0 1 0 0

man-1.5h1

S 7 0 0 0 0 0 0 0 0

M 8 0 0 0 0 0 0 0 0

L 79 2 19 0 0 0 0 18 0

ncompress-4.2

S 1 0 0 0 0 0 0 0 0

M 3 0 0 0 0 0 0 0 0

L 18 7 3 0 0 0 0 0 0

polymorph-0.4.0

S 1 0 0 0 0 0 0 0 0

M 1 0 0 0 0 0 0 0 0

L 6 2 3 0 0 0 1 0 0

VPR-5.02 M 0 20 0 7 0 0 0 0 0

L 0 20 0 7 0 0 0 0 0

Table 7.3: Compile-time statistics of individual checkpointing optimizations

lines of source code (bc-1.05).2 Our region partition scheme is flexible because we are capable of

supporting program regions with arbitrary size and complexity. Users can extend or shrink checkpoint

regions to match the requirement, provided the begin-region marker (start ckpt) alwaysdominates

the stop-region marker (stop ckpt). More details on checkpoint region-partition requirements are

available in section 3.3.1.

7.5 Static Evaluation of Checkpointing Optimizations

Once a compiler optimization identifies an opportunity thatsatisfies the condition(s) it is examining, it

will perform the designated transformation(s) on that opportunity at compile time. Each optimization

pass keeps a number of counters to track important optimization principles and will increase the

corresponding counter each time when the optimization matches a suitable principle after completing a

designated transformation. Thus when a optimization pass finishes the processing of a SFA application

2Note thatM andL regions always contain user-defined functions within our selected BugBench applications, thus the
number of source lines presented in Table 7.2 marked with * only indicates the lower bound of possible source-code span.
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at its input, it can quickly discover whether this optimization is effective by examining its internal

counters. We call these compile-time counter statisticshits. After compiling a test application, a

LLVM pass can simply check the respective counter’s value and rapidly discover the effectiveness of

the optimization. The higher the counter value(s), the morefrequent the compiler caught opportunities

from the given input program and performs desired transformations. When the counter shows value

zero (no hits), it indicates the respective transformationdoesn’t catch any opportunity (not effective)

after processing the given test input.

Table 7.3 gives thehits values for each testing application under all available checkpointing

partitions. These are the compiler’s compile-time statistics when our checkpointing infrastructure

independently performs individual optimizations on SFA inputs with checkpointing region partitions.

It provides a quick statistical preview of whether an optimization is effective on certain benchmarks and

sets expectations of different optimizations on input applications. We consider a particular optimization

a successif the hit counts in any given column is not always zero. Even a low counter value could

indicate a significant transformation event (e.g., a transformation that happens within a loop could be

potentially significant, however we cannot tell from the hitcounter statistics alone.). The only always-

zero column is array optimization (ArrayOpti). Despite its aggressive algorithm by design,ArrayOpti

doesn’t catch any suitable opportunity from the given BugBench programs on the provided input data.

All other checkpointing optimizations effectively perform transformations and we can quantitively

measure their results through testing.

7.6 Comparison with Existing Checkpointing Solutions

In this section we compare our compiler-based checkpointing solution with two alternative software-

only approaches to checkpointing that are both considered state of the art in their own respect: a coarse-

grain checkpointing library, and a fine-grain software transactional memory scheme supported by a

commercial compiler.

7.6.1 Comparison with libCKPT

Library-based checkpointing schemes backup all memory used by the running process, thus the

checkpointing overhead closely correlates to the size of memory the process uses (memory footprint)

at checkpointing time. We use libCKPT [53] as a representative of a recent library-based software-only

checkpointing solution.
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Figure 7.3: Overall Coarse-grain comparison: our base checkpointing solution vs. libCKPT
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Figure 7.4: Improvement on time to take a checkpoint
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Figure 7.5: Improvement on time to restore a checkpoint
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Figure 7.6: Improvement on checkpoint buffer-size reduction



CHAPTER 7. CHECKPOINT-ENABLED DEBUGGING AND BACKTRACKING 105

0

0.5

1

1.5

2

2.5

3

3.5

bc-1.05-
bug1

bc-1.05-
bug2

bc-1.05-
bug3

gzip-1.2.4 man-1.5h1 ncompress-
4.2.4

polymorph-
0.4.0

average

Im
p

ro
v
e

m
e

n
ts

: 
#

 I
N

S
 t

o
 t

a
k

e
 a

 c
h

e
c

k
p

o
in

t 
(L

O
G

1
0

 S
c

a
le

)

BugBench Applications

Figure 7.7: Improvement on number of instructions to take a checkpoint
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Figure 7.3 shows an overall comparison between our compiler-based fine-grain checkpointing

scheme andlibCKPT’s library-based coarse-grain checkpointing approach. We place the selected

BugBench applications on x axis, and examine on y axis improvements over a total of four different

checkpointing performance-related aspects from each application: (i) time to take a checkpoint, (ii)

time to restore a checkpoint, (iii) checkpointing buffer size, and (iv) number of instructions needed

to conduct a checkpoint. Figure 7.3 presents improvements made from our fine-grain checkpointing

scheme over thelibCKPT baseline. Due to the significance of the performance improvement, all data

presented in Figure 7.3 are on logarithmic scale. Note that since we are conducting checkpointing

performance analysis between a fine-grain scheme and a coarse-grain approach, Figure 7.3 represents

only our checkpointing compiler transformations without activating any checkpointing optimization(s).

Figure 7.3 also provides arithmetic averages for each category for a quick overall comparison. We

further separate Figure 7.3 into four individual figures (Figure 7.4 - Figure 7.7 respectively), each

representing its own category for detailed zoom-in views.

Figure 7.3 shows that our fine-grained checkpointing approach can provide over 1000X im-

provement when comparing with coarse-grain libary-based checkpointing, for both the time-to-take

a checkpoint and the time-to-restore a checkpoint. The improvement in checkpoint buffer size and the

number of instructions needed to service a checkpoint are within the range of 100X to 1000X.

This huge improvement on overhead reduction is mainly from two aspects. First, it is the

difference between checkpointing to permanent storage (hard disk, in the case oflibCKPT) and

checkpointing to main memory (our fine-grain checkpointing). The performance difference between

the two storage systems reflects into the difference of checkpointing performance. Second, it is the

difference between coarse-grain checkpointing (libCKPT) and fine-grain checkpointing (our scheme).

Coarse-grain checkpointing has high overhead by copying entire memory range or complete objects.

In libCKPT, it copies the entire range of the running process’s memory footprint. In our fine-grain

checkpointing, we only copy a memory location to our backup buffer if and only if there is at least

one write into it. Thus we checkpoint only the bare minimum tofacilitate a loss-free recovery. A

comprehensive optimization framework aims to further reduce this overhead. The huge overhead

reduction shows great performance potential for conducting checkpointing over fine granularity.

7.6.2 Comparison with ICCSTM

We further compare fine-grain software checkpointing overhead through supporting single-threaded

speculative optimization between Intel’s Software Transactional Memory [2, 57] (ICCSTM) and our
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compiler-based checkpointing solution.ICCSTM is a software solution for supporting optimistic

parallelism and bases its support on Intel’s production-quality C/C++ compiler. Just like other STM

systems,ICCSTM supports speculative parallel execution through write-buffering and dependence

tracking on read set and write set from individual thread formultiple threads at run-time. The differences

in performance between the two software packages are expected to come from the different focus and

specialization on their respective main use cases.

Figure 7.8 comparesICCSTM to our baseline compiler-based checkpointing solution (with no

optimizations). We find that our solution outperformsICCSTMin almost all cases. On average, our

solution outperforms the time-to-take a checkpoint forICCSTMby 5X, and the number of instructions

needed to take a checkpoint by 8X. The largest difference is in improving (reducing) checkpoint buffer

size, asICCSTM’s buffer is almost 60X larger than that used for our scheme.

ICCSTMis mainly optimized to support program parallelization based on relatively short transac-

tional regions while our checkpointing scheme is optimizedto support single-thread speculation, or

debugging for larger program regions. Based on the limited description available [2, 57],ICCSTM

uses only basic compiler optimizations such as inlining anda very simple form of partial redundancy

elimination while our checkpointing scheme employs a comprehensive optimization framework, trying

to reduce overhead from all possibilities. Furthermore, tothe best of our knowledge,ICCSTMdoesn’t

optimize for the single-threaded speculative execution case. In this special case of speculation support,

tracking of a single thread’s read-set could be safely omitted. In contrast, our checkpointing scheme

benefits from being specialized for the single-thread case.Specifically, we track only the write set for

the speculative thread via an efficient implementation based on undo-logging. In the common case

where speculation is successful, undo-logging avoids expensive lookups on reads for matching prior

writes, and also the copies of writes to shared memory on commit.

Overall, it is expected that our fine-grain checkpoint support will have lower overheads, and/or better

cache behavior than a write-buffering STM such asICCSTM. Due to our undo-log design and aggressive

compiler optimizations under the single-thread application environment, our fine-grain checkpointing

scheme outperforms Intel’sICCSTMby a large margin.

7.7 Effectiveness of Checkpointing Optimizations

To evaluate our checkpointing optimization framework, we run each individual optimization over every

testing application’sM and L regions. We gradually increase the number of optimizationson each
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BEGIN

bool  bCont = true;

while (bCont) do

// preparation stage:

bCont = false; bCont |= doInline ();   bCont |= doPreOpti (); 

// Redundancy Eliminations:

bCont |= doRRE ();     bCont |= doFPRE ();    bCont |= doHRE ();     

// Hoisting:

bCont |= doHoist ();

// Aggregations:

bCont |= doSimpleAggr (); bCont |= doComplexAggr ();

// NRESE:

bCont |= doNRESE ();

// Dynamic Optimization and Array Optimization:

bCont |= doDynOpti ();  bCont |= doArrayOpti ();

// Post Optimizations:

bCont |= doPostOpti ();

end

END.

Figure 7.9: Algorithm of checkpointing optimization ordering

checkpoint region until all available optimizations are exhaustively applied. We focus our evaluation

on the effectiveness of checkpointing overhead reduction as measured by the following three metrics:

checkpoint buffer size reduction, reduction in the number of backup service calls, and optimization(s)’

impact on redundancy rate.

7.7.1 Optimization Ordering

Inline→ PreOpti→ RRE→ FPRE→ HRE→ Hoist→ Aggr

→ NRESE→ DynMeOpti→ ArrayOpti→ PostOpti (7.1)

When conduct testing on checkpointing optimizations, we always incrementally perform applicable

optimizations in a known-good order. This order needs to notonly intuitively satisfy all implicit and

explicit dependencies among different checkpointing optimization passes, but also naturally cooperate

with LLVM’s existing non-checkpointing optimizations. Wepresent the optimization’s ordering

algorithm in Figure 7.9.

As shown in Figure 7.9, the optimization ordering algorithmcontains a keywhile loop, where all

available checkpointing optimizations appear inside thisloop in a pre-determined order. Checkpointing

optimization passes perform their designated activities respecting the order they appear inside the while

loop. Each individual optimization will return a booleantrue value if it hits any opportunity and
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Figure 7.10: Optimization impact on checkpointing buffer size: M region

performs a designated transformation, andfalseotherwise. Thus the keywhile loop in Figure 7.9 will

break only if none of the existing checkpointing optimization conducts any effective transformation. We

also present the explicit single-pass checkpointing optimization order in formula 7.1 (the explicit order

within the keywhile loop).

Formula 7.1 is the default order to apply checkpointing optimizations and it naturally resolves all

implicit or explicit dependencies among optimization passes. This order is generated by LLVM’s pass

manager, but it is by no means the only applicable order. The optimization framework is flexible to

adopt any optimization order that resolves existing dependencies. For ease of comparison, the rest of

the evaluation on checkpointing compiler optimizations will respect this simple optimization ordering.

7.7.2 Checkpoint Buffer Size Reduction

Figure 7.10 and Figure 7.11 shows the compiler optimizationimpact on checkpoint buffer size when all

optimizations are incrementally and accumulatively applied while we follow the default optimization

order. The effectiveness of the optimizations depends on the region size, program structure (especially

loops and user-defined functions that havebackup operations), as well as store intensity within the

region. A larger region usually has more opportunities for optimization, thus we normally observe that

overall optimizations are more effective on large checkpointing regions than on medium regions. We

notice thatRRE is the most-effective single optimization among all available optimizations in the entire

framework. This is mainly due to its aggressive algorithm enhanced by the leader-hoisting step. As
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Figure 7.11: Optimization impact on checkpointing buffer size: L region
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Figure 7.13: Optimization impact zoom (L region): after FPRE (FPRE + HRE + . . . + ArrayOpti)

shown in Figures 7.10 and 7.11 respectively,RREreduces the checkpoint buffer size by almost 80% in

man (Medium region) and 92% inpolymorph (Large region). When optimizations are incrementally

applied, we observe a stable trend of buffer size reduction for bothM andL regions. The performance

results show that our compiler optimizations either exploit opportunities for optimization and hence

improve checkpointing efficiency after the optimization transformation, or keep existing checkpointing

performance without introducing negative effects that undermine the established gains (regressions).

We investigate and fine tune all checkpointing optimizationalgorithms to guarantee the regression-free

property. Overall, the optimizations reduce checkpoint buffer size by an average of 52% for theL

regions and 22% for theM regions.

SinceRREis the single most-effective optimization, we are interested in observing its individual

contribution, as well as separating it from other optimization passes and analyzing the individual and

combined behaviors of the rest of the available optimizations. Figure 7.12 shows azoom-ineffect

that isolatesRREfrom the remaining optimizations. By grouping the optimizations into two segments,

Figure 7.12 shows the optimization impact by only performing Inline andRRE, while Figure 7.13 shows

thepost-RREimpact for all remaining optimizations (fromFPREto ArrayOpti). Notice that we group

Inline andRREtogether and makeInline precedeRREbecauseInline is a prerequisite ofRRE. We thus

make them reside in the same group while respecting the pre-defined optimization ordering discussed

in section 7.7.1.

Figure 7.12 confirms our previous observation thatRREis the single most-effective optimization
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Figure 7.14: Optimization impact on backup call reduction:M region

among all available optimizations.RREalone reduces checkpointing buffer size by up to 92% in

polymorph (L) and more than 80% inman (L). On average,RREreduces around 50% of checkpointing

buffer redundancy inL regions. Figure 7.13 presents the post-RREeffect. It shows the behaviors and

performance of all remaining optimizations and the resultsare normalized afterRRE. In post-RREera,

all optimizations matter. However, we cannot find any singleoptimization that has a similar impact.

E.g.,DynMemOptidelivers around 6.5% in bc, while FPREdelivers almost 8% inman. The potential

impact largely depends on the nature of the testing application and the optimization opportunities the

checkpointing region exposes. When an optimization discovers a matching opportunity, it transforms

the code and makes the performance impact (e.g.,DynMemOptiin bc andFPRE in man). Otherwise

it maintains its regression-free property. Combined post-RREoptimizations deliver an accumulative

average of slightly more than 3% forL regions. It has similar impact onM regions.

7.7.3 Backup Operation Reduction

In addition to buffer size reduction, our compiler optimizations also reduce the total number ofbackup

calls—another metric for estimating and evaluating the optimization impact on checkpointing overhead

reduction. Reduction on the total number ofbackup calls closely correlates with the reduction of

checkpointing buffer size, since the optimizations achieve both goals when reducing checkpointing

overhead. Though the correlation may not be precisely linear, we expect that they will be close

enough to present similar behaviors in optimization impacts. Figure 7.15 and Figure 7.14 show that
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Figure 7.15: Optimization impact on backup call reduction:L region

our optimizations reduce the total number ofbackup calls by an average of 36% for theL regions and

an average of 15% for theM regions respectively, after all optimizations have been applied following

the same scheduling order discussed in section 7.7.1. We notice thatRREis the most effective single

optimization within the entire optimization framework in both cases. This confirms with our observation

in section 7.7.2. Thebackup call reduction closely correlates to the optimization impact on buffer size

reduction presented in Figure 7.11 and Figure 7.10.

7.7.4 Impact on Redundancy Rate

After exhaustively applying all available optimizations,it is important to understand the amount of

remaining redundancy in the checkpoint buffer. This is a measurement to predict potential future

optimization opportunities that may remain. We quantify this by studying the optimizations’ impact on

the region’sredundancy rate(RR), as defined earlier in section 5.4. Figure 7.16 and Figure 7.17 illustrate

the changes ofRRmade by the optimization framework for bothM andL regions while incrementally

applying available optimizations.

Figure 7.16 indicates that our optimizations are more effective in reducing redundancy rate inM

regions, since theRR reductions inM regions are more significant and the highestRR in M regions

is around 18% (man) after all optimizations. This is because there are fewerbackup calls (and less

redundancies) inM regions. Thus an optimization that removes a smaller numberof backup calls can

potentially generate a bigger impact on redundancy rate reduction. Comparing withM regions, the
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Figure 7.18: Checkpoint buffering overhead on VPR’s tryswap function

optimizations can normally remove morebackup calls in L regions. However, since there are many

more redundancies to eliminate, the optimization’s effectiveness on reducing redundancy rate is not

as significant as those inM regions. Notice that in the case ofL regions, three applications (gzip,

ncompress, andman) still have very highRR even after applying all available optimizations (92%

for bzip, 72% for ncompress, and 39% forman). For each case, we manually examine theLLVM

produced code after applying all available optimizations and attempt to analyze the root cause of this

high redundant rate. We conclude that this remaining-highRRis due to redundancy caused by extensive

use of pointers that our current optimization framework is incapable of handling. Effectively handling

backup operations over memory regions passed by pointers stronglysuggests the need of a precise

pointer analysis over a checkpointing region. The remaining highRRalso suggests potentially abundant

work that future research may continue to explore. We will highlight this as a potential future direction

in section 8.

7.8 Checkpointing Performance on VPR

Software-only checkpointing is not free: it comes with a cost on conducting memorybackup operations

that can potentially have negative impact on an application’s performance when the checkpointing

service is enabled. In this section, we report the performance result onVPR with activated checkpointing

service.
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Figure 7.19: Checkpoint buffering overhead across entire VPR

7.8.1 Performance of Different Buffer Schemes

Software checkpointing has negative performance impact onVPR because checkpointing incurs

software-only overhead that is not part of the original application. We present the negative performance

impact on checkpointing-enabledVPR on the granularity of its placement function (try swap) and over

the execution of the entireVPR in Figure 7.18 and Figure 7.19 respectively. For both ofVPR’s M region

andL region, we report the slowdowns ofVPR’s application performance after enabling checkpointing

when using all available buffering schemes, with and without checkpointing optimizations for each

possible buffering. We examine a total of four available buffering schemes: one-D array,PTD hash

table,Union hash table, andfixed-size(FS) hash table. Please refer to chapter 5 for more details on

individual buffering schemes. Under each available buffering scheme, we measure performance once

with all checkpointing optimizations turned off (NO OPTI), and measure performance again with all

checkpointing optimizations turned on (OPTI). Thus the values presented on y-axis are slowdowns

(in percentage), indicating the amount of relative overhead caused by checkpointing using different

buffering schemes. Figure 7.18 shows the performance normalized to VPR’s backtracking algorithm

(try swap function) only, and Figure 7.19 shows the same overhead normalized across the entireVPR.

It is clear that the one-D array buffer delivers the best overall performance (the smallest amount

of checkpointing overhead) for checkpoint-enabledVPR among all available buffering schemes. This

confirms with our previous analysis in section 5.5 that one-Darray performs the best when comparing

with hashtable-based schemes. When normalized toVPR’s backtracking function (try swap), one-

D array causes the mildest slowdown of around 50% (without optimization) and 45% (with full
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optimizations). Optimizations have a relatively small impact onVPR because the performance difference

between unoptimizedVPR and fully optimizedVPR is relatively insignificant. Among the three

hashtable-based buffering schemes, the one withUnion-type hash node performs the best. This again

complies with our former report on buffer-scheme analysis in section 5.5 thatUnion hashtable delivers

the best overall performance among all hashtable-based implementations. Notice that thoughUnion-

hash table outperforms the other two hashtable-based buffer implementations, its raw performance still

lags far behind one-D array buffering (600% vs. 50%).

Figure 7.19 presents the same information as those given in Figure 7.18, but under different scaling.

Figure 7.19 shows that the checkpointing overhead is normalized globally (across the entireVPR’s

execution), while Figure 7.18 shows the same checkpointingoverhead that is normalized locally (over

the try swap backtracking function only). Figure 7.19 shows that under global scale, one-D array

buffer indefinitely and universally exhibits the best overall checkpointing performance after applying all

available optimizations: a mild slowdown of 15% over both medium and large regions.

7.8.2 Fine Tuning on Hash-Table Schemes

Our checkpointing optimization framework shows non-uniformly distributed optimization effects: its

impact onVPR is less significant comparing with most applications in theBugBench suite. We intend

to explore further potential on reducing checkpointing buffer overhead by injecting application-specific

knowledge and conducting fine-grain and manual application-specific performance tuning.

We qualify that hashtable-based buffer schemes suffer fromtwo major performance bottlenecks:

(i) cache misses, and (ii) dynamic-memory management overhead. We thus focus our application-

specific fine-tuning efforts on these two aspects. First, we perform prefetching on hash table. We

gain checkpoint region-specific knowledge on the number of uniquebackup memory addresses from

profiling. By prefixing the number of hash buckets to slightlymore than the total number of unique

backup addresses, we guarantee that the average length of each bucket chain will not be more than

one (one or less). Second, we develop a custom dynamic memorymanager: managing an in-memory

custom-free list (CFL) through the use of a doubly linked list (linklist) of hash nodes. This custom

memory manager intercepts all dynamic memory management calls (malloc, calloc, realloc, and

free), and redirects them to the CFL whenever possible. Freeing an existing hash node will insert it at

the head of the CFL, while allocating a new hash node will always check for an available and suitable

node from the head of the CFL. If there is any available node inthe CFL, that node is returned instead

of mandating a real dynamic memory allocation at the runtime. By building a custom dynamic memory
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allocator, we eliminate most of the overhead related with dynamic memory management (allocation and

free).

Figure 7.18(b) and Figure 7.19(b) present the results of exhaustive manual efforts for application-

specific performance tuning. Theunion hashtable benefits the most from fine tuning: overhead

reduction from 600% to 300% (improves around 50% in Figure 7.18(b)). ThePDT hashtable also

benefit from this tuning effort: 970% to 550% (improves around 43% in Figure 7.18(b)). However,

fixed hashtable doesn’t benefit from the custom tuning because such tuning efforts have already been

built into its implementation details. By design,fixed hashtable already employs a custom memory

manager to complete its operations as necessary. Further more, its implementation detail is necessarily

and unavoidably conducting a form of the bucket-array prefetch operation. Notice in Figure 7.19(b)

that for the most efficient hashtable-based scheme (Union-node hash table) enhanced with all possible

application-specific fine-tuning efforts, its performancestill lags behind one-D array buffering by a fair

margin: 19% to 15%, respectively.

7.9 Summary

In this chapter, we introduce two additional interesting applications, namely checkpointing support

for debugging (Debugger) and checkpointing-enabled software backtracking using VPR (VPR). With

our efficient software-only checkpointing support, the applications are either obtaining improved

performance (Debugger, VPR), gaining new functionality that is not normally availableotherwise

(Debugger), or improving programmer’s productivity (VPR). With our fine-grain checkpointing support,

Debuggernow supports reverse execution, with unlimited number of retires and no need for program

restart. With our software-only checkpointing support that naturally adapts to program changes,VPR

developers can instead focus more on the algorithm and program logic, thus convert the automatic

compiler support for reduced development cycle time into improved productivity.

We present the checkpointing region partitioning scheme and give details on the checkpointing

region properties. We compare our software-only checkpointing work with existing solutions, including

a coarse-grain approach based onlibCKPT and a fine-grain approach based onICCSTM. We show

significant gains through overhead reductions by comparingwith libCKPT. We also show that by

focusing on aggressive compiler optimizations, we can outperform the highly competitiveICCSTM by a

large margin.

We selectBugBench and VPR as our representative benchmarks and evaluate checkpointing
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performance through our compiler transformations and optimizations. We show that the optimizations

are effective to reduce up to 98% of checkpointing buffer size and remove up to 95% ofbackup

service calls fromBugBench, at expense of 15% checkpointing overhead fromVPR. We further conduct

detailed comparison among all available buffer schemes andconclude that one-D array buffer is the most

efficient buffer scheme at expense of data redundancy. In most cases, one-D array buffer significantly

outperforms all hashtable-based buffers even after the latter receive heavy custom optimizations and

application-specific fine tuning.



Chapter 8

Conclusion and Future Work

Checkpointing is conventionally used as a system-level scheme to improve failover, and to enhance

reliability and security. The vast majority of checkpointing implementations are implemented in

software to checkpoint the entire application’s memory into persistent storage (normally hard disks)

and restore from the saved checkpoints to facilitate error recovery. Traditional checkpointing schemes

incur prohibitive overhead that render them inapplicable for any performance-sensitive application.

In this thesis, we propose a fine-grain software-only checkpointing scheme that is based on per-

store instrumentation enabled by compiler transformations. In addition, we design and implement a

comprehensive compiler optimization framework that takescheckpoint-enabled code and aggressively

optimizes it from many different perspectives, aiming to reduce checkpointing overhead to its minimum.

Our fine-grain software-only checkpointing scheme outperforms a state-of-the-art library-based coarse-

grain software-only approach by exhibiting 1000X+ less overhead. Our compiler optimizations further

improve our baseline checkpoint-enabled code by eliminating up to 98% checkpointing overhead.

We further explore three key applications that leverage ourfine-grain and compiler-based check-

pointing framework to enable unique functionality. These checkpoint-enabled applications expose

checkpointing APIs to user level to gain detailed user control, allow program backtrack to a previously

specified location for unlimited number of retires and free of restart, remove programmers from tedious

details of manual checkpointing instrumentation and better focus on improving the application itself.

The new functionality and enhancements made for programming and debugging tools can easily convert

into improved programmer productivity.

This thesis lead to the publication of a number of papers [67–70] and the public release of

ChuckPoint—source code of our fine-grain and compiler-driven checkpointing transformation and
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optimization framework based onLLVM, together with a PIN-based runtime library. The PIN-based

runtime library focuses on checkpointing functionality verification, profile-driven redundancy analysis,

and provides a handy platform for new opportunity exploration. The package release also includes

full source codes of benchmark applications (BugBenchand our micro applications) instrumented with

various checkpoint-region partitions.

8.1 Contributions

This dissertation makes the following contributions.

1. A comprehensive compiler-based checkpointing framework.

We present a software-only fine-grain checkpointing framework that is based on compiler

transformations and optimizations usingLLVM. This system is completely independent of

any checkpointing hardware support. Compiler transformations enable checkpointing on any

user-annotated program region with arbitrary size and complexity. We pay close attention to

details on handling corner cases including function-pointer callsites and premature returns from

checkpointing region. A large and comprehensive compiler optimization framework operates

on the checkpointing-enabled user program, attempting to aggressively reduce checkpointing

overhead from many possible perspectives. To our best knowledge, this is the first checkpointing

work that is based on compiler-driven program instrumentation and optimization for fine-grain

checkpointing.

2. Effective optimizations for reducing checkpointing overhead.

We demonstrate that the checkpointing framework can be usedto support iterative reverse

execution for debugging purposes. By exposing checkpointing APIs on application’s level,

a programmer can directly involke checkpointing APIs as user-level commands to conduct

respective checkpointing activities inside a debugger. This naturally extends a debugger’s support

to checkpointing and allows an easy entry for programmers who need to try out or utilize the

checkpointing functionality without prepackaged OS or hardware support. Comparing with a

library-based coarse-grain checkpointing approach, we achieve significant overhead reduction:

1000X+ times less overhead. We also consistently outperformIntel’s state-of-the-art software

transactional memory solution (ICCSTM) by up to60X.
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3. Demonstration of the limitations of an overly fine-grain andperformance-sensitive applica-

tion of compiler-based checkpointing.

We illustrate some inefficiency of the checkpointing framework when trying to support an

ultra fine-grain application—overlapping program execution with delinquent loads inMCF. We

conduct detailed analysis on identifying significant delinquent loads through PIN-based dynamic

instrumentation. We discover thepersistentproperties ofMCF’s significant DLs. We explore

value predictions under the context of software speculation and find that simple last-known

value predictor and constant-value predictor perform extremely well to satisfy the demand of the

speculation scheme. We further perform manual program transformation to enable speculative

execution utilizing both control-speculation and data-speculation schemes, while performing all

analysis and testing on real machines. We conclude that evenafter heavy optimizations, the

checkpointing overhead is still considered too high for fine-grain micro architectural level events

such as delinquent loads. Lack of sufficiently coarse-grainworkload that is suitable for fine-grain

speculation in the real-world test application (MCF) exacerbates the situation.

4. Demonstration of the potential for compiler-based checkpointing in providing automated

support for backtracking.

We show that by exposing simple checkpointing APIs to source-code level, a user-initiated and

compiler-driven automatic checkpointing scheme can remove programmers from the overwhelm-

ing and tedious details of manual checkpointing. We useVPR as the case study to checkpoint its

backtracking algorithm in placement phase. We show that ourcheckpointing scheme is useful in

dealing with checkpointing across a large chunk of source code with complex program constructs

that is otherwise difficult and error-prone to handle manually. This immediately benefits a

programmer who can instead better focus on improving the keyalgorithm and its supporting

data structures—a step that converts enhanced programmingefficiency, increased ease of use and

reduced develop-run-debug cycle time into improved programmer’s productivity.

5. An LLVM-based infrastructure and implementation of compil er-based checkpointing.

To assist and encourage collaborative research, we releasea complete source-code package

that contains all building-block components that we developed over the course of the thesis.

This includes aLLVM-based compiler checkpointing transformation and optimization framework,

a PIN-based runtime toolset for instrumentation verification, opportunistic exploration, and

redundancy analysis, as well as testing benchmark suites (selectedBugBench programs and our
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own micro benchmarks) with various granularity of checkpointing region partitions. We will

further investigate the possibility and contribute to integrate our checkpointing work with top-of-

treeLLVM release. This will make it easier to leverage over our existing contributions made in this

thesis and help the research community for potential futureexploration and collaboration.

8.2 Conclusions

In this thesis, we design, implement and evaluate a compiler-driven software-only checkpointing

infrastructure that operates independently without any hardware support. The checkpointing scheme

works on per-store based fine granularity. A user identifies any region with arbitrary size and complexity,

a compiler then automates the remaining process to enable and optimize checkpointing on the user-

identified region.

Comparing with a recent library-based coarse-grain checkpointing approach (libCKPT), our

compiler-driven fine-grain checkpointing achieves more than1000X improvement on overhead reduc-

tions. Even when comparing with a state-of-the-art fine-grian STM solution including Intel’sICCSTM,

we show significant improvement due to our undo-log checkpointing buffer design and aggressive and

effective compiler optimizations. We present full detailsof the compiler optimizations and show that

the optimizations can further reduce up to98% of checkpointing buffer size and eliminate up to95%

of backup service routines over our fine-grain baseline checkpointing.

In principle, similar compiler-based optimizations as those that we present in this thesis could

be applied to write-buffer based solutions, including Intel’s STM compiler/run-time solution. In this

respect, our work is a proof of concept that pioneers the exploration that effective compiler optimizations

can further reduce STM overhead. Since the STM overhead is currently recognized as the main

bottleneck that prevents wide-spread uses of STM, effectively reducing STM overhead will make a

big impact in STM-based parallelization of realistic applications.

It may also be possible to design an STM which for sequential portions of transactions switches to

an undo-buffer approach, potentially improving STM overhead, wherever such sequential portions are

part of long-running transactions.

The techniques presented in this thesis can be further applied in conjunction with any application that

needs support for speculative execution, including for thepurposes of I/O prefetching, value-prediction,

control-flow prediction, and so on. Particularly with the (simple) addition of multiple roll-back points,

such applications stand to benefit tremendously from both the efficiency and the simplicity of this
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lightweight checkpointing approach.

We leverage support from the checkpointing infrastructureto enable applications to obtain unique

features or functionalities. We show that a checkpointing-enabled debugger gains new functionality of

reverse execution, with added benefits including unboundedreverse-execution window size, unlimited

number of retries, and free from application restarts. We show that a checkpointing-enhanced applica-

tion (VPR) frees programmers from tedious details of conducting manual backtracking and instead allow

programmers to better focus on improving the backtracking algorithm and associated data structures.

This improvement on rapid-application development process easily converts automatic checkpointing

into improved programmer’s productivity. Enabling automatic software-only checkpointing onVPR’s

backtracking algorithm comes with a mild performance overhead of only 15%.

Even with aggressive compiler optimizations, the fine-grain checkpointing overhead may still be

considered too high in certain speculative applications. We further show that overlapping execution with

delinquent loads generate no performance gains in a DL-centric real-world application (MCF), mainly

due to lack of suitable workload that are coarse-grain enough to amortize the checkpointing and value-

prediction overhead.

8.3 Future Work

The work on compiler-based checkpointing described in thisdissertation could be improved and

extended in the following ways.

8.3.1 Support for Incremental Checkpointing

One immediate future work is to support and evaluate the potential for incremental checkpointing

by allowing multiple rollback points (sub checkpoints) within a single checkpoint region, as well as

allowing a user to selectively rollback to one of the multiple sub checkpoints. Under this multiple sub-

checkpoint scenario, both of the two original requirementsfor single-restore point checkpointing still

hold: (i) thestart ckpt marker must dominate thestop ckpt marker, and (ii) bothstart ckpt and

stop ckpt markers need to be on the same lexical level. The multiple rollback point scenario can

be implemented as a sequence of single rollback points, where each individual rollback point needs to

satisfy the previously established requirements. Since the rollback action now has multiple potential

targets (sub checkpoints), the precise rollback target needs to be identified as additional argument over

thestop ckpt API.
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The checkpoint buffer scheme proposed in this dissertationneeds minimal change to support

incremental checkpointing. When utilizing the one-dimensional array buffer, the meta buffer needs a

sub-checkpoint counter to identify individual incremental sub-checkpoint, while the data buffer remains

unchanged. This minimal design change allows thebackup operations to proceed as normal other than

incrementing the sub-checkpoint counter when reaching a new sub-checkpoint location. This minimal

change would allow a checkpoint abort operation to rollbackto any prior sub-checkpoint.

8.3.2 Allowing More User Control

An alternative immediate future work is to allow direct and detailed user control over an otherwise

checkpoint-enabled program region. During program development of this thesis research, we find

multiple cases where a relatively small code block is not suitable for checkpointing (e.g., program

initialization phase) within a big checkpoint-enabled program region. A suitable solution will allow

user direct control to programmably disable checkpointingwithin a sub region over a large checkpoint-

enabled program region.

Identifying a non-checkpointable section will be similar to the process of delimiting a checkpointing

region, except we will need a different pair of region delimiters. The analysis, transformations and

optimizations participating in the checkpointing framework will need to make necessary adaptions and

adjustments to accommodate this new requirement.

8.3.3 Exploiting More-Precise Pointer Analysis

Our current checkpointing optimization framework is incapable of further optimizingbackup oper-

ations that operate on data stored through pointers, as suggested in section 7.7.4. Most existing

optimizations cannot decide whether thebackup operation into a pointer-based address is a suitable

candidate for its optimizing scenario, and thus are forced to make a conservative assumption and not to

perform optimizations on such cases.

This places an immediate need for a precise pointer analysis, whose results can be used to

disambiguate between the currentbackup address and the address or address range that an existing

optimization is interested in. Because the pointer analysis may need to populate across both non-

checkpoint region and checkpoint region, initially we suggest a flow-sensitive and context-sensitive

analysis. Since the checkpointing optimizations happen within the compilation process, we have

relatively more tolerance for longer compile time. Notice that the checkpoint region is often relatively
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small and contains known program constructs, we can leverage this knowledge and reduce the

complexity of the potential pointer analysis.

Once the pointer analysis results become available, most existing optimizations can immediately

benefit from this improved memory disambiguation. E.g.,ArrayOpti can use the result and decide

whether the pointer-basedbackup operation actually access a valid array range, and thus eliminates

the originalbackup operation if the array address range covers thebackup memory address through

pointer access.Hoist can also leverage this knowledge and decide whether the pointer-basedbackup

operation is accessing an address that is loop invariant, and thus can make an informed decision to better

optimizebackup operations within the loop. We may even leverage the pointer-analysis result to invent

novel optimizations that are otherwise impossible given the current situation.

8.3.4 Extending Checkpointing to I/O Devices

In future, we will investigate the possibilities and techniques that extend our in-memory checkpointing

framework to operate on input-output (I/O) devices. Comparing with in-memory operations,I/O device

operations usually have much longer latency. Micro-architectural level events such as delinquent loads

usually have a latency of few dozen to few hundred cycles, thematching speculative workload will

ideally have similar latency. TypicalI/O events (including diskI/O, NUMA memoryI/O, or network

I/O) often have latency of thousands or even millions of cycles.This much longer latency can ideally

be used to tolerate more aggressive coarser-grain workloads, thus have better performance potentials.

One way to enable checkpointing overI/O devices is to use double buffering—the participatingI/O

device won’t consider the current operation complete untilreceiving a commit command issued from

theI/O controller.



Appendix A

Checkpointing APIs

/∗

mark t he beg in l o c a t i o n o f a c h e c k p o i n t r e g i on

∗ /

void s t a r t c k p t ( ) ;

/∗

mark t he end l o c a t i o n o f a c h e c k p o i n t r e g i on

i n t e g e r c o n d i t i o n a l code : c

1: commit c h e c k p o i n t

0 : abo r t c h e c k p o i n t

∗ /

void s t o p c k p t ( i n t c ) ;

/∗

f o r c e t o commit t he c u r r e n t c h e c k p o i n t

∗ /

void commi t ckpt ( ) ;

/∗

f o r c e t o abo r t t he c u r r e n t c h e c k p o i n t

∗ /
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void a b o r t c k p t ( ) ;

/∗

per form backup ac t i on , s t a r t i n g from addr l o c a t i o n , f o r t hel e n g t h o f l e n b y t e s

∗ /

void backup (char ∗ addr , i n t l e n ) ;



Appendix B

Special System Handling Functions

Our current checkpointing system supports a total of 10 special system functions. We show the

exhaustive list with code skeleton on each supported function. 1

B.1 Memcpy

/∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

∗ / / / vo id handleMemcpy ( char∗ ds t , char ∗ src , i n t l e n ) ;

/ / Compile−t ime r e s o u r c e to per form backup b e f o r e a c a l l t o memcpy ( ) ;

/ / char ∗ memcpy ( char∗ ds t , char ∗ src , i n t l e n ) ;

/∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗ /

vo id handleMemcpy (char ∗ ds t , char ∗ src , i n t l e n ){

/ / 1 . do memory backup :

bkp memory ( ds t , l e n ) ;

/ / 2 . do p r o f i l e / r un t ime t r a c k i n g :

/ / . . .

}

B.2 Memset

/∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗ /

/ / vo id handleMemset ( char∗ addr , char va l , i n t rep ) ;

/ / Compile−t ime r e s o u r c e to per form backup b e f o r e a c a l l t o memset ( ) ;

/ / vo id memset ( char∗ ds t , char va l , i n t l e n ) ;

/∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗ /

vo id handleMemset (char ∗ addr , char va l , i n t l e n ){

1In order to reduce code verbosity, profiling related codes are not included.
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/ / 1 . do memory backup :

bkp memory ( addr , l e n ) ;

/ / 2 . do p r o f i l e / r un t ime t r a c k i n g :

/ / . . .

}

B.3 Memmove

/∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗ /

/ / vo id handleMemmove ( char∗ds t , char ∗src , i n t l e n ) ;

/ / Compile−t ime r e s o u r c e to per form backup b e f o r e a c a l l t o memmove ( ) ;

/ / vo id memmove ( char∗ ds t , char ∗ src , i n t l e n ) ;

/∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗ /

vo id handleMemmove (char ∗ds t , char ∗ src , i n t l e n ){

/ / 1 . do memory backup :

bkp memory ( ds t , l e n ) ;

/ / 2 . do p r o f i l e / r un t ime t r a c k i n g :

/ / . . .

}

B.4 Strcpy

/∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗ /

/ / vo id h a n d l e S t r c p y ( char∗ ds t , char ∗ s r c ) ;

/ / Compile−t ime r e s o u r c e to per form backup b e f o r e a c a l l t o s t r c p y ( ) ;

/ / char ∗ s t r c p y ( char ∗ ds t , char ∗ s r c ) ;

/∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗ /

vo id h a n d l e S t r c p y (char ∗ ds t , char ∗ s r c ){

/ / 1 . o b t a i n t h e s t r l e n g t h :

i n t l e n = s t r l e n ( s r c ) ;

/ / 2 . per form t h e backup , s t a r t f rom d s t ’ s add ress :

bkp memory ( ds t , l e n ) ;

/ / 3 . do p r o f i l e / r un t ime t r a c k i n g :

/ / . . .

}

B.5 Strncpy

/∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗ /

/ / vo id h a n d l e S t r n c p y ( char∗ ds t , char ∗ src , i n t l e n ) ;
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/ / Compile−t ime r e s o u r c e to per form backup b e f o r e a c a l l t o s t r n c p y ( ) ;

/ / char ∗ s t r n c p y ( char ∗ ds t , char ∗ src , i n t l e n ) ;

/∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗ /

vo id h a n d l e S t r n c p y (char ∗ ds t , char ∗ src , i n t l e n ){

/ / 1 . Se tup :

/ / m in len : t h e min between l e n and s t r l e n ( s r c )

i n t m in len =0;

i n t s r c l e n = s t r l e n ( s r c ) ;

i f ( s r c l e n > l e n ){ m in len = l e n ; }

e l s e{ m in len = s r c l e n ; }

/ / 2 . per form t h e backup , s t a r t f rom d s t ’ s add ress :

bkp memory ( ds t , m inlen ) ;

/ / 3 . do p r o f i l e / r un t ime t r a c k i n g :

/ / . . .

}

B.6 Strcat

/∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗ /

/ / vo id h a n d l e S t r c a t ( char∗ ds t , char ∗ s r c ) ;

/ / Compile−t ime r e s o u r c e to per form backup b e f o r e a c a l l t o s t r c a t ( ) ;

/ / char ∗ s t r c a t ( char ∗ ds t , char ∗ s r c ) ;

/∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗ /

vo id h a n d l e S t r c a t (char ∗ ds t , char ∗ s r c ){

/ / 1 . f i g u r e ou t how b ig t h e b u f f e r w i l l be used , a f t e r t h e fo rma t :

i n t s r c l e n = s t r l e n ( s r c ) ;

i n t d s t l e n = s t r l e n ( d s t ) ;

/ / 2 . per form t h e backup , s t a r t f rom d s t ’ s end ing address :

bkp memory ( d s t + d s t l e n , s r c l e n ) ;

/ / 3 . do p r o f i l e / r un t ime t r a c k i n g :

/ / . . .

}

B.7 Strncat

/∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗ /

/ / vo id h a n d l e S t r n c a t ( char∗ ds t , char ∗ src , i n t l e n ) ;

/ / Compile−t ime r e s o u r c e to per form backup b e f o r e a c a l l t o s t r n c a t ( ) ;

/ / char ∗ s t r n c a t ( char ∗ ds t , char ∗ src , i n t l e n ) ;

/∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗ /

vo id h a n d l e S t r n c a t (char ∗ ds t , char ∗ src , i n t l e n ){
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/ / 1 . f i g u r e ou t t h e a c t u a l l e n g t h o f s r c t h a t w i l l be cop ied :

i n t m in len =0;

i n t d s t l e n = s t r l e n ( d s t ) , s r cl e n = s t r l e n ( s r c ) ;

i f ( s r c l e n > l e n ){ m in len = l e n ; }

e l s e{ m in len = s r c l e n ; }

/ / 2 . per form t h e backup , s t a r t f rom d s t ’ s end ing address :

bkp memory ( d s t + d s tl e n , m in len ) ;

/ / 3 . do p r o f i l e / r un t ime t r a c k i n g :

/ / . . .

}

B.8 Sprintf

/∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗ /

/ / vo id h a n d l e S p r i n t f ( char∗ buf , char ∗ f o rma t ) ;

/ / Compile−t ime r e s o u r c e to per form backup b e f o r e a c a l l t o s p r i n t f ( ) ;

/ /

/ / The hand l ing f u n c t i o n p rov ided i s an approx ima te to t h e r ea l s t r i n g l e n g t h

/ / f o r s p r i n t f ( . . . ) w i th var args .

/ /

/ / i n t s p r i n t f ( char ∗ buf , char ∗ fmt , . . . ) ;

/∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗ /

vo id h a n d l e S p r i n t f (char ∗ buf , char ∗ f o rm at ){

/ / 1 . f i g u r e ou t t h e a c t u a l s i z e o f t h e b u f f e r used , a f t e r t h e fo rma t :

/ / USE a new h e u r i s t i c :

i n t l e n = s t r l e n ( buf ) ∗ 1 . 2 5 ;

/ / i n t l e n = ( s t r l e n ( bu f ) + s t r l e n ( fo rma t ) ) ∗ 1 . 2 5 ;

/ / 2 . per form t h e backup :

bkp memory ( buf , l e n ) ;

/ / 3 . do p r o f i l e / r un t ime t r a c k i n g :

/ / . . .

}

B.9 Vsprintf

/∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗ /

/ / vo id h a n d l e V s p r i n t f ( char∗ buf , char∗ fm t ) ;

/ / Compile−t ime r e s o u r c e to per form backup b e f o r e a c a l l t o v s p r i n t f ( ) ;

/ / i n t v s p r i n t f ( char ∗ s t r , c o n s t char ∗ fo rmat , v a l i s t arg ) ;

/∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗ /

vo id h a n d l e V s p r i n t f (char ∗ buf , char∗ fmt ){



/ / 1 . f i g u r e ou t t h e a c t u a l s i z e o f t h e b u f f e r used , a f t e r t h e fo rma t :

/ / USE a new h e u r i s t i c :

/ / i n t l e n = s t r l e n ( bu f ) ∗ 1 . 2 5 ;

i n t l e n = ( s t r l e n ( buf ) + s t r l e n ( fo rm at ) )∗ 1 . 2 5 ;

/ / 2 . per form t h e backup :

bkp memory ( buf , l e n ) ;

/ / 3 . do p r o f i l e / r un t ime t r a c k i n g :

/ / . . .

}

B.10 Snprintf

/∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗ /

/ / vo id h a n d l e S n p r i n t f ( char∗ buf , i n t len , char∗ fm t ) ;

/ / Compile−t ime r e s o u r c e to per form backup b e f o r e a c a l l t o s n p r i n t f ( ) ;

/ / i n t s n p r i n t f ( char ∗ b u f f e r , i n t b u f f s i z e , c o n s t char∗ fo rmat , . . . ) ;

/ /

/ / w r i t e i n t o t a r g e t b u f f e r th rough s n p r i n t f ( ) , a t t h e most ,b u f f s i z e

/ / b y t e s can be w r i t t e n

/∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗ /

vo id h a n d l e S n p r i n t f (char ∗ buf , i n t len , char∗ fmt ){

/ / 1 . f i g u r e ou t how b ig t h e b u f f e r w i l l be used , a f t e r t h e fo rma t :

/ / known from t h e cmd− l i n e o p t i o n a l r e a d y

/ / 2 . per form t h e backup :

bkp memory ( buf , l e n ) ;

/ / 3 . do p r o f i l e / r un t ime t r a c k i n g :

/ / . . .

}
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