
Scalable and Fault-Tolerant Support for
Variable Bit-Rate Data in the Exedra
Streaming Server

STERGIOS V. ANASTASIADIS

University of Ioannina, Greece

and

KENNETH C. SEVCIK and MICHAEL STUMM

University of Toronto, Canada

We describe the design and implementation of the Exedra continuous media server, and experimen-

tally evaluate alternative resource management policies using a prototype system that we built.

Exedra has been designed to provide scalable and efficient support for variable bit-rate media

streams whose compression efficiency leads to reduced storage space and bandwidth requirements

in comparison to constant bit-rate streams of equivalent quality. We examine alternative disk strip-

ing policies, and quantify the benefits of innovative techniques for storage space allocation, buffer

management, and resource reservation, which we developed to achieve both predictability and

high-performance in handling disk and network data transfers of variable size. Additionally, we

investigate the differences between diverse data replication schemes over disk arrays, and com-

pare methods for disk access time reservation that enable tolerance of disk failures at minimal

cost. Overall, we demonstrate the feasibility of building network media servers that exploit the lat-

est advances in media compression technology towards reducing the cost of wide-scale streaming

services for stored data.

Categories and Subject Descriptors: C.4 [Performance of Systems]: measurement tech-

niques—Fault tolerance; C.5.5 [Computer System Implementation]: Servers; D.2.11 [Soft-
ware Engineering]: Software Architectures—domain-specific architectures; D.4.2 [Operating
Systems]: Storage Management—secondary storage; D.4.5 [Operating Systems]: Reliability—

fault-tolerance; D.4.8 [Operating Systems]: Performance—measurements; E.5 [Files]: organiza-

tion/structure

General Terms: Design, Experimentation, Measurement, Performance, Reliability

Additional Key Words and Phrases: Content distribution, multimedia compression

Authors’ addresses: S. V. Anastasiadis, Department of Computer Science, University of Ioannina,

P. O. Box 1186, GR 45110 Ioannina, Greece; email: stergios@cs.uoi.gr; K. C. Sevcik, Department of

Computer Science, University of Toronto, 40 St. George Street, Toronto, Ont, M5S 2E4, Canada;

email:kcs@cs.toronto.edu; M. Stumm, Department of Electrical and Computer Engineering, Uni-

versity of Toronto, 10 King’s College Road, Toronto, Ont. M5S 3G4, Canada; email: stumm@eecg.

toronto.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515

Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2005 ACM 1553-3077/05/1100-0419 $5.00

ACM Transactions on Storage, Vol. 1, No. 4, November 2005, Pages 419–456.

420 • S. V. Anastasiadis et al.

1. INTRODUCTION

Realtime media streaming services are becoming increasingly popular in pub-
lic and corporate data networks due to the enhanced access to content-rich
media content that they offer. In comparison to traditional file downloading,
media data streaming allows significantly faster playback initiation, provides
guarantees for uninterrupted data decoding, and requires minimal buffering
requirements from the client devices. Despite the improved data transfer band-
width to the end-users thanks to broadband last-mile connectivity, superfluous
deployment of backbone network equipment, and dropping cost of disk spindles,
low-cost distribution of high-quality media streams remains an elusive target
in the telecommunications industry for several years now [Gray and Shenoy
2000].

Several research projects and commercial products of media streaming
servers have already established the feasibility of streaming stored files [Ozden
et al. 1996; Bolosky et al. 1996; Chang and Zakhor 1996; Shenoy et al. 1998;
Muntz et al. 1998]. Quite surprisingly, an entire class of the most efficient data
compression techniques are not fully leveraged in current content distribution
networks. Even though data networks can handle the resource management is-
sues introduced by using advanced compression techniques for encoding data,
the network servers deployed currently to provide storage and realtime stream-
ing access to continuous media data can only handle compression schemes with
specific features.

In particular, during the last decade, extensive qualitative and quantitative
research has made the case that variable bit-rate encoding of video content
provides significant compression advantages with respect to constant bit-rate
encoding of equivalent quality. Several experimental studies estimate this ad-
vantage to be an order of 40% reduction in the size of the generated encoded
files leading to a corresponding improvement in the number of streams that
can be multiplexed over a shared network link [Gringeri et al. 1998; Lakshman
et al. 1998].

The potential bandwidth savings of handling variable bit-rate streams over
data networks has spurred considerable amount of research within the data
networking community for achieving quality of service guarantees in packet
switching of time-sensitive traffic [Verbiest et al. 1988; Sen et al. 1989]. In
the meantime, the majority of proposed commercial and experimental media
streaming servers that lie at the edge or middle of the network and provide
streaming access to stored or temporarily cached digital media files, can only
support constant bit-rate streams. This adversely affects the availability of me-
dia content that can take advantage of modern data networking infrastructure
in a cost-effective way. Content distribution service providers are limited by
the server technology to only offer streaming access to constant bit-rate data
[D. Maggs, personal communication, 2002].

Most of the existing experimental or commercial media servers can only
support constant bit-rate streams [Haskin and Schmuck 1996; Bolosky et al.
1996]. Alternatively, they store variable bit-rate streams using either peak-rate
resource reservations that may reduce resource utilization but not increase

ACM Transactions on Storage, Vol. 1, No. 4, November 2005.

Exedra Streaming Server • 421

server capacity, or statistical quality-of-service guarantees that may allow the
system to get overloaded and miss transfer deadlines occasionally [Martin et al.
1996; Shenoy et al. 1998; Muntz et al. 1998]. The approach of retrieving variable
bit-rate streams using constant rates may not solve the general problem either
due to arbitrarily long playback initiation latency or large client buffer space
requirement [Sen et al. 1997]. Even though the latest editions of commercial
video production software support variable bit-rate encoding, the generated
files can only be used for local access or downloading, rather than streaming
from commercial media servers [Microsoft 2003].

We can attribute the previous trends to the fact that constant bit-rate encod-
ing significantly simplifies resource reservation and bookkeeping issues within
media servers and data networks. Additionally, earlier research raised several
concerns about the scalable retrieval of variable bit-rate data striped across
large disk arrays [Shenoy and Vin 1999]. In the present article, we unify sev-
eral preliminary results into a solid system architecture that overcomes pre-
vious efficiency and scalability problems in storage management of variable
bit-rate streams [Anastasiadis et al. 2001a, 2001b, 2002]. We introduce innova-
tive resource allocation techniques which we experimentally evaluate using ac-
tual video streams and hardware disks. Thus, we demonstrate high-throughput
data transfers and resource reservations that closely match measured device
utilization. By focusing on the resource reservation and admission control of
the system, we are also able to measure linear scalability in the number of con-
currently supported users as a function of the disk array size. Finally, we utilize
detailed simulated disk models to show that fault-tolerance against single disk
failures is feasible with minimally wasted disk bandwidth.

Therefore, one fundamental question that we examine is that of organizing
data transfers into time slots of appropriate length that keep the system oper-
ation both practical and efficient. We study issues of allocating server memory
and disk storage space in order to maintain high disk access throughput. We
also compare measured disk access delays against those predicted to establish
efficiency in the admission control. The second question that we investigate
has to do with organization of stream data across multiple disks. We exploit
the predictable sequential access pattern that is common case in streaming, to-
wards minimizing the number of disks utilized by a stream during every time
slot of operation. As the number of disks in the system increases, we show that
they are all equally utilized on average, thus avoiding hot spots and achiev-
ing load balancing. The third question that we pose is that of tolerating disk
failures with minimally wasted resources during normal operation. With the
data replication and disk bandwidth reservation schemes that we propose, we
significantly improve the system throughput in comparison to simple schemes
assumed in previous published research.

The rest of this article is organized as follows. In Section 2, we describe
basic architectural definitions underlying our system design. In Section 3, we
explain implementation details in the system modules of the prototype that
we developed. In Section 4, we go over the experimentation environment that
we used for our measurements. In Section 5, we investigate basic system

ACM Transactions on Storage, Vol. 1, No. 4, November 2005.

422 • S. V. Anastasiadis et al.

Fig. 1. Data files of digitally encoded media streams are stored across multiple disks of the media

server. Decoding clients can connect and start playback sessions via the network.

operation parameters, while in Section 6 we study alternative disk striping
policies. In Section 7, we present tradeoffs related to the data replication. The
related work is summarized in Section 8, and our conclusions are further clar-
ified in Section 9.

2. ARCHITECTURAL DEFINITIONS

We start with the description of the media server architecture that we propose,
the presentation of a new disk space allocation scheme, and the definition of
alternative policies for disk striping of stream data.

2.1 System Overview

We describe a distributed media server architecture that stores video streams
on multiple disks. Clients with appropriate stream decoding capability send
playback requests and receive stream data via a high-speed network as shown
in Figure 1. The stored streams are compressed according to any encoding
scheme that supports constant (or variable) quality quantization parameters
and variable (or constant) bit rates respectively. The system operates according
to the server-push model, where the server periodically sends data to each
active client until either the end of the stream is reached, or the client explicitly
requests suspension of the playback. The server-push model reduces the control
traffic from the client to the server, and facilitates resource reservation at the
server side. It is different from the client-pull model of video editing appliances
or traditional file servers, where the client explicitly requests each individual
data transfer.

In order to keep manageable the bookkeeping of the data transfers, we or-
ganize them in rounds of fixed duration Tround . In every round an appropriate
amount of data is retrieved from the disks into the server buffers; concurrently,
data from the server buffers are transmitted to the clients via the network. The
server itself consists of multiple nodes connected to the high-speed network
through different network interfaces. The amount of stream data periodically
sent to the client is determined by the decoding frame rate of the stream and
the buffering capacity of the client. The minimal operation requirement is that

ACM Transactions on Storage, Vol. 1, No. 4, November 2005.

Exedra Streaming Server • 423

every client during each round receives the amount of data that will be needed
for the decoding process during the next round.

2.2 The Exedra Media Server Architecture

The design of the media storage server that we propose is based on standard
off-the-shelf components, currently used for data storage and transfer in com-
modity server systems.1

The Transfer Nodes are computers responsible for scheduling and initiating
all stream data accesses of accepted playback requests. The disks storing stream
data are connected to the Transfer Node hosts via either standard I/O channels
(SCSI), or network switching equipment [Clark 1999]. Data from the disks
are temporarily staged in the Buffer memory of the Transfer Node on their
way to the client through the network interfaces. The system bus bandwidth
within each Transfer Node is a critical resource that determines the number
and capacity of the attached network and disk channel interfaces.

Playback requests arriving from the clients are initially directed to an Ad-
mission Control Node, where it is determined whether sufficient resources ex-
ist to activate the requested playback session either immediately or within a
few rounds. The computational complexity of the general stream scheduling
problem is combinatorial in the number of streams considered for activation,
their length, and the number of reserved resources [Garofalakis et al. 1998].
Practically, we assume a limited acceptable initiation latency, and use a sim-
ple scheduling algorithm linear in the number of the stream rounds and the
reserved resources. Should the admission control process become a bottleneck
due to the incoming load and the needed detail of resource reservation, the ad-
mission control may be distributed across multiple nodes (Figure 2). We don’t
examine here the nontrivial concurrency control issues that arise in that case,
though.

In traditional storage systems, it is relatively difficult to determine disk
striping parameters customized to the needs of a constantly changing work-
load and system configuration [Alvarez et al. 2001]. However, for the common
case of read-only sequential accesses in video streaming, the system load re-
quirements are more predictable, and appropriate disk striping parameters can
be determined a priori. The Schedule Descriptor stores the amount of stream
data that needs to be retrieved during each round from each disk (Figure 3).
Additionally, it also specifies the buffer space required and the amount of data
sent to the client by the Transfer Nodes during each round. Such schedul-
ing information is generated before a stream is first stored and is used both
for admission control and for specifying data transfers during playback. Since
this information changes infrequently, it can be replicated to avoid potential
bottlenecks.

1Exedra means stage for live performances in modern Greek.

ACM Transactions on Storage, Vol. 1, No. 4, November 2005.

424 • S. V. Anastasiadis et al.

Fig. 2. In the Exedra media server architecture, stream data are retrieved from the disks and sent

to the clients through the Transfer Nodes. Both the admission control and the data transfers make

use of stream scheduling information maintained in the Schedule Database.

Fig. 3. Stream schedule descriptor for a stream stored on system with multiple transfer nodes. For

each playback round, it identifies each disk accessed and the corresponding amount of transferred

data, the buffer space reserved on each node, and the amount of data that has to be sent to the

client through each network interface.

2.3 Stride-Based Disk Space Allocation

Stored streams are accessed sequentially according to a predefined (potentially
variable) rate, while the maximum amount of data accessed from a disk dur-
ing a round for a stream is known a priori. We exploit these features into the

ACM Transactions on Storage, Vol. 1, No. 4, November 2005.

Exedra Streaming Server • 425

Fig. 4. The stride-based allocation of disk space is illustrated on one disk. A stream is stored in

a sequence of generally non-consecutive fixed-size strides with a stride possibly containing data of

more than one round. Sequential requests of one round are smaller than the stride size and thus

require at most two partial stride accesses.

stride-based disk space allocation.2 According to this scheme, disk space is al-
located in large fixed-sized chunks called strides with size chosen larger than
the maximum stream I/O request per disk during a round. Stride-based alloca-
tion eliminates external fragmentation, while internal fragmentation remains
negligible because of the large size of the streams, and because a stride may
contain data of more than one round (Figure 4).

Although stride-based allocation seems similar to extent-based [McVoy and
Kleiman 1991] and other previous allocation methods [Shenoy et al. 1998], one
difference is that strides have fixed size. Also, when a stream is retrieved, only
the requested amount of data is fetched to memory, not the entire stride. Since
the size of a stream request never exceeds the stride size during a round, at most
two partial stride accesses will be required to serve the request of a stream on
each disk in a round. This allows us to avoid the arbitrary number of actuator
movements required by previously proposed allocation methods [Chang and
Zakhor 1996].

Arguably, storing the data of each disk request contiguously would further
reduce the disk overhead to a single seek and rotation delay. However, due
to external fragmentation, contiguous disk space allocation requires periodic
compaction of the allocated disk space, which is a time-consuming process.
Alternatively, stride padding could be used for storing a stream request on a
single stride of a disk. This would prevent spanning of a stream request across
two strides, and would lead to one disk head movement at most for each stream
request. However, stride padding would waste disk storage space. With stride-
based allocation we get most of the disk efficiency, while avoiding the extra
overhead of alternative methods (see also Section 5.3).

2.4 Reservation of Server Resources

We consider system of N network interfaces, D disks, and Q transfer nodes. The
Network Striping Sequence Smn defines the amount of stream data, Smn(i, u),

2Stride-based allocation should not be confused with the term strided access used to describe reg-

ularity in I/O requests of parallel scientific applications [Nieuwejaar et al. 1996].

ACM Transactions on Storage, Vol. 1, No. 4, November 2005.

426 • S. V. Anastasiadis et al.

1 ≤ i ≤ Ln, 0 ≤ u ≤ N − 1, that the server sends through network interface
u to a particular client during round i. Correspondingly, the Network Sequence
Sn, Sn(i) = ∑N−1

u=0 Smn(i, u), specifies the total amount of data that the server
sends to the client over time. Similarly, the stream Buffer Striping Sequence
Smb defines the server buffer space Smb(i, q), 0 ≤ i ≤ Lb, 0 ≤ q ≤ Q − 1,
with Lb = Ln + 1, that a client occupies on transfer node q during round i.
The total buffer space occupied by the client over time is given by the Buffer
Sequence Sb, with Sb(i) = ∑Q−1

q=0 Smb(i, q). Buffer space is reserved for the time

period starting at the point that data are requested from the disk until the
corresponding network data transfer has finished.

We assume that data are organized on the disks in strides. The stride size Bs

is multiple of the logical block size Bl , which is multiple of the physical sector
size Bp of the disk. Both disk transfer requests and memory buffer reservations
are specified in multiples of the logical block size Bl . The Disk Striping Sequence
Smd, 0 ≤ k ≤ D − 1, 0 ≤ i ≤ Ld − 1 with Ld = Ln, determines the amount of
data Smd(i, k), that are retrieved from disk k in round i. The Disk Sequence Sd

defines the total amount of data retrieved from the disks for a client over time.
It can be derived from the network sequence Sn after applying quantization in
terms of logical blocks. The cumulative number of blocks Bl retrieved from all
the disks until round i is equal to

K d (i) =
⌈∑

0≤ j≤i Sn(j + 1)

Bl

⌉
. (1)

Then, the disk sequence of a client at round i is defined as follows:

Sd (i) = (K d (i) − K d (i − 1)) · Bl . (2)

The disk striping sequence Smd can be generated directly from the disk sequence
Sd according to the striping policy used.

We assume that disk k has edge-to-edge seek time T k
fullseek, single-track seek

time T k
trackseek, average rotation latency T k

avgrot, and minimum internal transmis-

sion rate Rk
disk . For every client, the stride-based allocation policy guarantees

that at most two disk-arm movements are needed per disk in each round. We
keep bounded the total seek distance with the circular scan (C-SCAN) disk
scheduling policy. At round i of the system operation, let Mi be the number of
active streams. If we initiate the playback of stream j , 1 ≤ j ≤ Mi, at round l j

of the system operation, the total access time on disk k has upper bound

Tdisk(i, k) = 2T k
fullSeek + 2Mi · (T k

trackSeek + T k
avgrot) +

Mi∑
j=1

S j
md(i − l j , k)/Rk

disk, (3)

where S j
md is the disk striping sequence of client j . We count twice the T k

fullSeek
parameter due to the disk-arm movement from the C-SCAN policy, while we
apply a factor of two in the second term due to the stride-based method. The
first term is applied once in the disk time reservation structure of each disk k.
Additionally, each client j incurs during round i on disk k maximum access

ACM Transactions on Storage, Vol. 1, No. 4, November 2005.

Exedra Streaming Server • 427

time

T j
disk(i, k) =

{
2 · (T k

trackSeek + T k
avgRot) + S j

md(i − lj , k)/Rk
disk, S j

md(i − lj , k) > 0

0, otherwise
(4)

Let Ru
net be the bandwidth available at network interface u. If Smn is the net-

work striping sequence of client j , then the corresponding network transmis-
sion time reserved for client j in round i becomes T j

net(i, u) = S j
mn(i−l j , u)/Ru

net.

Similarly, if S j
mb is the buffer striping sequence of client j , then the buffer

space reserved for client j at transfer node q in round i becomes B j (i, q) =
S j

mb(i − l j , q).

2.5 Definition of Striping Techniques

2.5.1 Fixed-Grain Striping. This method uses data blocks of fixed size Bf ,
a multiple of the logical block size Bl . It stripes the data blocks round-robin
across the disks as shown in Figure 5(a). Let stripe be any sequence of D con-
secutive blocks of size Bf each, where the first block is stored on the first disk
of the array. Let the cumulative number of blocks retrieved until round i for a
specific client be

K f (i) =
⌈∑

0≤ j≤i Sd (j)

Bf

⌉
. (5)

If �K f (i)/D� − �K f (i − 1)/D� = 0, all the blocks accessed for the client during
round i lie on the same stripe, and the disk striping sequence S f

md becomes

S f
md(i, k) = S f

ps(i, k) · Bf (6)

where

S f
ps(i, k) =

{
1, if K f (i − 1) mod D < k mod D ≤ K f (i) mod D
0, otherwise

(7)

specifies whether disk k is accessed during round i or not.
If �K f (i)/D� − �K f (i − 1)/D� > 0, the blocks accessed for the client during

round i lie on more than one stripe, and the disk striping sequence becomes

S f
md(i, k) = (�K f (i)/D� − �K f (i − 1)/D� − 1) · Bf + S f

ps(i, k) · Bf , (8)

where

S f
ps(i, k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2, if K f (i − 1) mod D < k mod D ≤ K f (i) mod D
1, if k mod D > max(K f (i − 1) mod D, K f (i) mod D)

1, if k mod D ≤ min(K f (i − 1) mod D, K f (i) mod D)

0, otherwise.

(9)

The first term in Eq. (8) refers to stripes fully accessed in round i, while the sec-
ond term covers stripes partially accessed by the client. Depending on whether
disk k occurs zero, once, or twice in the partially accessed stripes, S f

ps(i, k) takes
the value 0, 1 or 2, respectively.

ACM Transactions on Storage, Vol. 1, No. 4, November 2005.

428 • S. V. Anastasiadis et al.

Fig. 5. Figure (a) shows the data requirements of twenty consecutive rounds in an MPEG-2 clip.

With Fixed-Grain Striping (b), the needed blocks of size Bf are retrieved round-robin from the disks

every round. In Variable-Grain Striping (c), a different disk is accessed in each round, according

to the byte requirements of the original clip. In Group-Grain Striping (d) with G = 2, stream data

worth of two rounds are accessed from a different disk every two rounds.

ACM Transactions on Storage, Vol. 1, No. 4, November 2005.

Exedra Streaming Server • 429

2.5.2 Variable-Grain Striping. The data retrieved during a round for a
client are always accessed from a single disk that changes round-robin over
time, as shown in Figure 5(b). Equivalently, the striping sequence Sv

md(i, k)
takes value zero or not during round i, depending on whether disk k is skipped
or accessed by the client during that round. Therefore, we have

Sv
md(i, k) =

{(
K v(i) − K v(i − 1)

) · Bl , i mod D = k
0, otherwise

(10)

where

K v(i) =
⌈∑

0≤ j≤i Sd (j)

Bl

⌉
. (11)

is the cumulative number of logical blocks retrieved for the client until
round i.

2.5.3 Group-Grain Striping. In this method, the amount of data required
by a client over a period of G rounds is retrieved every Gth round from one
disk that changes round-robin over time. We call Group Size the parameter G,
G ≥ 1, as shown in Figure 5(c). Then, the striping sequence for Group-Grain
Striping is given by the expression

S g
md(i, k) =

{
(K v(i + G − 1) − K v(i − 1)) · Bl , i mod G = 0 ∧ �i/G�mod D = k
0, otherwise,

(12)

where K v(i) is defined in Eq. (11). Essentially, every time round i becomes a
multiple of G, an amount of data equal to (K v(i + G − 1) − K v(i − 1)) · Bl is
retrieved from the single disk k = �i/G� mod D. In fact, Group-Grain Striping
degenerates to Variable-Grain Striping for G = 1.

We should note that, if two playbacks begin from the same disk at rounds
i and j (i �≡ j (mod G)), the playbacks do not have any disk transfers occur-
ring in the same round. As a result, increasing G reduces the total number of
disk requests and the access overhead, while allowing different playbacks to
be served in separate rounds. In comparison, larger Bf in Fixed-Grain Strip-
ing results in accesses from different streams randomly coinciding on the same
disk in the same round, which saturates the system with fewer streams. Also,
longer round length achieves aggregation of disk transfers, but results in in-
creased buffer space and playback initiation latency (Section 5.1). Therefore,
Group-Grain Striping reduces the disk access overhead, without incurring the
negative effects of alternative transfer aggregation methods.

2.6 Fault-Tolerance Issues

Achieving efficiency in disk space allocation and predictability in disk access
delays can be a challenging task as a result of variability in the system re-
source requirements over time. Fault tolerance over disk arrays introduces
the additional need for balancing the utilized storage space and data transfer
bandwidth across different disks under conditions of normal operation and disk

ACM Transactions on Storage, Vol. 1, No. 4, November 2005.

430 • S. V. Anastasiadis et al.

failure. In the present section, we describe a number of data redundancy and
bandwidth reservation schemes that can tolerate single disk failures without
service interruption.

2.6.1 Data Redundancy Policies. Due to the large number of components
involved in a typical commercial server installation, it is necessary to assume
device failures during its lifetime. Although the disks are likely to be distributed
across multiple independent servers, building a single large disk array from dis-
tributed components has also been demonstrated in the past for media stream-
ing services [Bolosky et al. 1996; Haskin and Schmuck 1996].

In order to improve the system reliability efficiently, we can use data redun-
dancy techniques that minimize the extra computation, storage and bandwidth
requirements with respect to the nonredundant case. In the present study, we
focus on single disk failures rather than multiple disk failures that are less
likely to occur simultaneously [Chen et al. 1994]. In the past, several parity-
based techniques have been proposed that use error-correcting codes on the
surviving disks to recover the missing data blocks from a failed disk [Chen
et al. 1994]. Parity-based techniques trade extra bandwidth or memory buffer
for reduced storage space. Since disk storage space is the least expensive re-
source of the three, mirroring rather than parity is becoming the preferred
fault-tolerance technique [Bolosky et al. 1996; Gray and Shenoy 2000], and the
one that we examine here.

With mirroring techniques, the data of each disk are replicated on one or
more different disks. We refer to the original copy of the data as primary and
the additional copy as backup. When one disk fails, its data remain available
by retrieving their backup replicas from the rest of the disks. The total re-
quired storage space is roughly doubled across the disk array. The needed
bandwidth on each disk can vary between 100 n

n−1
% and 200% that of the

nonredundant case for n disks, depending on the bandwidth reservation policy
used.

2.6.2 Replica Placement. Although mirroring has previously been only
used with data striped using fixed-size blocks, in principle it could be applied to
variable-grain striping as well. During sequential playback of a media file with
no failed disks, in a disk array of size D each disk is accessed every D rounds.
In order to preserve the load-balancing property when a disk fails, data of a
media file stored on consecutive disks could be replicated round-robin across
the remaining disks (or a subset of them). The unit of replication corresponds
to data retrieved by a client during one round of playback. We call Determinis-
tic Replica Placement this mirroring approach. For example, Figure 6(a) shows
disk 0 to store stream data requested during rounds k · D, (k + 1) · D, (k + 2) · D
and (k +3) · D, while the respective replicas are distributed round-robin among
disks 1, 2 and 3. An alternative replication approach would use some pseudo-
random sequence for specifying the disks that store the backup copies of one
disk’s primary data. We call that mirroring technique Random Replica Place-
ment (Figure 6(b)).

ACM Transactions on Storage, Vol. 1, No. 4, November 2005.

Exedra Streaming Server • 431

Fig. 6. (a) Deterministic Replica Placement. Data of a media file stored on one disk are replicated

round-robin across the other disks. (b) Random Replica Placement. Data of a media file stored on

one disk are replicated on three other disks randomly chosen.

Fig. 7. (a) Mirroring Reservation. For each disk, there is a separate vector indexed by round

number that accumulates the total estimated access time for retrieving primary and backup data

in each round. (b) Minimum Reservation. For each disk, we maintain D separate vectors indexed by

round number. One of them accumulates access delays for retrieving primary data. The remaining

D − 1 vectors accumulate access delays for retrieving backup replicas that correspond to primary

data stored on each of the other D − 1 disks. In each round, the sum of the primary data access

time and the maximum of the backup data access times is reserved on each disk.

2.6.3 Disk Bandwidth Reservation. Retrieving backup replicas of data
stored on a failed disk requires extra bandwidth to be reserved in advance
across the surviving disks. This implies that the system will normally have to
operate below full capacity. In what we call Mirroring Reservation, disk band-
width is reserved for both the primary and backup replicas involved during a
round of a media file playback (Figure 7(a)). Even though this seems reason-
able, mirroring reservation doubles the disk bandwidth requirements of each
stream in comparison to the nonredundant case. Ideally, we would prefer that
the load normally handled by a failed disk is equally divided among the D − 1
surviving disks. In other words, tolerating one disk failure requires 1

D−1
of its

bandwidth capacity to be reserved on each other disk.
Given that only one disk is likely to fail, it is wasteful to reserve bandwidth on

a disk for accessing backup replicas of primary data from more than one other
disk. Thus, for each disk, we maintain D vectors indexed by round number of

ACM Transactions on Storage, Vol. 1, No. 4, November 2005.

432 • S. V. Anastasiadis et al.

system operation. One vector keeps track of the total access time required for
retrieving primary data. The remaining D − 1 vectors keep track of access de-
lays due to backup data corresponding to primary data of the remaining disks.
For every disk, we reserve the sum of the primary data access time and the
maximum of the backup data access times in each round. We reserve the maxi-
mum across every other disk, since we don’t know in advance which other disk
is going to fail. We refer to this more efficient scheme as Minimum Reservation
(Figure 7(b)). These two disk bandwidth reservation schemes can be orthog-
onally combined with the two replica placement policies that we introduced
previously.

2.7 Load Balancing Enhancements and Other Extensions

The load of a failed disk can possibly be shared more fairly among the surviving
disks if each backup replica is declustered across multiple devices. In the load
balancing technique that we call Backup Replica Declustering, each backup
replica is broken into blocks of fixed size Bd , an integer multiple of the logical
block size Bl . The backup replica blocks corresponding to the primary data of
each disk are distributed either round-robin or pseudorandomly across the rest
of the disks, depending on whether deterministic or random replica placement
is used. Alternatively, we can apply the Dynamic Balancing technique during
normal operation. It takes advantage of multiple available data replicas by
dynamically deciding to retrieve the replica stored on the disk expected to be
the least loaded. The disk choice is based on access time estimations available
through resource reservations that are made during admission control. It can
be fully applied when all the disks are functional and is expected to reduce the
load of the most heavily utilized disks in each round.

Handling multiple disk failures requires storing multiple backup replicas
and making bandwidth reservations for more than one failed disk. In servers
consisting of multiple nodes, failure of an entire node can also be handled grace-
fully, by keeping each disk of a node in a separate disk group and limiting the
replication within each group. When a node fails, inaccessible data for each of
its disks can be retrieved using replicas available on other disks of the corre-
sponding group [Bolosky et al. 1996; Gafsi and Biersack 2000]. Provisioning for
VCR functionality would require deallocation of previously reserved resources,
when a stream playback is suspended or stopped earlier than its normal ter-
mination. This can be done in a straightforward way, when accumulating disk
access delays separately for primary and backup data replicas, as was already
described above.

3. PROTOTYPE IMPLEMENTATION

We have designed and built a media server prototype using C++ on AIX 4.2.
The media server is responsible for stream file storage, resource reservation,
admission control, buffer management, and data transfer scheduling (Figure 8).
With appropriate configuration parameters, the system supports different lev-
els of operation abstraction. We make full data transfers through raw-interface
access to hardware disks in Full Operation mode. Alternatively, we gather

ACM Transactions on Storage, Vol. 1, No. 4, November 2005.

Exedra Streaming Server • 433

Fig. 8. System modules in the Exedra prototype implementation.

detailed disk access measurements with the DiskSim disk simulation package
[Ganger et al. 1999] in Simulated Disk mode. Finally, when the system receives
playback requests in Admission Control mode, we only apply admission control
and resource reservation without transferring actual stream data.

3.1 Admission Control and Dispatching

The admission control module uses separate vectors to represent the allocated
disk time, network time, and buffer space. On system startup, the disk time vec-
tors are initialized to 2 · TfullSeek, while the network time and buffer space are
set to zero. When a new stream request arrives, the admission control ensures
that the total service time of each disk in any round and the total network ser-
vice time on each network interface may not exceed the round duration, while
the total occupied buffer space on each node may be no larger than the corre-
sponding server buffer capacity. If the admission control test is passed, then
the resource sequences of the stream are added to the corresponding system
vectors managed by the module, and the stream is scheduled for playback. At
each upcoming round, the scheduled streams are activated and the correspond-
ing data transfers are started.

3.2 Stream Scheduling

The stream management module initiates all the buffer reservation, disk trans-
fer and network transfer requests for every active stream. The schedule de-
scriptors provide the necessary information about the amount of data and the
particular disks that should be accessed during each round. After allocating
the required amount of buffer space, we prepare the disk transfer request that

ACM Transactions on Storage, Vol. 1, No. 4, November 2005.

434 • S. V. Anastasiadis et al.

Fig. 9. Pending disk transfers are gathered in a fifo queue before they complete and allow the

corresponding network transfers to begin.

specifies the buffer location, the stream file offset and the length of the transfer
(Figure 9). We pass each request to the lower layers for the actual transfer to
occur, and also insert a copy of the request descriptor into a fifo queue to keep
track of the pending network transfers. We receive completion notification of
the initiated data transfers through appropriate control information attached
to each individual data block.

3.3 Metadata Management

Stream metadata management is organized in a layer above disk scheduling
(Figure 8). It is responsible for disk space allocation during stream recording,
and for translating stream file offsets to physical block locations during play-
back. The stream metadata are maintained as regular files in the host file
system of each transfer node, while the stream data are stored separately on
dedicated disks. The storage space of the data disks is organized in strides, with
a bitmap that has a separate bit for each stride. A single-level directory maps
the identifier of each recorded stream into a direct index of the corresponding
allocated strides. A separate such directory exists for each different disk.

When a stream is striped across multiple disks, a stream file is created on
each data disk. Each transfer request received by the metadata manager speci-
fies the starting offset in the corresponding stream file and the number of logical
blocks to be accessed. The stream index translates each request to a sequence of
contiguous disk transfers. In order to keep the system performance predictable
and unbiased by particular disk geometry features, when we allocate strides
for a stream within each disk, we distribute them across all the zones of the
disk. We create a separate metadata manager for each disk in order to be able
to fully implement disk arrays consisting of heterogeneous disks [Anastasiadis
et al. 2005]. This feature might prove crucial for the incremental growth and
economic survival of large scalable media storage installations.

3.4 Disk Scheduling

The disk management layer is responsible for passing data transfer requests
to the disks. The dual-queue C-SCAN disk scheduling manages the operation
of each disk with a separate pair of priority queues, called Request Queue and
Service Queue. At the beginning of each round, data transfer requests for the
current round are added asynchronously into the request queue of each disk,

ACM Transactions on Storage, Vol. 1, No. 4, November 2005.

Exedra Streaming Server • 435

Fig. 10. Sequence of steps during the disk service of I/O requests using dual-queue C-SCAN.

where they are kept sorted in increasing order of their starting sector location.
When all the requests have been gathered and the corresponding disk transfers
of the previous round completed, the request queue of each disk is swapped with
the corresponding service queue (Figure 10). Subsequently, requests from the
service queue are synchronously submitted to the raw disk interface for the
corresponding data transfers to occur. The dual-queue scheme prevents new
requests from getting service before those of the previous round complete, thus
keeping more stable the system operation.

3.5 Buffer Management

The buffer management module keeps the server memory organized in fixed
size blocks of Bl bytes each, where Bl is the logical block size introduced in
Section 2.4. The server memory is allocated in groups of blocks contiguous in
virtual memory. We demonstrate the benefit of that in Section 5.2. For the al-
location of buffer blocks we use a bitmap structure with an interface that can
support block group requests. We support deallocations in granularity of in-
dividual blocks, as opposed to entire block groups obtained during allocation.
This feature increases independence between disk accesses and network trans-
fers. Paging of buffer space is prevented by locking the corresponding pages
in main memory. In our design, we do not cache previously accessed data, un-
like traditional file and database systems. We found that similar support for
variable bit-rate streams would introduce several complications, especially in
the admission control process. Instead, we assume that data transfers are done
independently for each different playback [Bolosky et al. 1996].

3.6 Replication

The minimum reservation scheme requires maintaining number of vectors
equal to the square of the number of disks. Each vector is accessed in a circular
fashion and has minimum length equal to that of the longest stream expressed
in numbers of rounds. When using large disk arrays, this might raise concerns
regarding the computational and memory requirements involved. In practice,
the reduction in unused bandwidth is diminishing as the number of disks in-
creases beyond sixteen. Therefore, it makes sense to apply the data replication
within disk groups of limited size, when the total disk array size becomes larger.
This keeps limited the bookkeeping overhead and preserves the scalability of
the system.

ACM Transactions on Storage, Vol. 1, No. 4, November 2005.

436 • S. V. Anastasiadis et al.

Table I. Features of the SCSI Disks Used in our Experiments

Seagate Cheetah ST-34501N/W

Data Bytes per Drive 4.55 GB Track to Track Seek(read/write) 0.98/1.24 msec

Average Sectors per Track 170 Maximum Seek(read/write) 18.2/19.2 msec

Data Cylinders 6,526 Average Rotational Latency 2.99 msec

Data Surfaces 8 Internal Transfer Rate

Zones 7 Inner to Outer Zone Burst 122–177 Mbit/s

Buffer Size 0.5 MB Inner to Outer Zone Sustained 11.3–16.8 MB/s

4. EXPERIMENTATION ENVIRONMENT

In the present section, we describe the hardware configuration that we used
in our performance measurements, and the set of streams that composed our
benchmarks. We also define a novel method for media server performance eval-
uation that is applicable to different system scales and stream characteristics.

4.1 Experimentation Setup

Even though we did most of our experiments in Admission Control mode, we
used the Full Operation mode for low-level performance measurements, and
the Simulated Disk mode for result validation of replicated disk arrays. We run
the Full Operation mode on an IBM RS/6000 two-way SMP workstation with
233-MHz PowerPC processors running AIX4.2. We configure our system with
256-MB physical memory, and created the system and paging partitions on a 2-
GB disk over a fast wide SCSI controller. We store the stream data on two
4.5-GB Seagate Cheetah ST-34501W disks (Table I) attached to a separate
ultra-wide SCSI controller.3 Although storage capacity is much larger in the
latest disk drive models, the remaining performance features of the above two
disks are typical of today’s high-end drives. For the Admission Control and
Simulated Disk modes, we assume Cheetah ST-34501 W disks.

We set the logical block size Bl = 16 KB, the physical sector size Bp = 512 B,
the stride size Bs = 2 MB, and the round length Tround = 1s. For buffering, we
use memory space of 32 MB per disk, organized in fixed size blocks of 16 KB.
In our experiments, we drop the retrieved data to the /dev/null device, thus
leaving protocol processing and contention for the network outside the scope of
the present study. However, from experiments that we did, we do not expect the
network overhead to affect in any fundamental way the results presented here,
unless it becomes the bottleneck resource in the system [Nagle et al. 2004].

We used six different variable bit-rate MPEG-2 streams of 30 minutes dura-
tion each. Each stream has 54,000 frames with a resolution of 720 × 480 and
24-bit color depth, 30 frames per second frequency, and a I B2 P B2 P B2 P B2 P B2 15-
frame Group of Pictures structure. The encoding hardware that we use allows
the generated bit rate to take values between 1 Mbit/s and 9.6 Mbit/s.4 We

3One megabyte (megabit) is considered equal to 220 bytes (bits), except for the measurement of

transmission rates and disk storage capacities where it is assumed equal to 106 bytes (bits) instead

[IBM 1994].
4The digital versatile disk (DVD) specification sets a maximum allowed MPEG-2-bit rate of

9.8 Mbit/sec.

ACM Transactions on Storage, Vol. 1, No. 4, November 2005.

Exedra Streaming Server • 437

Table II. We Used Six MPEG-2 Video Streams of 30 Minutes Duration Each. Both

the Autocorrelation and the Coefficient of Variation Shown in the Last Two

Columns Change According to the Content Type

Content Avg Bytes Max Bytes ρ(1) CoV

Type per rnd per rnd per rnd per rnd

Science Fiction 624,935 1,201,221 0.885 0.383

Music Clip 624,728 1,201,221 0.782 0.366

Action 624,194 1,201,221 0.734 0.245

Talk Show 624,729 1,201,221 0.705 0.234

Adventure 624,658 1,201,221 0.739 0.201

Documentary 625,062 625,786 0.060 0.028

summarize the statistical characteristics of our clips in Table II. In our mixed
basic benchmark, the six different streams are submitted round-robin. Where
necessary, we also present experimental results from individual stream types.

4.2 Performance Evaluation Method

Although media server architectures have been investigated for more than a
decade, performance parameters are usually evaluated in ad-hoc ways. Im-
portant decisions about the interarrival process, the stream scheduling, and
practical system operation constraints vary inconsistently across different re-
lated studies. In general, we expect that a fair performance evaluation method:
(i) demonstrates the system capacity, (ii) is applicable to a range of hardware
configurations, (iii) is not biased against particular policies, and (iv) evaluates
the practical operation of the system.

We assume the playback initiation requests arrive independently of one an-
other in a Poisson process. Some workload characterization studies provide
evidence that such an assumption holds in some cases [Almeida et al. 2001].
We control the system load through the arrival rate λ. If disk bandwidth is
the bottleneck resource, we consider the ideal case of a system that incurs
no disk overhead when accessing disk data. The streams have average data
size Stot bytes and the system consists of D disks with minimum transfer rate
Rk

disk on disk k. Then, the completion rate μ, expressed in streams per round
becomes

μ =
∑D−1

k=0 Rk
disk · Tround
Stot

. (13)

The maximum arrival rate handled by the system is λ = λmax ≤ μ, and creates
enough load to demonstrate the performance benefit of arbitrarily efficient data
striping policies. The system load is ρ = λ

μ
≤ 1.

When a playback request arrives, we check whether adequate resources are
available for every round during playback. If the request cannot be initiated in
the next round, the test is repeated for successive rounds until the first future
round is found, where the requested playback can be started with guaranteed
sufficiency of resources. We define as lookahead distance Hl the number of fu-
ture rounds that are considered as candidate rounds for initiating a stream play-
back. Playback requests not accepted are discarded rather than being kept in a

ACM Transactions on Storage, Vol. 1, No. 4, November 2005.

438 • S. V. Anastasiadis et al.

queue. Practically, a large lookahead distance leads to the possibility of a long
potential waiting time for the initiation of the playback, while setting the looka-
head distance too small can prevent the system from attaining full capacity.

We set the basic lookahead distance Hbasic
l =
 1

λ
�. Intuitively, setting Hl =

Hbasic
l allows the system to consider for admission control the number of up-

coming rounds (on average) that will pass until another request arrives. More
generally, we define as lookahead factor Fl the fraction Fl = Hl

Hbasic
l

, and set

Fl = 1. In most practical situations, the rejection ratio should also be kept low,
for example close to 1%. This can typically be achieved by operating the system
at loads lower than the maximum 100%. All the experiments presented in this
study are repeated until the half-length of the 95% confidence interval on the
performance measure of interest lies within 5% of the estimated mean value.
Our basic performance objective is to maximize the average number of active
playback sessions that can be supported by the server.

4.3 Summary of Differences from Previous Studies

We summarize important differences in our assumptions from those of previous
related studies.

(1) We assume that playback requests arrive according to a Poisson process,
which closely resembles system operation in practical situations.

(2) We adjust the system load according to the available resources in the sys-
tem, which makes fair the comparison of different system configurations.

(3) We introduce a load-adjusted upper bound in the number of future rounds
considered for initiating a playback requests. This is a reasonable compro-
mise in the playback initiation latency, while allowing most of the system
capacity to be reached.

(4) For each arriving request, we make an exhaustive search within the speci-
fied window of rounds for a location where playback can be initiated.

(5) We keep the rejection ratio of playback requests acceptably low.

5. STUDY OF BASIC PARAMETERS

We begin our experiments by evaluating the effect of the round length on
the system operation along with the dependence of the disk throughput on
the buffer organization. We also investigate implications of the disk space
allocation on the disk bandwidth utilization, and we compare resource reser-
vation statistics to actual utilization measurements.

5.1 Choosing the Right Round Length

We use the Admission Control mode with a four-disk array at load ρ = 80%,
lookahead factor Fl = 1 and Variable-Grain Striping. Experiments with other
parameter values lead to similar conclusions. The system performance depends
on the ratio between useful transfer time and mechanical overhead in the disk
accesses. Longer rounds increase the data size of the disk transfers and improve
the disk operation efficiency with a diminishing returns effect (Figure 11(a)).

ACM Transactions on Storage, Vol. 1, No. 4, November 2005.

Exedra Streaming Server • 439

Fig. 11. The round length has interesting effects on the system operation parameters. Although

a longer round (a) improves, up to a point, the average number of active streams, (b) it can also

extend the stream initiation latency, and (c) linearly increases the total buffer space required.

In Figure 11(b), we notice that the average initiation latency increases almost
linearly with rounds longer than one second. The latency depends on both the
number and the length of the rounds tried during stream admission control.
From Figure 11(c), it follows that the total buffer space required increases
linearly with longer rounds. This is a result of the proportional increase in
the amount of data retrieved from the disks during each round. In the rest
of our study we use round length of one second to achieve high throughput
under reasonable initiation latency and buffer requirements. Frequent use of
the same round length in other studies facilitates the comparison of our results
with those of previous related research.

5.2 Contiguity of Buffer Allocation

We measure the disk throughput at different sizes of I/O requests and degrees
of contiguity in the buffer space allocated for each request. We initiate disk
requests of a specific size at different locations uniformly distributed across
the disk space. We transfer the disk data to pages locked in main memory and
organized in blocks of size Bl . In Figure 12(a), we depict the average throughput
when we invoke a separate read() call for each buffer block. Increasing block
sizes change the disk throughput by a factor of three across different request
sizes, while increasing request sizes change the throughput by more than a
factor of two for a particular block size.

In Figure 12(b), we use the readv() system call with parameters the pointer
to an array of address-length buffer descriptors and the number of the descrip-
tors. The array size is typically limited to a small number (e.g., IOV MAX = 16
in AIX 4.2). Although we expected improved performance due to the collective
information accompanying each readv() call, the measured throughput was
less than half of what we measured with read(). Proper explanation of this
pathological behavior would require internal knowledge of the readv() imple-
mentation in AIX 4.2, which we don’t have. Nevertheless, we describe below
a user-level approach to overcome performance dependences on the particular
implementation of readv().

ACM Transactions on Storage, Vol. 1, No. 4, November 2005.

440 • S. V. Anastasiadis et al.

Fig. 12. (a). When we use a separate disk transfer for each buffer block, disk throughput depends

critically on the block size. (b) Grouping multiple block transfers into a single call by using readv()

decreases by more than 50% the achieved disk throughput. (c) Invoking a single read() for each

request keeps disk throughput consistently high, independently of the buffer block size.

In Figure 12(c), we use only a single read() call for each request, in a way sim-
ilar to our prototype implementation. It only requires contiguity at the virtual
address space, without actual control on the physical addresses of the underly-
ing pages. With average disk transfers of 625,000 bytes in our MPEG-2 clips,
we achieve disk throughput higher than 11 MB/s, consistently with the mini-
mum sustained rate 11.3 MB/s advertised in our disk data sheet. Although the
achieved performance is similar to that of Figure 12(a) with large blocks, large
block sizes reduce the benefit from multiplexing requests of different sizes, and
shrink the number of accepted streams (see also Section 6).

In conclusion, contiguity in the buffer space allows a relatively small block
size to guarantee both high number of streams and efficient disk transfers,
thus simplifying the performance tuning of the system. The drawbacks are the
software complexity of managing buffer ranges instead of fixed buffers, and the
external fragmentation that requires a small percentage (10–15%) of buffers to
remain unused.

5.3 Contiguity of Disk Space Allocation

If the disk space for each request was allocated contiguously, each disk access
would require a single head movement and not a maximum of two incurred by
stride-based allocation. In Figure 13, we measure the disk bandwidth utiliza-
tion when retrieving streams allocated on a disk using different stride sizes. As
we increase the stride size from 2 MB to 16 MB, the achieved stream throughput
(not shown) remains about the same, while the disk bandwidth utilization drops
by 2–3%. This percentage indicates that stream disk accesses are dominated by
useful data transfers rather than mechanical overhead. As a result, the benefit
from contiguous disk space allocation would be limited in an environment of
multiple streams striped across several disks.

5.4 Resource Reservation Efficiency

In a system with 2 disks and 64-MB buffer memory, we compare the re-
served and measured resource utilizations across different stream types at Full

ACM Transactions on Storage, Vol. 1, No. 4, November 2005.

Exedra Streaming Server • 441

Fig. 13. Varying the stride size between 2 MB and 16 MB changes only marginally (2–3%) the

disk bandwidth utilization across different stream types. This shows the limited benefit from larger

strides, or contiguous disk space allocation. A single disk was used with load ρ = 80%, lookahead

factor Fl = 1 and Variable Grain Striping.

Fig. 14. In a two-disk configuration, the measured disk utilization is balanced between the two

disks. On each disk, the difference between the reserved and measured disk utilization remains

within 5%.

Operation mode. We set the buffer block size to Bl = 16 KB, the stride size to
Bs = 2 MB, the system load ρ = 80%, and use Variable Grain Striping. The
average number of active streams is roughly between 20 and 25 depending on
the stream type.

The measured busy time in most rounds is less than the total disk time re-
served. In only less than 1% of the rounds, the measured busy time exceeds the
reserved due to unexpected types of disk overhead. However, all the discrepan-
cies could be masked from the client with an extra round of added playback initi-
ation latency. Other than that, we got stable prolonged system operation at high
loads without any observed problems. In Figure 14, we illustrate the fraction of

ACM Transactions on Storage, Vol. 1, No. 4, November 2005.

442 • S. V. Anastasiadis et al.

Fig. 15. For Bf = 327, 680 bytes, 16 disks and mixed workload, we depict the total rejected over

accepted streams during the measuring period. The ratio increases linearly as the load exceeds

50%, but changes by less than 20% as Fl varies between 1 and 30.

time each of the two disks is found (measured) or expected (reserved) to be busy.
We notice that the load is equally balanced across the two disks. In addition,
the busy fraction that we reserve does not exceed the corresponding measured
by more than 5%. This allows the admission control procedure to successfully
offer quality of service guarantees, without disk bandwidth underutilization.

6. COMPARATIVE STUDY OF DISK STRIPING

In the present section, we examine the effects of the system load and the looka-
head distance parameters on the system performance. Subsequently, we com-
pare the throughput and scalability of alternative disk striping policies. We
demonstrate that the number of streams supported by the system scales lin-
early with the number of disks, while the striping policy can affect significantly
the system throughput. With reasonable technology projections, our conclusions
remain valid in the foreseeable future.

6.1 Study of Fixed-Grain Striping

We begin with a study of Fixed-Grain Striping. In Figure 15, we observe the
ratio of rejected over accepted streams to be zero at load below 50%, and increase
linearly beyond that threshold. Since changing the lookahead factor Fl from 1
to 30 affects only marginally the number of accepted streams, we set Fl = 1. In
Figure 16, we measure the number of active streams as the block size increases
from Bf = 32 KB to Bf = 1 MB in steps of 32 KB. We notice that the number
of active streams increases when Bf approximates 320 KB, and drops at larger
or smaller block sizes. This observation affects the choice of the block size that
maximizes the number of streams, and confirms results from previous studies
[Shenoy and Vin 1999].

The disk busy time normalized by the round time corresponds to the expected
disk utilization. Part of the normalized access time is actuator overhead and
decreases as the block size becomes larger. In Figure 17, we observe the max-
imum difference in the reserved busy times among different disks in a round

ACM Transactions on Storage, Vol. 1, No. 4, November 2005.

Exedra Streaming Server • 443

Fig. 16. At load values 40% and 80%, a maximum number of streams is achieved at Bf = 327, 680.

We experimented with 16 disks and mixed workload over a range of Bf between 32, 768 and

1, 048, 576 at steps of 32, 768 bytes.

Fig. 17. The maximum and average reserved disk access time remain almost the same as we

change the number of disks, while there is increase in the maximum difference (AvgDiff) between

the access times reserved across the disks. We use mixed workload at load 80%.

(Avg Diff) to increase from almost 35% to above 50%. However, the average re-
served time remains almost the same (within 2%) across the disks of an array.
Also, the average disk bandwidth utilization drops only slightly from 69% with
8 disks to 66% with 32 disks. This implies that the useful transfer capacity
of the system increases almost linearly as more disks are added. As we vary
the disk array size from 4 to 64 in Figure 18, the block size Bf = 320 KB
constantly maximizes the number of streams. At 80% load, the number of sup-
ported streams increases from 39 with 4 disks to 144 with 16 disks and 550
with 64 disks. This is within 9–14% of what perfectly linear scalability would
achieve. Our observations at load 40% are similar.

6.2 Comparison with Variable-Grain Striping

In Figure 18, we examine the scalability of Variable-Grain Striping. At load
ρ = 80%, the number of streams increases from 48 with 4 disks to 786 with

ACM Transactions on Storage, Vol. 1, No. 4, November 2005.

444 • S. V. Anastasiadis et al.

Fig. 18. At load ρ = 80%, the streams increase almost linearly from 39 to 550 with Fixed-Grain

Striping in comparison to increase from 48 to 786 with Variable-Grain Striping. At load ρ = 40%,

the two striping policies achieve about the same number of active streams.

64 disks. Thus, the number of streams remains within 3% of what perfectly
linear scalability would achieve as a function of the number of disks. The ad-
vantage of Variable-Grain Striping over Fixed-Grain Striping increases from
23% with 4 disks to 43% with 64 disks.

A straightforward way to calculate the stream capacity of the system is to
divide the total disk bandwidth of the server by the average transfer bandwidth
required by a stream. This is not a tight upper bound since it ignores both
the disk access overhead and the transfer size variability of variable bit-rate
streams. From Table I, the transfer capacity of a disk is equal to 11.3 MB/s, while
from Table II the average transfer bandwidth of a stream is equal to 0.624 MB/s.
Therefore, the maximum capacity of the server cannot exceed 18 concurrent
streams with one disk, 72 with 4 disks and 1158 with 64 disks. By dividing the
measured throughout of the system with the estimated maximum capacity, we
find that Fixed-Grain Striping achieves 44% of the maximum capacity with 64
disks, while Variable-Grain Striping gets close to 68%.

In Figure 19, we need a larger block size to maximize the performance
of Fixed-Grain Striping, as the content type changes from Science Fiction to
Documentary. Overall, Variable-Grain Striping maintains an advantage over
Fixed-Grain Striping between 11% and 50%. The explanation is twofold. First,
Variable-Grain Striping achieves disk access efficiency by accessing only one
disk for a stream during each round. Second, by allowing variability in the data
request sizes of different streams, there is a multiplexing effect that can hide
disk access delay peaks from individual streams in Variable-Grain Striping.

6.3 Effect of Technology Trends

To project disk technology improvements, we extend past compound growth
rates linearly into the future. Thus, we assume 30% increase in internal disk
transfer rate per year, and 23% decrease in seek distance [Ng 1998]. For the
track seek time, which is dependent on the square root of the seek distance, we
assume decrease of 12% per year. Finally, we assume a rotation speed increase

ACM Transactions on Storage, Vol. 1, No. 4, November 2005.

Exedra Streaming Server • 445

Fig. 19. The advantage of Variable-Grain Striping over Fixed-Grain Striping varies between 11%

in the Documentary and 50% in the Adventure. The block size shown for Fixed-Grain Striping

maximizes the number of streams in a range of block sizes between 32 KB and 1,024 KB. We set

the load equal to 80%.

of 12% per year [Ruemmler and Wilkes 1994]. Although disk capacity and per-
formance are expected to continue improving, the rate of advancement most
likely will slow down [Grochowski and Halem 2003]. Conservatively, we pre-
sume that stream types and sizes will remain the same, which ignores potential
demand for higher resolution and more content-rich streams.

Until now, we only considered Group-Grain Striping with G = 1 (Variable-
Grain Striping), which maximizes the number of streams with the assumed disk
technology. But as the disk access time drops, we found it beneficial to increase
G, so that G rounds worth of stream data are transferred in a single round.
This essentially reduces the amount of time spent on disk overhead during each
round, without negatively affecting the initiation latency or the buffer require-
ments of the streams. Specifically, when using the mixed workload, we found
that two years into the future, the number of streams supported with Group-
Grain policy at G = 2 increases by 35% when compared to Fixed-Grain Striping.
Five years into the future, the corresponding benefit of Group Grain Striping at
G = 3 remains 29% (see Figure 20). Thus, under reasonable assumptions about
technological improvements, there are significant performance improvements
when using Group-Grain Striping instead of Fixed-Grain Striping.

7. FAULT-TOLERANCE COSTS

In the present section, we experimentally compare our data replication and
bandwidth reservation techniques with respect to the average number of active
playback sessions that can be supported by the server. We provide supplemen-
tary performance intuition with statistics on reserved and utilized disk access
time across different stream types and numbers of disks.

7.1 Replica Placement Comparison

In Figure 21, we observe that data replication with mirroring reservation cuts
almost into half the throughput achieved with no replication. Additionally,

ACM Transactions on Storage, Vol. 1, No. 4, November 2005.

446 • S. V. Anastasiadis et al.

Fig. 20. With reasonable technology projections, after two years of progress, Group-Grain Striping

maintains an advantage of 35% over Fixed-Grain Striping. The corresponding benefit in five years

remains 29%. The shown values of Bf and G were found to maximize the throughput of the two

policies respectively.

Fig. 21. The mirroring reservation scheme cuts into half the number of streams supported by the

no-replication case. Deterministic replica placement sustains an advantage of 25% or more relative

to random replica placement under the mixed stream workload.

deterministic replica placement achieves a throughput advantage of 25% or
more relative to random replica placement, because the former is more consis-
tent in fairly distributing the access load across the disks, especially in small
disk arrays. When a disk fails, about 25–30% of the reserved disk bandwidth re-
mains unused under both placement policies. This is not surprising, since the
mirroring reservation scheme allocates disk bandwidth for both the primary
and backup replicas of each accepted stream. We alleviate this inefficiency by
using the minimum reservation scheme in the subsection that follows.

7.2 Minimizing Reserved Bandwidth

The minimum reservation scheme improves disk utilization by allocating on
each disk the extra time required for accessing backup replicas of only one other

ACM Transactions on Storage, Vol. 1, No. 4, November 2005.

Exedra Streaming Server • 447

Fig. 22. With minimum reservation, the throughput advantage of deterministic over random

replica placement drops from 15% to 3%. The corresponding throughput disadvantage of deter-

ministic placement with respect to no replication drops from 28% to 17%.

disk. In order to ensure that any single disk failure can be handled properly,
each disk keeps track and reserves the maximum additional time required
for handling potential failure of any other disk. We calculate this maximum
requirement separately for each disk in each round.

In Figure 22, we notice that the number of supported streams with deter-
ministic placement is 21% lower than without replication on eight disks, and
drops to 18% and 17% on sixteen and thirty two disks, respectively. From the
way that the minimum reservation scheme allocates disk bandwidth, we would
expect the total unutilized bandwidth during normal operation to be that of
one disk. Correspondingly, the percentage of unused bandwidth should be in-
versely proportional to the number of disks in the system. For example, with
16 disks, only 1

16
= 6.25% of the total disk bandwidth should remain unused

during normal operation. In practice (Figure 23), this does not hold because of
the M AX () operator applied for reserving access time of the backup replicas, in
combination with the rounding error from the relatively large size of the data
retrieved for a stream in each round.

In Figure 24, we measure the disk busy time using the Simulated Disk mode.
Under normal operation, the deterministic placement keeps the disks busy for
time 6% lower than the reserved for primary data access. When a disk fails,
the remaining disks are busy for time 14% less than the total reserved. This
is a significant improvement in comparison to the 25–30% difference between
reserved and measured time that we reported for mirroring reservation. We
should keep in mind that, with four disks, one third of the bandwidth of each
disk has to be reserved for the case that one disk fails. This fraction drops as
the disk array size increases (Figure 23).

Interestingly, when a disk fails, the difference between reserved and utilized
access time increases from 6–8% to 13–14%. At first glance this discrepancy
appears as reduced accuracy in access time estimation. In fact, the MAX() oper-
ator reserves enough access time to ensure uninterrupted system operation for

ACM Transactions on Storage, Vol. 1, No. 4, November 2005.

448 • S. V. Anastasiadis et al.

Fig. 23. With minimum reservation and deterministic replica placement, the disk time reserved for

backup accesses drops from about 24% to 14% of the round length as the number of disks increases

from 4 to 16. With random replica placement, the respective percentage drops from about 22% to

14%.

Fig. 24. During normal operation, the average disk access time measured in each round remains

within 6–8% below the time reserved for primary data accesses. When a disk fails, the measured

access time is 13–14% below the total reserved.

any failed disk, while the time that we report refers to a particular inaccessible
disk. Overall, we believe that some limited discrepancy between predicted and
measured access time leaves a reasonable cushion space for stable operation.
This makes the system more robust, and guards it against nondeterministic
factors hard to predict (e.g., system bus contention).

7.3 Improving Load Balancing

In Figure 25, we consider the case of declustering backup replicas across multi-
ple disks using a fixed block size Bd in order to let the failed-disk load be more
fairly shared among the surviving disks. With small block sizes, better load
balancing leads to some limited throughput improvement of less than 3% with
eight disks. With larger block sizes, load balancing gets successively worse and
throughput decreases, while at Bd = 1.2E6 bytes we have a threshold beyond

ACM Transactions on Storage, Vol. 1, No. 4, November 2005.

Exedra Streaming Server • 449

Fig. 25. There is a minor gain from applying backup replica declustering to deterministic place-

ment, while the best throughput achieved with random placement approaches that of deterministic.

Fig. 26. During normal operation, accessing the replica of the least loaded disk improves the

throughput by about 5–10% with respect to the nonreplicated case. The gain tends to increase as

the disk array size increases.

which there is no declustering.5 From additional measurements that we made,
we found that even the least-loaded disk is expected to remain more than 80%
utilized under deterministic replica placement with no declustering. We con-
clude that declustering is only worthwhile with small declustering block sizes,
and its overall benefit is limited in media streaming.

With multiple data replicas available, better load balancing can be achieved
by choosing the replica stored on the least-loaded disk during admission control.
Thus, we leverage data replication to improve the system throughput, rather
than tolerating disk failures. In Figure 26, we observe that the replica place-
ment policies support 5–10% more streams than the nonreplicated case. The rel-
ative difference between the two placement policies is insignificant because the
gain from the dynamic replica access exceeds the load balancing improvement

5 Bd = 1.2E6 is the maximum amount of data retrieved for a stream in one round and originates

from the encoding parameters.

ACM Transactions on Storage, Vol. 1, No. 4, November 2005.

450 • S. V. Anastasiadis et al.

from deterministic placement. Although choosing the least-loaded disk for each
disk access can remove hot spots from the disk array, it turns out that sequential
workloads utilize the disks equally, leaving a marginal additional performance
benefit to be achieved with the above policy.

8. RELATED WORK

Existing media server designs either only support constant bit-rate streams
[Tobagi et al. 1993; Berson et al. 1995; Buddhikot and Parulkar 1995; Ozden
et al. 1996; Bolosky et al. 1996], or make resource reservations assuming
a fixed bit rate for each stream [Martin et al. 1996; Shenoy et al. 1998], or
have only been demonstrated to work with constant bit-rate streams [Santos
et al. 2000]. Nevertheless, detailed resource reservation for variable bit-rate
streams in a media server can increase throughput by more than a factor of
two when compared to peak rate resource reservation [Makaroff et al. 1997].
The present article brings together and builds upon results that we presented
in several previous research papers [Anastasiadis et al. 2001a, 2001b, 2002].
For the first time, low-level resource management decisions and utilization
measurements are combined with high-level policies and experiments about
admission control, disk striping and data replication towards proposing a
complete scalable fault-tolerant continuous media server architecture.

8.1 Design and Implementation of Video Server Systems

One of the better known media servers is the Tiger fault-tolerant video file-
server by Bolosky et al. [1997] that only supports distributed storage of streams
with constant bit rates. The Fellini storage system by Martin et al. [1996] uses
a client-pull model for accessing constant or variable bit-rate stream data and
does resource reservation based on the worst case requirements of each stream.
In the continuous media file server proposed by Neufeld et al. [1996], detailed
resource reservation is done for each round, but the study focuses on storing
data of an entire stream on a single disk. The Symphony multimedia file system
by Shenoy et al. [1998] integrates data of different types on the same platform,
with admission control based on peak rate assumptions. Instead, we customize
our design to the storage of variable bit-rate stream data to maximize efficiency.

The RIO storage system by Muntz et al. [1998] is designed to handle sev-
eral different data types, including video streams. The authors base the ad-
mission control on statistical predictions, and randomly distribute the stream
blocks across different disks for load balancing. An early design of distributed
data striping is described by Cabrera and Long [1991]. Their data striping and
resource reservation policies do not take into account special requirements of
variable bit-rate streams, while striped data pass through an intermediate node
before being sent to the clients.

Keeping separate the metadata management of each disk relates in several
ways to the design of the backing store server for traditional data by Birrel
and Needham [1980]. The idea of grouping together buffer blocks can be traced
back to the FFS design [McKusick et al. 1984]. Although stride-based allocation
seems similar to extent-based [McVoy and Kleiman 1991] and other allocation

ACM Transactions on Storage, Vol. 1, No. 4, November 2005.

Exedra Streaming Server • 451

methods [Chang and Zakhor 1996; Shenoy et al. 1998], one basic difference is
that strides have fixed size. More importantly, when a stream is retrieved, only
the requested amount of data is fetched to memory and not the entire stride.

Stream multicasting techniques reduce the required disk and network band-
width by having the transmitted data shared across multiple clients [Eager
et al. 2001]. In that case, the streaming server broadcasts different stream seg-
ments according to a specific schedule and does not transmit an entire stream
separately for each playback request. Several testbed implementations demon-
strate the feasibility of multicast streaming, depending on the availability of
networking equipment with multicast support [Bradshaw et al. 2003]. Thus,
the Tabbycat server prototype proactively broadcasts popular video streams ac-
cording to a fixed schedule, instead of reactively responding to individual client
requests [Thirumalai et al. 2003]. The server architecture that we propose pro-
vides real-time guarantees in the retrieval of stored variable bit-rate data and
could be used for proactive multicasting after appropriate adjustment in the
transfer schedule.

8.2 Disk Striping Policies

Chang and Zakhor [1994], in their study for multilayer encoded streams, de-
scribe nonperiodic interleaving, where an entire stream is split into parts equal
to the number of disks and each part is stored on a separate disk. They also
describe periodic interleaving, where stream data for a round are stored on a
single disk that changes round-robin every round [Chang and Zakhor 1997]. In
a different study for variable bit-rate streams, Chang and Zakhor [1996] sug-
gest for future theoretical and experimental work the comparison of periodic
interleaving to what they call hybrid data placement, where fixed-size blocks
of stream data are placed round-robin across the disks.

Shenoy and Vin [1999] the fixed-size block striping of stream data, with
both analytical and simulation methods. They basically investigate a tradeoff
between disk access overhead and load imbalance between disks. They find
that as the number of disks increases, the load imbalance across the disks
becomes higher. They conclude that a smaller block size should be chosen in
order to compensate for the imbalance, but that leads to higher disk actuator
overhead. They claim that the number of supported streams increases only
sublinearly with the number of disks, and conclude that only disk arrays of
limited size can operate efficiently. Their paper leaves unclear how the load
of the system is determined, and what process is assumed for the arrival of
the client requests. Also, each individual block access is assumed to incur an
extra disk arm movement, which can lead to an overestimatation of the disk
overhead.

Reddy and Wijayaratne [1999] studied the fixed-block striping technique
called Constant Data Length (CDL), and the Block-constrained Constant Time
Length (BCTL) technique, where each round of stream data is stored on a single
disk in multiples of a fixed block size. They concluded that the throughput
improvement of BCTL (at large block sizes) is insignificant, which we believe is
due to the particular block constraint they assumed. In the present article, we

ACM Transactions on Storage, Vol. 1, No. 4, November 2005.

452 • S. V. Anastasiadis et al.

show that the best throughput of fixed-block striping technique can be improved
by up to 50% using alternative striping policies.

In a study of single disk systems and constant bit-rate streams, Group Peri-
odic Multi-Round Prefetching is described that retrieves multiple rounds worth
of data in a single round [Triantafillou and Harizopoulos 1999]. In this article,
we introduce Group-Grain Striping that is general enough to be applicable to
disk arrays and variable bit-rate streams. It differs from the Generalized Con-
stant Data Length described by Biersack et al. [1996] for single disk systems,
where the retrieval of a fixed amount of data for a variable rate stream is dis-
tributed across a fixed number of rounds.

8.3 Disk Array Reliability

Most of the previous work on disk array fault-tolerance has been done in the
context of traditional file server and transaction processing workloads [Bitton
and Gray 1988; Hsiao and DeWitt 1990; Merchant and Yu 1995]. The related
work from media server research is mostly focused on fault-tolerance tech-
niques when striping constant bit-rate streams [Tobagi et al. 1993; Berson et al.
1995]. Disks are grouped into clusters, and data blocks from separate disks in
each cluster are combined with a parity block to form parity groups. Ozden et al.
[1996] propose reading ahead the data blocks of an entire parity group prior
to their transmission to the client. When a data block cannot be accessed, it
can be reconstructed using a parity block that is read instead. Alternatively, an
entire parity group is retrieved each time a block cannot be accessed. Balanced
incomplete block designs are used for constructing parity groups that keep the
load of the disk array balanced [Ozden et al. 1996].

Gafsi and Biersack [2000] compare several performance measures of alter-
native data-mirroring and parity-based techniques for tolerating disk and node
failures in distributed video servers. When entire data blocks of one disk are
replicated on different disks, half of the total bandwidth of each disk is reserved
for handling the disk failure case. Tewari et al. [1996] study parity-based redun-
dancy techniques for tolerating disk and node failures in clustered servers. By
distributing the parity blocks of an object on a random permutation of certain
disks they can keep balanced the system load when a disk fails. Alternatively,
Flynn and Tetzlaff [1996] replicate data blocks across nonintersecting permuta-
tions of disk groups. Instead, Birk [1997] examines selectively accessing parity
blocks of video streams for better balancing the system load across multiple
disks.

For failure recovery of variable bit-rate streams, Shenoy and Vin [2000] on
the inherent redundancy in video streams rather than error-correcting codes.
Alternatively, they reconstruct missing data from surrounding available blocks,
at the cost of initial playback latency, or temporary disruption. Bolosky et al.
[1996] decluster the block replicas of one disk across d other disks, which
we didn’t find significantly advantageous. The two load-balancing techniques
that we examine have previously been found to improve performance when ap-
plied to traditional transaction processing workloads [Merchant and Yu 1995].
Mourad [1996] describes the doubly-striped disk mirroring technique that

ACM Transactions on Storage, Vol. 1, No. 4, November 2005.

Exedra Streaming Server • 453

distributes replica blocks of one disk round-robin across the rest of the disks.
The deterministic replica placement that we describe extends doubly-striped
mirroring to variable bit-rate streams. Santos et al. [2000] use constant bit-
rate streams to conclude that random replication can outperform disk striping
with no replication. Instead, with variable bit-rate streams we found an ad-
vantage of deterministic replication over random replication that diminishes
as the number of disks increases.

9. CONCLUSIONS

It is our thesis that building scalable and fault-tolerant media servers is fea-
sible. We focus on the support of variable bit-rate video streams, because they
reduce resource requirements when compared to constant bit-rate streams of
equivalent quality. In the Exedra media server architecture that we propose,
we minimize the probability of overloads and data losses within the server by
keeping detailed account for the buffer space and the disk or network transfer
delays corresponding to each accepted stream over time.

We examine and experiment with storage management issues using a proto-
type system that we built. Using the stride-based disk space allocation scheme,
we keep bounded the estimated head movement overhead, while avoiding frag-
mentation inefficiencies. We handle separately the metadata management of
each disk, which significantly simplifies the system structure, and enables sup-
port of heterogeneous disks. We allocate the memory buffers for each request
contiguously in virtual memory to achieve high disk transfer bandwidth, and
simplify system performance tuning. Our performance evaluation method is
applicable to media servers with different transfer capacities and streams with
various characteristics. In our experiments, we make sure that most of the sys-
tem capacity is reached, while keeping the playback initiation time and the
request rejection ratio acceptably low.

We formally specify the Fixed-Grain and Variable-Grain Striping policies,
and generalize the latter to Group-Grain Striping. In our experiments, we
demonstrate an almost linear increase in the supported number of concurrent
users, as the number of disks increases. We show Group-Grain Striping to con-
siderably outperform Fixed-Grain Striping when using streams of moderate
or high variability. Finally, we introduce the Minimum Reservation Scheme to
minimize the wasted throughput required for keeping accepted playbacks un-
interrupted during a disk failure. At moderate disk array sizes, the throughput
is less than 20% lower than what is achieved with no replication.

ACKNOWLEDGMENTS

We are thankful to the anonymous reviewers for the constructive comments
that helped us improve the clarity and presentation of the article.

REFERENCES

ALMEIDA, J. M., KRUEGER, J., EAGER, D. L., AND VERNON, M. K. 2001. Analysis of educational media

server workloads. In Proceedings of the International Workshop on Network and Operating System
Support for Digital Audio and Video (Port Jefferson, NY). 21–30.

ACM Transactions on Storage, Vol. 1, No. 4, November 2005.

454 • S. V. Anastasiadis et al.

ALVAREZ, G. A., BOROWSKY, E., GO, S., ROMER, T. H., BECKER-SZENDY, R., GOLDING, R., MERCHANT, A.,

SPASOJEVIC, M., VEITCH, A., AND WILKES, J. 2001. Minerva: An automated resource provisioning

tool for large-scale storage systems. ACM Trans. Comput. Syst. 19, 4, 483–518.

ANASTASIADIS, S. V. 2001. Scalable support for variable bit-rate streams in a continuous me-

dia server. Ph.D. thesis, Department of Computer Science, University of Toronto, Toronto, ON,

Canada.

ANASTASIADIS, S. V., SEVCIK, K. C., AND STUMM, M. 2001a. Disk striping scalability in the exedra me-

dia server. In Proceedings of the ACM/SPIE Multimedia Computing and Networking Conference
(San Jose, CA). ACM, New York, 175–189.

ANASTASIADIS, S. V., SEVCIK, K. C., AND STUMM, M. 2001b. Modular and efficient resource man-

agement in the exedra media server. In Proceedings of the USENIX Symposium on Internet
Technologies and Systems (San Francisco, CA). 25–36.

ANASTASIADIS, S. V., SEVCIK, K. C., AND STUMM, M. 2002. Maximizing throughput in replicated disk

striping of variable bit-rate streams. In Proceedings of the USENIX Annual Technical Conference
(Monterey, CA). 191–204.

ANASTASIADIS, S. V., SEVCIK, K. C., AND STUMM, M. 2005. Shared-buffer smoothing of variable bit-

rate streams. Perf. Eval. 59, 1 (Jan.), 47–72.

BERSON, S., GOLUBCHIK, L., AND MUNTZ, R. R. 1995. Fault tolerant design of multimedia servers.

In Proceedings of the ACM SIGMOD Conference (San Jose, CA), ACM, New York, 364–375.

BIERSACK, E., THIESSE, F., AND BERNHARDT, C. 1996. Constant data length retrieval for video servers

with variable bit rate streams. In Proceedings of the IEEE International Conference on Multime-
dia Computing and Systems (Hiroshima, Japan), IEEE Computer Society Press, Los Alamitos,

CA, 151–155.

BIRK, Y. 1997. Random raids with selective exploitation of redundancy for high performance

video servers. In Proceedings of the International Workshop on Network and Operating System
Support for Digital Audio and Video (Zushi, Japan). 13–23.

BIRREL, A. D. AND NEEDHAM, R. M. 1980. A universal file server. IEEE Trans. Softw. Eng. 6, 5

(Sept.), 450–453.

BITTON, D. AND GRAY, J. 1988. Disk shadowing. In Proceedings of the Very Large Data Base Con-
ference (Los Angeles, CA). 331–338.

BOLOSKY, W. J., BARRERA, J. S., DRAVES, R. P., FITZGERALD, R. P., GIBSON, G. A., JONES, M. B., LEVI,

S. P., MYHRVOLD, N. P., AND RASHID, R. F. 1996. The tiger video fileserver. In Proceedings of the
International Workshop on Network and Operating System Support for Digital Audio and Video
(Zushi, Japan). 97–104.

BOLOSKY, W. J., FITZGERALD, R. P., AND DOUCEUR, J. R. 1997. Distributed schedule management in

the tiger video fileserver. In Proceedings of the ACM Symposium on Operating Systems Principles
(Saint-Malo, France). 212–223.

BRADSHAW, M. K., WANG, B., SEN, S., GAO, L., KUROSE, J., SHENOY, P., AND TOWSLEY, D. 2003. Periodic

broadcast and patching services—implementation, measurement, and analysis in an internet

streaming video testbed. Multimed. Syst. 9, 1 (July), 78–93.

BUDDHIKOT, M. M. AND PARULKAR, G. M. 1995. Efficient data layout, scheduling and playout control

in mars. In Proceedings of the International Workshop on Network and Operating System Support
for Digital Audio and Video (Durham, NH). 318–329.

CABRERA, L.-F. AND LONG, D. D. E. 1991. Swift: Using distributed disk striping to provide high I/O

data rates. Comput. Syst. 4, 4, 405–436.

CHANG, E. AND ZAKHOR, A. 1994. Scalable video data placement on parallel disk arrays. In Pro-
ceedings of the IS&T/SPIE International Symposium on Electronic Imaging: Image and Video
Databases (San Jose, CA). 208–221.

CHANG, E. AND ZAKHOR, A. 1996. Cost analyses for VBR video servers. IEEE Multimed. 56–71.

CHANG, E. AND ZAKHOR, A. 1997. Disk-based storage for scalable video. IEEE Trans. Circ. Syst.
Video Tech. 5 (Oct.), 758–770.

CHEN, P. M., LEE, E. K., GIBSON, G. A., KATZ, R. H., AND PATTERSON, D. A. 1994. Raid: High-

performance, reliable secondary storage. ACM Comput. Surv. 26, 2 (June), 145–185.

CLARK, T. 1999. Designing Storage Area Networks. Addison-Wesley, Reading, MA.

EAGER, D. L., VERNON, M. K., AND ZAHORJAN, J. 2001. Minimizing bandwidth requirements for

on-demand data delivery. IEEE Trans. Knowl. Data Eng. 13, 5 (Sept-Oct), 742–757.

ACM Transactions on Storage, Vol. 1, No. 4, November 2005.

Exedra Streaming Server • 455

FLYNN, R. AND TETZLAFF, W. 1996. Disk striping and block replication algorithms for video file

servers. In Proceedings of the IEEE International Conference on Multimedia Computing and
Systems (Hiroshima, Japan), IEEE Computer Society Press, Los Alamitos, CA, 590–597.

GAFSI, J. AND BIERSACK, E. W. 2000. Modeling and performance comparison of reliability strategies

for distributed video servers. IEEE Trans. Parall. Distrib. Syst. 11, 4 (Apr.), 412–430.

GANGER, G. R., WORTHINGTON, B. L., AND PATT, Y. N. 1999. The disksim simulation environment:

Version 2.0 reference manual. Tech. Rep. CSE-TR-358-98, Department of Electrical Engineering

and Computer Science, University of Michigan, Ann Arbor, MI. Dec.

GAROFALAKIS, M. N., IOANNIDIS, Y. E., AND OZDEN, B. 1998. Resource scheduling for composite mul-

timedia objects. In Proceedings of the Very Large Data Bases Conference (New York, NY). 74–

85.

GRAY, J. AND SHENOY, P. 2000. Rules of thumb in data engineering. In Proceedings of the IEEE
International Conference on Data Engineering (San Diego, CA). IEEE Computer Society Press,

Los Alamitos, CA, 3–10.

GRINGERI, S., SHUAIB, K., EGOROV, R., LEWIS, A., KHASNABISH, B., AND BASCH, B. 1998. Traffic shap-

ing, bandwidth allocation, and quality assessment for MPEG video distribution over broadband

networks. IEEE Netw. 6 (Nov./Dec.), 94–107.

GROCHOWSKI, E. AND HALEM, R. D. 2003. Technological impact of magnetic hard disk drives on

storage systems. IBM Syst. J. 42, 2, 338–346.

HASKIN, R. L. AND SCHMUCK, F. B. 1996. The tiger shark file system. In Proceedings of the IEEE
COMPCON (Santa Clara, CA). IEEE Computer Society Press, Los Alamitos, CA, 226–231.

HSIAO, H.-I. AND DEWITT, D. J. 1990. Chained declustering: A new availability strategy for mul-

tiprocessor database machines. In Proceedings of the IEEE International Conference on Data
Engineering (Los Angeles, CA). IEEE Computer Society Press, Los Alamitos, CA, 456–465.

IBM. 1994. The IBM Dictionary of Computing. McGraw-Hill, New York, NY.

LAKSHMAN, T. V., ORTEGA, A., AND REIBMAN, A. R. 1998. VBR video: Tradeoffs and potentials. Proce.
IEEE 86, 5 (May), 952–973.

MAKAROFF, D., HUTCHINSON, N., AND NEUFELD, G. 1997. An evaluation of VBR disk admission algo-

rithms for continuous media file servers. In Proceedings of the ACM International Conference on
Multimedia (Seattle, WA). ACM, New York, 143–154.

MARTIN, C., NARAYANAN, P. S., OZDEN, B., RASTOGI, R., AND SILBERSCHATZ, A. 1996. The Fellini mul-

timedia storage system. In Multimedia Information Storage and Management, S.M.Chung, Ed.

Kluwer Academic Publishers, Boston, MA.

MCKUSICK, M. K., JOY, W. N., LEFFLER, S., AND FABRY, R. S. 1984. A fast file system for UNIX. ACM
Trans. Comput. Syst. 2, 3 (Aug.), 181–197.

MCVOY, L. AND KLEIMAN, S. R. 1991. Extent-like performance from a UNIX file system. In Pro-
ceedings of the USENIX Winter Technical Conference (Dallas, TX). 33–43.

MERCHANT, A. AND YU, P. S. 1995. Analytic modeling and comparisons of striping strategies for

replicated disk arrays. IEEE Trans. Comput. 44, 3 (Mar.).

MICROSOFT. 2003. Choosing an encoding method, Windows Media 9 series, devel-

opment network library. http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/wmform/htm/choosinganencodingmethod.asp.

MOURAD, A. 1996. Doubly-striped disk mirroring: Reliable storage for video servers. Multimed.
Tools Applic. 2, 273–297.

MUNTZ, R., SANTOS, J. R., AND BERSON, S. 1998. A parallel disk storage system for real-time mul-

timedia applications. Int. J. Intelligent Systems 13, 12 (Dec.), 1137–1174.

NAGLE, D., SERENYI, D., AND MATTHEWS, A. 2004. The panasas activescale storage cluster—

Delivering scalable high bandwidth storage. In Proceedings of the ACM/IEEE Conference on
Supercomputing (Pittsburgh, PA). ACM, New York, 53.

NEUFELD, G., MAKAROFF, D., AND HUTCHINSON, N. 1996. Design of a variable bit rate continuous

media file server for an atm network. In Proceedings of the IS&T/SPIE Multimedia Computing
and Networking Conference (San Jose, CA), 370–380.

NG, S. W. 1998. Advances in disk technology: Performance issues. Computer 31, 15 (May), 75–

81.

NIEUWEJAAR, N., KOTZ, D., PURAKAYASTHA, A., ELLIS, C. S., AND BEST, M. L. 1996. File-access charac-

teristics of parallel scientific workloads. IEEE Trans. Paral. Distrib. Syst. 7, 10 (Oct.), 1075–1089.

ACM Transactions on Storage, Vol. 1, No. 4, November 2005.

456 • S. V. Anastasiadis et al.

OZDEN, B., RASTOGI, R., AND SILBERSCHATZ, A. 1996. Disk striping in video server environments.

In Proceedings of the IEEE International Conference on Multimedia Computing and Systems
(Hiroshima, Japan). IEEE Computer Society Press, Los Alamitos, CA, 580–589.

REDDY, A. L. N. AND WIJAYARATNE, R. 1999. Techniques for improving the throughput of vbr

streams. In Proceedings of the IEEE ACM/SPIE Multimedia Computing and Networking Con-
ference (San Jose, CA). 216–227.

RUEMMLER, C. AND WILKES, J. 1994. An introduction to disk drive modeling. Computer 27, 3 (Mar.),

17–28.

SANTOS, J. R., MUNTZ, R. R., AND RIBEIRO-NETO, B. 2000. Comparing random data allocation and

data striping in multimedia servers. In Proceedings of the ACM SIGMETRICS (Santa Clara,

CA). ACM, New York, 44–55.

SEN, P., MAGLARIS, B., RIKLI, N., AND ANASTASSIOU, D. 1989. Models for packet switching of variable

bit-rate video sources. IEEE J. Selec. Areas Commun. 7, 5 (June), 865–869.

SEN, S., DEY, J., KUROSE, J., STANKOVIC, J., AND TOWSLEY, D. 1997. Streaming CBR transmission of

VBR stored video. In Proceedings of the SPIE Symposium on Voice, Video and Data Communi-
cations (Dallas, TX). 26–36.

SHENOY, P. J., GOYAL, P., RAO, S. S., AND VIN, H. M. 1998. Symphony: An integrated multimedia file

system. In Proceedings of the ACM/SPIE Multimedia Computing and Networking Conference
(San Jose, CA). ACM, New York, 124–138.

SHENOY, P. J. AND VIN, H. M. 1999. Efficient striping techniques for multimedia file servers. Perf.
Eval. 38, 3–4 (Oct.), 175–199.

SHENOY, P. J. AND VIN, H. M. 2000. Failure recovery algorithms for multimedia servers. Multimed.
Syst. J. 8, 1 (Jan.), 1–19.

TEWARI, R., DIAS, D. M., MUKHERJEE, R., AND VIN, H. M. 1996. High availability in clustered mul-

timedia servers. In Proceedings of the IEEE International Conference on Data Engineering (New

Orleans, LA). IEEE Computer Society Press, Los Alamitos, CA, 336–342.

THIRUMALAI, K., PARIS, J.-F., AND LONG, D. D. E. 2003. Tabbycat: an inexpensive scalable server

for video-on-demand. In Proceedings of the IEEE International Conference on Communications.

(Anchorage, AK). IEEE Computer Society Press, Los Alamitos, CA, 896–900.

TOBAGI, F. A., PANG, J., BAIRD, R., AND GANG, M. 1993. Streaming raid—A disk array management

system for video files. In ACM International Conference on Multimedia (Anaheim, CA). ACM,

New York, 393–400.

TRIANTAFILLOU, P. AND HARIZOPOULOS, S. 1999. Prefetching into smart-disk caches for high perfor-

mance media server. In Proceedings of the IEEE International Conference on Multimedia Com-
puting and Systems (Florence, Italy). IEEE Computer Society Press, Los Alamitos, CA, 800–805.

VERBIEST, W., PINNOO, L., AND VOETEN, B. 1988. The impact of the ATM concept on video coding.

IEEE J. Sel. Areas Commun. 6, 9 (Dec.), 1623–1632.

Received January 2005; revised June 2005; accepted July 2005

ACM Transactions on Storage, Vol. 1, No. 4, November 2005.

