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ABSTRACT 
With dynamic partial reconfiguration (PR) we can augment a soft-

core with application specific blocks that may change, or 

reconfigure, during run-time. In this paper we address some of the 

inefficiencies in available FPGA tool flows by using bit-stream 

relocation.  

Standard tool-flows from FPGA manufacturers require the 

creation of separate bit-streams for each PR region. The space and 

time complexities that this entails are undesirable, especially in an 

embedded system where storage is at premium. In this paper we 

introduce a run-time algorithm that allows the relocation of one 

bit-stream to any number of compatible regions, in linear time. 

The application loader running on the data path can perform the 

relocation as well as loading of the application code. We have 

implemented the algorithm on the eMIPS, a soft-core 

microprocessor of our own design, and on the MicroBlaze, an 

industrial production soft-core microprocessor. Evaluation of the 

algorithm shows a dependency on the composition of the stream 

and on the target region, as well as a strong dependency on the 

memory architecture of the system. 

1. INTRODUCTION 
The preferred model for dynamic partial reconfiguration of 

FPGAs (PR) is with one static region and one PR region. The 

static region guarantees the basic functionality and proper 

behavior during reconfiguration, especially with respect to the I/O 

signals. The single PR region is used to realize different temporal 

parts of the application, or alternate realization of certain (signal) 

processing, or to receive dynamic updates on deployed systems. 

Solutions that employ more than one PR region are described in 

the literature, but are not at all well supported by the tools. For 

example, if the user requires that any configuration may map to 

any region, it is currently required to synthesize each design 

repeatedly, once for each PR region. Each compilation can require 

hours of computer time. In addition, each of those long 

compilations produces a separate configuration file (bit-stream) 

for use with the given PR region and nowhere else. These bit-

stream files are large even for the smallest FPGA models, in the 

order of hundreds of kilobytes. Further, all of the bit-streams must 

be present at run-time. These time and space inefficiencies lead to 

the desire to use a single bit-stream file that can be relocated to 

any one of a many PR regions. In this paper, we describe an 

algorithm for performing the dynamic relocation of bit-streams. 

We demonstrate relocatable bit-streams with two separate soft-

cores. We used an extensible soft-core microprocessor of our own 

design, eMIPS, and an industrial production soft-core 

microprocessor, MicroBlaze.  The two systems used in our tests 

have radically different architectures, resulting in drastically 

different performance results.  We also found that the size, 

composition and target location of the bit-stream themselves all 

affected the time to relocate. 

The rest of the paper is organized as follows. Section 2 presents 

background material and related work. Section 3 describes the bit-

stream relocation algorithm, the tool flow, and their 

implementation. Section 4 presents our experiments and results. 

Section 5 concludes the paper. 

2. BACKGROUND AND RELATED WORK 

2.1 Partial Reconfiguration and Relocation 
The ability to change portions of the FPGA configuration at run-

time is called dynamic partial reconfiguration (PR). This entails 

modifying portions of the FPGA logic without affecting the 

remaining parts of the circuit, which continues to function 

unperturbed. Special support is needed in the FPGA chip for this 

process to execute flawlessly and without “glitches”. Xilinx 

continues to support PR while Altera supported it in the past but 

has more recently dropped the feature. Currently the tool provided 

by Xilinx for doing dynamic partial reconfiguration is part of the 

Early Access Partial Reconfiguration, or EAPR, a flow that is 

found at [1].  Refer to [1] for additional information on PR. To 

perform on-chip reconfiguration on Xilinx devices, a designer 

instantiates a special macro for the Internal Configuration Access 

Port (ICAP), then sends the configuration data to it. For the 

Virtex-4 the ICAP can be implemented with either an 8-bit or 32-

bit wide interface. 

The bit-stream for configuring one PR region is tightly bound to 

the physical location of that region and cannot be used directly to 

reconfigure any other portion of the chip. In many cases though, it 

is possible to modify an existing bit-stream and adapt it to a 

different physical location. This process is termed bit-stream 

relocation and can be performed statically by tools operating on 

the designer’s workstation, or dynamically by the agent that loads 

the bit-stream on chip. There are various works describing static 

or dynamic relocation of configurations of a PR region to another. 

The motivation is to reduce the number of partial bit-streams 

required if two or more PR regions use the same implementation. 

For example, if the FPGA had four target PR regions for the bit-

stream, the FPGA could save the storage of three bit-streams 

copies in memory and reduce the compilation time by a factor of 

four. The savings are noticeable because bit-streams tend to be 

large and the compilation times are often measured in hours per 

design. The trade-off is the size of the software/hardware and 

some placement restrictions on the PR regions to enable 

relocation. 

Becker et al [2] describe the building of bit-streams for a Virtex-4 

FPGA designed for relocation. The approach does not allow any 

static logic in the PR regions. Manipulation of the bit-stream is 

performed to relocate a column (ex. CLB) to a non-identical 

column (ex. DSP) with respect to routing. The provided example 

of a software defined radio with two reconfigurable regions 

showed a reduction in the number of partial bit-streams by 50% 



and compilation time by 43%. We implemented a similar baseline 

using the MicroBlaze and extended it for use on our eMIPS 

architecture. 

Montminy et al.[3] show how to layout the redundant modules of 

a Triple Modular Fault Tolerant design in such a way that one 

module’s configuration is relocated to correct the errors in another 

redundant module. A circuit automatically calculates the CRC 

value as the bit-stream is being relocated. Horta et al.[7] 

demonstrate relocatable bit-streams for a Virtex-E chip. They 

used Gaskets, similar to bus macros, to define the routing between 

the similar regions.  Our FPGAs do not appear affected by the 

absences of a correct CRC.  For this reason, we have delayed 

adding the CRC calculation in our tools. 

Sedcole et al. [11] discuss relocation for a Virtex-4. The 

distinguishing features in this work includes the ability to route 

statically through a relocatable region by reserving routing lines 

for the static logic, and the ability to merge relocatable and static 

parts at run-time. A certain percentage of long lines are reserved 

for the static logic to cross over the PR region. The static design is 

then re-routed to use the reserved long lines. To merge parts at 

runtime the current configuration is read out, stripped of the 

previous configuration except the static logic, and merged with 

the new configuration. This process proved to be very time-

consuming, with an increase of reconfiguration time from 6.2x to 

11.4x. The example used the HWICAP provided by Xilinx. Due 

to the additional complexity and time overhead, we chose to 

exclude static routing from extensible regions. 

Kalte et al. present REPLICA [12], a system with a zero-overhead 

cost in relocation of the partial bit-stream. This is accomplished 

with a hardware module capable of relocating CLB columns for a 

Virtex-E FPGA. The hardware module also computes the new 

CRC automatically. Additional hardware would be needed in a 

Virtex-4 setup to allow for bit-reversal of the frames. Ferrandi et 

al. present the Bit-stream Relocation Filter (BiRF) [13], a device 

similar to REPLICA, but for a Virtex-2 and with minimal area 

cost. Krasteva et al. describe the pBITPOS tool [14], to allow 

relocation for Virtex II (Pro) solutions. The additional feature in 

this work is the ability to relocate configurations that make use of 

BRAM/MULs.  Additional hardware for supporting bit-stream 

relocation would improve performance; however our 

implementation is done completely in software at this time. 
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Figure 1. Experiment 1, eMIPS Extensions 

2.2 The Extensible MIPS Processor 

The eMIPS microprocessor system [8] provides a MIPS [10] 

RISC data path tightly integrated with Extension slots mapped to 

PR regions. During run-time the Extension slots implement 

hardware modules called Extensions. The system is available for 

download at [9]. Figure 1 and Figure 2(a) show block diagrams of 

two eMIPS based systems (Experiments 1 & 2). We implemented 

the eMIPS microprocessor using a Xilinx FPGA and the partial 

reconfiguration feature to change the state of the Extension slots 

at runtime. In Figure 1, the eMIPS data path interfaces to the 

ICAP, timer, General Purpose Input and Output (GPIO), and other 

peripherals on an internal bus. The eMIPS microprocessor uses 

the external SRAM for instruction and data memory. Refer to [8] 

for additional information on eMIPS. 

2.3 The MicroBlaze Processor 

MicroBlaze is a soft-core RISC processor provided by Xilinx 0. It 

can be implemented as a 3-stage or 5-stage pipeline. Figure 2(b) 

provides an overview of how the MicroBlaze interacts with the 

other components in the system used for our experiments 

(Experiment 3). Xilinx provides an IP core, the HWICAP, for 

interfacing the ICAP to the MicroBlaze internal bus. The Timer is 

free-running to measure the cycles it takes to configure a region. 

The application code and all the configuration data required for 

the experiment are stored on the internal block RAMS (BRAMS) 

of the FPGA. 
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Figure 2. VGA Transform Experimental Setups 

2.4 Virtex-4 Configuration Layout 

The smallest unit of configuration on a Xilinx FPGA is the frame. 

A frame includes a fixed number of Configurable Logic Blocks 

(CLBs), physically laid out in fixed geometries. On the Virtex-4 

FPGAs, frames span the height of 16 CLBs, which is one HCLK 

row. In previous Virtex FPGAs [15] a frame spans the entire 

height of the chip. Each frame in the Virtex-4 is composed of 

1,312 bits. Frames are addressed in a 2-D fashion. A frame 

address command sets the starting destination of the configuration 

frames. A frame address on the Virtex-4 is composed of five 

parts: top/bottom of chip, block type, HCLK row, major column 

address, and minor column address. The top/bottom part specifies 

whether the target is at the top or at the bottom of the chip. The 

block type is one of three types: CLB/IOB/DSP/GCLK (0), 

BRAM interconnect (1), and BRAM content (2). The HCLK row 

indicates which row of the chip is targeted. Numbering of the 



HCLK row starts from the middle of the chip outward. The major 

column address specifies which resource column to change. The 

number begins at zero at the far left of the chip and increments 

going to the right. The number of minor addresses for a given 

column depends on the type of resource targeted. There are 22 

minor frames for CLBs, 21 for DSPs, 20 for BRAM interconnect, 

64 for BRAM content, 30 for IOBs, and 2 for GCLK.  

 

Figure 3. Frame Address Mapping Example on SX35 

For example in Figure 3, to reach the first CLB column in the 

upper-left of the chip, the frame address would be as follows: 

top/bottom=0, block type=0, HCLK row=1, major column 

address=1, and minor column address=0-21. This correlation is 

critical to understand how to manipulate the bit-stream to target 

the desired PR region. 

3. RELOCATING BIT-STREAMS 
Relocation of the bit-stream is simple and efficient as long as the 

source and target PR regions meet a few constraints. In our work 

the regions must: (1) have the same pattern of resources, (2) span 

the entire height of the HCLK row (one entire frame), (3) 

encompass the same amount of area on the chip, and (4) use bus-

macros in the same (relative) placement. When these constraints 

are valid, relocation consists mostly in adjusting the frame 

addresses in the source bit-stream to match the target PR region. 

3.1 Relocation Tool-Flow 

The complete tool-flow for performing relocation is shown in 

Figure 4 and includes both compile-time and run-time elements. 

The inputs required are a description of (some properties of) the 

Target FPGA and a description of the PR regions that are 

potential targets. Currently only the Virtex-4 LX and SX chips are 

supported because we do not have a complete understanding of 

exactly how the embedded PowerPC on the FX chip series affects 

the layout of the configuration frames. The FPGA Configuration 

Generator computes the pattern of resources and the number of 

HCLK rows on the target chip. The Adjustment Generator uses 

this information to compute the run-time parameters required for 

the Relocation of the Bit-streams stage. These parameters can be 

compiled in the relocation code, or provided as a data file. The 

relocation algorithm itself is therefore oblivious to the original 

inputs. Note that the parameters are specific to the FPGA and its 

PR configuration, which are also static elements in the overall 

design. The Adjustment Generator performs some additional 

checks to verify that the PR regions are relocatable to each other, 

e.g. that they obey the constraints previously defined.  

 

Figure 4. Tool Flow 

3.2 Implementation Constraints 

Before we discuss the run-time relocation algorithm, we need to 

consider a few practical problems that will strongly affect our 

results. 

A set of configuration frames for a column of CLBs can be used 

as-is in another column of CLBs because it requires the exact 

same routing bits and configuration logic bits. This is the good 

case that we want to obtain at run-time, if at all possible, because 

the relocation can then proceed at full speed. A more difficult case 

is when a set of configuration frames is targeted for one side of 

the chip (ex. top) and the target is at the other side of the chip (ex. 

bottom). On the Virtex 4, this case requires a bit-reversal of the 

configuration frames, each frame being over a thousand bits long. 

Architectures that do not implement this mirroring from top to 

bottom (ex. Virtex 5) can remove this step. The architectural 

layout of frames on the Virtex-4 chips is such that frames on the 

top of the chip are mirror images of the frames on the bottom of 

the chip. Only the middle word in the frame is not mirrored. This 

word contains the global routing bits and other configuration data. 

Bit-reversal means, for example that the bit in position 0 is at 

position 1,311 on the other side of the chip. This requires that the 

frame is read from end to beginning, because the word at the end 

of the frame is now the first word that needs to be bit reversed and 

written to the ICAP. This can be cumbersome and costly to do in 

software. In our implementation the frame is already in memory 

and read backward from end to start.  Each word is bit reversed 

using a lookup table at the byte level. This at minimum requires 

four loads from the LUT, three shifts and three ORs per word.  

Then the word is written to the ICAP.  Testing shows that this 
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algorithm is much better than others that use ALU instructions. 

Hardware support can eliminate the need for this costly reversal 

step through multiplexing the 32-bit signal with its bit reversed 

version and a control bit.  Such implementation would allow the 

bit reverse case to match the performance of the case where bit 

reversing is not required. 

The wires used for routing signals in/out of the PR region must 

match between the source and the target PR regions. The 

configuration data routes only to/from adjacent columns, and 

assumes that there actually is an external connection in the 

adjacent column at the periphery of the region. This requirement 

is currently handled by the bus macros on the Virtex-4. As long as 

the bus-macros have the same relative positioning between the 

two PR regions, this scheme correctly handles the relocation 

constraints between PR regions and our algorithm does not have 

to modify the routing information at all. 

Using the available FPGAs, a transformation of the relative 

location of the bus macros is not possible.  In practical 

applications it would be beneficial for PR regions on opposite 

sides of the FPGA to have their bus macro placements reflected 

across the middle to take advantage of symmetries in design.  

However, the bits encoding the routing data in the bit stream is 

not of a structure that can be readily transformed short of 

rerunning the routing algorithm. 

For ease and speed of reconfiguration, we decided not to support 

static routing, e.g. the logic in the static region is not allowed to 

route through the PR regions.  This can have an adverse effect on 

the design, for instance when that signal must route to an I/O pin. 

To handle this requirement, the static routing must either match 

across all of the PR designs, or we could use the scheme described 

in [11] and reserve some long lines for the static region inside the 

PR regions. We prohibited static routing from the PR region by 

setting the “ROUTING=CLOSED” constraint in the Xilinx ISE. 

Even though we used this constraint the router would still 

sometimes inexplicably route through the PR region when trying 

to get to the bus macros. To help the router route around the PR 

region, we created target LUTs to route to before routing to the 

troublesome bus macros.  

3.3 Relocation Algorithm 

Figure 5 shows the algorithm for relocating bit-streams at run-

time. There are three possible destinations for a configuration: 

1. Destination is where the bit-stream was generated for. 

No relocation is necessary. 

2. Destination is not where it was generated for, but on the 

same side of the chip. Relocation consists only of the 

translation of frame addresses. 

3. Destination is on the opposite side of the chip. 

Relocation involves both the translation of the frame 

addresses and bit-reversal of the frames. 

It is actually possible to encounter a combination of cases two and 

three. The Multiple Frame Write (MFWR) command can write a 

single frame of data to multiple frames addresses [15] and this can 

create a problem. Suppose a bit-stream that is on the top of the 

chip covering two HCLK rows must relocate to a PR region that 

straddles the middle of the chip. In the target region, one HCLK is 

used for both the top and bottom of the chip. A MFWR command 

could correctly write the same configuration frame to both HCLK 

rows in the original configuration, but in the new configuration 

we now need two separate MFWR commands, one for the top and 

one for the bottom of the chip. The frame data is valid as-is for the 

HCLK on the top of the chip, but it must be flipped for the HCLK 

row on the bottom of the chip. The separation can be done at run-

time. The cost is just some additional code because we need to 

buffer the frame data regardless. It is clearly easier to use a tool 

that expands the MFWR commands into multiple ones before 

deploying the bit-stream. Therefore the examples presented in 

Section 5 do not cover this case.  

Based on this algorithm, the three key contributing factors in the 

time to relocate a bit-stream are (1) the bit-stream size, (2) the bit-

stream composition, and (3) the location of the destination PR 

region on the chip. By composition we mean the relative count of 

commands that set the frame address and commands that write 

configuration frames. If the stream must be relocated, it would be 

best if we have very few frame addresses and do not need bit-

reversal. 
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4. RESULTS 
We ran our experiments on a 2.4 GHz Intel Dual core processor 

with 2 gigabytes of RAM using Xilinx ISE 9.2.4.PR7. As an 

example of the compilation time saved on map, place and route, a 

bit-stream with 99,528 bits took 28 minutes and 50 seconds to 

complete. This does not include the time to generate bit-streams. 

A bit-stream with 87,888 bits took 27 minutes and 5 seconds to 

complete. Those savings are multiplied by the number of PR 

regions that we do not need to compile for.  

We implemented the relocation algorithm in C and evaluated the 

performance on two soft-cores, using the GCC compiler in both 

cases. We used two tests, in the three setups of Figure 1 and 

Figure 2(a,b).  

In the first test, we used the setup of Figure 1 and implemented 

two eMIPS Extensions (mmldiv64 and ldret) for one of the two 

Extension slots only. We then used the relocation algorithm to 

relocate the Extension to the other slot, as part of the image 

activation by the RTOS. 

In the second test, we implemented a simple image display 

system, using a VGA driver and four transformation modules that 

alter the outputs of the VGA on the path to the monitor. Figure 2 

depicts this setup. The PR regions correspond to the four 

quadrants of the display, each one implements one transformation 

and are reconfigurable.  We implemented four transformations: no 

transform (INIT), SIN, COS and MULT. We only synthesized for 

one of the PR regions and used the relocation algorithm to 

dynamically relocate this implementation for the other regions.  

We run the experiment with both the MicroBlaze and the eMIPS 

microprocessors.   

Table 1 presents a breakdown of the configuration bit-streams 

sizes and frame address. The VGA experiment emphasizes small 

designs. By performing the same relocation algorithm with two 

different host microprocessors we can see the impact of the non-

software aspects of the relocation process.  The MicroBlaze uses 

exclusively the on-chip memory provided by the BRAMs.  The 

eMIPS instead executes from the off-chip memory available in the 

SRAM of the ML40x.  The eMIPS Extensions emphasize larger 

designs for which the algorithm will have a greater impact.  All of 

the designs were clocked at 100 MHz. 

Table 1. Configuration Bit-streams 

Configuration 

Name 

Size of 

Bit-stream 

(bytes) 

#Frame

s 

Written 

# FAR 

Command

s 

Blank 

(Extension) 
26488 52 862 

MMLDIV64 

(Extension) 
99528 559 367 

LDRET 

(Extension) 
87888 477 457 

SIN 

(Transform) 
11184 64 10 

MULT 

(Transform) 
11616 67 7 

COS 

(Transform) 
11652 67 9 

INIT 

(Transform) 
11076 62 22 

The results from relocating different bit-streams on eMIPS are 

shown in Table 2, the results for MicroBlaze in Table 3.  

Table 2. Relocation Timing Results Using eMIPS 

Configuration 

Name 

Relocate

? 

Frame 

Bit 

Reversal? 

Time 

(msec) 
KB/sec 

Blank 

(Extension) 

N N 83.1 318.7 

Y N 212.5 124.6 

Y Y 1488 79.97 

MMLDIV64 

(Extension) 

N N 312 318.9 

Y N 466.6 213.2 

Y Y 1709 58.23 

LDRET 

(Extension) 

N N 275.5 318.9 

Y N 427.4 205.6 

Y Y 1488 59.05 

SIN 

(Transform) 

N N 35.12 318.3 

Y N 49.32 226.7 

Y Y 191.5 58.38 

MULT 

(Transform) 

N N 36.48 318.4 

Y N 50.82 228.5 

Y Y 199.6 58.17 

COS 

(Transform) 

N N 36.59 318.4 

Y N 51.21 227.5 

Y Y 191.5 58.23 

INIT 

(Transform) 

N N 34.78 318.3 

Y N 50.25 220.3 

Y Y 188.2 58.82 

In the eMIPS measurements, the bit-streams are located in the 

SRAM section of the board, along with the code and data buffers 

for the relocation program itself. As can be readily seen 

comparing Tables 2 and 3, the memory type and parameters 

chosen for a design will impact the latency required to relocate the 

bit-stream. For the eMIPS setup the latency for accessing SRAM 

is five cycles. Using DDRAM would create more latency and 

FLASH would be even worse. At present, eMIPS does not use 

any caches or on-chip memory. This penalizes the results in Table 

2 because they include not only the time to fetch the bit-stream 

from SRAM but also the instruction fetches and data load/stores. 

The temporary swap buffer is also located in SRAM. 

Table 3. Relocation Timing Results Using MicroBlaze 

Configuration 

Name 

Relocate

? 

Frame 

Bit 

Reversal? 

Time 

(msec) 
KB/sec 

SIN 

(Tranform) 

N N 1.121 9971 

Y N 1.190 9392 

Y Y 3.174 3523 

MULT 

(Transform) 

N N 1.165 9971 

Y N 1.229 9445 

Y Y 3.309 3509 

COS 

(Transform) 

N N 1.168 9972 

Y N 1.236 9419 

Y Y 3.317 3512 

INIT 

(Transform) 

N N 1.111 9966 

Y N 1.204 9196 

Y Y 3.148 3517 

If the bit-stream does not require any modification the throughput 

achieved is about 318 kilobytes per second. If the bit-stream is 

relocated but does not require a bit reversal of the frames, the 



throughput is generally around 220 kilobytes per second. If the 

bit-stream requires a reversal in the bits in the configuration 

frames, the throughput is about 59 kilobytes per second. 

The Blank bit-stream does not follow the trend of the other points 

due to its composition. The blanking bit-stream removes almost 

all the routing that was done in the PR region, which results in a 

large number of matching configuration frames. The bit-stream 

issues a large amount of MFWR commands to write the same 

configuration frame to multiple frame addresses. This bit-stream 

therefore contains an unusually large concentration of frame 

addresses relative to its size. For comparison, the LDRET bit-

stream has only 457 frame address commands compared to 862 

for the Blank bit-stream. This decreases the throughput for the 

relocation with no bit reversal because of the increased calls to 

translate the frame addresses. Similarly, this bit-stream performs 

better than average for the relocation with bit reversal of frames 

because it contains a low concentration of configuration frames 

compared, for instance, to the COS bit-stream. This results in 

reducing the penalty of calling the bit-reversal function. The 

throughput for the no-modification case is approximately the same 

for all the different bit-streams. This is expected, since the 

algorithm is just copying the bit-stream to the ICAP without any 

modification. 

The results from relocating on the MicroBlaze setup (Figure 2(b)) 

are shown in Table 3. In this case, all of the bit-streams, code and 

data buffers are located in BRAM on the chip, which is 32-bit 

wide and accessible in a single cycle. If the bit-stream does not 

require modification the throughput achieved is about 10 

megabytes per second. If the bit-stream is relocated but does not 

require a bit reversal of the frames, the throughput is between 9.2 

to 9.5 megabytes per second. If the bit-stream requires a bit-

reversal of the configuration frames, the throughput is about 1.4 

megabytes per second. 

The ICAP accepts one write per cycle, and in both experiments it 

was configured in a 32-bit width. Since the designs are run at 100 

MHz, the maximum achievable throughput is 400 megabytes per 

second. The BRAMs provide the same throughput.  

5. CONCLUSIONS 
We have shown that relocatable bit-streams are beneficial in two 

dimensions: they reduce the number of bit-streams stored on a 

deployed system and they save compilation time during 

development. Both savings scale linearly with the number of PR 

regions used in a system.  

We have presented an on-chip algorithm and the corresponding 

tool-flow for performing bit-stream relocation. The algorithm was 

implemented and evaluated in two different architectures, leading 

to different performance numbers. In both cases, the content and 

destination of the bit-stream have the same and very noticeable 

effect on the maximum achieved throughput. The span between 

maximum and minimum throughput can be up to a factor of four, 

and far from the maximum bandwidth of the configuration port. 
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