
(12) United States Patent
Faizanullah et al.

USOO9729671B2

US 9,729,671 B2
Aug. 8, 2017

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

(*)

(21)

(22)

(65)

(60)

(51)

(52)

(58)

SYSTEMIS AND PROCESSES FOR
COMPUTER LOG ANALYSIS

Applicant: YScope Inc., Toronto (CA)

Inventors: Muhammad Faizanullah, Redmond,
WA (US); David Lion, Toronto (CA):
Yu Luo, Toronto (CA); Michael
Stumm, Toronto (CA); Ding Yuan,
Toronto (CA); Xu Zhao, Toronto (CA);
Yongle Zhang, Toronto (CA)

Assignee: YScope Inc., Toronto (CA)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 10 days.

Appl. No.: 14/875,103

Filed: Oct. 5, 2015

Prior Publication Data

US 2016/0098342 A1 Apr. 7, 2016

Related U.S. Application Data
Provisional application No. 62/059,954, filed on Oct.
5, 2014.

Int. C.
G06F 9/44 (2006.01)
H04L 29/08 (2006.01)

(Continued)
U.S. C.
CPC H04L 67/34 (2013.01); G06F 8/443

(2013.01); G06F II/3447 (2013.01);
(Continued)

Field of Classification Search
CPC. G06F 11/3612; G06F 11/3608; G06F 8/443;

G06F 11/3466

(Continued)

sory

(56) References Cited

U.S. PATENT DOCUMENTS

5,297.274 A * 3/1994 Jackson G06F 11.3466
703/22

5,313,616 A * 5/1994 Cline G06F 11.3612
T13,323

(Continued)

OTHER PUBLICATIONS

Zhenyu Guo et al., “G”: A Graph Processing System for Disgnosing
Distributed Systems”, Jun. 15, 2011, pp. 1-14, USENIX Publisher,
Published in Portland, or for the Proceedings of the 2011 USENIX
Annual Technical Conference (USENIX ATC 11).

(Continued)

Primary Examiner — Phillip H Nguyen
(74) Attorney, Agent, or Firm — Perry + Currier Inc.

(57) ABSTRACT

Existing program code, which is executable on one or more
computers forming part of a distributed computer system, is
analyzed. The analysis identifies log output instructions
present in the program code. Log output instructions are
those statements or other code that generate log messages
related to service requests processed by the program code. A
log model is generated using the analysis. The log model is
representative of causal relationships among service
requests defined by the program code. The log model can
then be applied to logs containing log messages generated
by execution of the program code, during its normal opera
tion, to group log messages for improved analysis, including
visualization, of the performance and behavior of the dis
tributed computer system.

16 Claims, 11 Drawing Sheets

PROGRAM CODE ANAYSS WSUAAATON
CODE&O ENGINE ENGINE

32 38

OGMODE.
42

LOGMESSAGES OG PROCESSNG
44 ENGINE
MMMM 34

US 9,729,671 B2
Page 2

(51) Int. Cl.
G06F II/36 (2006.01)
G06F II/34 (2006.01)
G06F 9/45 (2006.01)
GO6F II/32 (2006.01)

(52) U.S. Cl.
CPC G06F II/3466 (2013.01); G06F II/3476

(2013.01); G06F II/3608 (2013.01); G06F
II/3612 (2013.01); G06F 1 1/323 (2013.01)

(58) Field of Classification Search
USPC .. 717/131, 141
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,794,044 A * 8/1998 Yellin G06F 9/468
T12/E9084

6,279,002 B1* 8/2001 Lenz G06F 11.3466
6,557,167 B1 * 4/2003 Thelen G06F 11,323

714/E11181
7,293,259 B1* 11/2007 Dmitriev G06F 11.3466

T14/E112O7
7,743,414 B2 * 6/2010 Pouliot GO6F 21,552

TO9,224
8,079,081 B1* 12/2011 Lavrik HO4L 41,069

709,223
8,561,025 B1 * 10/2013 Bisht G06F 11,362

717/124
8,578,393 B1* 11/2013 Fisher G06F 11.3476

TO9/200
2002/0129329 A1* 9, 2002 Nishioka G06F 11.3476

T17,104
2003/013 1282 A1* 7/2003 Lowen GO6F 11/0715

T14/20
2004/O153878 A1* 8, 2004 Bromwich G06F 11.3636

714.f48
2009 OOO6071 A1* 1/2009 Dournow GO6F 11.3457

703/22
2013/0073526 A1 3/2013 Deluca GO6F 17,3015

707,692

OTHER PUBLICATIONS

Benjamin H. Sigelman et al., “Dapper, A Large-Scale Distributed
Systems Tracing Infrastructure'. Google Technical Report, Apr. 27.
2010, pp. 1-14, Google Inc., USA.
Wei Xu et al., “Detecting Large-Scale System Problems by Mining
Console Logs”. In proceedings of the ACM SIGOPS 22nd Sym
posium on Operating Systems Principles, SOSP, Oct. 11, 2009, pp.
117-132, Association for Computing Machinery (ACM), New York,
NY, USA.
Mark K. Aguilera et al., “Performance Debugging for Distributed
Systems of Black Boxes', SOSP '03 Proceedings of the nineteenth
ACM Symposium on Operating systems principles, Oct. 19, 2003,
pp. 14-89, Association for Computing Machinery (ACM), New
York, NY, USA.
Mike Y. Chen et al. "Pinpoint: Problem Determination in Large,
Dynamic Internet Services'. DSN 02 Proceedings of the 2002
International Conference on Dependable Systems and Networks,
Jun. 23, 2002, pp. 595-604, IEEE Computer Society, Washington,
DC, USA.
Ding Yuan et al., “Sherlog: Error Disgnosis by Connecting Clues
From Run-Time Logs'. Proceedings of the 15th International Con
ference on Architectural Support for Programming Languages and
Operating Systems, Mar. 2010, pp. 143-154, ACM, Pittsburgh,
Pennsylvania, USA.
Karthik Nagaraj et al., “Structured Comparative Analysis of Sys
tems Logs to Diagnose Performance Problems”. Proceedings of the
9th USENIX conference on Networked Systems Design and Imple
mentation, Apr. 4, 2012, p. 26, USENIX Association, Berkeley, CA,
USA.
Paul Barham et al., “Using Magpie for Request Extraction and
Workload Modelling”. Proceedings of the 6th conference on Sym
posium on Operating Systems Design & Implementation vol. 6,
Dec. 6, 2004, p. 18, USENIX Association, Berkeley, CA, USA.
Rodrigo Fonseca, "X-Trace: A Pervasive Network Tracing Frame
work”. Proceedings of the 4th USENIX conference on Networked
systems design & implementation, Apr. 11, 2007. USENIX Asso
ciation, Berkeley, CA, USA.

* cited by examiner

U.S. Patent Aug. 8, 2017 Sheet 1 of 11 US 9,729,671 B2

- COMPUER

-S - SYSTEM
REVOTE s -
ERMNAS s -

- 22

F.G.

so-y
PROGRAM
CODE 40

COOE ANAYSS
ENGINE

32

OGMODE

42

OGPROCESSENG
ENGINE

34

WSUAZAON
ENGINE

OG WESSAGES
44

FIG. 2

U.S. Patent

PROGRAV CODE

40

Aug. 8, 2017

48

OG STATEMENT
PARSNG

50

RECUEST DENT FER
DETERMINATION

52.

TEMPORAL ORDER
DETERMINATION

54

THREAD
COMMUNCAON
RELATONSHIP
DETERMINATION

56

FIG 3

Sheet 2 of 11 US 9,729,671 B2

OG VODEL

42

U.S. Patent Aug. 8, 2017 Sheet 4 of 11 US 9,729,671 B2

33: 2.4 x:38: 32

AO 8O 82 84
Y- y

Top-issei ataxceiver.writeBock, Asif i, idiid2.
38s: (ataxleixei, ea 53ck, A3-2, is is 2.

igg3 - 8xit

78 - Cor:r. xiite Bick, PixtRs.3
pairs: xi teiick, 8: it

U.S. Patent Aug. 8, 2017 Sheet S of 11 US 9,729,671 B2

NODE NODE NODE

100 100 1OO

WAPPER MAPPER

102. 1O2

COMBINER COMBINER

104. 104.

OGMOOE OGVODE
42 42

NODE

OO

MAPPER

102

COMBNER

104

LOGMODE
42

MAPPER

102

COMBINER

104

LOGWOOE
42

REDUCER REDUCER
NODE NODE
110 110

REDUCER REDUCER
112 112

OG MODE. OG VODE

42 42

F.G. 10

U.S. Patent Aug. 8, 2017 Sheet 6 of 11 US 9,729,671 B2

OBTAN OG
120 MODE AND

START OG ?
122

NEXT OG PARSE OG

GEND)-No MESSAGE YES MESSAGE
124 126

SAVE TOP
EVE ME HOOP

128

ADO OG
MESSAGE TO
NEW ENTRY

136

OFFERENT
DENT FER
VALUESP

130

CREATE NEW
ENTRY

134

NEXT
RA ENTRYP

140

TEMPORA
ORDERP
132

NO

YES

ADO OG
MESSAGE TO
EXSNG ENTRY

138

EIG.

U.S. Patent Aug. 8, 2017 Sheet 7 of 11 US 9,729,671 B2

3: kit

.

3.38:33:33:33.84; - is:33:47,583. r; 3. . . . *

x 33.33.33: “OS:33:48,

U.S. Patent Aug. 8, 2017 Sheet 8 of 11 US 9,729,671 B2

r r s: 3 3: E.

E.G. 5

U.S. Patent Aug. 8, 2017 Sheet 9 of 11 US 9,729,671 B2

System OC workiai if of msg.
FS- Beich 1,760,926

Ya-.. (K HiBench 79,840,856
Cassandra-2. ik YCSB 394-92
Base-.... 8 s YCSB 695,006

Log points

System incorrect Faiei
FS 9. . i. s. 3. 6:

Yai 9.6: :
Cassassia 85... 3.: E. is:
HBits ... : St. 3.5i. 3:
Average wr: is, .9:

U.S. Patent Aug. 8, 2017 Sheet 10 of 11 US 9,729,671 B2

-- S
: Ya'i
& Ease N:

E. Cassaada -----------------1..2..

{} 5 s { s 3. 5 4.

Category &xaspie
necessary Recitaticiant NS exkups

{peratic: isix3. is have xies: cacies
Bixk Sea as: citing
exck fix: {{x} exist, c8 sing

Syki
:*:::::::ix8 7 '.

(ther threasis : iaig
tropii Bix

---, - . is:{i : sics re: 3ctix {ptera:38
A pasticaiar crit: serve

wikia serves {{x} :::::ty Extiests
Resc::ce: Secondary is axitxi
kak eaks fic descriptic:

F.G. 20

U.S. Patent Aug. 8, 2017 Sheet 11 of 11 US 9,729,671 B2

Ataiysis
reques casterisig is i.ientify xxie Keck.
ig piritis Brethraxis ineficieskies 3.x i:

the same method as the sg point
Keitiest iais: y :Easis
e-exie Extes cot:

FIG. 21.

raw og Ocotaisine crat. & reduce cat.
{}i : - i

S{ %s

is .

if -'s

&

F.G. 22

Memory MB
inap-i-coil.
8f3:8
8.3.3

&f 3.
if is

System

OS 14,528
Yar 412,843
Cassania : ii.

i Base

educe

7.95
8.33

US 9,729,671 B2
1.

SYSTEMS AND PROCESSES FOR
COMPUTER LOG ANALYSIS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claim priority to U.S. Provisional Patent
Application 62/059,954, filed on Oct. 5, 2014, which is
incorporated herein by reference.

FIELD

This disclosure relates to computer systems and, more
specifically, to logging service requests in computer sys
temS.

BACKGROUND

Computer systems are in an ever growing trend of becom
ing more powerful and intelligent. With the increase of
Internet connectivity, Software vendors today are aggregat
ing computing resources to provide extremely powerful
software services over the Internet—known as the "cloud
computing model. The underlying software systems that
power these internet services are distributed they run on a
large number of networked computer servers that commu
nicate and coordinate. For example, it is reported that
Google uses hundreds of thousands of networked machines
to provide its internet Services including search, Gmail,
Google Doc, etc., and that Facebook also uses a similar
number of machines to power its online social networking
site.

These distributed software systems are extremely com
plex. For example, when a user accesses the internet service,
a web server will first receive the request, and it may forward
it to an application server which provides the actual service.
The application server may further communicate with mul
tiple storage servers on which the user data is located. Such
setting can be commonly found in cloud vendors including
Google, Facebook, etc., only that in practice there are many
more types and quantities of servers (e.g., database servers,
memory caches, etc.).

Because of the complexity, it is also extremely challeng
ing to understand and analyze the behavior and performance
of Such systems. For example, if a user experiences slow
responding time, finding the culprit in the hundreds of
thousands of servers is like finding a needle in the haystack.

Problems in known systems include performance moni
toring and trouble-shooting, failure recovery, and optimiza
tion.

Regarding performance monitoring and trouble-shooting,
the performance of software services, e.g., user response
time, has significant business impact. For example, Ama
zon.com has found that every 100 ms latency cost them 1%
in sales, and Google has found an extra 0.5 seconds in search
page generation time dropped traffic by 20%. Therefore it is
important for software vendors to have tools to monitor
performance, and analyze the root cause if performance is
slow.

Regarding failure recovery, production Software systems
experience failures. For example, Google’s Gmail experi
enced a 2-day outage in 2011, affecting hundreds of thou
sands of users, and Amazon's EC2 service had an outage for
over 4 days in 2011. Once a failure occurs, it is important for
a vendor to understand system behavior and to infer the root
cause in order to recover from the failure.

10

15

25

30

35

40

45

50

55

60

65

2
Regarding optimization, Software companies today spend

billions of dollars on infrastructure. For example, Google
spent 2.35 billion dollars on infrastructures in the first
quarter of 2014 alone. Understanding the behaviors of these
systems can reveal opportunities to optimize their resource
usage, which can have a significant financial impact.

BRIEF DESCRIPTION OF THE DRAWINGS

The drawings illustrate, by way of example only, embodi
ments of the present disclosure.

FIG. 1 is a diagram of a networked computer system.
FIG. 2 is a diagram of a log processing system according

to the present invention.
FIG. 3 is a diagram showing a process for generating a log

model.
FIG. 4 is an extract from an example Hadoop Distributed

File System (HDFS) log.
FIG. 5 is a diagram of logic underlying example log

message output.
FIG. 6 is a program code listing for an example class that

processes an HDFS write request.
FIG. 7 is a diagram showing an example request identifier

analysis for the program code listing of FIG. 6.
FIG. 8 is a diagram of a Directed Acyclic Graph (DAG)

representation of log points.
FIG. 9 is a diagram showing an example log model file.
FIG. 10 is a diagram of the log processing engine.
FIG. 11 is a flowchart of a log message grouping process.
FIG. 12 is a diagram of example log messages added to

the same group.
FIG. 13 is a diagram showing example combining and

reducing of log messages in an HDFS system.
FIG. 14 is a diagram of a schema for the results database

to store information of log messages in association with
service requests.

FIG. 15 is a chart of an example latency-over-time
visualization.

FIGS. 16-18, 20, 21, and 23 are tables of test results.
FIGS. 19 and 22 are graphs of test results.

DETAILED DESCRIPTION

This disclosure provides techniques, such as systems and
processes which may be termed profiling tools, for analyZ
ing behavior and performance of distributed computer sys
tems to mitigate or solve at least Some of the problems
discussed above.
The present invention provides for non-intrusive profiling

aimed at analyzing and debugging the performance of
distributed computer systems. Instrumentation and modifi
cations to source code are not required. Rather, the tech
niques discussed herein extract information related to log
message output due to the course of normal system opera
tion. Further, the disclosed techniques are capable of auto
matically identifying service requests from logs and are
capable of profiling the performance behavior of such
requests. Specifically, the systems and processes discussed
herein are capable of reconstructing how each service
request is processed as it invokes methods, uses helper
threads, and invokes remote services on other computers
(nodes) of the system. The techniques are practical to
implement, and are capable of diagnosing performance
issues that existing Solutions are not able to resolve without
instrumentation.

FIG. 1 shows a networked computer system for use with
the techniques discussed herein. A plurality of remote ter

US 9,729,671 B2
3

minals 20 interact with a distributed computer system 22 via
a network 24. The remote terminals 20 are devices such as
desktop and laptop computers, Smartphones, tablet comput
ers, and the like. The network 24 includes one or a combi
nation of computer networks, such as a local-area network,
a wide-area network, an intranet, a virtual private network,
and the Internet. The distributed computer system 22
includes a plurality of computers acting as different nodes
and mutually communicating via the network 24. The com
puters making up the distributed computer system 22 may be
located across a large geographic area. The computers may
be termed servers and may be configured with program code
for different functionality to serve an overall purpose, such
as data storage, a messaging service (e.g., email), a social
network, a voice or teleconference service, a videoconfer
ence service, image storage, and similar.
One or more of the computers in the distributed computer

system 22 is configured to receive service requests from one
or more other computers of the system 22 and/or the remote
terminals 20. Such service requests may include request for
data or other elements fitting the overall purpose of the
distributed computer system 22. One or more of the com
puters in the distributed computer system 22 is configured to
log service requests and data related thereto. A log stores log
messages that specify any information or data determined to
be relevant to the operation of the computer system 22. A log
may be stored on the computer generating the log messages
or log messages may be transmitted to another computer for
storage. The number and types of computers storing logs is
not limited. In one example, one or several computers have
program code configured to output log messages. In another
example, most or all of the computers output log messages.
An analysis is performed on program code of the distrib

uted computer system 22 to obtain a log model for use in
interpreting and Stitching together dispersed and intertwined
log messages of individual requests. It is not necessary to
analyze all of the program code of the distributed computer
system 22, but generally the more code analyzed, the better
the results. FIG. 2 shows a log processing system 30
configured to perform Such analysis, which may be termed
a static analysis, in that the analysis need only be performed
once for a given version of program code.

With reference to FIG. 2, the log processing system 30
includes a program code analysis engine 32, a log processing
engine 34, a results database 36, and a visualization engine
38. The log processing system 30 is configured to be
executed by one or more computers, which can include one
or more computers of the distributed computer system 22
and/or other computers.
The program code analysis engine 32 operates on existing

program code 40 that is executable by the distributed
computer system 22 to provide functionality to the system
22. The program code analysis engine 32 processes the
program code 40 to obtain a log model 42 that describes
interrelations among log messages that can be generated by
the program code 40 during normal operation of the program
code 40. The generation, timing, and content of the log
messages is outside the control of the log processing system
30. In addition, the program code 40 is not modified by the
log processing system 30.
The program code analysis engine 32 is configured to

perform an analysis on the existing program code 40. The
analysis is configured to identify log output instructions
present in the program code 40. The log output instructions
are instructions configured to generate log messages 44
related to service requests processed by the program code
40.

10

15

25

30

35

40

45

50

55

60

65

4
The program code analysis engine 32 is further configured

to use the analysis to generate the log model 42. As will be
discussed in more detail below, the log model 42 is repre
sentative of causal relationships among service requests
defined by the program code 40. The log model 42 can be
transmitted from a computer executing the program code
analysis engine 32 to one or more relevant computers
(nodes) of the distributed computer system 22, Such as
computers that generate logs.

In the examples discussed herein, the program code 40
includes bytecode, such as that used in Java. This is not
limiting, and the program code 40 can alternatively or
additionally include source code, binary code (e.g., X86
binaries), intermediate code (e.g., Low Level Virtual
Machine or LLVM code), and the like.
The program code analysis engine 32 is configured to

analyze each log printing (outputting) statement in the
program code 40 to determine how to parse log messages
and to identify variable values that are outputted by the log
messages. Log outputting statements include file writing
statements and the like. The term statement is used herein to
refer to log output instructions. For purposes of this disclo
Sure, the terms statement and instruction are interchangeable
and any differences there-between in practical application
are recognized by those of skill in the art. For example,
statements may be known to refer to source code, while
instructions may be known to refer to compiled code.
However, this distinction is not relevant to the present
invention. The term variable is used inclusively and may be
taken to mean a variable, a field, or other element of data. To
achieve this, the program code analysis engine 32 is con
figured to extract identifiers whose values remain unchanged
in each specific request by further analyzing the data-flow of
these variable values. Such identifiers can help associate log
messages to individual requests. Further, the program code
analysis engine 32 is configured to capture temporal order
ings between log printing statements because, in various
systems, an identifier may not exist in log messages or may
not be unique to a particular service request. The program
code analysis engine 32 is further configured to identify
control paths across different local and remote threads by
inferring their communication relationships. Each of these
techniques will be discussed in detail below. In addition,
although the examples discussed herein may be described as
using all of these techniques, each technique can be imple
mented alone or in combination with any of the other
techniques.
The log processing engine 34 can be executed by a

computer, such as one or more logging computers (nodes),
of the distributed computer system 22 or by another com
puter.
The log processing engine 34 is configured to apply the

log model 42 to a plurality of log messages 44 generated by
execution of the program code 40 at the distributed com
puter system 22. So as to assign log messages 44 to accu
mulated groups for easier and more robust analysis of the
system's response to service requests. The log processing
engine 34 can be executed by a computer, Such as one or
more logging computers (nodes), of the distributed com
puter system 22 or by another computer.
The log processing engine 34 can be implemented as a

MapReduce job or by another parallel analysis framework or
technique for processing and generating large data sets with
a parallel, distributed algorithm on a cluster of computers.
MapReduce is a known programming model and "MapRe
duce: Simplified data processing on large clusters' by J.
Dean and S. Ghemawat can be referenced. The log process

US 9,729,671 B2
5

ing engine 34 processes log files of each relevant computer
of the distributed computer system 22 in parallel using a map
function to infer causal relationships among log messages.
The log processing engine 34 is further configured to merge
log sequences from locally communicating threads of the
same process, before shuffling an intermediate result to
reduce nodes that perform a reduce function. The log
processing engine 34 then stores Such per-request perfor
mance information in the results database 36. These pro
cesses will be discussed in more detail below.
The visualization engine 38 is configured to provide a

graphical user interface to visualize the log analysis results
contained in the results database 36. Users, via remote
admin terminals or other computers, can connect to the
visualization engine 38 to graphically examine the behavior
of the distributed computer system 22, such as latency of
requests, latency on each node, etc. These processes will be
discussed in more detail below.

FIG. 3 shows a program code analysis process 48 for
analyzing program code 40 and generating the log model 42.
The process 48 can be implemented at the program code
analysis engine 32. The process 48 includes log-statement
parsing 50, request identifier determination 52, temporal
order determination 54, and thread communication relation
ship determination 56. Each of the sub-processes 50-56 can
be performed in parallel on the same program code 40 in one
pass, taking into account that some output from request
identifier determination 52 can be used as input to the
temporal order determination 54 and the thread communi
cation relationship determination 56 and that some output
from the temporal order determination 54 can be used as
input to the thread communication relationship determina
tion 56.

Log-statement parsing 50 includes identifying log print
ing (output) statements in the program code 40 and parsing
a log-string format and variables to obtain a signature of
each log printing statement found in the program code 40.
Log-statement parsing 50 includes generating an output
string that is composed of string constants and variable
values. The output string is represented by a regular expres
sion (e.g., “Receiving block BP-(..*):blk (*) *), which is
used during log analysis by the log processing engine 34 to
map a log message to a set of log points in the program code
40 that could have outputted Such a log message. A log point
refers to a log printing (output) statement in the program
code 40 and may include a log file write command or similar.
In the examples discussed herein, log points are identified by
invocations of a method (e.g., “info) of a class named
“LOG”. Log-statement parsing 50 also includes identifying
the variables whose values are contained in a log message.

Log-statement parsing 50 identifies log points in the
program code 40. For each log point, a regular expression is
generated. The regular expression matches the outputted log
message. Log-statement parsing 50 also identifies the vari
ables whose values appear in the log output. Log-statement
parsing 50 is configured to parse out individual fields by
recursively tracing an objects string output method (e.g.,
toString() in Java) and the methods that manipulate related
objects (e.g., StringBuilder objects in Java) until an object of
a primitive type is reached.

FIG. 6 shows example program code 40 is processed by
the program code analysis process 48 to generate the log
model 42. An example log statement, at line 14 in FIG. 6,
can be parsed into the regular expression “Receiving block
(*)', where the wildcard “.*” matches to the value of
“block', which is the identifier of the object that contains
variable information to be logged. Concerning variables,

10

15

25

30

35

40

45

50

55

60

65

6
individual fields are parsed, which handles the example
situation where “pool ID' and “blockID can be taken as
request identifiers, whereas “generationStamp' is modified
during request processing and cannot be considered a
request identifier.

For the example log point mentioned above (line 14), a
signature generated by log-statement parsing 50 in the form
of a regular expression is:

Receiving block (..*):blk (\d--) (\d--)

The three wildcard components (i.e., “..* and “\d') will
be mapped to fields “blockpoolID”, “block.block.blockID,
and “block.block.generationStamp' of the block object,
respectively, as shown in FIG. 5.

Log-statement parsing 50 is also configured to analyze
dataflow of any string object used at a log point. For
example, the string “myString at the log point of line 26 in
the example code of FIG. 6 is a string object initialized
earlier in the code. Log-statement parsing 50 analyzes the
dataflow of the string object to identify the precise value of
“myString.

Log-statement parsing 50 is also configured to account for
class inheritance and late binding, which are features of
many programming languages such as Java. For example,
when a class and its Superclass both provide the same
method (e.g., a toString() method), the particular method
that gets invoked during execution is resolved only at
runtime depending on the actual type of the object. Log
statement parsing 50 is configured to analyze the methods of
both classes and generate two regular expressions for the
one log point. During log analysis, if both regular expres
Sions match a log message, the log processing engine 34 is
configured to use the one log message with the more precise
match, i.e., the regular expression with a longer constant
pattern.

Request identifier determination 52 includes analyzing
dataflow of the variables to determine which variables are
modified. Variables determined to be not modified are con
sidered to be request identifiers. Request identifiers are used
to separate messages from different requests. That is, two log
messages with different request identifiers (i.e., different
variables or sets of variables that are not modified) are
considered to belong to different requests. However, the
converse is not true: two messages with the same request
identifier value may belong to different requests. Request
identifier determination 52 includes identifying top-level
methods.

Request identifier determination 52 analyzes one method
at a time and stores the result as the Summary of that method.
The methods are analyzed in bottom-up order along the
call-graph and when a call instruction is encountered, the
summary of the target method is used. This alleviates the
need to store an intermediate representation of the entire
program in memory.

Request identifier determination 52 uses dataflow analysis
to infer request identifiers by analyzing inter-procedural
dataflow of any logged variables. For each method M, two
sets of variables are assembled in a Summary, namely, (i) the
request identifier candidate (RIC) set, which contains vari
ables whose values are output to a log and not modified by
the method M or its callees, and (ii) the modified variable
(MV) set which contains variables whose values are modi
fied. For each method M, the sub-process initializes both
sets to be empty. The Sub-process then analyzes each
instruction in method M. When a log point is encountered,
the variables whose values are printed (as identified previ
ously) are added to the RIC set. If an instruction modifies a

US 9,729,671 B2
7

variable V, the variable v is added to the MV set and removed
from the RIC set. If the instruction is a call instruction, the
process merges the RIC and MV sets of the target method
into the corresponding sets of the current method, and then,
for each variable v in the MV set, the process removes the
instruction from the RIC set if it contains the variable v.
As an example, consider the following code Snippet from

the example writeBlock() method:
LOG.info(“Receiving+block);

block.setGenerationStamp(latest);

The setGenerationStamp() method modifies the “genera
tionStamp' field in the “block' class. In bottom-up order, the
request identifier determination 52 first analyzes the setGen
erationStamp() method and adds “generationStamp' to its
MV set. Later, when request identifier determination 52
analyzes the writeBlock() method, it removes “generation
Stamp' from its RIC set because “generationStamp' is in the
MV set of the setGenerationStamp() method.

With reference to an example Hadoop Distributed File
System (HDFS) log extract, shown in FIG. 4, request
identifiers are shown in bold (e.g., “BP-9 . . . 9:blk 5 . . .
7 1032). In this example, both of the “read” and the “write
1” requests have same the block ID (“1032). Note that
timestamps of the log messages are omitted for sake of
clarity.

FIG. 5 shows logic underlying output of example log
message containing the string “BP-9...9:blk 5... 7 1032
shown in FIG. 4. This string might be considered a potential
request identifier. This string contains the values of three
variables, as shown in FIG. 5, namely, “pool ID, “blockID,
and generationStamp'. Only the Substring containing
“poolID' and “blockID is suitable as a request identifier for
an example writeBlock() method, shown in FIG. 6, because
the “generationStamp' variable can have different values
while processing the same request, as exemplified by the
“write 2’ request in FIG. 4.

Request identifier determination 52 infers which log
points belong to the processing of the same request. Top
level methods are identified by analyzing when identifiers
are modified. The term top-level method refers to the first
method of any thread dedicated to the processing of a single
type of request. For example, in FIG. 6, the writeBlock.()
method and the run() method of the “PacketResponder
class are top-level methods. However, the run() method of
the “DataXceiver” class is not a top-level method because it
processes multiple types of request. Generally, a method M
is log point p’s top-level method if method M is a top-level
method and log point p is reachable from M.

Request identifier determination 52 identifies top-level
methods by processing each method of a call-graph in
bottom-up order. That is, if a method M modifies many
variables that have been recognized as request identifiers in
its callee method M', then method M is recognized as a
top-level method. It is contemplated that programmers often
log request identifiers to help debugging, and the modifica
tion of a frequently logged but rarely modified variable is
likely not part of the processing of a specific request. Hence,
the request identifier determination 52 can be configured to
take advantage of this to identify top-level methods.

With reference to the schematic example request identifier
analysis shown in FIG. 7, request identifier determination 52
would identify the example readBlock() and writeBlock()
methods as being two top-level methods for different types
of requests. Hence, log messages output by the read
Block() method would be separated from log messages

10

15

25

30

35

40

45

50

55

60

65

8
outputted by the writeBlock() method, even if such log
messages have the same request identifier value.

In general, top-level methods are identified by tracking
the propagation of variables in the RIC set and using the
following heuristic when traversing the call-graph in a
bottom-up manner: if, when moving from a method M to its
caller method M', many request identifier candidates are
suddenly removed, then it is likely that method M is a
top-level method. Specifically, the number of times each
request identifier candidate appears in a log point in each
method is counted and this counter is accumulated along the
call-graph in a bottom-up manner. Whenever this count
decreases from method M to its caller M', it can be deter
mined that method M is a top-level method. This takes
advantage of the tendency of developers to often include
identifiers in their log printing statements, and modifications
to these identifiers are contemplated to be likely outside the
top-level method.

With reference to the schematic example request identifier
analysis shown in FIG. 7, both the writeBlock() method and
the readBlock() method accumulate a large count of request
identifiers, which drops to zero in the run () method.
Accordingly, request identifier determination 52 determines
that the writeBlock() and readBlock() methods are top
level methods instead of the run() method. Note that,
although the count of the “generationStamp' variable
decreases when the analysis moves from the setGeneration
Stamp() method to the writeBlock() method, the determi
nation 52 does not determine that the setGeneration
Stamp () method is a top-level method because the accu
mulated count of all request identifiers is still increasing
from the setGenerationStamp () method to the write
Block() method.
When analyzing the writeBlock() method, the RIC set

obtained from its callee receiveBlock() method is merged
into its own set, so that the cumulative count of “poolID'
and “blockID is increased to eight. Four of this count
comes from the receiveBlock() method and the remaining
four comes from the log points in the writeBlock() method.
Since “generationStamp' is in the setGenerationStamp()
methods MV set, it is removed from the writeBlock.()
method’s RIC set.

Request identifier determination 52 stops at the root of the
call-graph, which is either a thread entry method (i.e., a
run() method in Java) or main(). However, a thread entry
method may not be the entry of a service request. With
reference to the HDFS example shown in FIG. 6, the
“DataXceiver thread uses a while loop to handle read and
write requests. Thus, it is advantageous that the request
identifier determination 52 can identify the writeBlock.()
and readBlock() methods as the top-level methods, as
opposed to the run() method.

Temporal order determination 54 creates temporal asso
ciations or dissociations among log output statements. Tem
poral order determination 54 performs a line-by-line analy
sis of methods to determine the logical expected order of log
statements resulting from a request as well as impossible
orders of log statements for a request. For instance, with
reference to the example of FIG. 6, temporal order deter
mination 54 would determine that when two messages
appear in the following order: “ ... terminating and
“Received block they cannot be from the same request
even if they have the same block identifier because line 26
is executed after line 24. Temporal order determination 54 is
advantageous because there may not be an identifier unique
to each request.

US 9,729,671 B2

Temporal order determination 54 is configured to generate
a Directed Acyclic Graph (DAG) for each top-level method
(as identified by the request identifier determination 52)
from the methods call graph and control-flow graph (CFG).
This DAG contains each log point reachable from the
top-level method and is used to help attribute log messages
to top-level methods. Temporal order determination 54
implements several conditions to advantageously avoid hav
ing to attempt to infer the precise order in which instructions
will execute.
As a first condition, only nodes that contain log printing

statements are represented in the DAG. As a second condi
tion, all nodes involved in a strongly connected component
(e.g., caused by loops) are folded into one node. Multiple log
points may be assigned to a single node in the DAG. In a
third condition, if there is a strongly connected component
due to recursive calls, then those nodes are also folded into
one. Finally, as a fourth condition, unchecked exceptions are
ignored, since unchecked exceptions will terminate execu
tion. Checked exceptions are captured by the CFG and are
included in the DAG.
As an example, FIG. 8 shows the DAG generated from a

code snippet. The asterisk (*) next to the log points “log
2 and "log 3’ indicates that these log points may appear
Zero or more times. Ordering of the log points is not
maintained for nodes with multiple log points. The DAG
advantageously captures the starting and ending log points
of a request, which is beneficial in that it is a common
practice for developers to print a message at the beginning
of each request and/or right before the request terminates.

Thread communication relationship determination 56 is
configured to identify threads that communicate with each
other. Log messages outputted by two threads that commu
nicate may result from processing of the same request, and
thread communication relationship determination 56 can be
used to associate log statements that generate Such log
messages. It is contemplated that this kind of thread com
munication can occur through cooperative threads in the
same process, or via Sockets or remote procedure calls
(RPCs) across a network.

Output of the communication relationship determination
56 includes a tuple for each pair of threads in communica
tion, such as:

(top-level method 1, top-level method 2, communi
cation type, set of request identifier pairs)

where one end of the communication is reachable from
top-level method 1 and the other end is reachable from
top-level method 2. “Communication type' is selected as
one of local, RPC, or socket, where “local' is used when two
threads running in the same process communicate. A request
identifier pair captures the transfer of request identifier
values from the source to the destination. The pair identifies
the variables containing the data values at Source and
destination.

Thread communication relationship determination 56 is
configured to detect two types of local thread communica
tions: (i) thread creation and (ii) shared memory reads and
writes. Detecting thread creation is readily done in program
code that has a well-defined thread creation mechanism,
Such as Java. If an instruction r. start() is reachable from a
top-level method, where r is an object of class C that extends
the “Thread class or implements the “Runnable' interface
and where C.run () is another top-level method, then a
communication pair can be determined to be identified.
Thread communication relationship determination 56 also
determines the dataflow of request identifiers, as they are

10

15

25

30

35

40

45

50

55

60

65

10
mostly passed through the constructor of the target thread
object. In addition to explicit thread creation, if two instruc
tions reachable from two top-level methods (i) access a
shared object, and (ii) one of them reads and the other writes
to the shared object, then a communication pair is identified.

With reference to the example HDFS program code of
FIG. 6, the thread communication relationship determina
tion 56 generates the following example tuple:

(writeBlock, PacketResponderrun, local, <DataX
ceiver.block.poolID, PacketResponder.block.
poolID>, . . .)

indicating that the writeBlock() method can communicate
with the PacketResponder class via local thread creation,
and indicating that “poolID is the request identifier used on
both ends for the data value passed between the threads.

For threads that communicate via a network, the fact that
sender and receive communicate on the same protocol is
used instead of pairing socket reads and writes. This advan
tageously avoids unnecessarily connecting together top
level methods that do not communicate. Specifically, the
thread communication relationship determination 56 pairs
top-level methods containing pairs of invoke instructions
whose target methods are the serialization and deserializa
tion methods from the same class, respectively. It is con
templated that developers often use third-party data-serial
ization libraries, such as Google Protocol Buffers. The
thread communication relationship determination 56 can
thus be configured to recognize standardized serialization/
deserialization Application Programming Interfaces (APIs).
The thread communication relationship determination 56 is
also configured to parse the Google Protocol Buffer's pro
tocol annotation file to identify the RPC pairs, where each
RPC is explicitly declared. Regarding addressing Cassandra,
another data-serialization library, an annotation to pair C. Se
rialize() with C.deserialize() for any class C is sufficient to
correctly pair communicating top-level methods.
The thread communication relationship determination 56

can be further configured with two additional techniques to
improve accuracy of log Stitching. First, a thread will be
included in a communication pair, even when the thread
does not contain any log point (which means it does not
contain any top-level method), as long as the thread com
municates with a top-level method. In Java implementations,
Such a threads run() method is used as the communication
end point. This is advantageous because grouping log mes
sages can be performed for Such a thread, which may serve
as a link connecting two communicating top-level methods,
despite the thread not contain any log points.

Second, the number of times a top-level method can occur
in a communication pair can be determined. For example, a
communication pair “(M1, M2*, local, . . .), where M2 is
followed by an asterisk, means that method M1 can com
municate with multiple instances of method M2 in the same
request. Log analysis performed by the log processing
engine 34 can use this property to further determine whether
messages from multiple instances of method M2 can be
stitched into the same request. This is because, if the
communication point to method M2 is within a loop in
method M1's CFG, then method M2 can be executed
multiple times.
The program code analysis process 48 of FIG. 3, includ

ing log-statement parsing 50, request identifier determina
tion 52, temporal order determination 54, and thread com
munication relationship determination 56, specifically
configures a computer to analyze program code 40 to
generate a log model capable of being used to Stitch together

US 9,729,671 B2
11

future log messages output due to the processing of a single
request by the program code 40.

For example, considering the example HDFS program
code in FIG. 6, write requests are processed on each data
node (e.g., a computer of the distributed system 22) by a
“DataXceiver thread that uses a while loop to process each
incoming request. A “WRITE BLOCK op-code invokes
the writeBlock() method (at line 7), which sends a repli
cation request to the next downstream data node (line 15). A
new thread associated with the PacketResponder() method
is created (line 16-17) to receive the response from the
downstream data node, so that a response can be sent
upstream. Execution of this program code can result in log
messages as shown in FIG. 4. These six example log
messages illustrate two advantages of the present invention.
First, log messages produced when processing a single
request to the writeBlock() method may come from multiple
threads, and multiple requests may be processed concur
rently. The program code analysis process 48 of FIG. 3 is
configured to construct a log model that can be used to
organize intertwined log messages resulting from different
requests. Second, the log model is configured to account for
log messages that do not contain an identifying Substring
that is unique to a request, which are contemplated to be
most log messages encountered. For example, while block
identifier “BP-9 . . . 9:blk 5 ... 7 in FIG. 4 can be used to
distinguish log messages from different requests that do not
operate on the same block, it cannot be used to distinguish
log messages of the read request (“read') and the first write
request (“write 1”) because they operate on the same block.
The present invention distinguishes log messages using
more than merely log message string text.
The log model 42 generated by the program code analysis

process 48 of FIG. 3 includes a file, or other data structure,
that encodes the log message outputting behavior of the
program code as executable on the distributed computer
system 22. FIG.9 schematically illustrates a snippet of a log
model file 70 for the example of HDFS. The log model file
70 includes four segments 72-78. A top-level method seg
ment 72 is generated by the request identifier determination
52 and lists tuples identifying a name of the top-level
method 80, an index into the DAG representation of the log
points 82, and a list of request identifiers 84. A DAG
segment 74 is generated by the temporal order determination
54 and describes the DAG for each top-level method. The
format of the DAG description is shown schematically for
illustrative purposes, and any format can be used. A log
point regular expression segment 76 is generated by the
log-statement parsing 50 and contains a regular expression
for each log point and an identifier for each wildcard in the
regular expression. A communication pair segment 78 is
generated by the thread communication relationship deter
mination 56 and lists tuples that identify the communication
points along with the identifiers for the data being commu
nicated.
The program code analysis process 48 can be configured

to generate one or more indexes and to include the indexes
in the log model file 70, so as to increase the speed of log
analysis performed by the log processing engine 34.
Examples of Such indexes include an index of regular
expressions (to speed the matching of each log message to
its log point) and an index mapping log points to top-level
methods.
The log model file 70 is transmitted to each computer

whose log is to be analyzed in the distributed computer
system 22.

10

15

25

30

35

40

45

50

55

60

65

12
FIG. 10 shows a diagram of the log processing engine 34

and the results database 36.
The log processing engine 34 includes mappers 102 and

combiners 104 executed at various nodes (computers) 100 of
the distributed computer system 22. Each node 100 stores a
copy of the log model 42, or otherwise has access to the log
model 42, generated as discussed above. The log processing
engine 34 further includes reducer nodes (computers) 110
configured to execute reducers 112. Output of the reducer
nodes 110 is transmitted to and stored at the results database
36. Each reducer node 110 stores a copy of the log model 42,
or otherwise has access to the log model 42, generated as
discussed above. The mappers 102, combiners 104, and
reducers 112 include program code configured to perform
the processes discussed below when executed by the respec
tive nodes 100 and reducer nodes 102. The log processing
engine 34 accordingly implements a MapReduce job,
although this is not limiting and other implementations for
the log processing engine 34 are within the scope of the
present invention.
The mappers 102 and reducers 112 use a common data

structure, termed a request accumulator (RA), for gathering
information related to the same service request. Each RA
entry contains: (i) a vector of top-level methods that are
grouped into this RA; (ii) the value of each request identifier;
(iii) a vector of log point sequences, where each sequence
comes from one top-level method; and (iv) a list of nodes
traversed, with the earliest and latest timestamp. The map
pers 102 and reducers 112 are configured to iteratively
accumulate the information of log messages from the same
service request into such RA entries. Output generated by
the mappers 102 and reducers 112 has the form of one RA
entry per service request, where the one RA entry contains
the information Summarized from all log messages deter
mined to be related to that service request.

Each mapper 102 implements a map process that is
executed on a node 100 to process local log files generated
by or otherwise stored on that node 100. Each node 100 has
one mapper 102, and the mappers 102 execute their map
processes in parallel. Each mapper 102 is configured to Scan
the relevant log file linearly and parse each log message in
the log file to identify any log points and request identifiers.
Identifying log points and request identifiers can include
using regular expression matching. In addition, each mapper
102 can be configured to heuristically process timestamps
associated with log messages.

In this embodiment, each mapper 102 is configured to add
a parsed log message to an existing RA entry according to
a log message grouping process 120 shown in FIG. 11.
At Step 122, the log model 42 and log to be processed are

obtained. The process 120 then iterates through all log
messages in the log, via step 124. The current log message
is parsed, at Step 126, and then checked against conditions
in steps 128-132 obtained from the log model 42. The
conditions in steps 128-132 evaluate the information in the
log message against information for each RA entry. Steps
128-132 are performed to compare the current log entry to
all existing RA entries, via step 140, until all conditions are
met. Steps 128-132 can be performed in any order.
At step 128, it is determined whether the top-level meth

ods of the parsed log message and the existing RA entry
match. When no match is found in any of the RA entries, a
new RA entry is created and initialized, at step 134. Initial
ization of an RA entry includes associating the relevant
information of the log message that triggered the creation of
the RA entry with the RA entry. The current log message is

US 9,729,671 B2
13

then assigned to the new RA entry at step 136 and the
process repeats for the next log message, if any.

At step 130, it is determined whether request identifier
values of the parsed log message and the existing RA entry
under consideration do not conflict. That is, if the request
identifier values are different to those in the RA entry under
consideration, then this is determined to be a conflict and the
process considers the next RA entry, if any. If it turns out that
the request identifier values are different to those in all RA
entries, then the process creates a new RA entry and assigns
the current log message to the new RA entry, at steps 134
and 136.

At step 132, it is determined whether the log point of the
parsed log message matches the temporal sequence in the
control flow as represented by the DAG of the RA entry. If
no such match is determined for any or the RA entries, then
the process creates a new RA entry and assigns the current
log message to that entry, at steps 134 and 136.

If the conditions of steps 128-132 are met, then the current
log message is added to the RA entry under consideration,
at step 138.

In other words, a log message is added to an existing RA
entry if and only if: (i) the top-level methods of the parsed
log message and the existing RA entry match, (ii) the
identifier values of the parsed log message and the existing
RA entry do not conflict, and (iii) the log point of the parsed
log message matches the temporal sequence in the control
flow as represented by the DAG of the RA entry.
As a result, each RA entry outputted by the mappers 102

contains exactly one top-level method. In other embodi
ments, the above requirements can be relaxed as long as any
resulting potential ambiguity in the resulting data can be
tolerated.

In view of that above, it is noted that a sequence of log
messages can advantageously be added to the same RA entry
even when each log message contains the values of a
different subset of request identifiers. FIG. 12 shows an
example of such. The five log messages in this figure can all
be grouped into a same RA entry even though four of the log
messages contain the values of a Subset of the request
identifiers, and one of the log messages does not contain the
value of any request identifier and instead is captured using
the DAG.

With reference back to FIG. 10, each combiner 104 is
configured to compare pairs of RA entries with reference to
the log model 42 and to combine a pair of RA entries into
one RA entry if there exists a communication pair between
the two top-level methods in the pair of RA entries and if the
request identifier values do not conflict. In addition, the
combiner 104 is configured to not combine RA entries if the
difference between their timestamps is larger than a con
figurable threshold. This is advantageous because two RA
entries may have the same top-level methods and request
identifies, but may represent the processing of different
service requests (e.g., two writeBlock operations on the
same block). An example threshold value is one minute,
although various values can be selected based on the specific
networking environment. For instance, in an unstable net
work environment with frequent congestion, it may be
advantageous to set this threshold to a longer value.

Each combiner 104 is configured to then assign a shuffle
key to each RA entry and transmit each RA entry to a
particular reducer node 110 based on the assigned shuffle
key. The same shuffle key is assigned to all RA entries that
are to be grouped together. The combiners 104 are config
ured to assign shuffle keys based on communication pairs to
achieve this grouping. Specifically, communication pairs, as

5

10

15

25

30

35

40

45

50

55

60

65

14
indicated in the log model 42 are referenced, so that if there
is a communication pair connecting two top-level methods
A and B, then the methods A and B are joined together into
a connected component (CC). The combiners 104 iteratively
merge additional top-level methods into a CC as long as
Such methods communicate with any of the top-level meth
ods assigned to this CC. As a result, all of the top-level
methods in a CC are those that can mutually communicate,
and their RA entries are assigned the same shuffle key. The
combiners 104 do not transmit raw log messages over the
network, at this time, although this does not exclude sending
raw log messages at a later time. Rather, the combiners
locally group log messages and assign shuffle keys, which
can improve the efficiency (e.g., network bandwidth) of the
generation and collection of log information.

This shuffling process performed by the combiners 104
can further include two additional steps, so as to mitigate
potential assignment of a small number of shuffle keys and
thus a poor distribution. First, if all of the communicating
top-level methods are determined to have common request
identifiers, the combiners 104 are configured to use the
identifier values to further differentiate shuffle keys. Second,
if it is determined that an RA entry cannot possibly com
municate with any other RA entry through network com
munication, the RA entry is directly output into the results
database 36.

Each reducer 112 is configured in the same way as a
combiner 104 and performs the same processes that the
combiner 104 first performs at a local level.

FIG. 13 shows an example of how the RA entries of log
messages in an HDFS writeBlock request are grouped
together. In this example, RA entries combine nine log
messages from six threads on three nodes belonging to a
single HDFS write request. As shown, after the mappers 102
generate RA entries “req.acc.1' and req.acc.2 on node “1”.
the combiners 104 group these RA entries into an RA entry
“req.acc.3’ because the log model 42 indicates that the
writeBlock() and PacketResponder-run() methods belong to
the same communication pair and that their request identifier
values match. Node '2' and node '3' execute the mappers
102 and combiners 104 in parallel to generate RA entries
“req.acc.4” and “req.acc.5”. The same shuffle keys are
assigned to RA entries “req.acc.3”, “req.acc.4, and
“req.acc.5”. The reducers 112 further group RA entries
“req.acc.3”, “req.acc.4, and “req.acc.5” into a final RA
entry “req.acc.6”.

FIG. 14 is a diagram of a schema for the results database
36. Information from each RA entry generated by the log
processing engine 34 is stored the results database 36
according to this schema.
The database schema contains the following fields: (i)

request type, which identifies the top-level method with the
earliest time stamp; (ii) starting and ending time stamps,
which are the MAX and MIN in all the timestamps of each
node; (iii) nodes traversed and the time stamps on each node,
which are taken directly from the RA entry; and (iv) log
sequence ID (LID), which is a hash value of the log
sequence vector field in the RA entry. In the example shown
in FIG. 14, the vector of the log sequence of a writeBlock
request is:

“LP1), LP1), LP1), LP2,LP3), LP2,LP3), LP2,
LP3).

In this vector, each element is a log sequence from a
top-level method (e.g., “ILP1’ is from top-level method
writeBlock() and “LP2,LP3' is from the PacketRe
sponder run() method). Note that the LID captures the

US 9,729,671 B2
15

unique type and number of log messages, their order within
a thread, as well as the number of threads.

With reference back to FIG. 1, the visualization engine 38
can be configured to use the results database 36 to output
information related to the performance and behaviour of the
distributed computer system 22. For example, the visualiza
tion engine 38 can be configured to query the results
database 36 to generate output for graphical display of
latency trends over time for each type of service request, for
graphical display of average, high, and low latencies per
node, and for mining of log data for anomalies.
The visualization engine 38 can be implemented as a web

application that is accessible to admin terminals associated
with the distributed computer system 22. A JavaScript
charting library, such as Highcharts, can be used. The web
application can be configured to output request latency over
time; request count and count trend over time, and average
latency per node. FIG. 15 shows an example latency-over
time visualization.

Tests were conducted on a log processing system 30 as
described above. The tests are discussed below and should
not be taken as limiting.
The system 30 was evaluated on four, off-the-shelf dis

tributed systems: HDFS, Yarn, Cassandra, and HBase.
Workloads were run on each system on a 200 EC2 node
cluster for over 24 hours with the default logging verbosity
level. Default verbosity is used to evaluate the system 30 in
settings closest to the real-world. HDFS, Cassandra, and
YARN used INFO as the default verbosity, and HBase used
DEBUG. A timestamp was attached to each message using
the default configuration in all of these systems.

For HDFS and Yarn, HiBench was used to run a variety
of MapReduce jobs, including both real-world applications
(e.g., indexing, pagerank, classification and clustering) and
synthetic applications (e.g., wordcount, sort, terasort).
Together they processed 2.7 TB of data. For Cassandra and
HBase, the YCSB benchmark was used. In total, the four
systems produced over 82 million log messages. The results
are summarized in FIG. 16.

FIG. 17 shows the results of static analysis tests per
formed by the system 30. In the columns indicated with an
asterisk, only the log points that were under the default
verbosity level and not printed in exception handler, indi
cating they are printed by default under normal conditions,
were counted. On average, 81% of the statically inferred
threads contain at least one log point that would print under
normal conditions, and there were an average of 20 Such log
points reachable from the top-level methods inferred from
the threads that contain at least one log point. This suggests
that logging is prevalent. In addition, 66% of the log points
contain at least one request identifier, which can be used to
separate log messages from different requests. This also
Suggests that the log processing system 30 has to rely on the
generated DAG to group the remaining 34% log points. The
static analysis test took less than 2 minutes to run and 868
MB of memory for each system. Each of the log sequence
IDs (LID) generated by the system 30 were manually
verified. It is noteworthy that only 784 different LIDs were
extracted out of a total of 62 million request instances.

FIG. 18 shows the request attribution accuracy of the log
processing system 30 as tested. A log sequence A was
considered correct if and only if (i) all its log points indeed
belong to this request, and (ii) there is no other log sequence
B that should have been merged with the log sequence A. All
of the log messages belonging to a correct log sequence were
classified as “correct”. If log sequences A and B should have
been merged but were not then the messages in both

5

10

15

25

30

35

40

45

50

55

60

65

16
sequence A and B were classified as “incomplete'. If a log
message in sequence A does not belong to sequence Athen
all the messages in sequence A were classified as “incor
rect’. The “failed' column counts the log messages that
were not attributed to any request.

FIG. 19 shows a chart of a cumulative distribution func
tion on the number of log messages per unique request, i.e.,
the one with the same log sequence ID. In each system, over
44% of the request types, when being processed, print more
than one message. Most of the requests printing only one
message are systems internal maintenance operations. For
Cassandra, the number of nodes each streaming session
traverses varies greatly, resulting in a large number of
unique log sequences (it eventually reaches 100% with 1484
log messages, which is not shown in the figure).

In further tests, 23 user-reported real-world performance
anomalies were randomly selected from Bugzilla databases
associated with the systems tested. Bugs were reproduced
each one to obtain logs, and the effectiveness of the log
processing system 30 was tested, with results Summarized in
FIG. 20.

FIG. 21 shows features of the system that were found
helpful in debugging real-world performance anomalies
tested.
The mapping and combining processes discussed above

ran on each EC2 node, and the reduce process ran on a single
server with 24 2.2 GHz Intel Xeon cores and 32 GB of
RAM. FIG. 22 shows the size of intermediate result. On
average, after the mapping and combining processes, the
intermediate result size is only 7.3% of the size of the raw
log. This is the size of data that has to be shuffled over the
network for the reduce function. After the reducing process,
the final output size is 4.8% of the size of the raw log. FIG.
23 shows the time and memory used by the system 30 under
test. The mapping and combining processes finished in less
than six minutes for every system exception for Yarn, which
took 14 minutes. Over 80% of the time is spent on log
parsing. When a message can match multiple regular expres
sions, it was observed to take much more time than those
that match uniquely. The memory footprint for map and
combine is less than 3.3 GB in all cases. The reducing
process took no more than 21 seconds for HDFS, Cassandra,
and HBase, but took 19 minutes for Yarn. However, the
tested reducing process was not parallelized, as it would be
in real-world usage.

Advantages of the present invention have been discussed
above. For example, the invention is non-intrusive, in that no
modification is required to any part of the existing produc
tion software stack of a distributed computer system under
analysis. This makes the invention Suitable for profiling
production systems. The invention is also capable of in-situ
and scalable analysis, in that much of the processing is
performed on the same node (computer) where the logs are
stored. Further, only one linear scan of each log file is
needed. This can avoid sending the logs over a network to
a centralized location to perform analysis, which may be
unrealistic in real-world clusters. In addition, the present
invention provides a compact representation allowing his
torical analysis. Extracted log information is stored in rela
tion to each request in a compact form, so that it can be
retained for a longer time. This allows historical analysis
where current performance behavior can be compared to the
behavior at a previous point of time, which may be useful to
detect slowdown creep. The invention is also loss-tolerant,
insofar as original log data can be lost after it has been
processed. Further, if the logs of a few nodes are not

US 9,729,671 B2
17

available, their input can simply be discarded without affect
ing the analysis of requests not involving those nodes.

While the foregoing provides certain non-limiting
example embodiments, it should be understood that combi
nations, Subsets, and variations of the foregoing are con
templated. The monopoly Sought is defined by the claims.
What is claimed is:
1. A process for performing computer log analysis, the

process comprising:
performing an analysis on existing program code that is

executable on one or more computers forming part of
a distributed computer system, the analysis identifying
log output instructions present in the program code, the
log output instructions being configured to generate log
messages related to service requests processed by the
program code:

generating a log model using the analysis, the log model
being representative of causal relationships among ser
Vice requests defined by the program code;

applying the log model to a plurality of log messages
generated by execution of the program code to add log
messages of the plurality of log messages into one or
more groups; and

applying of the log model at a plurality of nodes of the
distributed computer system, the plurality of nodes
being connected by a network, at least two nodes of the
plurality of nodes combining groups of log messages
locally without transmitting the log messages over the
network before assigning shuffle keys to the groups of
log messages and transmitting the groups of log mes
Sages over the network to one or more nodes of the
plurality of nodes based on the assigned shuffle keys,
the one or more nodes further combining received
groups of log messages.

2. The process of claim 1, wherein generating the log
model comprises identifying a log output statement in the
program code and parsing the log output statement to
determine a format of the log output statement and any
variable referenced by the log output statement to generate
a signature of the log output statement.

3. The process of claim 2, further comprising using a
value of a variable referenced by the log output statement to
generate the signature for the log output statement.

4. The process of claim 3, storing in the signature of the
log output statement as a regular expression.

5. The process of claim 1, wherein generating the log
model comprises analyzing dataflow of variables of the
program code and storing in the log model one or more
indications of one or more variables not modified by a
particular service as a request identifier of the particular
service request.

6. The process of claim 5, wherein generating the log
model comprises identifying a top-level method in the

10

15

25

30

35

40

45

50

18
program code as a first method of any thread dedicated to the
processing of a single type of Service request and storing an
identifier of the top-level method in the log model.

7. The process of claim 6, further comprising determining
that the particular service request is processed by the top
level method and storing in the log model the request
identifier of the particular service request in association with
the identifier of the top-level method.

8. The process of claim 1, wherein generating the log
model comprises identifying log output statements in the
program code and generating indications of temporal asso
ciations or dissociations among the log output statements.

9. The process of claim 1, wherein generating the log
model comprises identifying log output statements in the
program code, identifying threads that contain the log output
statements, determining which pairs of the threads commu
nicate with each other, and storing an indication of any
determined communicating pairs of threads in the log
model.

10. The process of claim 9, wherein determining which
pairs of the threads communicate with each other comprises
detecting thread creation.

11. The process of claim 9, wherein determining which
pairs of the threads communicate with each other comprises
determining whether two instructions reachable from two
top-level methods operate on a shared object, wherein each
of the two top-level methods is a first method of any thread
dedicated to the processing of a single type of service
request.

12. The process of claim 11, wherein applying the log
model comprises adding a particular log message to a
particular group on a condition that the particular log
message shares a common top-level method with the group.

13. The process of claim 12, wherein the adding is further
based on a condition that one or more request identifiers of
the particular log message are not different from one or more
request identifiers of the group.

14. The process of claim 13, wherein the one or more
request identifiers of the particular log message and the one
or more request identifiers of the group are indicative of
variables in the program code that are not modified during
processing of a service request.

15. The process of claim 12, wherein the adding is further
based on a condition that a log point of the particular log
message matches a temporal sequence in a control flow of
the program code.

16. The process of claim 12, further comprising storing
the log model at a logging computer of the distributed
computer system, the logging computer performing the
applying of the log model.

k k k k k

