
52 IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 1, JANUARY 1994 

Performance Evaluation of Hierarchical Ring-Based 
Shared Memory Multiprocessors 

Mark Holliday, Member, IEEE, and Michael Stumm, Member, IEEE 

Abstract- This paper investigates the performance of word- 
packet, slotted unidirectional ring-based hierarchical direct net- 
works in the context of large-scale shared memory multiproces- 
sors. Slotted unindirectional rings are attractive because their 
electrical characteristics and simple interfaces allow for fast 
cycle times and large bandwidths. For large-scale systems, it is 
necessary to use multiple rings for increased aggregate band- 
width. Hierarchies are attractive because the topology ensures 
unique paths between nodes, simple node interfaces and simple 
inter-ring connections. To ensure that a realistic region of the 
design space is examined, the architecture of the network used 
in the Hector prototype is adopted as the initial design point. A 
simulator of that architecture has been developed and validated 
with measurements from the prototype. The system and workload 
parameterization reflects conditions expected in the near future. 
The results of our study show the importance of system balance 
on performance. Large-scale systems inherently have large com- 
munication delays for distant accesses, so processor efficiency 
will be low, unless the processors can operate with multiple 
outstanding transactions using techniques such as prefetching, 
asynchronous writes and multiple hardware contexts. However 
with multiple outstanding transactions and only one memory 
bank per processing module, memory quickly saturates. Mem- 
ory saturation can be alleviated by having multiple memory 
banks per processing module, but this shifts the bottleneck to 
the ring subsystem. While the topology of the ring hierarchy 
affects performance, the ring subsystem will inherently limit 
the throughput of the system. Hence increasing the number of 
outstanding transactions per processor beyond a certain point 
only has a limiting effect on performance, since it causes some of 
the rings to become congested. An adaptive maximum number 
of outstanding transactions appears necessary to adjust for the 
appropriate tradeoff between concurrency and contention as 
the communication locality changes. We show the relationships 
between processor, ring and memory speeds, and their effects 
on performance. Using block transfers for prefetching seems 
unlikely to be advantageous in that the improvement in the 
cache hit ratio needed to compensate for the increased network 
utilization is substantial. 

Index Tems-Communication locality, hierarchical ring-based 
networks, hot spots, large scale parallel systems, memory banks, 
performance evaluation, prefetching, shared memory multipro- 
cessors, simulation. 

Manuscript received December 3, 1992; revised April 29, 1993. This work 
was supported in part by NSF grant CCR-9113170, in part by the Natural 
Sciences and Engineering Research Council of Canada, and in part by the 
Information Technology Research Center of Ontario. This work was done 
while M. Holliday was with Duke University and visiting the University of 
Toronto. 
M. Holliday is with the Department of Mathematics and Computer Science, 

Western Carolina University, Cullowhee, NC 28723. 
M. Stumm is with the Department of Electrical and Computer Engineering, 

University of Toronto, Toronto, Ontario M5S 1A4, Canada. 
IEEE Log Number 9213762. 

I. INTRODUCTION 

E STUDY the performance of large-scale, shared- W memory multiprocessors that use a word-packet, ring- 
based hierarchical network. This class of architectures is of 
interest for several reasons. First, by distributing the shared 
memory among the processor modules, associating caches with 
each processor module, and locating the processor modules at 
the nodes of the network (that is, using a direct network), 
communication locality is exploited to reduce network traffic 
and memory latency. 

Second, bit-parallel, unidirectional, slotted rings have been 
found to be effective at maximizing link bandwidth in direct 
networks [26] .  The advantages of unidirectional rings include: 
1) with their point-to-point connections, they can run at high 
clock speeds, 2 )  it is easy to make full use of their bandwidth, 
3) they provide a natural broadcast mechanism, and 4) they 
allow easy addition of extra nodes. 

Third, a single slotted ring does not scale well, so multiple 
rings need to be interconnected. A hierarchical ring intercon- 
nection is attractive since it allows simple node interfaces 
and inter-ring connections. A node need only interface with 
its two ring neighbors. All inter-ring connections (regardless 
of system size) can be implemented using a two-by-two 
crossbar switch. Moreover, a hierarchy provides a unique 
path between any two nodes, which can be useful in the 
implementation of some cache consistency protocols [ 131. A 
disadvantage of a hierarchy is the limited bandwidth near the 
root. However, this disadvantage is mitigated when there is 
sufficient communication locality. 

Our interest lies in the performance of this type of network 
within the context of a shared memory multiprocessor, not 
just in isolation. Consequently, in evaluating overall system 
performance, the effects of memory cycle time, memory 
utilization, and aspects of the processor design that effect the 
request rate need to be considered. Specific issues of interest 
are the effectiveness of techniques to hide memory latency 
such as multiple outstanding transactions and nonblocking 
reads, the use of memory banks, ring topology, communication 
locality, hot spots, and the relative speeds of the processors, 
memories, and rings. The transactions we consider are memory 
reads and writes of single words and block transfers. 

Our approach in evaluating these issues is to accurately 
simulate an existing system using a detailed, packet-level 
simulator that can be validated against the existing system. 
For this purpose, we use the Hector prototype that is a 
multiprocessor of this class of architecture. Since we are 
interested in the performance of systems with on the order of 

0018-9340/94$04.00 0 1994 IEEE 



HOLLIDAY AND STUMM: HIERARCHICAL RING-BASED SHARED MEMORY MULTIPROCESSORS 53 

1024 processors, and since it is not clear how to extrapolate 
results from small systems, we have found it necessary to 
use synthetic workloads. Simulating instruction execution (as 
with Tango [12]) for a large system would take prohibitively 
long, and using address traces from other systems is highly 
questionable. 

The results of our study show the importance of system 
balance on performance. Large-scale systems inherently have 
large communication delays for distant accesses, so processor 
efficiency will be low, unless the processors can operate with 
multiple outstanding transactions using techniques such as 
prefetching, asynchronous writes and multiple hardware con- 
texts. However with multiple outstanding transactions and only 
one memory bank per processing module, memory quickly 
saturates. Memory saturation can be alleviated by having 
multiple memory banks per processing module, but this shifts 
the bottleneck to the ring subsystem. While the topology of the 
ring hierarchy affects performance-we show that topologies 
with a similar branching factor at all levels, except, possibly, 
for slightly smaller rings at the root of the hierarchy tend 
to perform best-the ring subsystem will inherently limit the 
throughput of the system. Hence increasing the number of 
outstanding transactions per processor beyond a certain point 
only has a limiting effect on performance, since it causes 
some of the rings to become congested. An adaptive maxi- 
mum number of outstanding transactions appears necessary to 
adjust for the appropriate tradeoff between concurrency and 
contention as the communication locality changes. We show 
the relationships between processor, ring and memory speeds, 
and their effects on performance. 

In the next section we describe in more detail the systems 
we are examining, the simulation methodology, the system 
parameters, and the workload parameters. The experimental 
results are reported in Section 111, and we conclude in Section 
IV, together with a discussion of related work. 

11. SYSTEM AND WORKLOAD DESCRIPTION 

We have chosen the Hector architecture, developed at the 
University of Toronto, as the initial design point for our study 
because it was designed specifically for ring-base hierarchies 
and was implemented successfully. We choose to start from 
a design that has actually been implemented for two reasons. 
First, basing the study on an implementation helps to ensure 
that the performance of all system modules and their inter- 
actions are correctly captured; a more abstract system model 
might miss some of these. Second, by restricting the study 
to designs related to a carefully thought out implementation, 
we are focusing our attention on a realistic section of the 
design space and one we believe to be relatively promising 
with respect to scalability. We briefly describe Hector below; 
a more detailed presentation is given in [29], [27]. We then 
comment on the simulator, the system parameters, and the 
workload parameters. 

A.  The Hector Architecture 
Hector is a shared-memory multiprocessor consisting of 

a set of stations that are interconnected by a hierarchy of 

. 
0 001 . 

. . .  
Fig. 1. Structure of Hector with two levels of ring hierarchy. 

unidirectional rings. Each station contains a collection of 
processor modules containing a processor, a local cache, and 
part of the main memory. A station is connected to the lowest 
level (or ZocaC) ring. Hector provides a flat, global (physical) 
address space, and each station is assigned a unique contiguous 
portion of that address space, determined by its location. All 
processors can transparently access all memory locations in 
the system. Information transfer takes place by means of fixed- 
size packets transferred in a bit-parallel format along a unique 
path through the ring hierarchy. 

Two types of ring interfaces control packet transfers, both 
of which are simple to realize. Station controllers control 
on-station traffic as well as local ring traffic at the station. 
They gate incoming packets from the ring onto the station, 
outgoing packets from the station onto the ring, and continuing 
packets from the previous ring interface on to the next ring 
interface. Packets on the ring have priority over packets from 
the station to minimize the time packets are buffered at the 
station controllers. Inter-ring interfaces control traffic between 
two rings. Logically, an inter-ring interface corresponds to a 
2 x 2 crossbar switch with FIFO buffers. FIFO’s are needed in 
order to be able to store packets if collisions occur, which can 
happen when, in a given cycle, input packets from both rings 
are to be routed to the same output. In order to minimize the 
remaining delay of packets that are descending the hierarchy, 
packets from the higher-level ring have priority over packets 
from the lower-level ring. 

Fig. 1 depicts a Hector configuration with two levels in the 
ring hierarchy, where a global ring connects several local rings 
that in turn connect multiple stations. In this example, which 
corresponds to a prototype, a bus connects several processing 
modules to the local ring interface. 

All communication in Hector occurs synchronously. During 
a given clock cycle, a packet can be transferred between two 
adjacent ring interfaces, from a station controller onto the 
station, or from the station onto the ring. A request for access 
to a non-local memory location initiates a packet transfer 
across the network. Following the terminology of the Scalable 
Coherent Interface protocol [22], each transaction involves a 
request and response subtransaction. A subtransaction typically 
entails the transmission of a single packet, but in the event of 
collisions and timeouts, several packets may be used. 

For example, to access a remote memory location, a request 
packet containing the address of the target memory is formed 



54 IEEE TRANSACTIONS ON COMPUTERS. VOL. 43, NO. I ,  JANUARY 1994 

in a processing module and transferred to the ring via the 
local station controller. The packet then travels around the 
ring visiting one segment in each ring cycle. When the 
packet reaches the first inter-ring interface on its path, it is 
either switched onto a higher level ring, or passed on to the 
next station controller on the same ring, depending on the 
destination address. The packet first travels up the hierarchy to 
the level needed to reach the target station, and then descends 
the hierarchy to the target station where it is removed from 
the local ring. 

The target station sends a response packet back to the 
requesting PM, along a similar path. In the case of a read 
transaction, the response packet contains the requested data. 
In the case of a write transaction, the request packet contains 
data in addition to the addressing information, and the response 
packet contains an acknowledgment. For writes, the response 
packet is sent back to the requesting station as soon as the 
write is queued at the target memory, so the latency of the 
actual memory operation is hidden. 

It is possible that a request packet cannot be successfully 
delivered to the target memory. This can happen, for example, 
when there is congestion at the target memory and it cannot 
accept a further request when the packet arrives. In this 
case, the target station generates a negative acknowledgement 
packet, which is sent back to the requesting station so that it 
can retry the operation at a later time by retransmitting the 
request packet. 

B. Simulator 

We constructed a simulator that reflects the behavior of 
the packets on a cycle-by-cycle basis. The simulator was 
written using the smpl [ 191 simulation library. The batch 
means method of output analysis was used with the first batch 
discarded to account for initialization bias. In the batch means 
method a single long run is divided into subruns called batches. 
A separate sample mean is computed for each batch. These 
batch means are then used to compute the grand mean and 
confidence interval [19]. The batch termination criterion was 
that each processor had to complete at least some minimum 
number of requests. Early experiments showed that using a 
total number of requests completed over the entire system as 
the batch termination criterion can substantially underestimate 
mean response times since requests with long response times 
are underrepresented. 

Using several workloads we validated the simulator from 
measurements collected on the Hector prototype. The base 
simulator was then extended to model features not present 
in the prototype, such as an arbitrary number of ring levels 
and ring cycle times different than the processor cycle time. 

C. System Parameters 

A hierarchical ring-based system can be characterized by 
the following parameters: system size (in processors), the 
relative processor, memory, and ring cycle times, the maxi- 
mum number and type of transactions that a processor may 
have outstanding, whether a processors blocks until a read 

completes, ring topology, and the number of banks in each 
memory module. 

Transaction latency refers to the entire time from when the 
request packet of a transaction is issued by a processor until 
the transaction completes (that is, until the response packet 
returns to the processor'). There is a base, or contention-free, 
fraction of the transaction latency which is the number of 
cycles required to traverse the network twice and, for reads, the 
time to actually execute the memory operation in the absence 
of contention. The remaining fraction of the transaction latency 
is the number of additional cycles due to contention. 

Exposed transaction latency is the fraction of the transaction 
latency during which the processor is blocked waiting for the 
transaction to complete. Thus, a memory cycle time of 30 pro- 
cessor cycles may imply a transaction latency of 100 processor 
cycles in a large system when the target memory is far from 
the source processor. Processor efficiency is the fraction of 
time a processor spends doing useful work averaged over all 
processors. Useful work includes the delay for references that 
are cache hits (we assume each processor has a local cache), 
but does not include the additional delay for cache misses. 

If the processor blocks until each reach or write completes, 
then the large transaction latency relative to processor cycle 
time implies a low processor efficiency. A number of tech- 
niques have been proposed to increase processor utilization 
over this base case, including relaxed memory consistency 
models, prefetching, and multiple hardware contexts [16]. 
Instead of assuming one technique versus another, we char- 
acterize their effects by varying the maximum number of 
outstanding transactions a processor may have before blocking 
and by considering whether or not reads block. Thus, a proces- 
sor does not block until either the number of its outstanding 
transactions have exceeded the maximum or, if reads block, a 
read cache miss occurs. The goal of both multiple outstanding 
transactions and nonblocking reads is to hide exposed trans- 
action latency. One of the most effective methods of allowing 
nonblocking reads and multiple outstanding transactions is to 
use multiple hardware contexts. When we consider the case of 
multiple outstanding transactions, we intentionally do not take 
into account any cycles lost due to hardware context switches. 
This assumption is based on recent work that suggests such 
context switches can be scheduled so as to avoid any lost 
cycles [7 ] .  

To prevent network saturation we consider the implications 
of alternative ring topologies. The system topology can be 
specified by the branching factor at each level of the hierarchy 
starting at the number of stations on each local (or level 1) 
ring and with the last branching factor being the number 
of ring directly attached to the root ring. Thus, a topology 
L = (2. 3.  4) refers to a topology with 2 stations per level 
1 ring, 3 level 1 rings per level 2 ring, and 4 level 2 rings 
connected by the root ring. Throughout the paper we assume 
one processor per station. 

To prevent memory saturation we consider the use of 
multiple memory banks per memory module. We assume that 

' For writes the response packet returns upon queueing of the request at the 
target memory so it is possible for the target memory to be still processing a 
write request after the transaction completes in the above sense. 



HOLLIDAY AND STUMM: HIERARCHICAL RING-BASED SHARED MEMORY MULTIPROCESSORS 55 

a transaction for a particular target memory is equally likely 
to access any of the banks at that memory. 

D. Workload Parameters 

A detailed system simulator is needed in order to ensure 
that the important features of the architecture being studied 
are captured. Simulating a large system is also important 
since extrapolating from the results of a small system is 
questionable. The key to satisfying both of these concerns 
is to use a synthetic workload model. Simulating instruction 
execution for a large system (as with Tango) would take 
prohibitively long, and using address traces from other, smaller 
systems is highly questionable. In contrast, with a synthetic 
workload model, the number of transactions that need to be 
issued by each processor in order to obtain system performance 
measures is dramatically smaller than the number generated 
when simulating the execution of actual application programs. 
Moreover, the use of a synthetic workload sometimes allows 
clearer understanding of the significance of different workload 
parameters. Of course, the concern that has to be addressed is 
the realism of the workload model. 

Our approach is to characterize the workload by the mean 
time between cache misses given a non-blocked processor 
(or equivalently by the request rate which is the inverse 
of the mean time), the probability that the cache miss is 
a read, and the communication locality. For the read cache 
miss probability we assume 0.7 throughout the study which is 
consistent with empirical statistics [ 151. 

For the request rate we consider a rate of 0.01 to 0.05 cache 
misses per processor cycle (equivalently, 20 to 100 cycles 
between cache misses). This range choice is supported by a 
recent study of a number of application programs that observed 
a mean number of processor cycles of between 6 and 137 
for shared data reads [7]. We assume that code and private 
data references (such as to a stack) always hit in the local 
cache. Factoring in shared data writes and shared data cache 
hits, yields a more realistic mean number of processor cycles 
between cache misses of at least 20. 

We chose for our workload characterization to avoid ac- 
counting (at least explicitly) for cache coherence traffic. Cache 
coherence traffic could be included within a low-level work- 
load model such as ours by providing a translation from a 
high-level workload model to a low-level workload model. 
We did a preliminary study of the effect of such a translation 
for the case of software cache coherence using the approach 
developed by Adve, et al .  [l]. The resulting ranges for the low- 
level workload parameters were consistent with the ranges we 
consider2. 

Most of the results presented in this paper assume one 
word transfers. Transfers larger than a word can arise from 
several sources: page migrations and replications, cache line 
transfers, and prefetching. With regard to page migrations and 
replications, parameter values greatly effect the results. Since 
there are no clear value ranges to use, we chose to ignore them. 

’The low-level software cache coherence model includes traffic due to posts 
and invalidates of cache lines. Assuming single word cache lines, it is possible 
to include this traffic within the read and write parameters. 

For cache line transfers and prefetching of adjacent words on 
a cache miss we consider the use of page-mode DRAM access 
to transfer blocks of words. Thus, for example, upon a memory 
access, the first word is provided by the memory after, say, 30 
processor cycles, and successive words might be provided at 
intervals of between 5 to 10 processor cycles. 

E. Communication Locality and Hot Spots 

In a direct network, communication locality and hot spots 
can greatly affect performance. Our clusters of locality model 
attempts to model communication locality. Intuitively, this 
model, for each processor, logically organizes all processors 
into clusters around that processor independent of the network 
topology. The first cluster typically only contains the processor 
itself; the second cluster contains “near-by” processors; addi- 
tional clusters contain processors further away. In our case, we 
view the processors as the leaves of the tree defined by the ring 
hierarchy and number them left to right. The clusters are then 
defined in terms of distance between two processors, which 
is the absolute difference (modulo the size of the system) 
between the two processor numbers. For example, in the two 
cluster case, cluster 0 may be the source processor module 
itself and cluster 1 all of the remaining processor modules. In 
the three cluster case, cluster 0 may be the source processor 
module itself, cluster 1 the source processor module’s set of 
“closest neighbors”, and cluster 2 the remaining processors 
modules. Defining clusters in this manner is reasonable since 
it is likely that applications will be programmed in a manner 
independent of the particular branching factors present in a 
certain ring topology. 

The probability that the target memory of a transaction 
is in a processor module of a particular cluster depends on 
the cluster. Given that the target memory is in a particular 
cluster, the probability of a processor module within that 
cluster containing the target memory is uniformly distributed. 

The communication locality model specifies the number of 
clusters, the number in each cluster, and the probability of 
a transaction’s target being in each cluster. Thus, if there 
are 1024 processors in the system, then S=(l, 4,1019) and 
P=(0.9,0.8,1.0) means that there are three clusters, cluster 1 
has size 1 and probability 0.9 of being the target, cluster 2 has 
the 4 closest processing modules and has probability 0.8 of 
being the target given that the target is not in cluster 0, and 
cluster 3 has the remaining 1019 processing modules and has 
probability 1.0 of containing the target given that the target is 
not in cluster 1 or cluster 2. 

The clusters of locality model has been adopted because 
similar but simpler models have been shown to be effective 
in studies of direct networks [25], [2], [3] and because the 
model exhibits memory access patterns similar to scientific 
applications that have been examined on Hector. This is 
especially true for applications that have been optimized for 
NUMA systems and migrate and replicate data objects to 
improve locality (including when the migration and replication 
is done by the operating system transparent to the application). 
Further study of the extent to which real shared memory 
programs conform to this model (allowing for application 

’ 



56 IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 1, JANUARY 1994 

TABLE I 
SYSTEM AND WORKLOAD PARAMETERS USED IN THE SIMULATIONS AND THEIR VALUE RANGES 

Parameter Value Description 

1024 
1-8 

10 - 
(1024) to ( 2 : . . . 2 )  
RlMlO to R4M60 
1-8 
0.014.05 
0.7 
(0.95,0.8, 1.0) to (0.9, 1.0) 
(1,4,1019) to (1,1023) 
0.0-0.025 

Number of processors (memories) in the system 
Number of memory banks . 
Topology; branching factor at each of  the I I  level 

Ratio of ring and memory cycles to processor cycles 
Maximum number of outstanding transactions 
Request rate 
Probability that a cache miss is a read 
Cluster probability for each of the I I I  clusters 
Cluster s u e  for each of the 1 1 1  clusters 
Favorite memory probability 

restructuring and hardware and software dynamic page (or 
cache block) placement) is of interest, but outside of the scope 
of this paper. 

A major type of non-uniform traffic is a hot spot; that 
is, a single mimory that has an unusually high probability 
of being accessed by all or many of the processors. Early 
papers [23], [30] identified hot spot memory modules as a 
major cause of performance degradation in shared-memory 
interconnection networks. The degradation is exacerbated by 
“tree saturation” [23] which even obstructs memory traffic to 
non-hot spots locations. Significant progress has been made 
in reducing hot spot traffic, especially hot spot traffic due to 
synchronization. Techniques include separate synchronization 
networks (possibly with combining) [ 181 and hot-spot-free 
software algorithms that use distributed data structures [20]. 
Furthermore, flow control mechanisms may be useful, espe- 
cially when hot senders (processors with usually high request 
rates or a high favoritism to the hot spot) are a factor. 
Evaluating alternative techniques for reducing hot spot traffic 
is outside the scope of this paper. Instead, we investigate the 
significance of the effects due to hot spots on performance for 
this type of architecture. 

111. RESULTS 

In this section we present the results of our experiments. The 
primary performance metric used is processor efficiency since 
it reflects overall system performance. To further understand 
the differences identified by processor efficiency, a number of 
secondary metrics are examined. These include mean transac- 
tion latency and mean remote transaction latency (for accesses 
directed to non-local memory). Mean local transaction latency 
is relatively constant, because network traversal and contention 
is avoided and because local transactions have priority over 
remote transactions. We also consider memory and ring utiliza- 
tions. For ring utilization we report only the average utilization 
of the rings at the level with the largest average utilization 
since that ring level has the dominant performance effect. 

The ranges of the input parameter values are shown in Table 
I. For all systems under consideration, the system size is 1024 
processors, the probability that a transaction is a read is 0.7, 
and the size of cluster 1 is 1 (SI = 1). The system parameters 
studied are the system topology, the maximum number of 

_ _ - -  

outstanding transactions per processor, the use of blocking 
versus nonblocking reads, the number of memory banks per 
memory module, and the relative speed of the processor, ring, 
and memory. We refer to the latter as the cycle ratio and 
specify it by R X M Y  which means that each ring cycle is X 
times as slow as a processor cycle and the memory requires Y 
processor cycles to service one memory access. The workload 
parameters studied are the request rate, the communication 
locality, and the presence of hot spots. All simulation results 
reported in the section have confidence interval halfwidths of 
1% or less at a 90% confidence level, except near saturation 
where the confidence interval halfwidths sometimes increase 
to a few percent. 

Section IV-A describes the base system and its performance 
under different request rates and degrees of communication 
locality. In the following sections we examine the issues 
mentioned in Section I .  In Section IV-B we consider the effects 
of increasing the maximum number of outstanding transactions 
and whether reads block. Section IV-C presents results on 
the use of multiple memory banks. The effect of variations 
in ring topology is considered in Section IV-D. Section IV- 
E considers hot spot traffic. Finally, Section IV-F considers 
changes in the relative speeds of the processors, memories, 
and rings. 

A .  Base System Performance 

For the base system, some variable parameters are fixed 
as follows: a system topology of L = (16, 4, 4, 2, a),  one 
memory bank per memory module ( B  = l), at most one 
outstanding transaction per processor (T = 1) (so that all 
transactions, including reads, block), and a cycle ratio of 
R2M30 (that is, the ring has a cycle time twice as long as that 
of the processor and memory requires 30 processor cycles per 
access). 

The cycle ratio chosen is based on near-term expected 
timings. In particular, high-performance processors are now 
obtaining cycles times on the order of 5ns (such as in the 
DEC Alpha [l l]) .  Although the IEEE SCI standard specifies 
a ring cycle time of 2x3, we assume a ring cycle time of 
10ns. We do so because we define ring cycle time as the time 
required for a packet to move from the input of one station to 
the input of the next station. Such a transfer need not occur in 



HOLLIDAY AND STUMM: HIERARCHICAL RING-BASED SHARED MEMORY MULTIPROCESSORS 

90 

a single ring cycle. For example, a recent performance study 
of the SCI ring [26] assumes (with no contention) four ring 
cycles for a packet to traverse a station and the link to the 
next station. The assumption that a memory cycle takes 30 
processor cycles follows values used in recent studies [ 101. 

Fig. 2(a) shows how efficiency varies with the request rate, 
A, for the base system as the cluster probabilities are varied. 
As the request rate increases, efficiency drops sharply to less 
than 40% at a request rate of 0.05 even for PI = 0.95 (where 
95% of all accesses go to local memory). When there is a 
high degree of locality (that is, a cluster 1 probability of 90% 
or higher), memory utilization and maximum ring utilization 
are far from saturation. Hence, the non-contention component 
of the transaction latency is the primary cause of the decline 
in efficiency. In other words, efficiency is low because all of 
the transaction latency is exposed. For cluster 1 probabilities 
less than 90010, ring contention (for the level 4 rings, one level 
below the root ring) becomes substantial enough to effect the 
latency and thus further decrease efficiency. 

Next, we considered the effect of cluster size for the base 
system for several different cluster 1 probabilities, PI = 
0.95, 0.9, 0.8. Fig. 2(b) plots efficiency as a function of the 
request rate for the case of PI = 0.9. Increasing the cluster 
2 size from 4 to 16 or 32 (thus, spreading non-local accesses 
over a wider range) has minimal effect on efficiency for any 
of the cluster 1 probabilities considered. One reason for this 
invariance in the base case is that the level 1 ring contains 
16 processors; a transaction to a target memory on the same 
level 1 ring as the source processor imposes the same load 
regardless of the logical distance between the target memory's 
processor and the source processor. Consequently, the primary 
cause of increased load by increasing the cluster 2 size from 
4 to 16 is due to increased traffic to adjacent level 1 rings. 

On the other hand, increasing the cluster 2 size to 1023 
(that is, causing all non-local transactions to be uniformly dis- 
tributed across the machine), has a major effect on efficiency 
due to ring saturation (primarily the level 3 rings). Even for 
high locality (that is, PI = 0.95), a request rate of 0.03 causes 
a maximum ring utilization of over 90%. For PI = 0.80, the 
maximum ring utilization is 100% even at a request rate of 
0.01. 

We conclude that for the base system, processor efficiency 
can be quite low at high request rates. At cluster 1 probabilities 
of 90% or above and cluster 2 sizes on the order of 4 to 32 
processors, the low efficiency is due to the long contention- 
free latency being exposed, which stems from the limit of one 
outstanding transaction per processor. At cluster 1 probabilities 
below 90% or cluster 2 size on the order of the system size for 
any considered cluster 1 probability, ring contention becomes 
a factor in increasing transaction latency. We examine below 
techniques to address both causes of low efficiency. 

Pi = 0.95 + - 
A = 0.9 t 

- 

B. Maximum Outstanding Transactions and 
Nonblocking Reads 

We next examine two techniques for increasing efficiency in 
the presence of long exposed latency: increasing the maximum 
number of outstanding transactions and allowing non-blocking 

90 

80 

'?6 70- 
E 
f 60 
f 
i 50 

4 0 -  

s2=4+ 
5'2 = 16 t 

- S2 = 32 8- 
S2 = 1023 .x. - 

- 

- 
- 

80 

% 70 
E 
f 60 

i 50 

b 40 
n 
C 30 
Y 

20 

lo t 1 
0 '  I I I I I 

0 0.01 0.02 0.03 0.04 0.05 
Request Rate 

(a) 

100 I I I 1 I 

10 
2o I 

x. . 
'X.. . . . 

- 

57 

0 '  I I I I 

0 0.01 0.02 0.03 0.04 0.05 
Request Rate 

(b) 

Fig. 2. Base system experiments with T = 1,  B = 1, F = 0.0, R2.4130, 
L = (16. 4. 4. 2 .  2 ) .  In Fig. 2(a) I' = (z. 0.8. l . O ) ,  S = (1. 4. 1019). 
In Fig. 2(b) I' = (0.9. 0.8. l . O ) ,  S = (1. .r. 1023 - z). (a) Vary cluster 
probability. (b) Vary cluster 2 size. 

reads. Our assumptions are the same as the base system 
with cluster sizes S = (1, 4, 1019) and cluster probabilities 
P = (0.9.5, 0.8, 1.0). The effects of allowing the maximum 
number of outstanding transactions, T ,  to be 1, 2, 4, 6, and 8 
with and without reads blocking are described below. 

The first experiment (not shown) varied the request rate 
for different T values assuming blocking reads. This might 
reflect, for example, a single context that is using a relaxed 
memory consistency model. Increasing T from 1 to 2 causes a 
small increase in efficiency (1% absolute change) and further 
increases in T have no significant effect. Given that 70% of 
all transactions are reads, it is not surprising that increasing T 
has limited effect. The remainder of this study, therefore, only 
considers nonblocking reads. 

Fig. 3(a) plots efficiency versus the request rate for different 
T values assuming non-blocking reads. Increasing T is effec- 
tive at substantially improving efficiency (to approximately 



58 

90 

L 8 0 -  

e 
t 70 

60 

50 
Y 

y 40 
(C 

3 0 -  

s, 20 

IEEE TRANSACTIONS ON COMPUTERS, VOL. 43. NO. I .  JANUARY 1994 

- 

- 
- 
- 

- 

- 

100 

90 

80 

?'6 70 
E 
f 60 
f 
1 50 

40 
n 
C 30 Y 

20 

10 

T = l +  
T = 2  t 

0 '  I I I I 1 
0 0.01 0.02 0.03 0.04 0.05 

Request Rate 

(4 
I I I .  I . .  100 1 

lo t 1 
0 '  I 1 I I I 
0 0.01 0.02 0.03 0.04 0.05 

Request Rate 
(b) 

100 

90 

80 

70 % 
60 

50 U 
t 40 

' 30 

20 

10 

0 

1 
0 0.01 0.02 0.03 0.04 0.05 

Request Rate 
(a) 

100 

90 

80 % 
M 70 
a 

60 

A 50 
g 

5 

u 40 

' 20 

30 

10 

0 
0 0.01 0.02 0.03 0.04 0.05 

Request Rate 
(b) 

Fig. 3. Varying T .  Non-blocking reads. P = (0.95. 0.8. l . O ) ,  Fig. 4. Varying T .  Nonblocking reads. P = (0.93. 0.8. l . O ) ,  
S=(1,4,1019), F=O.O, B = l ,  L=(16,4,4,2,2).  S=(1,4,1019), F=O.O, B = l ,  L=(16,4,4,2,2).  

75% for T = 4 and a request rate of 0.05). However, this 
increases traffic and hence contention, which in turn, increases 
latency, thus reducing the effectiveness of increasing T to 
reduce exposed latency. For the cases of T = 6 and T = 8, 
the simulations did not complete under high request rates 
because of an excessive number of packets in the system 
arising from severe contention. Fig. 3(b) shows how mean 
transaction latency (in processor cycles) increases for different 
T values as the request rate increases. 

Fig. 4 shows that excessive memory utilization is the 
primary cause of the contention. The increase in ring utiliza- 
tions at higher request rates is an indirect result of memory 
contention. Increased packet traffic arises from an increase in 
packet retries, which in turn is due to requests being turned 
back at saturated memories. Were it not for the retries, a 
doubling of the request rate from X = 0.02 to X = 0.04, 
should only increase ring traffic by 10%. We conclude that 
increasing the maximum number of outstanding transactions, 
given non-blocking reads, is effective at increasing efficiency 

for the communication locality considered, but that memory 
saturation limits further efficiency improvements. 

C. Multiple Memory Banks 

We next consider dividing each memory module into mul- 
tiple memory banks as a means of decreasing memory uti- 
lization. The system considered initially is the same as that 
considered in the previous subsection, P = (0.95, 0.8, 1.0), 
S = (1, 4, 1019), L = (16, 4, 3,  2 ,  a), but varying the 
number of memory banks from B = 1 to L3 = 8. The first 
series of experiments varies the number of memory banks for 
the case of T = 2, T = 4, and T = 6. We then fixed the 
number of outstanding transactions, T = 4, and varied the 
communication locality by considering PI = 0.9 and PI = 0.8 
for the S = (1, 4, 1019) case, and by considering PI = 0.95 
and PI = 0.9 for the S = (1, 1023) case. 

For the case of T = 2 (not shown), going from 1 to 2 
memory banks has some effect on processor efficiency (the 



HOLLIDAY AND STUMM: HIERARCHICAL RING-BASED SHARED MEMORY MULTIPROCESSORS 

100 
90 
80 
70 
60 
50 
40 
30 
20 
10 

efficiency at request rate 0.05 increases from 56% to 64%). 
Adding more memory banks has little effect on efficiency, 
since the exposed part of the contention-free transaction la- 
tency is the limiting factor on efficiency, not memory con- 
tention. 

With T = 4, on the other hand, there is enough concurrency 
so that the contention-free transaction latency is hidden and 
memory contention is the limiting factor for the ranges con- 
sidered. This is shown in Fig. 5(a), which displays efficiency 
versus request rate for different numbers of memory banks. 
Efficiency is now increased, at a request rate of 0.05 to over 
90% for 4 memory banks, ( B  = 4). The cause for this 
improvement is the reduction in memory utilization as shown 
in Fig. 5(b). 

The results for T = 6 are similar to those for T = 4 except 
that the efficiency is somewhat higher (over 95% at request rate 
0.05 for B = 4) and memory and maximum ring utilizations 
change by a few percent. 

Fig. 5(c) plots the maximum ring utilization as a function 
of the request rate. The ring utilization is still low enough 
so that it has little effect on transaction latency, but at the 
higher request rates it is approaching levels where it will have 
effects. With only 1 or 2 memory banks, ring utilization is 
constrained at higher request rates by memory contention. 
A higher number of memory banks increases the processor 
efficiency by removing the memory bottleneck, which, in turn, 
increases the offered load to the network and thus the ring 
utilization. However, the increase in ring utilization due to 
packet retries as seen in Fig. 4(b) is no longer present. 

The increase in ring utilization shown in Fig. 5(c) identifies 
a fundamental tradeoff between maintaining a small value 
for T and improving processor efficiency. Increasing T has 
the potential for increasing contention by increasing memory 
and ring utilization. Consequently, increasing T in order to 
reduce the exposed latency can, after a point, provide minimal 
improvement. Thus, the tradeoff is to choose a T value that 
is as small as possible while still achieving almost all of 
the possible improvement in processor efficiency. The above 
experiments indicate that for P = (0.95, 0.8, 1.0) and S = 
(1, 4, 1019), a value of T = 4 would be a good balance in 
this tradeoff. 

To further investigate this tradeoff point, its sensitivity 
to the degree of communication locality was examined. the 
results (not shown) indicate that the tradeoff point is highly 
sensitive. For PI = 0.9(Pl = 0.8) with S = (1, 4, 1019), 
request rates of 0.04 (0.02) or higher cause almost 100% 
maximum ring utilization. For PI = 0.95 (PI = 0.9) in the 
S = (1, 1023) case, request rates of 0.02 (0.01) or higher 
cause 100% maximum ring utilization. In all cases, the level 
4 rings always have the highest utilization. Clearly, for these 
degrees of communication locality, a lower T is needed. 

Given the sensitivity of T relative to communication lo- 
cality, an adaptive T level algorithm is clearly desirable. 
One decentralized approach is for each processor to decrease 
T when it observes latency of its transactions higher than 
expected, an indication of high network or memory con- 
tention. Likewise, each processor can increase its T level 
when the actual latency of its transactions is as low as the 

I I I I I  

- 
- 
- 

- 
- 
- 
- 
- 
- 

0 -  

% 
M 
e 
m 
U 
t 
i 
1 

90 
% 80 M 
a 70 
R 60 
A 50 

40 
30 

X 

i 20 
10 

:I 

- 

59 

0- 
0 0.01 0.02 0.03 0.04 0.05 

Request Rate 
(c)  

Fig. 5 .  Varying B. P = (0.95. 0.8. l.O), S = (1. 4. 1019), F = 0.0, 
T=4, L=(16,4,4,2,2).- 

contention-free latency would be. An alternative approach, 
using a centralized scheme that allows the T level to be 
adjusted system-wide, avoids potential fairness problems with 
the decentralized approach while introducing coordination 
overhead. 



60 IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 1, JANUARY 1994 

v- 
C I  

I 

1 2  3 4 5 6 7 8 9 10 
Number of Levels 

Fig. 6. Contention-free maximum transaction latency in ring cycles for the 
optimal topology at each number of ring levels. mem=30. 

The above discussion shows that memory saturation can be 
a major limiting factor to increased processor efficiency and 
that the use of multiple memory banks is an effective technique 
to remove this bottleneck. Consequendy, all of the remaining 
experiments assume four memory banks. The increase in the 
offered load due to multiple outstanding transactions and 
the removal of the memory saturation causes ring utilization 
to increase and to saturate for some reasonable traffic pat- 
terns. The appropriate number of outstanding transactions is a 
tradeoff between concurrency and contention, which is highly 
sensitive to the degree of communication locality. An adaptive 
maximum number of outstanding transactions may be useful 
for adjusting to this tradeoff as the communication locality 
changes. 

D. Ring Topology 

Ring utilization is also affected by the topology of the ring 
hierarchy. To evaluate the significance of the ring topology, 
we first analyzed the maximum transaction latency in a ring 
hierarchy when each access goes to the most distant memory; 
that is, when the request and response packets must traverse 
all of the levels in going from the source to the target memory 
and back. If both request and response subtransactions are 
considered together, then each traversed ring is completely 
traversed exactly once. A complete traversal of a ring with a 
branching factor Li takes Li + 1 ring cycles if the ring is not 
the root ring (one cycle for each Li child inter-ring interface or 
station plus one for the parent inter-ring interface). A complete 
traversal of the root ring with a branching factor Li takes Li 
ring cycles. Thus, the contention-free maximum transaction 
latency, M L ,  for a configuration L = (L1, L2, . . .  , L,) is 
M L ( L )  = 2(Li + 1) + L ,  + mem, where mem is the 
memory cycle time in ring cycles. 

We computed M L  for a number of different topologies. 
For all the topologies that have the same number of levels we 
chose the one with the lowest M L  value and plotted them 

1 

0.9 

N 

x = 0.01 t 
x = 0.02 e- 
x = 0.03 .X. - 

* . *  
d 

0.6 
x = 0.04 .a . 
A = 0.05 .* .. 

3 4 5 6 7 8 9 10 
Number of Levels 

Fig. 7. Comparison of normalized contention-free maximum transaction 
latency with normalized mean remote transaction latency for traffic pattern 
P = (0.95. 0.8. l.O), S = ( 1 .  4. 1019), T = 4, B = 4. 

in Fig. 6. Although a memory latency of 30 is assumed in 
order to be consistent with the R2A430 cycle ratios used in 
the other simulations, mem simply causes a constant shift. The 
optimum topology has five levels and is L = (4, 4, 4, 4, 4). 
For a given number of levels, topologies with the best M L  
values minimize large branching factors except possibly for a 
larger branching factor at the root since the root ring is only 
traversed once. The relative performance of topologies with 
different numbers of levels is determined by the balancing of 
two factors: 1) larger branching factors have the disadvantage 
of requiring the packet to traverse extra links to reach the next 
level, and 2) larger number of levels has the disadvantage 
of increasing the total number of inter-ring interfaces in the 
system. 

Although this analysis shows that balanced topologies are 
best, the analysis ignores more realistic traffic patterns and 
contention. The analysis represents the worst case, in which 
all accesses are to memories for which the contention-free 
transaction latency is maximum. This traffic pattern will cause 
ring saturation unless the request rate is extremely low and 
is unrealistic. For the next set of experiments we consider 
traffic patterns that are more realistic and that our previous 
experiments indicate will probably cause the network to be 
heavily utilized, but not saturated. The preliminary comparison 
considered the topologies with the best M L  value for each 
level and used the traffic pattern P = (0.95, 0.8, l .O) ,  S = 
(1, 4, 1019) with T = 4, B = 4. For each request rate, 
we normalized the results against the worst mean remote 
transaction latency for that topology and plotted them in Fig. 7. 

The qualitative behavior of the alternative topologies is 
similar to that of the normalized M L  values in that topologies 
with 4 to 6 levels tend to be superior. As Fig. 7 shows, 
under high traffic loads, having too few levels can hurt 
performance substantially and, under low traffic loads, having 
too many levels also hurts performance. For request rate 0.05, 
a large number of levels does not degrade performance. This 
invariance is due to root ring contention. Some of the best 



HOLLIDAY AND STUMM: HIERARCHICAL RING-BASED SHARED MEMORY MULTIPROCESSORS 

100 

?4 80 M 
a 

R 60 

n 
40 

U 
t 

1 

X 

1 

i 20 

0 

topologies by M L  value have a large branching factor at the 
root. For these topologies the root ring contention masks any 
other performance changes due to a large number of levels. 

Because topologies with 4 to 6 levels appear to perform 
better, we then examined in more detail the performance of 
alternative topologies with that many levels under three traffic 
patterns. The three traffic patterns we considered are: 

1) P = (0.95, 0.8, l . O ) ,  S = (1, 4,1019), with T = 4, 

2) P = (0.90, 0.8, l . O ) ,  S = (1, 4, 1019), with T = 2, 

3) P = (0.95, 1.0), S = (1, 1023), with T = 1, X = 0.02. 
Besides the topologies that the M L  analysis indicated were 

optimal we considered several others that had somewhat larger 
branching factors at the lower ring levels. The rationale is that 
the previous experiments indicated that the higher ring levels 
had the highest utilization. Consequently, reducing the branch- 
ing factor at the higher ring levels might be advantageous. 

Table I1 lists the topologies considered. The index associated 
with each topology in Table I1 denotes that topology in Fig. 8. 
The topologies with indices 1-3 are the best for their number 
of levels by M L  values. Fig. 8 plots the maximum ring 
utilization for the investigated topologies for the three traffic 
patterns. The best topologies, as measured by M L ,  do not 
perform especially well. The baseline topology (16,4,4,2,2) 
that we have been using in earlier experiments performs well, 
but the relative performance depends on the traffic pattern. 
Any of the topologies numbered 4 through 10 seem to be an 
acceptable choice with none of them clearly superior. 

We conclude that the best contention-free topology, as 
measured by maximum transaction latency, and the one least 
sensitive to contention has between 4 and 6 levels. The best of 
these topologies tend to have uniform branching factors at the 
different levels except that somewhat larger branching factors 
at the lower levels also do well. The relative performance of 
the best topologies depends on the traffic patterns and also on 
the performance measure (mean remote transaction latency or 
maximum ring utilization). 

X = 0.05, 

X = 0.05, and 

- 

E. Hot Spot Trafic 

The results presented so far are based on a communication 
locality model where the traffic within a cluster is uniformly 
distributed. In this subsection we examine the behavior of 
the system in the presence of a hot spot. To perform the 
analysis, we assume that a transaction from any processor 
has probability F of addressing the hot spot memory. The 
remaining transactions are distributed according to the stan- 
dard communication locality model. Moreover, we assume 
P = (0.95, 0.8, l . O ) ,  S = (1, 4, 1019), B = 4, T = 1, 
L = (16, 4, 4, 2, 2). In all of the experiments reported so far, 
the simulated system had had a memory queue length of 9. 
When there is no hot spot traffic and four memory banks, this 
queue length is sufficient so that queue overflow is extremely 
unlikely at traffic loads which do not saturate the memory 
itself. It is possible that with a hot spot a longer memory 
queue is needed. Consequently, in this section we consider 
queue lengths of 9 and 36. 

r 

1 
1 2  3 4 5  6 7 8  910 

Topologies 
(a) 

1 2  3 4 5  6 7 8  910 
Topologies 

(b) 

61 

1 2 3 4 5 6 7 8 910 
Topologies 
(c) 

Fig. 8. Comparison of the maximum ring utilizations of alternative topolo- 
gies for three traffic patterns. The plots are for the topologies patterns listed 
in Table 11. 

Fig. 9(a) evaluates the effect of the hot spot on overall 
system performance by plotting mean remote transaction la- 
tency (for all remote transactions in the system) versus request 
rate for different favorite memory probabilities for a memory 
queue of length 9. The request rate needed to cause latency to 
significantly increase depends greatly on the favorite memory 
probability. It is clear that favority memory probabilities of 1% 
or more are not supportable at reasonable request rates with 
respect to overall system performance. Fig. 9(b) uses a queue 



62 IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 1. JANUARY 1994 

TABLE I1 
RING TOPOLOGIES CONSIDERED FOR DIFFERENT COMMUNICATION 

LOCALITIES. THE INDEX DENOTES THE TOPOLOGY IN FIG 8. 

Index Topology 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

(4, 4. 8. 8 )  
(4. 4. 4. 4. 4)  

(2 .  2. 4. 4. 4. 4) 
(16. 8. 4. 2 )  

(8 .  4. 4. 4. 2 )  
( 8 .  8.  4. 2 .  2 )  
(16. 4. 4. 2 .  2 )  

(4. 4. 4. 4. 2. 2 )  
(8 .  8. 2. 2 .  2 .  2 )  

(16. 4, 2, 2. 2 .  2 )  

length of 36. The change in queue length has some effect, but 
the qualitative behavior is the same. 

The degradation in performance in Fig. 9 is large once 
a critical request rate is reached, because of the negative 
feedback effect of packet retries. The favoritism to the hot 
spot memory imposes additional load on three resources: the 
hot spot memory, the queue for the hot spot memory, and 
the network near the hot spot memory. As contention for 
the hot-spot memory increases, some of the access request 
packets destined for the hot spot memory will be negatively 
acknowledged and then resent. The above experiments indicate 
that all three resources contribute to performance degradation. 
The hot spot memory itself is clearly a factor due to its 
high utilization, but we can not actually saturate it. For both 
queue lengths of 9 and 36, workloads that cause mean remote 
latencies to be in the hundreds, have hot memory utilizations 
between 85% and 98%. Memory queue overflow is a factor 
since a memory queue of 36 has lower mean remote latencies 
and higher hot memory utilizations than a memory queue of 9. 
Network saturation of rings near the hot memory is a factor; 
measurements of the queues at the IRIS near the hot memory 
show long queues. 

As mentioned in Section 11, our goal, with respect to hot 
spots, is to understand their significance within this class of 
systems, instead of evaluating alternative solutions. Without 
techniques to alleviate hot spots, our experiments indicate 
that such systems can become unstable at favorite memory 
probabilities on the order of 1% to 2% under reasonable 
request rates. If the memory queues are of inadequate length, 
significantly lower favorite memory probabilities can cause 
instability. The techniques proposed in the synchronization 
literature (such as separate synchronization networks with 
combining or software algorithms using distributed data struc- 
tures [20], [18]) may well reduce the likelihood of hot spots. 
The simulated system does provide flow control in that the 
number of cycles before a source processing module submits 
a retry is a function of the number of retries previously sent 
[27]. More sophisticated flow control mechanisms could be 
considered. One possibility is that the destination module 
could return with the negative acknowledgement an indication 
of how congested it is. The source module could use this 
information to choose a wait period. 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 
Request Rate 

(a) 

450 

400 

350 

300 

250 

a 

n 

(c200 : 
1 150 

100 

50 

0 
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 

Request Rate 

(b) 

Fig. 9. Hot spot. How large of a request rate can be supported for different 
favorite memory probabilities before overall system performance degrades as 
measured by mean remote transaction latency. Fig. 9(a) has a memory queue 
nine deep. Fig. 9(b) has a memory queue 36 deep. 

F. Relative Speed 

So far we have assumed a fixed ratio of the processor, 
memory, and ring speeds, namely R2M30. In this section, 
we examine the effect of varying this ratio on the conclusions 
drawn in the previous sections. Since processor speeds seem 
to be increasing faster than memory speeds, three cases are 
considered for which the processor speed is increased by 100% 
and the memory cycle remains unchanged (and thus is not 60 
processor cycles). The first case assumes that the ring cycle 
time remains unchanged at 4 processor cycles, the second 
case assumes a 50% reduction and the third case, assumes 
a 75% reduction in ring cycle time. The cases are denoted 
R4M60, R2M60, and R1 M60, respectively. We assume 



HOLLIDAY AND STUMM HIERARCHICAL KIVG BASED S H 4 R E D  MFMORL MULTIPROCL\SOR\ 

90 

80 

70 

60 

50 

40 

30 

20 

10 

T = 3,  B = 4, L = (16. 4. 3.  2. 2) ,  P = (0.95. 0.8. l.O), 

Fig. 10(a) plots efficiency versus request rate for the three 
cases as well as for R2M30, our base case. The faster 
processor causes efficiency to drop somewhat in comparison 
to R2M30, but, surprisingly, the drop is essentially identical 
for all three cases. (In noting the high efficiency of R212130 
it is important to remember that, relatively speaking, the 
processor in this case is only executing instructions at half 
the speed of the other cases). Fig. 10(b) plots maximum ring 
utilization versus request rate for all of the cases and shows 
that the similar behavior with respect to efficiency masks 
major differences with respect to ring utilization. (There is 
little difference among the cases with respect to memory 
utilization.) In fact the ring saturation of Xld160 suggests 
that processor efficiency for that case should start dropping if 
the offered load is increased further. To test this hypothesis 
we redid the experiment with P = (0.9. 0.8. 1.0). Fig. l l (a)  
and (b) plots efficiency and maximum ring utilization, respec- 
tively, versus request rate for this communication locality. The 
results confirm out hypothesis by the sharp drop in processor 
efficiency for R4M60 when at request rate 0.03. The collapse 
in performance when increasing request rate beyond 0.02 is so 
sharp, that the request rate 0.03 simulation does not complete. 
The point reported is the mean of the batches before the 
simulation aborts. 

We have not explicitly considered a faster ring cycle time in 
our experiments. The R1MB0 results in the Fig. 10 and Fig. 
11 plots make clear that a faster ring cycle time would have 
little effect since at 81, the memory is the limiting factor, not 
the ring utilization3. 

Returning to our base case, we then considered the effect 
of our assumption that a memory cycle equals 30 processor 
cycles. One of our conclusions had been that as we increased 
T to hide the exposed transaction latency, memory saturation 
became a limiting factor. We then used multiple memory banks 
to allow higher processor efficiency. Now we return to one 
memory bank to see how sensitive our results are to memory 
cycle time. We assume T = 3, B = 1, L = (16. 4. 4. 2. 2) ,  
P = (0.95, 0.8. 1.0), S = (1. -2. 1019) and that a ring cycle 
equals 2 processor cycles and vary memory cycle time from 
10 to 40 processor cycles. 

Fig. 12(a) plots efficiency versus request rate as memory 
cycle time, M ,  is varied. As increases, efficiency drops 
which is partially due to an increase in the base transaction 
latency and partially due to increased contention. To under- 
stand the degree to which contention contributes to the drop 
in efficiency, we plot memory and maximum ring utilization 
versus request rate in Fig. 12(b) and 12(c), respectively. As 
memory cycle time increases, memory utilization increases and 
maximum ring utilization decreases. For the longer memory 
cycle times and high request rates, memory saturates and 
the maximum ring utilization is constrained by the memory 
saturation. The case of M = 10 significantly differs from 

s = (1. 4,  1019). 

- 
- 

- 

- 

- 
- 
- 

- 

- 

3Some ring-based systems (such as the KSRl [X I ,  ( 6 ) )  have a ring cycle 
time faster than the processor cycle time. Most often these systems (a5 does 
the KSRl)  require several ring cycles for a transaction to pass through a ring 
node. 

loo I--=- 

; 5 0 1  
40 

RlM60 €+ 
R2M60 t 
R4M60 

2o R2M30 .X - 

Y ‘E 30 1 
0 L 

0 0.01 0.02 0.03 0.04 0.05 
Request Rate 

( a )  

100 I I I I I I 

% 
M 
a 

R 
i 
n 
g 
U 
t 
i 
1 

X 

0 ’  I I 1 I J 
0 0.01 0.02 0.03 0.04 0.05 

Request Rate 
(b) 

Fig. I O .  Effect of different processor and ring speed\. P = (0.95. 0.8. 1 .0) .  

larger -11 values in that for .I1 = 10 memory utilization 
is less than maximum ring utilization. It appears that there 
is a significant transition a5 31 increases above 10 that 
involves whether memory utilization becomes a bottleneck 
before the rings become a bottleneck. For higher ,$I values, 
multiply memory banks are useful for increasing efficiency. 
For lower .I1 values, multiple memory banks will not be 
useful for increasing efficiency. since there is little room for 
improvement in efficiency given that T is raised adequately 
(efficiency is close to 100% with T = 1 in Fig. 12). 

G. Block Trarisfers 

The increase in the ratio of memory cycle time to processor 
cycle time has motivated the development of innovative mem- 
ory technologies [24], [21]. The one approach we examine here 
is page-mode DRAM access. With page-mode access, fetching 
the first word from memory requires raising both the row- 
access strobe line and the column-access strobe line. However, 
subsequent words on the same row in memory can be retrieved 



M 

f 60 

1 50 

40 
n 
C 30 
Y 

20 

10 

f 

100 

90 

80 

?6 70 
E 

- 
- 

7 

- RlM60 e 
R2M60 t 

- R4M60 .E3- 
R2M30 .X .  - - 

IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 1 ,  JANUARY 1994 

100 
90 

% 80 
E 70 

60 

0 0.01 0.02 0.03 0.04 0.05 
Request Rate 

90 

80 - 
% 
M 70 - 
a 

60 - 

A 50 - 
g 

: 3 0 -  

2 0 -  

- 

P 

u 4 0 -  

0 0.01 0.02 0.03 0.04 0.05 
Request Rate 

Fig. 11. Effect of different processor and ring speeds. I' = (0.9. 0.8. 1.0). 
The simulation for R4,2160 at X = 0.03 aborts due to saturation. The 
efficiency and maximum ring utilization points reported for that case is the 
average of the batches that completed. 

by just changing the column address and reraising the column- 
access strobe line. Thus, the access time for the first word 
is unchanged, but the additional access time for subsequent 
words on the same row is sharply reduced. Page-mode access 
is a natural mechanism to support block transfer. 

The result of page-mode access is to increase the memory 
bandwidth and to reduce the average latency (as measured 
over all words fetched from memory). If we assume that 
the first word fetched is a cache miss and the subsequent 
words are prefetches, then the use of page-mode access is 
only advantageous to the extent that the cache hit ratio is 
increased by spatial locality through the prefetching. Page- 
mode access has disadvantages in that memory and network 
utilization increase and in that there is increased potential for 
cache pollution (to the extent that the prefetched words are 
not referenced and cause the replacement of words that will 
be referenced). In addition, if the processor stalls until the last 

0 0.01 0.02 0.03 0.04 0.05 
Request Rate 

(a) 

M 

40 

t 30 
20 
10 

I I I .-r 

0- 
0 0.01 0.02 0.03 0.04 0.05 

Request Rate 
(b) 

% 
M 
a 
X 

P 
n 
g 
U 

1 
t 

90 
80 - 
70 - 
60 - 
50 - 
40 - 
30 - 
20 
10 

- 

- 
- 

0 0.01 0.02 0.03 0.04 0.05 
Request Rate 

(c) 

Fig. 12. Effect of different memory cycle times. 

word fetched reaches the processor (instead of just until the 
first word is fetched), the stall time on cache misses further 
increases. 

The extent to which the use of page-mode access increases 
the cache hit ratio is highly program-dependent and out of the 
scope of this study. However, we can determine the extent 
to which the cache hit ratio needs to increase in order to 
compensate for the disadvantages of page-mode access. We 
conducted several experiments to determine the needed hit 
ratio increase at request rates 0.01% through 0.05%. 



HOLLIDAY AND STUMM HIERAKCHICAL KING BASED S H Z R t D  MEMORY M l l l  I IPROC t5SORS 65 

In all the experiments we fixed the ring topology and the 
ratio of processor, ring, and memory speeds to the base case: 
L = (16, 4. -1. 2. 2 )  and R2M30, respectively. We assumed 
four memory banks, no hot spot traffic, and that each word of a 
block after the first word takes 5 processor cycles. We consid- 
ered four cases of communication locality: P = (0.95. I . ( ) ) ,  
S = (1. 1023) and P = ( P I .  0.8. l.O), S = (1. 4. 1019) with 
PI = 0.95. 0.9. 0.8. For all four communication localities we 
considered having at most four outstanding transactions. For 
P = (0.95. 0.8. l.O), S = (1. 1. 101'3) we also considered 
having at most one outstanding transaction. We considered 
four block sizes: 1, 2, 4, and 8 words. For all block sizes 
we assumed that the processor stall ends when the first word 
reaches the processor. 

For all communication localities and maximum numbers of 
outstanding transactions considered, increasing the block size 
degrades performance at all request rates by all of the mea- 
sures of processor efficiency, mean request latency (measured 
by when the processor stall ends), memory utilization. and 
maximum ring utilization. The percentage degradation depends 
on the measure. The memory and maximum ring utilizations 
are more fundamental in the sense that their proximity to 
saturation determine the contention components of processor 
efficiency and request latency. Since the maximum ring uti- 
lizations are substantially higher than the memory utilizations 
in all the experiments, we chose to report the change to the 
maximum ring utilization. We characterize this change by 
the percentage the mean number of processor cycles between 
cache misses must increase in order for the maximum ring 
utilization for a block size of 1) to equal the maximum ring 
utilization for a block size of 1.  Thus, implicitly we are 
identifying the necessary change in the cache hit  ratio. 

The results for a communication locality of P = 
(0.95. 0.8. l.O), S = (1. 3 .  1019) and T = 1. 4 are plotted 
in Fig. 13. The behavior is surprising. The needed increase 
in the number of processor cycle between cache misses is 
increasingly close to linearly independent of the request 
rate and the maximum number of outstanding transactions. 
The behavior (not shown) for the other three communication 
localities is similar. The percentage increases are also quite 
large. For example, over all the experiments there is one 
case where a block size of two words requires an increase of 
13%;. For all other cases a block size of two words requires an 
increase of between 33%> and 90%). Whether an increase in the 
block to two words would cause such an improvement depends 
on the program and cache characteristics is doubtful, though 
dependent on. Increasing the block size to more than two 
words would require much additional improvement, which 
seems even more doubtful. 

The above experiments assume that the processor stall ends 
after the first word of the block reaches the processor. For 
the eight word block size we repeated the above experiments 
considering the case in which the processor stall ends after the 
last word of the block reaches the processor. In comparison 
with the eight word block size with the processor stall ending 
after the first word returns, the change is minor. The memory 
and maximum ring utilizations decrease by a few percentage 
points. As expected, the mean remote request latency increases 

0 2 4 6 8 
Block Size 
( a )  

600 1 I I I 

500 
% 
C 
Y 400 

1 
e 
I 300 
n 

C 

C : 200 
a 

e 
S 

100 

= 0.01 +- 
= 0.02 t 
= 0.03 8- 
= 0.04 .X .  ~ 

0 '  I I I 
0 2 4 6 8 

Block Size 
ib) 

Fig. 13. Effect of increasing the hlock sire through page-mode DRAM 
acccss. The effect i \  indicated by the percentage that the mean number of pro- 
cessor cycles between cache misses must increase in order for the maximum 
ring utilization with a block size of I )  to equal the maximum ring utilization 
with a block size of 1.  Communication locality is T' = (0.9:. 0.8. l . O ) ,  
s = (1. 4. 1019). 

by the extra length of the remaining words of the block plus 
a contention factor. and processor efficiency drops by a few 
percent. 

We conclude that using block transfers through page-mode 
DRAM access does not appear promising. Across many com- 
munication localities, request rates, maximum numbers of 
outstanding transactions, and block sizes, the extra traffic 
resulting from fetching the extra words significantly raises 
the network utilization as measured by the maximum ring 
utilization. The improvement in cache hit ratio due to a larger 
block size is program and cache dependent. However, the 
improvement in  cache hit ratio needed to compensate for the 
increase in maximum ring utilization is large enough to be 
doubtful that the improvement can be achieved. This result 
is specific to very large systems with this type of network 



66 IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 1, JANUARY 1994 

and might not apply to smaller systems or systems with other 
types of networks. 

IV. CONCLUSION 

A. Related Work 

Beside Hector, several architectures based on slotted rings 
have been proposed including the CDC CYBERPLUS [14], the 
Express Ring [5], the IEEE SCI (Scalable Coherent Interface) 
standard [17], [22], and the KSR-1 from Kendall Square 
Research [SI, [6]. There have been performance studies of 
single slotted rings, but not of ring-based hierarchies. Previous 
studies of other shared-memory architectures with system 
models at the level of detail of our simulator have tended to 
only examine small systems (100 processors or less) [31], [9]. 

The performance of branching factor topologies has been 
considered for bus hierarchies. The experiments by Vernon, 
J6g, and Sohi [28] indicate that the best topologies had large 
branching factors at the low levels and small branching factors 
near the root. In contrast, our contention-based experiments 
indicate that for ring-based systems, topologies with close to 
balanced branching factors are best. Somewhat larger branch- 
ing factors at the lower ring levels sometimes do well, but very 
large branching factors at low ring levels perform poorly. 

A recent analytical study by Agarwal examines the effec- 
tiveness of multithreading on increasing processosr efficiency 
[4]. This is relevant since multithreading is one of the main 
approaches for allowing multiple outstanding transactions. 
However, the system and workload characteristics Agarwal 
considers are significantly different than ours. The network is 
a k-ary, n-cube, memory access time is 10 processor cycles, 
traffic is uniform (any memory is equally likely to be the target 
memory of a cache miss), the cache miss ratio is a function 
of the number of threads, and the context switch overhead is 
nonzero. The largest difference is in the role of memory. The 
Agarwal model does not take memory contention into account 
in determining transaction latency. Even if the model did, the 
significance of memory saturation occurring before network 
saturation (and thus, the importance of techniques to reduce 
memory utilization) would not be observed due to memory 
access time being 10 cycles (see our Fig. 12). 

B. Summary 

In this paper, we presented the results of a simulation study 
to assess the performance of a shared-memory multiprocessor, 
based on a hierarchical network of rings. Ring based systems 
are of interest because they can be run at very fast rates 
due to their use of short, unidirectional and point-to-point 
connections, and because of the use of simple mode interfaces 
and inter-ring connections. Hierarchical systems are of interest 
because they are scalable. To ensure that the systems we 
simulated were realistic and realizable, we based them on 
specific system, Hector. To ensure that the simulator is correct 
and captures subtle system interactions, the simulator was 
validated using measurements of this prototype system. 

Trace-driven simulation would produce questionable results 
and execution-driven simulation using complete applications 

would take prohibitively long when simulating a system this 
large at the level of detail desired for realism. Consequently, 
we introduced a synthetic workload model using parameter 
value ranges based on experience with applications. With this 
workload model we have shown how systems on the order 
of 1024 processors can be evaluated even with network and 
memory simulation at a detailed level. 

The main results of this study are as follows. 
Without a high degree of locality in the data accesses of 
the applications running on this type of system, ring con- 
tention will cause the memory access latency to increase 
significantly. Locality can be achieved by proper data 
placement and by migrating and replicating data objects. 
If processors do not have support multiple outstanding 
transactions (such as, prefetching, multiple hardware con- 
texts, release consistency), then processor efficiency will 
be low due to the long memory access transaction latency 
even if there is no contention. 
With multiple outstanding transactions, memory will 
quickly saturate if there is only one memory bank per 
processing module. Using multiple memory banks per 
processing module is an effective way to reduce memory 
contention. 
It is necessary to limit the number of multiple outstand- 
ing transactions per processor in order to limit network 
contention. The appropriate number is a tradeoff between 
concurrency and contention, and we have found it to be 
sensitive to the degree of communication locality. We 
have proposed an adaptive approach for adjust for this 
tradeoff as the communication locality changes. 
With respect to topology, we have found that 1024 proces- 
sor systems with between 4 and 6 levels in the hierarchy 
tend to perform better, although no one topology is best. 
We have also found that well-balanced systems (with a 
similar branching factor at all levels) tend to perform best. 
Slightly smaller rings at the root of the hierarchy reduce 
the potential for congestion at that point. 
Saturation of hot spot memories causes substantial degra- 
dation of overall system performance if 1% or more of 
memory traffic is targeted to a single memory. 
Doubling the processor speed and keeping the memory 
cycle time constant causes a drop in processor efficiency 
due to the increased relative transaction latency. At the 
traffic patterns considered, changes in the ring speed have 
a major effect on maximum ring utilization. The effect on 
processor efficiency is again sensitive to communication 
locality. 
Varying memory cycle time significantly effects processor 
efficiency, memory utilization, and maximum ring utiliza- 
tion. Most notably, with one memory bank, the presence 
of memory saturation at offered loads below those that 
cause ring saturation only occurs when the memory cycle 
time is 20 processor cycles or longer. 
Prefetching through the use of block transfers imposes 
an additional load on the network. The improvement in 
cache hit ratio needed to compensate for the increase 
in maximum ring utilization is large enough to make it 
doubtful such prefetching is advantageous. 



HOLLlDAY AND STUMM: HIERARCHICAL RING-BASED SHARED MEMORY MULTIPROCESSORS 67 

Other issues that warrant further investigation include the 
effect of synchronization and flow control mechanisms on 
hot spot traffic, the effectiveness of the proposed adaptive 
maximum number of outstanding transactions, the use of other 
DRAM techniques to compensate for long memory access 
times, and including in the traffic pattern, page migration and 
replication transactions. 

ACKNOWLEDGMENT 

The authors thank D. Kindred for his work on an early 
version of the simulator and K. Farkas for his thorough 
comments on a draft of the paper. 

REFERENCES 

S. V. Adve, V. S. Adve, M. D. Hill, and M. K. Vernon, “Comparison of 
hardware and software cache coherence schemes,” in Proc. 17th Annu. 
Int. Symp. Comput. Architecture, Toronto, ON, Canada, May 1991, pp. 
298-308. 
V. S. Adve and M. K. Vernon, “Performance analysis of multiprocessor 
mesh interconnection networks with wormhole routing,’’ Tech. Rep. CS- 
TR-1001, Comput. Sci. Dept., Univ. Wisconsin-Madison, Madison, WI, 
Feb. 1991. 
A. Agarwal, “Limits on interconnection network performance,” IEEE 
Trans. Parallel Distributed Syst., vol. 2, pp. 398-412, Oct. 1991. 
__ , “Performance tradeoffs in multithreaded processors,” IEEE 
Trans. Parallel Distributed Syst., vol. 3, pp. 525-539, Sept. 1992. 
L. Barroso and M. Dubois, “Cache coherence on a slotted ring,’’ in 
Proc. 1991 Int. Conf Parallel Processing, St. Charles, IL, Aug. 1991, 
pp. (I)230-237. 
G. Bell, “Ultracomputers: A teraflop before its time,” Commun. ACM, 
vol. 35, no. 8, pp. 2 7 4 7 ,  Aug. 1992. 
B. Boothe and A. Ranade, “Improved multithreaded techniques for 
hiding communication latency in multiprocessors,” in Proc. 18th Annual 

[18] W. T.-Y. Hsu and P. -C. Yew, “An effective synchronization network 
for hot spot accesses,” ACM Trans. Comput. Syst., vol. 10, no. 3, pp. 

[ 191 M. H. MacDougall, Simulating Computer Systems: Techniques and 
Tools. Cambridge, MA, MIT Press, 1987. 

120) J .  M. Mellor-Crummy and M. L. Scott, “Synchronization without 
contention,’’ in Proc. 4th Int. Conf Architectural Support for Program- 
ming Languages and Operating Syst., Santa Clara, CA, April 1991, pp. 
269-278. 

[21] R. Ng, “Fast computer memories,” IEEE Spectrum, vol. 29, no. 10, pp. 
36-39, Oct. 1992. 

[22] P1596 Ballot Review Committee of the IEEE Microprocessor Standards 
Committee, “Sci-scalable coherent interface,” p1596id2.00. Tech. Rep., 
IEEE, Nov. 1991. 

[23] G. F. Pfister and V. A. Norton, “‘Hot spot’ contention and combining 
in multistage interconnection networks,’’ IEEE Trans. Comput., vol. 34, 
p. 943-948, Oct. 1985. 

[24] B. Prince, Semiconductor Memories, second edition. New York: Wiley, 
1991. 

1251 D. A. Reed and R. M. Fujimoto, Multicomputer Networks: Message- 
Based Parallel Processing. Cambridge, MA: MIT Press, 1987. 

[26] S. L. Scott, J. R. Goodman, and M. K. Vernon, “Performance of the SCI 
ring,” in Proc. 18th Annu. Int. Symp. Comput. Architecture, Gold Coast, 
Australia, May 1992, pp. 403-414. 

[27] M. Stumm, Z. Vranesic, R. White, R. Unram, and K. Farkas, “Expe- 
riences with the Hector multiprocessor,” Tech. Rep. CSRI Tech. Rep. 
276, Univ. Toronto, Dept. Comput. Sci., Toronto, ON, Canada, 1992. 

[28] M. K. Vernon, R. Jog, and G. S. Sohi, “Performance analysis of 
hierarchical cache-consistent multiprocessors,” Performance Evaluation, 
vol. 9, pp. 287-302, 1989. 

[29] Z. G. Vranesic, M. Stumm, D. M. Lewis, and R. White, “Hector: A hi- 
erarchically structured shared-memory multiprocessor,” IEEE Comput., 
pp. 72-78, Jan. 1991. 

[30] P. Yew, N. Tzeng, and D. H. Lawrie, “Distributing hot-spot addressing 
in large-scale multiprocessors,” IEEE Trans. Comput., vol. 36, pp. 
388-395, Apr. 1987. 

1311 R. N. Zucker and J.-L. Baer, “A performance study of memory con- 
sistency models,” in Proc. 18th Ann. Int. Symp. Comput. Architecture, 
Gold Coast, Australia, May 1992, pp. 2-12. 

167-189, Aug. 1992. 

Int. S m p .  Comput. Architectke, Goldcoast, Australia, May 1992, pp. 
214-223. 
H. Burkhardt, S. Frank, B. Knobe, and J. Rothnie, “Overview of the 
KSR 1 computer system,” Tech. Rep. KSR-TR-9202001, Kendall Square 
Res., Boston, MA, Feb. 1992. 
D.-K. Chen, H.-M. Su, and P.-C Yew, “The impact of synchronization 
and granularity on parallel systems,” in Proc. 16th Annual Int. Symp. 
Comput. Architecture, Seattle, WA, May 1990, pp 239-248. 
T -F. Chen and J.-L. Baer, “Reducing memory latency via non-blocking 
and prefetching caches,” in Proc. 5th Int. Con$ Architectural Support 
for Programming Languages and Operating Systems, Boston, MA, Oct. 
1992, pp. 51-61. 
R. Comerford, “How DEC developed Alpha,” IEEE Spectrum, vol 29, 
no. 7, pp. 26-31, July 1992. 
H. Davis, S. R. Goldschmidt, and J. Hennessy, “Multiprocessor sim- 
ulation and tracing using Tango,” in Proc. 1991 lnt. Conf Parallel 
Processing, St. Charles, IL, Aug. 1991, pp. (1I)YY-107. 
K. Farkas, Z. Vranesic, and M. Stumm, “Cache consistency in 
hierarchical-ring-based multi-processors,” in Proc. Supercomputing 
92, Nov. 1992. 
M. Ferrante, “CYBERPLUS and MAP V interprocessor communica- 
tions for parallel and array processor systems,’’ in W. J. Karplus, 
Ed., Multiprocessors and Array Processors. The Society for Computer 
Simulations, 1987, pp. 45-54. 
K. Gharachorloo, A. Gupta, and J. Hennessy, “Hiding memory latency 
using dynamic scheduling in shared-memory multiprocessors,” in Proc. 
18th Annu Int. Symp. Computer Architecture, Gold Coast, Australia, 
May 1992, pp. 22-35. 
A. Gupta, J.  Hennessy, K. Gharachorloo, T. Mowry, and W.-D. Weber, 
“Comparative evaluation of latency reducing and tolerating techniques,’’ 
in Proc. 17th Annu. Int. Symp. Comput. Architecture, Toronto, ON, 
Canada, May 1991, pp. 254-265. 
D B. Gustavson, “The scalable coherent interface and related standards 
projects,” IEEE Micro, vol. 12, no. 1, pp. 10-22, Feb. 1992. 

Mark A. Holliday (S’82-M’86) received the B.A. 
degree with high honors from the University of 
Virginia in 1978, and the M.S. and Ph.D degrees 
from the University of Wisconsin-Madison, in 1982 
and 1986, respectively 

From 198tL1993, he was on the faculty at Duke 
University. He is currently an Associate Professor 
in the Department of Mathematics and Computer 
Science, Western Carolina University. His technical 
interests are in the performance evaluation of scal- 
able, parallel computer systems. 

mber of the ACM and the IEEE Computer Society. 

Michael Stumm (M’87) received the diploma in 
mathematics and the Ph.D. in computer science from 
the University of Zurich, Switzerland, in 1980 and 
1984, respectively. 

Since 1987, he has been on the faculty of the 
Department of Electrical and Computer Engineering 
and the Department of Computer Science at the 
University of Toronto, where he is currently an 
Associate Professor. His research interests are in the 
area of complete systems. 

Dr. Stumm is a member of the IEEE Computer 
Society and the Association for Computing Machinery. 


