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To achieve high performance on shared memory multiprocessors, software must be designed to  

take locality into account. The appropriate use of replication, partitioning and sharing of da ta  

can lead t o  higher locality, thus reducing communication and synchronization overheads. Clustemd 

Objects is a partitioned object model exclusively targeted at expressing locality optimizations in a 

consistent manner. Like other partitioned object models, Clustered Objects allow an object t o  be 

decomposed into multiple representative objects while preserving a single unified external interface. 

In this dissertation we develop and implement a model for Clustered Objects based on support 

found in the Tornado Operating System. Although preliminary, our  experimental work indicates 

that  developing software with this model benefits from the software engineering advantages of 

object-oriented programming and yet is structured to exploit fine-grained locality optimizations. 
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Chapter 1 

Introduction 

The development of high-performance parallel systems software is a difficult task. The concurrency 

and locality management needed for good performance can add considerable complexity. Clus- 

tered Objects were developed as a model of partitioned objects t o  simplify the task of designing 

high-performance shared memory multiprocessor (SMP) systems software. In the partitioned o b  

ject model, an externally visible object is composed of a set of distributed representative objects. 

Each representative object locally services requests, possibly collaborating with one or more other 

representatives. Cooperatively all the representatives implement the complete functionality of the 

Clustered Object. The distributed nature of Clustered Objects make them ideally suited for the 

design of multiprocessor system software, which often requires a high degree of modularity and 

yet benefits from the sharing, replicating and partitioning of da ta  on a per-resource (object) ba- 

sis. Clustered Objects are similar to other partitioned object models, such as Fragmented Objects 

[22,5] and Distributed Shared Objects[38,14], although the latter have focused on the requirements 

of (loosely coupled) distributed environments; Clustered Objects are designed for (tightly coupled) 

shared memory systems. 

The work presented in this dissertation is an initial evduation of Clustered Objects. We de- 

veloped a model for Clustered Objects based on preexisting support in Tornado and focused on 

operating system implementations. In particular, we designed a generic C++ class representation 

for Clustered Objects and implemented it on top of the  Tornado operating system. This class 

representation is used t o  build two sets of example Clustered Objects. The first set consists of four 

different implementations of a simple integer counter. The second set consists of three different 

implementations of a more complex SMP caching data  structure for data lookup. We evaluated 



the performance of the implementations using both simulations and hardware and show that the 

Clustered Objects developed are able to  realize performance optimizations on a shared memory 

multiprocessor. 

Based on our experience so far, Clustered Objects are able to  exploit the advantages of object- 

oriented technology and yet a t  the same time can support finegrain SMP optimizations needed 

for good performance. In our examples, Clustered Object implementations are able to achieve the 

same performance advantages as hand-optimized implementations. We found that  it is possible to  

create a family of Clustered Objects consisting of different implementations, each with the same 

external interface, but each tuned for a different access pattern. Thus it should be possible to  

develop a standard foundation library of CIustered Objects that wiI1 allow a client programmer to  

build high-performance SMP software by simply choosing the right implementations for the access 

pattern expected. 

The remainder of this chapter briefly describes SMP architectures and operating systems, as 

well as the partitioned object model. The next chapter, Motivation and Background, defines lo- 

cality management in the context of an SMP. The chapter also gives an  example illustrating the 

importance of locality to performance. Chapter 3 entitled Clustered Objects, describes the Clus- 

tered Object model, Tornado support for Clustered Objects, and the class representation developed. 

Chapter 4 presents the two sets of example Clustered Objects implemented. Chapter 5 presents the 

results from the performance tests of theexample Clustered Objects. Chapter 6 presents guidelines 

for the development of Clustered Objects. Chapter 7 proposes a new Clustered Object Model we 

have not yet implemented, which addresses shortcomings in the initial model. 

1.1 SMPs 

SMP architectures present the programmer with the familiar notion of a single address space within 

which multiple processes exist, possibly running on different processors. Unlike a message-passing 

architecture, an  SMP does not require the programmer to use explicit primitivs for the sharing of 

data. Hardware-supported shared memory is used to  share data between processes, even if running 

on different processors. Many modern SMP systems provide hardware cache coherence to  ensure 

tha t  the multiple copies of data in the caches of different processors (which arise from sharing) are 

kept consistent. 

Physical limits, cost efficiency and desire for scalability have lead to  SMP architectures that are 



formed by inter-connecting clusters of processors. Each cluster typically contains a set of processors 

and one or  more memory modules. The total physical memory of the system is distributed as  

individual modules across the clusters, but each processor in the system is capable of accessing 

any of these memory modules in a transparent way, although i t  may suffer increased latencies 

when accessing memory located on remote clusters. SMPs with this type of physical memory 

organization are called Non-Uniform Memory Access (NUMA) SMPs. Examples of such NUMA 

SMP architectures include Stanford's Dash [21] and Flash [l'i] architectures, University of Toronto's 

Hector [42] and NUMAchine [41] architectures, Sequent's NUMA-Q [32] architecture and SG17s Cray 

Origin2000 [19]. NUMA SMPs that  izplement cache coherency in hardware are called CC-NUMA 

SMPs. In contrast, multiprocessors based on a single bus have Uniform Memory Access times and 

called UMA SMPs. 

It can be difficult to  realize the performance potential of a CGNUMA SMP. The programmer 

must not only develop algorithms that are parallel in nature, but must also be aware of the subtle 

effects of sharing both in terms of correctness and in terms of performance. The coherence protocols 

and distribution of physical memory add communication latencies, and explicit synchronization, 

needed to  ensure correctness of shared data, imposes additional computation and communication 

overheads. Without careful layout in memory, false sharing can occur at cache line granularity. 

False sharing happens when independently accessed data is co-located in the same cache line. 

False sharing reduces the effectiveness of the hardware caches and results in the same high cache 

coherence overhead as true sharing. 

Memory latencies and cache consistency overheads can often be reduced substantially by de- 

signing software that maximizes the locality of data accesses. Replication and partitioning of data 

are primary techniques used t o  improve locality. Both techniques allow processes to  access focalized 

instances of data in the common case. They decrease the need for remote memory accesses and 

lead to  local synchronization points that  are Iess contended. In experimental results we present 

later, we show that these techniques can lead to an improvement in performance of two orders of 

magnitude in some cases. 

Other more course-grain approaches for improving locality in general SMP software include 

automated support for memory page placement, replication and migration [18, 23, 401 and cache 

affinity aware process scheduling [39, 24, 13, 33, 91. 



1.2 SMP Operating Systems 

Poor performance of the operating system can have considerable impact on application performance. 

For example, for parallel workloads studied by Torrellas et al., the operating system accounted for 

as much as 32-47% of the non-idle execution time[36]. Similarly Xia and Torrellas showed tha t  for 

a different set of workloads, 42-54% of time was spent in the operating system [43], while Chapin et 

al. found tha t  24% of total execution time was spent in the operating system[6] for their workload. 

To avoid the operating system from limiting application performance, it must be highly con- 

current. The traditional approach to developing SMP operating systems has been t o  s tar t  with a 

uniprocessor operating system and to then successively tune it for concurrency. This is achieved 

by adding locks t o  protect critical resources. Performance measurements are then used t o  identify 

points of contention. As bottlenecks are identified, additional locks are introduced to  increase con- 

currency, leading to  finer-grained locking. Several commercial SMP operating systems have been 

developed as successive refinements of a uniprocessor code base. Denham et al. provides an excel- 

lent account of one such development effort [8]. However, this approach is ad hoc in nature, leads 

to  complex systems, and provides littIe flexibility in tha t  adding more processors to the system or 

changing access patterns may require significant re-tuning. 

The continual addition of locks can aIso lead to  excessive locking overheads. In such cases, 

i t  is often necessary to  design new algorithms and d a t a  structures that do not depend so heavily 

on synchronization. Examples include: Software Set Associative Cache architecture developed by 

Peacock et d.[28] [29], kernel memory allocation facilities developed by McKenny e t  a1.[25], fair 

fast scalable reader-writer locks developed by Krieger e t  al.[16], performance measurement kernel 

device driver developed by Anderson et al.[l] and the  intra-node data structures used by Stets et 

al.[35]. 

The traditional approach of adding locks and selectively redesigning also does not explicitly lead 

to  increased locality. Chapin et al. studied the memory system performance of a commercial Unix 

system, parallelized to  run efficiently on the 64 processor-large Stanford DASH multiprocessor[6]. 

They found that  the time spent servicing operating system data misses was three times higher than 

time spent executing operating system code. Of the time spent servicing operating system data 

misses, 92% was due to  remote misses. KaeIi e t  al. showed that careful tuning of their operating 

system to  improve locality allowed them to obtain linear speedups on their prototype CGNUMA 

system, running OLTP benchmarks[l5]. 
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Figure 1.1: Microbenchmarks across all tests and systems. The top row (a-c) depicts the  multi- 
threaded tests with n threads in one process. The bottom row (d-f) depicts the multiprogrammed 
tests with n processes, each with one thread. The leftmost set (a,d) depicts the slowdown for in-core 
page fault handling, the middle set (b,e) depicts the slowdown for file s tat ,  and the rightmost set 
depicts the slowdown for thread creation/destruction. The systems on which the tests were run 
are: SGI Origin 2000 running IRIX 6.4, Convex SPP-1600 running SPP-UX 4.2, IBM 7012-G30 
PowerPC 604 running AIX 4.2.0.0, Sun 450 UltraSparc I1 running Solaris 2.5.1. 

Finally, figure 1.1 are results gathered by Gamsa et a1.[12] of simple micro-benchmarks run 

on a number of commercial SMP operating systems. The micro-benchmarks are of three separate 

tests: in-core page faults, file s tat  and thread creation, each with n worker threads performing the 

operation being tested: 

Page Fault Each worker thread accessed a set of in-core unmapped pages in independent (separate 

mmap) memory regions. 

File Stat Each worker thread repeatedly fstated an  independent file. 

Thread Creation Each worker successively created and then joined with a child thread (the child 

does nothing but exit). 

Each test was run in two different ways; multi-threaded and multi-programmed. In the multi- 

threaded case the test was run as described above. In the multi-programmed tests, n instances of 

the test were started with one worker thread per instance. Although the commercial systems do 

reasonably well on the multiprogrammed tests in general, they suffer considerable slow downs on 



the multit hreaded tests. This evidence implies that  the existing techniques used by commercial 

systems are insufficient in their ability to  exploit the concurrency of these simple multithreaded 

micro-benchmark applications. 

As will be shown in chapter 3, Clustered Objects provide a framework for designing and imple- 

menting SMP software which is both highly concurrent and supports replication and partitioning 

of da ta  so as to  maximize locality. 

1.2.1 Hive and Hurricane 

The Stanford Hive operating system[7] and the University of Toronto's Hurricane operating system[37] 

were designed to address the locality issues in large-scale SMP operating systems. Hive focused on 

locality, firstly as a means of providing fault containment and secondly as a means for improving 

scalability. Hurricane focused on the scalabiIity and performance aspects of increased locality. Both 

systems are structured as a set of individual, small-scale SMP operating system instances, which 

cooperatively manage the resources of the entire system. 

In both approaches, the resources of the physical system are partitioned into fixed dusters 

containing a set number of processors and associated main memory. The resources of each cluster 

are managed by a separate instance of a small-scale SMP operating system. Explicit use of shared 

memory is only allowed within a cluster. Any co-ordination/sharing between clusters occurs using 

a more expensive message passing facility. It  was hoped that any given request by an appkation 

could in the common case be serviced on the cluster on which the request was made with little or 

no interaction with other clusters. 

The  fixed clustering approach limits the number of concurrent processes that  can contend on 

any given lock to  the  number of processors in a cluster. Similarly, it limits the number of per- 

processor caches that  need to  be kept coherent. Finally, it zlso ensures tha t  each da ta  structure is 

replicated into the local memory of each clustei. 

One of the key observations made by the Hurricane group was that  fixed cluster sizes were 

too restrictive. Although an attempt was made to  determine the optimal configuration, it was 

realized that each service and its data structures required different degrees of clustering. Some data 

structures (i-e. Page Descriptor Index) are best shared across the entire system, while other da ta  

structures (i.e. Ready Queues) have better performance if they were replicated on a per-processor 

basis. This implied tha t  greater flexibility with respect to the cluster sizes was required than was 

offered by the fixed clustering of Hurricane and Hive. It was concluded from the experiences with 



Hurricane that the locality attributes of da ta  structures need to  be expressed and managed on a 

per-data structure basis, sornet hing that  is addressed with Clustered Objects. 

1.2.2 Commercial OSes 

Many commercial vendors offer either separate SMP operating systems products or SMP versions 

of their uniprocessor operating systems. These include: Cellular Irix and Irix from SGI, AIX from 

IBM, Solaris from SUN, DYNIX/ptx from Sequent, Digital Unix from COMPAQ Digital products 

and HP-UX from HP. All these systems need to face the challenges of increased memory latencies 

with respect t o  CPU cycle times and as such need to  optimize cache performance. Many of the 

vendors list scalability as  an important goal in satisfying customer's need for incremental growth 

and protection of investments. 

1.2.3 The Tornado Approach 

In Tornado, all operating system components were developed from scratch specifically for multi- 

processors. The system components were designed with the primary overriding design principle 

of mapping any locality and independence that might exist in OS requests from applications t o  

locality and independence in the servicing of these requests in the operating systems and system 

servers. It was found that  this principle could be applied by using a small number of relatively 

simple techniques in a systematic fashion. As a result, Tornado has a simpler structure than other 

multiprocessor operating systems, and hence can be more easily maintained and optimized. 

More specifically, the design of Tornado is based on the observation that: (i) operating systems 

are driven by the request of applications on virtual resources, (ii) t o  achieve good performance on 

multiprocessors, requests to  different resources should be handled independently, that  is, without 

accessing any common data  structures and without acquiring any common locks, and (iii) the 

requests should, in the common case, be serviced on the same processor they are issued on. This 

is achieved in Tornado by adopting an object-oriented approach where each virtual and physical 

resource in the system is represented by an independent object so that  accesses on different proces- 

sors t o  different objects do not interfere with each other. Details of the Tornado operating system 

can be found in [12, 111. 

The natural outgrowth of the Hurricane experience was to build an operating system in which 

each da ta  structure could specify its own clustering size. Tornado serves as the operating system 

for the NUMAchine multiprocessor [41]. In Tornado, unlike Hurricane, there is only one operating 



system instance, but clustering is provided for on a per-object basis. Clustered Objects are used 

for this purpose. Tornado is implemented in C++ using an object oriented structure. 

At this point, the majority of the system's objects are naive Clustered Objects using just 

a single representative. The majority of work performed to date has been on developing the 

underlying infrastructure and basic functionality needed for Clustered Objects. Tornado is now 

a t  the point where the Clustered Object model can be more formally developed and the current 

system Clustered Object implementations replaced with more advanced implementations tuned for 

performance. 

1.3 Partitioned Objects 

In a partitioned object model, a single partitioned object with a well-defined external interface can 

be decomposed into multiple, more elementary objects, called representatives. Each representa- 

tive acts on behalf of the entire partitioned object, servicing the requests from a restricted local 

access domain. A local access domain is a subset of the physical resources of the system from 

which the partitioned object can be accessed. For example, in a distributed environment, Iocal 

access domains would be individual machines on  the network and in a more tightly coupled envi- 

ronment, local xcess domains would be individual processors. The representatives of a partitioned 

object can interact and cooperate internally, if necessary, using the communication facilities of the 

environment. Distributed Shared Objects [38, 141 and Fragmented Objects [22, 51 are the only 

partitioned object models other than Clustered Objects, that we are aware of. Both are designed 

for distributed environments. 

Distributed Shared Objects are designed as a framework for developing wide-area distributed 

applications. The state of a Distributed Shared Object can be, a t  the same time, physically 

distributed across multiple machines. The distributed nature of a Distributed Shared Object is 

hidden from clients behind its interface. Communication between the representatives of a Dis- 

tributed Shared Object are implemented on top of standard wide area network protocols. The 

most important design issue addressed by Distributed Shared Objects is scalability in the context 

of the World Wide Web [38]. 

The Fragmented Objects framework dso targets the development of distributed applications. 

However, Fragmented Objects are aimed at  local area networks. Similar to Distributed Shared 

Objects, a Fragmented Object appears to its clients as a single entity defined by its external 



interface. Internally, a Fragmented Object encapsulates a set of cooperating representatives that 

use standard network protocols for communication between representatives. 

Both models are aimed at coarse-grained performance optimizations and at managing the com- 

plexity of networked environments. In contrast, Clustered Objects target SMP's, where the per- 

formance tradeoffs are considerably different than in a distributed environment. 

1.3.1 Clustered Objects 

A Clustered Object is identified by an address space unique identifier. The identifier locates a 

per-processor representative object for the Clustered Object. All accesses to a Clustered Object 

on a processor are directed to a specific representative. To allow for more efficient use of resources, 

the representatives of a Clustered Object can be instantiated on first use. All the representatives 

of a Clustered Object are managed via a special per-Clustered Object management object. The 

management object is responsible for instantiation, deletion and assignment of representatives to 

processors. A Clustered Object can have a single shared representative that is assigned to all 

processors, a representative per-processor or any a configuration in between. Chapter 3 gives a 

detailed description of Clustered Objects- 

1.4 Torando support for Clustered Objects 

An operating system infrastructure is needed to implement Clustered Objects efficiently. In Tornado 

this includes: 

Object Translation Facility 

Kernel Memory Allocation Facility (KMA) 

Protected Procedure Call Facility (PPC) 

1.4.1 Object Translation Facility 

The Object Translation Facility of Tornado is used to locate the processor-specific representative 

object when a Clustered Object is accessed on a given processor. It is implemented with two sets 

of tables per address space, a global table of pointers to per-Clustered Object management objects, 

and per-processor tables of pointers to representatives. The identifier for a Clustered Object is a 

common offset into the tables. If no representative exist for a given processor the global table is 



consulted to locate the Clustered Object's management object that manages alI the representatives 

of the Clustered Object. Details of the Object Translation Facility is provided in Chapter 3. 

1.4.2 KMA 

The Kernel Memory Allocation facility manages the  free pool of global and per-processor memory. 

It is capable of allocating memory from pages that are local to a target processor. By overloading 

the default new operator with a version that calls the localized memory allocation routines of the 

Kernel Memory Allocation facility, Tornado ensures that default object instantiation occurs with 

processor local memory. Hence, representatives and the data they allocate, automatically reside on 

the processors on which they are instantiated. This helps to reduce false sharing across clusters. 

The Protected Procedure Call facility of Tornado supports interprocess communication. Protected 

Procedure calls allow one process within an address space to invoke the methods of an Object in 

another address space. A Protected Procedure Call is implemented as a light-weight protection 

domain crossing, executed on the same processor from which they are called. The Protected 

Procedure Call facility also provides the ability for a process executing on one processor, to invoke 

a procedure to be executed on another processor within the same address space, although at 

higher cost. This form of cross-processor Protected Procedure Calls will be referred to as Remote 

Procedure Calls. Clustered Objects can use Remote Procedure Calls to implement function shipping 

as another form of cooperation between representatives. 



Chapter 2 

Background and Motivation 

2.1 Background 

In this dissertation, we are specifically interested in the attributes of NUMA architectures. As a 

case in point, we present an overview of the NUMAchine hardware architecture in section 2.1.1. 

Section 2.1.2 then discusses the software issues of NUMA SMP architectures. 

2.1.1 NUMAchine Architecture 

NUMAchine is a NUMA shared memory multiprocessor, consisting of interconnected stations, each 

composed of several processors, memory modules, and I/O capabilities1. T h e  physical memory 

is thus distributed across the stations. A flat physical addressing scheme is used, with a specific 

address range assigned to  each station. All processors access all memory locations in the same 

manner. The  time needed by a processor t o  access a given memory location depends upon the 

distance between the processor and the memory. 

NUMAchine uses a ring-based hierarchical interconnection network. At the lowest level of the 

hierarchy, stations contain several processors connected by a bus as  shown in the  bottom portion 

of figure 2.1. A processor module contains a processor with on-chip, level 1 data and instruction 

caches, and an external level 2 secondary cache. The stations are interconnected by bit-parallel 

rings, as shown in the top portion of figure 2.1. For simplicity, the figure shows only two levels of 

rings - local rings connected by a central ring. Our planned hardware prototype machine will have 

4 processors in each station; 4 stations per local ring and 4 local rings connected by a central ring. 

'See Vranesic et al. for a detailed presentation of the NUMAchine architecture [41]. 
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Figure 2.1: NUMAchine Architecture. 



T h e  largest configuration we consider in this s tudy  is a 16-processor system, composed of one local 

ring, with 4 stat ions each containing 4 processors. 

T h e  NUMAchine memory hierarchy consists of four levels. Each processor has a level 1 cache 

on-chip and a n  external secondary cache. The  next level consists of the memory located in the  

same station. Th i s  includes the  memory module(s) for the  physical address range assigned t o  the  

station, and the  station's network cache, which is used as a cache for da ta  whose home memory is 

in a remote station. T h e  final level in the memory hierarchy consists of all memory rnoduIes t ha t  

are  in remote stations. 

NUMAchine includes a hardware-supported cache coherence protocol t h a t  is efficient and inex- 

pensive to  implement [41]. The coherence protocol takes advantage of the ordering property of the  

NUMAchine hierarchy t o  optimize performance. In particular, a single message suffices t o  perform 

multiple invalidations and no acknowledgments a re  rsquired. 

To help generalize the  results of this s tudy our  performance study also includes results from 

simulations t h a t  d o  not take advantage of any of NUMAchine7s unique features such as  the network 

caches or its optimized cache coherence protocol. 

2.1.2 Software Issues 

To fully utilize multi-processor architectures, three issues require special attention: 

Concurrency: Software must exploit concurrency t o  fu1Iy utilize the processing resources of 

an  SMP. Concurrent processes then use shared memory to  cooperate. However, concurrent 

updates to shared d a t a  must be controlled t o  ensure serialization. T h e  addition of synchro- 

nization in the  form of locks and other atomic primitives can be used t o  control concurrency. 

Deciding where t o  add synchronization and what type of synchronization to  use can be non- 

trivial. Too  coarse a strategy can lead t o  highly contended locks and limited concurrency. On 

the  other hand, too fine a strategy can lead t o  excessive overheads due  t o  having to  acquire 

and release many locks. Often, a complete redesign of an algorithm and its da ta  structures 

can significantly reduce the amount of shared d a t a  and hence the need for synchronization. 

Cache Misses: Efficient use of caches is critical to good performance for two reasons. Firstly, 

a low cache miss rate ensures tha t  processors do  not spend large amounts of time stalling 

on memory accesses. Secondly, i t  reduces the  traffic on shared system busses. With per- 

processor caches, processors accessing d a t a  on  the  same cache line, either because the d a t a  



is being shared directly o r  because it is being shared falsely2, causes the line to be replicated 

into multiple caches. Sharing of cache lines causes an increase in consistency overhead and 

cache misses3. Avoiding shared data  and carefully laying out data in memory t o  avoid false 

sharing can reduce cache line sharing and the associated increase in overheads substantially. 

Remote Memory Access: to achieve good performance, the extra costs of remote memory 

accesses must be avoided. Caches can help t o  reduce the cost of remote accesses, but do 

not eliminate the costs completely. The first access to a remote data  element must pay the 

extra costs. Additionally, true and false read/write sharing can force invalidation of locally 

cached copies of remote data. Avoiding of shared data  and carefully placing data  in the 

memory modules closest to the processors that access the data can reduce the number of 

remote memory accesses. 

The term locality management refers to the combination of increasing concurrency, reducing 

cache misses and reducing remote memory accesses. Gamsa e t  al. have outlined a. set of design 

principles for developing software that  manages locality [lo], the main points of which are: 

0 Concurrency 

- Replicate read locks and implement write locks as a union of the read locks. This increases 

concurrency by making the locks finer grained. 

Cache Misses 

- Segregate read-mostly data from frequently modified data to reduce misses due to false sharing. 

- Segregate independently accessed data to eliminate false sharing. 

- Replicate write-mostly data to reduce sharing. 

- Use per-processor data wherever possible to avoid sharing. 

- Segregate contended locks from their associated, frequently modified data. This avoids lock 

contenders interfering with the lock holder. 

- Co-locate un-contended locks with their associated data to better utilize spatial locality and 

reduce the number of cache misses. 

0 Remote Memory Accesses 

2~alse sharing is the accessing of different data dements that happen to reside on the same cache line. 
3To be more precise, invalidation-based cache coherence protocols require that a processor writing to a Line obtain 

ownership of the line if it does not already own it (upgrade miss). This results in the invalidation of all copies of the 
line in other processors' caches. Thus all other processors will suffer a miss (sharing miss) on a subsequent access to 
the line. 



- Ensure read-mostly data is replicated into per-processor memory. 

- Migrate read/write data between per-processor memory if accessed primarily by one processor. 

- Replicate write-mostly data where possible and ensure replicas are in per-processor memory. 

Algorithmic 

- Use Approximate local information rather than exact global information. 

- Avoid Barriers 

Replication, partitioning, migration and data  placement are the key techniques advocated to  

implement these principles. Replication refers to  the creation of local copies of data that can 

be locked and accessed locally. Partitioning is similar to replication but splits da ta  into local 

components rather than making copies. Migration allows data to  be moved t o  a location that 

provides greatest locality. Data placement refers to  the use of padding and custom allocation 

routines to  control where data is placed on cache lines and in the system's memory modules. 

Applying these techniques to existing software can be non-trivial and substantially increase the 

complexity of the software. 

2.2 Motivating Example 

This section will present a simple example to illustrate why locality management at the individual 

da ta  object level is important. The implementation of a simple integer counter on the NUMAchine 

hardware will serve as a running example. The  following subsections describe the scenario in which 

the counter will be used, an abstract data type for the counter, and four different implementations. 

The performance of the four implementations will be presented to  motivate the advantages of 

locality management. 

2.2.1 Scenario 

We will assume that  there is a pair of high frequency events, A and B, which we desire to count. 

When A occurs we would Iike to increment the counter and when B occurs we would like to 

decrement the counter. Both events occur independently on all processors of the system. The 

value of the counter will be read infrequently compared to the frequency of the events: only 1% of 

all accesses t o  the counter will be to  read its value. Moreover, it is unnecessary for the  counter to  

return an exact value on reads, as an approximate value suffices. Such a counter might be used to  

gather performance statistics on the average queue length for a system resource. 



Type : 
Counter 

operations: 
value ( ) : return current integer value of counter 
increment0 : adds 1 to the current value of the counter 
decrement() : subtracts 1 fromthe current value of the counter 

constraints: 
Given: Counter c 
Initially c. value()=O 
(c . increment () ) .value = c -value() + 1 
(c.decrement()).value = c.value() - 1 

Figure 2.2: Definition of the Counter Abstract D a t a  Type 

class integercounter < 
public : 

virtual void value(int &val)=O; 
virtual void increment () =0 ; 
virtual. void decrement (1 =0; 

Figure 2.3: C++ interface definition for the  Counter ADT. 

2.2.2 Abstract Data Type 

Figure 2.2 presents a trivial abstract da t a  type Counter. Increment and decrement operations 

modify o r  write the counter the  value operation reads the  counter. 

Following good C++ practice, an abstract base class, integercounter, is used t o  specify the 

interface for all integer counters and is presented in figure 2.3. This  ensures tha t  all t he  integer 

counter implementations will be interchangeable. 

2.2.3 Implementations 

We consider four implementations of integerCounter: SharedCounter, CounterAmy,  CounterAr- 

myPadded, and CounterLocalized, each refining the  implementation of the  previous. 

Shared Counter 

T h e  simplest implementation for the  counter is t o  use a single shared integer wriable as illustrated 

in figure 2.4. The  increment and decrement methods use atomic update primitives t o  ensure proper 

synchronization. 

The left-most bar of each set of bars of figure 2.5 illustrates the performance of t he  Shared- 

Counter. The performance illustrated is from a simple test in which a total  of 4096 requests are 

made  to the  counter with 1% being invocations of the  value method, and the  remaining 99% being 



class SharedCounter : public integerCorulter ( 
int ,count ; 

public : 
SharedCounter ( ) ( ,count=O; 3 
virtual void value(int h a l )  ( val-count; 1 
virtual void increment() ( FetchAndAdd(&,count ,1) ; > 
virtual void decrement ( ) { FetchAndAdd(&,count , -1) ; 

1; 

Figure 2.4: C++ Shared Counter implementation. 
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Figure 2.5: Performance results for integer Counter implementations. 

evenly divided between invocations of increment and decrement. The graph shows t h e  performance 

on 1, 2, 4, 8, and 16 processors with the y-axis plotting the average number of cycles required per 

request. The total number of requests are divided evenly across the number of processors in the 

test. Chapter 5 provides more details into the experimental setup. 

The cycles per request increases more than linearly as more processors are used. The increases 

are primarily due to the increase in coherence overhead and cache misses as more processors par- 

ticipate. With one processor participating, the counter remaills in the cache, but with multiple 

processors participating, each modification a t  one processor, causes the cached value to be inval- 

idated a t  each other processor, causing subsequent cache misses. This performance behaviour is 

clearly undesirable. It costs two orders of magnitude more per request on 8 and 16 processors than 

on one processor. 



class CounterArray : public integercounter f 
int *,count; 

public : 
CounterArray () € 

-count=new int CNUHPROCI ; 
for (int i=0;i<NUHPROC;i++) 

-count C i l = O  ; 
3 

'CounterArray () C deletea -count; ) 
virtual void vdue(int ( 

val=O ; 
for (int i=0;i<NUnPROC;i++) 
val+=,count Cil ; 

3 
'Counter~rray () deletea ,count; 1 
virtual void increment ( ) { Fetch~ndAdd(&(,count CMWP] ) ,1) ; 3 
virtual void decrement 0 ( Fetch~ndAdd(&(,comt [MWP] ) , -1) ; 3 

1. 

Figure 2.6: C++ Code for CounterArray class. The MYVP macro expands t o  a unique index that  
can be used to identify the processor on which the code is executing. 

Counter Array 

To try and improve on the performance of the SharedCounter implementation, the CounterAmy 

implementation (illustrated in figure 2.6) partitions the counter into an array of counters. Each 

processor is given its own counter within the array. This should allow each processor to  modify its 

own local counter without interfering with other processors. 

When the CounterAmy is instantiated, its constructor allocates an array of counters, one per 

processor in the system. The increment and decrement methods now only modify the counter of the 

processor on which the operations are invoked. The value sums the value of all the local counters 

to  yield the total value. 

The value method of CounterAmy is not atomic with respect to the updates. As a result, 

while the value method sums each per-processor counter, the values may be changing, and thus the 

value returned does not necessarily correspond to the value of the counter at time of invocation. A 

more synchronous approach would be possible by adding a lock to each per-processor counter and 

acquiring and releasing it for modifications. The value method could then globally lock the counter 

by first acquiring all the per-processor loch. However, the scenario presented in 2.2.1 only requires 

an approximate value of the counter, so the CounterAmy implementation with no locks is more 

efficient. 

The second bar in Figure 2.5 illustrates the performance of CounterAmy. Note that the 



class CounterArrayPadded : public integercounter C 
struct counter ( 

int val ; 
char pad CSCACHELINESIZE - sizeof (int)] ; 

) *-count; 
public : 

CounterArrayPadded (1 < 
-count=neu struct counter[NUMPROCI ; 
for (int i=O ; i<NUnPRUC ; i++) 

,count Cil . val=O ; 
1 

'count erArrayPadded() < deleten ,count; 1 
virtual void value(int & v d )  C 

val=O ; 
for (int i = O ;  i<NUHPROC; i*) 

val+=,count Ci] . val ; 
1 

virtual void increment ( 1 i ~etchAnd~dd(%(,count [PIWP] . v a l )  , 1) ; 3 
virtual void decrement (1 ( ~etchhdAdd(%(-count [HYVP] .val) ,-I) ; 1 

3; 

Figure 2.7: C++ code that implements CounterArrayPadded class. 

performance is no better than that of the SharedCounter. Although CounterAmy partitions the 

counter and avoids the data sharing present in the SharedCounter implementation, it does not avoid 

false sharing. Since each integer value is 4 bytes and a secondary cache line of the machine is 128 

bytes, 16 counters easily fit on one cache line. This means that each time a counter is updated, the 

updating processor will still interfere with all other processors, as was the case with ShamdCounter. 

Counter Array Padded 

The addition of padding t o  the per-processor counters can eliminate the false sharing in Counter- 

Array. Figure 2.7 illustrates such an implementation. 

The performance of CounterAmyPadded has a marked improvement over SharedCounter and 

CounterArmy, as illustrated in figure 2.5. The elimination of true and fake sharing means that 

modifications to the counters on each processor can occur concurrently and without cache interfer- 

ence. This results in an improvement of two orders of magnitude on 8 and 16 processors. 

Counter Localized 

Although CounterArmyPadded eliminates all sharing, it does not ensure that the per-processor 

counters are located in the memory modules closest to  the processors accessing them. Figure 2.8 

presents an implementation that ensures that each per-processor counter is located in the memory 



class CounterLocalized : public integercounter { 
struct counter € 

i n t  val ; 
char pad CSCACHELINESIZE - s izeof (int )I ; 

3 **,count; 
public : 

Count erLocalized( ) 
StubXAppl appl(my~ppl->getOH( ) ) ; 
,count=nea struct counter * [NUHPROCI ; 
for ( in t  i=O;i<NUXPROC;i++) < 

if ( i ! = H Y V P )  
C 

appl.setVP(i) ; 
appl. createProcess 1AndWait ( 

(tstatusf unc)doremoteinit , 
(reg-t ) this) ; 

3 else 
init (1 ; 

virtual void init () 
,count ~MYVP] =new struct counter; 
,count [WWP] ->val=O ; 

-CounterLocalized() 
for (int i=O;i<NUHPROC;i++) 

delete ,count [il ; 
3 

virtual void value(int &val) C 
val=o ; 
for (int i=O ; i<NUMPROC ; it+) 

val+=,count Cil ->val; 
3 

virtual void increment() ( ~etchAndAdd(&(,count [WWP] ->val) ,1) ; 1 
virtual void decrement ( ) ( ~etchAnd~dd(&(,count [HYW] - > d l  , -1) ; > 

void doremoteinit( reg-t obj) 
€ 

( (CounterLocalized *) obj )->init (1 ; 
1 

Figure 2.8: C++ code that  implements CounterLocalized class. 
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Figure 2.9: Performance Results for the CounterArrayPadded and CounterLocalized Irnplementa- 
tions. 

module closest to the processor accessing it. 

Tornado's memory allocator ensures that memory allocations made on a processor are satisfied 

by memory pages from the station the processor belongs to. The CounterLocaZized exploits this fea- 

ture to locate each per-processor counter correctly. Rather than maintaining a n  array of counters, 

the CounterLocalized implementation keeps an array of pointers t o  counters. When CounterLocal- 

ized is instantiated, its constructor uses a remote procedure facility to invoke the init method on 

each processor of the system. The init method allocates a per-processor counter and records a 

reference to it in the array of pointers. The increment and decrement methods dereference the 

appropriate pointer within the array t o  yield the right per-processor counter. The value method 

similarly dereferences each pointer within the array to yield the actual counters. 

Figure 2.5 illustrates that the performance of CounterLocaZized is similar to tha t  of Counter- 

AmyPodded.  Figure 2.9 compares the performance of the CounterAnnyPadded and the Counter- 

Localized implementations alone. It shows that  CounterLocalized performs slightly better; there is 

a drop in time spent stalling on remote data. It is not possible to  eliminate all remote memory 

accesses, as 1% of all requests are invocations of the value method, which requires remote mem- 

ory accesses by definition. While the difference in performance between CounterArmyPadded and 

CounterLocalized is not large, one should keep in mind that  the multiprocessor on which the ex- 

periments were performed is relatively small; the difference will be larger on larger systems or on 



systems where the cost of remote memory accesses is larger relative to the cost of local accesses4. 

2.2.4 Summary 

The performance of the different integer counter impIementations show how careful locality man- 

agement can yield a significant performance improvement. As will be shown in the next chapter, 

Clustered Objects are designed to  make it easier to implement locality management on a per-object 

basis. 

'A remote uncached and uncontended memory access is approximately 3.5 times that of a local memory access 



Chapter 3 

Clustered Objects 

3.1 What they are 

Clustered Objects extend traditional objects so that it is possible to provide multiprocessor opti- 

mizations while maintaining a common object-oriented interface and were first described by Parsons 

e t  al. in [27]. While Object Oriented technology provides for clear separation between interface 

and implementation through encapsulation and information hiding - it is easy to replace one 

implementation with another, without affecting the clients of a given object - traditional Object 

Oriented approaches do not provide any standard means for implementing multiprocessor optimiza- 

tions behind a fixed interface. Clustered Objects provide exactly that. 

A Clustered Object appears externally as a regular (C++ like) object to its clients. Internally, 

however, it is constructed out of one or more representative objects, each associated with a specific 

subset of processors. Clustered Objects share three important aspects in common with standard 

objects: 

1. a single, well-defined interface; 

2. a unique reference for identifying each instance; and 

3. an internal structure that is completely hidden from clients. 

The unique features of Clustered objects are: 

1. Internally, the representative objects that implement a Clustered Object cooperate to  repli- 

cate, partition and/or migrate the data with the goal of increasing locality. 



Figure 3.1: Abstract view of traditional object-oriented system. 

2. Client accesses to the Clustered Object are transparently directed to a local point of access, 

namely the internal representative object associated with the processor on which the access 

is being made. 

The internal representatives objects are standard C++ objects and are typically instantiated 

on first use1. Together, the representatives of a Clustered Object implement the functionality of 

the Clustered Object. Representatives are free to share and cooperate by any means available, 

including the use of shared memory and remote procedure calls. It is up to the implementor to 

maximize locality and minimize global interaction whenever possible. 

The next section outlines the details of the Clustered Object model. It is followed by a section 

which details the internal system mechanisms of Tornado that support Clustered Objects. The last 

section describes the class representation that was implemented for the development of Clustered 

Objects. 

3.2 The Clustered Object Model 

This section describes the general Clustered Object model, which was based on the Tornado oper- 

ating system's support for partitioning objects within an address space. 

The Clustered Object model is a partitioned object model for shared memory multiprocessors. 

In a traditional, object-oriented model, a software system is designed as a set of well-defined 

independent objects, Encapsulation, information hiding and separation between interface and 

implementation are key features in this model. Every object exports an "external" interface to the 

' I t  is ahso possible to instantiate all reps when the CO is instantiated. 



Figure 3.2: Abstract view of a Clustered Object system. 

other objects in the system, completely hiding their internal structures. Figure 3.1 illustrates an 

abstract view of a system composed of three objects. Each object has an external interface which 

is represented by the shaded portion. The external interface is composed of individual methods 

that can be invoked by other objects in the system and are represented as the partitions in the 

shaded portion. At the core of each object is its internal data, represented by the unshaded part 

a t  the center of each object. The methods of a n  individual object can access its internal data, but 

methods of other objects cannot. 

The Clustered Object model also adheres to  this object-oriented view, but adds an extra level of 

structure t o  accommodate Locality issues that arise in SMPs. Traditional object-oriented program- 

ming does not guide the internal structuring of objects in any way. In contrast, Clustered Object 

programming, suggests structuring the internal data as a collection of representative objects. Fig- 

ure 3.2 illustrates this view. Each representative is assigned to handle the requests from a subset of 

processors in the system. The model advocates that representatives be implemented to handle all 

invocations of the Clustered Object's externally visible methods. Requests should be handled lo- 

cally by the representative whenever possible, and global interaction between representatives should 

be used only when necessary and done transparently to the clients. This encourages implementing 

the internal structures of Clustered Objects in a distributed manner, stressing locality. 

Figure 3.3 illustrates this internal view. Note that the representatives are illustrated as data 

instances which are associated with a given cluster of processors, and that all representatives are 

accessed via an interface composed of methods as  defined by the Clustered Object. 

A number of potential organizations and policies for the structuring of representatives within 

a CIustered Object exist. The next few paragraphs highlight some of the options available and 



Representative 
I n V O E a t i ~ a t a  Instances I I I 

I I 
I I I I 

I I I I , Processors I I 

Figure 3.3: Internal abstract view of a Clustered Object. Each dash-lined box represents a cluster 
of processors. T h e  filled circles represent processors. Unfilled circles are the  individual represen- 
tatives assigned to each cluster. All representatives share a common interface. Invocations of a 
method of the Clustered Object on a processor indirectly invokes the corresponding method of the 
representative. 



identify which ones we focus on. 

T h e  model makes no restrictims in assigning representatives to  processors; as such, a range 

of potential organizations are possible from one representative per Clustered Object to  one repre- 

sentative per processor. The maximum number of processors assigned to  any one representative 

is called the clustering factor or  degree of clustering (see figure 3.4). While it is possible to  define 

Clustered Objects with representatives being assigned different numbers of processor this work will 

focus only on clustered objects with fixed degrees of clustering. 

T h e  model does not require that  representatives be instances of the same class, although they 

usually are. The only restriction is that  all representatives export the external interface of the 

Clustered Object. We will only consider the case in which all representatives are of the same class. 

A natural aspect of the model is the notion of management policies for the data of the Clustered 

Object. Four obvious policies are: Share, Replicate, Partition and Migrate, as illustrated in figure 

3.5. This work will focus on sharing, replication and partitioning. Many of the locality management 

optimizations involve the application of these policies. For example, replication and partitioning 

can be used to increase concurrency, reduce cache line sharing, localize da ta  and segregate data. 

The  Clustered Object model introduces new aspects for a programmer to  consider. The pro- 

grammer not only has to  implement the functionality of the object as defined by its external 

interface, but must also manage the representatives themselves, including representative creation, 

keeping the representative data consistent, the mapping of representatives to  processors and r e p  

resentative destruction. 

Typically, i t  is not known how many representatives will be needed when a Clustered Object is 

instantiated. It would be wasteful, for example, to instantiate a representative for each processor in 

the system when the application will only run on four processors. For this reason, representatives 

are typically instantiated on demand, when they are first needed. 

In our implementation, each Clustered Object contains a management object that  centralizes 

the management of the representative. Using a separate object allows the use of inheritance to  

simplify the programmer's task, and a class hierarchy of standard management policies could be 

provided. In Tornado's Object Translation System, the management object is called the Miss- 

Handling Object for reasons that  will become clear in the next section. Figures 3.6 and Figure 

3.7 i h s t r a t e  Clustered Objects that  include a Miss-handler. In both figures, the object with the 

lighter-shaded external interface represents the Miss-Handling object - Figure 3.6 shows tha t  the 

Miss-Handling object is internal to the Clustered Object but is separate from the representatives. 
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Figure 3.5: Four different Data Management Policies 

Figure 3.6: Abstract view of a Clustered Object with a MissHandler 
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Figure 3.7: Internal Abstract view with MissHandIer 
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Figure 3.8: A View of a Program in Tornado 

Figure 3.7 illustrates that  the Miss-Handler is global to the representatives and each representative 

is associated with the Miss-Handler . 

3.3 Tornado Support for Clustered Objects 

Within Tornado, there exists a number of facilities that allow for the efficient implementation of 

Clustered Objects. These are: 

1. a global identification mechanism for Clustered Objects. 

2. a facility for associating a representative of a Clustered Object to a processor. 

3. a facility for mapping a global Clustered Object identifier t o  the appropriate local represen- 

tative, given a specific processor. 

4. facilities for allocating resources local to  a specific processor. 

5. a facility for sharing and communicating between representatives. 

In Tornado, the Object Tmnslation System, provides for the first three facilities and are discussed 

in the following subsections. The fourth is provided for by the basic Kernel Memory Nocat ion  

facilities (KMA) of Tornado. The  Protected Procedure Call facilities (PPCs) of Tornado provides 

explicit cross processor communications beyond the basic shared memory provided by the hardware. 



Figure 3.9: Object Translation Table organization, with one representative per processor. 

3.3.1 Object Translation System 

It is useful to first highlight some of Toranado's basic components. The main unit of organization 

is a program. A program has associated with it an a d d r w  space and processes. Processes are the 

basic units of execution. All the processes of a program share the same address space. An address 

space can be broken into arbitrary regions. Each region can have its own memory management 

policy. Figure 3.8 illustrates these components and how they are related. 

The Object Translation System provides support for implementing Clustered Objects composed 

of local representative objects within an address space. Each representative satisfies method invo- 

cations from processes running on a given subset of processors. To understand how this is achieved, 

we will first look at  how a Clustered Object method invocation is transiated to the invocation of a 

specific representative method on one processor. 

The basic technique used, extends the standard C++ model of an object with an extra level of 

indirection. A Clustered Object is identified by a pointer to a pointer of a given object type, and 

thus accesses to the methods of a Clustered Object require two dereferences. The first dereference 

abstractly identifies a specific instance of a Clustered Object; in our implementation a Clustered 

Object Identifier points into a table of pointers, and each pointer in the table identifies a specific 

representative. The table of pointers is called an Object Translation Table. Each processor has its 

own Object Translation Table, so the pointers therein point to processor-specific representatives 

for the Clustered Objects. Method invocation is carried out after dereferencing a pointer in this 

table. Thus, a Clustered Object method invocation effectiveIy invokes the corresponding method 

of the identified representative. 



Object Translation TabIc 

8 

Figure 3.10: Object Translation Table organization, with one representative for every two proces- 
sors. 

To allow Clustered Object invocations on each processor in exactly the same way, the virtual 

memory capabilities of Tornado are exploited. Per-processor aliased virtual memory regions are 

used within the address space to give each processor its own unique copy of the Object Translation 

Table in an aliased memory region that is located a t  the same virtual address for each processor. 

This allows the Object Translation Table to identify the local representatives for all Clustered 

Objects on a given processor, and each processor can dereference the table in exactly the same 

way. Figure 3.9 illustrates the Object Translation Table organization with one representative per 

processor, and figure 3.10 shows an example in which two processors share a representative. 

When a Clustered Object is created, the Object Translation System must be consulted to 

allocate a new Clustered Object Identifier. The Object Translation System controls the assignments 

of Clustered Object Identifiers to ensure that their allocation is unique across all processors. For 

example, if a new Clustered Object is created on one processor, the Clustered Object Identifier 

assigned to it must be considered allocated on all other processors to avoid conflicts. To achieve 

this, each processor is assigned a unique portion of the entire range of Clustered Object Identifiers. 

Clustered Objects created on a given processor are assigned identifiers from the processor's unique 

range, ensuring that the assigned identifier will not conflict with allocations on other processors. 

This approach avoids the need to explicitly coordinate allocations across processors. 

The locality of an access is a key aspect of this design. The approach used to  locate repre- 

sentatives avoids accesses to  non-local memory in the common case, so a Clustered Object can be 

accessed without introducing any sharing. As a result, any locality provided by a Clustered Object 

is not impacted (i.e. negated) by inherent sharing in t h e  Object Translation System. 
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Figure 3.11: 0 bject Translation Table and Mishandling 0 bject Table organization 

As stated earlier, the pointer t o  an entry in the Object Translation Table is called a Clustered 

Object Identifier. A simple macro performs the dereferences necessary to  yield a pointer to the local 

representative from the Clustered Object Identifier. Clients of a Clustered Object must use the 

macro on every access to  the Clustered Object. The potential for dynamic allocation, deallocation, 

and migration of representatives, makes it problematic for clients to store direct references to 

representatives themselves2. 

To avoid excessive resource usage and limit initialization costs, the instantiation of representa- 

tives and their assignment to  Object Translation Table entries is done lazily in Tornado, in that 

they are instantiated on first use. To support this, the organization in figure 3.9 is extended with 

an additional global table called the Misshandling Object Table; see Figure 3.11. Unlike the Object 

Translation Table, the Misshandling Object Table is global and shared by all processors. For every 

Clustered Object there is a corresponding entry in the MisshandIing Object Table, containing a 

pointer to the Miss-Handling Object of the corresponding Clustered Object. When a Clustered 

Object is instantiated, the MissHandler of that Clustered Object (which is a regular C++ object) 

is instantiated, and a pointer to it is installed in the Misshandling Object Table entry for the 

Clustered Object. 

'with proper compiler support, the need for an explicit macro to access a Clustered Object could be avoided. 
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Figure 3.12: Miss-handling process as seen on one processor 



The Object Translation System initializes all Object Translation Table entries to point to a 

default miss handling object, called the default object. The default object acts as a trampoline. It 

directs the first method invocations of a Clustered Object on a processor to the handleMiss method 

of the target Clustered Object's Misshandler by consulting the Misshandling Object Table. The 

handleMiss method then instantiates a new representative if necessary and returning a pointer to 

the representative responsible for servicing Clustered Object requests on that processor back to the 

default object. The default object then replaces the reference to itself in the Object Translation 

Table entry with the pointer returned by the Misshandling Object. The method call to  the Clustered 

Object is then restarted and proceeds as if the representative were previously installed. Figures 3.12 

(a-c) illustrate the miss-handling process. It should be noted, however, that for the miss-handling 

redirection to work, it is necessary that a!l externaIly visible methods of a Clustered Object be 

implemented as C++ virtual methods by the representatives of the Clustered Object. 

The number of Clustered Objects that can exist in an address space is Iimited by the size of 

the Object Translation Tables. The goal of Tornado is to support very large Object Translation 

Tables so that a large number of Clustered Objects may exist. However, Iarge Object Translation 

Tables can consume considerable real memory. To address this problem, Tornado treats the Object 

Translation Tables as caches for the current representatives of a processor. The physical pages that 

store the Object Translation Table entries can be reclaimed when needed. Rather than consuming 

paging system resources, Tornado expects the Clustered Objects' Misshandling objects to maintain 

the primary record of which representatives are assigned to which processor. 

Consider what happens when an access is made to a Clustered Object whose object translation 

entry has  been reclaimed (i-e. the physical memory on which it should be located is not present). 

The absence of a physical page, when the corresponding virtual page is accessed, results in a page 

fault. The page fault handler will subsequently allocate a new physical page. The page is then 

initialized to contain 0 bject Translation Table entries that point to t he  default object. The default 

object will, as before, redirect any call to the MissHandler for the specific Clustered Object. It 

is the MissHandler's responsibility to recognize, if appropriate, that a representative has already 

been assigned for this processor and return a reference to it. This is really just a special case of 

the miss-handling process described earlier. Rather than instantiating a new representative, the 

MissHandier simply returns a pointer to a previously assigned representative. 

As stated earlier, a Clustered Object must obtain a new Clustered Object Identifier for itself 

when it is created. Similarly, the Clustered Object must destroy itself properly. The deassignment 



function indicates tha t  the  Object  Translation Table entry can be reused. The  Object TransIation 

System requires tha t  every Clustered Object implement a destroy method, which is invoked by a 

client when it wants t o  indicate t ha t  the  Clustered Object is no  longer needed. The destroy method 

invokes a de-assignment function of the Object Translation System and does nothing more. The  

de-assignment function sets the  Object Translation Entries for the  target Clustered Object on all 

processors t o  a default error object. All methods of the  error object return an error s ta tus  t o  the 

invoker. This ensures t ha t  any process attempting t o  access a Clustered Object after it has been 

de-assigned will receive an error on all method invocations. 

Representatives, however, are  not deallocated until aU processes tha t  may have a temporary 

reference to the Clustered 0 bject have terminated. When this occurs, the 0 bject Translation 

system calls a predefined method of the  Misshandling Object, called cleanup, which deallocates all 

t he  representatives. 

3.3.2 Requirements on the implementation of Clustered Objects 

Tornado's 0 bject Translation System places a number of requirements on the implementation and 

use of Clustered 0 bjects: 

T h e  external interface of a Clustered Object must be implemented as C++ virtual methods 

by all representatives. 

Every Clustered Object must provide a Mishandling object t ha t  implements: 

- A handleMiss method, tha t  is invoked when a miss occurs on a specific processor. This 

method must return a pointer to  the representative t h a t  is t o  be installed in the  Object 

Translation Table entry on the  target processor. 

- The instantiation of representatives implementing the  clustering strategy chosen for the 

target Clustered Object. 

- A record of which representatives have been assigned t o  which processors. 

- A cleanup method t h a t  is invoked by the Object Translation System t o  relinquish all 

resources allocated t o  the  Clustered 0 bject , including those associated with each repre- 

sentative. 

0 The  Clustered Object when created must first instantiate i ts  Mishandling object and return 

i ts  Clustered Object Identifier t o  the client. A unique Clustered Object Identifier must be 



obtained from the Object Translation system by invoking the Object Translation Table entry 

assignment function. 

The external interface must include a destroy method that is invoked by clients t o  indicate 

that the Clustered Object is no longer required. This method should invoke the appropriate 

de-assignment function of the Object Translation System. 

All accesses t o  a Clustered Object must be made using the given Macro and the Clustered 

Object Identifier. 

Additionally, t o  maximize locality, the classes should minimize sharing of data. 

3.4 Class Representation 

This section describes the class representation tha t  was implemented to  facilitate the development 

of Clustered Objects. The class representation serves as a base for the development of Clustered 

Objects according to the model presented in section 3.2. As stated, the Clustered Object model 

is based on the Object Translation facilities of Tornado described in the previous section, and the 

class representation developed is essentially a high-level interface to Tornado's Object Translation 

System, hiding the 0 bject Translation Systems details. 

The Clustered Object model presented in figures 3.6 and 3.7 identifies three separate compo- 

nents: 

I. An External Interface. 

2 .  Representatives that  implement the External Interface. 

3. A Misshandling Object that manages the  Representatives and is global to all the Represen- 

tatives (but internal to the Clustered 0 bject). 

These components can be implemented with two C++ classes. One class can be used t o  define 

the representatives with the external interface, while the other defines the MisshandIing Object. 

This leads to two class hierarchies from which the two objects of a new Clustered Object can be 

derived from. Figure 3.13 illustrates the hierarchies that  have been implemented. The classes of the 

two hierarchies provide common default implementations of the methods required by the Clustered 

Object System. For example, the CIPrsteredObject hierarchy ensures tha t  a destroy method is part 
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of the external interface for all Clustered Objects. The MissHandling hierarchy defines default 

handleMiss and cleanup methods for all MissHandling objects. 

The next two subsections discuss the ClusteredObject and MissHandler hierarchies in more 

detail. Section 3.4.3 presents the two main representative policies, Shared and Replicated, that 

are currently supported by the hierarchies. Section 3.4.4 gives two example Clustered Object 

implementations of an integer counter. 

3.4.1 ClusteredObject Hierarchy 

The ClusteredObject class serves two main pur2oses: 

1. To provide the common external interface definitions for all Clustered Objects. 

2. To provide the common methods required by all representatives. 

When implementing a new Clustered Object, a programmer is expected to define a new class that 

inherits from ClvsteredObject or one of its subclasses. We will call this class the representative class. 

Instances of the representative class are the representatives for the Clustered Object. All external 

interface methods are defined as public virtual methods of the representative class. Generally, 

clients of the Clustered Object do not directly instantiate instances of the representative class; the 

Misshandling object is expected to create, manage and delete all instances of the representative 

class, In order to standardize Clustered Object instantiation, a programming convention has been 

adopted, whereby the programmer defines a static create method as part of the representative class. 

This method is responsible for ensuring that an instance of the Misshandling object is created and 

that the Clustered Object Identifier is passed back to the client. 

I t  is expected that subclasses of ClusteredObject will serve as definitions for generic Clustered 

Object external interfaces and representatives. For example, one might create a subclass called 

CounterCO that defines a generic external interface for counter type Clustered Objects. Similarly, 

one might create a subclass of ClusteredObjects called BroadCastReps that implements a generic 

form of broadcast communication between representatives. 

The dual nature of the ClusteredObject class hierarchy and the lack of multiple inheritance 

support in Tornado, makes it difficult to provide arbitrarily combinable, generic external interfaces 

and generic reprsentative implementations. For example, multiple inheritance would be required 

to define a Clustered Object that supports both the generic counter interface defined by CounterCO 

and the generic broadcast communications capabilities defined by BroadCastReps. An alternative 



approach might be to  create a new class that explicitly implements both the external interface of 

CounterCO and the behaviour of BroadCastReps. This method however, requires re-implementing 

the code of at  least one of the preexisting classes within the new class. This leads t o  added 

complexity in the class hierarchy and potential for errors. 

3.4.2 MissHandler Hierarchy 

The classes of the MissHandler hierarchy are the base classes from which the Misshandling object 

of a Clustered Object is derived. These classes serve two purposes: 

1. They define and implement the methods that the Object Translation System requires of the 

MissHandler . 

2 .  They define and implement the representative management policies for a Clustered Object. 

When implementing a new Clustered Object, the programmer must ensure that a Misshandling 

object is instantiated to  manage its representatives. The subclasses of the MissHandler class imple- 

ment different representative management policies. Shared and replicated representative policies 

are implemented by the MHShared and MHReplicated classes, respectively (these polices are de- 

scribed in the following subsection). A programmer is free to  add additional policies or  to  provide 

specializations of the current ones through standard inheritance. 

3.4.3 Shared and Replicated Clustered Objects 

The three data management policies that we will focus on are sharing, replication and partitioning. 

To support these policies, the class representation must be able to  support two distributions of 

representatives; shared and replicated. 

In the shared case, only one shared representative is needed. The single representative contains 

the one and only copy of the data for the entire Clustered Object. Any processor tha t  attempts 

to access the Clustered Object, is always directed to this one representative. The miss-handling 

behaviour used to implement a shared representative Clustered Object is simple: after instantiating 

the shared representative, the Misshandling object simply needs to  return a pointer t o  it on every 

translation miss. The MHSbared class implements this behaviour. The MHShared class can be 

directly instantiated t o  produce a MissHandling object for any shared representative Clustered 

Object. This allows an implementor to define a shared representative Clustered Object without 

having to explicitly define a new Misshandling class. 



A Clustered Object tha t  uses MHShared, displays the same behaviour as a standard C++ 

object. Although this seems like a trivial use of the Clustered Object Model, it is important in t ha t  

the  shared d a t a  policy is often required t o  efficiently implement frequently read and written shared 

da ta ,  and  in t ha t  it becomes trivial to  turn any standard C++ class into a shared representative 

Clustered Object. This helps encourage incremental design and optimization of Clustered Object 

based systems. An implementor can first use a naive shared implementation of a da t a  structure and 

then later return and selectiveIy replace such implementations with optimized versions as needed. 

The  replicated and partitioned da t a  policies require multiple representatives. A given instance 

of the representative class can either store a replica or a partition of the Clustered Object's data. 

How the  instance is used is completely dependent on the methods of the  representatives. For 

example, in the case of a partitioned counter, each representative might have an integer value t ha t  

is treated as only a portion of the total  value. On the other hand, in the  case of a replicated 

identifier, each representative's integer value could be treated as a local replica of the identifier's 

value. 

MHReplicate implements the necessary miss-handling behaviour to support multiple represen- 

tatives. I t  also supports arbitrary fixed clustering degrees. Unlike t he ItfHShared class, members of 

the  MHReplicate class cannot be instantiated directly. It is first necessary t o  define a subclass of 

MHReplicate t ha t  meets the needs of the  Clustered Object. In particular, i t  must implement the 

createFirstRep and creadeRep methods, which together define a Clustered Object's representative 

instantiation behaviour. CreateFirstRep defines the instantiation of t h e  first representative, while 

createRep defines the instantiation of all other representatives. 

The  MHBeplicate class automatically records references to all representatives and the processors 

t o  which they have been assigned. It ensures t ha t  createFirstRep or createRep is invoked only once 

per cluster. The  clustering degree can be passed as a n  initialization argument t o  a subclass of 

MHReplicate. The MHReplicate class also ensures correct destruction of the  representatives. The 

Miss Handling class MHReplicate provides the  following convenience functions t ha t  will be referred 

t o  as the  Miss-Handling representative management functions: ZockReps, unlock&eps, nextRep, and 

FindRepOn. These functions allow access t o  the set of representatives maintained by the Miss- 

Handling object. A representative can use these functions to  lock, unlock and iterate over the set 

of representatives that  currently compose the Clustered object3. The  FindRepOn method returns a 

pointer t o  the current representatives associated with a specified processor. I t  returns a null value 

3Locking the set of representatives ensures that no changes, additions or deletions, to the set will occur. 



class integercounter : public ClusteredOb j ect < 
pub1 ic : 

virtual void value (int Bhra.1) =O ; 
virtual void increment ( ) =0 ; 
virtual void decrement () =0 ; 
virtual 'integercounter ( ) €3 

1; 

class SharedCounterCO : public integercounter < 
int -counZ ; 
MHShared ,I&; 
SharedCotmterCO() : ,mh(this) ( -count=O ; 3 
integerConnterRef ref() { return (integerCounterRef),ref; ) 

public: 
static integerCounterRef create() C 

return (integerCowlterRef)((nen ShaxedCounterCO()->ref()) 
1 
virtual void value(int &val) { val=-count; return; 3 
virtual void increment () C FetchAndAdd(%,count , I) ; > 
virtual void decrement [) ( FetchAndAdd(%,count , -1) ; ) 

Figure 3.14: C++ Code that implements the Shared Counter as a Clustered Object 

if no representative is currently assigned. 

3.4.4 Examples 

This subsection presents two Clustered Object implementations of the  integer counter: Shared- 

CounterCO and CounterLocdzedCO, using a shared representative and multiple representatives, 

respectively. 

Shared Representative Example 

Figure 3.14 shows an example of how to implement the shared counter as a Clustered Object. The 

following list summarizes the differences between the Clustered Object version in figure 3.14 to the 

non-Clustered Object version presented in figure 2.4 on page 17: 

The integercounter class is now inherited from the CIvsteredObject class. All classes which 

now implement the integerCounter interface will be Clustered Object representative classes. 

0 The SharedCounterCO has been given a member of MHShared ( ,mh) that serves to define a 

MissHandler for the Clustered Object. 



The constructor of SharedCounterCO has been made private and an initializer for ,rnh has 

been added to the constructor. 

A static create method has been added to  SharedCounterCO that creates a new instance of 

the Clustered Object and returns the Clustered 0 bject Identifier to the instantiator. 

By inheriting from the CZusteredObject class, the ShoredCounterCO class inherits the default 

destroy and cleanup methods to facilitate correct Clustered Object destruction. The CZusteredObject 

class also ensures that the representative has a copy of the Clustered Object Identifier for the 

Clustered Object i t  belongs to. 

The instantiation of the representative wiIl also ensure the instantiation of the Misshandling 

object, as  it is embedded in the representative. 

To avoid client code from trying to directly instantiate instances of the SharedCovnterCO class, 

the constructor for the class has been made private. C++ access rules will then restrict the 

instantiation of the SharedCozlnterCO class to  the member methods of the class itself. Instead, a 

static create method has been added to allow clients to create instances of the Clustered Object. 

This method creates an instance of the SharedCounterCO class. It instantiates both the sole 

representative and the MissHandling object embedded in it. The create method also passes the 

Clustered Object Identifier back to the creator. 

The use of a static create method and the privatization of the default constructor, are pro- 

gramming conventions for Clustered Objects that the Programmer needs to be aware of. Such 

conventions could be avoided if explicit compiler support for Clustered Objects were available. 

Replicated Represent at ive Example 

Figure 3.15 shows the implementation of a clustered counter using a local representative on each 

processor that maintains a local count value on the processor it is assigned to. This example is 

similar to the non-Clustered Object example presented in figure 2.8 on page 20. 

Perhaps the most noticeable feature of the code in figure 3.15 is the addition of a separate 

class definition for the MissHandling Object. The CounterLocalizedCOMH class is a subclass of 

MEReplicate and defines how representatives are to be instantiated. This done by providing im- 

plementations for the  createFirstBep and createRep methods. CreateFirstRep and createRep are 

essentially the same (figure 3.15) since all representatives must be instantiated identically. This 

would not be the  case, for example, if one required the ability to specify the starting value of the 



class CounterLocalizedCO : public integercounter ( 
class CounterLocalizedCOWH : public HHReplicate < 
public : 

virtual ClusteredObject * createFirstRep() ( 
return (ClusteredObject *)new CouaterLocalizedCO; 

3 
virtual ClusteredObj ect * createRep() ( 

return (ClusteredObject *)new CounterLocalizedCO; 
3 

>; 
friend class CounterLocalizedCO::Co~terLocalizedCOHH; 
struct counter € 

int v a l  ; 
char pad CSCACHELINESIZE - sizeof (int )I ; 

3 -count; 
CounterLocalizedCO () ( -count. val=O ; > 

public: 
static integerCounterRef create0 < 

return (integer~ounterRef)((new CounterLocalized~~PM())->ref() 
3 
virtual void value(int 1 P ; v a l )  < 

MHReplicate *mymh=(HHReplicate *)HYHHO; 
CounterLocalizedCO *rep=O ; 
val=O ; 
mymh->lockReps (1 ; 
for (void *curr=mymh-~nextRep(0,(ClusteredObject *&)rep); 

c u r ;  curr=mymh->next~ep(curr,(ClusteredObject *&)rep)) 
val+=rep->,count.val; 

mymh->unlockFteps ( ) ; 
3 
virtual void increment0 < FetchAndAdd(&(,comt.val),l); > 
virtual void decrement() < ~etch~nd~dd(&(,count.val),-1); ) 

b; 

Figure 3.15: C++ Code for the LocalizedCounter Clustered Object 



counter. 

In the case of a Clustered Object with multiple representatives, the MissHandling Object cannot 

be directly embedded into the representatives. The MissHandIing Object must be created a t  the 

time the Clustered Object is created. As a result the static create method of CounterLocalizedCO 

creates only an instance of the CounterLocalizedCOMH. The miss-handling behaviour it implements 

will ensure that representatives are created as needed. 

It is interesting to compare the methods of the Clustered Object CmnterLocalizedCO class 

with the met hods of the non-Clustered 0 b ject CounterLocalized class. in the non-Clustered 0 bject 

variant, each method must explicitly locate the local value within the array of dl local values, 

while the Clustered Object variant does not need to identify Iocal data values, since the data 

members of the representatives are the local values. The non-Clustered Object variant also needed 

to construct all the local counter values a t  initialization time by remotely invoking an initialization 

procedure on every processor. In contrast, the  Clustered 0 bject variant avoids this complexity, and 

representatives are instantiated on first use. The Clustered Object variant dynamically adjusts to  

the number of processors that access it. 

The vcrlue method of the non-Clustered Object version uses the global array of local count values 

to calculate the total value of the counter. The Clustered Object version makes use of the Miss- 

Handler representative management functions to identify the representatives so that the total value 

can be calculated. The MYMWO utility macro provided by the ClusteredObject class is used by 

the representative to locate its MissHandling Object. Since the CIustered Object model allows for 

dynamic instantiation of representatives, it is necessary to Iock and uniock the list of representatives 

prior to and after traversal of the list. Once the lock is obtained, an initial cdl  t o  nextRep returns 

the first representative in the list. Additional calls return the successive representatives. 

3.4.5 Summary 

The class representation we developed, provides a base for implementing Clustered Objects accord- 

ing to the Clustered Object model supported by Tornado's Object Translation system. The two 

main types of objects that compose a Clustered Object are (i) representatives and (ii) Mishandling 

objects. There is one Misshandling object per Clustered Object and the Misshandling object is 

responsible for managing one or more representatives. 

The representatives define and implement the external interface for t he  Clustered Object. The 

representatives of a Clustered Object are built by implementing a subclass of the ClusteredObject 



class. By convention, an implementor of a Clustered Object must provide a static C++ create 

method that creates instances of the Clustered Object. 

We have implemented two separate types of MissHandling objects: MHShared and MHRepli- 

cute. MHShared can be used to create Clustered Objects that only support a shared representative 

policy, where all requests to a Clustered Object are directed to  a single shared representative. The 

MHReplicate class is a base to build more general mishandling objects that support replicated 

representative Clustered Objects. Subclasses of MHReplicate instantiate multiple local representa- 

tives. The local representatives can be implemented to  support replication or partitioning of the 

Clustered Object's data. The MHReplicate class supports fixed clustering degrees by ensuring that 

only one representative is instantiated per cluster of processors. The number of processors in a 

cluster can be specified as an initialization parameter to the MissHandling object. 



Chapter 4 

Examples of Clustered Object 

implement at ions 

Clustered Objects faciIitate the implementation of traditional objects as a collection of represen- 

tatives on an SMP. When implementing a given object there are many options as to where and 

how da ta  can be located, managed and accessed. Some data can be local to  a representative, while 

other da ta  can be global across all representatives. Similarly, some d a t a  can be accessed via shared 

memory, while other data are accessed via remote procedure calls. 

This chapter attempts to illustrate some of these options through example Clustered Object 

implementations. The  first section will present additional Clustered Object implementations of the  

Counter da ta  structure discussed in the previous chapters. The next section will present a more 

complex SMP da ta  structure from the literature and three Clustered Object implementations of it. 

4.1 Counters 

The CounterLocelizedCO Clustered Object in figure 3.15 (page 45) uses the Miss-Handling r e p  

resentative management functions t o  implement its value method. Although the MissKandler 

representative management functions are convenient to  use, they are not optimized for any specific 

Clustered Object type. Hence, an implementor may choose to implement and coordinate shar- 

ing between representatives by other, more efficient means. These can include: providing explicit 

representative organizations, use of representative global data, and use of function shipping. The  

following three subsections present examples tha t  illustrate these methods. 



4.1.1 Explicit Representative Organization 

By using specific knowledge about the object being implemented and its use, the implementor 

can explicitly organize the representatives to  better support global operations. For example, the 

representatives of the counter Clustered Object could be linked together to  form a circular chain. 

This allows the global summation function to  be naturally implemented as a traversal of the chain. 

Although this appears similar to  the use of the Miss-Handling representative management function 

nextRep, it differs in how the chain is implemented. In the case of the Miss Handler representative 

management functions, the chain is implemented as a separate linked list maintained by the Miss 

Handler, with each node containing a pointer to a specific representative. Explicitly organizing the 

representatives into a chain avoids the need to  access the Miss Handler. 

To implement the counter as a chain, each representative must maintain a pointer t o  the next 

representative. It  is necessary to ensure that  modifications (insertions and deletions) t o  the list and 

the global sum operation (which traverses the list) are properly synchronized. Traditionally this is 

achieved with proper locking. In this particular case, however, locking can be avoided by observing 

that: 

1. Deletions from the representative chain do not conflict with summation operations because 

representatives, once created, exist for the remaining life-time of the Clustered Object. 

2. Inserting a representative during a summation does not affect the accuracy of the  sum. As 

already observed, the value method is not atomic with respect to updates and as such its 

result is approximate. If a representative is inserted during a summation, its value may or 

may not be included in the sum. This is no different than increments or decrements tha t  occur 

during the summation operation. Insertions thus need not be made atomic with respect to 

the summation. 

3. To maintain the consistency of the pointers that form the chain, it is possible t o  carefully 

order the sequence in which pointers in the chain are madified and thus prevent dereferencing 

of dangling pointers. 

Figure 4.1 presents a Clustered Object that is implemented as a chain of representatives. Each r e p  

resentative has a pointer to the next representative in the chain. The  createFirstRep and createRep 

methods maintain the chain of representatives by correctly linking in new representatives when 

they are created. Finally, the valve method now simply sums the values from each representative 



class CounterLinkedCO : public integercounter ( 
class CounterLinkedCOWH : public HHReplicate ( 

CounterLinkedCO *-first,*,last; 
public : 

virtual ClusteredObject * createFirstRep() ( 
-f irst=,last=new CouaterLinkedCO ; 
-last->,next=,f irst ; 
return ,last; 

> 
virtual ClusteredObject * createRep() ( 

CounterLinkedCO *txupnen CounterLinkedCO(); 
tmp->,next=,f irst ; -last->,next=tmp; ,last=tmp; 
return ,last; 

> 
>; 
friend class CounterLinkedC0::CounterLinkedCONH; 

int ,count ; 
CounterLinkedCO *,next ; 
char pad [SCACHELINESIZE - sizeof (int) - sizeof (CounterLinkedCO *)I 

~ounterLinkedC0 ( ) ( ,count=O ; ,next=O ; 3 
public : 

static integerCounterRef create ( ) ( 
return (integerCourrterRef)((nea CounterLinkedCOHH())->ref()); 

3 
virtual void value(int hall ( 

val=,count ; 
for (CounterLinkedCO *p=,next; 

p!=this; p=p->,next) 
val+=p->,count ; 

3 
virtual void increment () ( ~etchAndAdd(&,count, 1) ; 3 
virtual void decrement () ( FetchAndAdd(&,count , -1) ; 3 

>; 
p- -- 

Figure 4.1: C++ CounterLinkedCO implementation. 



as it  traverses the chain. 

Many other organizations such as single linked lists, doubly Linked Lists and trees may be useful, 

depending on the type of Clustered Object being implemented. 

4.1.2 Representative Global Shared Data 

By making use of shared memory, an implementor is free to allocate d a t a  that  can be accessed 

globally by all the representatives of a Clustered Object. For example, rather than adding links to  

each representative, as in the previous example, a shared array of representative pointers could be 

used. A pointer to  each representative would be recorded in the array and the summation procedure 

would make use of the array to  visit each representative. The  implementor must correctly manage 

and maintain the global data. She must make sure the global da ta  is allocated and deallocated 

correctly, tha t  each representative is given access to it and that  its consistency is maintained. 

When implementing a counter tha t  makes use of a shared array of representative pointers it 

seems natural t o  have the Miss Handler allocate and deallocate the array when the Clustered Object 

is allocated and deallocated, respectively. It can ensure that  each representative has access t o  the 

array by passing the array pointer t o  each representative when it is constructed. 

The  array must be large enough to  hold a pointer to each representative that  might be instan- 

tiated. This can be achieved by allocating an array with one element per processor, so tha t  it can 

be safely indexed by processor number. Assigning each processor its own element within the  array 

avoids the need for synchronization when recording a representative in the array. Remembering the 

scenario presented in Chapter 2, we expect tha t  the counter will be accessed on every processor, 

thus the array will be completely utilized. 

Similar t o  the example in the previous subsection, the approximate nature of the counter makes 

it unnecessary t o  ensure tha t  updates to the array are atomic with respect t o  traversal of the array 

by the value method. However, it is necessary t o  ensure tha t  the value method does not at tempt 

t o  access a representative that  does not exist. This is easily ensured by having all elements of the 

array initialized to  null and having the valve method check the validity of each element prior t o  

dereferencing it. 

Figure 4.2 presents an implementation using a shared array. The  Miss Handler's createFirstRep 

method creates the shared array and passes to  the first representative a reference to  this array. 

The  createRep method passes the reference to  this array to  alI other representatives as they are 

instantiated. Each representative records a reference to itself in the array when it is instantiated. 



:lass CounterArrayCO : public integercounter i 
class CounterArrayCOHH : public HHReplicate < 

CounterArrayCO **reparsay; 
public : 

virtual ClusteredObject * create~irstRep0 C 
reparray=new CounterArrayCO * CNITMPROCI ; 
for (int i=O ; i<NUMPROC ; i*) reparray C i ]  =0 ; 
return new CounterArrayCO (reparray) ; 

virtual ClusteredObject * createRep0 ( 
return new CounterArrayCO (reparray) ; 

> 
virtual 'CounterArrayCOMH() C 

delete 0 reparray; 
3 

3; 
friend class CounterAnayC0::CounterArrayCOHEl; 

int -count; 
char pad CSCACHELINESIZE - sizeof (int )I ; 
CounterArrayCO **-reps ; 

public: 
static integerCounterRef create (1 1 

return (integerCounterRef)((neu CounterArrayCOm0)->ref()); 
> 
virtual void value(int ~ a l )  < 

val=O ; 
for (iat i=O;i<NLll@RoC;i~) 

i f  (,reps [i] ) val+=,reps Cil ->,count ; 
> 
virtual void increment() < ~etcMnd~dd(&,count, 1) ; 3 
virtual void decrement () ( ~ e t  cMnd~dd(&,co~11t, -1) ; 3 

3; 
- - -- 

Figure 4.2: CounterArrayCO implementation. 



sass Arrayof RepPo inters ; 
typedef ArrayofRepPointers **ArrayofRepPointersRef; 

class ArrayofRepPointers : public ClusteredObject ( 
int  -size ; 
ClusteredObject **-reps; 
PMShared ,mh; 

ArrayofRepPointers(int &size) : ,xuh(this) { 
-size=size; 
,reps=new ClusteredOb ject * Lsizel ; 
for (int i=0 ; i<,s ize ; itt) ,reps [i] =O ; 

ArrayofRepPointersRef ref () C return (~rrayof~epPointersRef) -ref; ) 
public: 

static Arrayof RepPointersRef create(int &size) C 
return (new ArrayofRepPointers(size))->ref(); 

> 
virtual. void getValueAt(int &index, ClusteredObject* &value) ( 

if (index>,size) value=O ; 
else value=,reps [index] ; 

3 
virtual void setValueAt(int kindex, ClusteredObject* &value) ( 

if (index<-s ize) ,reps [index] =value ; 
3 

>; 

Figure 4.3: A Clustered Object that implements a shared Array of representative pointers. 

The Miss Handler also has a destructor that deallocates the array when the Clustered Object 

is destroyed. The value method iterates across the array, accessing the count values of all the 

representatives. 

A natural extension to the above example is to use a Clustered Object to implement the global 

array. Figures 4.4 and 4.3 shows how this might be done. The Miss Handler for the counter 

instantiates an instance of the new array Clustered Object and passes to each representative of the 

counter, as it is instantiated, a reference to the array Clustered Object. 

While, the shared memory of a SMP provides an easy way to  implement representative global 

data within a Clustered Object, using a separate Clustered Object to implement global data can 

provide the implementor with greater flexibility. For instance, the shared array in the above 

example might later be replaced with a partitioned array, without affecting the implementation 

of the CounterAmyCOCO in any way. This allows a n  implementor to customize the counter for 

different access patterns by simply replacing one standard component with another more suited one. 

However, there is a space and time overhead associated with the use of a new CIustered Object. 



:lass CounterArrayCOCO : public integercounter < 
class CouaterArrayCOCOHH : public HHReplicate ( 

ArrayofRepPointersRef ,reparray; 
public : 

virtual ClusteredObj ect * createFirstRep () C 
int procs=NUMPROC; 
-repatrrap=Arrayof RepPointers : : create (procs 1 ; 
return new CounterArrayCOCO (,reparray) ; 

> 
virtual ClusteredOb j ect * createRep() < 

return new CounterArrayCOCO (-reparray) ; 
3 
virtual 'CounterAnayCOCOHH() C 

~FtEF(,reparray) ->destroy () ; 
3 

>; 
friend class CounterArrayCOC0::CounterArrayCOCO~; 

int ,count ; 
char pad [SCACHELINESIZE - sizeof (int)] ; 
ArrayofRepPointersRef ,reps; 

~ounter~rrayCOC0 (Arrayof RepPointersRef reparray) 
€ 

,count=O ; 
-reps-reparray ; 
ClusteredOb j ect *me=this ; 
DREF(-reps)->setValueAt(MWP,me); 

1 
public : 

static integerCounterRef create 0 ( 
return (intagerCounterRef ) ( (new ~ounterArrayCO~~KH() )->ref (1 ) ; 

> 
virtual void valuecint &val) ( 

ClusteredObject *rep; 
val=O ; 
for (int i=O ; i<NUHPROC ; i++) 
C 

~REF(,reps) ->getValueAt (i ,rep) ; 
if (rep) val+=((Counter~rrayCOCO *)rep) ->,count ; 

1 
virtual void increment (1 < Fet chAndAdd(&,count ,1) ; ) 
virtual void decrement0 < FetchAndAdd(&,count,-1); ) 

Figure 4.4: C++ CounterArrayCO implementation. 



Using a separate Clustered Object means using additional Object Translation System resources 

and per-Clustered Object memory overhead1. Accesses to the array will also suffer a slight increase 

in overhead due to  the double de-reference required to access the Clustered Object2. 

4.1.3 Function shipping 

So far, all the examples have used shared memory to access the individud counters of the repre- 

sentative when calculating the global sum. All the data is thus brought t o  the processor on which 

the global sum is calculated. This model of computation is often referred t o  as data shipping. 

Function shipping, instead, moves the computation to the processors on which the data resides. 

For example, the value method of a counter can be implemented using remote procedure calls. The  

global value of the counter could be obtained by remotely invoking a local sum method on each 

processor successively. The local sum method would take a value as an  argument and add to it its 

current local count value, returning the sum. 

Remote procedure calls are not likely to make performance sense for the implementation of a 

Counter, but we describe it here nevertheless for example purposes. In some cases, function shipping 

can be cost effective. For example, function shipping can often eliminate the need for locking, as 

data accesses can be forced t o  occur on  one processor only. Also, function shipping can reduce 

false sharing and coherency traffic in general, as multiple cached copies of da ta  are avoided. On the 

other hand, remote procedure calls can be expensive. They are often implemented using the cross- 

processor interrupt facility, with both a direct overhead for the interrupt handling and indirect 

overhead due to instruction cache disturbance on the remote processor. The implementor must 

decide if function shipping is appropriate based on the expected overheads. If remote operation 

is complex and invoked r&.tively infrequently, then its overhead, when amortized over the total 

number of accesses to the Clustered Object, may prove to be smaller than the overhead of data 

shipping. Of course, a Clustered Object is also free to mix the use of d a t a  and function shipping. 

Figure 4.5 shows a counter implementation using function shipping. A sum method has been 

added to the representatives, which adds the representatives' current count value to  the value passed 

in. The  value method makes use of Tornado's remote procedure call facilities to successively invoke 

the sum method on each processor. The value method need not be concerned with the possibility 

tha t  a representative does not exist on a given processor, as the Clustered Object system will ensure 

'In our implementation, the memory costs for a CIustered Object that uses an MHReplicate Misshandler are: 2 
primary cache lines for the Misshandler aud 1 primary cache line per representative, where each cache line is 32 bytes. 

'On a modem processor, this cost is negligible if the pointers' values are cached. 



:lass CounterRemoteCO : public integercounter ( 
class CounterRemoteCOKH : public WEIReplicate ( 
public: 

virtual ClusteredOb ject * createFirstRep() ( 
return (ClusteredObject *)new CounterRemoteCO; 

3 
virtual ClusteredObject * createRep0 < 

return (ClusteredObject *)new CounterRernoteCO; 
1 

1; 
friend class CounterRemoteCO::CounterRemoteCOHH; 
struct counter C 

int val ; 
char pad CSCACHELINESIZE - sizeof (int ; 

3 -count; 
~ounterRemoteCO() ( ,cou.t.val=O; 1 

virtual Tornstatus sum(int *val) ( *val+=,count.val; return 0; 1 

static integerCounterRef create() C 
return (integerCounterRef)((neu ~ounterRemoteCOm())->ref()); 

> 
virtual void value(int Btval) ( 

int *res=new int; 
*res=-count.va1; 
for (int i=O;i<NUHPROC;i++) 

if (i!=HYVP) C 
RFUNCi(i,(CounterRemoteCO **),ref, 

CounterRemoteCO: : sum,res) ; 

val=*res ; 
delete res; 

> 
virtual void increment ( ) < Fetch~ndAdd(&(,count. val) ,I) ; ) 
virtual void decrement0 { Fetch~ndAdd(&(,count.val) ,-I); 3 

1; 

Figure 4.5: CounterRemoteCO implementation 



creation of a representative to  satisfy the request if one does not aiready exist. This does not impose 

any extra overhead based on the scenario of chapter 2 for which the counter is to  be used, as it is 

expected that  all the processors will eventually have its own representative. In general, however, 

a different implementation may query the Miss Handler representative management functions to  

determine which processors to  direct the remote procedure invocations to. 

4.1.4 Clustering Degree 

The previous subsections focused on how to  implement the global behaviour of a Clustered Object. 

This section will consider the clustering degree of an object. In the previous examples, it was 

assumed that  each processor would have its own representative, and hence the clustering degree 

was assumed to  be 1. This need not be the case, as a representative can be shared between some 

subset of processors. For example, a Counter Clustered Object might be defined to  have a clustering 

degree of 4, in which case clusters of four processors would share a representative. 

To simplify the specification of arbitrary clustering degrees, support has been put into the 

MHReplicated Miss Handling class. When constructing a Miss Handler of type MHReplicate, a 

clustering degree can be specified as an argument. The class will ensure that  createRep will be 

invoked only when a new representative is necessary; if a miss occurs on a processor that  belongs to 

a cluster for which a representative already exists, then the handlemiss function of the MHReplicate 

class will install a pointer to the existing representative into the Object Translation Table rather 

than instantiating a new representative- 

It is up to  the implementor to  ensure that the implementation can support various degrees of 

clustering. For example, CounterLinkedCO would function correctly a t  different clustering degrees 

without modification, whereas the CounterRemoteCO of the previous subsection would not, as it, 

by invoking the sum function on each processor, would sum each representatives' value 4 times (if 

the clustering degree is 4). 

The CounterArrayCO and CounterAmyCOCO clustered objects would also function properly 

without modification for different degrees of clustering. However, in both cases, if the clustering 

degree is 4 then 3/4 of the array would be unused, since the array of representative pointers is 

allocated to  be equal to the number of processors. This could be solved by modifying the allocation 

of the array to  be 1/4 the size and to  ensure that all indexing into the array is modified to use a 

cluster number rather than processor number. 

The clustering degree that  is appropriate for a given instance of a clustered object depends on 



its usage and will typically need t o  be experimentally determined. Thus, a Clustered Object should 

be designed to  function a t  arbitrary clustering degrees, so the implementor may wish to  make the 

clustering degree an instantiation parameter. 

4.2 Software Set-Associative Cache 

This section examines how a more sophisticated object can be implemented as a clustered object. 

The object being considered is a software set-associative cache that has been of use in multiprocessor 

operating systems. Peacock e t  al. developed Software Set-Associative Caches (SSAC) as a general 

software cache architecture to  address contention problems that  occur with the naive software 

caches often being used [28], [%I. 
This section will focus on a straight-forward SSAC architecture, as is described in [29] and 

[28]. The structure of SSAC is similar to  that of a hardware cache. Specifically, the simple SSAC 

implements a write back cache with fixed set-associativity and a least recently used replacement 

policy within a set. Unlike a typical hardware cache, however, the SSAC is designed to be shared 

by multiple processors. 

Figure 4.6 illustrates the basic shared SSAC structure and how it is used to cache objects. Every 

cache object (data item) to  be cached by the SSAC must have a unique Cache Object Identifier 

(COID). The complete range of COIDs form the C O D  space, represented by the rectangular array 

a t  the top of the figure. Processors, represented by circles, wishing to make a request for da ta  

associated with a given COID, must apply a Hash Function (HF) to  the COD. The Hash Function 

maps a COID onto a unique hash queue via a Queue Index (QI). The shared array of hash queues, 

located in the middle of the diagram, forms the main body of the SSAC. Each hash queue is 

impIemented as a fixed size array of hash entries (the size of this array is the associativity of the 

SSAC). For clarity, only one of the hash entry arrays is illustrated on the left-most hash queue. 

Each hash entry is capable of storing one cached object along with some state flags associated with 

the data. A blow-up of one of the hash entries is shown in the bottom center of the figure. 

Each hash queue has a lock tha t  protects all the entries on that  queue. To allow for a least 

recently used eviction policy, a counter within each hash queue and last-used values within each 

hash entry are maintained. On each access to  a hash queue, the hash queue's counter is updated. 

This counter serves as a global access count for the given hash queue. On each access to a hash 

entry, the value of the counter of the hash queue to which the entry belongs is recorded in the  
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Figure 4.6: Simple Shared SSAC 



last-used field of the entry. The entry with the smallest last-used value, is the least recently used 

entry with respect to the other entries in the same queue. 

The two main operations on an SSAC are get and put. The get operation takes a COID as 

input and returns a pointer to a hash entry that contains the corresponding data. Abstractly, it 

accomplishes this by using the C O D  to index into the hash table. If the target cache object is 

found, then a pointer to the appropriate hash entry is returned. If it was not found, then the least 

recently used hash entry on the hash queue is identified. if that entry is dirty, it is written back to 

a backing store, and the target cache object is loaded from the backing store into the least recently 

used hash entry, before a pointer to i t  is returned. 

A hash entry can be marked as busy by setting a flag appropriately. In figure 4.6, the middle 

entry of the array of hash entries pointed to by the left-most hash queue is marked busy. Get  will 

spin until its target entry is no longer busy, allowing synchronized access to the data. For this 

study, we extended the get operation to implement a multiple readers/single writer policy3 and 

thus differentiate between get-for-read and get-for-write. In the case of a get-for-read, the entry 

will not be marked busy. However, in the case of get-for-write, the entry wilt be marked busy. In 

either case, if an  entry is identified as the target of the get and it is marked busy, then both get 

operations will spin on the busy flag of t he  target entry until it is unset. The busy flag is unset as 

a side-effect when the put operation completes. 

The SSAC described above will be referred to as the Simple Array SSAC. The following three 

subsections will explore three different implementations of the Simple Array SSAC Architecture in 

t h e  clustered object framework: 

1. Shared SSAC 

2. Replicated SSAC 

3. Partitioned SSAC 

4.2.1 Shared SSAC 

Perhaps the most straight-forward SSAC realization as a clustered object would be to directly im- 

plement the Simple Array SSAC with one shared representative object and two visible operations: 

get and put. The get-for-read and get-for-write operations can be implemented as one get operation 

3 ~ n  our implementation a writer is h-ee to proceed regardless of readers. It is assumed that a reader makes a copy 
of the data and that they will verify the validity of the data prior to using it. 



tha t  takes a parameter indicating read or write. By extending code fragments presented in [29] 

and applying standard object-oriented techniques, one can arrive a t  a straight-forward set of C++ 

classes tha t  implement the Simple Array SSAC. The Simple Array SSAC is implemented as two 

classes: SSAC is an abstract class that  defines the interface of the SSAC classes, and SSACSim- 

pleSharedArray inherits and implements the SSAC interface. By separating the interface from the 

implementation, it is easier to provide different implementations at  a Later point without needing 

to  modify client code. 

The  SSACSimpleSharedArray class implements the structures of figure 4.6. It contains an array 

of hash queue structures and each hash queue structure contains a lock, a counter and a pointer 

to  an array of cache entries. Each cache entry contains a COD, a flags field and a last-used field. 

Initially, the pointers to the array of cache entries in the hash queue array elements are set to  null. 

The space required for a given array of entries is allocated on first access to  the given hash queue. 

The SSACSimpleSharedArray is parameterized so that  the number of hash queues and the number 

of elements in the hash queues can be set a t  creation time. 

The standard C++ SSACSimpleSharedArmy class, as described so far, can be converted into a 

shared clustered object with little programming effort. The following are the steps required: 

1. Make the SSAC class a sub class of ClusteredObject 

2 .  Add a MHShared member to  the SSACSimpieSharedAmy class and a corresponding initial- 

izer to SSACSimpleSharedArray's constructor initialization list. 

3. Add a public static create method to  the SSACSimpleSharedArray class and hide its current 

constructor by making it private. 

The  clustered object framework requires that all externally visible methods of the clustered object 

are virtual, but in this case since the interface for SSACSimpleSharedAmy has already been defined 

as a set of virtual functions in the abstract base class, the requirement of having all external methods 

virtual is already met. in total, the conversion amounts to the modification of 3 lines of code and 

the addition of 6 new lines of code to define the create method. 

A user of the SSACSimpEeSharedAmy would call the static create method to  instantiate a 

new instance of the SSA CSimpleSharedArnzy Clustered Object. The Clustered Object reference 

returned by the create method is used to  access the instance. This Clustered Object SSAC im- 

plementation will share one representative for all processors and will be referred t o  as the Shared 

SSAC implementation. 
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Figure 4.7: Replicated SSAC 

In the Simple Shared SSAC, all processors compete for access t o  the  same shared hash table. 

The Simple Shared SSAC structure has already been tuned for concurrency, as it was found by 

Peacock e t  al. that  having individual locks on each hash queue leads t o  minimal lock contention 

[29]. However, the Simple Shared SSAC does nothing to improve cache or da ta  locality. 

4.2.2 Replicated SSAC 

This subsection explores an implementation of the SSAC architecture tha t  uses multiple represen- 

tatives to  repIicate the Simple Array SSAC. We refer to this implementation as  the Replicated 

SSAC. Figure 4.7 illustrates such an organization. It replicates the Shared SSAC structure on a 

per-processor basis. Consistency between the replicas is maintained using a directory-based write- 

update cache protocol [34, 201. It was felt tha t  better performance may actually be achieved by 

using an invalidate protocol but that  the  added complexity of the update protocol would better 

explore the expressiveness of the CIustered 0 b ject approach. From the clients' perspective, the 

Replicated SSAC and the Shared SSAC shouId appear to be identical and thus provide the same 

interface and functionality, even if the performance of the two may differ depending on the access 



pattern. 

Although the interface remains the same, the implementation of get and put must be modified 

substantially to maintain coherency between the replicas. Analogous to  hardware caches, it is 

unnecessary to  keep the replicas identical in what they contain. However, if copies of the same 

element exist in two replicas then the copies need to  be kept coherent. A directory can be used to 

keep track of the number and location of the copies. 

A get operation is always directed to a local representative of the SSAC. If the requested object 

is not found in the local replica, then the directory is consulted to  see if the object exists in any of 

the other replicas- If it does, the da ta  is copied to the IocaI repIica and the directory is updated to 

reflect the new copy. If the value does not exist in any of the replicas, then the object must be loaded 

from backing store, as  in the Shared SSAC case, and the directory must be updated accordingly. 

To synchronize data  access, get-for-write must now ensure that the busy bits on all of the copies 

are set, and put must update alI  copies and unset their busy bits. With the  Replicated SSAC, 

get-for-read that hits in its local representative is handled identically to  tha t  of the Shared SSAC. 

However, on any miss or  get-for-write and put pair, additional work must be done to  maintain the 

directory and the consistency of any copies that exist. 

The  Clustered Object classes makes it easy to replicate the Simple Shared Array SSAC into 

multiple representatives using the MHReplicate Miss Handling class. Most effort is needed to 

implement the coherence actions between the representatives. In particular, i t  is necessary to add 

the global directory and to  extend the get and put operations to  make use of the directory. 

In one implementation of the counter (section 4.1.2), a shared array was used to  maintain 

pointers to  the representatives. The array was relatively small and instantiated on the processor 

on which the first representative was created. Additionally, accesses to  the array did not need any 

explicit synchronization, since after being filled, the array was accessed read only. As such, accesses 

to  i t  were efficient, as  each processor would Iocally cache the array in the processor cache. This is not 

as simple in the case of the directory, for the directory can be of considerable size considering that 

i t  needs to  track every cache entry. Access to the directory will require explicit synchronization to 

ensure its correctness, and i t  may often require updates. Allocating the directory on one processor 

wiIl imbalance the per processor memory usage of the Simple Replicated Cache and will also lead 

to  higher contention on the memory module in which it resides. 

By partitioning the directory across the representatives, its memory usage can be equally dis- 

tributed. Each representative would thus contain a portion of the directory. By also dividing the 
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Figure 4.8: Replicated SSAC composed of two representatives. 

number of hash queues by the number of representatives, i t  is possible to  assign each hash queue to 

a particular directory partition. The directory partitions can either be directly embedded into each 

representative, or the entire directory can be implemented as a separate clustered object. Access 

t o  the directory can be implemented either through shared memory or remote procedure invoca- 

tion. The  example implementation of figure 4.8 directly embeds the directory partitions into the 

representatives of the Replicated SSAC and uses shared memory to access and update the portions. 

The  example makes use of the convenience method FindRepOn of the MXReplieate misshandler 

when the representative associated with a specific processor must be located. Alternatively, it 

could have been written to use a global array of representative pointers as in the CounterAmyCO 

example of the previous section. However, it was felt that  additiona1 optimizations should not 

be used so as to  allow a comparison favoring the Shared implementation. Figure 4.8 illustrates a 

Replicated SSAC tha t  is composed of two representatives. Each representative maintains its own 



hash table as well as a portion of the directory. 

It is clear that the performance of the Replicated SSAC will depend on the amount of coherency 

traffic required by the given access pattern. The more copies t h a t  exist of an element and the larger 

the number of write requests, the more time will be spent doing coherency maintenance. Moreover, 

maintaining coherence requires remote memory accesses, further adding to the costs. On the 

other hand, if the access pattern is dominated by get-for-read requests or if the processors access 

independent COIDs, then the costs associated with replication wil  pay off due to increased da ta  

and cache locality. 

4.2.3 Partitioned SSAC 

Another way to organize the SSAC into multiple representatives is to partition the hash table, 

where each representative is given responsibility for some exclusive portion of the COID space and 

corresponding portion of the hash table. Ail COIDs are said to be owned by a specific representative 

and hence the processor it is associated with. The owning representative is responsible for caching 

and maintaining all state associated with its COIDs. Figure 4.9 illustrates such an organization. 

The hash function now maps a COID to a Processor Index and a Queue Index. The Processor 

Index is used to identify the target representative. The Queue Index determines the target hash 

queue within the owning representative. With this organization, only one copy of a cache object 

exists at any one time, so no additional directory or coherency is required. 

Local get and put operations function identically to the Shared SSAC operations. Remote oper- 

ations can use either shared memory or remote procedure invocations. The example implementation 

uses shared memory. 

Similar to the shared meaory counter examples of the previous section, a shared memory 

implementation requires that  one representative be capable of accessing the data of another r e p  

resentative. The use of a shared array of representative pointers or the Miss Handling classes 

convenience function FindRepOn seem most appropriate for locating the remote representative. 

The example implementation uses the FindRepOn operation. The  get and put operations can then 

be seen as simple extensions t o  the Simple Shared Array SSAC operations. Both operations simple 

apply the hash function to obtain both the Processor Index and the Queue Index. The Processor 

Index is used with the FindRepOn method to locate the appropriate representative. The operations 

then proceeds as before with respect to the identified representative's data. Since it is possible tha t  

a representative may not exist for a given processor, it is necessary to  check the validity of the  
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Figure 4.9: Partitioned SSAC 



pointer in the shared array. If i t  is not valid, a request on the remote processor must be made to  

create a representative. 

With a remote procedure call approach, remote procedure calls are used to  direct the call 

appropriately after having determined that  the request should be made to a remote processor. 

From an implementation point of view, the remote procedure call approach is simpler than the 

shared memory approach. 

The performance of the Simple Partitioned Array SSAC will depend on the locality of the 

requests, as  will be seen in Chapter 5. 

4.2.4 Summary 

The SSAC architecture was designed to  have good lock performance. However, it was not optimized 

for da ta  or cache locality. In the above subsections, three different Clustered Object implernen- 

tations of the SSAC architecture were presented. The first CIustered Object implementation is a 

straight-forward shared version. It illustrates that a Clustered 0 bject implementation need not 

impose any additional complication per se. The next two implementations show that  locality opti- 

mizations can be expressed within the Clustered Object framework. Using Clustered Objects, one 

can extend the standard implementation to  use multiple representatives in order to increase data 

and cache locality. Chapter 5 will compare their performance characteristics. 



Chapter 5 

Performance 

Clustered Objects are designed so that locality management optimizations can be implemented in 

a standard and reusable manner. There are two main performance goah for Clustered Objects 

in general. First, a Clustered Object implementation should be able t o  achieve the same perfor- 

mance as the corresponding non-Clustered Object implementation. Secondly, if a useful library 

of Clustered Objects is to be deveIoped, then Clustered Objects must be able to provide different 

performance tradeoffs for different access pattern while maintaining a common interface. 

A definitive evaluation of whether Clustered Objects can achieve these two performance goals 

is beyond the scope of this  dissertation. However, as an initial step, two series of experiments were 

carried out on the Clustered Object implementations presented earlier. The first set of experiments 

compares the performance of the non-Clustered 0 b ject implementations of the counter to the 

corresponding Clustered Object implementations for one specific access pattern. The second set of 

experiments compares the three Clustered Object implementations of the SSAC architecture using 

three different access patterns. Our results indicate that there is promise in Clustered Objects 

being able t o  meet the stated performance goals. 

5.1 General Experimental Setup 

The Tornado kernel provides the software base for all of our experiments. The Tornado software base 

runs on both the NUMAchine hardware platform and the Stanford SimOS software platform [41,31, 

301. The Clustered Object class library was implemented on top of Tornado's Object Translation 

System. Each experiment was implemented as a custom kernel that set up and performed a specific 

test. Kernels were used, rather than user Ievel applications, to reduce costs when run as simulations. 



Each kernel was run on a range of one to  sixteen processors. 

5.11 SimOS and NUMAchine 

The Stanford SimOS simulator, developed by Rosenblum et  al. [31, 301, is a complete, machine 

level, multi-processor simuIator. I t  models the processors, caches, memory system and 1/0 devices 

of a multiprocessor system. The Tornado project uses SimOS as a platform for both development 

and performance analysis. SimOS is able to  simulate the hardware components with sufficient 

detail such that  it can be used t o  execute the same binary versions of the Tornado kernel tha t  

execute on the NUMAchine hardware. SimOS makes it possible t o  attribute execution costs t o  

hardware events without the addition of instrumentation into the  code being tested. 

At the time of this work, the NUMAchine platform was in i ts last stages of development. There 

was opportunity to run a Limited number of the experiments on a sixteen processor system. These 

experiments were used to  provide a degree of validate to some degree the results obtained with the 

SimOS simulator. 

5.1.2 Simulated Machine 

The experiments use a configuration of the SimOS simulator t ha t  models a general cache-coherent 

NUMA multiprocessor. While the  simulated machine architecture is based on the NUMAchine 

platform it does not implement any of NUK4chine's specific optimizations, such as its network 

caches or  its novel coherency protocol [41]. 

The simulated machine is composed of 16 64-bit R4400 MIPS processors[26], organized into 4 

processor stations, connected by a ring network. Each processor has separate 16KB primary da ta  

and instruction caches1 and a 1MB 2-way set associative unified secondary cache. The primary 

cache line size is 32 bytes and the secondary cache line size is 128 bytes. Each station is configured 

with 64MB of memory. The memory on each station is transparently accessible by all processors 

in the  system. Accesses to  off-station memory, however, exhibit longer latencies. The  minimum 

uncached off-station memory access is approximately 3.5 times longer than an on-station memory 

access2. 

'Both Primary caches were configured as one way set associative for the Counter tests and as 2 way set associative 
for the SSAC tests. 

2This value does not take into account any delays due to contention. 



5.2 Experiments 

T h e  goal of our experiments is t o  gain insight into the  performance of the  Clustered Objects 

described in Chapter 4 under synthetic workloads. Synthetic workloads make i t  easier to identify 

and  control the  parameters of the workload and  understand their effect on performance. The 

experiments thus d o  not a t tempt  t o  realistically model o r  characterize "real" workloads. 

Each experiment is composed of a series of runs, where each run: 

1. instantiates the  Clustered Object under examination; 

2, makes an  initial request t o  the Clustered Object on each processor, ensuring initialization of 

the translation entries; 

3. s ta r t s  a worker process on each processor; and 

4. runs all workers concurrently, making a fixed number of requests t o  the Clustered Object on 

each processor. 

We measure the number of cycles spent executing the workers in step 4. The  sum of the cycles is 

considered t o  be the  total cost for the  fixed number of requests t o  the Clustered Object. Dividing 

the  total  cost by the total  number of requests yields a per request cost, expressed in processor 

cycles. Initialization and termination cost are  not included. To ensure tha t  no  worker unfairly 

benefits from warm hardware caches, all hardware caches are  cleared prior to  s tar t ing the workers. 

As a result, the costs for the initial cold cache misses will be included in the results. 

Ideally the number of cycles per request would be the same regardless of the number of processors 

concurrently accessing the  Clustered Object. However, synchronization, sharing and algorithmic 

costs can all grow as the number of processors is increased, causing increases in t h e  cost per request. 

An implementation is considered more scalable if the  costs associated with an increase in processors 

are  smaller. However, i t  should be noted tha t  scalability of an implementation will vary with the 

access pattern of the  workload. 

Using the features of SimOS, the  number of cycles required per request a r e  broken down as 

foUows: 

e Cycles spent stalling on accessing data: 

dStallRemote: Cycles spent waiting for off-station da ta  accesses t o  complete. 

dStaIILoca1: CycIes spent waiting for local da t a  accesses to  complete. 
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Figure 5.1: Non-Clustered Object Counter: performance results obtained with SimOS. 

scNackStall: Cycles spent waiting for Store Conditional t o  be acknowledged. 

excstall: Cycles spent waiting to  gain exclusive access to  a cache line. 

0 Cycles spent stalling on Instruction accesses: 

Stall: Cycles spent waiting for instruction accesses t o  complete. 

Cycles spent executing Instructions: 

Execute: This represents the cost of executing the actual instructions that compose the 

Worker processes. Cycles spent spinning on locks are included in this amount. 

5.2.1 Counters 

This subsection first revisits the  results presented in the Background and Motivation chapter. By 

running the tests of the non-Clustered Object counter implementations on both SimOS and the 

NUMAchine hardware a degree of validation for the results SimOS is obtained. Then using SimOS 

the performance of the Clustered Object implementations of the counter are compared t o  the 

performance of the non-Clustered 0 b ject implementations. 
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Figure 5.2: Non-Clustered Object Counter: performance results obtained with NUMAchine. 

SimOS v s  NUMAchine results 

The  Background and Motivation chapter presented a Counter d a t a  s t ructure  that  was used to  

illustrate locality optimizations. Four non-Clustered Object implementations were presented along 

with their performance under a specific access pattern. The SharedCounter implementation used 

a single shared atomically updated integer value. T h e  CounterAmy used a n  array of atomically 

updated integer values with one value per-processor. The CounterArrayPadded was identical to 

the  CounterArray but padded each integer d u e  t o  a secondary cache line boundary, eliminating 

false sharing. Finally CounterLocalized also used per-processor integer values but  ensured t ha t  each 

processor's value was located in its local memory. Each implementation was tested with a constant 

number of requests; 1% of all requests were t o  obtain the  total value of the counter and all other 

requests were either increments or decrements. The  results obtained with  SimOS are summarized 

in figure 5.1. These same tests were also run on the NUMAchine hardware, the  results of which 

are  presented in figure 5.2. On NUMAchine the timing was obtained by adding instrumentation 

prior t o  the s ta r t  and end of each worker. From the  statistics obtained, a cycles per request cost 

was calculated. 

T h e  figures show that  although the absolute values of the SimOS and NUMAchine runs (figures 

5.1 and 5.2) differ by a factor of two, the  general trends are similar; the CounterPaddedAmy and 

CounterLocaZized implementations outperform the other implementations in both figures in similar 
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Figure 5.3: Comparision of CounterArmyPadded and CounterLocalized. 

proportions. This confirms that  a relative performance difference illustrated by the simulator is 

likely to be experienced on a real hardware platform. The  remainder of this chapter wil! focus on 

the results obtained from SimOS. 

Figure 5.3 shows the  difference between the CounterArm yPadded and CounterLocalized in more 

detail. The CounterLocalized implementation performs slightly better, primarily due t o  slightly 

lower remote da ta  stall time. This behaviour is t o  be expected: placing the local counters in the 

memory of the stations closest t o  the processors accessing it, reduces the number of initial remote 

misses. The remaining remote misses are caused by the 1% of requests for the global counter value. 

The  performance results of the non-Clustered Object CounterLocalized will be used as a reference 

point for comparing t o  the  Clustered 0 b ject versions. 

Clustered Object Alternatives 

The Examples chapter presented a number of Clustered Object implementation of the Counter d a t a  

structure. Figure 5.4 presents the results for each implementation. The  left-most bar in each group 

is the performance of the  non-Clustered Object CounterLocalired implementation, the most efficient 

of the non-Clustered Object implementations. The performance for the CounterRemoteCO is not 

shown in the graph, as Tornado currently does not support the large number of remote procedure 

calls required. Moreover, as stated in chapter 4, we do  not expect CounterRemoteCO t o  perform 

well in any case, as t h e  cost of each remote procedure call will make the global value method 
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Figure 5.4: Non-Clustered Object Counter Performance results obtained with NUMAchine. 

extremely expensive. 

All the Clustered 0 bject versions, with the exception of CounterLocalizedCO, perform as well 

as the non-Clustered Object implementation. The CounterocaZizedCO is implemented using the 

MHBepZicated Miss Handling convenience functions. As stated earlier, these functions are not 

optimized for representative use at this time and hence suffer a considerable performance penalty 

when used by the representatives. 

These results do  not indicate, and are not meant to  show, that  Clustered Object irnplementa- 

tions inherently outperform non-Clustered Object implementations. To the contrary, a developer 

is certainly capable of directly implementing any optimization that  Clustered Object might make. 

The key advantage of using Clustered Objects, however, is that  i t  provides the programmer with 

a standard way of implementing the optimizations in a reusable manner. From the results, it 

is evident that Clustered Objects can achieve performance as good as any non-Clustered Object 

implementation. 

5.2.2 SSACs 

In Chapter 4 we presented three Clustered Object implementations of the SSAC data structure. 

The goal of the experiments in this section is to  show that  the  different Clustered Object imple- 

mentations can provide different performance tradeoffs. This work does not attempt to provide a 



complete characterization of realistic SSAC worldoads. Similarly, it does not at tempt to provide 

a detailed performance analysis of each of the three implementations. Instead, the experiments 

intend to  show that a given accepted multiprocessor da t a  structure, which has already been tuned 

t o  provide low contention, can still benefit from the locality optimizations tha t  are supported by 

Clustered Objects. No one implementation is abIe to  perform we11 under all access patterns. Thus, 

having multiple implementations supporting an identical interface, however, alIows a developer to  

choose the right implementations for the access pattern expected. 

In all of the SSAC experiments, a fixed number of requests are generated as part  of the initial- 

ization of the experiment. Each request is either a read request or a write request for a specific 

Cache Object. The proportion of read to  write requests and the generation of COIDs t o  identify 

the requested Cache Objects are specified as parameters of the experiments: 

Fraction write: fraction of total requests that are write requests. 

Fraction local: fraction of requests for COIDs that  map t o  those assigned to  the local processor. 

(described in more detail below). 

1 

The fraction local parameter controls the degree of locality in the request pattern. By assigning 

each processor a specific sub-range of COIDs, it becomes possible to  control the number of requests 

t o  the sub-range specific to the requesting processor. If fraction local is set t o  0 then all requests 

are randomly chosen from the entire range of COIDs and hence there is no explicit locality in the 

requests. However, if fraction localis set to 1 then all requests on a given processor will be to COIDs 

tha t  are in the subrange assigned to the processor on which the request was made. For example, 

assume the total range of COIDs is 0-127 and the number of processors in the experiment is 4 

and the range is divided into 4 equal non-overfapping sub-ranges; 0-31, 32-63, 6495, and 96-127. 

If fraction local is set to 0 then all request on all processors are chosen randomly over the entire 

range of 0-127. On the other hand if fraction local is set  t o  1 then all the requests on eacb of the 

processors is chosen from the sub-range assigned to the  processor, eg. all requests on processor 0 

would be in the range of 0-31, all requests on processor 1 would be in the range of 32-63 and so on. 

We consider three scenarios with the fraction write and fraction local set as follows: 

Case 1 Fraction write is 0 and fraction local is 0. 

Case 2 Fraction write is 0.05 and fraction local is 1. 

Case 3 Fraction write is 0.05 and fraction local is 0. 
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Figure 5.5: Case 1: Random read requests. 

Additionally, in order to ensure no cold misses occur, the SSACs are pre-initialized with the 

appropriate Cache Objects whose COIDs span the range of COLDS. In cases 1 and 3, the SSACs are 

initialized so that the entire range of COIDs have been requested a t  least once by each processor. 

In case 2, the SSAC is initialized so that each processor has requested its local range of COIDs 

once. In all cases the SSAC is large enough to hold all elements. The results of these experiments 

thus represent what one would expect of the SSAC implementations once a steady state has been 

reached .3 

Figures 5.5, 5.6 and 5.7 show the results for the three separate access patterns, respectively. 

Each graph shows how the three SSAC implementations compare with each other for one of the 

specific cases. 

In figure 5.5, the Replicated SSAC clearly outperforms the other two implementations. Since 

there are no write requests and no misses, the Replicated SSAC need not perform any coherency. 

In this case, the  cost of replication is well worth it. Each Cache Object that was replicated during 

initialization can be reused. The random nature of the requests does not have any negative effects 

for the Replicated SSAC. However, the Shared SSAC suffers from an increase in data misses due to  

the real and false sharing induced by the random accesses. The Partitioned SSAC not only suffers 

from an increase in data misses due to the random access, but also from the additional costs of 

3Removing misses from the access patterns was done for simplicity, as performance tradeoffs can be observed 
without the introduction of misses. 
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identifying and locating remote COIDs. This is reflected in the increase of cycles attributed t o  

'Execute' . 
For Case 2, where all requests are local and five percent are writes, the Shared and Partitioned 

SSACs are able to exploit the high degree of locality in the access pattern withou'; suffering ad- 

ditional costs for the write requests (figure 5.6). The performance of the Shared and Partitioned 

SSACs are similar up to eight processors. At sixteen processors, the Shared SSAC displays an 

increase in cycles spent stalling on da ta  accesses due t o  false sharing. The sizes and alignment of 

the d a t a  elements of the Shared SSAC do not cause false sharing with fewer than 16 processors; 

the false sharing is avoided by the Partitioned SSAC, as the individual portions of the underlying 

array of hash queues are physically separated in the address space. 

The Replicated SSAC performs poorly with respect to  the other two implementations. For each 

write request, considerable coherency overhead is necessary while replication provides little benefit. 

The Replicated SSAC must first locate the representative that contains the directory entry for the 

COID. Since the MHRep2icated::FindRepOn method is used to  locate representatives, off-station 

accesses to  the processor on which the Miss Handler exists will typically be required. Furthermore, 

since the directory is evenly distributed across all the representatives, there is no guarantee that  

the entry for the target C O D  will be local to  the processor, leading to additional remote accesses. 

Finally, since each processor accesses its own Cached Objects, the directory wit1 always indicate 

that  there is only one copy of the Cache Object, namely on the processor (on which the write 

request was issued). 

Clearly, optimizations could have been used to  reduce these costs. For example, the use of an 

exclusive flag along with a write-invalidate protocol would have suffered lower coherency overheads, 

as  each write request would then occur exclusively. Another optimization would be to  eliminate 

the use of MHReplicate::FindRepON, as was done in some of the Counter Clustered Object imple- 

mentations. It is important t o  note that  although optimizations may reduce some of the overheads, 

they cannot eliminate the fact that the Replicated SSAC requires extra overheads to  maintain 

coherency, while the Shared and Partitioned SSACs do not. Additionally, a given optimization 

may only be relevant for some access patterns and as such may be better served by a separate 

Clustered Object implementation. For example, the fact that the writeinvalidate protocol does 

not perform well under case 2 does not mean that  i t  is categorically inappropriate. Stenstrorn 

showed tha t  under some access patterns, write-update protocols have better performance, whereas 

write-invalidate protocols are superior under others [34]. This argues that rather than changing 



the current implementation of the Replicated SSAC to use write-invalidate, it would be better to 

add a new Clustered Object that specifically targets the access pattern in question. 

Finally for case 3, where the requests have little locality and five percent are writes, the Shared 

SSAC provides performance better than the other two implementations, as shown in figure 5.7. 

In this case, the write requests combined with the completely random choice of COIDs forces 

the Replicated SSAC to suffer the greatest possible coherency overheads. Each representative will 

contain a copy of each of the Cache Objects being accessed and as such will require explicit updating 

on every write. The costs for updating the copies are not amortized over any significant number of 

requests and as such result in no benefit. The random nature of the requests causes the Partitioned 

SSAC to perform similarly as in Case 1. 

Summary 

We have shown that each of the three SSAC implementations is able to address a specific access 

pattern more effectively than the other two: the Replicated SSAC performs best for case I; the 

Partitioned SSAC for case 2; and the Shared SSAC for case 3. While the access patterns chosen 

are not necessarily representative of realistic workloads and do not cover the entire space, they do 

represent three distinct workloads that place differing demands on the SSAC implementations. The 

three Clustered Object implementations each maintain the same interface and yet display separate 

performance characteristics. Booch points out that a foundation class library should be "Complete" 

in that: 

The Library must provide a family of cIasses, united by a shared interface but each 

employing a different representation, so that developers can select the ones with the 

time and space semantics most appropriate to their given application.[4] 

In this light, the results provide initial evidence that Clustered Objects may be suitable for the 

development of a "Completey' multiprocessor foundation class library. It should be possible to 

develop implementations that provide various tradeoffs in locality management for differing access 

patterns. 



Chapter 6 

Design Guidelines 

We found tha t  when implementing Clustered Objects, it is generally best to adhere to  the following 

guidelines described in more detail in the following subsections: 

One should ensure that the most common operations are optimized for Iocality. 

A family of Clustered Objects should be implemented when different internal policies better 

support different access patterns. 

Representatives that frequently access each other should directly maintain references t o  the  

representatives they access. 

One should consider implementing separate Clustered Objects for logically separate entities 

tha t  can have different data management policies. 

Internal Padding should be used to ensure a secondary cache line boundary between repre- 

sentatives. 

Optimize Most Common Operations for Locality 

Generally, a specific implementation of a given data structure will not perform well under all 

access patterns. Hence, the expected use of the data structure should be taken into account when 

determining what operations should be optimized for locality. For example, in the case of the  

integer counter, it was stated that  the most frequent operations are modifications of the counters 

value. For this reason, all distributed implementations ensured that the increment and decrement 

methods are performed entirely with local memory accesses, even though the value method then 



became primarily a more expensive remote memory access operation. This is not a problem if the 

valve method is invoked infrequently relative t o  increment and decrement. If, however, the global 

value method were invoked more frequently, then perhaps value should have been optimized for 

locality (for example by treating each representative's local value as a replica of the global value 

and using some form of coherence protocol when modifying the counter's value). Of course, it is 

possible that the workload might invoke the modification and value operations equally, in that case 

a shared or partially shared implementation may prove more appropriate. 

6.2 Provide Multiple Implement at ions 

When developing a Clustered Object, it becomes necessary t o  choose one policy over another when 

implementing a particular internal function. For example, in the case of the Replicated SSAC one 

must choose between write-update, write-invalidate o r  some other protocol when implementing the 

internal coherence of the repIicated values. The protocols yield different performance results for 

different access patterns. In such cases, it is best t o  provide multiple versions of the Clustered 

Object so that a programmer can choose the right implementation for the access pattern expected. 

6.3 Split Complex Clustered Objects into Multiple Clustered Ob- 

jects 

The different components of a complex Clustered Object could each potentially use a separate 

da ta  management policy. For example, the replicated SSAC consists of two key components: 

the hash tables and the directory. It is not obvious that the same data management policy is 

appropriate for both components, under any given access pattern. Although the hash tables are 

replicated in our example, the directory need not be, and could instead be shared or partitioned. 

The use of a separate Clustered Object t o  implement the directory allows for greater flexibility 

and customization. One might implement a simple shared directory or some partitioned directory 

Clustered 0 b jects, all with the same external interface. 

Decomposition of software into distinct interacting objects, with fixed interfaces, is fundamental 

t o  the development of a runtime customizable system like the ones proposed by Krieger et al. [2] 

and Bershad et al. [3]. Using separate Clustered Objects for ezch component naturally leads 

t o  composition at run time. For example, the Replicated SSAC could be implemented to  take a 



Clustered Object Identifier of its directory Clustered Object as an instantiation parameter, allowing 

the instantiator of the Replicated SSAC to specify what type of directory to use by first instantiating 

the appropriate directory Clustered Object and then passing its Clustered 0 bject Identifier to the 

Replicated SSAC. 

6.4 Maintain Int er-representative References 

If representatives need to locate each other frequently, they should directly maintain the necessary 

representative references. For example, the representatives of the CounterLinkedCO and Counter- 

A m y C O  Clustered Objects both directly maintained pointers to the other representatives. Both 

implementations did not need to use the Misshandling representative management functions and 

thus performed better than the CounterLocalizedCO implementation. 

In cases where the operations of a representative need only access a limited number of neigh- 

boring representatives, it is best to explicitly organize them with embedded pointers. This Ieads 

to standard organizations of representatives in Iinked lists, queues, trees, etc. On the other hand, 

if operations of the Clustered Object need to randomly access representatives or iterate over all 

representatives, a shared structure such as an array of pointers would be more appropriate. A 

shared array structure is simple to update and has better spatial locality. However, a shared array 

can lead to  increased cache misses if the array is frequently updated. 

6.5 Pad Representatives 

It was generally found that for high performance, i t  is necessary to pad the representatives to 

secondary cache line boundaries. This ensures that false sharing between the data elements of 

one representative and other data does not occur. However, it can lead to considerable memory 

overhead per Clustered Object. In the worst case, a Clustered Object is implemented with a 

clustering degree of 1, and each representative contains one word of data, in that case 120 bytes 

of overhead would result per-representative, assuming 64-bit words and 128-byte secondary cache 

lines. 



Chapter 7 

A new Clustered Object Model 

This work represents just an ini t id  attempt a t  using the  Clustered Object approach and certainly 

does not constitute any final design. In implementing the Clustered Objects, we learned a number 

of lessons and today we would probably implement Clustered Objects differently. This chapter 

presents a new Clustered Object model motivated by the experience gained. 

7.1 Limitation of initial Model 

At the outset, we thought we would design and then provide a class foundation library tha t  would 

ultimately serve as the means by  which a programmer would implement new Clustered Objects 

and that  it would be based on Tornado's object reference translation and miss handling support. 

The  library would provide pre-built patterns of commonly occurring CIustered Object designs. 

We had hoped that  by building some initial Clustered Objects with the existing infrastructure, 

the necessary insight would be gained to guide the development of the library. During the course 

of our work, it became apparent that a well defined model for Clustered Objects was necessary, 

along with a class representation t o  support it. Basing the model on Tornado's Object Translation 

System led to a simple model in which a Clustered Object is composed of a Misshandling Object 

and a set of representative objects. This model was easily represented with two class hierarchies. 

However, this initial model, although simple, has a number of shortcomings: 

It does not clearly separate Clustered Object management from Misshandling behaviour. The 

Misshandling object is used both as a generic interface t o  the Object Translation System and 

t o  manage and connect t h e  components of the Clustered Object. 



0 It does not support Clustered Object global data in a standard way. The da ta  members 

specified in the representative class are local to  each representative instance. There is no 

natural way to  indicate that some data  members should be global to all representatives of a 

particular Clustered Object, but not allow access from other Clustered Objects. 

I t  does not support initialization parameters for Clustered Objects in a standard way. When a 

Clustered Object is instantiated only the Mishandling object is created, the representatives 

are instantiated on first use by the Mishandling object. Thus a means for communicat- 

ing initialization parameters to the representatives, specified when the Clustered Object is 

instantiated, is required. 

0 It lacks a clear separation of a Clustered Object's distinct interfaces. A Clustered Object has 

two types of interfaces: 

- an external client interface. 

- internal interfaces between the constituent objects. Eg. inter-representative interfaces. 

Without support for multiple separate interfaces it is difficult to  specify the independent 

roles of an object. One cannot easily specify a new Clustered Object that both supports a 

predefined external interface A and a predefined inter-representative interface B. 

7.2 New Model 

Figure 7.1 illustrates a new model tha t  attempts to address these shortcomings- It was developed 

based on the experiences we have gained so far, but it has not yet been implemented. In Figure 

7.1, four different types of arrows are used: 

Instantiates: the object a t  the tail of the arrow instantiates the object at the head of the arrow. 

Invokes Methods of: the object at the tail of the arrow invokes specific methods of the object a t  

the head of the arrow, An object a t  the head must implement a specific interface for each 

'Invokes Methods of7 arrow tha t  points t o  it. 

Contains a pointer to: the object a t  the tail of the arrow contains a pointer to the object a t  the 

head of the arrow. 
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Figure 7.1: A New Model of Clustered Objects: The Factory Model 

rztains as  a member: the object a t  the tail of the arrow contains the object a t  the head the 

arrow, as a data member. Objects contained within another object are created when the 

containing object is instantiated. 

7.2.1 Factory Object 

In the new model, every Clustered Object contains a Factory object. The Factory object acts 

as the centralized manager of the Clustered Object. Its primary responsibilities are to create all 

constituent objects, initialize them as necessary, and provide centralized methods and data. In 

the new model, a Clustered Object is created by instantiating the appropriate Factory object. As 

can be seen by the 'Contains as a member' arrows in figure 7.1, the Factory object contains both 

a Mishandling object and a Global data object. Both of these will be discussed in the following 

subsections. Since they are contained within the Factory object as members, they will be created 

aIong with the Factory object. As illustrated, the Factory object also instantiates all representative 

objects. 

The Factory Object implements a specific interface that can be invoked by the Misshandling 

object when representatives need to be created or destroyed. The Factory object also implements 

interfaces invoked by the representative objects. These methods can be invoked by any represen- 



tative of the Clustered Object and are largely left to the implementor to define as required. An 

example of two standard methods that might compose this interface, are lock-rep-creation and un- 

lockrep-creation, which suspend the changes to the set of representative~ when accessing the entire 

set. 

It is expected that the class representation for the new model will provide a separate hierarchy 

of Factory objects. Each class will provide a base definition for a Factory object. When writing a 

new Clustered Object, an implementor wilt create a new Factory Object by inheriting from one of 

the classes in the Factory hierarchy. 

7.2.2 Misshandling Object 

The Misshandling object in the new model acts solely as an interface between a Clustered Object 

and the Object Translation System. It implements the necessary methods required by the Object 

Translation System, namely handlemiss and cleanup. It keeps track of which representatives have 

been assigned to which processors and enforces the clustering degree of the Clustered Object. 

The Mishandling object has a pointer to the Factory object, as illustrated in figure 7.1. The 

pointer is required so that the Mishandling object can make requests to the Factory object in order 

to create new representatives. The Mishandling object is unaware of what class the representatives 

belong to  or how they should be initialized. It expects the Factory object to implement any 

Clustered Object specific knowledge, such as which class to instantiate representatives from, how 

to initialize them and potentially connect them. 

It  is expected that one Misshandling class will be sufficient to efficiently support all Clustered 

Objects and it would be provided as part of the basic infrastructure. All Factory object classes 

would contain a member of this Mishandling class by definition. 

7.2.3 Global Data Object 

In the initial model there was no standard notion of data that is accessible by all representatives 

within a Clustered Object. The data  members of a representative are local to the representative, 

and modifications to one representative's members do not affect the members in other representa- 

tives. Of course, explicit coherency could be implemented between the representatives to  ensure 

consistency between a subset of their data, but this adds to complexity and overhead and is only 

warranted in some read-after-modify circumstances. It seems more appropriate to use shared rnem- 

ory to implement simple data that should be globally accessible by all representatives. 
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Figure 1.2: 

In the new model, each Clustered Object has a Global Data object embedded within the Factory 

object. The Global Data  object contains the global da ta  members of the Clustered Object. As 

illustrated, each representative has a pointer to  the factory object and thus can gain access to 

the Global Data object. Clearly, any of the Factory objects members could be treated as global 

data. However, providing an explicit object for all global data allows the global da ta  members to 

be identified separately from the other data members of the Factory object. For example, C++ 

access rules dictate tha t  data members of a class are not accessible from outside the class, unless 

another class is granted special access through the  friend construct. To provide the representatives 

of a Clustered Object access to  some of the d a t a  members of the Factory Object, the class of 

the representatives would have to be explicitly granted friend access, but this would give the 

representatives access t o  all the data members of the Factory object and not just the  ones intended. 

Ideally, there would be compiler support for a special access type called GLOBAL that could 

be used to identify da ta  members as being accessible to  the representatives of a Clustered Object. 

Figure 7.2 gives an example of how one might define a Clustered Object foo, which has a Global 

da ta  member zepcount, assuming a compiler supported the GLOBAL access specifier. If the  

representative class for the Clustered Object foo is foorepclass, then the figure also illustrates a 

method of t h e  representative class called bar t ha t  makes use of the global da ta  member -repcount. 

Since compiler support for GLOBAL does not exist, a separate global da ta  object, along with a 

set of macros, can be used to  provide similar functionality. Figure 7.3 illustrates the same example 
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class foo : public Factory 
i 

public : 
class Globals < 

friend class f oorepclass ; 
int -repcounC; 

> globals; 
private : 

void 
foorepclass : : bar0 
i 

int a=-f actory->globas . -repcount ; 

- - - - -- 

Figure 7.4: 



using a set of macros. Figure 7.4 shows how the macros could be expanded to  implement the 

global data  via a separate Global da ta  class. Data members declared between the macros, called 

GLOBALSTART and GLOBAL-END are considered t o  be global members. The  macros expand 

t o  define a Globals class within the scope of the Factory object. This initial class explicitly declares 

the representative class, foorepclass, as a friend, thus granting the representatives access to  the 

Global Data object's members. The macros also ensure that the Clustered Object contains an 

instance of the Globals class called globals. Finally, the implementation of the bar representative 

function now uses a macro called GLOBAL to  access the -repcount global member. The GLOBAL 

macro expands to  ensure tha t  the access to the global da t a  member happens via the representative's 

pointer to its Clustered Object's Factory object. 

7.2-4 Initialization Parameters 

In our current class representation, there is no standard support for client specified initialization. 

When client code instantiates a Clustered 0 bject , it often needs to  specify a set of initial parameters 

tha t  need to be recorded and passed (or made accessible) to  the representatives. For example, a 

Clustered Object that implements some sort of array, may require the user t o  specify the size of 

the array at creation time. This value needs to  be available to the representatives so that they can 

allocate their local resources appropriately. Similarly, the same Clustered 0 bject may allow the 

instantiator t o  specify a parameter that indicates whether the Clustered Object is to implement 

a partitioned or replicated array. Again, the representatives need to be aware of the value of the 

initialization parameter t o  behave appropriately. 

In the new model, initialization parameters are treated as global da t a  members. If the repre- 

sentatives require their own copy of the initialization parameters, they are free t o  make a local copy 

in their constructor. This is also true for any of the other global data  members. 

7.2.5 Representative Objects 

In both the initial and the new model, the representatives serve as local implementations of the 

Clustered Object's external interface. In the initial model there was no explicit separation of 

internal and external interfaces. 

The  new model explicitly identifies the different interfaces implemented by the components of 

the Clustered Object. This is particularly relevant t o  the representatives as they implement the 

majority of the interfaces. Figure 7.1 shows three 'Invokes methods of' arrows pointing to  each 



representative. The most obvious interface is the external client interface. These are the methods 

that the clients see as the uniform interface to the Clustered Object. Another interface is the 

internal inter-representative interface. These are the methods that  representatives may invoke of 

each other. The final interface is a representative management interface for use by the Factory 

object. For example, the Factory Object invokes a method on each representative to  set the 

representative's Factory 0 bject pointer. 

The main advantage of separating the interfaces is that it naturally leads to separate hierarchies 

for each interface. In the new model, one expects three different hierarchies of interfaces. One 

hierarchy would define all the external interfaces a Clustered Object might support. This hierarchy 

will grow with every new Clustered 0 b ject external interface developed. Examples of interfaces 

that might be part of the external interface hierarchy include: Counter, SSAC, Constant, Army, 

and HashTable. In this way, one can create new Clustered Objects that  can be used by clients 

expecting a specific external interface.' 

A second hierarchy would define all t he  inter-representative interfaces. Examples of such in- 

terfaces are: Invalidate, Update, and Broadcast. These interfaces define standard methods tha t  a 

representative needs to implement in order to interact in some predetermined way. 

The final interface hierarchy would define the methods that a representative impIements in order 

t o  function with a Factory Object. It is expected that this hierarchy will be small, and perhaps be 

composed of just one standard interface. 

By having separate hierarchies, an implementor can define new Clustered Objects by compos- 

ing classes from the hierarchies. For example, one might want to  implement a Clustered Object 

that  supports the Counter external interface and has representatives tha t  implement an invalidate 

protocol. This could be achieved by defining a Clustered Object whose representative class inherits 

both the Counter external interface and the  Invalidate inter-representative interface. Of course, to  

function correctly with the Clustered Object's Factory object, the representative class would also 

have to  implement a representative management interface. 

The above example requires the representative class to inherit from three different interfaces. 

This requires language and system support for multiple inheritance. C++ does support multiple 

inheritance, but Tornado's dynamic type checking disallows it. In the original model, interfaces 

were not separated so the restriction to  single inheritance was not a problem. However, the multiple 

interface hierarchies suggested by the new model does require multiple inheritance, which in turn 

'it is of course possible that a new Clustered Object may implement more than one external interface. 



would require a redesign of Tornado's dynamic type checking system. 

7.3 Summary 

We presented a new Clustered Object model, based on the experience of using the initial model 

and its class representation. The new model provides a more structured internal architecture of a 

Clustered Object. It separates out the management responsibilities into a separate Factory object. 

It explicitly identifies a Global Data object to explicitly manage the data that is global with respect 

to the representatives but local to the Clustered Object instance. Findly, the new model suggests 

the use of multiple inheritance to provide for more flexibility and reuse in the development of 

Clustered Objects. 

Further work must be done to develop a class representation for the new model and to build 

a set of Clustered Objects with it. Options for the addition of multiple inheritance support to 

Tornado also need to be explored. 



Chapter 8 

Summary 

The primary goal of Clustered Objects is to support performance optimizations typically needed 

in an SMP environment and a t  the same time support object-oriented structuring: 

Developing high performance software for CGNUMA SMPs requires paying special attention 

to concurrency, the caching behaviour and the sharing and locality in memory accesses. Data 

structures and associated algorithms can be designed to replicate, partition and selectively 

place data in order to reduce sharing and maximize locality. 

Object-oriented programming uses information hiding to isolate individual data structures 

along with the operations on them. Externally visible operations form a strict interface for 

clients of a data structure and hide the internal implementation. 

Clustered Objects corn bine the ability to replicate and partition data with information hiding. 

Each Clustered Object provides a well-defined external interface. Internally, however, the Clustered 

Object is made up of multiple representative objects that are instantiated on a per-processor basis. 

Each representative object supports the external interface of its Clustered Object and is associated 

with a specific subset of processors. The data members for a given representative object are 

allocated from memory local t o  the processor on which it was instantiated. All invocations of the 

external interface on a given processor are directed to a local representative object. The multiple 

representative objects of a Clustered Object provide a means for replicating and partitioning the 

data of the Clustered Object. Some of the advantages of Clustered Objects are: 

Having an object-oriented approach to information hiding means that a system composed of 

Clustered Objects can be customized and refined incrementally- A given Clustered Object 



in the system can be easily replaced with a new Clustered Object that supports the same 

external interface but provides a new internal implementation. 

The  ability t o  replicate, partition and locally place data allows Clustered Objects to be 

optimized for SMP environments. 

0 The ability t o  instantiate local representative objects on first use limits the resources consumed 

by a Clustered Object. Representatives are only created on the processors that  access the 

Clustered Object, rather than on all processors of the system. 

We have proposed two models for the  structure of a Clustered Object. The first model was 

developed based on the Object Translation System of the Tornado operating system. Two class 

hierarchies were developed to support this model. Each Clustered Object is composed of a single 

management object called a blisshandler and a set of representative objects. The  model was 

used t o  implement the exampIe Clustered Objects studied. A second model was developed based 

on the experience gained from implementing the example Clustered Objects. The second model 

provides a standard way of implementing internal Clustered Object global da ta  and initialization 

parameters. It separates out representative management from a Clustered Object's interaction 

with the underIying Clustered Object system. Finally the second model defines explicit interfaces 

between the components of a Clustered Object. The implementation and evaluation of the second 

model is left as future work. 

In order to  gain insights into the performance of Clustered Objects, two sets of example Cius- 

tered Objects were implemented and evaluated. One set consisted of multiple implementations of a 

simple integer counter. The performance of a simple shared implementation under a specific access 

pattern was used as a reference point. A performance improvement of two orders of magnitude 

was realized with localized non-Clustered Object implementations over the  naive shared imple- 

mentation. It  was found that the Clustered Object implementations were able t o  achieve similar 

performance t o  optimized non-Clustered Object SMP implementations. 

The second set of experiments entailed three different Clustered Object implementations of a 

more complex SMP data structure. These three implementations were compared using three differ- 

ent access patterns. Each implementation performed better than the other two implementations for 

one of the access patterns. In each case, a n  order of magnitude separated the best performer from 

the worst. This implies that  the flexibility t o  interchange Clustered Objects will be useful as no 

one implementation can perform well under all access patterns. The development of a foundation 



library of Clustered Objects that provides a programmer with a range of performance options is 

left for future work. 

This work has established that Clustered Objects promises a way of developing software that 

is optimized for SMP systems and yet has the software engineering advantages of object-oriented 

techniques. Future work must be done to further refine the Clustered Object model, explore more 

dynamic policies and develop a foundation library. 

8.1 Future Work 

More experience using Clustered Objects to implement performance critical software is required to 

more fully develop and evaluate Clustered Objects. A systematic re-implementation of Tornado's 

data structures as Clustered Objects would permit a more compiete evaluation. The experience 

gained would be invaluable in developing a more comprehensive Clustered Object model and the 

building of a foundation Iibrary. A complete system implemented with Clustered Objects would 

also provide a test bed for a thorough performance evaluation. 

Other aspects that require attention are: 

a support for dynamic migration of representatives. 

a support for dynamic clustering. A Clustered Object could be given the ability to change its 

clustering degree in response to the access pattern. 

support for more variability in the representatives of a Clustered Object. For instance, dif- 

ferent representative classes could be used within one Clustered Object. 

It would also be interesting to carefully compare and evaluate the behaviour of Clustered 0 bjects 

with other partitioned object models. Unfortunately at this point, no performance details for either 

the Fragmented Object model [22,5] or the Distributed Object [38, 141 model have been published. 
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