
Relocation of FPGA Partial Configuration Bit-Streams for
Soft-Core Microprocessors

Jeff Carver
Microsoft Research
One Microsoft Way

Redmond, WA 98052

t-jeffc@microsoft.com

Neil Pittman
Microsoft Research
One Microsoft Way

Redmond, WA 98052

pittman@microsoft.com

Alessandro Forin
Microsoft Research
One Microsoft Way

Redmond, WA 98052

sandrof@microsoft.com

ABSTRACT
With dynamic partial reconfiguration (PR) we can augment a soft-

core with application specific blocks that may change, or

reconfigure, during run-time. In this paper we address some of the

inefficiencies in available FPGA tool flows by using bit-stream

relocation.

Standard tool-flows from FPGA manufacturers require the

creation of separate bit-streams for each PR region. The space and

time complexities that this entails are undesirable, especially in an

embedded system where storage is at premium. In this paper we

introduce a run-time algorithm that allows the relocation of one

bit-stream to any number of compatible regions, in linear time.

The application loader running on the data path can perform the

relocation as well as loading of the application code. We have

implemented the algorithm on the eMIPS, a soft-core

microprocessor of our own design, and on the MicroBlaze, an

industrial production soft-core microprocessor. Evaluation of the

algorithm shows a dependency on the composition of the stream

and on the target region, as well as a strong dependency on the

memory architecture of the system.

1. INTRODUCTION
The preferred model for dynamic partial reconfiguration of

FPGAs (PR) is with one static region and one PR region. The

static region guarantees the basic functionality and proper

behavior during reconfiguration, especially with respect to the I/O

signals. The single PR region is used to realize different temporal

parts of the application, or alternate realization of certain (signal)

processing, or to receive dynamic updates on deployed systems.

Solutions that employ more than one PR region are described in

the literature, but are not at all well supported by the tools. For

example, if the user requires that any configuration may map to

any region, it is currently required to synthesize each design

repeatedly, once for each PR region. Each compilation can require

hours of computer time. In addition, each of those long

compilations produces a separate configuration file (bit-stream)

for use with the given PR region and nowhere else. These bit-

stream files are large even for the smallest FPGA models, in the

order of hundreds of kilobytes. Further, all of the bit-streams must

be present at run-time. These time and space inefficiencies lead to

the desire to use a single bit-stream file that can be relocated to

any one of a many PR regions. In this paper, we describe an

algorithm for performing the dynamic relocation of bit-streams.

We demonstrate relocatable bit-streams with two separate soft-

cores. We used an extensible soft-core microprocessor of our own

design, eMIPS, and an industrial production soft-core

microprocessor, MicroBlaze. The two systems used in our tests

have radically different architectures, resulting in drastically

different performance results. We also found that the size,

composition and target location of the bit-stream themselves all

affected the time to relocate.

The rest of the paper is organized as follows. Section 2 presents

background material and related work. Section 3 describes the bit-

stream relocation algorithm, the tool flow, and their

implementation. Section 4 presents our experiments and results.

Section 5 concludes the paper.

2. BACKGROUND AND RELATED WORK

2.1 Partial Reconfiguration and Relocation
The ability to change portions of the FPGA configuration at run-

time is called dynamic partial reconfiguration (PR). This entails

modifying portions of the FPGA logic without affecting the

remaining parts of the circuit, which continues to function

unperturbed. Special support is needed in the FPGA chip for this

process to execute flawlessly and without “glitches”. Xilinx

continues to support PR while Altera supported it in the past but

has more recently dropped the feature. Currently the tool provided

by Xilinx for doing dynamic partial reconfiguration is part of the

Early Access Partial Reconfiguration, or EAPR, a flow that is

found at [1]. Refer to [1] for additional information on PR. To

perform on-chip reconfiguration on Xilinx devices, a designer

instantiates a special macro for the Internal Configuration Access

Port (ICAP), then sends the configuration data to it. For the

Virtex-4 the ICAP can be implemented with either an 8-bit or 32-

bit wide interface.

The bit-stream for configuring one PR region is tightly bound to

the physical location of that region and cannot be used directly to

reconfigure any other portion of the chip. In many cases though, it

is possible to modify an existing bit-stream and adapt it to a

different physical location. This process is termed bit-stream

relocation and can be performed statically by tools operating on

the designer’s workstation, or dynamically by the agent that loads

the bit-stream on chip. There are various works describing static

or dynamic relocation of configurations of a PR region to another.

The motivation is to reduce the number of partial bit-streams

required if two or more PR regions use the same implementation.

For example, if the FPGA had four target PR regions for the bit-

stream, the FPGA could save the storage of three bit-streams

copies in memory and reduce the compilation time by a factor of

four. The savings are noticeable because bit-streams tend to be

large and the compilation times are often measured in hours per

design. The trade-off is the size of the software/hardware and

some placement restrictions on the PR regions to enable

relocation.

Becker et al [2] describe the building of bit-streams for a Virtex-4

FPGA designed for relocation. The approach does not allow any

static logic in the PR regions. Manipulation of the bit-stream is

performed to relocate a column (ex. CLB) to a non-identical

column (ex. DSP) with respect to routing. The provided example

of a software defined radio with two reconfigurable regions

showed a reduction in the number of partial bit-streams by 50%

and compilation time by 43%. We implemented a similar baseline

using the MicroBlaze and extended it for use on our eMIPS

architecture.

Montminy et al.[3] show how to layout the redundant modules of

a Triple Modular Fault Tolerant design in such a way that one

module’s configuration is relocated to correct the errors in another

redundant module. A circuit automatically calculates the CRC

value as the bit-stream is being relocated. Horta et al.[7]

demonstrate relocatable bit-streams for a Virtex-E chip. They

used Gaskets, similar to bus macros, to define the routing between

the similar regions. Our FPGAs do not appear affected by the

absences of a correct CRC. For this reason, we have delayed

adding the CRC calculation in our tools.

Sedcole et al. [11] discuss relocation for a Virtex-4. The

distinguishing features in this work includes the ability to route

statically through a relocatable region by reserving routing lines

for the static logic, and the ability to merge relocatable and static

parts at run-time. A certain percentage of long lines are reserved

for the static logic to cross over the PR region. The static design is

then re-routed to use the reserved long lines. To merge parts at

runtime the current configuration is read out, stripped of the

previous configuration except the static logic, and merged with

the new configuration. This process proved to be very time-

consuming, with an increase of reconfiguration time from 6.2x to

11.4x. The example used the HWICAP provided by Xilinx. Due

to the additional complexity and time overhead, we chose to

exclude static routing from extensible regions.

Kalte et al. present REPLICA [12], a system with a zero-overhead

cost in relocation of the partial bit-stream. This is accomplished

with a hardware module capable of relocating CLB columns for a

Virtex-E FPGA. The hardware module also computes the new

CRC automatically. Additional hardware would be needed in a

Virtex-4 setup to allow for bit-reversal of the frames. Ferrandi et

al. present the Bit-stream Relocation Filter (BiRF) [13], a device

similar to REPLICA, but for a Virtex-2 and with minimal area

cost. Krasteva et al. describe the pBITPOS tool [14], to allow

relocation for Virtex II (Pro) solutions. The additional feature in

this work is the ability to relocate configurations that make use of

BRAM/MULs. Additional hardware for supporting bit-stream

relocation would improve performance; however our

implementation is done completely in software at this time.

ICAP

eMIPS Timer
ICAP

Controller

Extension0

Extension1

Processor Local Bus

SRAM

Controller

SRAM

External

Memory Bus

Extension

Interface

Figure 1. Experiment 1, eMIPS Extensions

2.2 The Extensible MIPS Processor

The eMIPS microprocessor system [8] provides a MIPS [10]

RISC data path tightly integrated with Extension slots mapped to

PR regions. During run-time the Extension slots implement

hardware modules called Extensions. The system is available for

download at [9]. Figure 1 and Figure 2(a) show block diagrams of

two eMIPS based systems (Experiments 1 & 2). We implemented

the eMIPS microprocessor using a Xilinx FPGA and the partial

reconfiguration feature to change the state of the Extension slots

at runtime. In Figure 1, the eMIPS data path interfaces to the

ICAP, timer, General Purpose Input and Output (GPIO), and other

peripherals on an internal bus. The eMIPS microprocessor uses

the external SRAM for instruction and data memory. Refer to [8]

for additional information on eMIPS.

2.3 The MicroBlaze Processor

MicroBlaze is a soft-core RISC processor provided by Xilinx 0. It

can be implemented as a 3-stage or 5-stage pipeline. Figure 2(b)

provides an overview of how the MicroBlaze interacts with the

other components in the system used for our experiments

(Experiment 3). Xilinx provides an IP core, the HWICAP, for

interfacing the ICAP to the MicroBlaze internal bus. The Timer is

free-running to measure the cycles it takes to configure a region.

The application code and all the configuration data required for

the experiment are stored on the internal block RAMS (BRAMS)

of the FPGA.

ICAP

eMIPS
ICAP

Controller

VGA

Interface
Timer

TL

BL

TR

BR

Processor Local Bus

SRAM

Controller

SRAM

Bottom

Right

Top

Left

Bottom

Left

Top

Right

Frame Buffer

(BRAM)

(a) Experiment 2

Transforms

External

Memory Bus

Memory

(BRAM)
ICAP

MicroBlaze HWICAP
VGA

Interface
Timer

TL

BL

TR

BR

Transforms

Bottom

Right

Top

Left

Bottom

Left

Top

Right

Processor Local Bus

Frame Buffer

(BRAM)

(b) Experiment 3

Internal

Memory Bus

Figure 2. VGA Transform Experimental Setups

2.4 Virtex-4 Configuration Layout

The smallest unit of configuration on a Xilinx FPGA is the frame.

A frame includes a fixed number of Configurable Logic Blocks

(CLBs), physically laid out in fixed geometries. On the Virtex-4

FPGAs, frames span the height of 16 CLBs, which is one HCLK

row. In previous Virtex FPGAs [15] a frame spans the entire

height of the chip. Each frame in the Virtex-4 is composed of

1,312 bits. Frames are addressed in a 2-D fashion. A frame

address command sets the starting destination of the configuration

frames. A frame address on the Virtex-4 is composed of five

parts: top/bottom of chip, block type, HCLK row, major column

address, and minor column address. The top/bottom part specifies

whether the target is at the top or at the bottom of the chip. The

block type is one of three types: CLB/IOB/DSP/GCLK (0),

BRAM interconnect (1), and BRAM content (2). The HCLK row

indicates which row of the chip is targeted. Numbering of the

HCLK row starts from the middle of the chip outward. The major

column address specifies which resource column to change. The

number begins at zero at the far left of the chip and increments

going to the right. The number of minor addresses for a given

column depends on the type of resource targeted. There are 22

minor frames for CLBs, 21 for DSPs, 20 for BRAM interconnect,

64 for BRAM content, 30 for IOBs, and 2 for GCLK.

Figure 3. Frame Address Mapping Example on SX35

For example in Figure 3, to reach the first CLB column in the

upper-left of the chip, the frame address would be as follows:

top/bottom=0, block type=0, HCLK row=1, major column

address=1, and minor column address=0-21. This correlation is

critical to understand how to manipulate the bit-stream to target

the desired PR region.

3. RELOCATING BIT-STREAMS
Relocation of the bit-stream is simple and efficient as long as the

source and target PR regions meet a few constraints. In our work

the regions must: (1) have the same pattern of resources, (2) span

the entire height of the HCLK row (one entire frame), (3)

encompass the same amount of area on the chip, and (4) use bus-

macros in the same (relative) placement. When these constraints

are valid, relocation consists mostly in adjusting the frame

addresses in the source bit-stream to match the target PR region.

3.1 Relocation Tool-Flow

The complete tool-flow for performing relocation is shown in

Figure 4 and includes both compile-time and run-time elements.

The inputs required are a description of (some properties of) the

Target FPGA and a description of the PR regions that are

potential targets. Currently only the Virtex-4 LX and SX chips are

supported because we do not have a complete understanding of

exactly how the embedded PowerPC on the FX chip series affects

the layout of the configuration frames. The FPGA Configuration

Generator computes the pattern of resources and the number of

HCLK rows on the target chip. The Adjustment Generator uses

this information to compute the run-time parameters required for

the Relocation of the Bit-streams stage. These parameters can be

compiled in the relocation code, or provided as a data file. The

relocation algorithm itself is therefore oblivious to the original

inputs. Note that the parameters are specific to the FPGA and its

PR configuration, which are also static elements in the overall

design. The Adjustment Generator performs some additional

checks to verify that the PR regions are relocatable to each other,

e.g. that they obey the constraints previously defined.

Figure 4. Tool Flow

3.2 Implementation Constraints

Before we discuss the run-time relocation algorithm, we need to

consider a few practical problems that will strongly affect our

results.

A set of configuration frames for a column of CLBs can be used

as-is in another column of CLBs because it requires the exact

same routing bits and configuration logic bits. This is the good

case that we want to obtain at run-time, if at all possible, because

the relocation can then proceed at full speed. A more difficult case

is when a set of configuration frames is targeted for one side of

the chip (ex. top) and the target is at the other side of the chip (ex.

bottom). On the Virtex 4, this case requires a bit-reversal of the

configuration frames, each frame being over a thousand bits long.

Architectures that do not implement this mirroring from top to

bottom (ex. Virtex 5) can remove this step. The architectural

layout of frames on the Virtex-4 chips is such that frames on the

top of the chip are mirror images of the frames on the bottom of

the chip. Only the middle word in the frame is not mirrored. This

word contains the global routing bits and other configuration data.

Bit-reversal means, for example that the bit in position 0 is at

position 1,311 on the other side of the chip. This requires that the

frame is read from end to beginning, because the word at the end

of the frame is now the first word that needs to be bit reversed and

written to the ICAP. This can be cumbersome and costly to do in

software. In our implementation the frame is already in memory

and read backward from end to start. Each word is bit reversed

using a lookup table at the byte level. This at minimum requires

four loads from the LUT, three shifts and three ORs per word.

Then the word is written to the ICAP. Testing shows that this

FPGA

Configuration

Generator

Adjustment

Generator

Relocation of

Bit-stream

(on-chip)

Target FPGA

(text file)

Reconfiguration

port (ex. ICAP)

Homogeneous

PR Regions

(text file)

algorithm is much better than others that use ALU instructions.

Hardware support can eliminate the need for this costly reversal

step through multiplexing the 32-bit signal with its bit reversed

version and a control bit. Such implementation would allow the

bit reverse case to match the performance of the case where bit

reversing is not required.

The wires used for routing signals in/out of the PR region must

match between the source and the target PR regions. The

configuration data routes only to/from adjacent columns, and

assumes that there actually is an external connection in the

adjacent column at the periphery of the region. This requirement

is currently handled by the bus macros on the Virtex-4. As long as

the bus-macros have the same relative positioning between the

two PR regions, this scheme correctly handles the relocation

constraints between PR regions and our algorithm does not have

to modify the routing information at all.

Using the available FPGAs, a transformation of the relative

location of the bus macros is not possible. In practical

applications it would be beneficial for PR regions on opposite

sides of the FPGA to have their bus macro placements reflected

across the middle to take advantage of symmetries in design.

However, the bits encoding the routing data in the bit stream is

not of a structure that can be readily transformed short of

rerunning the routing algorithm.

For ease and speed of reconfiguration, we decided not to support

static routing, e.g. the logic in the static region is not allowed to

route through the PR regions. This can have an adverse effect on

the design, for instance when that signal must route to an I/O pin.

To handle this requirement, the static routing must either match

across all of the PR designs, or we could use the scheme described

in [11] and reserve some long lines for the static region inside the

PR regions. We prohibited static routing from the PR region by

setting the “ROUTING=CLOSED” constraint in the Xilinx ISE.

Even though we used this constraint the router would still

sometimes inexplicably route through the PR region when trying

to get to the bus macros. To help the router route around the PR

region, we created target LUTs to route to before routing to the

troublesome bus macros.

3.3 Relocation Algorithm

Figure 5 shows the algorithm for relocating bit-streams at run-

time. There are three possible destinations for a configuration:

1. Destination is where the bit-stream was generated for.

No relocation is necessary.

2. Destination is not where it was generated for, but on the

same side of the chip. Relocation consists only of the

translation of frame addresses.

3. Destination is on the opposite side of the chip.

Relocation involves both the translation of the frame

addresses and bit-reversal of the frames.

It is actually possible to encounter a combination of cases two and

three. The Multiple Frame Write (MFWR) command can write a

single frame of data to multiple frames addresses [15] and this can

create a problem. Suppose a bit-stream that is on the top of the

chip covering two HCLK rows must relocate to a PR region that

straddles the middle of the chip. In the target region, one HCLK is

used for both the top and bottom of the chip. A MFWR command

could correctly write the same configuration frame to both HCLK

rows in the original configuration, but in the new configuration

we now need two separate MFWR commands, one for the top and

one for the bottom of the chip. The frame data is valid as-is for the

HCLK on the top of the chip, but it must be flipped for the HCLK

row on the bottom of the chip. The separation can be done at run-

time. The cost is just some additional code because we need to

buffer the frame data regardless. It is clearly easier to use a tool

that expands the MFWR commands into multiple ones before

deploying the bit-stream. Therefore the examples presented in

Section 5 do not cover this case.

Based on this algorithm, the three key contributing factors in the

time to relocate a bit-stream are (1) the bit-stream size, (2) the bit-

stream composition, and (3) the location of the destination PR

region on the chip. By composition we mean the relative count of

commands that set the frame address and commands that write

configuration frames. If the stream must be relocated, it would be

best if we have very few frame addresses and do not need bit-

reversal.

Relocation

Needed?

End of Bit-

stream?

Read/Write

Command

Is Frame

Address

Command?

Read/Adjust/

Write Frame

Address

 Write

Frame

Command?

Bit Reversal

 of Frame(s)?

Read/Write out

the Bit-stream

Bit-Reversal of

each Frame

Except Middle

Word in Frame

Return

N

Y

Y

N

Y

N

Y

N

Y

A

A

A

Enter

Read/Write All

Words

Specified by

Command

N

Figure 5. Relocation Algorithm

4. RESULTS
We ran our experiments on a 2.4 GHz Intel Dual core processor

with 2 gigabytes of RAM using Xilinx ISE 9.2.4.PR7. As an

example of the compilation time saved on map, place and route, a

bit-stream with 99,528 bits took 28 minutes and 50 seconds to

complete. This does not include the time to generate bit-streams.

A bit-stream with 87,888 bits took 27 minutes and 5 seconds to

complete. Those savings are multiplied by the number of PR

regions that we do not need to compile for.

We implemented the relocation algorithm in C and evaluated the

performance on two soft-cores, using the GCC compiler in both

cases. We used two tests, in the three setups of Figure 1 and

Figure 2(a,b).

In the first test, we used the setup of Figure 1 and implemented

two eMIPS Extensions (mmldiv64 and ldret) for one of the two

Extension slots only. We then used the relocation algorithm to

relocate the Extension to the other slot, as part of the image

activation by the RTOS.

In the second test, we implemented a simple image display

system, using a VGA driver and four transformation modules that

alter the outputs of the VGA on the path to the monitor. Figure 2

depicts this setup. The PR regions correspond to the four

quadrants of the display, each one implements one transformation

and are reconfigurable. We implemented four transformations: no

transform (INIT), SIN, COS and MULT. We only synthesized for

one of the PR regions and used the relocation algorithm to

dynamically relocate this implementation for the other regions.

We run the experiment with both the MicroBlaze and the eMIPS

microprocessors.

Table 1 presents a breakdown of the configuration bit-streams

sizes and frame address. The VGA experiment emphasizes small

designs. By performing the same relocation algorithm with two

different host microprocessors we can see the impact of the non-

software aspects of the relocation process. The MicroBlaze uses

exclusively the on-chip memory provided by the BRAMs. The

eMIPS instead executes from the off-chip memory available in the

SRAM of the ML40x. The eMIPS Extensions emphasize larger

designs for which the algorithm will have a greater impact. All of

the designs were clocked at 100 MHz.

Table 1. Configuration Bit-streams

Configuration

Name

Size of

Bit-stream

(bytes)

#Frame

s

Written

FAR

Command

s

Blank

(Extension)
26488 52 862

MMLDIV64

(Extension)
99528 559 367

LDRET

(Extension)
87888 477 457

SIN

(Transform)
11184 64 10

MULT

(Transform)
11616 67 7

COS

(Transform)
11652 67 9

INIT

(Transform)
11076 62 22

The results from relocating different bit-streams on eMIPS are

shown in Table 2, the results for MicroBlaze in Table 3.

Table 2. Relocation Timing Results Using eMIPS

Configuration

Name

Relocate

?

Frame

Bit

Reversal?

Time

(msec)
KB/sec

Blank

(Extension)

N N 83.1 318.7

Y N 212.5 124.6

Y Y 1488 79.97

MMLDIV64

(Extension)

N N 312 318.9

Y N 466.6 213.2

Y Y 1709 58.23

LDRET

(Extension)

N N 275.5 318.9

Y N 427.4 205.6

Y Y 1488 59.05

SIN

(Transform)

N N 35.12 318.3

Y N 49.32 226.7

Y Y 191.5 58.38

MULT

(Transform)

N N 36.48 318.4

Y N 50.82 228.5

Y Y 199.6 58.17

COS

(Transform)

N N 36.59 318.4

Y N 51.21 227.5

Y Y 191.5 58.23

INIT

(Transform)

N N 34.78 318.3

Y N 50.25 220.3

Y Y 188.2 58.82

In the eMIPS measurements, the bit-streams are located in the

SRAM section of the board, along with the code and data buffers

for the relocation program itself. As can be readily seen

comparing Tables 2 and 3, the memory type and parameters

chosen for a design will impact the latency required to relocate the

bit-stream. For the eMIPS setup the latency for accessing SRAM

is five cycles. Using DDRAM would create more latency and

FLASH would be even worse. At present, eMIPS does not use

any caches or on-chip memory. This penalizes the results in Table

2 because they include not only the time to fetch the bit-stream

from SRAM but also the instruction fetches and data load/stores.

The temporary swap buffer is also located in SRAM.

Table 3. Relocation Timing Results Using MicroBlaze

Configuration

Name

Relocate

?

Frame

Bit

Reversal?

Time

(msec)
KB/sec

SIN

(Tranform)

N N 1.121 9971

Y N 1.190 9392

Y Y 3.174 3523

MULT

(Transform)

N N 1.165 9971

Y N 1.229 9445

Y Y 3.309 3509

COS

(Transform)

N N 1.168 9972

Y N 1.236 9419

Y Y 3.317 3512

INIT

(Transform)

N N 1.111 9966

Y N 1.204 9196

Y Y 3.148 3517

If the bit-stream does not require any modification the throughput

achieved is about 318 kilobytes per second. If the bit-stream is

relocated but does not require a bit reversal of the frames, the

throughput is generally around 220 kilobytes per second. If the

bit-stream requires a reversal in the bits in the configuration

frames, the throughput is about 59 kilobytes per second.

The Blank bit-stream does not follow the trend of the other points

due to its composition. The blanking bit-stream removes almost

all the routing that was done in the PR region, which results in a

large number of matching configuration frames. The bit-stream

issues a large amount of MFWR commands to write the same

configuration frame to multiple frame addresses. This bit-stream

therefore contains an unusually large concentration of frame

addresses relative to its size. For comparison, the LDRET bit-

stream has only 457 frame address commands compared to 862

for the Blank bit-stream. This decreases the throughput for the

relocation with no bit reversal because of the increased calls to

translate the frame addresses. Similarly, this bit-stream performs

better than average for the relocation with bit reversal of frames

because it contains a low concentration of configuration frames

compared, for instance, to the COS bit-stream. This results in

reducing the penalty of calling the bit-reversal function. The

throughput for the no-modification case is approximately the same

for all the different bit-streams. This is expected, since the

algorithm is just copying the bit-stream to the ICAP without any

modification.

The results from relocating on the MicroBlaze setup (Figure 2(b))

are shown in Table 3. In this case, all of the bit-streams, code and

data buffers are located in BRAM on the chip, which is 32-bit

wide and accessible in a single cycle. If the bit-stream does not

require modification the throughput achieved is about 10

megabytes per second. If the bit-stream is relocated but does not

require a bit reversal of the frames, the throughput is between 9.2

to 9.5 megabytes per second. If the bit-stream requires a bit-

reversal of the configuration frames, the throughput is about 1.4

megabytes per second.

The ICAP accepts one write per cycle, and in both experiments it

was configured in a 32-bit width. Since the designs are run at 100

MHz, the maximum achievable throughput is 400 megabytes per

second. The BRAMs provide the same throughput.

5. CONCLUSIONS
We have shown that relocatable bit-streams are beneficial in two

dimensions: they reduce the number of bit-streams stored on a

deployed system and they save compilation time during

development. Both savings scale linearly with the number of PR

regions used in a system.

We have presented an on-chip algorithm and the corresponding

tool-flow for performing bit-stream relocation. The algorithm was

implemented and evaluated in two different architectures, leading

to different performance numbers. In both cases, the content and

destination of the bit-stream have the same and very noticeable

effect on the maximum achieved throughput. The span between

maximum and minimum throughput can be up to a factor of four,

and far from the maximum bandwidth of the configuration port.

6. REFERENCES
[1] Available at

http://www.xilinx.com/support/prealounge/protected/index.ht

m

[2] Becker, T.; Luk, W.; Cheung, P.Y.K., "Enhancing

Relocatability of Partial Bit-streams for Run-Time

Reconfiguration," Field-Programmable Custom Computing

Machines, 2007. FCCM 2007. 15th Annual IEEE Symposium

on, vol., no., pp.35-44, 23-25 April 2007.

[3] Montminy, D.P.; Baldwin, R.O.; Williams, P.D.; Mullins,

B.E., "Using Relocatable Bit-streams for Fault Tolerance,"

Adaptive Hardware and Systems, 2007. AHS 2007. Second

NASA/ESA Conference on, vol., no., pp.701-708, 5-8 Aug.

2007.

[4] Note, J. and Rannaud, É. 2008. From the bit-stream to the

netlist. In Proceedings of the 16th international ACM/SIGDA

Symposium on Field Programmable Gate Arrays (Monterey,

California, USA, February 24 - 26, 2008). FPGA '08. ACM,

New York, NY, 264-264.

[5] Guccione, S., Levi, D. and Sundararajan, P. “JBits: Java

based interface for reconfigurable computing”, Xilinx Inc,

San Jose, CA

[6] C. Claus, B. Zhang, M. Huebner, C. Schmutzler, J. Becker,

W. Stechele, "An XDL-based busmacro generator for

customizable communication interfaces for dynamically and

partially reconfigurable systems", Workshop on

Reconfigurable Computing Education at ISVLSI 2007, Porto

Alegre, Brazil, May 12, 2007.

[7] Horta, E.L.; Lockwood, J.W.; Taylor, D.E.; Parlour, D.,

"Dynamic hardware plugins in an FPGA with partial run-

time reconfiguration," Design Automation Conference, 2002.

Proceedings. 39th , vol., no., pp. 343-348, 2002.

[8] Pittman, R. N., Lynch, N. L., Forin, A. eMIPS, A

Dynamically Extensible Processor, MSR-TR-2006-143,

Microsoft Research, WA, October 2006.

[9] Download at

http://research.microsoft.com/research/EmbeddedSystems/e

MIPS/eMIPS.aspx

[10] Kane, G., Heinrich, J. 1992. MIPS RISC Architecture.

Prentice Hall, Upper Saddle River, NJ.

[11] Sedcole, P.; Blodget, B.; Becker, T.; Anderson, J.; Lysaght,

P., "Modular dynamic reconfiguration in Virtex FPGAs,"

Computers and Digital Techniques, IEE Proceedings - ,

vol.153, no.3, pp. 157-164, 2 May 2006.

[12] Kalte, H.; Lee, G.; Porrmann, M.; Ruckert, U., "REPLICA:

A Bit-stream Manipulation Filter for Module Relocation in

Partial Reconfigurable Systems," Parallel and Distributed

Processing Symposium, 2005. Proceedings. 19th IEEE

International , vol., no., pp. 151b-151b, 04-08 April 2005.

[13] Ferrandi, F., Novati, M., Morandi, M., Santambrogio, M. D.,

Sciuto, D. "Dynamic Reconfiguration: Core Relocation via

Partial Bit-streams Filtering with Minimal Overhead,"

System-on-Chip, 2006. International Symposium on , vol.,

no., pp.1-4, Nov. 2006.

[14] Krasteva, Y.E.; de la Torre, E.; Riesgo, T.; Joly, D., "Virtex

II FPGA Bit-stream Manipulation: Application to

Reconfiguration Control Systems," Field Programmable

Logic and Applications, 2006. FPL '06. International

Conference on , vol., no., pp.1-4, 28-30 Aug. 2006.

[15] Xilinx Inc. Virtex-4 Configuration Guide v1.10, April 2008.

Xilinx Inc. MicroBlaze Processor Reference Guide. URL:

http://www.xilinx.com/support/documentation/sw_manuals/

mb_ref_guide.pdf.

http://www.xilinx.com/support/prealounge/protected/index.htm
http://www.xilinx.com/support/prealounge/protected/index.htm
http://research.microsoft.com/research/EmbeddedSystems/eMIPS/eMIPSreport1.pdf
http://research.microsoft.com/research/EmbeddedSystems/eMIPS/eMIPSreport1.pdf
http://research.microsoft.com/research/EmbeddedSystems/eMIPS/emips.aspx
http://research.microsoft.com/research/EmbeddedSystems/eMIPS/emips.aspx
http://www.xilinx.com/support/documentation/sw_manuals/mb_ref_guide.pdf
http://www.xilinx.com/support/documentation/sw_manuals/mb_ref_guide.pdf

