The Potential for Using Thread-Level
Data Speculation to Facilitate
Automatic Parallelization

J. Gregory Steffan and Todd C. Mowry
Department of Computer Science

Carnegie Mellon University

http://ww. cs. cnu. edu/ ~{steffan,tcm

{steffan,tcnt @s. cnu. edu

-] ¥
The STAMPede Project 1 Steffan, Mowry

-
State-of-the-Art vs. Future Processors

R10K die size 16.6mmx 17.9mm

?7??

In 15 Years
(1 Billion Transistors)

Challenge: translating these resources into higher performance

One possibility: multiple processors on a single chip

e R
The STAMPede Project 2 [

Steffan, Mowry

-
Performance Benefits of Single-Chip Multiprocessing

Multiprogramming Workload:
O improved throughput

T‘mel i = EHEHOHNE

Single Application:
e how to reduce execufion fime => must contain parallel threads

P, P, Py Py

The Big Question:
[0 how do we automatically parallelize all applications?

e R
The STAMPede Project 3 [Steffan, Mowry

-
State-of-the-Art in Automatic Parallelization

Numeric Applications:
e dominated by regular array references inside loops:

FORi =1to N
FORj =1 to N
FORk =1 to N
AGillj] +=Ali][k] * B[K][]];

e significant progress has been made
e c.9., fastest SPECfp?5 number (Bugnion ef al. 1996)

Non-Numeric Applications:

e access patterns & control flow may be highly irregular
e pointer dereferences, recursion, unstructured loops, efc.

e little (if any) success in automatic parallelization
e buf these applications are important!

O we must expand the scope of automatic parallelization

[oo
The STAMPede Project 4 [

Steffan, Mowry

-
Why Is Automatic Parallelization So Difficuli?

Current Approach:
[l parallelize only if we can statically prove independence

FORi =1to N FORi =1to N
AlT] += 0 Ali] += f(AT-1]);
Parallel Sequential

¢ fransformations can help to eliminate dependences

For Non-Numeric Codes:

0 understanding memory addresses is extremely difficult
while (foo()) {

X j;/ data dependence?

*pT= bar();

} L
Major Limitation:

0 when the compiler is uncertain, it must be conservative

e R
The STAMPede Project 5 [

Steffan, Mowry

-
Expanding the Scope of Automatic Parallelization

The Problem:

o statically proving independence is hopelessly restrictive
¢ a full understanding of memory addresses is unrealistic

¢ instead, we should be focusing on performance issues

Our Solution:

Thread-Level Data Speculation (TLDS)

e R
The STAMPede Project 6 [Steffan, Mowry

Overview

e Thread-Level Data Speculation (TLDS)
e An Example: Compress

e Experimental Results

e Architectural Support

e Conclusions

-] ¥
The STAMPede Project 7 Steffan, Mowry

-
Data Speculation

Basic Idea:
e opfimistically perform access assuming no dependence
e if speculafion was unsafe, invoke recovery action

Example:
LOAD b = *q
a = f() a = f()
STORE *p = a STORE *p = a
?K LOAD b = *q (p == Qq) * (p!=a0)
g(b) * b = a
Y i
Original 9(b)
Execution *

Instruction-Level
Data Speculation

e R
The STAMPede Project 8 [

Steffan, Mowry

Thread-Level Data Speculation

e Analogous to instruction-level data speculation

e except that it involves separate, parallel threads of control

A

The STAMPede Project

Processor 1

a ="1()
STORE *p = a

Processor 2

LOAD b = *q

9(b)
Y

Original
Execution

Thread-Level

Data Speculation

a = f() LOAD b = *q
STORE *p = a
g(b)
(p == q) i (p !'=q)
LOAD b = *q
g(b)
—
\j

-
n
Steffan, Mowry

-
Related Work

Prior to this Study:

e Wisconsin Multiscalar Architecture (Sohi et al, 1995)
¢ fightly-coupled ring architecture with register forwarding
e "ARB” detects memory dependences, hardware rollback

+ requires relatively litfle software support
- large, centralized ARB may increase load latency
- ring architecture limits flexibility (mulfiprogramming, locality)

Other Recent Work:
o Stanford Hydra (Oplinger et al, 1997)
e Wisconsin Speculative Versioning Cache (Gopal et al, 1997)

e lllinois Speculative Run-Time Parallelization (Zhang et al, 1998)

e R
The STAMPede Project 10 [

Steffan, Mowry

-
Obijectives of This Study

e Does TLDS offer compelling performance improvements?
e study of the SPEC92 and SPEC95 integer benchmarks

 Can we provide cost-effective hardware support for TLDS?
e detfecting dependence violations
e recovering from failed speculation

[1 goal: performance of non-TLDS code is not sacrificed

o What compiler support is necessary to exploit TLDS?
e Optimizations, scheduling, etc.

T, e .
The STAMPede Project 11 [Steffan, Mowry

Overview

[1 Thread-Level Data Speculation (TLDS)
[1 An Example: Compress

e Experimental Results

e Architectural Support

e Conclusions

-] ¥
The STAMPede Project 12 Steffan, Mowry

e
An Example: Compress

while ((c = getchar()) !'= EOF) {

f /* perform data conpression */ vy
= hash[hash_functi on(cﬁ;/
Epoch i < o
hash[hash_function(...)] = ...;
\)

Potential Source of Parallelism:
e data parallelism across the input stream?

From the Compiler’s Perspective:
e hash accesses cannoft be statically disambiguated

In Reality:
[0 consecutive characters rarely hash to the same enfry

e R
The STAMPede Project 13 [

Steffan, Mowry

Time

while (...) {
X = hash[idx1];

hash[i dx2] = vy;

The STAMPede Project

TLDS Execution of Compress

Processor 1 Processor 2 Processor 3 Processor 4
EESCh] Epoch 2 Epoch 3 Epoch 4

= hash[3

ash[3] = hash[19] = hash[33] = hash[10]

. __Violation!

hash[10] = hash[21] = hash[30] = hash[25] —

at t enpt con"m'|;|() . - —
1 ~ mfuemnpmmtO attenpt _commit () att enpt _commi t ()

Retr
Epoch 4 Y
Epoch 5 1
e Epoch 6 Epoch 7 = hash[10]
= hash[31] - nas
= hashl[9] = hash[27] hash[25] =
[]
attenpt _commit ()

of
n
: Steffan, Mowry

-
Other Data Dependences in Compress

while ((c = getchar()) !'= EOF) {
/* performdata conpression */
| n_count ++;

if (...) {out _count++; putchar();...}
I f (free entries < ...)
free_entries = ...

° | n_count?

¢ induction variable O implicit in the epoch number
e out count:

e reduction operation I compute partial sums
e getchar ()., putchar():

e use parallel library routines (also, mal | oc() , etc.)
e free entries:

e cannot eliminate dependence O forward befween epochs

e R
The STAMPede Project 15 [

Steffan, Mowry

The STAMPede Project

Overview

Thread-Level Data Speculation (TLDS)
An Example: Compress

Experimental Results

e Relaxing Memory Dependences

e Forwarding Data Between Epochs
e Speedups

Architectural Support

Conclusions

16

Steffan, Mowry

Benchmarks
Average
Dynamic | % of Total
Instrs per | Dynamic
Suite Name Region Epoch Instrs
SPEC92 | compress rl 89 99.9
gcc ri 1092 8.1
r2 1593 4.0
espresso r1 32 19.4
li r1 19 21.9
r2 286 51.2
sC r1 36 69.3
SPEC95 | m88ksim ri 1232 99.3
ijpeg rl 9406 15.3
perl rl 67 35.8
go r1 80 6.8
NAS buk ri 26 16.5
Parallel 2 18 N4

-] ¥
The STAMPede Project 17 Steffan, Mowry

-
Measuring Memory Dependences: Run Lengths

Run Length:
o # of epochs between Read-After-Write (RAW) dependences

Violation!

Time
|olqt|onl

Epochs
Retry

Run Lengths: 2 3 4
Retry
Average Run Length = 3

Execution on 4 Processors

0 average run length = rough limit of potential parallelism

e R
The STAMPede Project 18 [

Steffan, Mowry

-
Relaxing Memory Data Dependences

o o [eolole) olole) o o [eoNe] [oXe]
— — — — — — — - — -
4:' 10 N oo o N NNN N NN N N N N NN
= o % o @
- 8
o
- 00
S 6 0w
) N
m q‘
o 4 ool ™~
N 00O odl N
2) N N oo NAN o o
0 BOF BOF BOF BOF BOF BOF BOF BOF BOF BOF BOF BOF BOF
compress.rl gcc.r2 li.rl sc.rl ijpeg.rl go.rl buk.r2

gcc.rl espresso.rl li.r2 m88ksim.rl perl.ri buk.rl

I B =Dbase case
B O = compiler optimizations applied to remove dependences
I F =dependences due to forwardable scalars also removed

e climinating dependences and forwarding scalars are important
[1 significant parallelism is available in many cases

e R
The STAMPede Project 19 [

Steffan, Mowry

-
Forwarding Data Between Epochs

Scalar Memory Values:

o forward if dependences occur frequently
e synchronization is faster than speculation recovery

[0 helpful for performance, not necessary for correctness

Register Values:

[1 must be forwarded to maintain correctness

e some register dependences may be eliminated:
e induction variables
e through simple loop rescheduling

e all other register dependences forwarded through memory

[1 whatis the impact on performance?

e R
The STAMPede Project 20 [Steffan, Mowry

Critical Path Lengths

Fine-Grain
Synchronization

Steffan, Mowry

Course-Grain
Synchronization

The STAMPede Project

-
Forwarding Data Between Epochs

o o o oo oo oo o o ocoo o O ocoo ooo
— — — — — — — — — — — — —
R A A A AN AN AN A A AAA A A AAN ANAA
10
&
s
Q o
- ©
S 6
()]
o ™ < ®
(0)) N
S - o N — 9 o S
2 — 33 i o . ri . a3 o F'
0
cfs cfs cfs cfs cfs cfs cfs cfs cfs cfs cfs cfs cfs
compress.rl gcc.r2 li.rl sc.rl ijpeg.rl go.rl buk.r2

gce.rl espresso.rl li.r2 m88ksim.rl perl.ri buk.rl

I c = coarse-grain synchronizatfion
B f = fine-grain synchronization
B s = fine-grain synchronization w/ aggressive instruction scheduling

¢ fine-grain synchronization is helpful
e Wwith aggressive instruction scheduling, forwarding is not a boftleneck

R
The STAMPede Project 22 [

Steffan, Mowry

-
Potential Region Speedup on 4 Processors

3.88
3.88
3.95
4.00
3.97
3.97
3.97
3.97

™m
©
™

2.64

1.98

Region Speedup
1.59

1

OFS FS FS FS FS FS FS FS FS FS FS FS FS
compress.rl gcc.r2 li.rl sc.rl ijpeg.rl go.rl buk.r2
gcc.rl espresso.rl li.r2 m88ksim.rl perl.ri buk.rl

B F = opfimize dependences, forward w/ fine-grain synchronization
B S = also perform aggressive instruction scheduling
communication latency = 10 cycles

e aggressive instruction scheduling is a major performance win

[0 potential speedups of twofold or more in 11 of 13 regions

e R
The STAMPede Project 23 [

Steffan, Mowry

-
Program Speedups

o

>

o

()

()

o

(0p)]

=

(4]

| —

(@))

o 0

E F S F S F S F S F S F S F S F S F S F S
compress (gcc espresso li scC m88ksim ijpeg perl go buk

Coverage: 99.9% 12.1% 194% 73.1% 69.3% 99.3% 153% 358% 6.8% 27.9%

Region Speedups:

28 o 9 g 55 55
> %) ™ N
o ™
<)
3 3
Q
)] 2
c
2
(@)
O
o N S e < FS FS FS FS FS FS FS FS
compress.rl gcc.r2 li.rl sc.rl ijpeg.rl go.rl buk.r2
gce.rl espresso.rl li.r2 m88ksim.rl perl.rl buk.ri

e R
The STAMPede Project 24 [Steffan, Mowry

Overview

Thread-Level Data Speculation (TLDS)
An Example: Compress

Experimental Results

b O 0O O

Architectural Support

e Communication Latency

o Key Architectural Issues

e Detecting Data Dependence Violations
e Buffering Speculative State

e Conclusions

e R
n
The STAMPede Project 25 Steffan, Mowry

Base Architecture

Single Chip

Processor Processor Processor Processor

L1 Cache L1 Cache L1 Cache L1 Cache

Interleaved L2 Cache

e Each processor has its own L1 data cache
[0 maintain single-cycle load latency

e L1 caches are kept coherent
[1 shared-memory programming model

-
26 [Steffan, Mowry

The STAMPede Project

H

ow Imporiant Is Communication Latency?

Single Chip

Processor Processor Processor Processor

L1 Cache L1 Cache L1 Cache L1 Cache

Interleqvea L2 Cache

Some Options:

e direct L1-to-LT communication O ~2cycles
e communicate through the L2 cache O ~10 cycles

The STAMPede Project

27

-
n
Steffan, Mowry

-
Impact of Communication Latency

N~ N~ = LOLO o0 NSNS NSNS
o o DRBR 2 oo SS 0000 OO 00
o 4 g gg ™ Nf‘” N e oY oM < < MM N I N
> . - - ™
oM oM N
o ™ o
] © <t
©
o)
8_ 3 g 0000 P : I
) N 00 0053 Oy o Co oo
2 i ST 0 i A oo
c oy < LOLOLO
O H N o<t I
o SSHN —— = SIS S0
g 1 i = i i

102102 102102 102102 102102 102102 102102 102102 102102 102102 102102 102102 102102 102102

FS FS FS FS FS FS FS FS FS FS FS FS F S

compress.rl gcc.r2 li.rdl sc.rl ijpeg.ri go.rl buk.r2
gcc.rl espresso.rl li.r2 m88ksim.rl perl.ri buk.rl

I F = opfimize dependences, forward w/ fine-grain synchronization
B S = also perform aggressive instruction scheduling
communication latency: “10” = 10 cycles, “2” = 2 cycles

¢ instruction scheduling reduces the sensifivity to communication latency
[0 communicating through the L2 cache is a viable option

e R
The STAMPede Project 28 [

Steffan, Mowry

-
Key Architectural Issues

e Thread Management

Thread creation and epoch scheduling

Epoch numbers must be visible to the hardware

Distinguishing speculative vs. non-speculafive memory ac-
cesses

e Recovering from data dependence violations:
e hardware notifies software of violation
e soffware performs the bulk of the recovery

e Detecting Data Dependence Violations

[1 extend invalidation-based cache coherence

o Buffering Speculative State

O extend the functionality of the primary dafa caches

e R
The STAMPede Project 29 [

Steffan, Mowry

-
Invalidation-Based Cache Coherenc

Processor 1 Processor 2

fime () LOAD a = X;

@ébeE X = 2;

L1 Cache L1 Cache

Invalidation

@ equest

-] ¥
The STAMPede Project 30 Steffan, Mowry

-
Detecting Data Dependence Violations

Processor 1 (p = q = &) Processor 2

Time Epoch § Epoch 6
. becone_specul ati ve()
- LOAD a = *p;
@) SToRE *q = 2, » FAILS!
@éiierrpt_conm’t()
L1 Cache L1 Cache
Epoch # =5 Epoch # =6 @
Violation? = False Violation? = TRUE

Speculatively
~ Loaded?

Speculatively
X=1—>2 — Modified?

Invalidation
(Epoch #5)

e R
The STAMPede Project 31 [Steffan, Mowry

-
Buffering Speculative State

Speculdtive Stores:
e soffware cannot redlistically roll back memory side effects

[1 our solution: bufferin L1 cache until safe to commit fo memory

Speculdative Loads:
e if displaced, then we can no longer frack dependence violations

o set violation flag upon eviction of a speculatively accessed line
0 correctness is preserved, but performance may suffer

Processor

Vict
L1 Cache HPSaiN

[0 a 16KB 2-way set-associative cache with 4 victim entries suffices

e R
The STAMPede Project 32 [Steffan, Mowry

Overview

Thread-Level Data Speculation (TLDS)
An Example: Compress
Experimental Results

Architectural Support

o O OO O 0O

Conclusions

-] ¥
The STAMPede Project 33 Steffan, Mowry

e
Conclusions

e TLDS potentially offers compelling performance improvements
e 12 of 13 regions: speedups of 1.78 - 3.97 on 4 processors
e / Of 10 programs: speedups of 1.15 - 3.87 on 4 processors

¢ Only modest hardware modifications are required
e cache coherence protocol augmented to detect violations
e primary data cache is used to buffer speculative state

o Compiler support is crucial yet feasible
e climinafing dafa dependences
e aggressive scheduling to minimize critical path (forwarding)

e Ongoing and future work
¢ refining the architecture (described in tfechnical report)
e building the compiler

e R
The STAMPede Project 34 [

Steffan, Mowry

