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Abstract. We introduce the concept of hierarchical clustering as a way to structure shared-memory multi- 
processor operating systems for scalability. The concept is based on clustering and hierarchical system design. 
Hierarchical clustering leads to a modular system, composed of easy-to-design and efficient building blocks. 
The resulting structure is scalable because it 1) maximizes locality, which is key to good performance in 
NUMA (non-uniform memory access) systems and 2) provides for concurrency that increases linearly with the 
number of processors. At the same time, there is tight coupling within a cluster, so the system performs well 
for local interactions that are expected to constitute the common case. A clustered system can easily be adapted 
to different hardware configurations and architectures by changing the size of the clusters. We show how this 
structuring technique is applied to the design of a microkernel-based operating system called HURRICANE. This 
prototype system is the first complete and running implementation of its kind and demonstrates the feasibility 
of a hierarchically clustered system. We present performance results based on the prototype, demonstrating 
the characteristics and behavior of a clustered system. In particular, we show how clustering trades off the 
efficiencies of tight coupling for the advantages of replication, increased locality, and decreased lock contention. 
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1. Introduct ion 

M u c h  attention has been directed towards designing "scalable"  sha red -memory  mult i -  

processor  hardware,  capable  o f  accommoda t ing  a large number  o f  processors.  These  

efforts have  been successful  to the extent  that an increasing number  o f  such systems 

exist  [BBN 1989; Chaiken  et al. 1991; Frank et al. 1993; Kuck  et al. 1986; Lenosk i  et 

al. 1992; Oed  1993; Pfister et al. 1985]. However ,  scalable hardware  can only be  ful ly 

exploi ted  and be  cos t -ef fec t ive  for general  purpose use i f  there exists an operat ing sys tem 
that is as scalable  as the hardware.  

An  operat ing sys tem targeting large-scale  mult iprocessors  must  consider  both concur-  

rency  and locality. However ,  exis t ing mul t iprocessor  operat ing systems have  been  scaled 
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to accommodate many processors only in an ad hoc manner, by repeatedly identifying 
and then removing the most contended bottlenecks, thus addressing concurrency issues 
but not locality issues. Bottlenecks are removed either by splitting existing locks or by 
replacing existing data structures with more elaborate, but concurrent ones. The process 
can be long and tedious and results in systems that 1) have a large number of locks that 
need to be held for common operations, with correspondingly large overhead; 2) ex- 
hibit little locality; and 3) are not scalable in a generic sense, but only until the next 
bottleneck is encountered [Balan and Gollhardt 1992; Barach et al. 1990; Campbell et 
al. 1991; Chang and Rosenburg 1992; Peacock et al. 1992]. Porting an existing system 
designed for networked distributed systems is also unsatisfactory, because of the large 
memory requirements and consistency traffic caused by replicating code and data and 
because of the overhead and lack of locality in interprocessor interactions. 

We believe that a more structured approach for designing scalable operating systems is 
essential and propose a new, simple structuring technique based on clustering and hier- 
archical system design called hierarchical clustering, This structuring technique leads to 
a modular system, composed from easy-to-design and efficient building blocks. It is ap- 
plicable to a wide variety of large-scale shared-memory architectures and configurations. 
The structure maximizes locality, which is the key to good performance in non-uniform 
memory access (NUMA) systems, and provides for concurrency that increases linearly 
with the number of processors. 

In this paper we describe hierarchical clustering and its advantages. We show how it can 
be applied in implementing a microkernel-based operating system and present the results 
of performance measurements obtained from a running prototype. We describe some of 
the lessons we learned from our implementation efforts and close with a discussion of 
our future work. 

2. Target Environment 

The design of an operating system is influenced both by the hardware platform it is 
responsible for managing and the demands of the applications it expects to serve. The 
internal structure of the operating system and the policies it enacts must accommodate 
these targets if it is expected to perform well. In this section we introduce the particular 
hardware and workload targets we assume for this paper and briefly describe how the 
operating system can accommodate them. 

2.1. The Target Hardware 

Our target hardware is the class of "scalable" shared-memory multiprocessors. Most 
current scalable shared-memory multiprocessors are based on segmented architectures, 
which allow the aggregate communication bandwidth to increase as new segments are 
added to the system (with little increase in hardware complexity). In these systems the 
memory is distributed across the segments, but remains globally accessible. Because the 
cost of accessing memory is a function of the distance between the accessing processor 
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Figure 1. A high-level representation of the HECTOR multiprocessor. Each processor box in the 
system includes a CPU and cache, local memory, and I/O interface. 

and the memory being accessed, they exhibit NUMA times. Examples of systems with 
segmented architectures include HECTOR [Vranesic et al. 1991], DASH [Lenoski et 
el. 1992], and the KSR1 [Frank et al. 1993]. The HECTOR system is depicted in Figure 1 
and was used for the experiments discussed in Section 5. 

Although the aggregate bandwidth of these scalable shared-memory machines increases 
with the size of the system, the bisectional bandwidth (from any one segment to the rest 
of the system) is typically much lower and limited. Both the higher cost of remote 
accesses and the limitations in bandwidth make it important to organize the location of 
data so that it is kept close to the accessing processors. In some cases, locality can also 
be improved by replicating data or moving it closer to the accessing processor, depending 
on how the data is being accessed. It should be noted that locality is important even 
for architectures based on cache-only memory (COMA) [Frank et el. 1993; Hagersten 
et el. 1992] and systems with hardware-based cache coherence [Chaiken et el. 1991; 
Lenoski et el. 1992], because operating system data is typically accessed with little 
temporal locality, yet shared at a fine granularity [Chen and Bershad 1993], leading to 
generally low cache hit rates. 
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2.2. The Target Workload 

The workload of an operating system stems primarily from requests that come from 
application programs and will include, among other things, page-fault handling, I/O, 
interprocess communication, process management, and synchronization. The operating 
system is thus largely demand driven. The relative timing of the requests and the way 
they interact (by accessing common data structures) in the operating system depends on 
the type of applications currently running. The applications we expect to see running 
at any given time include a mix of sequential interactive programs, small-scale parallel 
applications, and very large parallel applications. 

Each of these application classes places different demands on the operating system. 
The requests of an interactive, sequential application will be largely independent from 
the requests of the other applications, both with respect to the time they are issued and 
the operating system data they access. For example, the probability of two independent 
applications simultaneously accessing the same file is small. However, we can expect 
the load from these requests to grow linearly with the size of the system. To satisfy this 
load without creating a bottleneck, the number of operating system service centers (e.g., 
file servers or process dispatchers) must increase with the size of the system. Moreover, 
it is important to limit contention for locks that regulate access to shared data and to 
limit contention at physical resources, such as disks. 

In contrast, the threads of a parallel application may well make simultaneous requests 
that cause the same system data to be accessed. This might happen, for example, after 
a program phase-change when each thread starts to access the same data file. When 
servicing these nonindependent requests, the accesses to the shared resources must be 
fair (or else starvation could result), and the latency of accessing these resources must 
degrade no worse than linearly with the number of concurrent requesters. 

The operating system can help exploit the locality inherent in an application by schedul- 
ing communicating processes to neighboring processors, by directing I/O to nearby disks, 
and by placing application data close to where it will be accessed. Policies such as data 
replication or migration can also be used for both application memory and secondary 
storage management to increase access bandwidth, decrease latency, or both. 

3. Hierarchical Clustering 

Hierarchical clustering is a structuring technique based on clustering and hierarchical 
system design that we believe addresses most of the issues described in the previous 
section. Hierarchy is a well-known organizational framework, occurs frequently in na- 
ture [Simon 1985], and is often used in business, government, and the military. In these 
systems the purpose of the higher levels of the hierarchy is to manage or control re- 
sources in a coarse, strategic, and global fashion, while lower levels in the hierarchy 
control resources in a finer, more localized way. Communication occurs primarily be- 
tween entities close to each other, and interaction between distant entities typically occurs 
through higher levels of the hierarchy. If the operations at the lowest levels are indeed 
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Figure 2. A single clustered system. 

localized, then there can be much concurrency in the system. It is both the locality and 
concurrency aspects of these systems that allow them to scale to relatively large sizes. 

A hierarchically clustered operating system is scalable for the same reason: It provides 
for locality and it provides for concurrency that increases with the number of proces- 
sors. It avoids concurrency constraints imposed at the hardware level due to bus and 
network bandwidth limitations and imposed at the operating system level due to locks 
by 1) replicating data structures and by 2) exporting appropriate policies. The purpose 
of clusters is to provide for tight coupling and good performance for neighboring ob- 
jects that interact frequently with one another. Hierarchical clustering also has some 
pragmatic advantages; for example, it simplifies lock tuning and is adaptable to different 
architectures and configurations. 

In this section we first describe the basic structure and then argue why it is scalable. 
This is followed by a discussion of factors that affect the best choice of cluster size. 

3.1. The Basic Structure 

In a system based on hierarachical clustering the basic unit of structuring is a cluster. 
A cluster provides the functionality of an efficient, small-scale symmetric multiprocess- 
ing operating system targeting a small number of processors. Kernel data and control 
structures are shared by all processors within the cluster. In our implementation a cluster 
consists of a symmetric microkernel, memory and device management subsystems, and 
a number of user-level system servers such as a scheduler and file servers (Figure 2). 
Note, however, that clustering does not preclude the management of some resources on 
a per-processor basis within a cluster. For example, the performance of task dispatching 
can be improved if processes are maintained on per-processor rather than per-cluster 
ready queues. 
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Figure 3. A multiple clustered system. 

On a larger system, multiple clusters are instantiated such that each cluster manages 
a unique group of "neighboring" processing modules (including processors, memory, 
and disks). All major system services are replicated to each cluster so that independent 
requests can be handled locally (Figure 3). Clusters cooperate and communicate to give 
users and applications an integrated and consistent view of a single large system. 

The basic idea behind using clusters for structuring is to use multiple computing com- 
ponents that are easy to design and hence efficient for forming a complete system. A 
single level of clusters can be expected to support moderately large systems (in the, 
say, 64- to 256-processor range). However, for larger systems, additional levels in the 
hierarchy will be necessary. In particular, while each cluster is structured to maximize 
locality, there is no locality in cross-cluster communication with only a single level of 
clusters. The logical next step is to group clusters into superclusters, and then to group 
superclusters into super-superclusters, in which each level in the clustering hierarchy 
involves looser coupling than the levels below it. 

Hierarchical clustering incorporates structuring principles from both tightly coupled 
and distributed systems and attempts to exploit the advantages of both. By using the 
structuring principles of distributed systems, the services and data are replicated and 
situated so as to 1) distribute the demand, 2) avoid centralized bottlenecks, 3) increase 
concurrency, and 4) increase locality. On the other hand, there is tight coupling within a 
cluster, so the system is expected to perform well for the common case when interactions 
occur primarily between objects located in the same cluster. 

Because of its hybrid structure, many design issues in a clustered system are similar to 
those encountered in distributed systems. For example, shared objects can be distributed 
and moved across clusters to increase locality, but then the search to locate these objects 
becomes more complex. Other objects may be replicated to increase locality and decrease 
contention, but then consistency becomes a critical issue. 

There are also important differences between a clustered system and a distributed 
system that lead to completely different design tradeoffs. In a distributed system, for 
example, the hosts do not share physical memory, so the cost for communication between 
hosts is far greater than the cost of accessing local memory. In a (shared-memory) 
clustered system, it is possible to directly access memory physically located in other 
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clusters, and the costs for remote accesses are often not much higher than for local 
accesses. Additionally, demands on the system are different in the multiprocessor case, 
because of tighter coupling assumed by the applications. Finally, fault tolerance is a more 
important issue in distributed systems, in which the failure of a single node should not 
crash the entire system. In a shared-memory multiprocessor this type of fault tolerance is 
not (yet) a major issue (although clustering should provide a good foundation on which to 
address operating system design for fault containment when suitable hardware becomes 
available). 

3.2. Scalability 

Intuitively, scalability of an operating system refers to its capacity to provide increased 
service as the hardware resources (e.g., processors, memory, or disks) are increased. In 
queuing theoretic terms, an operating system can only scale if there are no resources 
within the system (e.g., queues and locks) that saturate as the system size is increased. 

In structuring an operating system for scalability, it is important that application re- 
quests to independent physical resources be managed by independent operating system 
resources. For example, if two applications simultaneously request data from two dif- 
ferent disks, concurrency in servicing the requests is maximized if the operating system 
structures that implement the service are completely independent. 

More generally, a scalable operating system will possess the following properties [Un- 
rau 1993]: 

�9 The parallelism afforded by the applications is preserved. 

The operating system workload can be expected to increase with the size of the system. 
Because most of the parallelism in an operating system comes from requests that are 
concurrently issued by multiple application threads, the number of service centers must 
increase with the size of the system, as must the concurrency available in accessing data 
structures. 

With hierarchical clustering, each cluster provides its own service centers and has its 
own local data structures. Application requests are always directed to the local cluster. 
Hence, the number of service points to which an application's requests are directed grows 
proportional to the number of clusters spanned by the application. As long as the requests 
are to independent physical resources, they can be serviced in parallel. 

�9 The overhead for independent requests is bounded by a constant [Barak and Kor- 
natzsky 1987]. 

If  the overhead of a service call increases with the number of processors, then the system 
will ultimately saturate. For this reason the demand on any single operating System 
resource cannot increase with the number of processors. With hierarchical clustering, 
there are no systemwide ordered queues and, more generally, no queues whose length 
increases with the size of the system. Because the number of processors in a cluster is 
fixed, fixed-sized data structures can be used within a cluster to bound the overhead of 
accessing these structures. 
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Figure 4. Cost versus coupling in a large-scale system�9 

�9 The locality of the applications is preserved. 

The locality of an application is inherent in the algorithm; the operating system cannot 
create locality where none existed before, but it must preserve and exploit the locality that 
is present if the application is to perform well. Hierarchical clustering exploits locality 
by co-locating objects that need to interact frequently in the same cluster (or supercluster 
if the interactions cross cluster boundaries) and by always first directing requests from 
the application to the local cluster. For example, descriptors of processes that interact 
frequently are forced to be close to each other, and memory mapping information is 
located close to the processors that need it for page-fault handling. Hierarchical clustering 
also provides a framework for enacting policies that increase locality in the applications' 
memory accesses and system requests. For example, policies can attempt to run the 
processes of a single application on processors close to each other, place memory pages 
near the processes accessing them, and attempt to direct file I/O to nearby devices. 

3.3. Cluster Size Tradeoffs 

The above requirements for scalability can be largely met by using a distributed systems 
approach, in which system services and structures are replicated onto each individual pro- 
cessing module; that is, by using a cluster size of one and a single level of hierarchy. The 
many large-scale distributed (i.e., networked) systems in existence today clearly demon- 
strate this. However, using a cluster size of one on a shared-memory multiprocessor 
will, for several reasons, result in greater overhead than using larger cluster sizes. First, 
the smaller the cluster size, the more intercluster operations are incurred, and intercluster 
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operations are more costly than intracluster operations. Second, there is less locality in 
intercluster communication, which further increases its cost. Third, it is necessary to 
keep the state on each cluster consistent with that on the other clusters. Finally, a cluster 
size of one results in greater memory requirements due to the replication of much of the 
operating system's code and data. 

A cluster size larger than one reduces the consistency and space overhead and reduces 
the number of intercluster operations required. However, the size of a cluster cannot 
become arbitrarily large without reorganizing the internal cluster structure, because the 
probability of contention for shared data structures will increase with the number of 
processors in the cluster, ultimately resulting in saturation. 

These tradeoffs in the choice of cluster size are depicted abstractly by the graph in 
Figure 4. The graph plots cost (including overhead) against the degree of coupling 
or cluster size for some fixed number of processors. The dotted curve in the figure 
represents access overhead and contention, which increases as the cluster size becomes 
larger because the probability of active resource sharing increases, while locality within 
the cluster decreases. The dashed curve represents the portion of overhead due to remote, 
intercluster communication; in general, fewer intercluster operations are necessary when 
the size of the cluster is larger. The solid curve is the sum of the contention and 
communication costs and suggests that there is some degree of coupling for which the 
overall cost is minimized. In Section 5 we show that this cost behavior can actually be 
observed in real systems. 

One of the benefits of hierarchical clustering is that system performance can be tuned to 
particular architectures, configurations, and workloads by adjusting the size of the clus- 
ters. The architectural issues that affect the appropriate cluster size include the machine 
configuration, the local-remote memory access ratio, the hardware cache size and coher- 
ence support, and the topology of the interconnection backplane. On hierarchical systems 
such as Cedar [Kuck et al. 1986], DASH [Lenoski et al. 1992], or HECTOR [Vranesic 
et al. 1991], the lowest-level operating system cluster might correspond to a hardware 
cluster. On a local-remote memory architecture, such as the BBN Butterfly [BBN 1988], 
a smaller cluster size (perhaps even a cluster per processor)may be more appropriate; 
in this case, clustering can be viewed as an extension of the fully distributed structuring 
sometimes used on these machines. 

Although architectural characteristics are important, they are not the only factor that 
determines the best cluster size for a particular system. For example, some systems 
have relatively large hardware cluster sizes, like the KSR1 [Frank et al. 1993] with 32 
processors per ring. If one were to choose a cluster size of 32 for this machine, it would 
be difficult to prevent the locks in the operating system from saturating. 

Choosing the correct locking granularity for a parallel system is generally difficult. A 
large granularity restricts concurrency, but a fine granularity increases the length of the 
critical path. Hierarchical clustering allows the locking granularity within a cluster to be 
optimized for the size and concurrency requirements of the cluster [Unrau et al. 1994]. 
For example, the message-passing code in our implementation uses only a small number 
of large-grained locks, adding little overhead to the critical path but providing sufficient 
concurrency for the expected demand given our commonly used cluster size. Fine-grained 
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locking is used when a high degree of concurrency is required or if only a small number 
of locks need to be acquired in the critical path. 

4. Implementation 

We have implemented a microkernel-based operating system called HURRICANE, struc- 
tured according to the principles of hierarchical clustering. The prototype does not as yet 
support the superclusters we envisage are necessary for large systems. Instead, we have 
focused initial efforts on structuring within and across first-level clusters. At present, the 
system is fully functional, and in this section we show how clustering has affected the 
structure of its primary components. 

In order to make a clustered operating system successful, it is important to keep the 
following issues in mind. Applications should be shielded from the fact that the oper- 
ating system is partitioned into clusters; to users and applications the system should, by 
default, appear as a single, large, integrated system. Moreover, the complexity intro- 
duced by separating the system into clusters must be kept reasonably low, since clusters 
were introduced as a structuring mechanism primarily to reduce overall complexity, not 
increase it. Finally, intercluster communication must be efficient; while we expect most 
interactions to be local to a cluster, those interactions that must access remote clusters 
should not be overly penalized. 

The main design issue in implementing a clustered system (as opposed to a traditionally 
structured system) is the choice in strategy for managing the data and the choice in 
mechanism for communication. For each type of data, one must decide whether data of 
that type should be replicated or whether there should be only one copy. If  there is only 
one copy, there is a choice of placing it statically or allowing it to dynamically migrate 
to where it is being accessed. If data is replicated, then one must decide how to keep 
it consistent. The above choices will be influenced primarily by the expected access 
behavior. For example, one would not want to replicate actively write-shared data. 

Intercluster communication is needed 1) to access remote data that is not replicated, 
2) to replicate and move data, and 3) to maintain data consistency. Three different 
mechanisms can be used for intercluster communication [Chaves et al. 1993]. First, 
shared-memory access is always a viable option on a shared-memory multiprocessor, 
particularly for lightweight operations that make only a few references. For instance, 
our implementation uses shared memory for table lookup to locate objects such as page 
descriptors. However, we prefer to minimize cross-cluster shared-memory accesses be- 
cause of the reduced locality in these accesses (and hence the increased probability of 
contention if used indiscriminately). There are also other problems with accessing remote 
resources using shared memory. With spin locks, secondary effects such as memory and 
interconnect contention can result in a greater than linear increase in cost as the number of 
contending processors grows [Anderson 1990; Mellor-Crummey and Scott 1991]. When 
only processors belonging to the same cluster contend for a spin lock, these secondary 
effects can be bounded. 

A second possibility is to use remote procedure calls (RPCs). In our system RPCs are 
implemented using remote interrupts and are used for kernel-kernel communication. The 
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interrupted cluster obtains the call information and arguments through shared memory 
directly, after which data accesses required to service the request can be local to the 
interrupted cluster. The savings gained from the local data accesses must amortize the 
cost of the interrupt (i.e., the cycles that are stolen and the register saving and restoring). 

Finally, HURRICANE supports message passing that allows user-level processes to send 
messages to other processes regardless of their location in the system. This provides a 
simpler form of cross-cluster communication for higher-level servers that are replicated 
across the clusters of the system. 

4.1. The HURRICANE Kernel 

The HURRICANE kernel is responsible for process management and communication and 
is similar in structure to the V kernel [Cheriton 1988]. Most operations on processes 
involve the queuing and dequeuing of process descriptors. For example, when a process 
sends a message to another process, its descriptor (containing the message) is added 
to the message queue of the target descriptor. Other queues include a ready queue for 
processes that are ready to run and a delay queue for processes waiting for a time-out. 
Each HURRICANE cluster has its own instance of kernel data structures. Hence the 
number of queues increases with the size of the system, so the average demand on each 
queue should remain constant as the system grows. Moreover, the process descriptor 
table and kernel queues are local to each cluster, preserving the locality for the common 
case when the request can be handled entirely within the cluster. A process descriptor 
moves with the process if it migrates across cluster boundaries so that operations on the 
process descriptor are always local to the cluster on which the process resides and so 
that queue traversals are also always local to the cluster. 

A home encoding scheme is used to allow a process to be located anywhere in the 
system with a constant number of operations, independent of the number of processors. 
When a process is created, it is assigned a process identifier within which the ID of 
the home cluster is encoded. Usually, a process remains within its home cluster, but if 
it migrates, then a record of its new location (a ghost descriptor) is maintained at the 
home cluster. Operations that require access to the newly located process look first in the 
home cluster, find the ghost, and use the locator information in the ghost to determine 
the current cluster in which the process resides. 

Intercluster message passing is implemented using remote procedure calls that interrupt 
the target cluster to 1) allocate a local message retainer (similar to a process descriptor) in 
the target cluster, 2) copy the message and other information into the retainer by directly 
accessing the process descriptor in the source cluster, and 3) add the message retainer 
to the message queue of the target process descriptor. Note that by using local message 
retainers in the target cluster (as opposed to a global pointer to the process descriptor in 
the source cluster), the message queue will always be an entirely local data structure. 

In the case of the HURRICANE kernel, having the cluster size smaller than the size of 
the system has three key advantages: 

1. It localizes the kernel data structures that need to be accessed; 
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2. it reduces the number of process descriptors that must be managed within a cluster, 
thus reducing the average length of clusterwide queues; and 

3. systemwide, it increases the number of queues and tables (since each cluster has 
local instances), reducing demand on the resources and increasing concurrency. 

On the other hand, having a cluster span of more than one processor reduces the amount 
of intercluster communication and makes it easier to balance the load of the processors. 

4.2. Protected Procedure Calls 

With a microkernel multiprocessor operating system, the majority of IPC (interprocess 
communication) operations are required solely to cross address space boundaries (i.e., 
for client-server interactions) and not to cross processor boundaries. The HURRICANE 
message-passing facility described above is optimized for interprocessor communica- 
tion, whereas another facility, called protected procedure calls (PPCs), is optimized for 
interaddress space communication. 

The PPC facility uses the same structuring principles as hierarchical clustering but 
applied on a per-processor basis. As a result, it accesses only local data, requires no 
access to shared data, and requires no locking, so end-to-end performance is comparable 
to the fastest uniprocessor IPC times. Yet because of the concurrency provided, this 
performance can be sustained independent of the number of concurrent PPC operations, 
even if all such operations are directed to the same server. Moreover, the PPC facility 
ensures that local resources are made available to the target server so that any locality 
in client-server interactions can be exploited by the server [Gamsa et al. 1993]. 

In our implementation of PPCs, separate worker processes in the server are created as 
needed to service client calls on the same processor as the requesting client. On each call 
they are (re)initialized to the server's call handling code, which has the same effect as an 
up-call into the service routine. This results in a number of benefits: 1) Client requests 
are always handled on their local processor, 2) clients and servers share the processor in 
a manner similar to hand-off scheduling, and 3) there are as many threads of control in 
the server as client requests. 

The key benefits of our approach all result from the fact that resources needed to handle 
a PPC are accessed exclusively by the local processor. By using only local resources 
during a call, remote memory accesses are eliminated. More importantly, since there is 
no sharing of data, cache coherence traffic can be eliminated. Since the resources are 
exclusively owned and accessed by the local processor, no locking is required (apart 
from disabling interrupts, which is a natural part of system traps). 

Although call handling is managed at the local processor level, the creation and de- 
struction of communication endpoints are managed at the cluster level (in order to syn- 
chronize these events across the cluster), requiring cross-cluster communication only for 
those servers that span multiple clusters. Such operations are sufficiently rare in our 
system that the performance impact is negligible. 



HIERARCHICAL CLUSTERING ] ]7  

4.3. Memory Management 

Each HURRICANE virtual address space defines the application-accessible memory re- 
sources as a set of non-overlapping regions, each of  which describes the attributes of  a 
contiguous sequence of virtual memory pages. Each region is directly associated with 
a corresponding file region so that accesses to the memory region behave as though 
they were accesses to the file region directly. This relationship is known as a single-level 
store, or mapped-file, memory abstraction [Unrau 1993]. Within a cluster, address spaces 
are represented by an address space descriptor and an associated balanced binary tree 
of  region descriptors. The region descriptors maintain the virtual limits and mapping 
attributes of each address space region. 

For programs that span multiple clusters, the address space and region descriptors 
are replicated to the clusters as needed. To maintain the integrity of  these replicated 
structures, all modifications are directed through the home cluster, which serves as a point 
of  synchronization. Currently, the home cluster is designated as the cluster on which the 
program was created. Since the address space and region descriptors are accessed for 
reading far more often than they are modified, replication of these structures improves 
locality of  access in the common case. 

In large systems, applications that span many clusters could cause the memory man- 
ager on the home cluster to become contended, because it must both replicate the data 
structures and distribute modifications to them. Additional levels in the hierarchy could 
be used to improve both cases. On first access, a source replica for the data structure 
could be obtained from the local supercluster or super-supercluster rather than the home 
cluster. A spanning tree could then be used to distribute modifications to all the replicas. 

Each physical page in a cluster has a page descriptor associated with it. This structure 
identifies the physical address of  the page, its state, and the file block stored there. 
All pages that contain valid file data are kept in a page cache, which is a hash table 
indexed by file block and is used to determine whether a file block is already resident 
in the cluster. Unreferenced pages are placed on a free list, but remain in the page 
cache in case the file block is referenced again in the near future. These structures are 
always local to a cluster and need not be replicated or moved, since they represent local 
physical resources. To reduce the amount of  cross-cluster communication, representative 
page descriptors are used to identify pages that are accessed remotely. This keeps all the 
data structures local to the cluster and allows the results of  a remote page search to be 
subsequently used by other processors within the cluster. 

The HURRICANE memory manager supports page replication and migration across 
clusters. This can reduce access latency and contention for some applications [Bolosky 
et al. 1989; Cox and Fowler 1989; LaRowe et al. 1991]; however, the overhead of  these 
policies must be amortized to realize a net gain in performance. Hierarchical clustering 
provides a framework for enacting paging policies, in which pages are shared within a 
cluster to reduce overhead, but are replicated and moved across clusters to reduce access 
latency and memory contention. 

A simple directory mechanism is used to maintain page consistency between clusters. 
There is one directory entry for each valid file block currently resident in memory; it 
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identifies which clusters have copies of the page. The directory is distributed across the 
processors of the system (thus spanning all clusters), allowing concurrent searches and 
balanced access demand across the system. Pages that are actively write-shared are not 
replicated, but instead are accessed remotely. 

4.4. The File System 

File I/O in HURRICANE is provided largely outside of the kernel; only the device drivers 
are in the kernel. The HURRICANE File System (HFS) implementation makes use of 
three user-level system servers [Krieger and Stumm 1993; Krieger 1994]. The Name 
Server manages the HURRICANE name space. The Open File Server (OFS) maintains 
the file system state for each open file and is largely responsible for authenticating 
application requests to lower-level servers. The Block File Server (BFS) controls the 
disks, determines the target for each I/O request, and directs the request to a corresponding 
device driver. 

The Alloc Stream Facility (ASF) is a file system library in the application address space 
that translates application file read and write requests into accesses to a mapped file 
region [Krieger 1994; Krieger et al. 1994]. On the first access to a page in the region, 
the process will page-fault. If  the data is not available in the file cache, then the fault is 
translated by the memory manager into a read_page request to the BFS. 

There is a separate instance of all file system servers on each cluster. Client/server 
interactions within a cluster are directed to servers local to the client. For example, the 
memory manager directs all page-fault requests to its local BFS. Only requests between 
peer HFS servers (for example, BFSs in different clusters) may cross cluster boundaries. 
Cross-cluster communication between file system servers occurs through explicit message 
passing, not through shared memory. 

When an application spans multiple clusters, or when programs on different clusters 
access the same files, then the file system state for shared files is replicated to the cluster 
servers as they are needed. When the state is first required by a server, it locates some 
other server that has the state to obtain a local copy of the state. Currently, this is done 
by directing a request to the server in the cluster identified by the persistent token of 
the file. To maintain the integrity of these replicated structures, all modifications are 
directed through the home cluster, which serves as a point of synchronization. In our 
current design the home cluster is the cluster where the file was first opened. Depending 
on the particular type of state being accessed, modifications result in either update or 
invalidate messages being sent to the servers on the clusters that have a copy. 

In addition to providing a structured way to achieve scalability for the file system 
servers, clustering provides a framework for invoking policies that localize application 
I/O requests and balance the load across the disks of the system. Files are created on 
disks that are in clusters near the requesting applications. If a file is replicated to multiple 
disks, the file system can use hierarchical clustering to determine the nearest replica of 
the file and direct read requests to that replica. Similarly, for some kinds of distributed 
files the file system can distribute write requests to disks in clusters near the page frame 
that contains the dirty page. In the case of load balancing, HFS maintains both long- and 
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short-term statistics on the aggregate disk load of the clusters and superclusters. This 
information can be used in order to direct I/O requests to the least loaded clusters. This 
information can also be used when a new file is created so that the file is created on 
disks in lightly loaded clusters. 

4.5. Scheduling 

One goal of the scheduling subsystem is to keep the load on the processors (and pos- 
sibly other resources, such as memory) well balanced. The scheduling decisions in 
HURRICANE are divided into two levels. Within a cluster the load on the processors 
can be balanced at a fine granularity through the dispatcher (in the microkernel). This 
fixed scope limits the load on the dispatcher itself and allows local placement deci- 
sions on different clusters to be made concurrently. Cross-cluster scheduling is handled 
by higher-level scheduling servers, which balance the load by assigning newly created 
processes to specific clusters and by moving existing processes to other clusters. The 
coarser granularity of these movements permits a low rate of intercluster communication 
between schedulers. 

A second goal in a hierarchically clustered system is to enact process placement poli- 
cies that exploit the locality of application programs. For parallel programs with a small 
number of processes, all of the processes should run in the same cluster. For larger-scale 
parallel programs that span multiple clusters, the number of clusters spanned should 
be minimized. These policies are motivated by studies that have shown that cluster- 
ing can noticeably improve overall application performance [Ahmad and Ghafoor 1991; 
Brecht 1993; Feitelson and Rudolph 1990; Zhou and Brecht 1991]. 

5. Experimental Results 

An important aspect of our implementation is that the cluster size can be specified at 
boot time. This allows us to explore the tradeoffs between contention and communication 
overhead and to quantitatively evaluate our locality management policies. This section 
reports the results of several experiments designed to evaluate hierarchical clustering 
for both synthetic stress tests and real applications. All experiments were run on a fully 
configured version of HURRICANE with all servers running, but with no other applications 
running at the time. 

The experiments were run on a 16-processor prototype of a hierarchical NUMA archi- 
tecture, HECTOR (see Figure 1). Although a 16-processor system is relatively small, the 
impact of contention and the NUMA times of the system are clearly evident and will only 
get worse in larger systems with faster processors. Hence we believe that the general 
trends exhibited by the results of our experiments can be extrapolated to larger systems. 
Also, our results show the basic costs for a clustered system of inter- and intracluster 
operations, which are largely independent of the system size. 

The prototype system used for experimentation uses Motorola 88100 processors running 
at 16.67 MHz, with 16-Kbyte data and instruction caches (88200), and a local portion 
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of the globally addressable memory. At the lowest level, processors are connected by 
a bus. These lowest-level units, called stations, are then connected together by a high- 
speed ring, with multiple rings connected together by higher-level rings, and so on. The 
particular hardware configuration used in our experiments consists of four processing 
modules per station and four stations connected by a ring. By comparison with other 
NUMA systems [BBN 1989; Chaiken et al. 1991; Frank et al. 1993; Kuck et al. 1986; 
Lenoski et al. 1992; Pfister et al. 1985] the cost of accessing remote memory on HECTOR 
grows relatively slowly as the system is scaled. The time to load a cache line grows 
from 19 cycles for local memory, to 29 cycles for a different memory module in the 
same station, up to 34 cycles when the memory module is in a different station. The 
HECTOR prototype on which we ran these experiments does not support hardware cache 
coherence, but page-based cache coherence is supported by the HURRICANE memory 
manager. 

5.1. Basic Operations 

We now present some of the basic costs of the system and compare intracluster versus 
intercluster times for some common operations. 

Protected procedure calls (PPCs) are only supported for local (on-processor) commu- 
nication, and hence their cost is independent of clustering. A null-PPC from a user 
application to a user-level server is 32.4 #s and drops to 19.2 /zs when directed to a 
kernel-level server (both are round-trip times). The performance of PPCs remains con- 
stant irrespective of the number of processors making concurrent requests. 

Remote procedure calls are used for cross-cluster communication within the operating 
system kernel. The cost of a cross-cluster null-RPC in our implementation is 27 #s, which 
includes the time to interrupt the target processor and the time to save and subsequently 
restore its registers. 

The cost to handle a read page-fault for an in-core page increases from 128 #s within 
a cluster to 243 #s across clusters. The additional overhead in the latter case is primarily 
due to the overhead of replicating the page descriptor and the extra directory lookup 
needed to locate the remote copy of the page. Subsequent faults by other processors on 
the remote cluster incur only the in-cluster cost. 

The cost of a 32-byte send-response message transaction between two user-level pro- 
cesses increases from 328 #s within a cluster to 403 #s across clusters. Here the extra 
overhead is due to two RPCs needed to communicate between clusters and the allocation, 
initialization, and subsequent deallocation of message retainers at the target cluster. 

5.2. Synthetic Stress Tests 

To study the effects of clustering on throughput and response time, we designed several 
synthetic tests to stress the concurrency limits of the system. A message-passing test 
is used because message passing is a key means of communication between the servers 
of a microkernel operating system. A test of the performance of page faults to in-core 
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Table 1. The cluster configurations used for the 
synthetic stress tests and application bench- 
marks. CSize-16 corresponds to a tightly cou- 
pled system; CSize-1 corresponds to a fully 
distributed system. 

CSize-1 16 clusters with 1 processor each 

CSize-2 8 clusters with 2 processors each 

CSize-4 4 clusters with 4 processors each 

CSize-8 2 clusters with 8 processors each 

CSize-16 1 cluster with 16 processors 

pages (soft page faults) is used, since such soft page faults are fairly common, as they are 
required to support page-level cache coherence and page migration and replication, both 
important for performance in a NUMA multiprocessor. There are two groups of tests, 
both containing the message-passing and page-fault test. The first group exercises the 
system for simultaneous operations to independent resources; the second group shows 
the performance for concurrent operations to shared resources. 

The tests were run on each of the cluster configurations of Table 1. Note that the 
hardware configuration does not change and is always four processors to a station and 
that the clusters are assigned to the hardware stations in a natural way. 

The cluster configurations correspond to different degrees of coupling and therefore 
allow us to explore the communication/contention tradeoffs alluded to in Figure 4. We 
expect CSize-1, in which each processor has its own set of operating system data struc- 
tures, to perform well for coarse-grained parallel or independent applications, but to 
suffer from high communication costs for tightly coupled applications. At the other end 
of the spectrum, CSize-16 has one set of kernel data structures that are shared by all 
processors in the system. For this configuration we expect contention for the shared data 
structures to be a significant portion of the response times. 

5.2.1. Independent Operations 

Figure 5 is a schematic depiction of the programs that stress simultaneous operations 
on independent resources. In the message-passing test, neighboring pairs of processes 
repeatedly exchange 32-byte messages. In the page-fault test, p processes repeatedly 
fault on a separate region of local memory. The pages of the region are unmapped 
between separate iterations of the loop. Figure 6 shows the response times and nor- 
malized throughput of the tests of Figure 5. Normalized throughput is calculated as 
X(p) = T(1) /T(p) .  W(p)/W(1),  where T(p) is the response time for p processes, 
and W(p)/W(1) reflects the amount of work done relative to the single operation case. 
The smallest cluster size shown for the message-passing test is Csize-2, since it is the 
first configuration for which neighboring processes reside in the same cluster. In these 
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a)Message passing b) Page faults 

Figure 5. A schematic depiction of the programs that stress simultaneous operations on independent 
resources. In the message-passing test (a), neighboring pairs of processes repeatedly exchange 32- 
byte messages. In the page-fault test (b), p processes repeatedly fault on a separate region of local 
memory. 

tests the p processes are assigned to separate processors in a way that minimizes the 
number of clusters spanned. That is, the processes are first added to one cluster until 
each processor in the cluster has a process, before adding processes to the next cluster. 
This corresponds to a scheduling policy that attempts to assign related processes to the 
same cluster whenever reasonable. 

Figure 6 (a) and (b) shows that for both tests, the response time increases until p is 
equal to the number of processors in a cluster, at which point lock contention within 
the cluster is maximized. For example, in the page-fault experiments the address space 
structure and the top levels of the balanced binary tree of regions become the contended 
resources. As the processes "spill over" to the next cluster, the response times drop 
because the new processes experience no contention and thus lower the overall average 
response times. 

Observe that the response times for single operations (the lower left corner of the 
figure) increase slightly as the cluster size increases. This is due to NUMA effects in the 
larger clusters. Since there is only one operation in progress, there is no lock contention, 
but the probability that a particular data structure is remote increases with cluster size, 
since the shared kernel resources are distributed across all the processors of the cluster. 
Thus the latency of kernel data accesses increases with cluster size. 

Not surprisingly, the tests reveal that the smallest cluster size for each test has the 
best performance. Locality is maximized in this case, and since the operations are 
independent, no cross-cluster operations are required. F o r  large cluster sizes the locks for 
common data structures suffer increasing contention, and hence response times increase 
correspondingly. 

In summary, the results show that when clusters are large, contention can severely 
affect performance, and even when there is not much concurrency, the loss of locality 
will adversely affect performance to some degree. While these results were obtained from 
a small system, it is clear that both effects would be stronger in a larger system. The 
results would also be stronger on systems with more pronounced NUMA characteristics 
than HECTOa has (e.g., [BBN 1989; Chaiken et al. 1991; Frank et al. 1993; Lenoski et 
al. 1992]). 
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Figure 6. The response times and normalized throughput for simultaneous independent operations: 
(a) and (c) message passing; (b) and (d) page faults. 
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a) Message passing b) Page faults 

Figure 7. A schematic depiction of the programs that stress simultaneous access to shared resources. 
In the message-passing test (a), p children repeatedly send 32-byte messages to a single parent. In 
the page-fault test (b), p children simultaneously write to the same small set of shared pages. 

a) Message Passing b) Faul~to Shared Pages 
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Figure 8. The response times for simultaneous operations to shared resources: (a) message passing; 
(b) page faults. 

5.2.2. Operations to Shared Resources  

Figure 7 is a schematic depiction of  the programs that stress simultaneous access to shared 
resources. In the message-passing test, p children repeatedly send 32-byte messages  to 
a single parent. In the page-fault test a master maps a small set of  pages for reading, 
and then p children simultaneously write to the shared pages. The pages are unmapped 
between successive iterations of  the test. Figure 8 shows the response times for the tests 
of  Figure 7, plotted as a function of cluster size. The different curves represent different 
numbers of  active children. 

Figure 8 shows that an intermediate degree of  coupling has the best performance for 
both tests. Also,  the minimum response time for p processes occurs when the cluster 
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contains p processors, which suggests that it may be beneficial to match the cluster size 
to the application communication patterns. When the cluster size is smaller, the cost of 
cross-cluster operations is incurred; if the cluster size is larger, locality suffers. 

The exception to the matching observation occurs for the 16-process page-fault test, 
for which CSize-8 achieves the best performance. This is due to contention for shared 
resources, which dominates for the large cluster sizes. For small cluster sizes, the cost 
of the intercluster communication is more dominant. 

Depending on the expected workload, there are two ways these results might be ex- 
trapolated to systems larger than the prototype. Consider first the case of a workload 
consisting primarily of large numbers of small-scale parallel applications (16 processes or 
under) running on a significantly larger system (several hundred processors). The results 
in this section show that as the cluster size is increased beyond the size of the applica- 
tion, performance degrades due to a loss of locality in the operating system. This trend 
is likely to continue in the future, when we expect even higher remote memory access 
costs, suggesting that clusters should remain relatively small (but larger than the average 
parallelism of the applications) in order to efficiently support this type of workload. 

The second case to consider is a workload of large parallel applications. Here the 
results are not as clear cut. Extrapolating the message-passing test would lead to the 
conclusion that the cluster size should grow with the applications. However, the page- 
fault test demonstrates the danger of increasing the cluster size too much, even for 
tightly coupled applications. In particular, for the 16-process case, the optimal cluster 
size is 8, with a sharp rise in cost for cluster size 16. On the other hand, a cluster 
size significantly smaller than the application also results in poor performance. We 
expect from these results that increasing the cluster size will result in a diminishing 
improvement in performance until ultimately an increase in cluster size will decrease 
performance, suggesting an intermediate cluster size should be chosen even for tightly 
coupled large-scale applications. 

The page-fault experiment of Figure 7 can be used to illustrate how additional levels of 
hierarchy can help performance on larger systems. To support coherence of read-shared 
pages at the time of a write, processors that are accessing the page must be notified. 
This is done using a spanning tree, in which a single processor in each cluster is notified 
and that processor is then responsible for notifying all other processors in its cluster. On 
larger systems with superclusters, this spanning tree can be extended to further improve 
concurrency. 

5.3. Applications 

The synthetic stress tests of the previous section were designed to exercise a single aspect 
of the system, namely simultaneous independent operations and simultaneous operations 
to shared resources. However, real applications seldom incur only one or the other and, 
in fact, exhibit both types. 

We now examine the performance of three parallel applications as a function of cluster 
size. The applications are SOR, a partial differential equation solver; Matrix Multiply; 
and 2D-FFT, which calculates the Fourier transform of a two-dimensional array of data. 
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All three programs are of the data-parallel, or SPMD, class of applications. However, the 
data access patterns of the applications are very different so that each stresses a different 
aspect of the system. 

Figure 9 shows the page-fault behavior of the three applications when four worker 
processes are used. In the figure the Y axis indicates the virtual page number (virtual 
address divided by the page size), and the X axis gives the time in milliseconds. Each 
"point" represents a page-fault event for the corresponding process and is plotted at 
the virtual address and time for which the fault occurred. Page-fault events are caused 
either by the process mapping the page into its address space on its processor or by 
writes trapped in order to support page-level coherence. For each of the applications 
the computation is partitioned along equal strips of the result matrix. The page-fault 
behavior is inherent in the algorithm and does not change (except for time-dependent 
accesses) as the operating system configuration is varied. However, the cost of handling 
the page faults changes with the configuration, depending on whether the fault is to a 
shared page or not. 

The SOR application exhibits concurrent faults to primarily independent pages, since 
the only shared data is along the shared edges of the strips of the matrix. Figure 9 shows 
that there is little paging activity after the initial iteration of the algorithm, so we expect 
this application to perform well for small cluster sizes. 

In contrast, the Matrix Multiply and 2D-FFT programs have phases of intense con- 
current accesses to both independent and shared pages. For Matrix Multiply (C = A • 
B), the program starts with a period of concurrent accesses to independent pages, as the 
workers initialize the matrices in parallel. The computation starts at time 200 ms and 
proceeds along the rows of C (and A). The accesses to these matrices are seen as the 
slowly increasing diagonals of fault instances in Figure 9. To compute a single row of 
C, each worker must read all the columns of B, which is seen as the sharp diagonals 
of faults in the figure. This access behavior stresses the memory manager's ability to 
handle simultaneous faults to shared pages. 

The 2D-FFT application also begins with a flurry of faults to independent pages as 
the matrix and a reference matrix to check the answer are initialized by the workers in 
parallel. The forward transform begins along the rows at time 200 ms. At time 400 ms 
there is a period of intense coherence faults as the rows that had been accessed by a 
single worker are now accessed by all the workers to perform the column transform. 
The row-column fault pattern is repeated for the reverse transform, which begins at time 
700 ms. 

Figure 10 shows the response times for the three applications (on larger data sets than 
those shown in Figure 9) as the cluster size is varied from 1 to 16. The response times 
are plotted normalized to the response time of CSize-4. We are interested primarily 
in the general trends represented by each application, and hence the results for each 
application should be interpreted qualitatively and independently from each other. All the 
programs were run with 16 processes on 16 processors; only the cluster configurations 
were varied. The response times reported are for the entire program, which includes 
the time to create, schedule, and destroy the worker processes as well as the time to 
initialize any data structures. As a result, the times reported include the overhead due 
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Figure 9, The page access and coherence faults of the three application programs (using four 
workers). The Y axis indicates the virtual page number (virtual address divided by the page size). 
The X axis gives the time in milliseconds. Each "point" represents a page-fault event for the 
corresponding process. Page-fault events are caused either by the process mapping the page into 
its address space on its processor or by writes trapped in order to support page-level coherence. 
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Figure 10. The normalized response times of the application suite for different data set sizes and 
cluster configurations. 

to both process and memory management. The algorithms (and problem sizes) used for 
these applications were chosen to stress the system and not necessarily because they were 
the best algorithms possible. By way of reference, the measured speedups for CSize-4 
were 13, 11, and 8 for SOR, Matrix-Multiply, and 2D-FFT, respectively. 

In general, all three programs perform best when the cluster size is four (see Figure 
10). The performance of all three programs suffer when the cluster size is much larger or 
smaller than four. The amount of degradation reflects application-specific system service 
demands, due in part to the differing page-fault behavior. 

At CSize-1 we see that the SOR program degrades only slightly. The degradation is 
minimal because the workers have primarily independent working sets, and so there is 
little shared data that must be kept consistent. The increase in response time for SOR over 
the response time of CSize-4 is mostly due to the increased cost of moving and destroying 
the worker processes on remote clusters during the initialization and termination phases. 

Matrix Multiply is severely affected by too small a cluster size. This is actually 
a policy effect, since the default policy is to replicate read-only shared pages across 
clusters. Although this policy improves access times once the page is local, the cost of 
making 15 copies of the B matrix for CSize-1 overshadows any gains in locality. Also, 
this degree of replication can cause the per-cluster working set to exceed the amount of 
available physical memory if the problem size is large. Using an intermediate cluster 
size thus helps to balance the tradeoff between locality and space utilization. 

At the other end of the coupling spectrum (CSize-16), 2D-FFT suffers greatly because 
of the high number of consistency faults that occur when the workers change phases 
from rows to columns. Matrix Multiply is also affected by contention, because of the 
high number of accesses to the shared pages of the B array (see Figure 9). 



7.5. 

2 CPUs/Station 

Response 
Time 7 

(s) 

6.5 

a- 2 CPUs/station / k  

t~ 4 CPUs/station 

m ........ 
/ 

" . . .  ... 

ClusterSize 

HIERARCHICAL CLUSTERING 129 

4 CPUs/Station 

Figure 11. Matching the cluster size to the architecture for Matrix Multiply on eight processors. 

Again, given the significant impact visible for a relatively small system, the benefits 
of clustering are likely to be more pronounced on larger systems. 

5.4. Effects of  Hardware Configuration 

An interesting question is whether the cluster size should match the application com- 
munication pattern or the architectural configuration. So far, we have seen examples 
when both were appropriate: The synthetic stress tests of concurrent accesses to shared 
resources showed the cluster size should match the application; the application perfor- 
mance curves suggested that the cluster size should match the architecture. To explore 
this question further, we ran the Matrix Multiply test on an eight-processor multipro- 
cessor configured as four hardware stations of two processors each, and configured as 
two hardware stations of four processors each. For both configurations the cluster size 
was varied from one to eight. Figure 11 shows the response times obtained for this 
experiment. 

For both hardware configurations the figure shows that the response time is minimized 
when the cluster size matches the architecture. Also note that four processors per station 
has a generally better response time than two processors per station because there is 
less interstation communication. The exception occurs at a cluster size of two, since the 
configuration of four processors per station suffers from having two clusters sharing a 
common bus for independent accesses. 
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6. Lessons Learned 

Our experiences with HURRICANE have demonstrated that hierarchical clustering can 
exploit the advantages of both small-scale tightly coupled systems and large-scale dis- 
tributed systems. The tight coupling within a cluster results in performance comparable 
to small-scale shared-memory systems for the common case, when interactions occur pri- 
marily between objects located in the same cluster. On the other hand, because system 
services and data are replicated and moved to different clusters in the system, there is 
much locality and less sharing and hence fewer bottlenecks for independent operations. 
We therefore expect a system based on hierarchical clustering to scale well. 

In the course of our work o n  HURRICANE, we have learned a number of lessons that 
suggest changes that could improve the performance and reduce the complexity of an 
operating system implemented using hierarchical clustering. 

Locking protocols 

The locking protocols for within and across clusters were developed independently [Unrau 
et al. 1994], adding much complexity to the implementation. Within a cluster we enforce 
an ordering on the acquisition of locks to avoid deadlock. Because lock contention is 
often expected to be low with reasonable cluster sizes, many locks are implemented as 
spin locks, in which a process requesting a lock does not release the processor it is 
spinning on (essentially holding a lock on the processor). For intercluster operations we 
release all local locks, including the processor, before going remote in order to avoid 
deadlock. 

We found that releasing locks for remote operations results in an excessively large 
discrepancy between the cost of local and remote operations and adds much complexity 
to the code. As an example of the complexity, many operations in the kernel have three 
versions: one that implements the local case, another for the client side of the RPC, 
and a third for the corresponding server side. Releasing locks for remote operations also 
makes it more difficult to ensure fairness, since local requests have a higher probability of 
acquiring a contended resource. To address the cost and fairness problems that arise from 
releasing locally held locks for remote operations, we modified the implementation to 
release locally held locks only if the locks required at the remote site are not free. This 
optimization resulted in even greater code complexity. We are currently investigating 
how to get the same benefits without unduly complicating the code. 

Relationship between clustering and policies 

In our original implementation the cluster size determined both the structures used to 
manage resources and a framework for invoking policies on those resources. We have 
since experimented with decoupling the cluster size and the policies. For example, it is 
now possible to request that pages of a memory region be replicated or moved to the 
local processor, even if there is already a copy of the page on another processor in the 
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local cluster [Gamsa 1992]. For some applications we have found that this approach 
results in substantial performance improvements. 

Fixed cluster sizes 

When HURRICANE is booted, a fixed-sized cluster is established for all resources. We 
believe that more flexibility could result in performance improvements; in particular, we 
believe that each class of physical (e.g., pages, processors, disks) and virtual (e.g., address 
spaces, regions, files) resource could be clustered independently with little increase in 
space requirements or complexity. As an example, the HURRICANE PPC facility manages 
resources more naturally on a per-processor rather than a per-cluster basis. 

Other experiences 

In our current implementation the RPC service load is balanced by having processor i 
of each cluster direct its RPC requests to processor i of the target cluster. We would like 
to investigate more dynamic load balancing approaches; an example would be to direct 
an RPC request to any idle processor in the target cluster. 

Some operating system services can affect all clusters on which that application is 
running. For example, when the state of a page used by all processes is changed, all 
processors must be notified. To support these operations efficiently, we have implemented 
an asynchronous RPC facility that allows a particular cluster to simultaneously invoke 
code on a number of or all other clusters. For larger-scale systems we expect to use 
the clustering hierarchy to implement a spanning tree broadcast that will allow not only 
the servicing but also the distribution of the asynchronous RPC operations to be done 
concurrently. 

As discussed in the implementation section, local structures (representatives) are used 
to represent remote resources, such as processes or physical pages. In the worst case, 
the number of remote resources accessed by a cluster will grow proportionally to the 
number of clusters in the system. If we allowed the number of representatives to grow 
at this rate, then clearly our approach would not be scalable. However, for well-behaved 
applications we expect that the average number of cross-cluster interactions that each 
cluster will have to support will remain constant as the system size is scaled. Therefore, 
we believe we can obtain good performance with a fixed number of representatives per 
cluster, paying a somewhat higher cost to support the case when the fixed set is depleted. 
A proper study of the impact of this decision is still required. 

7. Concluding Remarks 

We have introduced the concept of hierarchical clustering as a way to structure operating 
systems for scalability, and described how we applied this structuring technique to the 
HURRICANE operating system. We presented performance results that demonstrate the 
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characteristics and behavior of the clustered system. In particular, we showed how 
clustering trades off the efflciencies of tight coupling for the advantages of replication, 
increased locality, and reduced lock contention, but at the cost of cross-cluster overhead. 

Concepts similar to hierarchical clustering have been proposed by a number of other 
researchers [Ahmad and Ghafoor 1991;Cheriton et al. 1991; Feitelson and Rudolph 1990; 
Zhou and Brecht 1991]. One of the major contributions of our work is that we have 
implemented a complete operating system based on this structuring methodology. To the 
best of our knowledge, HURRICANE is the only complete and running implementation 
of such a system. Our work gives a degree of confidence that systems structured in 
such a fashion can be reasonably implemented, a confidence that cannot be obtained 
from a paper design. The lessons learned from this implementation were not obvious 
(except perhaps in hindsight) and should influence future systems designed with similar 
structures. 

We are now embarking on the design of a new operating system, TORNADO, for a new 
shared-memory multiprocessor. TORNADO will incorporate the lessons we learned from 
our experiences with hierarchical clustering on HURRICANE. In particular, 1) the locking 
protocol will be independent of the clustering, 2) each virtual and physical resource class 
will use its own cluster size, and 3) the cluster size and the policies will be largely 
decoupled. 

Our experiences with scientific applications on HURRICANE/HECTOR has inspired two 
new research directions for TORNADO. First, we are investigating a new methodology 
called physical resource-based virtual machines, whose goal is to guarantee predictable 
performance, eliminating interference from other concurrently running but independent 
applications. This will allow compilers and applications to make optimizations that de- 
pend on predictable physical resource allocation. Second, we are investigating operating 
system policies and structures that will work well for applications with large data sets 
(e.g., data sets that do not fit in main memory). 
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