
Automatic Trace-Based
Parallelization of Recursive

Programs
Borys J. Bradel

Tarek S. Abdelrahman

University of Toronto

Compiler Driven Performance Workshop - Oct. 30, 2008

1



Outline

Motivation

Traces

Execution Model

Challenges of Using Traces

Experimental Evaluation

Conclusion

2



Motivation

Gap exists between hardware and software

Hardware
Majority of computer chips contain multiple cores
Athlon X2, Core 2 Duo, Power5/6, Cell, Niagara

Software
Software is not utilizing hardware
Writing parallel software is difficult

Bridging the gap is important

3



Automatic Parallelization

Traditional compile time
Perform analysis at compile time
Divide program based on analysis
Limited success

Runtime
New approach to automatic parallelization is
needed
Combine analysis with runtime information
What information to use?

Trace-Based
Our solution is to use traces

4



Trace Definition

A trace is a frequently
executed sequence of
unique basic blocks or
instructions

Identified by a trace
collection system at
runtime

public static int foo() {
int a=0;
for (int i=0;i<n;i++)

a+=i;
return a;

}

5



Benefits of Traces

Source code is not required

Granularity of parallelism can vary

Traces simplify control flow and analysis

Traces are simple to identify

6



Execution Model
CFG

7



Execution Model
CFG Sequential

7



Execution Model
CFG Sequential Parallel

7



Execution Model
CFG Sequential Parallel

Challenges

Dependences

Grouping

Extraction and Packaging

Scheduling

7



Grouping of Traces
Problem:
Traces have to be grouped to keep
overhead small

Criteria:
A trace and its most likely succes-
sor should be grouped together

Solution:
A strongly connected component,
which is a graph that contains
traces and edges between them
such that paths exist between all
trace pairs

Works well for iteration when every-
thing scheduled at beginning

8



Grouping of Traces
Problem:
Our previous approach required
scheduling at the start of an SCC,
which does not work well for re-
cursion because information re-
garding what to execute becomes
available over time.

Criteria:
Divide the SCC into separate
tasks that can be scheduled sep-
arately over time.

void f(int n) {

if (n>=1) {

f(n-1);

f(n-1);

}

return;

} 9



Edge Categorization

Three Part Solution:

1. Categorize edges.

Forward edges are from
forward control flow
(including all returns)

Bacward edges are from
backward control flow

Indirect edges are from
connection between calls
and subsequent
instructions

show a one to one
relationship

10



Task Formation
2. Start tasks at targets of
backward edges and end
tasks at sources of backward
edges that are not sources
of indirect edges.

11



Execution
3. Schedule the tasks
dynamically.

12



Code Hoisting
CFG Execution

May need to hoist code to have parallel execution

13



Code Hoisting

Hoist the start of a new task respecting dependences

Hoisted Code Execution

14



Extraction and Packaging

Create two versions and allow transitioning between them

15



Scheduling

Queue scheduling based on level in task hierarchy and what a task is
waiting for

16



Dependences

Hardware approach - speculation
Ordered and nested transactions
Task = Transaction

Software approach - inspector/executor
Identify potential access patterns
Generate and run code to traverse data structures
Perform sequential execution if conflicting accesses
between tasks exist

Currenty assessing the approaches

17



Experimental Evaluation

Prototype in the Jikes RVM

Dell PowerEdge 6600
Four 1.6GHz Pentium 4 Xeons
2GB of ECC DDR RAM

Jolden benchmark suite
bisort, health, perimeter, treeadd, tsp, and voronoi
Recursive
No dependences

Measurement
Speedup 1 and 4 processors
Offline trace collection system
No handling of potential dependences

18



Preliminary Results

19



Conclusion

Explore trace-based parallelization

Defined an execution model

Built a prototype

Evaluated the performance on several recursive
benchmarks

Performance is promising

20



Future Work

Deal more with dependences

Examine extraction and packaging aproaches

Measure benefit for other benchmarks

Online trace collection system

Add more features to the prototype system

21



Multiple Tasks in SCC

22



Edge Categorization
Three types of edges

Backward edges point to starts of tasks
From call and if/jump instructions with earlier targets

Forward edges are regular control flow

Indirect edges indicate one to one relationship
From call instruction with backward edge to instruction after the call in
code order
Want to keep start and end on the same task

Three types of task items

Task start
Identified by all backward edges

Task end
When no more instructions in code order
When source of backward edge has no indirect edges

Task fork
Edges to task starts are turned into forks
Control goes to target after forked task (indirect or not)
Only forks have edges between tasks (no return edges)

23


	Outline
	Motivation
	Automatic Parallelization
	Trace Definition
	Benefits of Traces
	Execution Model
	Execution Model
	Execution Model
	Execution Model

	Grouping of Traces
	Grouping of Traces
	Edge Categorization
	Task Formation
	Execution
	Code Hoisting
	Code Hoisting
	Extraction and Packaging
	Scheduling
	Dependences
	Experimental Evaluation
	Preliminary Results
	Conclusion
	Future Work
	Multiple Tasks in SCC
	Edge Categorization

