
Anand-Kahl - Coconut - Google 2008

Legal Notices

• Cell Broadband Engine is a trademark of Sony
Computer Entertainment, Inc., in the United
States, other countries, or both.

• IBM is a registered trademark of International
Business Machines Corporation in the United
States, other countries, or both.

• Other company, product, and service names
may be trademarks or service marks of others.

44 !

Coconut - CASCON - 20091

• McMaster University and the authors make no claims of
fitness and accept no liability for the statements in this talk

Coconut - CASCON - 2009

Christopher Kumar Anand

Coconut:
COde CONstructing

User Tool

McMaster University http://ocalgorithms.com

McMaster University

Advanced Optimization Laboratory

Title:

Unified Tables for
Exponential and Logarithm Families

Authors:

Christopher Kumar Anand and Anuroop Sharma

AdvOL-Report No. 2009/02

May 2009, Hamilton, Ontario, Canada

Advanced Optimization Laboratory
McMaster University

http://ocalgorithms.com
http://ocalgorithms.com

Coconut - CASCON - 20093

Thanks
Wolfram Kahl (McMaster)

Robert Enenkel (IBM)

Stephen Adams
Kevin Browne

Ding Cong

Shiqi Cao

Nathan Cumpson

Andrew Curtis
Saeed Jahed

Damith Karunaratne

Clayton Goes

Gabriel Grant

William Hua

Fletcher Johnson

Wei Li

Rakshit Kumar
Nick Mansfield

Mehrdad Mozafari

Paul Polak
Adam Schulz
Anuroop Sharma

Sanvesh Srivastava

Wolfgang Thaller

Gordon Uszkay

Christopher Venantius

Paul Vrbik

IBM Centre for Advanced Studies, CFI, OIT, NSERC, Apple Canada.

Coconut - CASCON - 2009

Coconut

1. experiment

• DSLs embedded in Haskell

• principled graph transformations

2. production compiler/code generator

• produces IBM MASS library on several
platforms

4

Coconut - CASCON - 2009

Ideas

• orthogonal aspects into DSLs

• greater control

• one aspect at a time

• principled graph transformations

• still working on embedding into a
textual language

5

Coconut - CASCON - 2009

Roadmap
• SIMD Parallelism

extensible DSL captures patterns
verification via graph transformation
generated library shipping (Cell BE SDK 3.0)

• Multi-Core Parallelism
model on ILP
generation via graph transformation
linear-time verification
run time

• Distant Parallelism
verification via model checking

➳

½
✔

✔

✔

✔
➳

∞

Sc
he

du
lin

g:
 E

xS
SP

✔

Coconut - CASCON - 2009

4X Faster
than C+inline

7

5 cycles

96 cycles

Compact Code

8

CELL SPU Math Library

0

0.2

0.4

0.6

0.8

1

2 4 6 8

–40

–30

–20

–10

0

2 4 6 8

Figure 2: Sixteen approximating polynomial segments, above, and the corresponding error in bits,
below.

5.3 Hyperbolic Sine

Hyperbolic sine is defined by

sinhx =
ex − e−x

2
. (10)

It is difficult to approximate by polynomials over large ranges, because it grows exponentially.
Therfore, for large values we use (10), but for small values of x, such that ex and e−x are close in
value:

(i) precision loss grows as n where x = 2−n, because of similarity, and

13

CELL SPU Math Library

look2 = shufb look1 look1
$ unbytes [1,1,1,1, 5,5,5,5, 9,9,9,9, 13,13,13,13]

look3 = selb (unwrds4 0x00010203) look2 (unwrds4 0x1c1c1c1c)

To improve the accuracy of the polynomial approximations, we found it necessary to evaluate the
polynomials

poly = hornerV (contigLookup arcsinTable look3) xCentred

using interval-centered coordinates
xCentred = fs xPositive offset

where it is very important that the same lookup key is used to look up the offset to centre the input,
otherwise boundary cases could produce arbitrary errors.

[offset] = contigLookup (contigTable offsets) look3

For the first intervals we now have the final answer, but for the second intervals we need to apply
the square root and subtract from π/2.

piOver2sqrtP = fs piOver2 (sqrtSPU poly)

The appropriate final result is chosen with a select mask
yPositive = selb poly piOver2sqrtP switch

which must again be looked up using the same key, to prevent problems with edge cases.
[switch] = contigLookup (contigTableWord switches) look3

To ensure synchronization, the following constants are printed from Maple to Haskell:
switches = [[0, 0, 0, 0, -1, -1, -1, -1]]
offsets = [[0, 0.1875, 0.3125, 0.4375, 0.5625, 0.6875, 0.8125, 1]]

5.2 Hyperbolic Tangent

Hyperbolic tangent is defined by

tanh(x) =
ex − e−x

ex + e−x
, (9)

but using this definition for computation would be difficult because we would run into problems with
subtraction of similar numbers, and division of similar large and small numbers, all of which intro-
duce additional error. Fortunately, hyperbolic tangent rises very quickly to 1, arctanh(1− 2−24) =
8.6643397420981601947, and can be approximated by polynomials in the range [−8.664339, 8.664339].
So any number larger than this in magnitude should round to ±1.

The function is unrolled to process two inputs at once because the 16-way lookup can be better
amortized this way.

For the final step, we put the sign back:
ftanh (v1,v2) = (selb result1OrOne v1 signBit, selb result2OrOne v2 signBit)
where

take the positive part
v1Positive = andc v1 signBit
v2Positive = andc v2 signBit

compare to arctanh(1 − 2−24) because this is the smallest number which rounds to 1, all higher
numbers round to 1, and form a select mask

isBig1 = fcmgt v1Positive (unfloats4 $ 8.6643397420981601947)
isBig2 = fcmgt v2Positive (unfloats4 $ 8.6643397420981601947)

which is applied to the final result:

11

Anand, Li, Sharma & Srivastava

result1OrOne = selb result1 (unfloats4 1) isBig1
result2OrOne = selb result2 (unfloats4 1) isBig2

do parallel lookup for two vector inputs (8 floats) of polynomial coefficients, generated by Maple:
cs = (coeffs tanhLkup tanhC (v1Positive,v2Positive))

evaluate polynomials using Horner’s rule:
result1 = hornerV (map fst cs) v1Positive
result2 = hornerV (map snd cs) v2Positive

where the instructions to form the lookup key and the break points between intervals are caluculated
using the utility function
tanhLkup = calcBreaks 2 2 3 8.6644

These break points are then copied into the Maple code to compute and package the coefficients
for the polynomials:
i:=0;ax:=numapprox[minimax](x->limit((tanh(y)/y-1)/y,y=x),(breaks[i+1])..(breaks[i+2])

,[polyOrd-2,0],x->x,’da[i]’);
aa[0]:=x->x*(1+x*ax(x));
for i from 1 to 15 do

aa[i]:=numapprox[minimax](x->tanh(x),(breaks[i+1])..(breaks[i+2]),[polyOrd,0],x->x,’da[i]’);
od;

12

CELL SPU Math Library

look2 = shufb look1 look1
$ unbytes [1,1,1,1, 5,5,5,5, 9,9,9,9, 13,13,13,13]

look3 = selb (unwrds4 0x00010203) look2 (unwrds4 0x1c1c1c1c)

To improve the accuracy of the polynomial approximations, we found it necessary to evaluate the
polynomials

poly = hornerV (contigLookup arcsinTable look3) xCentred

using interval-centered coordinates
xCentred = fs xPositive offset

where it is very important that the same lookup key is used to look up the offset to centre the input,
otherwise boundary cases could produce arbitrary errors.

[offset] = contigLookup (contigTable offsets) look3

For the first intervals we now have the final answer, but for the second intervals we need to apply
the square root and subtract from π/2.

piOver2sqrtP = fs piOver2 (sqrtSPU poly)

The appropriate final result is chosen with a select mask
yPositive = selb poly piOver2sqrtP switch

which must again be looked up using the same key, to prevent problems with edge cases.
[switch] = contigLookup (contigTableWord switches) look3

To ensure synchronization, the following constants are printed from Maple to Haskell:
switches = [[0, 0, 0, 0, -1, -1, -1, -1]]
offsets = [[0, 0.1875, 0.3125, 0.4375, 0.5625, 0.6875, 0.8125, 1]]

5.2 Hyperbolic Tangent

Hyperbolic tangent is defined by

tanh(x) =
ex − e−x

ex + e−x
, (9)

but using this definition for computation would be difficult because we would run into problems with
subtraction of similar numbers, and division of similar large and small numbers, all of which intro-
duce additional error. Fortunately, hyperbolic tangent rises very quickly to 1, arctanh(1− 2−24) =
8.6643397420981601947, and can be approximated by polynomials in the range [−8.664339, 8.664339].
So any number larger than this in magnitude should round to ±1.

The function is unrolled to process two inputs at once because the 16-way lookup can be better
amortized this way.

For the final step, we put the sign back:
ftanh (v1,v2) = (selb result1OrOne v1 signBit, selb result2OrOne v2 signBit)
where

take the positive part
v1Positive = andc v1 signBit
v2Positive = andc v2 signBit

compare to arctanh(1 − 2−24) because this is the smallest number which rounds to 1, all higher
numbers round to 1, and form a select mask

isBig1 = fcmgt v1Positive (unfloats4 $ 8.6643397420981601947)
isBig2 = fcmgt v2Positive (unfloats4 $ 8.6643397420981601947)

which is applied to the final result:

11

Anand, Li, Sharma & Srivastava

result1OrOne = selb result1 (unfloats4 1) isBig1
result2OrOne = selb result2 (unfloats4 1) isBig2

do parallel lookup for two vector inputs (8 floats) of polynomial coefficients, generated by Maple:
cs = (coeffs tanhLkup tanhC (v1Positive,v2Positive))

evaluate polynomials using Horner’s rule:
result1 = hornerV (map fst cs) v1Positive
result2 = hornerV (map snd cs) v2Positive

where the instructions to form the lookup key and the break points between intervals are caluculated
using the utility function
tanhLkup = calcBreaks 2 2 3 8.6644

These break points are then copied into the Maple code to compute and package the coefficients
for the polynomials:
i:=0;ax:=numapprox[minimax](x->limit((tanh(y)/y-1)/y,y=x),(breaks[i+1])..(breaks[i+2])

,[polyOrd-2,0],x->x,’da[i]’);
aa[0]:=x->x*(1+x*ax(x));
for i from 1 to 15 do

aa[i]:=numapprox[minimax](x->tanh(x),(breaks[i+1])..(breaks[i+2]),[polyOrd,0],x->x,’da[i]’);
od;

12

Compact Code

8

CELL SPU Math Library

0

0.2

0.4

0.6

0.8

1

2 4 6 8

–40

–30

–20

–10

0

2 4 6 8

Figure 2: Sixteen approximating polynomial segments, above, and the corresponding error in bits,
below.

5.3 Hyperbolic Sine

Hyperbolic sine is defined by

sinhx =
ex − e−x

2
. (10)

It is difficult to approximate by polynomials over large ranges, because it grows exponentially.
Therfore, for large values we use (10), but for small values of x, such that ex and e−x are close in
value:

(i) precision loss grows as n where x = 2−n, because of similarity, and

13

CELL SPU Math Library

look2 = shufb look1 look1
$ unbytes [1,1,1,1, 5,5,5,5, 9,9,9,9, 13,13,13,13]

look3 = selb (unwrds4 0x00010203) look2 (unwrds4 0x1c1c1c1c)

To improve the accuracy of the polynomial approximations, we found it necessary to evaluate the
polynomials

poly = hornerV (contigLookup arcsinTable look3) xCentred

using interval-centered coordinates
xCentred = fs xPositive offset

where it is very important that the same lookup key is used to look up the offset to centre the input,
otherwise boundary cases could produce arbitrary errors.

[offset] = contigLookup (contigTable offsets) look3

For the first intervals we now have the final answer, but for the second intervals we need to apply
the square root and subtract from π/2.

piOver2sqrtP = fs piOver2 (sqrtSPU poly)

The appropriate final result is chosen with a select mask
yPositive = selb poly piOver2sqrtP switch

which must again be looked up using the same key, to prevent problems with edge cases.
[switch] = contigLookup (contigTableWord switches) look3

To ensure synchronization, the following constants are printed from Maple to Haskell:
switches = [[0, 0, 0, 0, -1, -1, -1, -1]]
offsets = [[0, 0.1875, 0.3125, 0.4375, 0.5625, 0.6875, 0.8125, 1]]

5.2 Hyperbolic Tangent

Hyperbolic tangent is defined by

tanh(x) =
ex − e−x

ex + e−x
, (9)

but using this definition for computation would be difficult because we would run into problems with
subtraction of similar numbers, and division of similar large and small numbers, all of which intro-
duce additional error. Fortunately, hyperbolic tangent rises very quickly to 1, arctanh(1− 2−24) =
8.6643397420981601947, and can be approximated by polynomials in the range [−8.664339, 8.664339].
So any number larger than this in magnitude should round to ±1.

The function is unrolled to process two inputs at once because the 16-way lookup can be better
amortized this way.

For the final step, we put the sign back:
ftanh (v1,v2) = (selb result1OrOne v1 signBit, selb result2OrOne v2 signBit)
where

take the positive part
v1Positive = andc v1 signBit
v2Positive = andc v2 signBit

compare to arctanh(1 − 2−24) because this is the smallest number which rounds to 1, all higher
numbers round to 1, and form a select mask

isBig1 = fcmgt v1Positive (unfloats4 $ 8.6643397420981601947)
isBig2 = fcmgt v2Positive (unfloats4 $ 8.6643397420981601947)

which is applied to the final result:

11

Anand, Li, Sharma & Srivastava

result1OrOne = selb result1 (unfloats4 1) isBig1
result2OrOne = selb result2 (unfloats4 1) isBig2

do parallel lookup for two vector inputs (8 floats) of polynomial coefficients, generated by Maple:
cs = (coeffs tanhLkup tanhC (v1Positive,v2Positive))

evaluate polynomials using Horner’s rule:
result1 = hornerV (map fst cs) v1Positive
result2 = hornerV (map snd cs) v2Positive

where the instructions to form the lookup key and the break points between intervals are caluculated
using the utility function
tanhLkup = calcBreaks 2 2 3 8.6644

These break points are then copied into the Maple code to compute and package the coefficients
for the polynomials:
i:=0;ax:=numapprox[minimax](x->limit((tanh(y)/y-1)/y,y=x),(breaks[i+1])..(breaks[i+2])

,[polyOrd-2,0],x->x,’da[i]’);
aa[0]:=x->x*(1+x*ax(x));
for i from 1 to 15 do

aa[i]:=numapprox[minimax](x->tanh(x),(breaks[i+1])..(breaks[i+2]),[polyOrd,0],x->x,’da[i]’);
od;

12

CELL SPU Math Library

look2 = shufb look1 look1
$ unbytes [1,1,1,1, 5,5,5,5, 9,9,9,9, 13,13,13,13]

look3 = selb (unwrds4 0x00010203) look2 (unwrds4 0x1c1c1c1c)

To improve the accuracy of the polynomial approximations, we found it necessary to evaluate the
polynomials

poly = hornerV (contigLookup arcsinTable look3) xCentred

using interval-centered coordinates
xCentred = fs xPositive offset

where it is very important that the same lookup key is used to look up the offset to centre the input,
otherwise boundary cases could produce arbitrary errors.

[offset] = contigLookup (contigTable offsets) look3

For the first intervals we now have the final answer, but for the second intervals we need to apply
the square root and subtract from π/2.

piOver2sqrtP = fs piOver2 (sqrtSPU poly)

The appropriate final result is chosen with a select mask
yPositive = selb poly piOver2sqrtP switch

which must again be looked up using the same key, to prevent problems with edge cases.
[switch] = contigLookup (contigTableWord switches) look3

To ensure synchronization, the following constants are printed from Maple to Haskell:
switches = [[0, 0, 0, 0, -1, -1, -1, -1]]
offsets = [[0, 0.1875, 0.3125, 0.4375, 0.5625, 0.6875, 0.8125, 1]]

5.2 Hyperbolic Tangent

Hyperbolic tangent is defined by

tanh(x) =
ex − e−x

ex + e−x
, (9)

but using this definition for computation would be difficult because we would run into problems with
subtraction of similar numbers, and division of similar large and small numbers, all of which intro-
duce additional error. Fortunately, hyperbolic tangent rises very quickly to 1, arctanh(1− 2−24) =
8.6643397420981601947, and can be approximated by polynomials in the range [−8.664339, 8.664339].
So any number larger than this in magnitude should round to ±1.

The function is unrolled to process two inputs at once because the 16-way lookup can be better
amortized this way.

For the final step, we put the sign back:
ftanh (v1,v2) = (selb result1OrOne v1 signBit, selb result2OrOne v2 signBit)
where

take the positive part
v1Positive = andc v1 signBit
v2Positive = andc v2 signBit

compare to arctanh(1 − 2−24) because this is the smallest number which rounds to 1, all higher
numbers round to 1, and form a select mask

isBig1 = fcmgt v1Positive (unfloats4 $ 8.6643397420981601947)
isBig2 = fcmgt v2Positive (unfloats4 $ 8.6643397420981601947)

which is applied to the final result:

11

Anand, Li, Sharma & Srivastava

result1OrOne = selb result1 (unfloats4 1) isBig1
result2OrOne = selb result2 (unfloats4 1) isBig2

do parallel lookup for two vector inputs (8 floats) of polynomial coefficients, generated by Maple:
cs = (coeffs tanhLkup tanhC (v1Positive,v2Positive))

evaluate polynomials using Horner’s rule:
result1 = hornerV (map fst cs) v1Positive
result2 = hornerV (map snd cs) v2Positive

where the instructions to form the lookup key and the break points between intervals are caluculated
using the utility function
tanhLkup = calcBreaks 2 2 3 8.6644

These break points are then copied into the Maple code to compute and package the coefficients
for the polynomials:
i:=0;ax:=numapprox[minimax](x->limit((tanh(y)/y-1)/y,y=x),(breaks[i+1])..(breaks[i+2])

,[polyOrd-2,0],x->x,’da[i]’);
aa[0]:=x->x*(1+x*ax(x));
for i from 1 to 15 do

aa[i]:=numapprox[minimax](x->tanh(x),(breaks[i+1])..(breaks[i+2]),[polyOrd,0],x->x,’da[i]’);
od;

12

Declarative Assembly
For tanhSPU this requires eight lines of Haskell, which generate 48 machine instructions
and 34 128-bit constants. A higher-order DSL function then generates a code graph in-
cluding loop overhead to implement map tanhSPU sixteen floats at a time, with a 122 in-
struction loop body having an upper-bound 90.7% processor utilization (nearly balancing
instructions from the two execution pipelines).

tanhSPU = use16X2lookup tanhLookup tanhC tanhKeyResult

tanhKeyResult coeffs v = (key, result)
where

key = andc v signBit
polyVal = hornerV coeffs key
isBig = fcmgt key (unfloats4 tanhTreshold)
resultOrOne = selb polyVal (unfloats4 1) isBig
result = selb resultOrOne v signBit

Sixteen-way register lookup can be performed for two keys at a time more efficiently
than on two keys separately, so we use a two-way parallel “shared unrolling” of the tanh
function. This is not standard unrolling, in which the loop body is duplicated, because
some of the instructions are shared. By implementing this pattern with a higher-order
function,

tanh = use16X2lookup tanhLookup tanhC tanh’

tanhSPU coeffs v = (key, result)
where

Hyperbolic tangent is an odd function, i.e. tanh(−x) = −tanh(x), and the absolute value of
the argument is used for key generation and polynomial evaluation, obtained by masking
out the signBit bit pattern (of each word element):

key = andc v signBit

This key is used by use16X2lookup to look up coeffs, and to evaluate the resulting polyno-
mials using Horner’s rule:

polyVal = hornerV coeffs key

We also compare (using the floating-point “greater-than” comparison instruction fcmgt)
the key to tanhSaturate, the largest representable number which does not round to 1. This
comparison produces a select mask

Coconut - CASCON - 2009

Rapid Prototyping

• 5X improvement not magic, it is

• new algorithm ideas

• pattern capture

• requires

• rapid prototyping

• refactoring

9

Coconut - CASCON - 2009

0

2

4

6

8

10

12

exp exp2 exp2m1 expm1 log log1p log2 log21p recip rsqrt sqrt

Another 2X from New
Instructions
Cell ED

P (D
P)

Cell + instrs (D
P)

and more accurate!

Coconut - CASCON - 2009

Roadmap
• SIMD Parallelism

extensible DSL captures patterns
verification via graph transformation
generated library shipping (Cell BE SDK 3.0)

• Multi-Core Parallelism
model on ILP
generation via graph transformation
linear-time verification
run time

• Distant Parallelism
verification via model checking

➳

½
✔

✔

✔

✔
➳

∞

Sc
he

du
lin

g:
 E

xS
SP

✔

Where is

 Contro
l Flow?

Coconut - CASCON - 2009

Goal
• expose code graph transformation on

the user level

• explicit graph transformations

• capture correctness using type safety

12

Implementation

Coconut - CASCON - 2009

Plan

• orthogonal aspects into DSLs

• principled graph transformations

• control flow graphs on another plane of
existence

13

Reality

Coconut - CASCON - 2009

Control Flow
Rearrangements

14

7

!"#$%&

!'()*+&

!"#$,-*+&

!"#$,-&

!'()*+&

!"#$,-*+&

!"#$,-&

!'()*+&

!"#$%*+&

!"#$%&

!./01&

!/2134"1&

!

!

!

"#$%

"#$!

'()

!

+

%

5
%

! %

'()

&#'!%

"#$,-

!

+

%

!

"#$,-

"#$%(

'()

!

+

%

5
%

! %

'()

&#'!%

"#$,-

!

+

%

!

"#$,-

"#$%(

'()

!

+

%

5 %

! %

'()

&#'(

"#$%

!

+

%

!

./01

)*)'

"#$%

!

!

"#$%

+,)'

/2134"1

!

! %

"#$,-

!

+

-).&

! %

"#$,-

!

+

-)./

! %

"#$,-

!

+

-).&

! %

"#$,-

!

+

-)./

! %

"#$%

!

+

-).0

! %

"#$%

!

+

-).1

!"#$

!"#$

%&'()(*

%"&$'()(*

!"#+,()(*

+,-%

+,-.!"#+,

!"#'/

%&'()(*

%"&$'()(*

!"#+,()(*

+,-%+,-.

!"#+,

!"#'/

%&'()(*

%"&/()(*

!"#$()(*

+,-0+,-1

!"#$

23,&

-./0

,4,&

.1023!0

$

$

Figure 8: Nested CFG and abbreviation

edges in-between, to be able to compose all of
these into single “chunks”, we have to duplicate
also the three Top components, using the left-
distributivity of Kleene algebra. The chunks
are drawn with the correponding two-line labels

!"#$

!"#$

%&'()(*

%&'(

%&') %&'

("*$+%&'

("*$+ !"#+,

!"#+,

%&'()(*

%&'(%&')

%&'

("*$+

%&'

("*$+

!"#+,

!"#+,

%&'()(*

%&'-%&'.

%&'

("*,

%&'

("*,

!"#$

/0&*

-./0

&1&*

.1023!0

$

$

Figure 9: CFG with eager branching

(Fig. 10, left); we also changed the colouring so
that it now emphasises equality of chunks.

Standard CFG minimisation then produces
the version in Fig. 10, right, which still has two
equal chunks, but for every branch target iden-
tifier ! , all bi ! edges now have the same tar-
get.

However, Fig. 10 still exhibits the problem
of having control-flow nodes preceded by more
than one non-branch edge; therefore we need to
distribute the outgoing branch edges over such
control-flow nodes, which is another applica-
tion of left-distributivity. Control-flow graphs
resulting from this transformation, as here the
graph in Fig. 11, can be univalently mapped to

7

!"#$%&

!'()*+&

!"#$,-*+&

!"#$,-&

!'()*+&

!"#$,-*+&

!"#$,-&

!'()*+&

!"#$%*+&

!"#$%&

!./01&

!/2134"1&

!

!

!

"#$%

"#$!

'()

!

+

%

5
%

! %

'()

&#'!%

"#$,-

!

+

%

!

"#$,-

"#$%(

'()

!

+

%

5
%

! %

'()

&#'!%

"#$,-

!

+

%

!

"#$,-

"#$%(

'()

!

+

%

5 %

! %

'()

&#'(

"#$%

!

+

%

!

./01

)*)'

"#$%

!

!

"#$%

+,)'

/2134"1

!

! %

"#$,-

!

+

-).&

! %

"#$,-

!

+

-)./

! %

"#$,-

!

+

-).&

! %

"#$,-

!

+

-)./

! %

"#$%

!

+

-).0

! %

"#$%

!

+

-).1

!"#$

!"#$

%&'()(*

%"&$'()(*

!"#+,()(*

+,-%

+,-.!"#+,

!"#'/

%&'()(*

%"&$'()(*

!"#+,()(*

+,-%+,-.

!"#+,

!"#'/

%&'()(*

%"&/()(*

!"#$()(*

+,-0+,-1

!"#$

23,&

-./0

,4,&

.1023!0

$

$

Figure 8: Nested CFG and abbreviation

edges in-between, to be able to compose all of
these into single “chunks”, we have to duplicate
also the three Top components, using the left-
distributivity of Kleene algebra. The chunks
are drawn with the correponding two-line labels

!"#$

!"#$

%&'()(*

%&'(

%&') %&'

("*$+%&'

("*$+ !"#+,

!"#+,

%&'()(*

%&'(%&')

%&'

("*$+

%&'

("*$+

!"#+,

!"#+,

%&'()(*

%&'-%&'.

%&'

("*,

%&'

("*,

!"#$

/0&*

-./0

&1&*

.1023!0

$

$

Figure 9: CFG with eager branching

(Fig. 10, left); we also changed the colouring so
that it now emphasises equality of chunks.

Standard CFG minimisation then produces
the version in Fig. 10, right, which still has two
equal chunks, but for every branch target iden-
tifier X , all bi X edges now have the same tar-
get.

However, Fig. 10 still exhibits the problem
of having control-flow nodes preceded by more
than one non-branch edge; therefore we need to
distribute the outgoing branch edges over such
control-flow nodes, which is another applica-
tion of left-distributivity. Control-flow graphs
resulting from this transformation, as here the
graph in Fig. 11, can be univalently mapped to

8 6 CONTROL-FLOW REARRANGEMENT FOR MATRIX MULTIPLICATION

!"#$%$&

!"#$

!"#%!"#

$&'()
*&+),

!"#

$&'()
*&+),

!"#$%$&

!"#$!"#%

!"#

$&'()
*&+),

!"#

$&'()
*&+),

!"#$%$&

!"#-!"#.

!"#

$&',
*&+(

!"#

$&',
/0"'

'()*

"1"'
*&+(

(+*,-.*

(

(

!"#$%$&

!"#$!"#%

!"#

$&'()
*&+),

!"#

$&'()
*&+),

!"#$%$&

!"#-!"#.

!"#

$&',
*&+(

!"#

$&',
/0"'

'()*

"1"'
*&+(

(+*,-.*

(

(

Figure 10: Chunked and minimised CFGs

machine code.

Note that the two remaining “Bot12; Top23”
chunks both represent the same declarative
CFG, implementing a pure function from MID
to MID× C.

Consider the chunk after bi C: after it exe-
cutes, the control register (of type C) can only
contain D or A, neither of which is possible for
the chunk after bi B, which can only produce
B or C.

Since it is impossible that a branch with B
in the argument register, i.e., a bi B, happens
while a bi D could happen, i.e., while a branch
with D in the argument register could happen,
i.e., while D is in the argument register, that is,
the domains of bi B and bi D are disjoint, etc.,
we can add, for example, a bi B with any tar-
get after the chunk after bi C without changing
the semantics of the CFG at all. In this way,
we can add bi X edges starting at both nodes
labelled “MID × C” in such a way that both

!"#$%$&

!"#$

!"#% !"#

$&'()
*&+),

!"#

$&'()
*&+),

!"#$%$&

!"#-!"#.

!"#

$&',
*&+(

!"#

$&',
/0"'

'()*

"1"'
*&+(

(+*,-.*

(

!"#$%$&

!"#$!"#%

!"#$%$&

!"#$!"#%

(

Figure 11: CFG with back-distributed
branches

nodes have four differently-labelled such edges,
and any two equally-labelled branch edges have
the same target, see Fig. 12.

The resulting CFG can then again be min-
imised, the result of which, in Fig. 13 (left),
has all chunks different, but needs back-
distribution of branches again, see Fig. 13
(right).

In these CFGs, the two branch target iden-
tifiers B and C refer to the same control-flow
node, so it is now possible to unify these two
identifiers (Fig. 14), which may enable some
further optimisations in the data flow imple-
menting the branching logic.

Mapping this final CFG to machine code pro-
duces, due to the duplication of top1 and bot3,
about 8% more instructions than the graphs of
Fig. 8, but the execution of mid, which, unmod-
ified, cannot be scheduled optimally, is now
fully software-pipelined, executing over 13%
faster since without any pipeline stalls (with

8 6 CONTROL-FLOW REARRANGEMENT FOR MATRIX MULTIPLICATION

!"#$%$&

!"#$

!"#%!"#

$&'()
*&+),

!"#

$&'()
*&+),

!"#$%$&

!"#$!"#%

!"#

$&'()
*&+),

!"#

$&'()
*&+),

!"#$%$&

!"#-!"#.

!"#

$&',
*&+(

!"#

$&',
/0"'

'()*

"1"'
*&+(

(+*,-.*

(

(

!"#$%$&

!"#$!"#%

!"#

$&'()
*&+),

!"#

$&'()
*&+),

!"#$%$&

!"#-!"#.

!"#

$&',
*&+(

!"#

$&',
/0"'

'()*

"1"'
*&+(

(+*,-.*

(

(

Figure 10: Chunked and minimised CFGs

machine code.

Note that the two remaining “Bot12; Top23”
chunks both represent the same declarative
CFG, implementing a pure function from MID
to MID× C.

Consider the chunk after bi C: after it exe-
cutes, the control register (of type C) can only
contain D or A, neither of which is possible for
the chunk after bi B, which can only produce
B or C.

Since it is impossible that a branch with B
in the argument register, i.e., a bi B, happens
while a bi D could happen, i.e., while a branch
with D in the argument register could happen,
i.e., while D is in the argument register, that is,
the domains of bi B and bi D are disjoint, etc.,
we can add, for example, a bi B with any tar-
get after the chunk after bi C without changing
the semantics of the CFG at all. In this way,
we can add bi X edges starting at both nodes
labelled “MID × C” in such a way that both

!"#$%$&

!"#$

!"#% !"#

$&'()
*&+),

!"#

$&'()
*&+),

!"#$%$&

!"#-!"#.

!"#

$&',
*&+(

!"#

$&',
/0"'

'()*

"1"'
*&+(

(+*,-.*

(

!"#$%$&

!"#$!"#%

!"#$%$&

!"#$!"#%

(

Figure 11: CFG with back-distributed
branches

nodes have four differently-labelled such edges,
and any two equally-labelled branch edges have
the same target, see Fig. 12.

The resulting CFG can then again be min-
imised, the result of which, in Fig. 13 (left),
has all chunks different, but needs back-
distribution of branches again, see Fig. 13
(right).

In these CFGs, the two branch target iden-
tifiers B and C refer to the same control-flow
node, so it is now possible to unify these two
identifiers (Fig. 14), which may enable some
further optimisations in the data flow imple-
menting the branching logic.

Mapping this final CFG to machine code pro-
duces, due to the duplication of top1 and bot3,
about 8% more instructions than the graphs of
Fig. 8, but the execution of mid, which, unmod-
ified, cannot be scheduled optimally, is now
fully software-pipelined, executing over 13%
faster since without any pipeline stalls (with

9

!"#$%$&

!"#$

!"#% !"#

$&'()
*&+),

!"#

$&'()
*&+),

!"#$%$&

!"#-!"#. !"#$!"#%

!"#

$&',
*&+(

!"#

$&',
/0"'

'()*

"1"'
*&+(

(+*,-.*

(

!"#$%$&

!"#$!"#%

!"#-

!"#.

!"#$%$&

!"#$!"#%

(

Figure 12: Never-taken branches added

perfectly hinted branches in both cases), and
reaching 97.8% of the theoretical floating-point
performance.

Since the Bot3; Top1 chunk is limited by the
non-arithmetic pipeline, this stalls the arith-
metic pipeline; by composing the Bot3; Top1
chunk with another copy of the Bot12; Top23
chunk, the combined chunk can again be sched-
uled without stalls in the arithmetic pipeline,
and altogether we reach 99.1% of theoretical
maximum floating-point efficiency.

7 Partial Fourier Trans-
form

Partial Fourier Transforms are Fourier trans-
forms composed with coordinate projections or
injections, e.g. they take a vector of 256 com-
plex values, perform a Fourier transform, then
copy out the central 192 elements. In the other
direction we pad the input with zeros. Simi-

!"#$%$&

!"#$!"#%

!"#

$&'()
*&+),

!"#$%$&

!"#- !"#.!"#$!"#%

!"#

$&',
*&+(

!"#

$&',
/0"'

'()*

"1"'
*&+(

(+*,-.*

(

(

!"#$%$&

!"#$!"#%

!"#

$&'()
*&+),

!"#$%$&

!"#- !"#.!"#$!"#%

!"#

$&',
*&+(

!"#

$&',
/0"'

'()*

"1"'
*&+(

(+*,-.*

(

!"#$%$&

!"#$!"#%

(

Figure 13: Fully minimised CFG

!"#$%$&

!"#$

!"#

$%&'(
)%*(+

!"#$%$&

!"#, !"#-!"#$

!"#

$%&+
)%*'

!"#

$%&+
./"&

'()*

"0"&
)%*'

(+*,-.*

'

!"#$%$&

!"#$

'

Figure 14: Branch targets unified

lar operations occur in wavelet and other fast
transforms.

A control-flow rearrangement can be prof-
itably applied when these operations are ap-
plied in multiple dimensions. Most fast trans-

Coconut - CASCON - 2009

Problems

• need to program using graph language
• hard to program
• cannot see control flow and

computation at the same time
• lost interpretation
• 10-page type errors

• only student who understood it also
won the ICFP

15

Coconut - CASCON - 2009

Split approach

1. Control-Flow Rearrangements

• Let user specify functionally

2. Explicitly Staged Software Pipelining

• Min-Cut to Chop into Stages

• Principled Graph Transformation

16

Coconut - CASCON - 2009

Software Pipelining

• hide latency

• same length loop body
17

Coconut - CASCON - 2009

MultiLoop

18

n1

1

2

2

n

hintable computed

branch

Coconut - CASCON - 2009

MultiLoop

18

n1

1

2

2

n

hintable computed

branch

What about th
e

data?

Coconut - CASCON - 2009

Example: Fast MRI

19

Optimze data collection for 3d MRI

we pare the constraints down to a minimum, and rely on the fact that unless con-
strained to intersect, they will not. We show that the

3. Magentic Resonance Imaging

In magnetic resonance imaging, we measure radio-frequency magnetic fields cre-
ated by the resonances of one or more nuclei in the object, usually hydrogen (mostly
water) in people. Measurable resonance occurs because the object is placed in a
large homogeneous field, and excited by the momentary application of oscilating
transverse fields. For a very readable, and complete account of how we create the
signals, and the complications which arrive, see [?]. Being radio-frequency signals,
we cannot measure them with line-of-sight devices (as opposed to x-ray and nuclear-
decay-product imaging), and must use devices a lot like radio antennae, commonly
called coils. The measurements we make with these coils are not localized, but con-
tain contributions from every nuclei in the object. In the simplest case, the uniform
coil, we collect data which is simply the sum of the magnetic fields produced by
each nucleus. Non-uniform coils have geometrically-varying sensitivities, and the
measured signal is the dot product of a sensitivity field with the field created by
the nuclei. The signals are in fact real, but by working in a rotating frame of refer-
ence close to the resonant frequency, we can encode both relative frequencies and
phases by using complex valued fields and signals. For the fields, this is equivalent
to putting a complex structure on the plane perpendicular to the direction of the
large homogeneous field.

Geometric encoding is achieved by inducing transient linear variations in strength
on the homogeneous field. Linear variations in field produce linear variations in
resonant frequency, which over time create linear phase variations, as a function
of position. If ρ : R3 → C is the original transverse magnetic field, the new field
will be exp(i〈x, k〉)ρ(x) where x ∈ R3 and k ∈ R3∗, the element of the dual space
corresponding to the accumulated phase. It follows that the measured signal

s(t) =
∫

R3
ei〈x,k(t)〉ρ(x)dx,

is a sampling of the Fourier Transform of the object’s original magnetization.
For any given trajectory k(t), we have a linear transformation Map(R3, C) →
Map(R, C), and if it is invertible, we can reconstruct the original magnetization
from the measurements.

Early MR image reconstruction was constrained by the cost of computation,
and focussed on making data better fit existing fast hardware, and later software
Fourier transforms. Data collection was forced to be regular, and sampled on rect-
angular grids (first in two and later in three dimensions). Even the first image
reconstructions based on non-trivial inverse problems, e.g. phase contrast symme-
try [?], assumed regular rectangular data sampling, as did the first parallel imaging
schemes. Regular sampling is the classic discretization considered in signal process-
ing. It represents an approximation in a finite-dimensional vector space of an object
in an infinite-dimensional function space. Such representations may be inadequate
because the do not sample widely enough; or they do not sample closely enough. In
the first case, the reconstructed image is the sum of low-spatial-frequency Fourier
basis functions, and fine detial will not be represented. In the second case, the

3

head data

Fourier
Transform

Coconut - CASCON - 2009

Fast Experiment ≠ FFT

20

irregularly
sampled date

resampling

partial FFT

Coconut - CASCON - 2009

Resampling

• convolution with compact function
• outer product of vectors
• sin/cos evaluation
• accumulation in array
• keep array in registers

21

Resampling

0 1 2 3 4

0

1

2

3

4

sampled value

resampled values

• input: (kx, ky, s) sample

◦ delta function {(kx, ky)} → C

• output: s̃ : Z2 → C

• method 1: nearest neighbour

◦ simplest, fastest
◦ round kx, ky to nearest integer
◦ s̃ = s · δ#kx+.5$,#ky+.5$

? What effect on image?

1

Coconut - CASCON - 2009

Two Cases

22

Resampling

0 1 2 3 4

0

1

2

3

4

sampled value

resampled values

• input: (kx, ky, s) sample

◦ delta function {(kx, ky)} → C

• output: s̃ : Z2 → C

• method 1: nearest neighbour

◦ simplest, fastest
◦ round kx, ky to nearest integer
◦ s̃ = s · δ#kx+.5$,#ky+.5$

? What effect on image?

1

Resampling

0 1 2 3 4

0

1

2

3

4

sampled value

resampled values

• input: (kx, ky, s) sample

◦ delta function {(kx, ky)} → C

• output: s̃ : Z2 → C

• method 1: nearest neighbour

◦ simplest, fastest
◦ round kx, ky to nearest integer
◦ s̃ = s · δ#kx+.5$,#ky+.5$

? What effect on image?

1

aligned unaligned

2 vector registers 4 vector registers

Coconut - CASCON - 2009

MultiLoop

23

n1

1

2

2

n

hintable computed

branch

some
arrows are

thicker
than others

Coconut - CASCON - 2009

(multi)iterate

24

 multiLoop8 :: (Integer,Integer)

case index range

 -> MSCases8 swCom sw0 sw1 sw2 sw3 sw4 sw5 sw6 sw7 swExit

initial data

 -> ((Int, MSCases8 swCom sw0 sw1 sw2 sw3 sw4 sw5 sw6 sw7 swExit)
 -> ([(Int,key)]
 , Maybe (MSCases8 swCom sw0 sw1 sw2 sw3 sw4 sw5 sw6 sw7 swExit
 , [(String,key)]))
)

function to iterate (lazily evaluates data to key)

 -> (swExit, [(String,key)])

Coconut - CASCON - 2009

Example: PFT3d
(24to16)

25

pft3d memRegion
 = multiLoop8 "PFT3.body" (0,3) (startLoop mr) body

body (codeIdx, MS8C0 (ticker, (vsIn, mr)) ())
 = ([(2,bKey)], Just (next, dbg++msDbg))
 where
 ((ticker',bKey,key),dbg) = inductionPFFT24 ticker
 ldStAd = head ticker
 ldStAd' = head ticker'
 vsOut = quadRowFT vsIn
 (next,msDbg) = if codeIdx == 3
 then (MS8CExit $ meet "stores should commute"
 $ storeXRowsZ (xySize 2) (stAddr ldStAddr) vsOut mr,[])
 else let (vsIn',ldMRs)= loadYCol (xSize codeIdx) (ldAd ldStAd') mr
 vsIn'' = case codeIdx of
 0 -> riririri2rrrriiii vsIn'
 _ -> vsIn'
 stMRs = storeXRowsZ (xySize codeIdx) (stAddr ldStAddr) vsOut mr
 in (MS8C0 (ticker',(vsIn'', meet "load/stores should commute"
 (ldMRs++stMRs)))
 (),[])

:: DSL

SPUSim/ghci

interactive

development

codegraph

.c
.s

ExSSPpretty

printer

instanceinstance

visualization

Coconut - CASCON - 2009

Assembly embedded in Haskell

26

Coconut - CASCON - 2009

Interpreter Semantics

• Just Haskell Data Types

• folds lazily

• data-determined case and returned as
input

• different cases constructed using
Haskell control flow

• specify (limited) re-orderable load/store

• interpreter verifies correctness

27

Coconut - CASCON - 2009

Codegraph Semantics

• {indices} x {data cases} loop bodies

• iterate through and generate valid cases

• cut common codegraph

• restrict case-specific code to last stage

• restrict case calculation to previous stage

28

Coconut - CASCON - 2009

Partial FFT

• example of a separable transform

• SIMD doesn’t like row transform

• do column transform + transpose

• sequence of 3 triple-nested loops

• one MultiLoop

• pointer/counter overhead = 1 mult-add

• and lots of shuffles and bit rotates

29

10 7 PARTIAL FOURIER TRANSFORM

forms are, by definition, separable, which
means that they can be applied independently
in each dimension. In imperative code, this is
expressed as a sequential composition of nested
loops. We consider the three-dimensional case.

Such transforms are most efficiently com-
puted in one direction. On scalar machines
that is usually the direction in which addresses
change the slowest. To use SIMD parallelism,
another direction should be used, otherwise a
lot of shuffling among registers is necessary.

To avoid having to transform in the expen-
sive direction, we transpose before stores:

for dimension in dimensions

for quad-column in columns(dimension)

load quad-column

transform quad-column

transpose quad-column

store quad-column as row

(loading enough columns to completely fill all
loaded quadwords, e.g., 4 floats).

For three dimensions, this looks like

xyz → Yzx → ZxY → XYZ (1)

Index label order indicates array ordering, and
case indicates whether a transform has been
performed in the direction labelled by that in-
dex. Each is a loop of column transforms with
code graph

L → F → S, (2)

where L is a complete set of loads with nec-
essary data reforming for one row, F performs
the transform, and S is a complete set of stores,
with necessary data reforming for one row. We
permute the indices cyclically (via a transpose)
so that every dimension is transformed in the
“middle” dimension, because SIMD parallelism
is free in the “column” directions.

For Partial FFTs, the size of the dimensions
before and after the one-dimensional trans-
forms are not necessarily the same. This af-
fects the load and store subgraphs by chang-
ing the striding pattern both within the column
and the enumeration of columns, which changes
register constants or immediate constants, de-
pending on the type of indexing. Immediate-
indexed forms reduce register pressure, and ex-
hibit more complex control flow patterns, so we
consider that case.

There are two different versions of L and of S
depending on whether the first index direction
has been transformed or not. We now special-
ize to the three-dimensional case: xyz has one
load pattern and Yzx and ZxY have another; if
more than one column has to be transformed in
parallel then Yzx and ZxY have one store pat-
tern and XYZ has a second. Load and store
patterns can also differ if other data reformat-
ting is performed, e.g. interleaved complex

..., rj , ij , rj+1, ij+1, rj+2, ij+2, rj+3, ij+3, ...

into planar or quadword-interleaved format

..., rj , rj+1, rj+2, rj+3, ij , ij+1, ij+2, ij+3, ...

The three sequentially-composed loops be-
come a three-way control-flow graph with three
straight-line components

(
(L1,F,S1|2)|(L2|3,F,S1|2)|(L2|3,F,S3)

)
.

For all but very small transforms, two stages
are sufficient to hide instruction latency in a
software-pipelined loop, so the computation
graph F is only split once, and the scheduled
loop bodies will execute in this order:

(load,store) (load,store) number of
direction version executions

(1, ∗) (T1,S1|2) n2

(2, 1) (T2|3,S1|2) 2
(2, 2) (T2|3,S1|2) nm − 2
(3, 2) (T2|3,S3) 2
(3, 3) (T2|3,S3) m2

(∗, 3) (T2|3,S3) m2

for an n3 to m3 transformation.
In this case, the re-sequenced control flow

allows us to schedule three versions of the
loop body, whereas three sequential software-
pipelined loops would require three prologues
and three epilogues, effectively doubling the
code size. Even as long as we still use a pro-
logue and epilogue in the re-arranged case, the
code size is still reduced by (d +1)/(2d), where
d is the number of dimensions.

The code graph representation of a fully
branch-hinting version of PFFT exhibits a
control-flow structure that is only sligthly dif-
ferent from that of matrix multiplication, but
allows the same kind of stage-splitting of the
common calculation component mid of all three
loop bodies (Fig. 15, left).

Coconut - CASCON - 2009

• SIMD Parallelism
still great!

• Multi-Core Parallelism
another talk

• Itra-Core Control Flow
major bump in the road
finally back to simple model with compact
text
stay tuned for performance numbers after
code generation is rejiggered :)

Coconut Roadmap

