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blocks of a cache have variable block sizes. By stacking sets
of counters, each set being for a different block size, a stack
distance for variable block sizes can be obtained and used to
determine a miss ratio curve. Such curve can then be used
to select a cache size that is appropriate for an application
without requiring excessive memory. Methods can be used
for batches of request, can apply limits to block sizes, and
rounding for intermediary block sizes, they can be used with
pruning, and their space complexity can be held constant.
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SYSTEMS AND METHODS TO GENERATE A
MISS RATIO CURVE FOR A CACHE WITH
VARIABLE-SIZED DATA BLOCKS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This is the first application filed for the present invention.
TECHNICAL FIELD OF THE INVENTION

This invention pertains generally to cache management
and in particular, to methods and systems to allocate a cache
using a miss ratio curve.

BACKGROUND

The miss rate or miss ratio of requests in a cache can be
defined as the number of cache misses divided by the total
number of cache memory requests over a given time inter-
val:

[number of cache misses]

miss ratio =
[number of cache requests]

Similarly, a miss ratio curve (MRC) for a cache presents
a miss ratio as a function of a cache’s size. In the prior art,
one approach to generate a miss ratio curve is to calculate
stack distances for data blocks (sequences of bits or bytes)
in the cache and determine a frequency of occurrence for
each stack distance, over a certain time, as a histogram. An
MRC can be generated as an inverse cumulative distribution
function (CDF) of the stack distance histogram, as presented
in Mattson et al. (R. L. Mattson, J. Gecsei, D. R. Stutz and
I. L. Traiger, “Evaluation techniques for storage hierar-
chies,” IBM Systems Journal, vol. 9, no. 2, pp. 78-117,
1970). That method introduces the concept of a “stack
distance”, which refers to the position, in a stack of data
blocks, of the most recently referenced data block. Although
a basic stack distance computation method can be somewhat
inefficient, other MRC methods based on stack distance can
include further techniques to enhance its efficiency.

One limitation of an MRC technique according to prior art
is the inability to support variable-sized data blocks.

Therefore, there is a need for MRC methods having the
ability to support variable-sized data blocks, as well as
systems to implement such methods, and such methods and
systems would obviate or mitigate limitations of the prior
art.

This background information is provided to reveal infor-
mation believed by the applicant to be of possible relevance
to the present invention. No admission is necessarily
intended, nor should be construed, that any of the preceding
information constitutes prior art against the present inven-
tion.

SUMMARY

Methods and systems disclosed allow the determination
of a miss ratio curve (MRC) for caches using variable-sized
memory blocks. Compatibility with variable-sized blocks
allow an overall reduction in cache memory requirements
and improved cache performance.

Technical benefits include compatibility with applications
using data blocks having different sizes. For example, an
application using two primary kinds of data, such as text
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2

messages and images, two different sizes of data blocks can
be used such that one size is sufficient to accommodate a text
message and the other size is sufficient to accommodate an
image. Reserving the larger blocks sizes for images instead
of text messages allows an economy of space. Methods
according to embodiments allow the determination of a miss
ratio curve, where a cache is using such variable block sizes.
The miss ratio curve can then be used to allocate the cache
size to be just sufficient to use of the application, and further
spare Imemnory space.

Embodiments of the present disclosure include a method
to allocate a cache size comprising receiving a plurality of
requests, each request for accessing a cached data block of
a specified size; generating a stack of sets of counters, each
set being a map of at least two counters; determining a
plurality of stack distances from the stack of sets of counters;
generating a miss ratio curve from a frequency distribution
of the stack distances; determining the cache size according
to the miss ratio curve; and allocating a cache of the
determined cache size to satisfy a given performance
requirement.

In an embodiment, each set of the sets of counters can
include a counter for each data block of the specified size.

In an embodiment, generating a stack of sets of counters
can comprise adding, at successive time steps, one set of
counters for each time step; initializing to value “1” a
counter in the one set of counters when a data block having
a memory size corresponding to the counter is first accessed;
initializing to value “0” a counter in the one set of counters
when a data block having memory size other than the
memory size corresponding to the counters is accessed; and
incrementing existing counters when a data block having a
memory size corresponding to the counter is first accessed.

In an embodiment, determining a stack distance from the
stack of sets of counters, at a time step t, can comprise
locating, at the time step t, a first counter ci),bl“k i€ at row
iand a second counter c; +lytbl“k i€ at row i+1, each counter
for the same block size, such that the counter ci),bl“k size at
row i does not increment and the counter c,, , ),bl“k Si2¢ at row
i+1 does increment; and selecting the value of the counter
ci),bl“k siz¢ that does not increment, wherein the block size is
the block size accessed at time step t.

In an embodiment, each counter can be for counting
unique accesses to cached data blocks having the same size
as a data block being requested.

In an embodiment, a method can further comprise hash-
ing, for each request, an address key of the requested data
block into a binary sequence; and adding each resulting
binary sequence to a corresponding counter of the set of
counters.

In an embodiment, a method can further comprise merg-
ing a present counter with previous counters having the
same memory size; computing a number of cache hits using
a current stack of counters and the previous stack of coun-
ters; and considering the number of hits in the frequency
distribution of the stack distances for generating the miss
ratio curve.

In an embodiment, the size of a data block can be B™
bytes, B and m being integers, and a number n, of counters
in a set of counters can be limited to n=m+1.

In an embodiment, a method can further comprise pruning
a counter if the counter’s value is at least (1-8) times the
value of a corresponding counter in the next oldest set of
counters, d being a real number selected based on a memory
limitation.

In an embodiment, a method can further comprise, if the
number of counters is greater than a threshold determined by



US 12,204,452 B2

3

memory space limitations, invoking successive pruning
operations, while increasing d at each repetition, until at
least one of the existing counters is pruned.

In an embodiment, a method can further comprise, if a
request is for a memory block of a size that is not available,
accessing an available memory block of a size correspond-
ing to a rounding up of the memory block size being
requested.

In an embodiment, a counter can be a hyperloglog (HLL)
counter.

In an embodiment, generating a miss ratio curve from a
frequency distribution of stack distances can comprise gen-
erating an inverse cumulative distribution function (CDF) of
the frequency distribution of stack distances.

Embodiments of the present disclosure include a system
for allocating a cache size comprising at least one processor,
at least one cache, and machine readable memory storing
machine readable instructions which when executed by the
at least one processor, configures the at least one processor
to receive a plurality of requests, each request for accessing
a cached data block of a specified size; generate a stack of
sets of counters, each set being a map of at least two
counters; determine a plurality of stack distances from the
stack of sets of counters; generate a miss ratio curve from a
frequency distribution of the stack distances; determine the
cache size according to the miss ratio curve; and allocate a
cache of the determined cache size to satisfy a given
performance requirement.

In an embodiment, each set of the sets of counters
includes a counter for each data block of the specified size.

In an embodiment, each counter is for counting unique
accesses to cached data blocks having the same size as a data
block being requested.

In an embodiment, machine readable memory storing
machine readable instructions can further configure the at
least one processor to prune a counter if the counter’s value
is at least (1-0) times the value of a corresponding counter
in the next oldest set of counters, d being a real number
selected based on a memory limitation.

In an embodiment, machine readable memory storing
machine readable instructions can further configure the at
least one processor to, if the number of counters is greater
than a threshold determined by memory space limitations,
invoke successive pruning operations, while increasing 9 at
each repetition, until at least one of the existing counters is
pruned.

In an embodiment, machine readable memory storing
machine readable instructions can further configure the at
least one processor to access an available memory block of
a size corresponding to a rounding up of the memory block
size being requested.

In an embodiment, a counter is a hyperloglog (HLL)
counter.

Embodiments have been described above in conjunction
with aspects of the present invention upon which they can be
implemented. Those skilled in the art will appreciate that
embodiments may be implemented in conjunction with the
aspect with which they are described but may also be
implemented with other embodiments of that aspect. When
embodiments are mutually exclusive, or are incompatible
with each other, it will be apparent to those skilled in the art.
Some embodiments may be described in relation to one
aspect, but may also be applicable to other aspects, as will
be apparent to those of skill in the art.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1a illustrates the state of a counter stack as it evolves
in time.
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FIG. 15 illustrates the counter stack of FIG. 1a, with
emphasis on the latest state used to determine a stack
distance.

FIG. 2 is a table representing the data structure of a stack
of counter sets, and how the counters evolve in time,
according to an embodiment.

FIG. 3 is a schematically illustrates three main steps to
generate an MRC, according to embodiment

FIG. 4 is a flowchart illustrating a method to process a
batch of requests to access variable-sized blocks, before
determining a stack distance according to embodiments

FIG. 5 is a flowchart illustrating steps for computing a
number of hits in a cache based on a method according to an
embodiment.

FIG. 6 illustrate three counter sets of 2 counters each, one
counter for block size of 4K and one counter for a block size
of 2K, according to an embodiment.

FIG. 7 is a graph comparing the mean absolute error
between MRC calculations according to an embodiment,
and MRC calculations according to prior art.

FIG. 8 is a graph comparing the throughput, in requests
per second, for MRC calculations according to an embodi-
ment, with the throughput for MRC calculations according
to prior art.

FIG. 9 is a block diagram of an electronic device (ED) 952
illustrated within a computing and communications envi-
ronment 950 that may be used for implementing the devices
and methods disclosed herein, such as determining an MRC.

It will be noted that throughout the appended drawings,
like features are identified by like reference numerals.

DETAILED DESCRIPTION

One limitation of an MRC technique according to prior art
is the inability to support variable-sized data blocks, which
is a feature in modern caching systems. For conventional
MRC techniques, memory space is often partitioned into
equally sized blocks and referred to as “pages”. However,
this can limit their use. The use of variable-sized blocks
would be interesting for a communication system transmit-
ting data blocks having various sizes, such as for example
text messages and photos. With variable-size blocks, there is
no need to use a photo-sized memory block (>100 KB) for
a text message if a text-sized memory block (<1 KB) is
available. An MRC technique applicable to variable-sized
blocks could overcome the limitation of having to use a large
memory block (>100 KB) for processing or transmitting a
small (<1 KB) message.

Embodiments include methods to obtain a miss ratio
curve (MRC) for caches supporting variable-sized memory
blocks. Benefits of using variable-sized blocks include
smaller memory requirements and improved performance of
a cache. Therefore, if a miss ratio curve (MRC) can be
obtained with variable-sized memory blocks, a caching
system can be designed not only with variable sized memory
blocks, but also with consideration of a corresponding MRC
calculation.

To improve cache utilization, a method according to
embodiments can be implemented by a caching system
provided by a cloud-based platform. Based on an MRC
result generated, the cache size of a workload can be
adjusted. As a result, a customer can return unused cache
resources to the cloud-based platform and therefore pay less
for a service, while the platform can resell the unused
resources for more revenue.
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A method according to embodiments can support vari-
able-sized blocks, by using a data structure based on counter
stacks.

In embodiments, a “counter stack” (i.e. a stack of coun-
ters) generally refers to a data structure for which a stack
distance can be calculated. A stack distance calculation
based on counter stacks can be used to efficiently generate
an MRC and allow further performance improvement tech-
niques such as “streaming traces”, “pruning”, “down sam-
pling”, and the use of a “HyperLoglLog” (HLL) method to
estimate the number of unique elements (cardinality) in a
data set.

In an embodiment, an HLL method is a probabilistic
method for determining the cardinality of a set of data, i.e.
the number of unique elements in the set. It is based on an
assumption that a hash function generates equally distrib-
uted hashed values. By using such hashed values, the HLL
method can approximate the number of unique elements in
a data set.

FIG. 1a illustrates the state of a counter stack as it evolves
in time. A stack 105 of three counters is shown in a column
at the left of a matrix. Each row 110 of the matrix corre-
sponds to a counter and shows the counter’s state at suc-
cessive time steps 120. Each column 115 of the matrix
represents the state of the counter stack 105 at a certain time
step 120. A counter’s value is a matrix element the position
of which can be identified by a counter number y and a state
at time t: ¢, .

A top row above the matrix illustrates a trace 125 of
accesses to data blocks including data block a, data block b,
and possibly more, by a cache client. The matrix is popu-
lated as follows. For counter ¢, between time step “1” and
time step “3”, two different elements are accessed: data
block “a” and data block “b”. Therefore, the value for
counter ¢, at time step t=3 is ¢, ;=2. For counter ¢, between
time step t=1 and time step t=2, only one unique element is
accessed: data block “b”, and therefore the value for counter
c, at time step t=2 is ¢, ,=1. The value of a counter at time
t, shown as a matrix element, is the number of different data
blocks having been accessed between time step t=1 and time
step t.

FIG. 1b illustrates the counter stack of FIG. 1la, with
emphasis on the latest state used to determine a stack
distance. After a matrix is populated with counter values for
accesses to “a” and/or “b” as in FIG. 1a, the method of FIG.
1/ involves looking at the next-to-last and last columns
(columns 2 and 3, or time steps 2 and 3), the last column
being the “latest state” when a stack distance is to be
determined. Therefore, each time a stack is updated with a
new column in FIG. 1a, a new stack distance can be
determined as in FIG. 1b. There is one stack distance per
counter, and between for example time 1 and time 2, the
stack distance for a counter is the counter’s value. Deter-
mining a stack distance with a counter stack can involve
identifying in the latest state (column) 130 a counter for
which the value has not increased, for example:

From time step 2 to time step 3, the state of counter c, has
not increased from value 2 to value 2, therefore it is
acceptable.

From time step 2 to time step 3, the state of counter c, has
not increased from value 1 to value 1, therefore it is
acceptable.

From time step 2 to time step 3, The state of counter c; has
been initialized from no value to value 1, therefore it is
not acceptable.

Then, from the acceptable counters c, and c,, the method

involves selecting from counter ¢, and c, the counter for
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which the next counter, ¢, and c; respectively, increases in
value from time step 2 to time step 3. For example:

For counter c,, the next counter ¢, does not increase in
value from 1 to 1, and therefore counter c, is not
acceptable.

For counter c,, the next counter c; does increase from no
value to 1, therefore counter c, is acceptable and
because it is the only counter being acceptable for both
criteria, it is selected.

[dentifying for the selected counter c, its row number,
which is 2, and its column number, which is 3.

By selecting counter c,, the above method has identified
when the data block accessed at time step “3”, i.e. data block
“b”, was last accessed, and the answer is time step “2”,
because counter c, does not increase in value from 1 to 1.
The stack distance, between the access to data block b at
time t=3 and the last access to data block b at time=2, is the
value in counter c, ; which is “1”.

In FIGS. 1a and 15, the data blocks (a, b) shown in the top
row 125, and that are successively accessed, have similar or
identical sizes. Embodiments, however, allow for data
blocks with different sizes, i.e. variable-sized blocks. To
support variable-sized blocks, a feature of a method accord-
ing to embodiments is that instead of including a mere stack
of counters 105, an embodiment includes a stack of “counter
sets”, where each counter set C, (i=1, 2, 3, ... ) is a map.
Each map entry corresponds to a counter c,”*<* ¥ or ¢*%
in x identified by a counter set i and a block size, such as a
size in K (i.e. KB or kilobytes). For example, a stack S can
include six counter sets c,, where each counter set C,
includes one counter c¢,** for blocks of size 4K and one
counter ¢,”* for blocks of size 2K:

§={C,C5,C5,C4,Cs,C}

_fn 4K . 2K . 4K . 2K . 4K
S={c"",c1*", " 0% e5

C64KC62K}

2K . 4K . 2K . 4K . 2K
3 04 647,05 ,05T,

For variable-sized blocks according to embodiments, a
stack distance can be calculated as a sum of weighted block
sizes, where each weight (multiplication factor) is a counter

¢ = " K of a set S, as follows:

stack distance = 7K (Size in K)

2,

gizeinKesg

where S is a set of counters C; ™ ¥
multiplication factors).

A method according to embodiments can support vari-
able-sized blocks, by using a data structure based on counter
stacks. Initially, a the method involves receiving a plurality
of requests, each request for accessing a cached data block
of a specified size. Then, a stack of sets of counters is
generated, each set being a map of at least two counters.
Then, a plurality of stack distances can be determined from
the stack of sets of counters and a miss ratio curve can be
generated from a frequency distribution of the stack dis-
tances. A cache size can be selected according to the miss
ratio curve; and a cache can be allocated to the determined
cache size, such as to satisfy a given performance require-
ment.

In an embodiment, each set of the sets of counters can
include a counter for each data block of the specified size,
and each counter can be a hyperloglog (HL.L) counter.

When generating a stack of sets of counters, the method
involves adding, at successive time step, one set of counters

acting as weights (i.e.
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for each time step. It can initialize to value “1” a counter in
the one set of counters when a data block having a memory
size corresponding to the counter is first accessed and
initialize to value “0” a counter in the one set of counters,
when a data block having memory size other than the
memory size corresponding to the counter is accessed.
Existing counters are incremented when a data block having
a memory size corresponding to the counters is first
accessed.

The following is an example of how a data structure for
a stack of counter sets according to embodiments can
support blocks of various sizes, when calculating a stack
distance.

FIG. 2 is a table representing the data structure of a stack
of counter sets, with each counter set containing a map of
counters, and how each counter evolves in time, according
to an embodiment. A stack 205 includes six counter sets 210,
each counter set 210 contains a map of two 215 counters,
each counter corresponding to a block size, i.e. 4K or 2K.
Each counter is for counting unique accesses to cached data
blocks having the same size as a data block being requested,
and each row represents the state of a counter at different
time steps 220.

In a stack 205 of counter sets according to an embodi-
ment, a counter from a counter stack 105 of the prior art is
replaced with a set of counters 210 from a stack of counter
sets. The first column of the table in FIG. 2 therefore
includes six distinct counter sets: C,, C,, C;, C,, Cs, C,,
each set being an array of two counters ¢, shown in the
second column, each counter of a set corresponding to one
of two block sizes. For example, set C, includes 215 counter
¢,** and counter c,**. Each counter is added at a certain
time step 220 from time t=1 to time t=6. And when a counter
is added, it is initialized 235 to O or 1, depending on whether
the size of the accessed data block is 2K or 4K. For example,
at time step 2, counter c,** is added to set C,, and it is
initialized to 0, while counter c,?* is added to the same set
C, but initialized to 1 instead. The initial value of initial-
ization corresponds to the memory size of the accessed data
block t (230), which is 2K.

At each time step, a data block shown in the top row is
accessed. For example, at time step 1, a data block “A” 225
with memory size 4K is accessed, and this initializes counter
¢, ** to value “1”, which is for a 4K data block. In FIG. 2,
data blocks identified with an upper case letter (i.e. A, B, C)
indicate a 4K block size, and data blocks identified with a
lower case letter (i.e. t, u) indicate a 2K block size.

At time step 2, there is an access to data block “t” 230,
which has a size 2K (2 kilobytes). This initializes counter
c,?%, as well as a new counter c,”*, which are both for data
blocks of size 2K. Counter c,** is not incremented because
it is not for a data block of size 2K, and counter ¢,** is
initialized to “0”, because it is also not for a data block of
size 2K. At subsequent time steps, further counters are
similarly initialized and incremented, depending on the size
of'the data block accessed at that time step. Accordingly, the
earliest counter set ¢; 210 is at the top of the table and the
latest counter set Cg is at the bottom.

At a time step 1, there is an access to data block “A” 225,
which has size 4K. A counter set C, is added and initialized,
and a counter ¢, ** is added to counter set C,. Starting from
when counter set C, is initialized, counter ¢,** counts the
number of unique accesses to blocks of size 4K, between
time step 1 and the present time step, as can be seen by
following its row from time step 1 to time step 6. The present
time step can be noted with a second subscript. If the present
time step is “6”, then counter c,** can be noted as 01,64K. At
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t=6 for example, the value of 01,64K is the number of unique
accesses to data blocks of 4K, between t=1 and t=6. From
t=1 to t=6, accesses to 4K data blocks are (A, B, C, A). The
unique accesses in this time frame are to data blocks A, B,
and C, hence the value of ¢, ¢** is “3”.

At time step 1, a first distinct element of size 4K (data
block A) 225 is accessed. Therefore, counter c,** is initial-
ized to value 1, while counter ¢,?* is initialized to value 0.

At time step 2, there is an access to data block “t” 230,
which has a size 2K (2 kilobytes). A counter set C, is added
and initialized 235, including a counter c,** for blocks of
size 4K and a counter ¢,** for blocks of size 2K. Because the
accessed block’s size is 2K, counter ¢,** is initialized to 0
and counter ¢, is initialized to 1.

In an example, the counters can evolve in time, and at
time step 6, there can be an access to data block A. The
following is an example of a stack distance determination by
a processing system, where data blocks are accessed as
shown in FIG. 2.

To determine a stack distance for a counter set according
to an embodiment represented by FIG. 2, an initial step can
be identifying the last access to data block A, by locating a
pair of counters for the same block size, ¢;”#° " * and c,, *°
m K, such that: counter ¢ ™ ¥ does not increment and
subsequent counter c,, *“° ™ * does increment. For example,
from time step 5 to time step 6, there is no incrementation
240 from counter ¢ 1,54K, which is 3, to counter 01,64K, which
is also 3. However, there is an incrementation 245 from
counter 02,54K, which is 2, to counter 02,64K, which is 3.

Then, a subsequent step can be identifying the matrix
element having the row number of the non-incrementing 240
counter ¢,**, and the present column: row 1 and column 6.
The value of that counter is 3, which can be used to evaluate
a stack distance in terms of memory size as follows:

stack distance at time “6”=—[(value of ¢, ¢*)x4K]+

[(value of 01,62K)><2K]

stack distance at time “6”=[3x4K]+[2x2K]

stack distance at time “6”=[12K]+[4K]

stack distance at time “6”=16K

In other words, determining a stack distance from the
stack of sets of counters, at a time step t, can comprise
locating, at the time step t, a first counter ci,tbloc" 7€ at row
iand a second counter c,, l,thOCk ¢ at row i+1, each counter
for the same block size, such that the counter ci,tbloc" S12€ at
row 1 does not increment and the counter c,, ,tb lock size at row
i+1 does increment; and selecting the value of the counter
cl.,tbloc" ¢ that does not increment, where the block size is
the block size accessed at time step t.

In the prior art, a stack distance is a counter’s value, which
is the unique access of a block between two time steps. This
can be viewed as number of data blocks (each block having
a size in KB) between the two accesses. But because
embodiments involve variable sized blocks instead of same
size blocks, the number of block is multiplied by the
corresponding block size.

In the above, a method according to an embodiment
allows the determination of a stack distance where variably
sized blocks are taken into account. Once many stack
distances are available, a stack distance distribution can be
plotted as a histogram (a distribution of frequency for each
stack distance), and an MRC can be generated on a scatter
plot, as an inverse cumulative distribution function (CDF) of
the stack distance histogram. In other words, generating a
miss ratio curve from a frequency distribution of stack
distances comprises generating an inverse cumulative dis-
tribution function (CDF) of the frequency distribution of
stack distances.
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FIG. 3 is a flowchart illustrating three main steps to
generate an MRC, according to embodiment. Initially, a
stack distance is determined each time a block is requested
255. Then, the frequency of each stack distance is obtained,
allowing for a frequency distribution 260, i.e. a histogram to
be determined. An inverse cumulative distribution function
(CDF) of the histogram results in a miss curve ratio or hit
ratio curve 265.

FIG. 4 is a flowchart illustrating a method to process a
batch of requests to access variable-sized blocks, before
determining a stack distance according to embodiments.
Requests come in as batches and the method of this flow-
chart determines how many requests should be included at
each time step t. A counter is a HyperLoglog data structure,
and the method involves hashing, for each request, an
address key of the requested data block into a binary
sequence; and adding each resulting binary sequence to a
corresponding counter of the set of counters, i.e. the Hyper-
Loglog data structure. When a down sampling rate thresh-
old is reached, the count of requests is sufficient, and the
counter set can be processed with the stack of counter sets.

Each access to a memory block can be referred to as a
request, and initially, a processing system receives 305 a
batch of requests. Then, it can process 310 a request in the
batch and create 315 a counter in a current counter set, that
corresponds to the block size of the memory block
requested. The processing system then adds 320 a hashed
value of a request to the corresponding counter of the current
counter set. Each counter is a HyperlLogl.og data structure
that uses the hashed value of a request to determine an
approximated unique count of requests.

It 325 the number of processed requests is greater than or
equal to the down sampling rate, then the counter set can be
processed with the stack 330. Otherwise 335, if there are
other requests, another request can be processed 310; oth-
erwise 340, another batch can be received 305, until none are
left 345, at which point the process can end.

FIG. 5 is a flowchart illustrating steps for computing a
number of hits in a cache based on a method according to an
embodiment. The computed number of hits can then be
added to a frequency distribution of stack distances (histo-
gram), that can be used to draw a scatter plot.

For each counter 405 of a given block size, in a counter
set C,, each previous counter set C,_; 410 is examined for a
counter for the same block size 415. If a counter for that
block size exists in the previous counter set C,_,, then the
current counter can be merged 420 with previous counters
for the same memory block size. If none exist, then the
current counter can be linked 425 to the previous counter set
C,_, for that block size.

When all participating block sizes have been examined,
this method can include computing 430 the count of coun-
ters and organizing them into a stack. Then, the number of
cache hits can be computed 435 by using the current stack
of counters and the previous stack of counters.

The method can include adding 440 the number of hits to
a histogram and creating 445 a new counter set for process-
ing a subsequent batch of requests.

In other words, the method involves merging counters
with previous counters having the same memory block size;
computing a number of cache hits using a current stack of
counters and the previous stack of counters; and considering
the number of hits in a frequency distribution of the stack
distances for generating the miss ratio curve.

By computing the number of hits, an embodiment pro-
vides the ability to allocate a required cache size, which is
important for an auto scaling feature of a caching service.
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A method according to embodiments can allow a smaller
amount of memory usage to be sufficient. Such smaller
amount can be achieved with data structures having a
smaller number of block sizes, a smaller number of counter
sets, and a smaller number of counters in each counter set.

In embodiments, a block size that is a power of 2 can be
sufficient, but a base other than two can also be used. Also,
an access to a memory block can be rounded up to the next
block size. For example, if a counter set supports memory
blocks of 2K and 4K, and there is request for to a 3.5K
block, it can be rounded up to access a 4K block. More
generally, if a request is for a memory block of a size that is
not available, the access can be for an available memory
block of a size corresponding to a rounding up of the
memory block size being requested.

In embodiments, a memory block can have a block size
ranging from 1 byte to 2™ bytes, where m is an integer. Once
avalue for exponent m is selected, the number n_ of counters
in a set of counters can be limited to n=m+1. More
generally, the size of a memory block can be B” bytes, B and
m being integers, and a number n_ of counters in a set of
counters is limited to n.=m+1.

A method according to embodiments can support counter
pruning, counter set pruning, as well as variations.

A counter can be pruned whenever its value is at least
(1-9) times the corresponding counter in the next oldest
counter set, where § is a number indicating the difference
between two counters, as defined by a user, below which a
method considers them to be the same counter, and prunes
one of them. In an example, 8=0.01. More generally pruning
a counter can be performed if the counter’s value is at least
(1-9) times the value of a corresponding counter in the next
oldest set of counters, d being a real number selected based
on a memory limitation.

A set of counters can be pruned (counter set pruning)
when the value in each one of its counters is at least (1-9)
times the value of a corresponding counter in the next oldest
set of counters.

FIG. 6 illustrate 3 counter sets of 2 counters each, one
counter for a block size of 4K and one counter for a block
size of 2K, according to an embodiment. In FIG. 5, counter
c,*=09 can be pruned 505, because its value is at least
1-0.01=0.99 times the value of the next oldest counter
¢,**=100. Similarly, counter set ¢, can be pruned 510,
because the values of its counters are at least 1-0.01=0.99
times the values of the next oldest counter set.

FIG. 7 is a graph comparing the mean absolute error
between MRC calculations according to an embodiment,
and MRC calculations according to prior art. These are for
publicly available trace collections, i.e. sequences of
requests accessing data blocks, including one from the
Cambridge Microsoft Research Lab (MSR) (Dushyanth
Narayanan, Austin Donnelly, and Antony Rowstron. Write
off-loading: Practical power management for enterprise stor-
age. ACM Trans. Storage, pages 10:1-10:23, 10 2008.), one
from Twitter (Juncheng Yang, Yao Yue, and KV Rashmi. A
large scale analysis of hundreds of in-memory cache clusters
at Twitter. In Proc. 14” Symp. On Operating Systems
Design and Implementation (OSDI’20), pages 191-208,
2020), one from the SEC (U.S. Securities and Exchange
Commission (SEC), James Ryans. Using the EDGAR log
file data set. Available at SSRN 2913612, 2017.), and one
from Wikipedia (Guido Urdaneta, Guillaume Pierre, and
Maarten Van Steen. Wikipedia workload analysis for decen-
tralized hosting. Computer Networks, 53(11):1830-1845,
2009).
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Overall, low fidelity (LF) and high-fidelity (HF) methods
according to embodiments perform with a mean absolute
error (MAE) that is less than that of prior art method A at LF
and HF (Jake Wires, Stephen Ingram, Zachary Drudi, Nicho-
las J A Harvey, and Andrew Warfield. Characterizing storage
workloads with counter stacks. In Proc. 11th Symp. on
Operating Systems Design and Implementation (OSDI’14),
pages 335-349, 2014.), and less than that of prior art method
B at sampling rates R0.01 and R0.1 (] Carl A Waldspurger,
Nohhyun Park, Alexander Garthwaite, and Irfan Ahmad.
Efficient MRC construction with SHARDS. In Proc. 13th
USENIX Conf. on File and Storage Technologies
(FAST’15), pages 95-110, 2015.).

FIG. 8 is a graph comparing the throughput, in requests
per second, for MRC calculations according to an embodi-
ment, with the throughput for MRC calculations according
to prior art. Prior art results are for method A as in FIG. 6,
as well as for a prior art method C (Frank Olken. Efficient
methods for calculating the success function of fixed-space
replacement policies. Master’s thesis, University of Califor-
nia, Berkeley), 1981.). Methods according to embodiments
are shown to have a greater throughput than those of prior
art method A and prior art method C.

A counter can be replaced with a pointer that points to the
next oldest corresponding counter.

In a method according to an embodiment, if memory
space limitations are exceeded, the space complexity, i.e. the
amount of memory space required to complete an execution,
can be held constant by invoking successive pruning opera-
tions, while incrementing d at each repetition, until at least
one of the existing counters is pruned. More generally, if the
number of counters is greater than a threshold determined by
memory space limitations, successive pruning operations
can be invoked, while increasing 9 at each repetition, until
at least one of the existing counters is pruned.

A method according to embodiments can define a mini-
mum number of counters required, by supporting a number
n of counters equal to n=2(m-1+1), where m and 1 are
integers defining the range of block sizes that are supported:
from 2’ bytes to 2™ bytes. This method is used to define a
lower bound on the number of counters needed.

Embodiments include a more practical way to predict
caching usage, which can benefit any system in terms of
resource management. Because a caching pattern is a fun-
damental pattern in a computer system, any chip or appli-
cation using a cache can benefit from improved caching.

FIG. 9 is a block diagram of an electronic device (ED) 952
illustrated within a computing and communications envi-
ronment 950 that may be used for implementing the devices
and methods disclosed herein, such as a system for deter-
mining a cache miss ratio curve. The electronic device 952
typically includes a processor 954, such as a central pro-
cessing unit (CPU), and may further include specialized
processors such as a field programmable gate array (FPGA)
or other such processor, a memory 956, a network interface
958 and a bus 960 to connect the components of ED 952. ED
952 may optionally also include components such as a mass
storage device 962, a video adapter 964, and an 1/O interface
968 (shown in dashed lines).

The memory 956 may comprise any type of non-transi-
tory system memory, readable by the processor 954, such as
static random-access memory (SRAM), dynamic random-
access memory (DRAM), synchronous DRAM (SDRAM),
read-only memory (ROM), or a combination thereof. In an
embodiment, the memory 956 may include more than one
type of memory, such as ROM for use at boot-up, and
DRAM for program and data storage for use while executing
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programs. The bus 960 may be one or more of any type of
several bus architectures including a memory bus or
memory controller, a peripheral bus, or a video bus.

The electronic device 952 may also include one or more
network interfaces 958, which may include at least one of a
wired network interface and a wireless network interface. A
network interface 958 may include a wired network inter-
face to connect to a network 974, and also may include a
radio access network interface 972 for connecting to other
devices over a radio link. The network interfaces 958 allow
the electronic device 952 to communicate with remote
entities such as those connected to network 974.

The mass storage 962 may comprise any type of non-
transitory storage device configured to store data, programs,
and other information and to make the data, programs, and
other information accessible via the bus 960. The mass
storage 962 may comprise, for example, one or more of a
solid-state drive, hard disk drive, a magnetic disk drive, or
an optical disk drive. In some embodiments, mass storage
962 may be remote to the electronic device 952 and acces-
sible through use of a network interface such as interface
958. In the illustrated embodiment, mass storage 962 is
distinct from memory 956 where it is included and may
generally perform storage tasks compatible with higher
latency but may generally provide lesser or no volatility. In
some embodiments, mass storage 962 may be integrated
with a heterogeneous memory 956.

In an embodiment, a system for determining a miss ratio
curve can comprise at least one processor 954; a machine
readable memory 956 storing machine readable instructions
which when executed by the at least one processor 954,
configures the at least one processor 954 to receive a
plurality of requests, each request for accessing a cached
data block of a specified size; generate a stack of sets of
counters, each set being a map of at least two counters;
determine a plurality of stack distances from the stack of sets
of counters; generate a miss ratio curve from a frequency
distribution of the stack distances; determine the cache size
according to the miss ratio curve; and allocate a cache of the
determined cache size to satisfy a given performance
requirement. The network interface 974 and 1/O interface
968 can also allow for storage and/or processing to occur
externally.

In some embodiments, electronic device 952 may be a
standalone device, while in other embodiments electronic
device 952 may be resident within a data center. A data
center, as will be understood in the art, is a collection of
computing resources (typically in the form of servers) that
can be used as a collective computing and storage resource.
Within a data center, a plurality of servers can be connected
together to provide a computing resource pool upon which
virtualized entities can be instantiated. Data centers can be
interconnected with each other to form networks consisting
of pools computing and storage resources connected to each
by connectivity resources. The connectivity resources may
take the form of physical connections such as ethernet or
optical communications links, and in some instances may
include wireless communication channels as well. If two
different data centers are connected by a plurality of different
communication channels, the links can be combined
together using any of a number of techniques including the
formation of link aggregation groups (LAGs). It should be
understood that any or all of the computing, storage, and
connectivity resources (along with other resources within
the network) can be divided between different sub-networks,
in some cases in the form of a resource slice. If the resources
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across a number of connected data centers or other collec-
tion of nodes are sliced, different network slices can be
created.

Allocating a cache size means configuring a cache to have
a certain selected size, or a certain selected maximum size.

Although the present invention has been described with
reference to specific features and embodiments thereof, it is
evident that various modifications and combinations can be
made thereto without departing from the invention. The
specification and drawings are, accordingly, to be regarded
simply as an illustration of the invention as defined by the
appended claims, and are contemplated to cover any and all
modifications, variations, combinations, or equivalents that
fall within the scope of the present invention.

What is claimed is:

1. A method comprising: receiving, at each of a plurality
of time steps, a respective one or more plurality of requests
each requesting access to a respective cached data block
having a respective specified size; generating, for each time
step, a respective set of counters, each set of counters
including a respective plurality of counters and correspond-
ing to a same set of block sizes, the same set of block sizes
including a plurality of unique block sizes, all the sets of
counters generated before and at each time step defining, for
the respective time step, a respective counter stack; setting,
for each time step, each counter of the respective counter
stack in accordance with a respective set of unique requests
for the respective counter, each set of unique requests only
including requests received inclusively between the genera-
tion of the respective counter and the respective time step,
each set of unique requests further only including requests
requesting access to different cached data blocks having
specified sizes matching the block size corresponding to the
respective counter; determining, for each time step, a respec-
tive stack distance for at least one set of counters of the
respective counter stack, all of the stack distances defining
a frequency distribution of stack distances; generating a miss
ratio curve from the frequency distribution of stack dis-
tances; determining a cache size in accordance with the miss
ratio curve; and allocating a cache having a respective size
corresponding to the cache size to satisfy a given perfor-
mance requirement.

2. The method of claim 1, wherein setting, for each time
step, each counter of the respective counter stack in accor-
dance with the respective set of unique requests for the
respective counter includes: initializing each counter gener-
ated at the respective time step to “1” when the block size
corresponding to the respective counter matches the speci-
fied memory size of the respective cached data block of at
least one request received at the respective time step;
initializing each counter generate at the respective time step
to “0” when the block size corresponding to the respective
counter does not match the specified memory size of the
respective cached data block of at least one request received
at the respective time step; and incrementing each counter
generated before the respective time step when: the block
size corresponding to the respective counter matches the
specified memory size of the respective cached data block of
at least one request received at the respective time step, and
each of the at least one requests received requests access to
cached data blocks having specified memory sizes different
from the specified memory sizes of the cached data blocks
of requests received from the generation of the respective
counter and until the respective time step.

3. The method of claim 2, wherein determining, for each
time step, the respective stack distance for at least one set of
counters of the respective counter stack, includes:
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identifying, at the respective time step, a first counter of
a first set of counters in the respective counter stack and
a second counter of a second set of counters in the
respective counter stack, each of the first counter and
the second counter corresponding to one same block
size of the same set of block sizes and to the specified
size of the cached data block of one request received at
the respective time step, the first counter being
unchanged when setting, for the respective time step,
the first counter, the second counter being incremented
when setting, for the respective time step, the second
counter; and
selecting the second counter to form the respective stack
distance.
4. The method of claim 1, wherein:
each request includes a respective address key to the
respective cached data block;
the plurality of unique block sizes depends from the
specified sizes of the cached data blocks of the one or
more requests received for each time step;
the method further comprises:
hashing, for each request, the respective address key
into a respective binary sequence; and
generating, for each time step, the respective set of
counters includes:
adding, to each counter of the respective set of coun-
ters, the respective binary sequence of one request,
the respective specified size of the respective cached
data block of the one request matching the block size
corresponding to the respective counter.
5. The method of claim 4, wherein:
the method further comprises:
merging, for each time step, one counter of the respec-
tive counter stack with a corresponding counter of
the counter stack of a respective immediately pre-
ceding time step, each of the one counter and the
corresponding counter corresponding to one same
block size of the same set of block sizes; and
computing, for each time step, a respective number of
cache hits using the respective counter stack and the
respective counter stack of the respective immedi-
ately preceding time step; and
generating the miss ratio curve from the frequency dis-
tribution of stack distances includes:
considering each number of cache hits in the frequency
distribution of stack distances.
6. The method of claim 1, wherein:
each block size of the same set of block sizes is defined
by B™ bytes, B and m being integers; and
each set of counters is limited to including n=m+l
counters.
7. The method of claim 1, further comprising:
pruning, for each time step, each counter of the respective
counter stack when the respective counter is at least
(1-9) times corresponding counter of the counter stack
of a respective immediately preceding time step, O
being a real number selected based on a memory
limitation.
8. The method of claim 7, wherein:
each counter stack defines a respective number of coun-
ters; and
the method further comprises:
for each time step, when the respective number of
counters of the respective counter stack is greater
than a threshold determined by memory space limi-
tations, increasing & successively until at least one
counter of the respective counter stack is pruned.
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9. The method of claim 1, further comprising:

rounding, for each time step, the respective specified size
of the respective cached data block of each request up
to one block size of the same set of block sizes, the one
block size being the next larger block size of the same
set of block sizes with respect to the respective speci-
fied size.

10. The method of claim 1, wherein each counter is a
hyperloglog (HLL) counter.

11. The method of claim 1, wherein generating the miss
ratio curve from the frequency distribution of stack distances
includes generating an inverse cumulative distribution func-
tion (CDF) of the frequency distribution of stack distances.

12. A system comprising: at least one processor, at least
one cache, and machine readable memory storing machine
readable instructions which when executed by the at least
one processor, configures the at least one processor to;
receive, at each of a plurality of time steps, a respective one
or more requests each requesting access a respective cached
data block having a respective specified size; generate, for
each time step, a respective set of counters, each set of
counters including a respective plurality of counters and
corresponding to a same set of block sizes, the same set of
block sizes including a plurality of unique block sizes, all the
sets of counters generated before and at each time step
defining, for the respective time step, a respective counter
stack; setting, for each time step, each counter of the
respective counter stack in accordance with a respective set
of unique requests for the respective counter, each set of
unique requests only including requests received inclusively
between the generation of the respective counter and the
respective time step, each set of unique requests further only
including requests requesting access to different cached data
blocks having specified sizes matching the block size cor-
responding to the respective counter; determine, for each
time step, a respective stack distance for at least one set of
counters of the respective counter stack, all of the stack
distances defining a frequency distribution of stack dis-
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tances; generate a miss ratio curve from the frequency
distribution of stack distances; determine a cache size in
accordance with the miss ratio curve; and allocate one of the
at least one cache having a respective size corresponding to
the cache size to satisfy a given performance requirement.
13. The system of claim 12, wherein the machine readable
memory storing machine readable instructions further con-
figures the at least one processor to:
prune, for each time step, each counter of the respective
counter stack when the respective counter is at least
(1-9) times a corresponding counter of the counter
stack of a respective immediately preceding time step,
d being a real number selected based on a memory
limitation.
14. The system of claim 13, wherein:
each counter stack defines a respective number of coun-
ters; and
the machine readable memory storing machine readable
instructions further configures the at least one processor
to:
for each time step, when the respective number of
counters of the respective counter stack is greater
than a threshold determined by memory space limi-
tations, increasing & successively until at least one
counter of the respective counter stack is pruned.
15. The system of claim 12, wherein the machine readable
memory storing machine readable instructions further con-
figures the at least one processor to:
round, for each time step, the respective specified size of
the respective cached data block of each request up to
one block size of the same set of block sizes, the one
block size being the next larger block size of the same
set of block sizes with respect to the respective speci-
fied size.
16. The system of claim 12, wherein each counter is a
hyperloglog (HLL) counter.
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