
An Analysis of Performance Evolution of Linux’s Core Operations

Xiang (Jenny) Ren
University of Toronto

jenny.ren@mail.utoronto.ca

Kirk Rodrigues
University of Toronto

kirk.rodrigues@mail.utoronto.ca

Luyuan Chen
University of Toronto

luyuan.chen@mail.utoronto.ca

Camilo Vega
University of Toronto

camilo.vega@mail.utoronto.ca

Michael Stumm
University of Toronto

stumm@ece.utoronto.ca

Ding Yuan
University of Toronto
yuan@ece.utoronto.ca

Abstract
This paper presents an analysis of how Linux’s performance
has evolved over the past seven years. Unlike recent works
that focus on OS performance in terms of scalability or ser-
vice of a particular workload, this study goes back to basics:
the latency of core kernel operations (e.g., system calls, con-
text switching, etc.). To our surprise, the study shows that the
performance of many core operations has worsened or fluc-
tuated significantly over the years. For example, the select

system call is 100% slower than it was just two years ago. An
in-depth analysis shows that over the past seven years, core
kernel subsystems have been forced to accommodate an in-
creasing number of security enhancements and new features.
These additions steadily add overhead to core kernel opera-
tions but also frequently introduce extreme slowdowns of
more than 100%. In addition, simple misconfigurations have
also severely impacted kernel performance. Overall, we find
most of the slowdowns can be attributed to 11 changes.

Some forms of slowdown are avoidable with more proac-
tive engineering. We show that it is possible to patch two
security enhancements (from the 11 changes) to eliminate
most of their overheads. In fact, several features have been
introduced to the kernel unoptimized or insufficiently tested
and then improved or disabled long after their release.

Our findings also highlight both the feasibility and impor-
tance for Linux users to actively configure their systems to
achieve an optimal balance between performance, function-
ality, and security: we discover that 8 out of the 11 changes
can be avoided by reconfiguring the kernel, and the other 3
can be disabled through simple patches. By disabling the 11
changes with the goal of optimizing performance, we speed
up Redis, Apache, and Nginx benchmark workloads by as
much as 56%, 33%, and 34%, respectively.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6873-5/19/10.
https://doi.org/10.1145/3341301.3359640

CCS Concepts • Software and its engineering → Soft-
ware performance;Operating systems; • Social andpro-
fessional topics→ History of software.

Keywords Performance evolution, operating systems, Linux

ACM Reference Format:
Xiang (Jenny) Ren, Kirk Rodrigues, Luyuan Chen, Camilo Vega,
Michael Stumm, and Ding Yuan. 2019. An Analysis of Performance
Evolution of Linux’s Core Operations. In ACM SIGOPS 27th Sym-
posium on Operating Systems Principles (SOSP ’19), October 27–30,
2019, Huntsville, ON, Canada. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3341301.3359640

1 Introduction
In the early days of operating systems (OS) research, the
performance of core OS kernel operations – in particular,
system call latency – was put under the microscope [5, 11,
37, 47, 56]. However, over the past decade or two, interest
in core kernel performance has waned. Researchers have
seemingly shifted focus to other aspects of OS performance
such asmulticore scalability [10], performance under specific
workloads or on new hardware, and scheduling [45], to name
just a few. Indeed, the most recent comprehensive analysis
of OS system call performance dates back to 1996, when
McVoy and Staelin [47] studied OS system call latencies using
lmbench with follow-up work from Brown and Seltzer [11]
in 1997 that extended lmbench. This begs the question: are
core OS kernel operations getting slower or faster?
This paper presents an analysis of how the latencies of

Linux’s core operations have evolved over the past seven
years. We use the term “kernel operations” to encompass
both system calls and kernel functions like context switch-
ing. This work first introduces LEBench, a microbenchmark
suite that measures the performance of the 13 kernel oper-
ations that most significantly impact a variety of popular
applications. We test LEBench on 36 Linux release versions,
from 3.0 to 4.20 (the most recent), running on a single Intel
Xeon server. Figure 1 shows the results. All kernel operations
are slower than they were four years ago (version 4.0), ex-
cept for big-write and big-munmap. The majority (75%) of the
kernel operations are slower than seven years ago (version
3.0). Many of the slowdowns are substantial: the majority

https://doi.org/10.1145/3341301.3359640
https://doi.org/10.1145/3341301.3359640
https://www.acm.org/publications/policies/artifact-review-badging/#available
https://www.acm.org/publications/policies/artifact-review-badging/#functional
https://www.acm.org/publications/policies/artifact-review-badging/#replicated

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada X. Ren et al.

3
.0

3
.1

3
.2

3
.3

3
.4

3
.5

3
.6

3
.7

3
.8

3
.9

3
.1

0
3

.1
1

3
.1

2
3

.1
3

3
.1

4
3

.1
5

3
.1

6
3

.1
7

3
.1

8
3

.1
9

4
.0

4
.1

4
.2

4
.3

4
.4

4
.5

4
.6

4
.7

4
.8

4
.9

4
.1

0
4

.1
1

4
.1

2
4

.1
3

4
.1

4
4

.1
5

4
.1

6
4

.1
7

4
.1

8
4

.1
9

4
.2

0

big-pagefault
small-pagefault

big-epoll
big-poll

big-select
epoll
poll

select
big-send & recv *

send & recv *
thrcreate

big-fork
fork

big-munmap
med-munmap

small-munmap
mmap *

big-write
med-write

small-write
big-read

med-read
small-read

contextswitch 9

28

23

94

0

6

2

10

48

29

74

20

21

72

34

-53

18

6

7

0

-2

-1

17

-48

7

29

24

94

1

6

2

9

48

31

74

20

16

69

35

-53

12

1

7

-2

-4

0

19

-47

17

27

21

96

4

8

3

13

53

36

68

21

16

65

23

34

17

2

17

0

-2

5

19

-46

10

25

25

93

11

9

3

13

48

27

66

21

19

52

24

32

16

2

17

-2

-3

7

20

-46

5

24

22

83

2

5

2

11

45

23

70

16

16

46

21

31

16

3

5

-3

-4

3

17

-52

10

23

23

84

9

6

1

16

43

19

65

16

23

47

20

41

15

6

23

1

0

14

18

-52

11

18

21

79

13

6

3

15

28

19

62

16

19

51

26

30

20

14

30

0

0

16

17

-53

22

21

21

79

12

7

4

8

29

17

61

17

11

26

26

32

14

7

23

1

1

21

27

-50

23

20

20

79

15

7

3

19

32

18

79

18

26

28

24

32

12

3

21

0

-1

16

19

-50

1

-3

-2

54

-1

-4

-2

-3

6

-4

46

-5

-5

6

0

9

-8

-15

-1

-10

-10

2

2

-59

89

146

15

55

56

4

-1

123

63

10

46

-1

-4

38

136

16

68

79

80

-10

-10

-4

37

-48

1

-4

-2

57

-1

-2

0

-2

4

-3

57

-4

-4

11

-2

9

-5

-7

-5

-1

-6

-4

-1

-60

98

153

16

58

61

8

0

130

71

15

56

5

-2

27

148

7

79

102

107

6

13

2

43

-46

94

151

15

1

59

7

-1

126

69

13

52

3

-5

33

144

6

75

95

101

15

-2

-2

41

-47

82

132

13

-2

50

4

-1

114

55

31

51

2

3

38

122

4

70

90

82

0

0

-2

31

-49

80

132

16

3

48

5

-1

107

60

32

44

3

1

64

117

4

65

83

81

-2

-2

-2

31

15

2

3

1

-2

0

0

-1

2

3

14

35

0

3

-3

-1

-2

4

5

-3

-1

-1

-3

-1

1

1

-1

0

-1

0

-2

-1

2

7

4

7

-1

6

1

0

-2

4

5

-1

3

3

1

1

3

1

-1

1

1

-2

-1

-1

0

2

1

2

1

2

0

-1

-2

-1

5

0

-1

0

0

0

3

0

-1

0

0

-1

-1

-1

1

4

2

0

0

6

3

1

1

2

2

-1

2

2

1

3

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

-4

-6

0

2

9

0

1

6

-1

-4

1

-2

0

-1

-6

-2

2

-2

2

10

2

5

-3

-3

-2

-3

0

1

11

-2

0

4

-3

-4

-5

-1

0

-5

-4

-1

-2

-2

-2

1

3

-2

-3

-4

-8

-1

2

-1

-2

-3

-1

5

-2

-3

-3

-3

1

-2

1

0

-2

-6

0

0

-1

-2

1

-4

-11

-3

1

-1

-3

-4

-1

5

-4

-4

-6

-1

2

9

-1

-1

-1

-5

0

-4

-5

1

-3

-5

-9

0

3

1

-2

-3

1

3

1

-1

-1

1

0

-6

-1

-2

0

-5

1

14

-2

6

-1

3

-10

6

3

2

4

-2

0

16

5

0

-2

2

1

13

5

0

7

7

7

0

2

6

5

1

-14

0

0

50

1

-1

2

7

3

-1

-3

-2

33

-2

3

-1

-4

-8

10

39

37

45

-2

-4

-6

6

9

0

1

-1

3

9

1

1

0

0

25

-5

10

0

9

4

3

42

40

41

3

2

-5

11

8

0

-2

-5

-1

11

4

3

4

2

26

5

9

0

5

-4

3

44

38

40

2

-9

-6

12

9

2

-2

-6

0

11

5

3

0

-1

26

17

9

-1

9

0

-1

40

40

42

1

-13

-4

11

10

0

-2

-7

0

18

7

5

0

1

36

6

9

-1

7

0

0

43

41

43

3

-13

-6

11

9

72

-4

-8

-1

14

9

4

-1

0

37

3

3

-1

-2

-3

-2

41

39

42

2

-14

-6

10

4

72

-2

-9

-3

18

13

6

-1

-1

39

7

6

0

1

-3

0

40

38

42

4

-12

21

77

11

71

23

-6

-3

73

67

63

0

4

29

31

75

3

37

47

57

39

36

40

36

0

44

98

16

75

46

0

0

147

94

73

-7

14

50

46

90

4

115

144

145

118

114

128

54

9

46

109

18

79

56

2

0

142

81

70

-12

13

49

49

96

4

118

149

149

122

121

134

51

9

46

103

15

77

56

2

-1

120

82

69

-17

12

43

102

104

5

118

149

150

113

112

126

45

8

54

103

15

78

51

1

-2

120

81

68

-15

13

44

94

104

8

116

146

148

120

119

134

45

10

55

103

16

76

51

2

0

119

77

68

-16

0

48

85

107

5

114

146

127

117

120

131

46

10

58

99

16

74

50

2

-1

116

78

68

-14

2

42

83

100

4

109

136

124

121

115

131

46

6

(a) Percentage Change in Test Latency Relative to v4.0

3
.0

3
.1

3
.2

3
.3

3
.4

3
.5

3
.6

3
.7

3
.8

3
.9

3
.1

0
3

.1
1

3
.1

2
3

.1
3

3
.1

4
3

.1
5

3
.1

6
3

.1
7

3
.1

8
3

.1
9

4
.0

4
.1

4
.2

4
.3

4
.4

4
.5

4
.6

4
.7

4
.8

4
.9

4
.1

0
4

.1
1

4
.1

2
4

.1
3

4
.1

4
4

.1
5

4
.1

6
4

.1
7

4
.1

8
4

.1
9

4
.2

0

Linux Kernel Versions

cgroup mem. controller
Missing CPU idle states

Hugepages disabled
Force context tracking

TLB layout spec.
Fault around

User pagefault handling
Rand. SLAB freelist

Harden usercopy
Meltdown patch

Spectre patch

(b) Enabled Changes

D
is

a
b
le

dE
n
a
b
le

d

-50%

-25%

0%

25%

50%

75%

100%

125%

150%

Figure 1.Main result. (a) shows the latency trend for each test across all kernels, relative to the 4.0 kernel. (We use the 4.0
kernel as a baseline to better highlight performance degradations in later kernels.) (b) shows the timeline of each performance
affecting change. Each value in (a) indicates the percentage change in latency of a test relative to the same test on the 4.0
kernel. Therefore, positive and negative values indicate worse and better performance, respectively. *: for brevity, we show the
averaged trend of related tests with extremely similar trends, including the average of all mmap tests, the send and recv test,
and the big-send and big-recv test.

(67%) slow down by at least 50% and some by 100% over
the last seven years (e.g., mmap, poll & select, send & recv).
Performance has also fluctuated significantly over the years.
Drilling down on these performance fluctuations, we ob-

serve that a total of 11 root causes are responsible for the
major slowdowns. These root causes fall into three categories.
First, we observe a growing number of (1) security enhance-
ments and (2) new features, like support for containers and
virtualization, being added to the kernel. The effect of this
trend on kernel performance manifests itself in two ways: a

steady creep of slowdown in core operations, and disruptive
slowdowns that persist over many versions (e.g., a more than
100% slowdown that persists across six versions). Such sig-
nificant impacts are introduced by security enhancements
and features, which often demand complex and intrusive
modifications to central subsystems of the kernel, such as
memory management. The last category of root causes is
(3) configuration changes, some of which are simple miscon-
figurations that resulted in severe slowdowns across kernel
operations, impacting many users.

An Analysis of Performance Evolution of Linux’s Core Operations SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

While many forms of slowdowns result from fundamental
trade-offs between performance and functionality or secu-
rity, we find a good number could have been avoided or
significantly alleviated with more proactive software engi-
neering practices. For example, frequent lightweight test-
ing can easily catch the simple misconfigurations that re-
sulted in widespread slowdowns. The performance of certain
kernel functions would also benefit from more eager opti-
mizations and thorough testing: we found some features
significantly degraded the performance of core kernel opera-
tions in the initial release; only long after having been intro-
duced were they performance-optimized or disabled due to
performance complaints. Furthermore, a few other changes
that introduced performance slowdowns simply remained
unoptimized—we patched two of the security enhancements
to eliminate most of their performance overhead without re-
ducing security guarantees. At the same time, we recognize
the difficulty of testing and maintaining a generic OS kernel
like Linux, which must support a diverse array of hardware
and workloads [27], and evolves extremely quickly [52]. On
the other hand, the benefit of being a generic OS kernel is
that Linux is highly configurable—8 out of the 11 root causes
can be easily disabled by reconfiguring the kernel. This cre-
ates the potential for Linux users to actively configure their
kernels and significantly improve the performance of their
custom workloads.

Out of the many performance-critical parts of the kernel,
we chose to study core kernel operations since the signif-
icance of their performance is likely elevating; recent ad-
vances in fast non-volatile memory and network devices
together with the flattened curve of microprocessor speed
scaling may shift the bottleneck to core kernel operations.
We also chose to focus on how the kernel’s software design
and implementation impact performance. Prior studies on
OS performance mostly focused on comparing the implica-
tions of different architectures [5, 12, 56, 64]. Those studies
occurred during a time of diverse and fast-changing CPUs,
but such CPU architectural heterogeneity has largely dis-
appeared in today’s server market. Therefore, we focus on
software changes to core OS operations introduced over
time, making this the first work to systematically perform a
longitudinal study on the performance of core OS operations.

This paper makes the following contributions. The first is
a thorough analysis of the performance evolution of Linux’s
core kernel operations and the root causes for significant
performance trends. We also show that it is possible to
mitigate the performance overhead of two of the security
enhancements. Our second contribution is LEBench, a mi-
crobenchmark that is collected from representative work-
loads together with a regression testing framework capa-
ble of evaluating the performance of an array of Linux ver-
sions. The benchmark suite and a framework for automati-
cally testing multiple kernel versions are available at https:
//github.com/LinuxPerfStudy/LEBench. Finally, we evaluate

Application Workload % System Time
Apache Spark v2.2.1 spark-bench’s minimal example 3%
Redis v4.0.8 redis-benchmark

with 100K requests 41%
PostgreSQL v9.5 pgbench with scale factor 100 17%
Chromium browser Watching a video and reading
v59.0.3071.109 a news article 29%
Build toolchain Compiling the 7%
(make 4.1, gcc 5.3) 4.15.10 Linux kernel

Table 1. Applications and respective workloads used to choose
core kernel operations, and each workload’s approximate execution
time spent in the kernel.

the impact of the 11 identified root causes on three real-
world applications and show that they can cause slowdowns
as high as 56%, 33%, and 34% on the Redis key-value store,
Apache HTTP server, and Nginx web server, respectively.

The rest of the paper is organized as follows. §2 describes
LEBench and the methodology we used to drive our analy-
sis. We summarize our main findings in §3 before zooming
into each change that caused significant performance fluc-
tuations in §4. §5 discusses the performance implications of
core kernel operations on three real-world applications. §6
validates LEBench’s results on a different hardware setup.
We discuss the challenges of Linux performance tuning in
§7, and we survey related work in §9 before concluding.

2 Methodology
Our experiments focus on system calls, thread creation, page
faults, and context switching. To determine which system
calls are frequently exercised, we use our best efforts to select
a set of representative application workloads. Table 1 lists
the applications and the workloads we ran. We include work-
loads from three popular server-side applications: Spark, a
distributed computing framework, Redis, a key-value store,
and PostgreSQL, a relational database. In addition, we include
an interactive user workload—web browsing through the
Chromium browser—and a software developmentworkload—
building the Linux kernel. The chosen workloads exercise
the kernel with varying intensities, as shown in Table 1.

We used strace tomeasure CPU time and the call-frequency
of each system call used by the workloads. We then selected
those system calls which took up the most time across all
workloads. wait-related system calls were excluded as their
sole purpose is to block the process. Table 2 lists each of the
microbenchmarks. Where applicable, we vary the input sizes
to account for a variety of usage patterns.
Our process for running each microbenchmark is as fol-

lows. Latency is measured by collecting a timestamp immedi-
ately before and after invoking a kernel operation. For system
calls, the benchmark bypasses the libc wrapper whenever
possible to expose the true kernel performance. We repeat

https://github.com/LinuxPerfStudy/LEBench
https://github.com/LinuxPerfStudy/LEBench

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada X. Ren et al.

Test Name Description
Context switch Forces context switching by having two processes repeatedly pass one byte through two pipes.
Thread create Measure the time immediately before and after the thread creation, both in the child and the parent. The

shorter latency of the two is used to eliminate variations introduced by scheduling.
fork Measure the time immediately before and after the fork, both in the child and the parent. The shorter

latency of the two is used. To stress test fork, 12,000 writable pages are mapped into the parent before
forking; to understand the minimum forking overhead, 0 pages are mapped.

read, write Sequentially read or write the entire content of a file. A one page file is used to understand the bare
minimum overhead. Sizes of 10 and 10,000 pages are used to test how performance changes with increasing
sizes. For read tests, the page cache is warmed up by running the tests before taking measurements.

mmap, munmap Map a number of consecutive file-backed read-only pages from a file into memory, or unmap a number of
consecutive file-backed writable pages into a file. We use three file sizes: 1, 10, and 10,000 pages.

Page fault Reads one byte from the first page of a number of newly mapped pages to trigger page faults. The test
is run for 1 and 10,000 contiguous, mapped file-backed pages. The size of the mapped region affects the
behavior of page fault handling under the “fault-around” patch.

send, recv Creates a TCP connection between two processes on the same machine using a UNIX socket as the
underlying communication channel. Each process repeatedly sends/receives a message to/from the other.
The test is run for two message sizes: 1 byte and 96,000 bytes.

select, poll,
epoll

Performs select, poll, or epoll on a number of socket file descriptors. The socket file descriptors become
ready upon having enough memory for each socket. The test is run for 10 and 1,000 file descriptors.

Table 2. A description of the tests in LEBench including their usage patterns. (The size of a page is 4kB in this table.)

each measurement 10,000 times and report the value calcu-
lated using the K-best method with K set to 5 and tolerance
set to 5% [59]. To do this, we order all measured values nu-
merically, and select the lowest from the first series of five
values where no two adjacent values differ by more than
5%. Selecting lower values filters the interference from back-
ground workloads, and setting K to 5 and tolerance to 5%
is considered effective in ensuring consistent and accurate
results across runs [59].
We run the microbenchmarks on each major version of

Linux released in the past seven years. This includes versions
3.0 to 3.19 and versions 4.0 to 4.20. For every major version,
we select the latest minor version (the y in v.x.y) released
before the next major version. This is to avoid testing changes
that were backported from a subsequent major version. For
example, for major version 3.0, we tested minor version 3.0.7
(released just before the release of 3.1.0) since 3.0.8 may
contain some changes that were introduced in 3.1.0. We only
tested versions that were released. Linux distributions such
as Ubuntu [68] or Arch Linux [33] typically configure the
kernel differently from Linux’s default configuration. We use
Ubuntu’s Linux distribution because, at least for web-servers,
Ubuntu is the most widely used Linux distribution [70]. For
example, Netflix hosts its services on Ubuntu kernels [4].

We carried out the tests on an HP DL160 G9 server with a
2.40GHz Intel Xeon E5-2630 v3 processor, 512KB L1 cache,
2MB L2 cache, and 20MB L3 cache. The server also has 128GB
of 1866MHz DDR4 memory and a 960GB SSD for persistent
storage. To understand how different hardware setups affect
the results, we repeated the tests on a Lenovo laptop with an

Intel i7 processor and analyze the differences between the
two sets of results in §6.
When interpreting results from the microbenchmarks,

we treat a flat latency trend as expected and analyze any
increase or decrease that may signify a performance regres-
sion or improvement, respectively. We extract the causes of
these performance changes iteratively: for each test, we first
identify the root cause of the most significant performance
change; we then disable the root cause and repeat the process
to identify the root cause of the next most significant perfor-
mance change. We repeat this until the difference between
the slowest and fastest kernel versions is no more than 10%
for the target test.

3 Overview of Results
We overview the results of our analysis in this section and
make a few key observations before detailing each root cause
in §4.

Figure 1 displays the latency evolution of each test across
all kernels, relative to the 4.0 kernel. Only isolated tests expe-
rience performance improvements over time; the majority of
tests display worsening performance trends and frequently
suffer prolonged episodes of severe performance degradation.
These episodes result in significant performance fluctuations
across multiple core kernel operations. For example, send
and recv’s performance degraded by 135% from version 3.9
to 3.10, improved by 137% in 3.11, and then degraded again
by 150% in 3.12. We also observe that the benchmark’s over-
all performance degraded by 55% going from version 4.13 to
4.15. The sudden and significant nature of these performance

An Analysis of Performance Evolution of Linux’s Core Operations SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

Root Cause Description How it affects performance Impact

Security Enhancements: max combined slowdown: 146% poll

Kernel page-table
isolation (KPTI)
(§4.1.1)

Removes kernel memory mappings from
the page table upon entering userspace to
mitigate Meltdown.

A kernel entry/exit now swaps the
page table pointer, which further
leads to subsequent TLB misses.

recv 63%,
small-read

60%
Avoid indirect branch
speculation (§4.1.2)

Mitigates Spectre (v2) by avoiding
speculations on indirect jumps and calls.

Adds around 30 cycles to each
indirect jump or call.

poll 89%,
recv 25%

SLAB freelist
randomization (§4.1.3)

Randomizes the order of objects in the
SLAB freelist.

Destroys spatial locality that leads to
increased L3 cache misses.

big-select

45%
Hardened usercopy
(§4.1.4)

Adds sanity checks on data-copy opera-
tions between userspace and the kernel.

Constant cost for system calls that
copy data to and from userspace.

send 18%,
select 18%

New Features: max combined slowdown: 167% big-pagefault

Fault around (§4.2.1) Pre-establishes mappings for pages
surrounding a faulting page, if they are
available in the file cache.

Adds constant overhead for page
faults on read-only file-backed
pages.

big-

pagefault

167%
Control group mem-
ory controller (§4.2.2)

Accounts and limits memory usage per
control group.

Adds overhead when establishing or
destroying page mappings.

big-munmap

81%
Disabling transparent
huge pages (§4.2.3)

Disables the transparent use of 2MB pages. More page faults when sequentially
accessing large memory regions.

big-read

83%
Userspace page fault
handling (§4.2.4)

Enables userspace to provide the mapping
for page faults in an address range.

Slows down fork, which checks each
copied memory area for userspace
mappings.

big-fork

12%

Configuration Changes: max combined slowdown: 171% small-read

Forced context
tracking (§4.3.1)

Misconfiguration forces unnecessary CPU
time accounting and RCU handling on
every kernel entry and exit.

Adds overhead on each kernel entry
and exit.

small-read

171%, recv
149%

TLB layout
specification (§4.3.2)

Hardcoded & outdated TLB capacity in
older kernels causes munmap to flush the
TLB when it should invalidate individual
TLB entries.

Increases TLB misses due to flushes. 50% read
after munmap

Missing CPU power-
saving states (§4.3.3)

Missing power-saving states in older ker-
nels results in decreased effective fre-
quency.

Slows down CPU bound tests. select 31%,
send 26%

Table 3. Summary of root causes causing performance fluctuations across kernel versions. For each root cause, we report
examples of significant slowdowns from highly impacted tests across all kernel versions.

degradations suggests they are caused by intrusive changes
to the kernel.

We identified 11 kernel changes that explain the significant
performance fluctuations as well as more steady sources of
overhead. These are categorized and summarized in Table 3,
and their impact on LEBench’s performance is overviewed
in Figure 2. The 11 changes fall into three categories: security
enhancements (4/11), new features (4/11), and configuration
changes (3/11).
Overall, Linux users are paying a hefty performance tax

for security enhancements. The cost of accommodating se-
curity enhancements is high because many of them demand
significant changes to the kernel. For example, the mitiga-
tion for Meltdown (§4.1.1) requires maintaining a separate

page table for userspace and kernel execution, fundamen-
tally modifying some of the core designs of memory manage-
ment. Similarly, SLAB freelist randomization (§4.1.3) alters
dynamic memory allocation behaviours in the kernel.

Interestingly, several security features introduce overhead
by attempting to defend against untrusted code in the kernel
itself. For example, the hardened usercopy feature (§4.1.4) is
used to defend against bugs in kernel code that might copy
too much data between userspace and the kernel. However,
we note that it can be redundant with other kernel code that
already carefully validates pointers. Similarly, SLAB freelist
randomization (§4.1.3) attempts to protect against buffer
overflow attacks that exploit buggy kernel code. However,
the randomization introduces overhead for all uses of the

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada X. Ren et al.

0
50

100
150
200 Force context tracking Fault around

0
25
50
75

100
Spectre patch Hugepages disabled

0

25

50

75

M
a
x
im

u
m

 S
lo

w
d

o
w

n
 P

e
r

R
o
o
t

C
a
u

s
e
 (

%
)

cgroup mem. controller Meltdown patch

0
10
20
30
40

Rand. SLAB freelist Missing CPU idle states

0

5

10
15

Harden usercopy

c
o
n

te
x
ts

w
it

c
h

s
m

a
ll

-r
e
a
d

m
e
d

-r
e
a
d

b
ig

-r
e
a
d

s
m

a
ll

-w
ri

te
m

e
d

-w
ri

te
b

ig
-w

ri
te

m
m

a
p

 *
s
m

a
ll

-m
u

n
m

a
p

m
e
d

-m
u

n
m

a
p

b
ig

-m
u

n
m

a
p

fo
rk

b
ig

-f
o
rk

th
rc

re
a
te

s
e
n

d
 &

 r
e
c
v
 *

b
ig

-s
e
n

d
 &

 r
e
c
v
 *

s
e
le

c
t

p
o
ll

e
p

o
ll

b
ig

-s
e
le

c
t

b
ig

-p
o
ll

b
ig

-e
p

o
ll

s
m

a
ll

-p
a
g

e
fa

u
lt

b
ig

-p
a
g

e
fa

u
lt

0

5

10

15 TLB layout spec.

c
o
n

te
x
ts

w
it

c
h

s
m

a
ll

-r
e
a
d

m
e
d

-r
e
a
d

b
ig

-r
e
a
d

s
m

a
ll

-w
ri

te
m

e
d

-w
ri

te
b

ig
-w

ri
te

m
m

a
p

 *
s
m

a
ll

-m
u

n
m

a
p

m
e
d

-m
u

n
m

a
p

b
ig

-m
u

n
m

a
p

fo
rk

b
ig

-f
o
rk

th
rc

re
a
te

s
e
n

d
 &

 r
e
c
v
 *

b
ig

-s
e
n

d
 &

 r
e
c
v
 *

s
e
le

c
t

p
o
ll

e
p

o
ll

b
ig

-s
e
le

c
t

b
ig

-p
o
ll

b
ig

-e
p

o
ll

s
m

a
ll

-p
a
g

e
fa

u
lt

b
ig

-p
a
g

e
fa

u
lt

User pagefault handling

Figure 2. Impact of the 11 identified root causes on the performance of LEBench tests. For every root cause, we display the
maximum slowdown across all kernels for each test. Note that the Y-axis scales are different for each row of subgraphs: Root
causes with highest possible impacts on LEBench are ordered first.

SLAB freelist, including correct kernel code. This suggests
a trust issue that is fundamentally rooted in the monolithic
kernel design [8].
Similar to the security enhancements, supporting many

new features demands complex and intricate changes to
the core kernel logic. For example, the control group mem-
ory controller feature (§4.2.2), which supports containeriza-
tion, requires tracking every page allocation and dealloca-
tion; in an early unoptimized version, it slowed down the
big-pagefault and big-munmap tests by as much as 26%
and 81% respectively.

While the complexity of certain features may increase the
difficulty of performance optimization. Simple misconfigura-
tions have also significantly impacted kernel performance.
For example, mistakenly turning on forced context tracking
(§4.3.1) caused all the benchmark tests to slowdown by an
average of 50%.
Two aforementioned changes (forced context tracking

and control group memory controller) were significantly
optimized or disabled entirely reactively, i.e., only after per-
formance degradations were observed in released kernels,
instead of proactively. Forced context tracking (§4.3.1) was
only disabled after plaguing five versions for more than 11

months, and has become a well-known cause of performance
troubles for Linux users [46, 48, 57]; control group memory
controller (§4.2.2) remained unoptimized for 6.5 years, and
continues to cause significant performance degradation in
real workloads [49, 69]. Both cases are clearly captured by
LEBench, suggesting that more frequent and thorough test-
ing, as well as more proactive performance optimizations,
would have avoided these impacts on users.

As another example where Linux performance would ben-
efit from more proactive optimization, we were able to easily
optimize two other security enhancements, namely avoid-
ing indirect jump speculation (§4.1.2) and hardened user
copy (§4.1.4), largely eliminating their slowdowns without
sacrificing security guarantees.
Finally, with little effort, Linux users can avoid most of

the performance degradation from the identified root causes
by actively reconfiguring their systems. In fact, 8 out of 11
root causes can be disabled through configuration, and the
other 3 can be disabled through simple patches. Users that
do not require the new functionalities or security guarantees
can disable them to avoid paying unnecessary performance
penalties. In addition, our findings also point to the fact that
Linux is shipped with static configurations that cannot adapt

An Analysis of Performance Evolution of Linux’s Core Operations SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

to workloads with diverse characteristics. This suggests that
Linux users should pay close attention to performance when
their workload’s characteristics change or when updating
the kernel; in such scenarios, kernel misconfigurations (with
respect to the workload) or Linux performance regressions
could be avoided by proactive kernel reconfiguration. This
practice has the potential to offer significant performance
gains.

4 Performance Impacting Root Causes
This section describes the 11 root causes from Table 3. For
each root cause, we first explain the background of the
change before analyzing its performance impact.

4.1 Security Enhancements
Four security enhancements to the kernel resulted in signifi-
cant performance slowdowns in LEBench. The first two are
a response to recently discovered CPU vulnerabilities, and
the last two are meant to protect against buggy kernel code.

4.1.1 Remove Kernel Mappings in Userspace
Introduced after kernel version 4.14, kernel page table isola-
tion (KPTI) [41] is a security patch to mitigate the Meltdown
vulnerability [44] that affects several current generation pro-
cessor architectures, including Intel x86 [18, 22]. The average
slowdown caused by KPTI across all microbenchmark tests
is 22%; recv and read tests are affected the most, slowing
down by 63% and 59% respectively.

Meltdown allows a userspace process to read kernel mem-
ory. When the attacker performs a read of an unauthorized
address, the processor schedules both the read and the privi-
lege check in its instruction pipeline. However, before the
privilege check is complete, the value read may have already
been returned from memory and loaded into the cache. Once
the privilege check fails, the processor does not eliminate all
side-effects of the read and the value remains in the cache.
The attacker can exploit this by using a “timing-channel” to
leak the value.
KPTI mitigates Meltdown by using a different page table

in the kernel than in userspace. Before the patch, kernel and
user mode shared the same address space using one shared
page table with kernel memory protected by requiring a
higher privilege level for access. However, this protection
is ineffective with Meltdown. With KPTI, the kernel-space
page table still contains both kernel and user mappings;
whereas the userspace page table removes the vast majority
of kernel mappings, leaving only the bare-minimum ones
necessary to service a trap (e.g., handlers for system calls
and interrupts) [31].

The overhead of keeping two separate page tables is mini-
mal. KPTI only needs to keep a separate copy of the top-level
page table for both kernel and user page tables; all lower-
level page tables in the user page table can be accessed from

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Read Test Latencies (s) 1e−5

0
20
40
60
80

100
120

La
te

n
cy

 In
cr

ea
se

 (
%

)

Read Test Slowdown from KPTI

with PCID

without PCID

Figure 3. Slowdown of the read test due to KPTI, with increasing
baseline latency, with and without the PCID feature enabled.

the kernel page table. The top-level page table contains only
512 entries and is modified very infrequently, requiring very
little “synchronization” between the two copies.

KPTI’s most serious source of overhead stems from swap-
ping the page table pointer on every kernel entry and exit,
each time forcing a TLB flush. This leads to a constant cost of
the two writes to the page table pointer register (CR3 on Intel
processors) and a variable cost from increased TLB misses.
With KPTI, the lower-bound of the constant cost is on the
order of 400–500 cycles, whereas without KPTI, the kernel
entry and exit overhead is less than 100 cycles.1 The variable
cost of TLB misses depends on different workloads’ memory
access patterns. For example, small-read and big-read spend
an additional 700 and 6000 cycles in the TLB miss handler,
respectively.
The kernel developers released an optimization with the

KPTI patch that avoids the TLB flush on processors with
the process-context identifier (PCID) feature [23].2 The fea-
ture allows tagging each TLB entry with a unique PCID
pertaining to an address space, such that only entries with
the currently active PCID are used by the CPU. The kernel
developers use this feature to assign a separate PCID for
the kernel and user TLB entries, hence the kernel no longer
needs to flush the TLB on each entry and exit.
The performance improvement is significant. Figure 3

compares KPTI’s overhead on the read test with and without
the PCID optimization. For the shortest read test with a
baseline latency of 344ns, the PCID optimization reduces
the slowdown from 113% to 47%. The number of increased
cycles in the TLB miss handler is reduced from 700 to just
30. (Figure 3 also shows that tests with short latencies are
more sensitive to the overhead caused by KPTI.)
Despite the TLB flush being avoided, we find the lower-

bound of the constant cost of KPTI is still 400–500 cycles.
This is because the kernel still needs to write to the CR3 reg-
ister on every entry and exit, since on Intel processors, the
active PCID is stored in bits that are a part of CR3. Writing
to CR3 is expensive, costing around 200 cycles. This is why,

1We measure the constant cost by comparing the result of running an
empty system call with and without the KPTI patch. We measure the cycles
spent in the MMU’s TLB miss handler. The constant cost is estimated by
subtracting the increase in cycles spent in the TLB miss handler from the
overall increase in latency.
2The results in Figure 1 and Table 3 are obtained with PCID enabled.

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada X. Ren et al.

1 # normal code
2 call load_label
3 capture_ret_spec:
4 pause ; lfence
5 jmp capture_ret_spec
6 load_label:
7 mov rax, [rsp]
8 ret
9
10 # rax target
11 …

1

2

2

Figure 4.An example showing howRetpoline replaces jmp [rax].
The solid lines indicate actual execution paths, whereas the dotted
line indicates a speculatively executed path.

as shown in Figure 3, the shortest read test still experiences
a 59% slowdown with PCID-optimized KPTI. The PCID op-
timization alone has a minimal cost: it results in around
two additional instruction TLB misses per round-trip to the
kernel, compared to pre-KPTI kernels. This is because the
optimization requires additional code, for example, to swap
the active PCID on kernel entry and exit.

Interestingly, the PCID optimization benefits all tests with
the exception of the med-munmap test, whose slowdown in-
creases from 18% to 53% with PCID enabled. This is because
med-munmap shoots down individual TLB entries, and the in-
struction to invalidate a tagged TLB entry is more expensive.

4.1.2 Avoiding Indirect Branch Speculation
Introduced in version 4.14, the Retpoline patch [67] miti-
gates the second variant (V2) of the Spectre attacks [35] by
bypassing the processor’s speculative execution of indirect
branches. The patch slows down half of the tests by more
than 10% and causes severe degradation to the select, poll,
and epoll tests, resulting in an average slowdown of 66%.
In particular, poll and epoll slow down by 89% and 72%,
respectively.
An indirect branch is a jump or call instruction whose

target is not determined statically—it is only resolved at
runtime. An example is jmp [rax], which jumps to an address
that is stored in the rax register. Modern processors use
the indirect branch predictor to speculatively execute the
instructions at the predicted target. However, Intel and AMD
processors do not completely eliminate all side effects of
an incorrect speculation, e.g., by leaving data in the cache
as described in §4.1.1 [1, 22]. Attackers can exploit such
“side-channels” by carefully polluting the indirect branch
target history, hence tricking the processor into speculatively
executing the desired branch target.

Retpoline mitigates Spectre v2 by replacing each indirect
branch with a sequence of instructions—called a “thunk”—
during compilation. Figure 4 shows the thunk that replaces
jmp [rax]. The thunk starts with a call, which pushes the
return address (line 4) onto the stack, before jumping to
line 7. Line 7, however, replaces the return address with

fs/select.c
int do_select(...) {
for (;;) {
 ...

 mask = (*f_op->poll)(f.file, wait);
 }
...

}

net/socket.c

const struct file_operations
 socket_file_ops = {
.poll = sock_poll,
...

};

Figure 5. Left: the indirect branch code snippet used by select,
poll, and epoll. Right: assignment of the poll function pointer
for sockets.

for (;;) {

...

- mask = (*f_op ->poll)(f.file , wait);

+ if ((*f_op ->poll) == sock_poll)

+ mask = sock_poll(f.file , wait);

+ else if ((*f_op ->poll) == pipe_poll)

+ mask = pipe_poll(f.file , wait);

+ else if ((*f_op ->poll) == timerfd_poll)

+ mask = timerfd_poll(f.file , wait);

+ else

+ mask = (*f_op ->poll)(f.file , wait);

...

}

Figure 6. Our patch to optimize Retpoline’s overhead in select,
poll, and epoll.

the original jump destination, stored in rax, by moving it
onto the stack. This causes the ret at line 8 to jump to the
original jump destination, [rax], instead of line 4. Thus, the
thunk achieves the same behavior as jmp [rax] without
using indirect branches.
A careful reader would have noticed that even without

lines 4 and 5, the speculative path would still fall into an
infinite loop at lines 7 and 8. What makes lines 4–5 necessary
is that repeatedly executing line 8, even speculatively, greatly
perturbs a separate return address speculator, resulting in
high overhead. In addition, the pause instruction at line 4
provides a hint to the CPU that the two lines are a spin-loop,
allowing the CPU to optimize for power consumption [2, 24].

The slowdown caused by Retpoline is proportional to the
number of indirect jumps and calls in the test. The penalty
for each such instruction is similar to that of a branch mis-
prediction. We further investigate the effects of Retpoline on
the select test. Without Retpoline, the select test executes
an average of 31 indirect branches, all of which are indirect
calls; the misprediction rate of these is less than 1 in 30,000.
Further analysis shows that 95% of these indirect calls are
from just three program locations that use function pointers
to invoke the handler of a specific resource type. Figure 5
shows one of the program locations, which is also on the
critical path of poll and epoll. The poll function pointer is
invoked repeatedly inside select’s main loop, and the actual
target is decided by the file type (a socket, in our case).

An Analysis of Performance Evolution of Linux’s Core Operations SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

With Retpoline, all of the 31 indirect branches executed
by select are replaced with the thunk, and the ret in the
thunk always causes a return address misprediction that has
30-35 cycles of penalty, resulting in a total slowdown of 68%
for the test.
We alleviated the performance degradation by turning

each indirect call into a switch statement, i.e., a direct con-
ditional branch, which Spectre-V2 cannot exploit. Figure 6
shows our patch on the program location shown in Figure 5.
It directly invokes the specific target after matching for the
type of the resource. It reduced select’s slowdown from
68% to 5.7%, and big-select’s slowdown from 55% to 2.5%
respectively. This patch also reduces Retpoline’s overhead
on poll and epoll.

4.1.3 SLAB Freelist Randomization
Introduced since version 4.7, SLAB freelist randomization
increases the difficulty of exploiting buffer overflow bugs in
the kernel [66]. A SLAB is a chunk of contiguous memory for
storing equally-sized objects [9, 39]. It is used by the kernel
to allocate kernel objects. A group of SLABs for a particular
type or size-class is called a cache. For example, fork uses the
kernel’s SLAB allocator to allocate mm_structs from SLABs
in the mm_struct cache. The allocator keeps track of free
spaces for objects in a SLAB using a “freelist,” which is a
linked list connecting adjacent object spaces in memory. As
a result, objects allocated one after another will be adjacent in
memory. This predictability can be exploited by an attacker
to perform a buffer overflow attack. Oberheide [28] describes
an example of an attack that has occurred in practice.
The SLAB freelist randomization feature randomizes the

order of free spaces for objects in a SLAB’s freelist such
that consecutive objects in the list are not reliably adjacent
in memory. During initialization, the feature generates an
array of random numbers for each cache. Then for every
new SLAB, the freelist is constructed in the order of the
corresponding random number array.
This patch resulted in notable overhead on tests that

sequentially access a large amount of memory. It caused
big-fork to slow down by 37%, and the set of tests—big-

select, big-poll, and big-epoll—to slow down by an aver-
age of 41%. The slowdown comes from two sources. The first
is the time spent randomizing the freelist during its initializa-
tion. In particular, big-fork spent roughly 6% of its execution
time just randomizing the freelist since it needs to allocate
several SLABs for the new process. The second and more
significant source of slowdown is poor locality caused by
turning sequential object access patterns into random access
patterns. For example, big-fork’s L3 cache misses increased
by around 13%.

4.1.4 Hardened Usercopy
Introduced since version 4.8, the hardened usercopy patch
validates kernel pointers used when copying data between

userspace and the kernel [26]. Without this patch, bugs in
the kernel could be exploited to either cause buffer overflow
attacks when too much data is copied from userspace, or
to leak data when too much is copied to userspace. This
patch protects against such bugs by performing a series of
sanity checks on kernel pointers during every copy operation.
However, this adds unnecessary overhead to kernel code that
already validates pointers.
For example, consider select, which takes a set of file

descriptors for every type of event the user wants to watch
for. When invoked, the kernel copies the set from userspace,
modifies it to indicate which events occurred, and then copies
the set back to userspace. During this operation, the kernel
already checks that kernel memory was allocated correctly
and only copies as many bytes as were allocated. However,
the hardened usercopy patch adds several redundant sanity
checks to this process. These include checking that i) the
kernel pointer is not null, ii) the kernel region involved does
not overlap the text segment, and iii) the object’s size does
not exceed the size limit of its SLAB if it is allocated using
the SLAB allocator. To evaluate the cost of these redundant
checks, we carefully patched the kernel to remove them.
The cost of hardened usercopy depends on the type of

data being copied and the amount. For select, the cost of
checking adds 30ns of overhead. This slows down the test
by a maximum of 18%. poll operates similarly to select

and also has to copy file descriptors and events to and from
userspace. Interestingly, epoll does not experience the same
degree of slowdown since it copies less data; the list of events
to watch for is kept in the kernel, and only the events which
have occurred are copied to userspace. In contrast, the read

tests copy one page to userspace at a time, but the page does
not belong to a SLAB. As a result, only basic checks such
as checking for a valid address are performed, costing only
around 5ns for each page copied. This source of overhead is
not significant even for big-read, which copies 10,000 pages.

4.2 New Features
Next we describe the root causes that are new kernel fea-
tures. One of them, namely fault around (§4.2.1), is in fact, an
optimization. It improves performance for workloads with
certain characteristics at the cost of others. Disabling trans-
parent huge pages (§4.2.3) can also improve performance for
certain workloads. However, these features also impose non-
trivial overhead on LEBench’s microbenchmarks. The other
two features are new kernel functionalities mostly intended
for virtualization or containerization needs.

4.2.1 Fault Around
Introduced in version 3.15, the fault around feature (“fault-
around”) is an optimization that aims to reduce the number
of minor page faults [34]. A minor page fault occurs when
no page table entry (PTE) exists for the required page, but

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada X. Ren et al.

the page is resident in the page cache. On a page fault, fault-
around not only attempts to establish the mapping for the
faulting page, but also for the surrounding pages. Assuming
the workload has good locality and several of the pages
adjacent to the required page are resident in the page cache,
fault-around will reduce the number of subsequent minor
page faults. However, if these assumptions do not hold, fault-
around can introduce overhead. For example, Roselli et al.
studied several file system workloads and found that larger
files tend to be accessed randomly, which renders prefetching
unhelpful [63].

The big-pagefault test experiences a 54% slowdown as a
result of fault-around. big-pagefault triggers a page fault by
accessing a single page within a larger memory-mapped re-
gion. When handling this page fault, the fault-around feature
searches the page cache for surrounding pages and estab-
lishes their mappings, leading to additional overhead.

4.2.2 Control Groups Memory Controller
Introduced in version 2.6, the control group (cgroup) memory
controller records and limits the memory usage of different
control groups [42]. Control groups allow a user to isolate
the resource usage of different groups of processes. They
are a building block of containerization technologies like
Docker [16] and Linux Containers (LXC) [43]. This feature
is tightly coupled with the kernel’s core memory controller
so it can credit every page deallocation or debit every page
allocation to a certain cgroup. It introduces overhead on
tests that heavily exercise the kernel memory controller,
even though they do not use the cgroup feature.
The munmap tests experienced the most significant slow-

down due to the added overhead during page deallocation.
In particular, big-munmap and med-munmap experienced an 81%
and 48% slowdown, respectively, in kernels earlier than ver-
sion 3.17.
Interestingly, the kernel developers only began to opti-

mize cgroup’s overhead since version 3.17, 6.5 years after
cgroups was first introduced [29]. During munmap, the mem-
ory controller needs to “uncharge” the memory usage from
the cgroup. Before version 3.17, the uncharging was done
once for every page that was deallocated. It also required syn-
chronization to keep the uncharging and the actual page deal-
location atomic. Since version 3.17, uncharging is batched,
i.e., it is done only once for all the removed mappings. It
also occurs at a later stage when the mappings are invali-
dated from the TLB, so it no longer requires synchronization.
Consequently, after kernel version 3.17, the slowdowns of
big-munmap and med-munmap are reduced to 9% and 5%, respec-
tively.

In contrast, the memory controller only adds 2.7% of over-
head for the page fault tests. When handling a page fault, the
memory controller first ensures that the cgroup’s memory
usage will stay within its limit following the page allocation,
then “charges” the cgroup for the page. Here we do not see as

significant a slowdown as in the case of munmap, because dur-
ing each page fault, only one page is “charged” — thememory
controller’s overhead is still dwarfed by the cost of handling
the page fault itself. In contrast, munmap often unmaps mul-
tiple pages together, aggregating the cost of the inefficient
“uncharging.” Note that mmap is generally unaffected by this
change because each mmapped page is allocated on demand
when it is later accessed. In addition, the read and write tests
are not affected since they use pre-allocated pages from the
page cache.

4.2.3 Transparent Huge Pages
Enabled from version 3.13 to 4.6, and again from 4.8 to 4.11,
the transparent huge pages (THP) feature automatically ad-
justs the default page size [38]. It allocates 2MB pages (huge
pages), and it also has a background thread that periodically
promotes memory regions initially allocated with base pages
(4KB) into huge pages. Under memory pressure, THP may
decide to fall back to 4KB pages or free up more memory
through compaction. THP can decrease the page table size
and reduce the number of page faults; it also increases “TLB
reach,” so the number of TLB misses is reduced.
However, THP can also negatively impact performance.

It could lead to internal fragmentation within huge pages.
(Unlike FreeBSD [53], Linux could promote a 2MB region
that has unallocated base pages into using a huge page [36]).
Furthermore, the background thread can also introduce over-
head [36]. Given this trade-off, kernel developers have been
going back-and-forth on whether to enable THP by default.
From version 4.8 to the present, THP is disabled by default.
In general, THP has positive effects on tests that access

a large amount of memory. In particular, huge-read slows
down by as much as 83% on versions with THP disabled. It
is worth noting that THP also diminishes the slowdowns
caused by other root causes. For example, THP reduces the
impact of Kernel Page Table Isolation (§4.1.1), since KPTI
adds overhead on every kernel trap whereas THP reduces
the number of page faults.

4.2.4 Userspace Page Fault Handling
Enabled in versions 4.6, 4.8, and later versions, userspace
page fault handling allows a userspace process to handle
page faults for a specified memory region [30]. This is useful
for a userspace virtual machine monitor (VMM) to better
manage memory. A VMM could inform the kernel to deliver
page faults within the guest’s memory range to the VMM.
One use of this is for virtual machine migration so that the
pages can be migrated on-demand. When the guest VM page
faults, the fault will be delivered to the VMM, where the
VMM can then communicate with a remote VMM to fetch
the page.

Overall, userspace page fault handling introduced negligi-
ble overhead except for the big-fork test which was slowed
down by 4% on average. This is because fork must check

An Analysis of Performance Evolution of Linux’s Core Operations SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

each memory region in the parent process for associated
userspace page fault handling information and copy this to
the child if necessary. When the parent has a large number
of pages that are mapped, this check becomes expensive.

4.3 Configuration Changes
Three of the root causes are non-optimal configurations.
Forced context tracking (§4.3.1) is a misconfiguration by
the kernel and Ubuntu developers and causes the biggest
slowdown in this category. The other two are the conse-
quences of older kernel versions lacking specifications for
the newer hardware used in our experiments, thus leading to
non-optimal decisions being made. While this reflects a limi-
tation of our methodology (i.e., running old kernels on new
hardware), these misconfigurations could impact real Linux
users. First, kernel patches on hardware specifications may
not be released in a timely manner: the release of the (sim-
ple) patch that specifies the size of second-level TLB did not
take place until six months after the release of the Haswell
processors, during which time users of the new hardware
could suffer a 50% slowdown on certain workloads (§4.3.2).
This misconfiguration could impact any modern processor
with a second level of TLB. Furthermore, hardware speci-
fications for the popular family of Haswell processors are
not back-ported to older kernel versions that still claim to
be actively supported (§4.3.3).

4.3.1 Forced Context Tracking
Released into the kernel by mistake in versions 3.10 and 3.12–
15, forced context tracking (FCT) is a debugging feature that
was used in the development of another feature, reduced
scheduling-clock ticks [40]. Nonetheless, FCT was enabled
in several Ubuntu release kernels due to misconfigurations.
This caused a minimum of approximately 200–300ns over-
head in every trip to and from the kernel, thus significantly
affecting all of our tests (see Figure 1). On average, FCT slows
down each of the 28 tests by 50%, out of which 7 slow down
by more than 100% and another 8 by 25–100%.

The reduced scheduling-clock ticks (RSCT) feature allows
the kernel to disable the delivery of timer interrupts to idle
CPU cores or cores running only one task. This reduces
power consumption for idle cores and interruptions for cores
running a single compute-intensive task. However, work
normally done during these timer interrupts must now be
done during other user-kernel mode transitions like system
calls. Such work is referred to as context tracking.

Context tracking involves two tasks—CPU usage tracking
and participation in the read-copy update (RCU) algorithm.
Tracking how much time is spent in userspace and the ker-
nel is usually performed by counting the number of timer
interrupts. Without timer interrupts, this must be done on
other kernel entries and exits instead. Context tracking also
participates in RCU, a kernel subsystem that provides lock-
less synchronization. Conceptually, under RCU, each object

is immutable; when writing to the object, it is copied and
updated, resulting in a new version of the object. Because
the write does not perturb existing reads, it can be carried
out at any time. However, deleting the old version of the
object can only be done when it is no longer being read.
Therefore, each write also sets a callback to be invoked later
to delete the old version of the object when it is safe to do so.
The readers cooperate by actively informing RCU when they
start and finish reading an object. Normally, RCU checks for
ready callbacks and invokes them at each timer interrupt;
but under RSCT, this has to be performed at other kernel
entries and exits.

FCT performs context tracking on every user-kernel mode
transition for every core, even on the ones without RSCT
enabled. FCT was initially introduced by the Linux devel-
opers to test context tracking before RSCT was ready, and
is automatically enabled with RSCT. The Ubuntu develop-
ers mistakenly enabled RSCT in a release version, hence
inadvertently enabling FCT. When this was reported as a
performance problem [14], the Ubuntu developers disabled
RSCT. However, this still failed to disable FCT, as the Linux
developers accidentally left FCT enabled even after RSCT
was working. This was only fixed in later Ubuntu distribu-
tions as a result of another bug report [17], 11 months after
the initial misconfiguration.

4.3.2 TLB Layout Change
Introduced in kernel version 3.14, this patch improves per-
formance by enabling Linux to recognize the size of the
second-level TLB (STLB) on newer Intel processors. Know-
ing the TLB’s size is important for deciding how to invalidate
TLB entries during munmap. There are two options: one is to
shoot down (i.e., invalidate) individual entries, and the other
is to flush the entire TLB. Shoot-down should be used when
the number of mappings to remove is small relative to the
TLB’s capacity, whereas TLB flushing is better when the
number of entries to invalidate is comparable to the TLB’s
capacity.
Before this patch was introduced, Linux used the size of

the first-level data and instruction TLB (64 entries on our
test machines) as the TLB’s size, and is not aware of the
larger second-level TLB with 1024 entries. This resulted in
incorrect TLB invalidation decisions: for a TLB capacity of
64, Linux calculates the flushing threshold to be 64/64 = 1.
This means that, without the patch, invalidating more than
just one entry will cause a full TLB flush. As a result, the
med-munmap test, which removes 10 entries, suffers as much as
a 50% slowdown on a subsequent read of a memory-mapped
file of 1024 pages due to the increased TLB misses. With the
patch, the TLB flush threshold is increased to 16 (1024/64)
on our processor, so med-munmap no longer induced a full
flush. However, this patch was only released six months
after the earliest version of the Haswell family of processors
was released. Note that small-munmap and big-munmap were

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada X. Ren et al.

not affected because the kernel still made the right decision
by invalidating a single entry in small-munmap and flushing
the entire TLB in big-munmap.

4.3.3 CPU Idle Power-State Support
Introduced in kernel version 3.9, this patch specifies the fine-
grained idle power saving modes of the Intel processor with
the Haswell microarchitecture used by our server. Modern
processors save power by idling their components. With
more of its components turning idle, the processor is said
to enter a deeper idle state and will consume less power.
However, deeper idle states also take longer to recover from,
and this latency results in a lower overall effective operating
frequency [25].

Before this patch, the kernel only recognized coarse-grained
power saving states. Therefore, when trying to save power,
it always turned the processor to the deepest idle state. With
this patch, the kernel’s idle driver takes control of the proces-
sor’s power management and utilizes lighter idle states. This
increases the effective frequency by 31%. On average, this
patch speeds up LEBench by 21%, with the CPU intensive
select test achieving the most significant speedup of 31%.
While this patch was released in advance of the release

of the Xeon processors, it was not backported to the LTS
kernel lines which were still supported at the time, including
3.0, 3.2, and 3.4. This means that in order to achieve the best
performance for newer hardware, a user might be forced
to adopt the newer kernel lines at the cost of potentially
unstable features.

5 Macrobenchmark
To understand how the 11 identified root causes affect real-
world workloads, we evaluate the Redis key-value store [62],
Apache HTTP Server [7], and Nginx web server [55],3 across
the Linux kernel versions on which we tested LEBench. Re-
dis’ workload was used to build LEBench, while workloads
from the other two applications serve as validation. We
use Redis’ and Apache’s built-in benchmarks—Redis Bench-
mark [61] and ApacheBench [6]—respectively; we also use
ApacheBench to evaluate Nginx. Each benchmark is config-
ured to issue 100,000 requests through 50 (for Redis) or 100
(for Apache and Nginx) concurrent connections.

All three applications spend significant time in the kernel
and exhibit performance trends (shown in Figure 7) sim-
ilar to those observed from LEBench. For each test, the
throughput trend tends to be the inverse of the latency
trend. For brevity, we only display Redis Benchmark’s three
most kernel-intensive write tests, responsible for inserting
(RPUSH) or deleting (SPOP, RPOP) records from the key-
value store, and the two most kernel-intensive read tests,

3In 2019, Redis is the most popular key value store [15]. Apache and Nginx
rank first and third in web server market share, respectively, and together
account for more than half of all market share [54].

0.5

0.8
1e−4 Redis SPOP

Latency

0.50

0.75
1e−4 Redis RPUSH

0.50

0.75
1e−1 Redis RPOP

0.50

0.75

T
im

e
 P

e
r

R
e
q

u
e
st

 (
m

s)

1e−1 Redis GET

1.25

1.50

1e−1 Redis LRANGE 100

3.0

4.0

5.0
Apache

3
.0

3
.2

3
.4

3
.6

3
.8

3
.1

0
3
.1

2
3
.1

4
3
.1

6
3
.1

8
4
.0

4
.1

4
.3

4
.5

4
.7

4
.9

4
.1

1
4
.1

3
4
.1

5
4
.1

7
4
.1

9

Linux Kernel Versions

2.5
3.0
3.5
4.0

Nginx

1.5

2.0

1e5
Throughput

1.5

2.0

1e5

1.5

2.0

1e5

1.5

2.0

R
e
q

u
e
st

s
P

e
r

S
e
co

n
d

1e5

0.6

0.8
1e5

2.0

3.0

1e4

3.0

4.0
1e4

Figure 7. Latency and throughput trends of the Apache
Benchmark and selected Redis Benchmark tests (3 write
tests and 2 read tests with highest system times).

responsible for returning the value of a key (GET) and re-
turning a range of values for a key (LRANGE) [60].

We disable the 11 root causes on the kernels and evaluate
their impact on the applications. Overall, disabling the 11
root causes brings significant speedup for all three appli-
cations, improving the performance of Redis, Apache, and
Nginx by a maximum of 56%, 33%, and 34%, and an average
of 19%, 6.5%, and 10%, respectively, across all kernels. Four
changes—forced context tracking (§4.3.1), kernel page table
isolation (§4.1.1), missing CPU idle power states (§4.3.3), and
avoiding indirect jump speculation (§4.1.2)—account for 88%
of the slowdown across all applications. This is not surprising
given that these four changes also resulted in the most signif-
icant and widespread impact on LEBench tests, as evident in
Figure 2. The rest of the performance-impacting changes cre-
ate more tolerable and steady sources of overhead: across all
kernels, they cause an average combined slowdown of 4.2%
for Redis, and 3.2% for Apache and Nginx; this observation
is again consistent with the results obtained from LEBench,
where these changes cause an average slowdown of 2.6%
across the tests. It is worth noting that these changes could
cause more significant individual fluctuations—if we only
count the worst kernels, on average, each change can cause
as much as a 5.8%, 11.5%, and 12.2% slowdown for Redis,
Apache, and Nginx, respectively.

An Analysis of Performance Evolution of Linux’s Core Operations SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

3
.7

3
.8

3
.9

3
.1

0
3

.1
1

3
.1

2
3

.1
3

3
.1

4
3

.1
5

3
.1

6
3

.1
7

3
.1

8
3

.1
9

4
.0

4
.1

4
.2

4
.3

4
.4

4
.5

4
.6

4
.7

4
.8

4
.9

4
.1

0
4

.1
1

4
.1

2
4

.1
3

4
.1

4
4

.1
5

Linux Kernel Versionsbig
-p

agefa
ult

m
ed-p

agefa
ult

sm
all-

pagefa
ult

big
-e

poll
big

-p
oll

big
-se

le
ctepollpollse

le
ct

se
nd &

 re
cv

 *

th
rc

re
ate

big
-fo

rk
fo

rk

big
-m

unm
ap

m
ed-m

unm
ap

sm
all-

m
unm

ap
m

m
ap *

big
-w

rit
e

m
ed-w

rit
e

sm
all-

w
rit

e
big

-re
ad

m
ed-re

ad

sm
all-

re
ad

co
nte

xt
sw

itc
h 22

21

21

79

12

7

4

8

29

17

61

17

11

26

26

14

7

23

1

1

21

27

-40

-50

23

20

20

79

15

7

3

19

32

18

79

18

26

28

24

12

3

21

0

-1

16

19

-44

-50

1

-3

-2

54

-1

-4

-2

-3

6

-4

46

-5

-5

6

0

-8

-15

-1

-10

-10

2

2

-52

-59

89

146

15

55

56

4

-1

123

63

10

46

-1

-4

38

136

68

79

80

-10

-10

-4

37

-36

-48

1

-4

-2

57

-1

-2

0

-2

4

-3

57

-4

-4

11

-2

-5

-7

-5

-1

-6

-4

-1

-54

-60

98

153

16

58

61

8

0

130

71

15

56

5

-2

27

148

79

102

107

6

13

2

43

-34

-46

94

151

15

1

59

7

-1

126

69

13

52

3

-5

33

144

75

95

101

15

-2

-2

41

-35

-47

82

132

13

-2

50

4

-1

114

55

31

51

2

3

38

122

70

90

82

0

0

-2

31

-39

-49

80

132

16

3

48

5

-1

107

60

32

44

3

1

64

117

65

83

81

-2

-2

-2

31

17

15

2

3

1

-2

0

0

-1

2

3

14

35

0

3

-3

-1

4

5

-3

-1

-1

-3

-1

-42

1

1

-1

0

-1

0

-2

-1

2

7

4

7

-1

6

1

0

4

5

-1

3

3

1

1

3

3

1

-1

1

1

-2

-1

-1

0

2

1

2

1

2

0

-1

-1

5

0

-1

0

0

0

2

3

0

-1

0

0

-1

-1

-1

1

4

2

0

0

6

3

1

2

2

-1

2

2

1

3

2

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

-4

-6

0

2

9

0

1

6

-1

-4

1

-2

0

-1

-6

2

-2

2

10

2

5

-3

-3

-3

-2

-3

0

1

11

-2

0

4

-3

-4

-5

-1

0

-5

-4

-2

-2

-2

1

3

-2

-3

-4

-4

-8

-1

2

-1

-2

-3

-1

5

-2

-3

-3

-3

1

-2

1

-2

-6

0

0

-1

-2

1

-3

-4

-11

-3

1

-1

-3

-4

-1

5

-4

-4

-6

-1

2

9

-1

-1

-5

0

-4

-5

1

-3

-4

-5

-9

0

3

1

-2

-3

1

3

1

-1

-1

1

0

-6

-1

0

-5

1

14

-2

6

-1

2

3

-10

6

3

2

4

-2

0

16

5

0

-2

2

1

13

5

7

7

7

0

2

6

5

1

1

-14

0

0

50

1

-1

2

7

3

-1

-3

-2

33

-2

3

-4

-8

10

39

37

45

-2

-3

-4

-6

6

9

0

1

-1

3

9

1

1

0

0

25

-5

10

9

4

3

42

40

41

3

4

2

-5

11

8

0

-2

-5

-1

11

4

3

4

2

26

5

9

5

-4

3

44

38

40

2

-4

-9

-6

12

9

2

-2

-6

0

11

5

3

0

-1

26

17

9

9

0

-1

40

40

42

1

-9

-13

-4

11

10

0

-2

-7

0

18

7

5

0

1

36

6

9

7

0

0

43

41

43

3

-8

-13

-6

11

9

72

-4

-8

-1

14

9

4

-1

0

37

3

3

-2

-3

-2

41

39

42

2

-9

-14

-6

10

4

72

-2

-9

-3

18

13

6

-1

-1

39

7

6

1

-3

0

40

38

42

4

-8

-12

21

77

11

71

23

-6

-3

73

67

63

0

4

29

31

75

37

47

57

39

36

40

36

6

0

44

99

16

75

53

2

-1

122

75

67

-5

12

46

59

93

118

152

143

118

119

126

40

10

6

(a) % Change in Latency Relative to v4.0 on E5-2630 v3

3
.7

3
.8

3
.9

3
.1

0
3

.1
1

3
.1

2
3

.1
3

3
.1

4
3

.1
5

3
.1

6
3

.1
7

3
.1

8
3

.1
9

4
.0

4
.1

4
.2

4
.3

4
.4

4
.5

4
.6

4
.7

4
.8

4
.9

4
.1

0
4

.1
1

4
.1

2
4

.1
3

4
.1

4
4

.1
5

0

-10

-13

63

-13

-14

-10

-5

-1

-6

18

-1

1

7

3

-33

-15

-25

-24

-23

-10

1

-52

-70

1

-11

-12

63

-12

-18

-10

-7

2

-5

31

-1

37

9

2

-31

-37

0

-24

-22

-16

-4

-57

-71

2

-11

-13

63

-7

-4

-7

-7

-1

-4

31

-3

-11

7

1

-31

-37

-25

-21

-21

-15

1

-53

-70

93

130

38

62

48

2

-7

166

55

9

32

0

2

42

221

23

33

32

-9

-10

-4

34

-38

-62

1

-11

-14

65

-2

-1

-6

-8

3

-4

37

-2

-4

16

-3

-27

-28

-24

-1

0

1

-2

-55

-70

102

136

3

67

53

5

-4

130

64

13

38

11

2

47

178

33

48

55

7

13

-1

41

-27

-60

98

134

2

-2

51

5

-2

118

61

13

40

3

-1

36

145

29

43

50

9

2

8

39

-29

-56

84

193

35

-3

91

38

-2

157

99

76

42

40

26

86

199

26

63

37

0

2

8

74

-18

-63

82

196

36

-2

91

40

-1

177

107

75

50

39

20

88

197

68

86

85

29

30

28

81

60

17

3

-2

-11

-1

-6

-1

-1

-2

-2

13

24

-1

7

17

12

2

3

-1

-1

2

0

0

11

2

2

4

-10

0

5

-3

-2

3

14

2

5

12

29

41

-1

0

0

0

23

27

29

35

1

4

4

26

-10

-1

27

-2

-1

7

31

0

-3

2

-6

7

-3

-17

-17

-17

11

23

4

34

0

-24

0

-9

-9

-1

-6

-1

-2

-2

-1

0

-8

1

13

8

38

1

1

0

24

23

18

1

12

3

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

-3

-9

-12

21

1

-3

0

12

-3

-4

-13

-1

-7

-2

-6

2

-2

2

8

4

5

7

-5

-4

-1

-11

-11

1

4

-6

-1

2

-6

-4

-13

0

-7

-3

-5

0

-5

1

30

5

10

-4

-6

-3

-7

-10

-11

-1

-9

-5

-1

2

-9

-5

-12

-2

8

-1

-2

-25

-22

-17

5

-6

-14

-4

-6

-30

-9

-10

-11

21

-7

-5

-3

14

-9

-5

-9

-1

6

1

0

-26

-29

-25

-12

-15

-12

-5

-7

-30

-8

-8

3

1

-8

-4

1

5

-5

-2

-10

14

-2

34

-1

-26

-30

-24

-1

-13

-9

-5

-4

-27

-9

25

21

1

32

31

0

41

29

-1

-12

0

26

10

-1

-25

-29

-24

-8

-5

-7

36

-1

-27

-13

-10

-11

59

-8

-3

0

3

-2

-2

-11

-1

82

1

3

-29

-32

-17

34

29

31

-3

-5

-30

-5

-1

-5

4

-4

-2

4

8

-5

1

-7

0

85

13

9

-11

-16

5

30

30

24

1

3

-16

-4

2

-4

5

-6

-6

0

6

-4

2

-5

-1

88

6

12

-14

-4

-24

26

28

20

5

5

-24

-4

6

-5

6

-6

-7

-1

7

5

4

3

-1

86

11

11

-19

-25

-21

27

29

19

1

-1

-35

-3

2

-4

2

-9

-15

-3

16

2

4

-8

2

93

8

9

-21

-27

-25

30

25

23

1

0

-35

-5

6

-6

85

-9

-8

-5

14

1

3

-8

0

96

11

3

-29

-29

-26

29

28

19

2

-4

-37

-6

0

-7

86

-7

-16

-6

13

8

5

-11

-1

95

12

3

-21

-24

-24

28

25

23

3

22

-36

21

67

-2

86

15

-8

-8

75

58

62

-10

4

84

38

71

-1

7

20

21

29

21

35

3

-27

46

87

2

87

44

2

-3

112

68

66

-15

13

100

47

91

60

86

80

90

83

87

39

52

-23

(b) % Change in Latency Relative to v4.0 on i7-4810MQ

Figure 8. Comparing the results of LEBench on two machines. For brevity, we only show results after v3.7 and before v4.15.

Overall, we find that not only do the macrobenchmarks
and LEBench display significant overlap in overall perfor-
mance trends, they are also impacted by the 11 changes in
very similar ways. While it is a limitation that we carried
out detailed analysis on the results from a microbenchmark,
which does not always exercise kernel operations the same
way as a macrobenchmark, we note that even different real-
world workloads do not necessarily exercise kernel opera-
tions identically. We chose to construct LEBench out of a set
of representative real-world workloads, and our evaluation
results from the macrobenchmarks confirm the relevance of
LEBench.

6 Sensitivity Analysis
To understand how different hardware affects the results
from LEBench, we repeat the tests on a laptop with a 2.8GHz
Intel i7-4810MQ processor, 32GB of 1600MHz DDR4 memory
and a 512GB SSD. Figure 8 displays a side-by-side comparison
of the results.

Out of the 11 changes described in §4, 10 have similar per-
formance impacts on LEBench, on the i7 laptop. Updating
CPU idle states does not impact the i7 processor’s frequency.
The other 10 changes manifest in differing degrees of perfor-
mance impact on each machine due to different hardware
speeds. For example, the i7 laptop has a faster processor and
slower memory. Therefore, the slowdown due to increased
L3 misses from randomizing the SLAB freelist gets exagger-
ated for big-fork (seen after v4.6), likely because the test is
memory bound. In addition, we observe more performance
variability in the results collected from the laptop, caused by
CPU throttling due to over-heating.

7 Discussion
Our findings suggest that kernel performance tuning can
play an important role. Unfortunately, thorough performance
tuning of the Linux kernel can be extremely expensive. For
example, Red Hat and Suse normally require 6-18 months
to optimize the performance of an upstream Linux kernel
before it can be released as an enterprise distribution [65].
Adding to the difficulty, Linux is a generic OS kernel and thus
must support a diverse array of hardware configurations and
workloads; many forms of performance optimization do not
make sense unless a workload’s characteristics are taken
into account. For example, Google’s data center kernel is
carefully performance tuned for their workloads. This task
is carried out by a team of over 100 engineers, and for each
new kernel, the effort can also take 6-18 months [65].

Unfortunately, this heavyweight performance tuning pro-
cess cannot catch upwith the pace at which Linux is evolving.
Our study observes an increasing number of features and
security enhancements being added to Linux. In fact, Linux
releases a new kernel every 2-3 months, and every release
incorporates between 13,000 and 18,000 commits [32]. It is
estimated that the mainline Linux kernel accepts 8.5 changes
every hour on average [19]. Under such a tight schedule,
each release effectively only serves as an integration and sta-
bilization point; therefore, systematic performance tuning is
not carried out by the kernel or distribution developers for
most kernel releases [27, 65].
Clearly, performance comes at a high cost, and unfortu-

nately, this cost is difficult to get around. Most Linux users
cannot afford the amount of resource large enterprises like
Google put into custom Linux performance tuning. For the

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada X. Ren et al.

average user, it may be more economical to pay for a Red
Hat Enterprise Linux (RHEL) licence, or they may have to
compensate for the lack of performance tuning by investing
in hardware (i.e., purchasing more powerful servers or scal-
ing their server pool) to make up for slower kernels. All of
these facts point to the importance of kernel performance,
whose optimization remains a difficult challenge.

8 Limitations
We restrict the scope of our study due to practical limitations.
First, while LEBench tests are obtained from profiling a set of
popular workloads, we omitted many other types of popular
Linux workloads, for example, HPC or virtualization work-
loads [3]. Second, we only used two machine setups in our
study, and both use Intel processors. A more comprehensive
study should sample other types of processor architectures,
for example, those used in embedded devices on which Linux
is widely deployed. Finally, our study focuses on Linux, and
our results may not be general to other OSes.

9 Related Work
Prior works on analyzing core OS operation performance
focused either on comparing the same OS on different archi-
tectures or different OSes on the same architecture. In com-
parison, this paper is the first to compare historical versions
of the same OS, systematically analyzing the root causes of
performance fluctuations over time.
Ousterhout [56] analyzed OS performance on a range

of computers and concluded that the OS was not getting
faster at the same rate as the processor due to the increasing
discrepancy between the speed of the processor and other
devices. Anderson et al. [5] further zoomed into processor
architectures and provided a detailed analysis on the per-
formance implications of different architecture designs to
the OS. Rosenblum et al. [64] evaluated the impact of ar-
chitectural trends on operating system performance. They
found that despite faster processors and bigger caches, OS
performance continued to be bottlenecked by disk I/O and
by memory on multiprocessors. Chen and Patterson [12]
developed a self-scaling I/O benchmark and used it to ana-
lyze a number of different systems. McVoy and Staelin [47]
developed lmbench, a microbenchmark that measures a va-
riety of OS operations. Brown and Seltzer [11] further ex-
tended lmbench. A large number of tests in lmbench were
still focused on measuring different hardware speeds. In
comparison, we selected tests from workloads commonly
used today; therefore, LEBench might be more relevant for
modern applications.
Others have evaluated Linux kernel performance using

macrobenchmarks. Phoronix [50, 51] studied Linux’s perfor-
mance across multiple versions but focused on macrobench-
marks, many of which are not kernel intensive. Moreover,
they do not analyze the causes of these performance changes.

In 2007, developers at Intel introduced a Linux regression
testing framework using a suite of micro- and macrobench-
marks [21], which caught a number of performance regres-
sions in release candidates [13]. In contrast, our study focuses
on performance changes in stable versions that persist over
many versions, which are more likely to impact real users.

Additional studies have analyzed other aspects of OS per-
formance. Boyd-Wickizer et al. [10] analyzed Linux’s scal-
ability and found that the traditional kernel design can be
adapted to scale without architectural changes. Lozi et al. [45]
discovered Linux kernel bugs that resulted in leaving cores
idle even when runnable tasks exist. Pillai et al. [58] dis-
covered Linux file systems often trade crash consistency
guarantees for good performance.
Finally, Heiser and Elphinstone [20] examined the evolu-

tion of the L4 microkernel for the past 20 years and found
that many design and implementation choices have been
phased out because they either are too complex or inflexible,
or complicate verification.

10 Concluding Remarks
This paper presents an in-depth analysis on the evolution
of core OS operation performance in Linux. Overall, most
of the core Linux operations today are much slower than a
few years ago, and substantial performance fluctuations are
common. We attribute most of the slowdowns to 11 changes
grouped into three categories: security enhancements, new
features and misconfigurations. Studying each change in de-
tail, we find that many of the performance impacting changes
are possible to mitigate with more proactive performance
testing and optimizations; and most of the performance im-
pact is possible to avoid through custom configuration of
the kernel. This highlights the importance of investing more
in kernel performance tuning and its potential benefits.

Acknowledgements
We would like to thank our shepherd, Edouard Bugnion,
and the anonymous reviewers for their extensive feedback
and comments on our work. We thank Theodore Ts’o for
explaining the practices of Linux performance tuning used
by the kernel developers, distributors like Red Hat and Suse,
and users like Google.

We thank Tong Liu for collecting traces of the real-world
workloads used to develop LEBench.We thank SergueiMakarov
for sharing his experiences with upstream software project
development. We also thank David Lion for his feedback on
this paper.

This research is supported by an NSERC Discovery grant,
a NetApp Faculty Fellowship, a VMware gift, and a Huawei
grant. Xiang (Jenny) Ren and Kirk Rodrigues are supported
by SOSP 2019 student scholarships from the ACM Special
Interest Group in Operating Systems to attend the SOSP
conference.

An Analysis of Performance Evolution of Linux’s Core Operations SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

References
[1] Advanced Micro Devices. 2018. “Speculative Store Bypass” Vulner-

ability Mitigations for AMD Platforms. https://www.amd.com/en/
corporate/security-updates.

[2] Advanced Micro Devices. 2019. AMD64 Architecture Programmer’s
Manual. Vol. 3. Chapter 3, 262.

[3] Al Gillen and Gary Chen. 2011. The Value of Linux in Today’s Fast-
Changing Computing Environments.

[4] Amazon Web Services. 2017. AWS re:Invent 2017: How Netflix
Tunes Amazon EC2 Instances for Performance (CMP325). https:
//www.youtube.com/watch?v=89fYOo1V2pA.

[5] Thomas E. Anderson, Henry M. Levy, Brian N. Bershad, and Edward D.
Lazowska. 1991. The Interaction of Architecture and Operating Sys-
tem Design. In Proceedings of the 4th International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems
(ASPLOS IV). ACM, 108–120.

[6] Apache. 2018. ab - Apache HTTP Server Benchmarking Tool. https:
//httpd.apache.org/docs/2.4/programs/ab.html.

[7] Apache. 2018. Apache HTTP Server Project. https://httpd.apache.org/.
[8] Simon Biggs, Damon Lee, and Gernot Heiser. 2018. The Jury Is In:

Monolithic OS Design Is Flawed: Microkernel-based Designs Improve
Security. In Proceedings of the 9th Asia-Pacific Workshop on Systems
(APSys ’18). ACM, Article 16, 7 pages.

[9] Jeff Bonwick. 1994. The Slab Allocator: An Object-caching Kernel
MemoryAllocator. In Proceedings of the 1994 USENIX Summer Technical
Conference (USTC ’94). USENIX Association, 87–98.

[10] Silas Boyd-Wickizer, Austin T. Clements, Yandong Mao, Aleksey
Pesterev, M. Frans Kaashoek, Robert Morris, and Nickolai Zeldovich.
2010. An Analysis of Linux Scalability to Many Cores. In Proceed-
ings of the 9th USENIX Conference on Operating Systems Design and
Implementation (OSDI ’10). USENIX Association, 1–16.

[11] Aaron B. Brown and Margo I. Seltzer. 1997. Operating System Bench-
marking in the Wake of Lmbench: A Case Study of the Performance of
NetBSD on the Intel x86 Architecture. In Proceedings of the 1997 ACM
SIGMETRICS International Conference on Measurement and Modeling
of Computer Systems (SIGMETRICS ’97). ACM, 214–224.

[12] Peter M. Chen and David A. Patterson. 1993. A New Approach to I/O
Performance Evaluation: Self-scaling I/O Benchmarks, Predicted I/O
Performance. In Proceedings of the 1993 ACM SIGMETRICS Conference
on Measurement and Modeling of Computer Systems (SIGMETRICS ’93).
ACM, 1–12.

[13] Tim Chen, Leonid I. Ananiev, and Alexander V. Tikhonov. 2007. Keep-
ing Kernel Performance from Regressions. In Proceedings of the Linux
Symposium, Vol. 1. 93–102.

[14] Colin Ian King. 2013. Context Switching on 3.11 Kernel Costing CPU
and Power. https://bugs.launchpad.net/ubuntu/+source/linux/+bug/
1233681.

[15] DB-Engines. 2019. DB-engines Ranking. https://db-engines.com/en/
ranking.

[16] Docker. 2018. Docker. https://www.docker.com/.
[17] George Greer. 2014. getitimer Returns it_value=0 Erroneously. https:

//bugs.launchpad.net/ubuntu/+source/linux/+bug/1349028.
[18] Graz University of Technology. 2018. Meltdown and Spectre. https:

//meltdownattack.com/.
[19] Greg Kroah-Hartman. 2017. Linux Kernel Release Model. http://kroah.

com/log/blog/2018/02/05/linux-kernel-release-model/.
[20] Gernot Heiser and Kevin Elphinstone. 2016. L4 Microkernels: The

Lessons from 20 Years of Research and Deployment. ACM Transaction
on Computer Systems 34, 1, Article 1 (April 2016), 29 pages.

[21] Intel Corporation. 2017. Linux Kernel Performance. https://01.org/lkp.
[22] Intel Corporation. 2018. Speculative Execution and Indirect Branch

Prediction Side Channel Analysis Method. https://www.intel.com/
content/www/us/en/security-center/advisory/intel-sa-00088.html.

[23] Intel Corporation. 2019. Intel® 64 and IA-32 Architectures Software
Developer’s Manual. Vol. 3A. Chapter 4.10.1.

[24] Intel Corporation. 2019. Intel® 64 and IA-32 Architectures Software
Developer’s Manual. Vol. 1. Chapter 11.4.4.4.

[25] Intel Corporation. 2019. Intel® 64 and IA-32 Architectures Software
Developer’s Manual. Vol. 3. Chapter 14.5.

[26] Jake Edge. 2016. Hardened Usercopy. https://lwn.net/Articles/695991/.
[27] Jake Edge. 2017. Testing Kernels. https://lwn.net/Articles/734016/.
[28] Jon Oberheide. 2010. Linux Kernel CAN SLUB Overflow. https://jon.

oberheide.org/blog/2010/09/10/linux-kernel-can-slub-overflow/.
[29] Jonathan Corbet. 2007. Notes from a Container. https://lwn.net/

Articles/256389/.
[30] Jonathan Corbet. 2015. User-space Page Fault Handling. https://lwn.

net/Articles/636226/.
[31] JonathanCorbet. 2017. The Current State of Kernel Page-table Isolation.

https://lwn.net/Articles/741878/.
[32] Jonathan Corbet and Greg Kroah-Hartman. 2017. 2017 State of Linux

Kernel Development. https://www.linuxfoundation.org/2017-linux-
kernel-report-landing-page/.

[33] Judd Vinet and Aaron Griffin. 2018. Arch Linux. https://www.archlinux.
org/.

[34] Kirill A. Shutemov. 2014. mm: Map Few Pages Around Fault Address
if They are in Page Cache. https://lwn.net/Articles/588802/.

[35] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Ham-
burg, Moritz Lipp, StefanMangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. 2018. Spectre Attacks: Exploiting Speculative Exe-
cution. (Jan. 2018). arXiv:1801.01203

[36] Youngjin Kwon, Hangchen Yu, Simon Peter, Christopher J. Rossbach,
and Emmett Witchel. 2016. Coordinated and Efficient Huge Page
Management with Ingens. In Proceedings of the 12th USENIX Conference
on Operating Systems Design and Implementation (OSDI ’16). USENIX
Association, 705–721.

[37] Kevin Lai and Mary Baker. 1996. A Performance Comparison of UNIX
Operating Systems on the Pentium. In Proceedings of the 1996 USENIX
Annual Technical Conference (ATC ’96). USENIX Association, 265–277.

[38] Linux. 2017. = Transparent Hugepage Support =. https://www.kernel.
org/doc/Documentation/vm/transhuge.txt.

[39] Linux. 2017. Short Users Guide for SLUB. https://www.kernel.org/doc/
Documentation/vm/slub.txt.

[40] Linux. 2018. NO_HZ: Reducing Scheduling-Clock Ticks. https://www.
kernel.org/doc/Documentation/timers/NO_HZ.txt.

[41] Linux. 2018. Page Table Isolation. https://www.kernel.org/doc/
Documentation/x86/pti.txt.

[42] Linux. 2019. Memory Resource Controller. https://www.kernel.org/
doc/Documentation/cgroup-v1/memory.txt.

[43] Linux Containers. 2018. Linux Containers. https://linuxcontainers.
org/.

[44] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and
Mike Hamburg. 2018. Meltdown. (Jan. 2018). arXiv:1801.01207

[45] Jean-Pierre Lozi, Baptiste Lepers, Justin Funston, Fabien Gaud, Vivien
Quéma, and Alexandra Fedorova. 2016. The Linux Scheduler: A Decade
of Wasted Cores. In Proceedings of the 11th European Conference on
Computer Systems (EuroSys ’16). ACM, Article 1, 16 pages.

[46] Markus Podar. 2014. Current Ubuntu 14.04 Uses Kernel with Degraded
Disk Performance in SMP Environment. https://github.com/jedi4ever/
veewee/issues/1015.

[47] Larry McVoy and Carl Staelin. 1996. Lmbench: Portable Tools for Per-
formance Analysis. In Proceedings of the 1996 USENIX Annual Technical
Conference (ATC ’96). USENIX Association, 279–294.

[48] Michael Dale Long. 2016. Unnaccounted for High CPU Usage While
Idle. https://bugzilla.kernel.org/show_bug.cgi?id=150311.

[49] Michael Kerrisk. 2012. KS2012: memcg/mm: Improving Memory
cgroups Performance for Non-users. https://lwn.net/Articles/516533/.

https://www.amd.com/en/corporate/security-updates
https://www.amd.com/en/corporate/security-updates
https://www.youtube.com/watch?v=89fYOo1V2pA
https://www.youtube.com/watch?v=89fYOo1V2pA
https://httpd.apache.org/docs/2.4/programs/ab.html
https://httpd.apache.org/docs/2.4/programs/ab.html
https://httpd.apache.org/
https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1233681
https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1233681
https://db-engines.com/en/ranking
https://db-engines.com/en/ranking
https://www.docker.com/
https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1349028
https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1349028
https://meltdownattack.com/
https://meltdownattack.com/
http://kroah.com/log/blog/2018/02/05/linux-kernel-release-model/
http://kroah.com/log/blog/2018/02/05/linux-kernel-release-model/
https://01.org/lkp
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00088.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00088.html
https://lwn.net/Articles/695991/
https://lwn.net/Articles/734016/
https://jon.oberheide.org/blog/2010/09/10/linux-kernel-can-slub-overflow/
https://jon.oberheide.org/blog/2010/09/10/linux-kernel-can-slub-overflow/
https://lwn.net/Articles/256389/
https://lwn.net/Articles/256389/
https://lwn.net/Articles/636226/
https://lwn.net/Articles/636226/
https://lwn.net/Articles/741878/
https://www.linuxfoundation.org/2017-linux-kernel-report-landing-page/
https://www.linuxfoundation.org/2017-linux-kernel-report-landing-page/
https://www.archlinux.org/
https://www.archlinux.org/
https://lwn.net/Articles/588802/
http://arxiv.org/abs/1801.01203
https://www.kernel.org/doc/Documentation/vm/transhuge.txt
https://www.kernel.org/doc/Documentation/vm/transhuge.txt
https://www.kernel.org/doc/Documentation/vm/slub.txt
https://www.kernel.org/doc/Documentation/vm/slub.txt
https://www.kernel.org/doc/Documentation/timers/NO_HZ.txt
https://www.kernel.org/doc/Documentation/timers/NO_HZ.txt
https://www.kernel.org/doc/Documentation/x86/pti.txt
https://www.kernel.org/doc/Documentation/x86/pti.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/memory.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/memory.txt
https://linuxcontainers.org/
https://linuxcontainers.org/
http://arxiv.org/abs/1801.01207
https://github.com/jedi4ever/veewee/issues/1015
https://github.com/jedi4ever/veewee/issues/1015
https://bugzilla.kernel.org/show_bug.cgi?id=150311
https://lwn.net/Articles/516533/

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada X. Ren et al.

[50] Michael Larabel. 2010. Five Years of Linux Kernel Benchmarks: 2.6.12
Through 2.6.37. https://www.phoronix.com/scan.php?page=article&
item=linux_2612_2637.

[51] Michael Larabel. 2016. Linux 3.5 Through Linux 4.4 Kernel Bench-
marks: A 19-Way Kernel Showdown Shows Some Regressions. https:
//www.phoronix.com/scan.php?page=article&item=linux-44-19way.

[52] Michael Larabel. 2017. The Linux Kernel Gained 2.5 Million Lines of
Code, 71k Commits in 2017. https://www.phoronix.com/scan.php?
page=news_item&px=Linux-Kernel-Commits-2017.

[53] Juan Navarro, Sitararn Iyer, Peter Druschel, and Alan Cox. 2002. Prac-
tical, Transparent Operating System Support for Superpages. In Pro-
ceedings of the 5th Symposium on Operating Systems Design and Imple-
mentation (OSDI ’02). USENIX Association, 89–104.

[54] Netcraft. 2019. March 2019 Web Server Survey | Netcraft.
https://news.netcraft.com/archives/2019/03/28/march-2019-web-
server-survey.html.

[55] Nginx. 2019. NGINX | High Performance Load Balancer, Web Server,
& Reverse Proxy. https://www.nginx.com/.

[56] John K. Ousterhout. 1990. Why Aren’t Operating Systems Getting
Faster As Fast as Hardware?. In Proceedings of the 1990 USENIX Summer
Technical Conference (USTC ’90). USENIX Association, 247–256.

[57] Philippe Gerum. 2018. Troubleshooting Guide. https://gitlab.denx.de/
Xenomai/xenomai/wikis/Troubleshooting.

[58] Thanumalayan Sankaranarayana Pillai, Vijay Chidambaram, Ram-
natthan Alagappan, Samer Al-Kiswany, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. 2014. All File Systems Are Not Created

Equal: On the Complexity of Crafting Crash-consistent Applications.
In Proceedings of the 11th USENIX Conference on Operating Systems
Design and Implementation (OSDI ’14). USENIX Association, 433–448.

[59] Randal E. Bryant and David R. O’Hallaron. 2002. Computer Systems: A
Programmer’s Perspective (1 ed.). Prentice Hall, 467–470.

[60] Redis. 2018. Command Reference — Redis. https://redis.io/commands.
[61] Redis. 2018. How Fast is Redis? https://redis.io/topics/benchmarks.
[62] Redis. 2018. Redis. https://redis.io/.
[63] Drew Roselli, Jacob R. Lorch, and Thomas E. Anderson. 2000. A Com-

parison of File System Workloads. In Proceedings of the 2000 USENIX
Annual Technical Conference (ATC ’00). USENIX Association, 41–54.

[64] M. Rosenblum, E. Bugnion, S. A. Herrod, E. Witchel, and A. Gupta.
1995. The Impact of Architectural Trends on Operating System Per-
formance. In Proceedings of the 15th ACM Symposium on Operating
Systems Principles (SOSP ’95). ACM, 285–298.

[65] Theodore Y. Ts’o. 2019. Personal Communication.
[66] Thomas Garnier. 2016. mm: SLAB Freelist Randomization. https:

//lwn.net/Articles/682814/.
[67] Thomas Gleixner. 2018. x86/retpoline: Add Initial Retpoline Support.

https://patchwork.kernel.org/patch/10152669/.
[68] Ubuntu. 2018. Ubuntu. https://www.ubuntu.com/.
[69] Vlad Frolov. 2016. [REGRESSION] IntensiveMemory CGroup Removal

Leads to High Load Average 10+. https://bugzilla.kernel.org/show_
bug.cgi?id=190841.

[70] W3Techs. 2018. Usage Statistics and Market Share of Linux for Web-
sites. https://w3techs.com/technologies/details/os-linux/all/all.

https://www.phoronix.com/scan.php?page=article&item=linux_2612_2637
https://www.phoronix.com/scan.php?page=article&item=linux_2612_2637
https://www.phoronix.com/scan.php?page=article&item=linux-44-19way
https://www.phoronix.com/scan.php?page=article&item=linux-44-19way
https://www.phoronix.com/scan.php?page=news_item&px=Linux-Kernel-Commits-2017
https://www.phoronix.com/scan.php?page=news_item&px=Linux-Kernel-Commits-2017
https://news.netcraft.com/archives/2019/03/28/march-2019-web-server-survey.html
https://news.netcraft.com/archives/2019/03/28/march-2019-web-server-survey.html
https://www.nginx.com/
https://gitlab.denx.de/Xenomai/xenomai/wikis/Troubleshooting
https://gitlab.denx.de/Xenomai/xenomai/wikis/Troubleshooting
https://redis.io/commands
https://redis.io/topics/benchmarks
https://redis.io/
https://lwn.net/Articles/682814/
https://lwn.net/Articles/682814/
https://patchwork.kernel.org/patch/10152669/
https://www.ubuntu.com/
https://bugzilla.kernel.org/show_bug.cgi?id=190841
https://bugzilla.kernel.org/show_bug.cgi?id=190841
https://w3techs.com/technologies/details/os-linux/all/all

	Abstract
	1 Introduction
	2 Methodology
	3 Overview of Results
	4 Performance Impacting Root Causes
	4.1 Security Enhancements
	4.2 New Features
	4.3 Configuration Changes

	5 Macrobenchmark
	6 Sensitivity Analysis
	7 Discussion
	8 Limitations
	9 Related Work
	10 Concluding Remarks
	References

