Proceedings of the First International EURO-PAR Conference, August 1995, pages 327--338, LNCS 966.

Implementing Flexible Computation Rules with
Subexpression-level Loop Transformations

Dattatraya Kulkarni*, Michael Stumm®*, and Ronald C. Unrau**

*Department of Computer Science and
Department of Electrical & Computer Engineering
University of Toronto, Toronto, Canada, M5S 1A4

Email: kulki@cs.toronto.edu

**Parallel Compiler Development
IBM Toronto Laboratory
Toronto, Canada, M3C 1V7

Abstract. Computation Decomposition and Alignment (CDA)is a new
loop transformation framework that extends the linear loop transforma-
tion framework and the more recently proposed Computation Alignment
frameworks by linearly transforming computations at the granularity of
subexpressions. It can be applied to achieve a number of optimization
objectives, including the removal of data alignment constraints, the elim-
ination of ownership tests, the reduction of cache conflicts, and improve-
ments in data access locality.

In this paper we show how CDA can be used to effectively implement
flexible computation rules with the objective of minimizing communi-
cation and, whenever possible, eliminating intrinsics that test whether
computations need to be executed or not. We describe CDA, show how
it can be used to implement flexible computation rules, and present an
algorithm for deriving appropriate CDA transformations.

1 Introduction

In a SPMD framework such as HPF [7], data alignments and distributions are
usually specified by the user or suggested by some automatic tool such as
PARADIGM [8]. Given the data alignments and distributions, the compiler then
maps computations to processors using a computation rule. The choice of com-
putation rule can have a significant impact on performance, since it affects the
amount of communication generated and the number of intrinsics needed in the
code.

Traditionally, computation rules have been fized in that they do not take
alignments and distributions of all references into account. For example, the
owner-computes rule is a fixed rule and is used almost exclusively. It maps a
statement instance to the processor which owns the lhs (left hand side) data
element of the statement [7], even if it would be more efficient to compute the
statement on another processor, and it always maps a statement instance in
its entirety. Fixed computation rules provide a general schema for computation

mapping and hence simplify code generation, especially the insertion of commu-
nication code.

In contrast, flextble computation rules take into account the location of all the
data needed for the computation and the cost of communication when deciding
where a computation is to be executed [5]. The granularity of the computation
being mapped is usually at the subexpression level. It is therefore possible to
achieve optimal or near optimal computation mappings. However, the code gen-
eration is much more complex. Flexible computation rules are also important
on shared memory multiprocessors. For example, it is important to minimize
remote memory accesses on shared memory multiprocessors with non-uniform
access times. Moreover, the location of computations can significantly affect
cache locality and interference patterns.

In this paper, we show how the recently proposed CDA loop transformation
framework [13, 14] can be used to efficiently implement a flexible computation
rule called P-Computes. Section 2 briefly reviews the most important related
work. Section 3 introduces the P-Computes rule. We show by example how P-
Computes can be implemented with CDA in Section 4 and present the formal
algorithms in Section 5.

2 Related Work

There has been much work in developing techniques that improve the perfor-
mance of SPMD code. Linear loop transformation is a general technique devel-
oped in 1990 that changes the execution order of the iterations [4, 15, 17, 23]
and can be used, for example, to reduce communication overhead by moving
communications to the outer loop levels [17, 23]. However, linear loop transfor-
mations are limited in their optimization capabilities, since they leave iterations
unchanged as they map the original iteration space onto a new one.

Over the last three years, Computation Alignment (CA) frameworks have
been proposed that extend the capabilities of linear transformations [9, 12, 21]
by transforming loops at the granularity of statements.! By applying a separate
transformation to each statement in the loop body they change the execution
order of each statement, thus effectively changing the constitution of the itera-
tions. CA transformations have been applied to improve SPMD code in a variety
of ways [12, 22]. For example, CA may be used to align the statements in the
loop body so that all lhs data elements accessed in an iteration are located on
the same processor in the hope of eliminating the need for ownership tests.

Computation Decomposition and Alignment (CDA) [13] is a generalization
of CA and goes a step further in that it can transform computations of granu-
larity smaller than a statement. Instead of transforming the statements as writ-
ten by the programmer, CDA first partitions the original statements into finer
statements and then aligns the statements at this finer granularity. This creates

! The origins of CA can be traced to loop alignment [1, 19], which is a special case of

CA.

additional opportunities for optimization. In later sections we show how CDA
can be used to implement flexible computation rules.

A number of optimization techniques have been proposed that reduce com-
munication by transforming data. Bala and Ferrante [3] proposed the insertion
of XDP directives that explicitly move data to transfer ownerships. XDP can
thus be used to implement variations of owner-computes rule. In this context,
dynamic data alignment [11] can be considered as a structured form of implicit
data movement. Earlier approaches resorted to static solutions by deriving best
data alignments [16] and distributions [2, 8] considering global constraints.

Chatterjee et al. [5] developed algorithms that derive communication optimal
flexible computation rules for a class of expressions. They take the machine
topology into account to find optimal mappings of subexpressions onto processors
in polynomial time.

3 P-Computes Rules

The P-Computes operator, ®, can be used to specify flexible computation rules.
A P-Computes rule, ®, (exzpr), specifies that the expression expr is to be exe-
cuted on processor p. Generally, p and expr will be functions of the enclosing
loop iterators. If expr does not assign value to a lhs, then the result of executing
©@p(expr) is to be sent to the processor designated by the enclosing P-Computes
operator.

The specification of p in @p(expr) can be either direct or indirect. If the
processor is specified as a direct function of the iterators, then the P-Computes
rule is direct. Otherwise, if the processor is specified in terms of the location
of array elements, then the rule is indirect. The indirect specification can be
achieved through an intrinsic similar to iown(e) used by owner-computes that
evaluates to true on the processor that owns data element e. Here we use a
variant, owner(e), that returns the processor that has data element e. Hence,
iown(e) is equivalent to the conditional (myid = owner(e)).

The ® operator is very general and can be used to express a variety of com-
putation rules. For example:

®owner(e1)(e1 =ep+e3)
Of(1y(e1 = Ogry(e2 + @nc1)y(e3 +e4)))
®owner(A(I))(el = ®owner(B(I))(e2 +e3) + ®owner(C(I))(e4 +e5))

are all valid P-Computes rules, where the e’s are subexpressions. The first ex-
ample above is equivalent to the application of the owner-computes rule. The
second example specifies the processors directly as a function of the loop itera-
tors, whereas the mapping is indirect in the last example.

To compare the difference between a P-Computes rule and the owner-
computes, consider the following loop:

for i=1,n
for j=1,n
Sq: ®owner(A(i,j)) (A(i,j) =
®owner(A(i—1,j)) (A(i—1,j)+A1-1,j—1)+B(i-1,j))
+B(1,j+1)+4(1,j—1))
52 ¢ Qowner(B(i,j—1)) (B(i,j—1) =A(i,j — 1) +B(i,]))
end for
end for

Assume that each iteration is mapped onto a different processor and that B(4, j)
is aligned to A(i,j), perhaps due to constraints from a previous loop. If the
owner-computes rule were applied directly, then six non-local accesses would
be necessary. In contrast, the specified P-Computes rule requires five non-local
accesses, one of which is due to sending the result from ®owner.(A(i—1,j)). n
statement Sq. Thus, the P-Computes rule can reduce communication by taking
the location of data into account. As we will see in Section 4, CDA transforma-
tions can be applied to further reduce the number of communications to three.

4 CDA Implementation of P-Computes Rules

To implement a flexible computation rule specified with P-Computes operators,
we transform the loop in a three stage process. The first two stages correspond
to CDA, as described in [13]. In the first stage, the statements in the loop are
decomposed so that statements can be assigned to processors in their entirety.
This may require the introduction of new temporary arrays. Second, the (possibly
new) set of statements are linearly transformed so as to eliminate (or reduce)
the need for intrinsics. Finally, in a third stage, the newly introduced temporary
arrays are data aligned to the existing arrays so that the given computation rule
can be specified relative to the ownership of the lhs temporaries. In this section
we give an overview of how these techniques can be applied, using the example
of Section 3.

4.1 Computation Decomposition

Computation Decomposition is the first stage of our method. It decomposes the
loop body into statements so that each statement can be mapped in its entirety
to a processor. The P-Computes rules specify how the loop is to be decomposed.
In a first step, each P-Computes rule that contains more than one statement is
split, so that an equivalent P-Computes rule is applied to each statement sepa-
rately. In a second step, those statements containing more than one P-Computes
rule are split into multiple statements so that each new statement has a single
® operator. If a statement must be split, then the expression of the embedded
P-Computes rule will be elevated to the status of a statement and a temporary
array is introduced to accumulate the results of the expression and to pass the

result to the statement corresponding to the enclosing ® operators. The tempo-
rary variables are typically chosen as arrays in order to reduce the number of
dependences introduced by the decomposition, allowing for more freedom in the
subsequent search for alignments.

Considering the example of Section 3, statement Sq is decomposed into state-
ments S4 4 and S4 5. S ¢ corresponds to the expression of the P-Computes rule
embedded in statement Sq. The result of evaluating that expression is assigned
to the temporary t so that it can be passed to the remainder of S, namely Sq 5.
The loop body after computation decomposition becomes:

for i=1,n
for j=1,n
511 Qowner(A(i—1,j) (t(1,j)=AM1i-1,j)+AE -1, 1) +B(1—-1,]))
S12 Gomer(acij) (AL J) = (i, 3)+B(i,3+ 1) +A(L,j — 1))
52 ¢ Qowner(B(i,j—1)) (B(1,j—1) =A(3,j —1)+B(1,]))
end for
end for

There are three things worth noting in this loop. First, each new statement
has a single P-Computes rule. Second, each statement is mapped to a different
processor, so it is necessary to evaluate intrinsics, resulting in considerable over-
head. Stage 2 will attempt to eliminate the need for the intrinsics. Finally, note
that Sq 1 as is does not use owner-computes. Stage 3 of our process will translate
the existing P-Computes rule to an owner-computes rule.

If the programmer does not explicitly specify the P-Computes rule (as in the
above example), then the compiler will have to derive it automatically. A part
of that process 1s to decide which subexpressions are to be elevated to the status
of statements. The other part i1s deciding which processors those subexpressions
should be mapped onto.

4.2 Computation Alignment

The computation decomposition of Section 4.1 produces a new loop body that
can have more statements than the original. We can now employ CA to sepa-
rately transform each statement of the new loop body in attempting to elim-
inate the need for intrinsics [12, 22]. Intuitively, the mapping causes a relative
movement of the statement instances across iterations. The idea is to move the
computations so that those that are mapped to the same processor belong to
the same iteration.

Just as there i1s an iteration space for the loop body, there is a computation
space for a statement S, C'S(S), which is an integer space representing all exe-
cution instances of S in the loop. CA applies a separate linear transformation to
each computation space. That is, if the decomposition produces a loop body with
statements Sq,...,Sg, which have computation spaces C'S(S1),...,CS(Sk),
then we can separately transform these computation spaces with linear transfor-
mations T1, ..., Tk, respectively. Before the alignment, an iteration (i1,...,)

[|

A ;
- me - o S [E] m
[B [

owner(A(-1,))) owner(A(i]) owner(A®i,j)) owner(A(i,)))

=] 31_}- s12 HI S - 31-1‘.5/51-2 1
- o B s B
owner(B(i,j-1)) owner(B(i.)))
= O] [=] m
= w
@ i - . i -

=22 22 =22

Iterations before alignment Iterations after alignment

Fig. 1. Movement of computations in the computation space.

consists of computations {(¢1,...,%,;51), ..., ({1, ..., in; Sk)}, where (i1, ..., ipn;
S;) is the execution instance of statement S5 in iteration (¢y,...,4,). After the
alignment, iteration (i, ..., 4,) consists of computations {(T7 (i1, ..., in); S1),

oo (Tt Gy i) S T

This type of computation movement at the statement level can be used to
redefine the iterations so that all (most) computations in an iteration belong
to the same processor. The basic idea in choosing an alignment can be illus-
trated with a simple example. Suppose we want to align statement S below to
statement Sk, where Sk assigns to the original lhs array, say A(4, j).

31 Qowner(B(i-c1,j-c2) (t1(1,5)=..)
SK * Qowner(A(i,j)) (A(1,3) =t1(1,5)+..)

Also assume that A(i,j) and B(i —al, j —a2) are collocated due to a prior
data alignment. We can align S to Sg by applying a transformation that shifts
the S4 computations by (c1 — a1, c2 — a2) relative to the computations of Sk.
Doing so modifies the statements to become:

31 Qowner(B(i-al,j-a2) (t1(i+ct—al,j+c2—a2)=..)
SK * Qowner(A(i,j)) (A(1,3)=t1(1,3)+...)

and both statements are now to be executed by the same processor.? We can
align the statements of the decomposed loop of Section 4.1 in a similar way to
eliminate the need for intrinsics. The S 1 computations are moved along the ¢
direction to bring (¢+1, j; S1.1) to iteration (7, j). Similarly, the So computations
are moved along the j direction so that (¢, 4 1;.S2) is now executed in iteration
(,7). Figure 1 shows these alignments. The resulting CDA transformed loop is:

% The alignment is legal when all dependences between S and So remain positive.

for i=0,n
for j=0,n
S519: (i>0/\j >0)
®owner(A(i,j)) (A(1,j)=t(1,3) +B(1,j+1) + AL, — 1))
Sp: (1>0Aj<nm)
®owner(B(i,j)) (B(i,j) = A(1,j) +B(1,j+1))
S511: (i<n/\j >0)
®owner(A(i,j)) (t(i+1,3) =A(1,3) +A(L,] — 1) +B(4,3))
end for
end for

and all statement instances in an iteration are now mapped to the same processor
so that the intrinsics can be eliminated altogether.

Such a computation alignment changes the references and the dependences in
the loop, as well as the loop bounds. If computation space C'S(S) is transformed
by T, then reference matrix R of each reference r in § is changed to RT !,
We represent data flow constraints in the loop with dependence relations [20],
and we keep the exact dependence information between each pair of read and
write [6, 18]. Consider a read reference r in statement Sy flow dependent on a
write reference w of statement Sy. The dependence relation w[dy, - I] — r[I]
between the references is changed to w[dy, - Ty - ;7! - I] — »[I], when T, is
applied to C'S(Sy) and T, is applied to C'S(S,). The alignment is legal if all new
dependence relations are positive.

The new loop bounds are obtained by projecting all computation spaces onto
an integer space that becomes the iteration space of the aligned loop. Because
each statement can potentially be transformed by a different linear transforma-
tion, the new iteration space can be non-convex. There are two basic strategies
that can be pursued to generate code. First, 1t is possible to take the convex hull
of the new iteration space and then generate a perfect nest that traverses this
hull. This is the strategy chosen to generate the above loop, but requires the
insertion of guards that disable the execution of statements where necessary. A
second, alternative strategy is to generate an imperfect nest that has no guards.
Guard-free code is usually desirable for better performance, but a perfect loop
may be desirable in some cases, for instance to avoid non-vector communica-
tions or to avoid loop overheads. Algorithms to generate code employing both
strategies can be found in the literature [9, 10, 12, 21, 22].

4.3 Aligning the Temporary Arrays

In the third stage, each temporary array is data aligned to the array used by
the ® operator to specify the processor onto which the computations are to be
mapped. The idea is to collocate the lhs reference of a statement (assuming it
is to a temporary) and the array reference in the ® operator. This allows the
P-Computes rule to be interpreted as the owner-computes rule. In our running
example, t(1i+ 1, j)is data aligned to A(1, j), so that owner(4(1, j)) is equivalent

to owner(t(i+ 1, j)). Hence, we implement a flexible computation rule, but can
retain the simplicity of owner-computes for code generation.

4.4 Properties of CDA Transformed Loops

Notice that the transformed loop implements the specified P-Computes rule.
For instance, subexpression 4(i — 1,j)+4(i —1,j — 1)+B(i — 1, j) is computed
on the owner of A(1 — 1, j). The transformation has separated out the complex
computation rule into i1ts constituent simpler rules, which happen to be owner-
computes here. Moreover, the computation alignment has made the loop efficient
by moving the computations relative to each other so that all computations in
an iteration are to be computed by the same processor, namely owner(A(1, j)).
The intrinsics can now be eliminated altogether by changing the loop strides.
The end result is a loop that requires only three non-local accesses, compared to
six in the original (assuming again that each iteration is mapped to a different
processor).

One drawback of our approach is that the computation alignment may change
the loop independent dependences on the temporaries to become loop carried
dependences. This can reduce the degree of available parallelism in the loop.

5 Algorithms

In this section we outline specific algorithms that implement a given P-Computes
rule under the assumption that there is one statement in the original loop body.
The algorithms correspond to the three stages discussed in Section 4. They can
be easily extended to handle the case where the original loop body has multiple
statements. We assume that the references are affine functions of iteration vector
I and are represented by a reference matrix. The affine function £ in a reference
A(£(I)) is used to denote the reference matrix as well. Data alignments also have
a matrix representation, and data alignment of dj on an array changes each
reference r to the array to be dir.

Algorithm comp-decomp decomposes the statement so that each P-Computes
operator maps a separate statement. In each iteration of the algorithm, each in-
nermost ®-subexpression is rewritten as a full statement with a new temporary
array element as its lhs, and the ®-subexpression is replaced by the correspond-
ing reference to the temporary.

Algorithm : comp-decomp
Decompose statement S: Qguner (AE(D)) (1hs = rhs)
begin
i+—1
while rhs of S has a P-Computes operator
Choose an innermost @gyner (B(g(I)) (expr)in S
ti < new temporary array
generate statement 85 : @ogner (B(g(I)) (ti(I) = expr)

replace ®gyner (B(g(I)) (expr) in rhs by t4(I)
i«—1i+4+1

end while

K—1i

generate Sg : ®oyner (Af(I)) (1hs = rhs)
end

The second stage uses algorithm comp-align in attempting to find a compu-
tation alignment that aligns the K statements generated by the decomposition
stage so that all statement instances in an iteration are mapped to the same
processor. The search space of all legal computation alignments is large, and
therefore it 1s not possible to exhaustively search this space in reasonable time.
For this reason, we apply a heuristic.

We know that a statement S5 with P-Computes operator ® guner (Aj (fj (Iy)

can be aligned to statement S5 with operator @gyner (As (£ (I)) by applying a
il

transformation T; = £; ~'d;£; to S, where array A is data aligned to array 44
by transformation dj. Since there are K statements in the loop, we can construct
K computation alignments, o = {1, ..., ax}, with computation alignment «;
aligning each statement of the loop to statement S;. Some of these computation
alignments may be illegal. If there are legal alignments, then the algorithm will
choose the one that results in a loop with the minimal communication overhead.
If there are no legal alignments, then the algorithm attempts to make an illegal
computation alignment legal by discarding individual statement alignments that
violate dependences. The algorithm then selects the computation alignment with
the fewest discarded statement alignments.

Algorithm : comp-align

Given: statements Sq;...;Sg,

where S; has the P-Computes operator ®gyner (ACE: (Ty)- Statements Sq;...;8g_1
i

have temporary variables on the lhs. Sg has the same lhs as the original statement.
begin

Step 1: Construct a set of K computation alignments, «. Each alignment o; € o
contains K statement alignments, a; = {Tq,...,Tg}, such that Tj aligns S; to S;.

Hence, T = fi_ldjfj, where array Aj is data aligned to 44 by dj.

Step 2: If o contains no legal computation alignments, then go to Step 3. Other-
wise, choose alignment «; € o« that (1) is legal and (2) results in a transformed
loop with lowest communication overhead. Return «;.

Step 3: If none of the K computation alignments in « are legal, then modify each
ak € o to make it legal:
(¢) While the alignment ay is illegal due to a violated flow dependence on a
temporary

Choose such a dependence
Assume it is from S5 to 5j
(that is the lhs of S; is accessed in Sy and Ty £ Ty)?
Set Ty «— Tj
(#¢) While the alignment ay is illegal due to a violated dependence on the lhs
of sg
Choose such a dependence
If it is a flow dependence from Sg to S5
then set T4 — Tj where Tj is chosen such that Ty < Tj
and there is no other Tr with T{ < Tr < Tj
else (it is an anti-dependence from S5 to Sg)
then set T; «— T; where T; is chosen such that T; > Tj
and there is no other Tr with T{ > Tr > Tj

Return the computation alignment with the fewest discarded statement alignments.

end

Finally, algorithm data-align-temp aligns the temporaries to existing arrays
so that P-Computes rules can be replaced by simple owner-computes rules.
Algorithm : data-align-temp
Data Align the temporary arrays introduced in Stage 1.

The alignment chosen in stage two is ax = {Tq,...,Tg}.
begin
-1
for each statement S5 : ® _ t:(T. " I)=...

data align t5 to A; by 3
end for
end
As discussed before, this data alignment makes it possible to convert the P-
Computes rule for the loop into the familiar owner-computes rule, assuming the
P-Computes rule for statement Sy 1s ®gyner (Ag(Eg(I))-

6 Concluding Remarks

We have shown how P-Computes, a representative flexible computation rule,
can be effectively implemented by using CDA loop transformations. The imple-
mentation eliminates intrinsics whenever possible. Since the P-Computes rule is
finally translated into the familiar owner-computes rule, the code generation for
a given P-Computes is simpler than if the rule were implemented directly.

We have assumed that the P-Computes rule was specified by the programmer
so as to minimize communication. Ideally, a compiler should be able to automat-
ically derive the most appropriate P-Computes rules. However, the derivation of

3 T; < Tj denotes that for all iterations I, T;I is lexicographically less than or equal

to TjI.

an optimal P-Computes is still an open problem. We believe that it is possible to
produce near optimal computation rules by first deriving CDA transformations
that minimize the number of distinct references; and then employing existing al-
gorithms that derive flexible computation rules [5]. For example, previous work
by Chatterjee et al. shows that subexpressions can be optimally mapped to pro-
cessors in polynomial time [5]. However, their results have to be extended if CDA
transformations are taken into account. If each data element in the statement

M 3) = A(i—1,5)+Ai—1,3— 1)+ AL 3 — 1) + A3, J)
is mapped to a different processor, then Chatterjee’s algorithm would map the
execution of this statement to the processor that owns A(1, j), resulting in three
remote accesses. However, the statement can be CDA transformed to:

S(i+1,3) = A(L,9)+ A(L,3 - 1)

A5, 3) = 5(1,3) + A(L,3 - 1)+ A(,9)

With the temporary appropriately data aligned, the original statement is now ef-
fectively executed on two different processors, namely those that own 4(i — 1, j)
and A(1, j). The execution of the transformed statements require only two remote
accesses.

CDA is a general subexpression-level transformation framework which we
applied here only for SPMD code optimization. CDA can be used in several
other optimization contexts, for example to remove data alignment constraints,
improve locality, eliminate cache conflicts; or reduce register pressure [13, 14].

Our current work includes the development of efficient algorithms that de-
rive P-Computes rules and an analysis of their complexity. We are also working
on more efficient algorithms to eliminate intrinsics that take intermediate align-
ments into account while constructing partial alignments.

References

1. R. Allen, D. Callahan, and K. Kennedy. Automatic decomposition of scientific
programs for parallel execution. In Conference Record of the 14th Annual ACM
Symposium on Principles of Programming Languages, pages 63—76, Munich, West
Germany, January 1987.

2. J. Anderson and M. Lam. Global optimizations for parallelism and locality on
scalable parallel machines. In Proceedings of the ACM SIGPLAN '93 Conference
on Programming Language Design and Implementation, volume 28, June 1993.

3. V. Bala, J. Ferrante, and L. Carter. Explicit data placement (xdp): A methodology
for explicit compile-time representation and optimization of data movement. In
Proceedings of the 4th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, volume 28, pages 139-149, San Diego, CA, July 1993.

4. Utpal Banerjee. Unimodular transformations of double loops. In Proceedings of
Third Workshop on Programming Languages and Compilers for Parallel Comput-
ing, Irvine, CA, August 1990.

5. S. Chatterjee, J.R. Gilbert, ; R. Schreiber, and S. Teng. Optimal evaluation of
array expressions on massively parallel machines. ACM Transactions on Program-
ming Languages and Systems, 17(1):123-156, January 1995.

6. P. Feautrier. Dataflow analysis of array and scalar references. International Jour-
nal of Parallel Programming, 20, 1991.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

HPF Forum. HPF: High performance fortran language specification. Technical
report, HPF Forum, 1993.

M. Gupta. Automatic data partitioning on distributed memory multicomputers.
Technical report, Dept of computer Science, University of Illinois at Urbana Cham-
paign, 1992.

. W. Kelly and W. Pugh. A framework for unifying reordering transformations.

Technical Report UMIACS-TR-92-126, University of Maryland, 1992.

W. Kelly, W. Pugh, and E. Rosser. Code generation for multiple mappings. Tech-
nical Report UMIACS-TR-94-87, University of Maryland, 1994.

K. Knobe, J.D. Lucas, and W.J. Dally. Dynamic alignment on distributed mem-
ory systems. In Proceedings of the Third Workshop on Compilers for Parallel
Computers, Vienna, pages 394—404, 1992.

D. Kulkarni and M. Stumm. Computational alignment: A new, unified program
transformation for local and global optimization. Technical Report CSRI-292,
Computer Systems Research Institute, University of Toronto, January 1994.

D. Kulkarni and M. Stumm. CDA loop transformations. In Proceedings of Third
workshop on languages, compilers and run-time systems for scalable computers,
Troy, NY, May 1995.

D. Kulkarni, M. Stumm, R. Unrau, and W. Li. A generalized theory of linear
loop transformations. Technical Report CSRI-317, Computer Systems Research
Institute, University of Toronto, December 1994.

K.G. Kumar, D. Kulkarni, and A. Basu. Deriving good transformations for map-
ping nested loops on hierarchical parallel machines in polynomial time. In Proceed-
ings of the 1992 ACM International Conference on Supercomputing, Washington,
July 1992.

J. 11 and M. Chen. The data alignment phase in compiling programs for dis-
tributed memory machines. Journal of parallel and distributed computing, 13:213—
221, 1991.

W. Li and K. Pingali. A singular loop transformation framework based on non-
singular matrices. In Proceedings of the Fifth Workshop on Programming Lan-
guages and Compilers for Parallel Computing, August 1992.

D.E. Maydan, J.L. Hennessy, and M.S. Lam. Efficient and exact data dependence
analysis. SIGPLAN Notices, 26(6):1-14, 1991.

D. Padua. Multiprocessors: Discussion of some theoretical and practical problems.
PhD thesis, University of Illinois, Urbana-Champaign, 1979.

W. Pugh. Uniform techniques for loop optimization. In International Conference
on Supercomputing, pages 341-352, Cologne, Germany, 1991.

J. Torres and E. Ayguade. Partitioning the statement per iteration space using
non-singular matrices. In Proceedings of 1993 International Conference on Super-
computing, Tokyo, Japan, July 1993.

J. Torres, E. Ayguade, J. Labarta, and M. Valero. Align and distribute-based lin-
ear loop transformations. In Proceedings of Sixth Workshop on Programming Lan-
guages and Compilers for Parallel Computing, 1993.

M.E. Wolf and M.S. Lam. An algorithmic approach to compound loop transforma-
tion. In Proceedings of Third Workshop on Programming Languages and Compilers
for Parallel Computing, Irvine, CA, August 1990.

This article was processed using the IATpX macro package with LLNCS style

