
System Software Utilization of Hardware PerformaneMonitoring Information
by

Reza Azimi

A thesis submitted in onformity with the requirementsfor the degree of Dotor of PhilosophyGraduate Department of Eletrial and Computer EngineeringUniversity of Toronto
Copyright © 2007 by Reza Azimi

AbstratSystem Software Utilization of Hardware Performane Monitoring InformationReza AzimiDotor of PhilosophyGraduate Department of Eletrial and Computer EngineeringUniversity of Toronto2007Over the past several deades, miroproessors have evolved to assist system softwarein implementing new funtionality or in improving the performane of programs. Therelative abundane of available silion may further motivate introduing new hardwarefeatures other than those that are diretly required for exeuting ode. The main fousof this dissertation is on how new hardware support an ollet aurate performanedata so as to enable system software in making more informed deisions in improving theperformane of programs.First, we explore the problem of using Hardware Performane Counters (HPCs) toidentify CPU bottleneks aurately and e�iently. We address the problem of havinga limited number of available HPCs by developing �ne-grained HPC multiplexing thatprovides a large set of logial HPCs. We develop a simple and useful performane model,alled stall breakdown to identify stressed proessor omponents by fousing on yleswhere the instrution ompletion stops. We generate the stall breakdown model by usingHPC multiplexing online with negligible overhead.Seondly, we explore di�erent methods of �ne-grained data sampling at the hardwarelevel. Using the ontinuous data sampling features of the IBM POWER5 proessor, weidentify a new tehnique to produe data samples based on their soure, and in a asestudy, we demonstrate how to use soure-based data samples to aurately haraterizedata sharing patterns among onurrent threads to e�etively support sharing-awareshedulers. ii

Finally, we propose novel hardware to trak memory aesses at the granularity ofvirtual pages. Our proposed hardware is simple, e�ient, and generi. We show how theproposed page aess traking hardware (PATH) an be used to improve performane inthree di�erent areas of memory management. In all three ases, we show that signi�antperformane improvement an be ahieved with negligible software overhead.

iii

Dediation
for Afsanehwho has been with me all along this path.

iv

AknowledgementsI would like to express my deep gratitude to those whose help and support have beeninstrumental in making the ompletion of this dissertation possible.First and foremost, I am indeed grateful to my supervisor, Professor Mihael Stumm,who has always provided me with his onstant are and support, his guidane whihproved to be ruial in many irumstanes, and his muh needed ritial view of my work.Also, I greatly appreiate the help from the members of my PhD ommittee, ProfessorAshvin Goel, Professor David Lie, and Professor Andreas Moshovos, whose tehnialfeedbaks have played an important role in improving the quality of this dissertation. Ishould also thank the external examiner of this thesis, Professor Dimitris Nikolopouloswho spent muh time in reading my thesis in some rough personal irumstanes andprovided a thoughtful and thorough evaluation of this dissertation. Last but not least, Ineed to thank Professor Angela Demke Brown whose ative and dediated ollaborationhas been instrumental in the development of the hapter 4 of this dissertation.In the past �ve years, I have enjoyed both the ompany and the e�etive assistane ofmy olleagues at the department of Eletrial and Computer Engineering at the Univer-sity of Toronto. That inludes Jonathan Appavoo who was my mentor in the early years,David Tam who has always been sel�essly ready to help others, Livio Soares who hasprovided substantial help in developing and improving hapter 4, Adrian Tam, RaymondFingas, Thomas Walsh, Alexandre Depoutovith, and Adam Czajkowski. I should alsothank members of the IBM researh, Robert Wisniewski, Orran Krieger, and Dilma daSilva both for their intelletual assistane and for the important logistis they provided.Throughout my PhD years, I depended so muh on my wonderful wife, Afsaneh Fazlywho, for me, has onstantly been a soure of unonditional support, energy, and positiveinspiration. Without her, I ertainly would not have been able to �nish this dissertation.I am also grateful to my best friends and mentors, Ramtin Khosravi, Kiarash Bazargan,and Reza Ziaei who were inspiring �gures for me to pursue my PhD.Finally, I am grateful to the �nanial support I have reeived from the departmentof Eletrial and Computer Engineering, University of Toronto, and the Government ofOntario. v

Contents
1 Introdution 11.1 CPU Bottlenek Analysis . 31.2 Analyzing Data Aess Patterns through Hardware Data Sampling 41.3 Fine-grained Page Aess Traking . 51.4 Summary of Contributions . 51.5 Organization of the Dissertation . 62 CPU Bottlenek Analysis 72.1 Introdution . 72.1.1 Challenges of Using HPC . 7Small Number of HPCs . 8Complex Interfae . 8High Overhead . 92.1.2 Our Approah . 92.1.3 Organization of the Chapter . 102.2 Current HPC Capabilities . 102.2.1 Event Types . 102.2.2 Counting Methods . 11Instrumentation . 11Sampling . 122.2.3 Counting Modes . 132.3 Our Performane Monitoring Faility . 142.4 Fine-grained HPC Multiplexing . 16vi

2.5 Statistial Stall Breakdown . 192.5.1 Hardware Model . 212.5.2 Soure-based Re�nement . 272.6 Implementation . 282.6.1 Real Hardware versus Simulation Environment 282.6.2 Hardware . 292.6.3 Operating System . 302.7 Experimental Evaluation . 322.7.1 Auray of Multiplexing . 332.7.2 Stall Breakdown . 36Soure-based Breakdown . 372.7.3 Runtime Overhead . 382.8 Related Work . 392.9 Conluding Remarks . 413 Hardware Data Sampling to Detet Thread Sharing 443.1 Introdution . 443.1.1 Organization of Chapter . 463.1.2 Data Sampling Methods . 46Continuous Data Sampling . 46Instrution Sampling . 47Hardware Data Breakpoints . 48Hardware Bus Monitors . 493.1.3 Data Sampling Modes . 493.2 Our Sampling Tehniques . 503.2.1 Soure-based Data Sampling . 503.2.2 Multiple Sampling Criteria . 513.3 Deteting Data Sharing . 523.3.1 Motivation . 523.3.2 Deteting Sharing Patterns . 55vii

Construting shMaps . 553.3.3 Clustering Threads . 58
shMap Similarity Metri . 58Forming Clusters . 593.4 Experimental Evaluation . 613.4.1 Experimantal Platform . 613.4.2 Workloads . 623.4.3 Runtime Sampling Overhead . 643.4.4 Thread Clustering Auray . 653.4.5 Performane Impat of Thread Clustering 663.5 Related Work . 683.6 Conluding Remarks . 694 Page Aess Traking to Improve Memory Management 714.1 Introdution . 714.2 Traking Page Aesses . 764.2.1 Design Options . 774.2.2 Low-level Software Strutures . 79LRU Stak . 80Miss Rate Curve . 814.3 Adaptive Replaement Poliies . 834.3.1 Region-Spei� Replaement . 84Seleting Regions . 84Choosing Replaement Poliy . 85Swithing Replaement Poliy . 85Alloating Memory to Regions . 864.3.2 LIRS . 864.4 Memory Alloation . 87Maximizing Throughput . 89Enforing Priorities . 89viii

4.5 Prefething . 914.6 Experimental Evaluation . 944.6.1 Experimental Framework . 944.6.2 Appliations . 964.6.3 Analysis of Adaptive Replaement Poliies 974.6.4 Analysis of Loal Memory Alloation 994.6.5 Analysis of Prefething . 1004.6.6 E�et of PAB Size . 1014.6.7 Analysis of Overhead . 1044.7 Related Work . 1054.8 Conluding Remarks . 1065 Conluding Remarks 1095.1 Summary . 1105.1.1 CPU Bottlenek Analysis . 1105.1.2 Hardware Data Sampling . 1115.1.3 Page Aess Traking Hardware 1115.1.4 Summary of Contributions . 1125.2 Future Diretions . 113Bibliography 115

ix

List of Tables
2.1 The number of HPCs available in today's miroproessors 82.2 Summary of stall yles and CPI for the SPEC CPU 2000 212.3 Types of miss events with their potential e�ets 252.4 The size and aess lateny of memory soures in IBM OpenPower 272.5 The spei�ations of the IBM PowerPC970 and POWER5 302.6 KL-distane between multiplexed and fully ounted distributions. 322.7 Soure-based L1 data ahe miss stall breakdow 373.1 The Spei�ation of the IBM OpenPower Mahine 614.1 Seleted Memory Intensive Appliations 94

x

List of Figures
2.1 The blok diagram of performane monitoring faility 152.2 Time-Based Multiplexing example . 182.3 No-Stall CPI versus Real CPI for SPEC CPU2000 appliations 222.4 The hardware model for a super-salar out-of-order proessor 232.5 The state transition diagram for instrution exeution. 242.6 Comparing fully ounted L1 DCahe Miss Ratio with HPC multiplexing . 332.7 Tuning multiplexing ratio and multiplexing granularity 352.8 Stall Breakdown for fft . 362.9 The runtime overhead of HPC multiplexin 383.1 The arhiteture of IBM OpenPower720 533.2 Default v. Clustered Sheduling . 543.3 Construting shMaps . 573.4 Runtime overhead of the sharing detetion 643.5 Visual representation of shMap vetors 674.1 The prie of medium-sized omputer system 724.2 LIRS performane as a funtion of page aess information 734.3 The Arhiteture of Page Aess Traking Hardware (PATH) 784.4 The LRU stak with group headers . 824.5 The optimized struture for the LRU group header 844.6 Enforing priority through balaning page miss rate. 904.7 Page Proximity Graph (PPG) . 924.8 Projeted exeution time with di�erent replaement poliies 97xi

4.9 Global and Loal Alloation poliy in multi-programmed senario 984.10 The e�et of prefething on page-fault rate and required I/O bandwidth . 1024.11 The e�et of PAB size on page replaement performane 1034.12 The e�et of PAB size on prefething performane 1034.13 Runtime overhead of PATH . 105

xii

Chapter 1
Introdution
As operating systems have evolved over the last �fty years, new hardware struturesand mehanisms were periodially introdued to assist the operating system in its tasks.Most of these strutures and mehanisms have one of the following objetives.

• To failitate implementation: The hardware provides mehanisms that faili-tate the implementation of operating system abstrations. Examples inlude theintrodution of atomi instrutions for implementing synhronization primitivesmore easily, the separation of kernel and user protetion domain at the hardwarelevel, the automati virtual-to-physial address translation in the hardware, andmemory-mapped I/O mehanisms.
• To improve performane: The hardware provides mehanisms that aeleratethe exeution of some of the most ommon operations inside the operating system.Examples inlude the introdution of the Translation Lookaside bu�er (TLB) as aahe of page tables to aelerate the proess of virtual-to-physial address transla-tion, the introdution of Diret Memory Aess (DMA) mehanisms to redue theoverhead of transferring large amount of data from and to peripheral devies, andautomati user-kernel stak swithing to remove the burden of frequently opyingdata bak and forth between user and kernel address spaes so as to redue theost of ontext-swithing.
• To provide information: The hardware provides detailed information on the ur-1

Chapter 1. Introdution 2rent state of the omputer system to assist system software either in implementingnew funtionality or in improving performane of existing operations. Examplesinlude a speial register for the urrently exeuting thread to aess the thread'sprivate data more e�iently, a number of bits in the page tables that are automat-ially updated to indiate whether a page has reently been aessed or modi�ed,and the introdution of hardware performane ounters (HPCs) to help systemsoftware measure the performane of running appliations more aurately.While muh prior work exists, and numerous proposals have been made over the years,we believe that a lot more work an be done on either introduing new ways of providinghardware support or enhaning the existing mehanisms. The relative abundane ofavailable silion may further motivate introduing new hardware abstrations.The main fous of this dissertation is on how new hardware support an assist theoperating system in olleting aurate performane data so as to enable the operatingsystem in making more informed deisions. Usually, the state of the system representedby the hardware is detailed, low-level, semantially raw, and therefore, voluminous. Anoption is to o�oad to hardware muh of the proessing of suh raw information intohigher-level performane models so that the hardware provides the system software withmore onise and, at the same time, semantially riher information. The problem withthis approah, besides making the hardware design ompliated, is that the informationprovided by the hardware will be spei� to ertain algorithms. Moreover, any furtherhange to the software algorithms will require hanges to the hardware.Another approah is to add minimal hardware support to provide generi informationand then have a thin layer of software that e�iently proesses hardware-generated infor-mation and produes information that an be understood using a high-level performanemodel. The main advantage of this approah is that the hardware design will be simpleand the information generated by the hardware remains generi so that in an be used bya variety of algorithms that may hange over time. The key hallenge to this approah,however, lies in the tradeo� between (i) funtionality assigned to hardware to reduethe runtime overhead and (ii) funtionality assigned to software to make the generatedinformation more generi and �exible.

Chapter 1. Introdution 3In this dissertation we explore this later approah in three di�erent performane-related ases: (i) analyzing the CPU performane bottleneks through Hardware Per-formane Counters (HPCs), (ii) analyzing data aess patterns through hardware datasampling, and (iii) �ne-grained page aess traking to improve performane of memorymanagement algorithms. In eah ase, we start with the funtionality urrently providedby the existing hardware and then build e�ient middleware to provide higher-level in-formation that is based on a higher-level performane model. If the urrent hardwaredoes not provide adequate information (even in raw form), we propose new, but minimal,hardware support. The following subsetions brie�y desribe eah of these three ases inmore detail.1.1 CPU Bottlenek AnalysisA Hardware Performane Monitoring Unit (PMU) is an integral part of most miro-proessors today. It usually provides a few HPCs that are able to ount, in real time,hardware events that our in the proessor. Potentially, the PMU an play an importantrole in analyzing performane and identifying the root auses of performane problems.However, the PMU is usually di�ult to use e�etively for a number of reasons. First,there are too few physial HPCs onsidering that any meaningful performane analysisrequires the simultaneous monitoring of many di�erent types of events. Moreover, HPCsprimarily ount low-level miro-arhitetural events from whih it is di�ult to extrathigh-level insight required for identifying auses of performane problems.We explore two tehniques that help overome these limitations, allowing the use ofHPCs to dynamially optimize both the operating system and user appliations. First,�ne-grained HPC multiplexing is introdued to make a larger set of logial HPCs availablefor analysis. Seondly, we introdue a performane summary model alled stall breakdownwhih speulatively attributes CPU yles to di�erent hardware omponents, and asresult, demonstrates whih hardware struture is most stressed. Suh a model an beused to guide automati optimization both in operating system kernels or in user-levelsystem software.

Chapter 1. Introdution 41.2 Analyzing Data Aess Patterns through HardwareData SamplingHardware data sampling is a PMU feature that is provided in some modern miroproes-sors suh as Intel's Itanium and IBM POWER proessors family [Inta, IBM06℄. It allowsfor statistial sampling of data addresses that are used by programs under ertain ondi-tions suh as TLB misses or data ahe misses. Data sampling is a potentially powerfulmehanism that an be used analyze the data aess pattern of programs, the result ofwhih an be used in a number of optimizations. Examples of suh optimizations inludeprefething data both for memory and CPU ahe [LCF+03℄, superpage alloation andmanagement [CDSW05℄, and NUMA page plaement [THb℄.While data sampling has proven to be e�etive in several ases [LCF+03, BH, THb℄,we believe there are a number of issues with the way urrent data sampling shemesare implemented in today's proessors. First, the set of onditions under whih datais sampled by hardware is not �exible, limiting how data sampling an be used. Forinstane, it is not possible to sample data based on the spei� storage soure fromwhih the data is fethed. Seondly, only one seletion riterion an be spei�ed at atime and ombining multiple seletion riteria in either onjuntive or disjuntive formsis not supported. Finally, data sampling is not always preise in that the reorded datasample might not be an operand of the instrution that aused the sampling onditions tobe ful�lled (e.g., a ahe miss). This is mainly due to the high level of Instrution-LevelParallelism (ILP) implemented in todays miroproessors with deep pipelines, supersalarstruture, and out-of-order exeution.We explore both hardware and software tehniques to address the above-mentionedproblems. We show an example where hardware data sampling ould be used e�e-tively to produe signatures to dynamially identify sharing among threads that run ina multiproessor. We desribe the data sampling features that are desired, and howwe implemented a workaround in an existing miroproessor to indiretly obtain theinformation we needed. Finally, we provide spei� suggestions for new data samplingfeatures.

Chapter 1. Introdution 51.3 Fine-grained Page Aess TrakingTo implement memory management algorithms, operating systems traditionally use aoarse approximation of memory aesses, obtained by monitoring page faults or sanningpage table entries. The problem with this approah is that any information on the order inwhih pages are aessed is lost, yet, there are important lasses of memory managementtehniques that require page aess order information.Unfortunately, hardware data sampling annot be diretly used for page-aess trak-ing. The problem with data sampling (or any other statistial sampling tehnique) isthat it favors only hot pages, for whih memory management is quite trivial. However,more sophistiated memory management shemes require every single page aess to beis reorded whih is obviously impratial due to the very large volume of the informationgenerated.We propose simple, yet powerful, new hardware support for traking page aesseswith substantially higher preision and lower overhead than urrent software-based strate-gies an provide. We show how the use of this hardware failitates the implementation ofvarious algorithms that (i) implement more adaptive page replaement poliies, (ii) allo-ate memory to VMMs, proesses or virtual memory regions so as to improve performaneor to provide isolation and better proess prioritization, and (iii) e�etively prefeth pagesfrom virtual memory swap spae or memory-mapped �les when appliations have non-trivial memory aess patterns. Our simulation results show that signi�ant performaneimprovements an be ahieved, espeially when the system is under memory pressure,while the basi overhead of providing �ne-grained information to the operating systemremains negligible for most appliations.
1.4 Summary of ContributionsThis dissertation makes a number of spei� ontributions in how hardware an providethe operating system with aurate and timely information that an be used for dynamiperformane optimization purposes:

Chapter 1. Introdution 6
• We demonstrate the e�ient implementation of �ne-grained HPC multiplexing toallow larger number of logial ounters with low overhead and reasonable auray.
• We develop a simple and useful performane model, alled stall breakdown, toanalyze CPU bottleneks. Using failities in the IBM POWER5 proessor, wegenerate stall breakdown information online with negligible overhead.
• We demonstrate how hardware data sampling an be used in deteting the shar-ing patterns of onurrent threads on a shared memory multiproessor with highpreision and low overhead.
• We propose a novel hardware support for �ne-grained page aess traking withminimal overhead and high preision. We also show how this hardware support anbe used in improving memory management in three di�erent areas: (i) adaptivepage replaement poliies, (ii) proess memory alloation, and (iii) virtual memoryprefething.1.5 Organization of the DissertationIn Chapter 2, we present our work on how to use HPCs to analyze CPU bottleneks.In Chapter 3, we demonstrate how we use hardware data sampling to detet sharingpatterns among threads in a shared memory multiproessor. Then, in Chapter 4 a newhardware support for �ne-grained page aess traking is presented, along with threeuse ases that an e�etively utilize the new hardware support in improving memorymanagement. We onlude the dissertation by Chapter 5, whih provides a summary ofour work and presents diretions for the future work. Chapters 2, 3, and 4 all havethe same following struture. First, an overview of the problem and its existing solutionsis presented. Then, we present our tehniques to address the problem, followed by thedesription of our experimental framework and results. Then, a summary of relatedwork is presented. Finally, eah hapter ends with onluding remarks ontaining ouronlusions and spei� diretions for future work.

Chapter 2
CPU Bottlenek Analysis
2.1 IntrodutionHardware Performane Counters (HPCs) are an integral part of modern miroproes-sor Performane Monitoring Units (PMUs). They an be used to monitor and ana-lyze performane in real time. HPCs allow the ounting of detailed miro-arhiteturalevents in the proessor [Inta, Spr02, IBMb, IBM06, AMD02℄, enabling new ways tomonitor and analyze performane of running software. There has been onsiderablework that has used HPCs to explore the behavior of appliations and identify per-formane bottleneks resulting from exessively stressed miro-arhiteture omponents[AV02, DCD03, SHC+04, CMDAN06, BH, ANP03℄. However, there are a number ofhallenges that make HPCs di�ult to be widely used in identifying CPU bottleneks.In this setion, we �rst provide a desription of some harateristis of HPCs in today'sproessors that make them hallenging to use e�etively for online bottlenek analysis,and then, provide an overview of our tehniques to deal with some of these problems.2.1.1 Challenges of Using HPCSome of the major hallenges in using HPCs in today's miroproessors inlude the limitednumber of available HPCs, their omplex interfae, and the potentially high overhead oftheir use. 7

Chapter 2. CPU Bottlenek Analysis 8Proessor IBM POWER4 IBM POWER5 Intel Pentium 4 Intel AMD Athlon# of and PPC970 (per H/W thread) and Xeon Itanium II and OpteronHPCs 8 6 9 pairs 4 4Table 2.1: The number of HPCs available in today's major miroproessors.Small Number of HPCsPMUs typially have a small number of HPCs available. Table 2.1 shows the numberof available HPCs in some of the more popular proessors. Most proessors provide upto 8 HPCs. Intel Pentium 4 is an exeption with 9 pairs of HPCs. However, due toprogramming onstraints imposed by the hardware implementation, not all of its HPCsan be programmed simultaneously. This is not spei� to Intel Pentium 4, as we haveobserved many, rather restritive ases of suh onstraints in the IBM PowerPC proessorsas well.The limited number of HPCs implies that only a limited number of hardware eventsan be ounted simultaneously at any given time. This is a serious limitation onsideringthat deteting performane bottleneks in omplex supersalar, and potentially out-of-order, miroproessors often requires detailed and extensive performane knowledge ofseveral proessor omponents. For instane, in order to measure the L1 data ahe missrate on IBM POWER4, one has to use 4 HPCs simultaneously (L1 Loads, L1 Stores, L1Load Misses, and L1 Store Misses). One way to get around this limitation is to exeuteseveral runs of an appliation, eah time with a di�erent set of hardware events beingounted. Suh an o�ine approah an be time-onsuming (espeially for long runningappliations), and is ompletely inappropriate for online analysis. Moreover, mergingthe traes generated from several appliation runs is not straightforward, beause thereare asynhronous events (e.g. interrupts and I/O events) in eah run that may ausesigni�ant timing drifts.Complex InterfaeThe events that an be monitored by HPCs are typially low-level and spei� to a miro-arhiteture implementation. As a result, they are hard to interpret orretly without

Chapter 2. CPU Bottlenek Analysis 9detailed knowledge of the miro-arhiteture implementation. In fat, in the proessorswe have studied, most high-level performane metris of interest suh as Cyles PerInstrution (CPI), ahe miss ratio, and memory bus ontention, an only be measuredby arefully ombining the ourrene frequeny of several hardware events. At best,this makes HPCs hard to use by average appliation developers, but even for seasonedsystems programmers, it is hallenging to translate the frequeny of partiular hardware-level events to their atual impat on end performane due to the omplexity of today'smiro�arhitetures.High OverheadBeause PMU resoures are shared among all system proesses, they an only be pro-grammed in supervisor mode. Thus, whenever a user proess needs to hange the set ofevents being aptured, it must all into the operating system. These expensive kernelboundary rossings an happen frequently when a wide range of hardware events needto be aptured for a single run of the appliation.2.1.2 Our ApproahWe have developed two tehniques to address some of the problems mentioned above.First, to overome the limitation in the number of HPCs, we multiplex the existingHPCs in a �ne-grained way. This tehnique allows us to provide a muh larger set oflogial HPCs to the user, making it is possible to ount the ourrenes of many miro-arhitetural events during a single appliation run. The �ne multiplexing granularityenables us to apture even short-lived �utuations in the ourrene rate of hardwareevents. In Setion 2.7 we present our statistial analysis to show that our multiplexingapproah provides su�ient auray for performane tuning and optimization purposes.Seond, we use our multiplexing approah to onurrently interpret the impat of dif-ferent hardware events on the appliations' end-performane. We present a model alledStatistial Stall Breakdown(SSB) whih is based on the traditional CPI breakdown modelthat provides insightful and timely information on whih miro-arhiteture omponents

Chapter 2. CPU Bottlenek Analysis 10are most stressed. SSB ategorizes the soures of stalls in the miroproessor pipeline,and quanti�es how muh eah hardware omponent (e.g., the ahes, the branh predi-tor, and individual funtional units) ontributes to overall stall in a way that is simpleand easy to understand for the user. SSB information is olleted as the program runsand an be used, for example, by a dynami optimizer to apply e�etive optimizations.We also show that the run-time overhead of olleting the SSB information is small.2.1.3 Organization of the ChapterIn the next setion, we provide more detailed bakground on basi HPC mehanismsin today's miroproessors. Then we present an overview the design of our HPC-basedperformane monitoring faility and the features it provides. We follow this setion,by desribing the details of �ne-grained HPC multiplexing. Next, we present how thestatistial stall breakdown model is de�ned and generated on a real miroproessor.Then, we provide more details about our implementation and the platform we used forour experiments. Next, we present the result of our experiments. We then disuss therelated work, and �nally, we present our onlusions and diretions for future work.2.2 Current HPC CapabilitiesIn most of today's miroproessors, HPCs are implemented as a small set of registers thateah an be programmed to ount the number of ourrenes of a partiular hardwareevent. There are several HPC ontrol registers that de�ne (i) whih hardware events eahHPC should ount, and (ii) how the events are to be ounted.2.2.1 Event TypesThe basi types of events that HPCs an ount inlude CPU yles, instrution omple-tions, storage hierarhy aesses (hits and misses), TLB misses, branh mispreditions,and bus snooping ativities. Some proessors may also provide ounts of more detailedevent types that are related to the spei� implementation of the miro-arhiteture, suh

Chapter 2. CPU Bottlenek Analysis 11as prefeth bu�er aesses, instrutions that pass a given stage of the system pipeline,�ushing of instrutions upon ertain onditions, and fullness of di�erent queues insidethe proessor.The hardware often provides limited apabilities on how the events at the hardwarelevel an be ombined or aggregated. Aggregation is usually in the form of summing upthe events that our on multiple instanes of a omponent type (e.g., funtional units,or load/store hannels). The ontrol registers an be used to de�ne spei� onditionsunder whih an event is to be ounted or not to be ounted. For example, HPC anbe programmed to either ount while an interrupt servie routine (ISR) is running ornot. However, suh onditions are usually primitive and �xed, i.e., it is not possible tologially ombine several hardware supported onditions to de�ne a new, more elaboratehardware event type.2.2.2 Counting MethodsThe value of HPCs an be reorded through either instrumentation or sampling. Next,we desribe a brief bakground on these two methods.InstrumentationTo use instrumentation, the soure ode is augmented, or the binary is pathed, withode that on�gures the ontrol registers and reads the HPCs at partiular points inthe program. The main advantage of instrumentation is that it is possible to gatherinformation between two spei� points in the dynami exeution path of a program.However, using instrumentation also has its drawbaks. First, modifying soure or binaryode an be time onsuming and umbersome. Seond, it introdues perturbations mainlyin two forms (i) the inrease in the program ode size and subsequently in the size ofinstrumented programs instrution ahe footprints, and (ii) the overhead of exeutingextra ode in the ommon path. This type of overhead is more pronouned in dynamiinstrumentation systems [BH00, CSL04, TM94℄ where trampoline ode, whih usuallyinludes several branh instrutions, must be installed at eah instrumentation site in

Chapter 2. CPU Bottlenek Analysis 12order to keep the program ode layout unhanged. Suh trampolines have negativeimpat on the spatial loality of program instrutions that diretly a�ets instrutionahe performane.SamplingWith sampling, the values of the HPCs are periodially olleted either after a spei�edtime period (i.e., time-based sampling) or after ounting a spei�ed number of a spei�hardware event (i.e., event-based sampling). In order to do time-based sampling any timerfaility an be used. For event-based sampling, the PMU an be programmed to generatean over�ow exeption after reahing a ertain threshold on the ount of a spei� hard-ware event. To generate over�ow exeptions, the ontrol registers must be programmedproperly, and the HPCs must be loaded with an initial value that orresponds to theover�ow threshold.Unlike instrumentation, sampling does not require modi�ation of the soure or binaryof the programs but only requires an appropriate exeption handler. Hene, samplingtypially inurs lower overhead beause no ode is exeuted in the ommon path, andalso beause it doe not inrease the ode size and hene does not inrease the program in-strution ahe footprint. The over�ow exeption handler, however, has a diret overheaddue to its exeution, and some indiret overhead due to polluting both the instrutionand data ahes. The overall sampling overhead, therefore, depends on the samplingfrequeny.An alternative to redue the sampling overhead is to use polling in ombination withsampling. With this approah is that the operating system reads and reords the valueof the HPC registers at ertain events that invoke the operating system (e.g., ontextswithings, page-faults, system alls, and other hardware interrupts). The basi idea isto piggybak the proess of reording HPC values on already expensive operating systeminvoations that our anyway as a result of system ativities, and therefore, to avoidinurring extra exeptions (either timer-based or event-based) to reord HPCs. If theoperating system is not invoked as frequently as the desired rate for reording HPCs,exeptions an be raised.

Chapter 2. CPU Bottlenek Analysis 13The key advantage of the polling-based approah is that it redues both the pertur-bation and the runtime overhead of sampling the HPC values. However, this approahintrodues several hallenges. First, it is di�ult to expliitly ontrol the sampling ratesine operating system invoations may our with an irregular pattern whih diretlydepends on the ativities of running programs. Seondly, with the urrent arhitetureof the PMUs, some useful information about the urrent state of exeution is providedby the PMU, only at the time where an HPCs over�ow exeption ours. By reordingHPCs at arbitrary spots with respet to the funtion of PMU, suh information annotbe aptured. Finally, the modi�ations required to the operating system kernel in thisapproah is relatively intrusive as potentially many invoation points in the kernel mustbe modi�ed to inlude alls to reord HPCs.Sampling and instrumentation methods an be used in a omplementary fashion.In attempting to loate performane bottleneks, it is typially too ostly to start withinstrumentation beause the loation of the problem is not known. Sampling an be usedto e�iently identify program hot spots or stressed hardware omponents. Then, if theolleted information is not su�iently preise, instrumentation an be used on spei�targets (e.g. the deteted hot spots) to gather further detailed data at the instrutionlevel.
2.2.3 Counting ModesHPCs an be programmed to ount events only when the proessor is exeuting in usermode, in kernel mode, or in either of the two modes. With ooperation from the operatingsystem, it is possible to further extend this and virtualize the HPCs by proess or threadso that eah proess or thread is presented with their own set of dediated HPCs. Toimplement this, the operating system must save and restore the value of the HPCs aspart of the ontext swith.

Chapter 2. CPU Bottlenek Analysis 142.3 Our Performane Monitoring FailityWe have designed and implemented a performane monitoring faility that an be usedboth for sampling and instrumentation. Figure 2.1 shows the blok diagram of our faility.At the appliation level, users are provided with a programming interfae through a user-level library. Thus, an appliation an be instrumented by inserting library alls manuallyor by using dynami instrumentation tools. Calls from user appliations are reeived bythe operating system omponent whih onsists of a sampling module and a programminginterfae module.The sampling module implements HPC multiplexing, PC and data sampling, and thestall breakdown model whih we will disuss in detail later. The programming interfaemodule allows for on�guring the sampling engine, or for programming the hardwarePMU diretly. In the latter ase, it reeives the spei�ation of a set of hardware eventsto be ounted and automatially on�gures the hardware PMU. The values of the HPCsan be read diretly by the user program, or logged in a per-proess trae bu�er by thesampling engine.The key to ahieving aeptable overhead is to minimize the frequeny of rossing theuser-kernel protetion boundary. In our implementation, the sampling module is fullyimplemented in the operating system kernel. As a result, exept for infrequent ontroloperations (suh as initialization or reset), there will be no ontext-swithes between theuser ode and the performane monitoring module loated in the kernel spae.The sampling engine an obtain HPC values either periodially or after a designatednumber of a hardware event ourrenes. In both ases, we use PMU over�ow exep-tions. For periodi sampling we use one of the HPCs as the CPU yle ounter, allowingsampling intervals aurate down to a CPU yle.The frequeny of sampling is a ritial parameter. Sampling too infrequently mayresult in inauraies beause hanges in system behavior might be missed. On theother hand, too �ne-grained sampling may result in unneessarily high overhead. Ourexperiene shows we an a�ord to take samples every 200,000 yles (100 miroseondson a 2GHz CPU) with approximately 2% runtime overhead. This rate is our default

Chapter 2. CPU Bottlenek Analysis 15

Figure 2.1: The blok diagram of our HPC-based performane monitoring faility.sampling frequeny, although it an be overridden by the user.In order to be able to isolate measurements of individual appliations and the oper-ating system, the sampling engine maintains a set of HPC ontexts. HPC ontexts areswithed whenever the operating system swithes proesses. For this, the operating sys-tem must notify the sampling engine of all proess reations and exits, as well as ontextswithes. Upon eah ontext swith, the urrent value of the HPCs are saved into theurrent HPC ontext and the orresponding HPC values for the next sheduled proess isreloaded. There is inherent inauray assoiated with this operation sine eah proessinherits the residual hardware state manipulated by the previously running proesses.To help redue this inauray, one may inrease the size of the sheduling quantum sothat the noise of initial warm-up period beomes insigni�ant.For eah proess, there are three modes of operations: kernel only, user only, and fullsystem. In kernel-only mode, hardware events are only ounted when the hardware is insupervisor mode. This mode is appropriate if we are interested in monitoring operatingsystem ativities inurred by a partiular target proess. We assume kernel ativitiesthat our in a proess time slie are related to the target proess. This assumption

Chapter 2. CPU Bottlenek Analysis 16may not be valid when ontext swithes between di�erent proesses our frequently orfor interrupt handling. This, kernel-only mode is best suitable when a given appliationruns in isolation for a long time (for instane, on the order of several seonds) withno interruption. In user-only mode, logial HPCs (inluding the yle ounters) aresuspended when the proessor swithes into the kernel. Finally, in full�system mode,HPCs ount all hardware events whether due to kernel or appliation ode. When aontext swith ours, the hardware events ourring both in the kernel and user modewill be ounted by the HPCs of the new proess.We use the notion of an address spae as the main indiator of a ontext. Therefore,the sampling engine is apable of reporting performane numbers for individual proessesas well as the operating system. At this time, we do not di�erentiate between the user-level threads that share the same address spae. One possible way of addressing this isto send a performane monitoring upall to the user proess when a hardware exeptionours so that a user-de�ned handler an assoiate the reorded HPCs with the urrentuser-level ontext (e.g. user-level thread ID). Suh a tehnique seems to be plausibleonly if there is a fast (low perturbation) upall delivery mehanism. We do not urrentlysupport suh an upall mehanism.2.4 Fine-grained HPC MultiplexingTo alleviate the problem of having a limited number of physial HPCs, we dynamiallymultiplex the set of hardware events ounted by the HPCs using �ne-grained time slies.The programming interfae omponent takes a large set of events to be ounted as theinput and assigns them to a number of HPC groups suh that in eah group there are noon�its due to PMU onstraints. The sampling module assigns eah group a frationof g yles out of a multiplexing round R, the time period in whih all HPC groups willhave a hane to be sheduled. At the end of eah HPC group's time slie, the samplingengine automatially assigns another HPC group to be ounted by the hardware PMU.The value that is read from an HPC after g yles is saled up linearly as if that grouphad ounted during the entire R-yle period. As a result, the user program (e.g. a

Chapter 2. CPU Bottlenek Analysis 17run-time optimizer) is presented with N logial HPCs on top of n physial HPCs whereN an be an order of magnitude larger than n.The system an easily be programmed to favor ertain HPC groups by ounting themfor longer periods of time. This is aomplished by alloating multiple g-yle time sliesto the group. In fat, one an treat a period of g yle as a unit for the hardware PMUtime alloation. This PMU multiplexing sheme is analogous to the time-sharing of aCPU among proesses. Figure 2.2 shows an example of four HPC groups, where eah isgiven a time share (one or more time slies) of the multiplexing round. The share sizeof eah group depends on the desired auray of the hardware events that are inludedin the group and on the expeted rate of �utuation of suh events. Moreover, theauray may di�er for di�erent hardware events with the same share size. A defaultshare assignment sheme might be overridden by expliit requests from the user that isinterested in losely monitoring a spei� hardware event.Without loss of generality, for the rest of the hapter, we assume all groups aregiven equal time shares, whih is one time slie (g yles). We all R
g
the MultiplexingRatio. Larger multiplexing ratios allow a larger number of logial HPCs. For instane, amultiplexing ratio of 10 an provide roughly 80 logial HPCs on an 8-HPC proessor. Thishas to be traded-o� with the fat that sampling auray dereases as the multiplexingratio inreases.An issue that must be addressed is the fat that a sampling period may happen tooinide with loop iterations in the program. If the order of HPC groups within a periodis �xed and a sampling period happens to oinide with a loop iteration, then an HPCgroup might always ount the events that our in the same �xed part of the iteration. Toavoid this senario, we randomize the order of the HPC groups in eah sampling period.As a result, eah HPC will have an equal hane of being loated at any given spot ofthe iteration.With HPC multiplexing, time is usually measured in terms of CPU yles. Therefore,one ounter in eah HPC group is reserved to ount CPU yles. The use of yle ountersas timers allows us to de�ne arbitrary �ne time-slies down to a few thousand yles.Another metri that an be used to de�ne HPC group share sizes is the number of

Chapter 2. CPU Bottlenek Analysis 18

Figure 2.2: Time-Based Multiplexing example: There are four HPC groups in this example.Eah HPC group is a olletion of events that are ounted simultaneously. An HPC groupis ounted in a number of time slies of g yles within sampling period of R yles. Theorder of the HPC groups is hanged randomly in di�erent sampling periods to avoid aidentalorrelations.
instrutions retired. The main advantage of instrution�based multiplexing is that theHPC group share sizes are aligned more losely with the progress of the appliation.Share sizes, with respet to physial time, depends on the available instrution levelparallelism (ILP) and the frequeny of the miss events.A pathologial ase for the multiplexing engine is the existene of a large numberof short-lived bursts of a partiular hardware event. If the burst time is shorter than
R yles, then the multiplexed HPC value of that hardware event might be inauratebeause the PMU atually ounts the event only during a fration of R, and thus it maymiss short-lived bursts. However, we expet the exeution of most appliations to gothrough several phases, eah longer than R, in whih the ourrene rate of hardwareevents is stable in the ommon ase. In Setion 2.7, we provide experimental results thatdemonstrate that the statistial distane between the sampled and real rates of hardwareevents is small in most ases.

Chapter 2. CPU Bottlenek Analysis 192.5 Statistial Stall BreakdownWith HPC multiplexing, a potentially large number of logial HPCs beomes available.As a result, a wide range of hardware events an be ounted simultaneously. However,it is often di�ult to interpret and understand the HPC values without having a propermodel for CPU performane. For instane, we do not know whether having a millionahe misses in a billion CPU yles is a signi�ant fator in the performane of theCPU or not, unless we have a model based on whih we have an estimate of the penaltyeah ahe miss inurs diretly (i.e., by ausing lateny in the exeution of instrutions)or indiretly (e.g., by ausing other pipeline strutures to saturate, or by ausing otheruseful ahe lines to be replaed).A naïve approah is to assoiate a �xed penalty to eah event and simply multiplyit by the event frequeny to determine the atual e�et of the event on CPU pefor-mane [WLLB97℄. While this approah is simple to understand and easy to implement,it is not aurate due to the fat that in a supersalar CPU with out-of-order exeution,multiple lateny-inurring events an overlap. Therefore, the naïve approah may resultin an overly pessimisti estimate of the e�et of eah event on the CPU performane.Another approah is to alulate a full Cyle-per-Instrution (CPI) breakdown whereCPU yles are attributed di�erent hardware omponents or events so that eah hard-ware omponent h aounts for CPIh yles per instrution out of the real CPI on av-erage [HP03℄. CPI breakdown is a simple and powerful model, as it an learly identifyboth program and CPU bottleneks. For instane, if we know that 60% of CPU ylesare spent waiting for ahe misses to resolve, we know that the running programs arestressing the system ahes and a dynami optimizer will have to work on reduing theprograms' CPU ahe footprint, removing potential ahe on�its, or employing runtimeprefething.The problem with the CPI breakdown model, however, is that it is extremely di�ultto ompute aurately on a real proessor. The main reason is that in a supersalarout-of-order miroproessor many lateny-inurring events overlap with eah other. Insuh ases, it is not lear whih omponent the aused lateny should be harged to, as

Chapter 2. CPU Bottlenek Analysis 20eah event alone an ause the lateny even without the presene of the other.A simplifying modi�ation to the CPI breakdown model the Statistial Stall Break-down model whih attributes eah stall yles to proessor omponents that are likely tohave aused them. We losely de�ne a stall yle to mean a proessor yle in whih noinstrution ompletes (retires). Based on this distintion, the CPU yles are either stall(non-ompletion) yles or ompletion yles.The rationale behind fousing only on non-ompletion stall yles (as opposed to allyles) is based on two important observations. First, most CPU yles are stalls. Thisis despite having large a instrution window and a wide pipeline, and doing sophistiatedanalysis for extrating Instrution-Level Parallelism (ILP). Table 2.2 shows average realCPI versus No-Stall CPI for sixteen appliations from the SPEC CPU2000 benhmarksuit, running on an IBM POWER5 proessor. Also Figure 2.3 shows real CPI and no-stall CPI for the individual appliations. It an be seen that between 60% to 85% ofCPU yles are stall yles among these appliations, with 73% being the average.The seond observation is that when there are no stall, CPU throughput, in termsof IPC, is fairly lose to the pipeline width and is more or less appliation-independent.This is assuming that the design of the miro-arhiteture is well balaned and there areno obvious bottlenek omponents [KS04℄. This an be seen in Figure 2.3: for most ofthe SPEC CPU2000 appliations the No-Stall CPI is very lose to the ideal CPI, whihis around 0.2 on the IBM POWER5 proessor (due to having a feth bandwidth of 5instrutions per yle)- on average, no-stall CPI is 0.35 among these appliations. Thereal CPI of ourse, an vary dramatially for di�erent appliations and an be as high as4.25 (e.g., for mf). So, Table 2.2 shows that while the oe�ient of variation for no-stallCPI is only 14%, it is as high as 53% for the real CPI for the seleted appliations.These two observations suggest that in order to haraterize urable performanebottleneks (i.e, those that are not aused by limited pipeline width), it is su�ient tofous only on the stall yles as opposed to all CPU yles.An important advantage of fousing only on stall yles, is that it is easier to spe-ulatively attribute eah stall yle to a partiular hardware event, using the argumentthat if the partiular hardware event had not ourred, the stall would not have o-

Chapter 2. CPU Bottlenek Analysis 21Average Stall Cyles Perentage: 73Average Real CPI: 1.53Coe�ient of Variation for CPI (%): 53Average No Stall-CPI: 0.35Coe�ient of Variation for NSCPI (%): 14Table 2.2: Summary of stall yles and CPI for the SPEC CPU 2000 appliations on the IBMPOWER5 proessor.urred. The key observation is that, in most ases, the time hardware omponents spendin proessing instrutions will eventually result in stalls. Therefore, if the CPU resumesompleting instrutions after reeiving the results from a hardware omponent, the lastlateny-ausing hardware event in that omponenet may be a good andidate as theause of the stall. In order to do a stall breakdown, a basi hardware support is requiredto assign a ause to eah stall. The IBM POWER5 and PowerPC970 proessors bothprovide suh a stall-to-ause assignment, and to the best of our knowledge, they are theonly proessors with this apability. We have used both these proessors in all of ourexperiments for analysis the stall breakdown.Suh a stall-to-ause assignment is speulative mainly due to the fat that stalls fromdi�erent auses may overlap and as a result, the lateny aused by a omponent is hiddenby the lateny aused by another omponenet. Hene, in order to identify the real ausesfor lateny, an iterative sheme may be needed sine removing or substantially reduingone ause of stall either improves performane proportional to the stalls assigned to it,or another ause for stalls to be revealed.In the next subsetion, we provide a more detailed desription of our hardware modelbased on whih hardware omponents and auses for stalls are de�ned.2.5.1 Hardware ModelA simple hardware model is required to understand how di�erent type of events thatause lateny in the operation of a proessor may result in stalls. In this setion, we

Chapter 2. CPU Bottlenek Analysis 22

Figure 2.3: No-Stall CPI versus Real CPI for SPEC CPU2000 appliations.
provide a high-level model of the funtioning of a proessor. While, our hardware modelis in�uened by the arhiteture of IBM POWER proessors, we believe it is su�ientlygeneral to be used for other modern miroproessors with minor modi�ations.Figure 2.4 depits the hardware model used and Figure 2.5 depits the state-transitiondiagram for eah instrution. Instrutions are fed from the Instrution Cahe (ICahe)to the front-end pipeline in program order. Up to W instrutions, at the level of the In-strution Set Arhiteture (ISA), an be fethed from the ICahe in eah yle. These in-strutions are deoded and possibly translated into µ-instrutions. The front-end pipelinegenerates bundles of B µ-instrutions, eah assoiated with one or more ISA instrutions.In RISC arhitetures, however, we expet most ISA instrutions to be translated intoa single µ-instrution, and hene, we assume at most B ISA instrutions an o-exist ina bundle. The µ-instrutions within a bundle may have dependenes between them; forexample, the output of one may be used as an input for another.At most one bundle an be dispathed in a single yle, where eah µ-instrution withinthe bundle is dispathed to its target Funtional Unit (FU). The instrution bundles aredispathed in program order. At most one µ-instrution an be dispathed to an FU at

Chapter 2. CPU Bottlenek Analysis 23
ICache

Frontend Pipeline

FPU

Issue Queue

FU Core

IU0 IU1 LSU BU

Reorder
Buffer

Retirement

micro-instruction
Bundle

Functional
Units
(FU)

Figure 2.4: The basi hardware model for a super-salar out-of-order proessor. FPU standsfor Floating-Point Unit, IU stands for Integer Unit, LSU stands for Load/Store Unit, BU standsfor Branh predition Unit, and FU stands for Funtional Unit.
a time, although there may be several FUs of the same type. The total number of FUsmay exeed the number of µ-instrutions in eah bundle, so some FUs may not reeivenew µ-instrutions every yle.Before a µ-instrution bundle an be dispathed to the funtional units, the followingresoures must be available for eah µ-instrution in the bundle:1. Rename Bu�er Entries: Rename bu�ers are logial registers that are used toeliminate Write-After-Read and Write-After-Write dependenies.2. A Reorder Bu�er Entry: The reorder bu�er is a queue that keeps trak of thestatus of the dispathed bundles. Instrution bundles retire from the reorder bu�erin the order they were dispathed after all of their µ-instrutions have �nished, andall earlier bundles have retired.3. Load/Store Bu�er Entries: Load/Store bu�ers are used to bu�er the values

Chapter 2. CPU Bottlenek Analysis 24
Dispatched Issued

Finished

RetiredFlushed

Fetched
Decoded

(micro-instr)

Figure 2.5: The state transition diagram for instrution exeution.
read by the load instrutions or written by the store instrutions.4. FUs Issue Queue Entries: Eah FU has a separate issue queue. Eah µ-instrution in the bundle needs an entry in the orresponding FU's issue queue.If any of these resoures are not available, the instrution dispath will be delayeduntil they beome available. Typially, this only ours when there are long latenies inthe FUs so that one of the strutures mentioned above beomes full.One a µ-instrution bundle is dispathed, eah µ�instrution in it will be queued inthe orresponding FU issue queue. The instrution remains in the issue queue of the FUuntil all the data it depends on beomes available, after whih it an be issued. An issued

µ-instrution will be proessed by the FU ore to produe the result. One the result isready, the instrution's state beomes �nished. The FU ore may rejet a µ-instrutionfor a number of reasons, in whih ase the instrution will be put bak in the FU issuequeue and will be re-issued later. Instrution issue ours out-of-order with respet toprogram order. One the µ-instrution bundle retires (ompletes), all resoures alloatedto it, inluding the entries in the rename bu�ers, the reorder bu�ers, and the load storebu�ers, are released. An instrution may be �ushed for di�erent reasons, inluding branhmispreditions or exeptions. When an instrution is �ushed, all resoures alloated tothe instrution are released and the instrution must be fethed and deoded again laterto exeute.A �nished µ-instrution may retire only if, (i) all other µ-instrutions in the instru-tion's bundle have also �nished and (ii) all earlier (with respet to the program order)

Chapter 2. CPU Bottlenek Analysis 25Cause E�et CommentICahe Miss Empty Reorder Bu�er Instrutions must be brought into the ICahe either fromL2 or memory.Branh Mispredition Empty Reorder Bu�er All in-�ight instrutions after the mispredited branh are�ushed.Data Cahe Miss Retirement Stops A delay in the LSUs to �nish a load or store instrutiondue to a data ahe miss.Address Translation Misses Retirement Stops A miss ours as the hardware aessed address translationstrutures (e.g. TLB). The miss either delays the proess-ing of a load/store instrution in the LSU, or results in thetemporary rejetion of the instrution from the LSU.LSU Basi Lateny Retirement Stops A delay in one of the LSUs to �nish the exeution of anissued instrution.Rejetions Retirement Stops Any of the FUs (most likely the LSU) rejets an instrutionfor any (e.g. hitting a resoure limit). The instrution mustbe reissued after some delay or reordering.FPU Lateny Retirement Stops A delay in one of the FPUs to �nish the omputation foran issued instrution.IU Lateny Retirement Stops A delay in one of the IUs to �nish the omputation for anissued instrution.Other auses Retirement Stops A delay in any other hardware omponent, usually resultingin a pipeline �ush.Table 2.3: Types of miss events with their potential e�et in the miroarhiteture funtion.bundles in the reorder bu�er have already retired. Thus, bundle retirement happensin program order. At most one bundle an retire per yle. Therefore, the maximumnumber of ISA instrutions that in theory an retire in a yle is equal to B (whih isexpeted to be lose to the feth bandwidth W in a RISC arhiteture).The key idea behind the stall breakdown model is that most bottleneks an beidenti�ed by speulatively attributing a ause to eah stall, i.e., a yle in whih nobundle from the reorder bu�er an retire. There are two major ategories of suh stalls:
• Empty Reorder Bu�er: This implies that the front-end has not been able to feed thebak-end in time. Assuming the miro-arhiteture is designed and tuned properly,suh situations happen mostly when there is an ICahe miss, or when a branhmispredition ours. We assume the hardware designates the most reent event(an ICahe miss, or a branh misprediation) as the ause of the stall.
• Completion Stops: The reorder bu�er is not empty, but the oldest bundle in thereorder bu�er annot retire. This happens mainly beause one or more of its µ�instrutions have not yet �nished (i.e. they are waiting for an FU to provide theresults). We assume in this ase that one all µ-instrutions of a bundle �nish and

Chapter 2. CPU Bottlenek Analysis 26retirement resumes, the hardware will designate the ause of the stall as the lastFU that �nished a µ-instrution so that the instrution retirement ould resume.We all the hardware events that an ause a stall miss events. The miss events weonsider in this study are listed in Table 2.3 along with the type of stalls they ause andthe potential e�et they may have.The assoiation between a stall and a miss event is not neessarily preise beause ofthe dependenies among instrutions within the same bundle. For instane, an instrution
i may depend on the output of another instrution, j, of the same bundle. In this ase,stalls aused by miss events during the exeution of j are harged to i beause it is thelast µ�instrution in the bundle to �nish.Finally, even if a stall is identi�ed as being aused by a partiular event, removingthat event does not neessarily translate into an elimination of the stall. This is beauseof the highly onurrent nature of supersalar out-of-order miroproessors and the fatthat events may overlap so that removing one of them may not regain all the performanelost beause of the stall. This issue is disussed extensively in other work [FBHN03a,FBHN03b, TTC02℄. Addressing this issue in the general ase is omplex, beause intoday's out-of-order proessors, hundreds of instrutions may be in-�ight simultaneously.To solve the problem in its generality, it is neessary to onsider all possible interationsof any subset of onurrently exeuting instrutions, whih is beyond the sope of anon-line tool.By taking all auses of stalls into aount, the following formula an be used tospeulatively haraterize the potential CPU bottleneks at eah phase in the programexeution:

CPIReal =
n∑

i=0

Stalli + CPICwhere, Stalli is the number of stalls aused by miss event i in the monitoring period, and
CPIC is number of ompletion yles in whih at least one instrution is ompleted. Infat, CPIC an be used as an estimate for the CPI that an be ahieved by ideal hardwarein whih all miss events are removed and performane is solely determined by the programdependenes and the width of the pipeline. Indeed, as we see in Figure 2.3, CPIC is very

Chapter 2. CPU Bottlenek Analysis 27Soure Size LatenyLoal L2 2MB 14 ylesLoal L3 36MB 91 ylesLoal Memory 4GB 280 ylesRemote L2 2MB 120 ylesRemote L3 36MB 205 ylesRemote Memory 4GB 307 ylesTable 2.4: The size and approximate aess lateny of di�erent soures in the memory hierarhyin IBM OpenPower 720 Mahinelose to the ideal CPI for all appliations we examined. The CPIReal term is easilyomputed by dividing the number of elapsed yles by the number of ISA instrutionsretired at any period of time. We also rely on hardware PMU features to provide valuesfor Stalli. As a result, we an aurately show how muh gain is potentially ahievableby reduing the miss events of a ertain type.2.5.2 Soure-based Re�nementAn important re�nement to the stall breakdown model is to break down the stalls ausedby instrution and data ahe misses depending on the soure from whih the ahe miss iseventually satis�ed. Table 2.4 shows the di�erent soures in the memory hierarhy in theIBM penPower720 mahine and their approximate aess latenies [VMTO05℄. Severaloptimization tehniques an exploit the soure-based stall breakdown. For instane, welater show in Setion 3.3 that if most of the data ahe miss stalls are due to waitingfor data are being fethed from ahes on other proessor hips, then it is likely thatative read-write data sharing is ourring among threads of the same proess. Anotherexample is that if most of the data ahe miss stalls are due to waiting for remote memorymodules in a NUMA arhiteture, smart ode and data plaement or migration shemesare perhaps required.Due to the lak of spei� hardware support, we use a naïve approah to break downdata ahe miss stalls based on their soures. That is we de�ne stalls waiting for a

Chapter 2. CPU Bottlenek Analysis 28memory or ahe module m as follows:
MStallm = Latencym ∗ AccessFrequencymwhere Latencym is the average lateny for aessing module m (whih is de�ned bythe hardware harateristis) and AccessFrequencym is the frequeny of aessing themodule.Suh a naïve approah might be pessimisti as it does not take any overlap of multipledata ahe misses in �ight into aount. Hene, MStallm ould be muh higher than itsreal value. However, as we show in Setion 2.7.2, in pratie, for many appliations mostof the long-lateny memory instrutions do not overlap, and as a result, stalls ausedby data ahe misses as reported by the hardware PMU (i.e., StallDataCacheMiss) is fairlylose to the sum of the alulated stalls for all available memory and ahe modules(i.e., ∑

m MStallm). For a more aurate breakdown of data ahe miss stalls based onsoure, additional, albeit minimal hardware support is required whih, to the best of ourknowledge, is not available in any of todays' mainstream proessors.2.6 ImplementationIn this setion, we present about our experimental platform as well as more details aboutthe implementation of our performane monitoring faility.2.6.1 Real Hardware versus Simulation EnvironmentWe deided to evaluate HPC-multiplexing and stall breakdown on a real miroproessoras opposed to using a yle-aurate mahine simulator beause of two major advantagesa real environment o�ers. First, instrution exeution on a real proessor is muh fasterthan in a simulation environment. Depending on the level of details the simulator ismodeling, experiments an take several thousand times more than running them on areal proessor. Suh a vast di�erene in exeution speed allows us to ollet data for muhlonger periods of program exeution, making the olleted data more representative andthe resulting analysis more omplete and aurate.

Chapter 2. CPU Bottlenek Analysis 29The seond reason for not hoosing a simulator is that even detailed yle-auratesimulators may not be able to re�et some of the limitations of the implementation ofreal miroproessors. For instane, in a simulation environment, virtually any type ofevents an be monitored assuming there is no ost or omplexity for the monitoring. Inreal environment, however, many fators suh as hip spae, wire lateny, and omplexityof implementation determine whether it is feasible to monitor a ertain type of event ornot.There are two major drawbaks in using a real miroproessor, however. First, thehardware programming interfae is �xed and provides limited information. It is notpossible, for instane, to measure the length of time between any two arbitrary events(e.g., two onsequtive stall-ausing ahe misses). Seondly, beause of the omplexityof a real proessor, understanding the semantis of the hardware events is hallengingand requires signi�ant internal (and potentially proprietary) knowledge of the proessorimplementation. Often, information at suh level of details is not provided in publidoumentation.2.6.2 HardwareWe have implemented and evaluated our HPC-based performane monitoring faility ontwo IBM proessors, PowerPC970 [IBM06℄, and POWER5 [SKT+℄. The PowerPC970proessor is used in the Apple PowerMa G5 workstation and the POWER5 proessor isused in a the IBM OpenPower720 Express omputer system. In terms of exeution oreand pipeline struture, the two proessors are quite similar. However, there are signi�antdi�erenes in terms of proessor interonnetion and the struture of the memory hierar-hy. Moreover, the POWER5 proessor supports simultaneous multithreading (SMT) toallow instrutions from several hardware threads to be dispathed and issued to the fun-tional units simultaneously. In this study, however, we have not explored the hallengesof HPC-based performane monitoring under the SMT exeution model.The spei�ations of the two proessors are listed in Table 2.5.The PMU in both proessors is apable to ount the number of stalls aused bymiss events inluding the ones listed in Table 2.3. When the CPU stops ompleting

Chapter 2. CPU Bottlenek Analysis 30PowerPC97 POWER5Clok Rate (GHz) 1.8 1.5L1 ICahe (KB) 32 32L1 DCahe (KB) 64 64TLB Size 1024 1024L2 (KB) 512 1875 (shared by two ores)Feth Bandwidth 5 5No. of FXUs 2 2No. of LSUs 2 2No. of FPUs 2 2No. of HPCs 8 6Table 2.5: The spei�ations of the IBM PowerPC970 and POWER5 proessors used for ourexperiments.instrutions, a ounter starts ounting the number of stalls. One the CPU resumesompleting instrutions, the stall ount is harged to the last miss event speulatively, asthe ause for the stall period. The assignment of stall to ause is speulative, sine (i)several events an happen in a single yle and the PMU hooses one of them to attributethe just-ended stall period, and (ii) multiple stall auses may overlap, yet the stall lengthis attributed to just a single ause.2.6.3 Operating SystemWe implemented our performane monitoring faility both in K42 and Linux operatingsystems. K42 is an open-soure researh operating system designed to sale well on large,ahe-oherent, 64-bit multiproessor systems [IBMa℄. It provides ompatibility with theLinux API and ABI. The K42 kernel is designed in an objet-oriented fashion, a featurethat allows for easier prototyping.The sampling engine in both operating systems is built as a fairly small kernel module(a few hundred lines of C/C++ ode). The OS kernel is slightly modi�ed to notify

Chapter 2. CPU Bottlenek Analysis 31the sampling engine of all proess reations, exits, and ontext swithes. In K42, weexploit the fat that all major proess management events along with other the operatingsystem events are reorded in performane monitoring trae bu�ers. Therefore, upon eahover�ow exeption, the sampling engine heks whether a ontext swith has reentlyourred by onsulting the trae bu�er. Using this sheme, there is a delay in detetingontext swithes, but beause the granularity of ontext swithes is usually around 10milliseonds, whih is two orders of magnitude larger than the multiplexing granularitywe typially use, the impreision added by a small delay in deteting ontext swithes isinsigni�ant.In order to reord the gathered HPC values, in K42 we used the existing performanemonitoring infrastruture [WR03℄. The infrastruture provides for an e�ient, uni�edand salable traing faility that allows for orretness debugging, performane debuggingand on-line performane monitoring. Variable-length event reords are loklessly loggedon a per proessor basis in the trae bu�er mentioned above. The infrastruture isuniformly aessible to the operating system and user programs. The reorded eventsare enoded using XML, and thus, muh of the implementation of adding and proessingnew events is automated [WSS+04℄. The HPC values gathered by the sampling engineare added to the bu�ers and thus available to any interested party.In Linux, we integrated both �ne-grained HPC multiplexing and statistial stall break-down into the publily available Linux's OPro�le toolkit [OPr℄. OPro�le is a system-widepro�ler that uses HPCs for both time-based and event-based PC sampling of both userprograms and the operating system kernel. To implement HPC multiplexing, we addeda trae bu�er similar to that of K42, to Opro�le's kernel module, mainly to be ableto reord potentially large of logial HPC vetors. Also, Opro�le's over�ow exeptionhandler is modi�ed to swith between di�erent HPC groups.The PMU library provides a number of alls to allow user programs to inlude a set ofHPC groups to be ounted in di�erent ounting modes. Also, it allows the user to hangethe multiplexing round as well as the period between eah two onsequtive reording ofthe logial HPC vetor into the trae bu�er. In K42, the PMU library ommuniateswith the sampling engine through a set of system alls while in Linux, the PMU library

Chapter 2. CPU Bottlenek Analysis 32uses newly reated entries in the oprofilefs �le system for this purpose.
2.7 Experimental EvaluationWe developed and ran a number of experiments to evaluate our approah. In this setion,we desribe these experiments and present their results. First, we brie�y desribe how wevalidate the basi values we read from the HPCs for di�erent hardware events. We thenpresent the results of our statistial analysis of sampling auray and show how aurayhanges as a funtion of multiplexing granularity and multiplexing ratio. Finally, weanalyze the auray and usefulness of omputing SSB values.In our experimental analysis, we have used a subset of the SPEC2000 benhmarksuite [(SP℄, SPEC JBB2000 [Sta℄, VolanoMark [Vol℄, and MySQL database server [MyS℄.Throughout this setion we present our results only for a representative set of applia-tions. Appliation gzip g perlbmk rafty applu mgrid art mesaInstrutions Retired 0.01 0.06 0 0 0 0.05 0 0.12L1 DCahe Loads 0.09 0.04 0 0 0.02 0.07 0.03 0.22L1 DCahe Stores 0.13 0.08 0 0 0 0.03 0 0.10L1 DCahe Misses 1.21 0.05 0 0 0.02 0.07 0.07 0.05ICahe Misses N/A 0.12 0.02 0.09 0.02 N/A 0.03 N/ATLB Misses N/A 0.11 N/A N/A 0.01 0.15 N/A N/AERAT Misses 0.79 0.13 0.01 0.02 0.07 0.71 0.42 0.21L2 Cahe Misses (Data) 0.24 0.01 0.07 0.02 0.02 0.06 N/A 0.17Branh Mispredits 0.36 0.05 0.01 0 0.02 0.18 0 0.13Table 2.6: KL-distane between probability distribution P , whih is obtained by fully ountinghardware events, and P ′, whih is obtained through multiplexing. The multiplexing ratio is setto 10 and the multiplexing round R is set to 2 million yles. N/A implies the event is lessfrequent than one every 10,000 yles, on average, and value 0 is used for any value less than
0.01.

Chapter 2. CPU Bottlenek Analysis 33

�� �� � �� �� �� �� � �� �� �� �� � �

� � � � � � �� �� � 	 � �

�� � �
� � �
������������

��

� � � � � � � � �
� �!
� " � �

Figure 2.6: Comparing fully ounted L1 DCahe Miss Ratio with multiplexed (and extrapo-lated) ounts of the same event when running g. The multiplexing ratio is set to 10 and themultiplexing round is set to 2 million yles.2.7.1 Auray of MultiplexingIn order to measure the auray of multiplexing versus fully ounting the hardwareevents, we use a statistial analysis. When ounting events fully, we assoiate with eahhardware event, e, a probability distribution Pe(Ri) representing the probability of event
e ourring in the time interval Ri. Pe(Ri) an be simply alulated by dividing thefrequeny of e re-ourring in the interval Ri by the total number of e events duringa monitoring session. That is if Ne is the total number of ourrenes of event e, and
Ne(Ri) is the number of ourrenes of event e in interval Ri, the probability of event eourring within Ri is alulated as Pe = Ne(Ri)

Ne

so that ∑N
i=0 Pe(Ri) = 1.With multiplexing, on the other hand, we ount how many times e ours in a subin-terval of Ri, and linearly sale it to the entire interval, whih will give us another prob-ability distribution P ′

e(Ri). A key question is how the two distributions, Pe and P ′

e,orresponding to the atual ounts and sampled ounts, di�er. To answer this question,we use Kullbak Leibler distane (KL-distane), whih is often used to measure similarity(or distane) between two probability distributions[CT03℄. KL-distane is de�ned as:
K(Pe, P

′

e) =
∑

P (x) log Pe(x)/P ′

e(x)and omputes the geometri mean over Pe(x)/P ′

e(x).

Chapter 2. CPU Bottlenek Analysis 34For instane, if Pe(x) is 1.5 times P ′

e(x), log Pe(x)/P ′

e(x) is equal to 0.58 (we use log2everywhere in our alulations), and if Pe(x) is 8 times P ′

e(x), then log Pe(x)/P ′

e(x) wouldbe equal to 3. Therefore, the noise of very short periods of time where Pe(x) is drastiallydi�erent from P ′

e(x) will be redued.The reason we use KL-distane (as opposed to, for instane, the mean over |Pe(x) −

P ′

e(x)|) is that in the ontext of runtime optimization, the absolute values of the hardwareevent ounts are often not really important beause there are many short transient statesin the hardware. What is more important is whether there is a signi�ant and ratherstable shift in the rate of ourrenes of a partiular hardware event that lasts for asu�iently long period of time to be worth onsidering. Therefore, although there maybe sampling intervals in whih the values of Pe and P ′

e di�er signi�antly, if suh intervalsare limited in number and isolated, they do not distort the distane measure due to the
log fator in KL-distane.In this study, we onsider any value of K(Pe, P

′

e) below 0.20 to be aeptable. In-formally speaking, we onsider multiplexing to be adequate if the di�erene between thevalues of two probability distributions on average does not exeed 15%.We measured K(Pe, P
′

e) for a large number of hardware events for the seleted SPEC2000appliations. Table 2.6 shows the results for several important hardware events and someof the appliations. The N/A entries imply that the hardware event was on average lessfrequent than one per 10,000 yles, and hene, insigni�ant. The 0 entries imply theatual value of K(Pe, P
′

e) was less than 0.01. The samples are olleted over 6-billionyles (after skipping over the �rst billion instrutions). The multiplexing interval R is2 million yles, and the multiplexing ratio is 10. As it an be seen from Table 2.6, theKL-distane value is small for most hardware events in a majority of appliations, witha few exeptions we disuss later in this setion. In Figure 2.6 we graphially depitthe rate of ourrenes for L1 DCahe Miss Ratio for g both when the event is fullyounted as well as in the multiplexed mode. It an be seen that the multiplexed eventrate aurately follows all signi�ant and steady hanges in the real ourrene rate ofthe hardware event even though there are di�erenes over small periods of time.There are a few ases in Table 2.6 with unaeptably high values. However, we note

Chapter 2. CPU Bottlenek Analysis 35that these ases all orrespond to fairly infrequent events (one per 100 yles on average).Although infrequent events are unlikely to ause performane bottleneks, we exploredthis issue further by varying the multiplexing granularity and multiplexing ratio for them.We ran several experiments with gzip for whih at least three hardware events have arelatively large KL-distane: the L1 data ahe miss, ERAT (E�etive to Real AddressTable whih is used by IBM POWER proessors as a ahe for their relatively largeTLBs) miss, and branh mispredition. Figure 2.7 shows the results of the experiments.The graph on the left shows how the auray hanges as a funtion of the multiplexinggranularity. As a general rule, larger granularities have higher auray for infrequentevents. Therefore, we hange the multiplexing granularity from 200,000 to 500,000 yles.We then wanted to know how sensitive the auray is to the multiplexing ratio in thismultiplexing granularity. The graph on the right shows the results of our experiments.It appears that none of the three hardware events is highly sensitive to the multiplexingratio. The general onlusion we draw from these experiments is that it is better to uselarger granularities (with a �xed multiplexing ratio) for infrequent hardware events.

100 1000
Multiplexing Granularity in 1000 Cycles.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

K
L

-d
is

ta
nc

e

(a)

5 10 15 20
Multiplexing Ratio

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

K
L

-d
is

ta
nc

e

(b)

L1 DCache Miss

ERAT Miss

Branch Mispredictions

Figure 2.7: Tuning multiplexing ratio and multiplexing granularity for gzip: (a) The KL-distane generally dereases as the multiplexing granularity inreases. (b) Fixing the granu-larity to 500,000 yles, all three hardware events seem to be fairly stable when hanging themultiplexing ratio within a realisti range.

Chapter 2. CPU Bottlenek Analysis 36

#$
%&
'(
)

* +, - . / 0 1 1 02 3 4 5 4 16 7 8
9:;<=>?=@A
B>C@D;CEFB

G H I G J K L M N OP Q Q R S T R J M U SV W U UX Y J N Z L V W U U[Y J N Z L V W U U\ R J N ZV W U] R L Q S^ _ I G J K L M N O[I G J K L M N OY ` a] b L K W ` M
Figure 2.8: Stall breakdown for an instane of fft run over a period of 40 billion-yles onIBM POWER5.2.7.2 Stall BreakdownIn this subsetion, we present an example of how stall breakdown information look like.In Figure 2.8, we show the result of omputing stall breakdown for fft over a period of40 billion yles. There are several observations that an be made from the graph. First,the entire run is divided into several fairly long phases in whih either CPI is stable,or CPI hanges in a fairly regular fashion. In eah phase, it is possible to pinpoint oneor more major soures of stalls. Seondly, there is often a large gap between the real,measured CPI and the ideal CPI, most of whih an be explained by the stalls. Thirdly,in this partiular example, misses in the address translation data strutures (i.e., ERATand TLB) seem to be the a primary soure of stalls in ertain phases of the program.The stall breakdown omputed by our sampling engine an provide useful and timelyhints to a runtime optimizer, allowing it to fous, in this ase, on tehniques to reduedata ahe misses for most of the program and preventing the optimizer from fousingon optimizations that might redue the omputation, branh mispreditions, or ICahemisses as they will not have signi�ant e�et unless they manage to also redue dataahe misses. Also, the online availability of the stall breakdown information allows the

Chapter 2. CPU Bottlenek Analysis 37Appliations stalls (in million yles in a billion CPU yles)Loal Loal Remote Remote Loal Remote Total Total Error (%)L2 L3 L2 L3 Memory Memory Estimated Measuredart 130 470 0 0 0 0 600 363 65swim 132 80 0 0 255 0 468 346 35apsi 40 315 0 0 0 0 356 331 7mf 43 321 0 0 0 0 365 310 17spej 78 91 20 33 56 7 287 276 3volano 197 6 37 0 0 0 241 235 2vpr 37 75 0 0 0 0 113 97 15rafty 70 32 0 0 0 0 103 82 25twolf 49 38 0 0 0 0 88 68 29ammp 16 106 0 0 0 0 123 53 132g 48 10 0 0 0 0 60 51 17bzip2 28 16 0 0 0 0 45 37 20mysql 13 2 1 1 0 0 19 22 -13gzip 16 0 0 0 0 0 16 14 18Table 2.7: Soure-based L1 data ahe miss stall breakdown: stalls of eah storage soure isestimated by using its aess frequeny and its average aess lateny. The total stalls due tothe L1 data ahe miss is measured by using the IBM POWER5's PMU.runtime optimizer to monitor the results of the applied optimizations, and measure theirbene�ts and potential negative side e�ets in a feed-bak loop.Soure-based BreakdownIn this subsetion, we present the results of our analysis of the auray of the naïveapproah for breaking down the L1 data ahe miss stalls based on their soures whihis desribed in Setion 2.5.2. Table 2.7 shows both estimated stalls aused by varioussoures using their aess frequeny and average aess lateny, as well as total numberof stalls that are atually aused by the L1 data ahe misses measured by using the IBMPOWER5's PMU.As expeted, in most ases (with mysql being the exeption), the naïve approahoverestimates the stalls aused by di�erent soures, as the sum of all estimated stallsis higher than atual stalls aused by the L1 data ahe misses. However, in mostases, espeially in memory-bound appliations, the overestimation error is not so large

Chapter 2. CPU Bottlenek Analysis 38

cde
fghch
dhe

h d i dc e c hc cj k l m n opq r st u v t pwx y z{ { { |k l m nt | mt s k } o n n o~ p wx w nt | ����������
���������

`

Figure 2.9: The runtime overhead of HPC multiplexing as well as omputing and logging SSB(Note that the x-axis is in logarithmi sale).that makes the soure-based breakdown to be misleading. In summary, although thenaïve based approah is not a perfet solution, in seems to useful in partie for manyappliations.
2.7.3 Runtime OverheadFigure 4.13 shows the runtime overhead of our performane monitoring faility for di�er-ent sampling frequenies, whih is de�ned as the number of over�ow exeptions generatedin a unit of time. At eah over�ow exeption, the HPC values are olleted, and depend-ing on the logging period, added to the trae bu�er. Also, the next HPC group is seletedand program the PMU to ount it. The runtime overhead is measured by running sev-eral benhmarks to ompletion and omparing the exeution time with and without HPCsampling. We found that the runtime overhead inreases linearly with the sampling fre-queny within the range we examined. Moreover, we found that the runtime overheadis fairly independent of the appliation that is running among the set of appliations weused. In partiular, at 20,000 samples per billion yles (i.e., 20000 over�ow exeptions),the runtime overhead is around 2%. We believe that with suh low runtime overhead,our sampling engine is suitable for runtime optimization purposes.

Chapter 2. CPU Bottlenek Analysis 392.8 Related WorkSoftware HPC multiplexing was previously implemented for PAPI [DLM+03℄, a om-monly used performane monitoring library that is available on a wide range of arhite-tures. However, in PAPI multiplexing is implemented at user level using the operatingsystem signal mehanism [May01, MC05℄. A �ne-grained timer is used as a means forontrolling the HPC group swith. The timer will send a signal to the proess that hasrequested a multiplexed set of hardware events. A major limitation of this approah isthat due to the large overhead of HPC group swith (the ost of signal delivery plus theost of kernel/user ontext swithes), the multiplexing granularity must be large, and as aresult, the extrapolation error may beome high for some appliations. Another problemwith swithing HPC groups in user spae is that there is potentially a large lateny be-tween the time when the timer expires and the time when the signal is atually deliveredand the signal handler (where the urrent HPC group is read and stored) is alled whihadds to the multiplexing error. Finally, to the best of our knowledge, there is no quanti-tative study on the overhead and auray of PAPI's multiplexing engine. In theory, oneould easily build PAPI's high-level platform-independent interfae transparently on topof our low-level and e�ient multiplexing sheme.Intel's VTune [Intb℄ is one of the most widely used tools to make the PMU failitiesavailable to developers. It provides both sampling and binary instrumentation failities,and it outputs a graphial display of programs hot spots as well as all graph. There areseveral other tools built for various hardware platforms with similar sets of features, suhas Apple's CHUD [App℄ and PCL [PCL℄. They provide failities to identify program hotspots and the frequeny of important hardware events suh as ahe misses or branhmispreditions. To the best of our knowledge, none of these tools allows for pro�lingmore events than the number of HPCs at the same time. Also, they often only exposethe hardware PMU features diretly to the user. It is up to the user to interpret thesemantis of the low�level hardware events.DCPI is another pro�ling tool that uses �ne-grained sampling of the HPCs to identifysystem-wide hot spots at run-time [ABD+97℄. It also attempts to identify pipeline stalls

Chapter 2. CPU Bottlenek Analysis 40at the instrution level using event-based sampling. There are some hints that HPCmultiplexing is implemented in this system, but no details of the design nor statistialanalysis is provided. Moreover, there is a major simplifying assumption made by theauthors, namely that the distane between the instrutions ausing the performaneounter to over�ow and the atual ourrene of the over�ow exeption is �xed. Thisassumption is used to attribute stalls to the instrutions that are ausing them. However,our experiene with more modern real proessors with deeper and wider pipeline showsthat this assumption is fairly unrealisti.Reent work suggests a performane ounter arhiteture for measuring the CPI om-ponents using a simpli�ed model to quantify the negative e�et of the miss events in themiro-arhiteture throughput [EEKS06, KS04℄. The authors ompared the auray oftheir arhiteture to the one implemented in IBM POWER5 using simulation. Althoughthey improved the auray of CPI breakdown information mainly by taking mispreditedpaths into aount, their model still laks a omprehensive analysis of potential overlapsof stalls from di�erent auses in the proessor bak-end. Moreover, due to the di�erenein the experimental methodology (a simulation environment versus a real and omplexproessor) the head-to-head omparison with IBM POWER5 may not be meaningful.Nevertheless, suh attempts on�rm the need to implement features in the proessorPMU to analyze the auses of overlapping stalls more aurately.Pro�leMe proposes instrution sampling to randomly monitor individual instrutionsas they pass through the di�erent stages of the system pipeline [DHW+℄, in order to gatheraurate information on what are the major soures of lateny. Although instrutionsampling an be e�etive, there is little analysis in the paper that shows the atual run-time overhead of onstruting an instrution-level pro�le. We believe our approah an beomplemented by approahes suh as Pro�leMe to searh for bottlenek in a multi-levelfashion.Wassermann et. al presented an analysis of miroproessor performane using a modelsimilar to SSB to haraterize the e�et of stalls aused by ahe and memory laten-ies [WLLB97℄. Estimating the number of stalls aused by a soure is done in softwareby multiplying the number of aesses to the soure by its average aess lateny. Our

Chapter 2. CPU Bottlenek Analysis 41approah extends this e�ort in two diretions. First, we exploit hardware support tomeasure the stalls more aurately. Seondly, while we inlude all possible soures ofstall into our analysis, their approah mainly foused only on ahe and memory stalls.Slak [FBHN03a℄ and Interation Costs [FBHN03b℄ are two models for auratelyestimating how muh performane gain an be ahieved by idealizing latenies of in-dividual instrutions. Although these approahes provide aurate information on thepotential gain of idealizing individual instrutions, they require additional hardware sup-port and extensive postmortem analysis, whih make them di�ult to use in the ontextof run-time optimization.FlashPoint [MOH96℄ and Lemieux [Lem96℄ both attempt to integrate monitoring theativities the memory interonnet in a shared memory multiproessor with the existingahe-oherene hardware. The basi idea is that the ahe-oherene hardware auto-matially ativates a software trigger on ahe oherene ativities that are inurred asa result of L2 ahe misses. The trigger is able to obtain muh information about ahemisses inluding their lateny and then builds summary performane information suhas histograms. FlashPoint is implemented in the FLASH multiproessor, and Lemieuxapproah is implemented in NUMAhine multiproessor, both presumably with an a-eptable runtime overhead (e.g., around 10%). While the features suggested by theseapproahes are very useful, the rami�ation of implementing them in today's muh fasterand more omplex miroproessors are not known. Moreover, the fous of both ap-proahes is primarily on o�-hip memory tra�. In priniple, one an extend theseapproahes to the ase of on-hip ommuniation through shared ahe.2.9 Conluding RemarksHardware performane ounters (HPCs) are useful for analyzing and understanding theperformane of a proessor exeuting ode, but there are hallenges in using them online. Too few HPCs are available in most today's miroproessors, and, the de�nitionsof the hardware events that an be ounted by HPCs are low-level and omplex.In this hapter, we desribed two tehniques that overome the limitations of existing

Chapter 2. CPU Bottlenek Analysis 42miroproessor HPCs. First, we provide a larger set of logial HPCs by dynamiallymultiplexing physial HPCs using statistial sampling of hardware events. Using realprograms, we showed experimentally that ounts of hardware events obtained throughsampling is statistially similar (i.e. within 15%) to the atual event ounts. Seondly,we proposed a simple performane model based on CPI breakdown that fouses on stallyles, whih are de�ned as yles in whih no instrutions ompletes. We show thatompletion stalls are partiularly important, as they ontribute to over 73% of all CPUyles aross the SPEC2000 benhmarks. Moreover, removing the ompletion stalls willresult in a CPU throughput whih is fairly appliation independent and is lose to themaximum CPU throughput determined by the pipeline width. We exploit IBM Pow-erPC970 and POWER5 features to speulatively assoiate eah ompletion stall yle tothe proessor omponent that likely aused the stall. The entire stall breakdown modelis omputed online by using our HPC multiplexing engine with a run-time overhead ofunder 2%.The faility we have implemented is useful for detailed on-line performane analysis ofappliation and system ode running at full speed with small overhead. It is also e�etivein reporting hardware bottleneks to tools suh as a dynami optimizer that might guidedynami adaptation ations in a running system. A number of outside groups havestarted using our sampling-based tool. For example, our tool has been suessfully usedby several researh groups within IBM researh over the last few years for the purposeof detailed bottlenek analysis and guiding performane optimization. Their experieneindiates that the stall breakdown faility is a powerful model, whih is easy to use andunderstand and that is reasonably aurate even for fairly omplex appliations.When we started working on exploiting proessor HPCs, we were surprised how dif-�ult it was to use the ounters. Their exat semantis are generally not de�ned ina publi way, and we had to spend onsiderable e�ort reverse engineering their realmeaning. Moreover, we were surprised how di�erent the HPCs were from proessor toproessor, even within the same proessor family.Throughout this work, we found that to orretly interpret the values the HPCs, onemust understand the details of the target proessor miroarhiteture, something that is

Chapter 2. CPU Bottlenek Analysis 43often proprietary and something most software engineers would �nd di�ult. The HPCs,with the events they an ount, were learly designed more for proessor arhitets thanfor software arhitets. In many ways, our tool helps map detailed miro-arhiteturalevents to higher-level information, understandable by a larger audiene.Looking into the future, we would hope that proessor designers inrease the numberof HPCs available and that an inreased number of higher-level events, more useful tosoftware optimizers, be ountable. With more ountable higher-level events, it beomespossible to standardize HPCs and their interfaes aross di�erent proessors so that itbeomes easier to port tools suh as ours to di�erent arhitetures. Long term, weenvision an HPC standard emerging that software an rely on and implemented on allproessors (similar to the way the �oating point standard is implemented today).

Chapter 3
Hardware Data Sampling to DetetThread Sharing
3.1 IntrodutionHardware data sampling is a mehanism in the miro-arhiteture to ollet data ad-dresses that are manipulated by programs either periodially or upon ourrene of er-tain hardware events. Data sampling has been used e�etively by a number of researhersfor a variety of purposes. For example, it has been used to trak aess patterns of indi-vidual ahe lines in order to be able to insert software prefething hints [LCF+03℄. Otheruses inlude algorithms to automatially detet ahe working set sizes [BH05℄, isolationof lateny-ausing memory regions [BH℄, or to enhane NUMA page plaement [THb℄algorithms. Finally, there have been attempts to use data sampling to verify programorretness or enfore seurity [ZLF+04℄.Hardware support for data sampling is present in many modern miro-arhiteturessuh as IBM POWER5 [SKT+℄, Intel Itanium [Inta℄, Sun's UltraSpar [NZ℄, and AMDBarelona [CI06℄ proessors. In most arhitetures, a speial Data Address Register(DAR) is dediated for sampling data addresses. The ontent of the DAR is automat-ially updated by the hardware PMU with the operand of a memory instrutions (loador store). The PMU an usually be programmed to update the DAR only when ertainseletion riteria are satis�ed. Examples of suh seletion riteria inlude when a data44

Chapter 3. Hardware Data Sampling to Detet Thread Sharing 45ahe miss or a TLB miss has ourred during the exeution of a memory instrution.Most existing arhitetures provide only one DAR. Hene, at any point in time, only oneseletion riterion an be used to �lter the data samples by the hardware PMU.In most ases, however, the underlying hardware support for data sampling is notadequate. This has fored researhers to either roughly approximate the informationthey need from hardware, or to propose new hardware support spei�ally for theirpurpose. Examples of limitations of hardware support for data sampling that we haveenountered in our own studies are the following.Coarse Seletion Criteria: In most arhitetures, the seletion riteria supportedby the hardware PMU are often not su�iently spei�. As a result, many of the datasamples that are olleted by the hardware are not relevant to a partiular optimizationtehnique. Resolving this issue often requires potentially expensive software �lteringtehniques. An example of suh �lter mehanism is presented in Setion 3.2.1, wherewe use a ombined hardware-software approah to apture ahe misses that are fethedfrom a spei� storage soure.In�exible Interfae: In most ases, the hardware interfae for speifying the sele-tion riteria is too in�exible. For instane, only one seletion riterion an be spei�edat a time. Support for ombining multiple seletion riteria in either onjuntive ordisjuntive forms is not provided. We show in Setion 3.2.2 how we use the HPC mul-tiplexing faility desribed in Setion 2.4 to implement having multiple seletion riteriain a disjuntive form.Also, due to the in�exible hardware interfae, data samples are delivered to softwarein raw form whih is often too voluminous to be stored and proessed in their raw form.One has to build build e�ient summary data strutures at the software level to be ableto overome spae requirements. A widely used example of suh data strutures is thehistogram. In a ase study, we will show how we use a variation of histograms to buildsharing signatures for onurrently running threads.

Chapter 3. Hardware Data Sampling to Detet Thread Sharing 463.1.1 Organization of ChapterIn this hapter, we �rst present a brief overview of the major methods of hardwaredata sampling and desribe the advantages and shortomings of eah method. We thenpresent our spei� mehanisms (i) to sample data aording to the soure it is fethedfrom, and (ii) to apply multiple seletion riteria simultaneously. We also provide adetailed explanation of how we use these mehanisms to detet sharing patterns amongonurrently running threads, and how one an use suh sharing patterns to lusterthreads in a hip multiproessor (CMP) arhiteture to avoid expensive ross-hip dataexhange. At the end of the hapter, we disuss some of the problems with urrenthardware support for data sampling and provide onrete proposals to solve some ofthese problems.3.1.2 Data Sampling MethodsIn this setion we provide a brief desription of di�erent methods of hardware datasampling. We also disuss the major advantages and shortomings of eah approah.Continuous Data SamplingWith ontinuous data sampling, the DAR is ontinuously updated by the hardware PMUas memory instrutions with operands that math the seletion riteria arrive in thepipeline. With ontinuous data sampling, the DAR is onstantly overwritten as newinstrutions are issued. System software an take samples of DAR values by oasionallyreading its value, whih will refer to the last operand address that has mathed theseletion riteria.The main advantage of this approah is that all address operands of memory instru-tions have a fairly equal hane of being aptured by system software. That is, it ispossible for system software, at least in priniple, to reord all address operands thatmath the seletion riteria (e.g., a ahe miss). This is an important property in ertainoptimization shemes, where it is important to see all data addresses that ause a ertainevent suh as ahe miss or TLB miss. Moreover, system software is able to use hardware

Chapter 3. Hardware Data Sampling to Detet Thread Sharing 47performane ounters orresponding to the seletion riteria to apture exatly one in Naddress operands that math the seletion riteria.The major limitation with ontinuous data sampling is that, due to the deep proessorpipeline, there is a potentially large distane in the dynami instrution stream betweenthe memory instrution that has aused the DAR to be updated, and the urrent programounter (PC). As a result, it is di�ult to diretly attribute the reorded DAR to apartiular instrution. In priniple, one an pereive a hardware mehanism to trakbak eah instrution in the pipeline to an instrution address. But to the best of ourknowledge, suh a mehanism does not exist in any of the todays' proessors.A seond issue with ontinuous data sampling is that it is inherently speulative inthe sense that the DAR is updated regardless of whether the issued instrution thataused the DAR to update atually ompleted or �ushed due to branh mispredition.As a result, any analysis of the sampled data addresses must take the noise generated bythe mispredited paths into aount.Instrution SamplingWith instrution sampling, an instrution is tagged to be monitored by the hardwarePMU as it passes through the di�erent stages in the proessor pipeline [DHW+, IBM06,Inta, CI06℄. The address of the tagged instrution is stored into a dediated InstrutionAddress Register (IAR) and the DAR is also updated only when the address operand ofthe tagged instrution is alulated.The main advantage of instrution sampling for the purpose of data sampling isthat the sampled addresses an be preisely traked bak to the instrutions that haveaessed them. This has the potential for more omplete analysis, as it is possible toharaterize omputation bottleneks both in terms of the exeuting ode and the datathat is manipulated by the ode at the same time. This is signi�ant as identifying theode that is onsuming most of the exeution time alone may not be su�ient as a singlesegment of ode (e.g., a funtion) an aess many di�erent sets of data addresses (e.g.,depending on the input parameters). Similarly, data sampling alone may not be su�ienteither, as the data that auses long lateny may be aessed by many instrutions through

Chapter 3. Hardware Data Sampling to Detet Thread Sharing 48di�erent ode paths in the program.The major limitation of instrution sampling is its low reall: of the many instrutionsthat �ow through the pipeline, only very few instrutions (usually only one) an besampled. As a result, many relevant data aesses will pass by unnotied. This problemis aggravated when sampling is onditional to some seletion riteria (e.g., ahe misses),sine instrution tagging ours independently of the seletion riteria in most proessors.This is beause instrution tagging is usually done at an early stage of the proessorpipeline (e.g., the feth or deode stage) whih is too early to evaluate any bakend-level seletion riteria (e.g., a ahe miss). In suh ases, a large number instrutionsthat satisfy the seletion riteria will not be tagged, and a large number instrutions thatare tagged do not satisfy the seletion riteria.Hardware Data BreakpointsWith ontinuous sampling and instrution sampling, it is di�ult to wath every aess toa partiular memory address. Suh wathing mehanisms have been used, for instane, tomeasure the program ahe working set size by measuring the reuse distane of a sampledset of ahe lines [BH05℄ or to identify potential bugs or attaks [ZLF+04℄. While thereare mehanisms to monitor aesses to individual pages at the operating system kernel,(e.g., by reseting and heking page table bits), wathing aesses at the granularity of asingle ahe line is not diretly possible without additional hardware support.An alternative method to monitor spei� data addresses is to use the data breakpointmehansim suh as the one implemented in the AMD64 arhiteture [AMD℄, whih isoriginally designed for debugging purposes. If a ahe line-sized data item is seleted tobe a wath point, every subsequent aess to the data item will raise an exeption tothe operating system. The operating system exeption handler an examine the urrentprogram ontext and the wathed address.The breakpoint mehanism is potentially ostly to use, sine every aess to a seletedmemory item will ause an exeption. For instane, Berg et al. show that an analysisof ahe working set size by using the breakpoint mehanism ould result in an averageoverhead of around 40% [BH04℄.

Chapter 3. Hardware Data Sampling to Detet Thread Sharing 49Hardware Bus MonitorsAnother approah to sample data aessed is to monitor the memory bus transationsand sample the addresses that appear on the bus, rather than sampling the addresseson eah proessor individually. Real systems suh as Sun Mirosystem's Fire Link havetaken this approah [NZ℄.While monitoring the memory bus has the advantage of having the global order ofreorded data samples aross the entire system, it has several drawbaks. First, addressesthat appear on the bus are already �ltered by a potentially large on-hip ahe. Asa result, muh of the appliation data aess pattern is not visible to any bus-basedanalyzer. This problem is partiularly aggravated in todays hierarhial multiproessingarhitetures (i.e., SMP-CMP-SMT). Seond, bus-based data sampling requires speialhardware support, whih makes it hard to be used for o�-the-shelf ommodity proessors.Finally, only physial addresses appear on the memory bus, and as a result, a softwareanalyzer must map the physial addresses bak to their orresponding virtual addressesin an online fashion.
3.1.3 Data Sampling ModesThe DAR an be read usually by both kernel and user-level software. Software maydeide to read and reord the DAR periodially, i.e., time-based sampling or upon aertain number of instanes of a partiular event, i.e., event-based sampling. Time-basedsampling is simple and generi, and it aptures the frequeny distribution of aesses to alldata items uniformly. On the other hand, event-based sampling is more targeted towardsmonitoring and sampling addresses that are involved in spei� hardware events (e.g.,ahe misses, TLB misses, or ahe invalidations in multiproessor systems). As a result,event-based sampling may be better suited for ertain optimizations, as it automatiallyignores all unrelated data aesses.

Chapter 3. Hardware Data Sampling to Detet Thread Sharing 503.2 Our Sampling TehniquesIn this setion, we desribe two novel data sampling tehniques we developed and usedfor the purpose of deteting data sharing patterns among onurrent threads. These twotehniques are fairly generi and an be potentially used for other purposes than theone we used in our work. The �rst tehnique is to sample data based on the soure itis fethed from, and the seond tehnique is to ombine multiple sampling riteria in adisjuntive form.3.2.1 Soure-based Data SamplingIt is often useful to be able to determine the storage soure from whih a sampled dataaddress item is fethed. The storage soures inlude L1 ahe, loal or remote L2 ahes(in SMP systems), loal or remote L3 ahes, and loal or remote DRAM memory mod-ules (in NUMA systems). For instane, our thread sharing detetion sheme is basedon the ability to sample data items that are onsistently fethed from L2 or L3 ahesof remote proessor hips. Having soure information is, in this ase, helpful to be ableto onlude that there is onsistent data sharing among threads that are running onmultiple separate proessor hips. Another use of the soure information is in a NUMApage plaement sheme that dynamially monitors the aesses of threads to both loaland remote memory modules and determines the optimal loation of a given data pageand potentially migrates the pages aordingly.However, to the best of our knowledge, sampling data aording to their souresis not diretly available in the PMU features of any of today's miroproessors. As aworkaround, we have exploited IBM POWER5's PMU features to ondut soure-basedsampling indiretly. IBM POWER5 supports the ontinuous data sampling method. Theseletion riteria, however, is �xed to be only either an L1 data ahe miss or a TLBmiss or both. As a result, in ontinuous data sampling, the DAR ould hold the addressof the last L1 data ahe miss. But it is not possible to diretly determine the sourefrom whih an L1 data ahe miss will be eventually fethed. On the other hand, IBMPOWER5 PMU an ount L1 data ahe misses broken down by the soures from whih

Chapter 3. Hardware Data Sampling to Detet Thread Sharing 51the ahe miss is satis�ed. Therefore, it is possible to set the PMU over�ow exeption tobe raised when a threshold on the number of L1 data ahe misses from a ertain soureis reahed. One an over�ow exeption is raised, the last data ahe miss is likely to bethe data ahe miss that aused an over�ow exeption. Therefore, by reading the DARonly when the ahe miss ounter of a spei� soure over�ows, we ensure that most ofthe data samples read are atually fethed from the partiular soure.3.2.2 Multiple Sampling CriteriaMost modern CPUs support only one DAR. Hene, at any point in time, only one datasampling riterion an be spei�ed. This is a limitation, as one may need to simultane-ously monitor data addresses with di�erent riteria, eah with a ertain distribution. Forinstane, in analyzing a data aess pattern with the goal of improving page plaementin a NUMA arhiteture, one may need to sample data addresses that are fethed bothfrom loal memory modules and from remote memory modules at the same time. Astraightforward solution would be to have multiple DARs that an be independently pro-grammed for di�erent riteria. We are not aware of potential hallenges in the hardwareimplementation of having multiple DARs. However, it does not seem that the hardwaredesigners are willing to add more data sampling resoures unless researhers show howsuh resoures an be utilized e�etively.Our, rather temporary, solution for this problem is to integrate data sampling withthe HPC multiplexing introdued in Setion 2.4. With this approah, we sample data foreah spei�ed riterion during a time slie of g yles in a multiplexing round of R yles.When the time slie is over, another data sampling riterion is spei�ed as the new HPCgroup is programmed. Speifying a data sampling riterion is typially lightweight, asit requires manipulating the same ontrol registers that are used for swithing from oneHPC group to the other. Several data samples an be reorded within a time slie g asthe HPC of the orresponding event over�ows.The length of a time slie (e.g., g yles) should be long enough so that the samplingevent ounter over�ows at least one. Otherwise, no samples will be reorded, as theHPCs are reset every time they are sheduled. To ope with this problem, one may

Chapter 3. Hardware Data Sampling to Detet Thread Sharing 52redue the threshold on whih the sampling event is supposed to over�ow. However, inthe worst ase, the sampling event may not our even one during the time slie. Inthis ase, a possible solution is to treat the sampling event ounters di�erently by savingtheir value at the end of a time slie and restoring them when they are sheduled in again(as opposed to reseting them). In pratie, however, the sampling events of interest areoften frequent enough to be aptured in a single time slie multiple times. This is beauseif an event is diretly or indiretly ausing a performane bottlenek, it must be fairlyfrequent.3.3 Deteting Data SharingIn this setion we provide the details of a spei� ase study where we use the datasampling tehniques desribed in Setion 3.2 to improve performane by adding sharing-awareness to the operating system CPU sheduler in a Chip Multiproessor (CMP) envi-ronment. First we desribe the motivation behind the work. In Setion 3.3.2 we desribethe details of our tehnique in building sharing signuatures for running threads. Finally,in Setion 3.3.3 we disuss our approah in lustering threads that share data together.3.3.1 MotivationAs limits in miroproessor tehnology have slowed improvements in lok frequeny, andmiro-arhiteture omplexity has limited more radial exploitation of Instrution LevelParallelism (ILP), major miroproessor manufaturers have turned towards providingThread-Level Parallelism (TLP) as a means to speed up appliations. Both CMP andsimultaneous multithreading (SMT) tehnologies were introdued over the last severalyears even for small-sale omputer systems suh as laptops, and desktop omputers, aswell as for large-sale servers. As a result, shared memory multiproessors have beomeinreasingly prevalent. This trend seems to ontinue as CPU hips are equipped with aninreasing number of proessing ores.A key di�erene between traditional shared memory multiproessors (SMPs) and moremodern multi-ore systems is that the latter have non-uniform data sharing overheads;

Chapter 3. Hardware Data Sampling to Detet Thread Sharing 53

Figure 3.1: The arhiteture of IBM OpenPower720. The numbers on arrows show the latenyof aess from a thread to di�erent levels of memory hierarhy. Any ross-hip sharing takes atleast 120 CPU yles.i.e., the overhead of data sharing between two proessing omponents di�ers dependingon their physial loation. For proessing units that reside on the same CPU ore (i.e.,hardware virtual ontexts), ommuniation typially ours through a shared L1 ahe,with lateny of 1-2 yles. For proessing units that do not reside on the same CPUore but reside on the same hip, ommuniation typially ours through a shared L2ahe, with lateny of 10 to 20 yles. Proessing units that reside on separate hipsommuniate either through sharing memory or through a ahe-oherene protool,both with an average lateny of hundreds of CPU yles. As a spei� example, onsiderthe IBM OpenPower720's latenies depited in Figure 3.1.Most researh done on ahe-aware CPU sheduling has foused on maximizing andexploiting ahe a�nity, both in uniproessor and multiproessor systems [TTG95℄. How-ever, to the best of our knowledge, urrent CPU shedulers do not take non-uniform datasharing overheads into aount. As a result, threads that atively share data will notneessarily be o-loated onto the same hip. Figure 3.2 shows an example of a senariowhere two lusters of threads are distributed aross the proessing units of two hips.

Chapter 3. Hardware Data Sampling to Detet Thread Sharing 54

a. default b. lusteredFigure 3.2: Default versus lustered sheduling. The solid lines represent high-lateny ross-hip ommuniations, the dashed lines are low-lateny intra-hip ommuniations (when sharingours within the L1 and L2 ahes).The distribution of threads to proessors is usually done as a result of some dynamiload-balaning sheme with no regard for thread sharing. Consequently, when threadswithin a luster share data frequently, a typial sheduling algorithm (as shown on theleft) is likely to ause threads being assigned to ores of di�erent hips, so that there willbe a high degree of high-lateny, inter-hip ommuniation (shown with the solid lines).However, if the operating system is able to detet intra-luster thread sharing patternsand shedule the threads aordingly, then threads that share data heavily ould besheduled to run on the same hip and, as a result, most of the ommuniation (dashedlines) will take plae in the form of L1 or L2 ahe sharing.However, automatially deteting sharing patterns among onurrently exeutingthreads is non trivial. A basi approah to this problem is to to use page-level pro-tetion and aess information provided by hardware in the page tables to trak the dataeah thread is aessing. This approah has been used in the past to implement, forinstane, software distributed shared memory (DSM) [ACD+96℄. There are two majordrawbaks with this approah. First, using page granularity as the unit of sharing is toooarse in many ases resulting in a high degree of falsely deteted sharing. Seondly, theinformation on whether a page is aessed or not is available either through frequentlysanning and reseting page table entries, or by proteting pages from aess and reordinga page aess upon a subsequent page fault. Both options are potentially ostly, both in

Chapter 3. Hardware Data Sampling to Detet Thread Sharing 55terms of their diret overhead and also in terms of their indiret negative impat on per-formane through ahe pollution and TLB �ushing that ome as a result of page-tabletraversal and manipulation.In the next setion, we show how to use hardware data sampling to e�etively detetsharing patterns among threads. A major advantage of our approah is that it is able toaurately trak data sharing down to a single ahe line (whih is the unit of hardwareahe oherene). Moreover, as we show in Setion 3.4, it is possible to ahieve lowruntime overhead by having a light-weight layer of software that proesses the datasamples generated.3.3.2 Deteting Sharing PatternsUsing our soure-based data sampling mehanism, we sample data aesses that (i) inurmiss in the L1 data ahe and (ii) are eventually fethed from ahes on a remote proessorhip (remote L2 or L3). We then use these samples to onstrut a summary data struturefor eah thread, alled shMap. Finally, ompare the threads' shMaps with eah other toidentify the threads that are atively sharing data and luster them aordingly. Next,we present the details on how we build shMaps and use them for thread lustering.Construting shMapsEah shMap is a small vetor (e.g., 256 entries) of 8 bit-wide saturating ounters. Wepartition the appliation address spae into �xed sized bloks. Eah blok is mapped toa ounter in the shMap vetor using a hash funtion. An shMap entry is inrementedonly when the orresponding thread inurs a remote ahe miss on the blok. Note thatthreads that share data but happen to be loated on the same hip do not ause their
shMaps to be updated as they do not inur any remote ahe miss.The blok size is an important parameter. The advantage of a large blok size is thatthe total size of the shMap's span over an appliation's address spae inreases. However,large blok sizes may make the aess traking less preise, whih may result in falselydeteting and reporting sharing where in fat, the aesses are in di�erent spots within

Chapter 3. Hardware Data Sampling to Detet Thread Sharing 56the large blok. In this study, we set the blok size to be equal to the size of an L2 aheline (e.g., 128 bytes), whih is the unit of hardware-level data sharing in most hardwareahe-oherene protools. False sharing within a single ahe line an still happen, buthardware ahe-oherene will not be able to distinguish it from true sharing either, andas a result, it will still inur ahe line invalidations and ross-hip ommuniations.Construting shMaps involves two hallenges. First, to reord and proess everysingle remote ahe miss is prohibitively expensive, espeially for appliations in whihthere is a large volume of read/write sharing among threads and subsequently, frequentremote ahe misses. Seondly, with a relatively small shMap, there will be a lot ofollisions in hashing virtual addresses of remote ahe misses onto shMap entries, asappliations virtual address spae are muh larger than the shMap span (e.g., 64Kbytes).We use two di�erent tehniques to deal with the two hallenges. To ope with thehigh volume of data, we use temporal sampling, and to redue the ollision rate (atuallyto eliminate ollision altogether) we use spatial sampling. Using temporal and spatialsampling of remote ahe misses ombined instead of apturing them preisely is su�ientfor the purpose of deteting sharing among threads, beause we are not interested inknowing the absolute volume of sharing and all the addresses that are shared, but ratheronly need an indiation of whether two threads are sharing data or not. Statistialsampling shemes ensures that if a data item is highly shared (i.e., remote ahe misseson it our highly frequently), it will be reorded with high probability.We now desribe the two tehniques, temporal sampling and spatial sampling in moredetail.Temporal Sampling: We reord and proess one in N ourrenes of remote ahemiss events. In order to avoid undesired oinidental repetitions, we onstantly readjust
N by a small random value. Moreover, the value of N is further adjusted by the urrentfrequeny of remote ahe misses whih an also be measured by the HPCs. A high rateof remote ahe misses allows for larger values for N so as to redue the runtime overheadand at the same time be able to obtain obtain a representative sample of addresses.Spatial Sampling: Rather than monitoring the entire virtual address spae, weselet a fairly small set of sample bloks to be monitored for remote ahe misses. There

Chapter 3. Hardware Data Sampling to Detet Thread Sharing 57

Figure 3.3: Construting shMaps: eah remote ahe miss by a thread will be hashed to anentry in both the shMap �lter and the thread's shMap. A remote ahe miss will be reorded(i.e., shMap entry is inremented), only if either the shMap �lter entry is not already alloated,or is previously alloated for the same virtual address. Cirled numbers represent the order ofaess. Remote ahe misses "1" and "2" are reorded beause their entries in the shMap �lterare free. Remote ahe misses "3" and "4" are disarded beause their shMap �lter entries arealready reserved for di�ernt virtual addresses.has to be at least one remote ahe miss on a blok to make it eligible to be seleted. Thespatial sampling sheme then selets the sample bloks somewhat randomly among theeligible bloks. The justi�ation for spatial sampling is if there is high level of sharingamong threads, there will be some hot sharing spots that will likely be aptured by thespatial sampling sheme. Also, having several hot spots is a lear indiation of high levelof sharing among threads.We implement spatial sampling by using a �lter to selet remote ahe miss addresses.This shMap Filter is essentially a vetor of addresses with the same number of entriesas an shMap. All threads of a proess use the same shMap �lter. Figure 3.3 shows thefuntion of shMap �lter. A sampled remote ahe miss address is allowed to pass throughthe shMap �lter only if its orresponding entry in the shMap �lter has the same address

Chapter 3. Hardware Data Sampling to Detet Thread Sharing 58value. Otherwise, the remote ahe miss is disarded and not used in the analysis. Eah
shMap �lter entry is initialized (in an immutable fashion) by the �rst remote ahe missthat is mapped to the entry. Threads ompete for the entries on shMap �lter.In an unlikely pathologial ase, it is possible that some threads starve out others bygrabbing the majority of the shMap �lter entries, thus preventing the remote ahe missesof the other threads to be proessed. This does not ause a problem with our sheme,as we envision the thread lustering proess to be iterative. That is, after detetingsharing among some threads and lustering them, if there is still a high rate of remoteahe misses, thread lustering is ativated again, and the previously starved threads willobtain another hane of apturing entries on the shMap �lter.3.3.3 Clustering ThreadsIn this subsetion, we desribe our approah for lustering shMap vetors into groups ofthreads that atively share data. We �rst desribe the similarity metri we use in ourlustering sheme. Then we desribe the atual lustering algorithm we implemented toform the thread lusters.
shMap Similarity MetriWe de�ne the similarity of two threads' shMap vetors as their dot produts:

similarity(T1, T2) =
N∑

i=0

T1[i] ∗ T2[i]The rationale behind hoosing this metri for similarity is two fold. First, it automatiallytakes into aount only those entries where both vetors have non-zero values. Note that
T1 and T2 have non-zero values in the same loation only if they have had remote ahemisses on the same ahe line (i.e., the ahe line is being shared atively). We onsidervery small values (e.g., less than 3) to be zero as they may be inidental or due to oldsharing and may not re�et a real sharing pattern.Seondly, the metri takes into aount the intensity of sharing by multiplying thenumber of remote misses eah of the partiipating threads inurred on the target aheline. That is, if two vetors have a large number of remote misses on a small number of

Chapter 3. Hardware Data Sampling to Detet Thread Sharing 59ahe lines, the similarity value will be large, orretly identifying that the two threadsare atively sharing data. Other similarity metris ould be used, but we found thismetri to work quite well for the purpose of thread lustering (See Setion 3.4).Forming ClustersOne way to luster threads based on shMap vetors is to use standard mahine learningalgorithms, suh as hierarhial lustering or K-means [JMF99℄. Unfortunately, suh al-gorithms are omputationally too expensive to be used online in systems with potentiallyhundreds or thousands of ative threads, or they require the maximum number of lustersto be known in advane (for K-means, for instane), whih is not a realisti assumptionto make in our environment.To avoid high overhead, we use a simple heuristi for lustering threads based on twoassumptions that are simplifying but fairly realisti. First, we assume data is naturallypartitioned aording to appliation logi, and threads that work on two separate parti-tions do not share muh exept for data that is globally shared (i.e., proess-wide) amongall threads. In order to remove the e�ets of globally shared data on lustering, we builda histogram for shMap vetors in whih eah entry shows how many shMap vetors havea non-zero value for the entry. We onsider a ahe line to be globally shared if morethan half of the total number of threads have inurred a remote miss on it. We ignoreinformation on globally shared ahe line when omposing lusters.The seond assumption is that if a subset of threads share data, the sharing is rea-sonably symmetri. That is, we assume it is likely that all of them inur remote misseson similar ahe lines, no matter how they are partitioned.Using the two above assumptions, we de�ne a simple lustering algorithm as follows.Based on the �rst assumption, if the similarity between shMap vetors is greater thana ertain threshold, we onsider them to belong to the same luster. Also, aording tothe seond assumption, any shMap vetor an be onsidered as a luster representativesine all elements of a luster share ommon data equally strongly.The lustering algorithm, shown in Algorithm 1, sans through all threads in one passand ompares the similarity of eah thread with the representatives of previously known

Chapter 3. Hardware Data Sampling to Detet Thread Sharing 601: NumKnownClusters ⇐ 0 {one pass lustering algorithm}2: for t = 0 to NumThreads do3: FoundACluster ⇐ false4: for c = 0 to NumKnownClusters do5: repShMap ⇐ Clusters[c]6: if Similarity(shMapt, repShMap) > SHARING_THRESHOLD then7: add t to the luster c8: FoundACluster ⇐ true9: break10: end if11: end for{reate a new luster if t is not similar to any of the previously known lusters}12: if FoundACluster is false then13: Clusters[NumKnownClusters] ⇐ shMapt14: NumKnownClusters + +15: end if16: end for Algorithm 1: Clustering shMap vetors for N threads.
lusters. If a thread t is similar to the representative of luster c (i.e., the similaritymetri between the two shMap vetors exeeds a ertain threshold), thread t is addedto the luster c. If no suh a luster is found (i.e., shmapt is not similar to any ofthe representatives of the previously known lusters), a new luster is reated, and t isassigned to be the representative of the newly formed luster. The set of known lustersis empty at the beginning.The omputational omplexity of this algorithm is O(T ∗ c) where T is the number ofthreads that are su�ering from remote ahe misses, and c is the total number of lusterswhih is usually muh smaller than T .

Chapter 3. Hardware Data Sampling to Detet Thread Sharing 61CPU Cores IBM POWER5, 1.5GHz, SMTL1 DCahe 64KB, 4-way assoiativeL1 ICahe 64KB, 4-way assoiativeL2 2MB, 10-way assoiative, shared by the two ores on a hipL3 36MB, 12-way assoiative, o�-hip, a vitim ahe for L2Loal Memory 4GBRemote Memory 4GBNo. of CPU Chips 2Table 3.1: The Spei�ation of the IBM OpenPower Mahine.3.4 Experimental EvaluationIn this setion, we present the results of our experiments to evaluate our hardware datasampling tehniques. The basi fous of our evaluation is to exhibit the e�etiveness ofour tehniques for hardware data sampling by showing their uses in a real use ase (e.g.,thread lustering).First, we present the details of our experimental platform and the workload we used.Seondly, we demonstrate the runtime overhead of hardware sampling of remote ahemisses. Then, we show the auray of our sharing detetion and thread lusteringtehniques under the seleted real workloads. Finally, we brie�y present the performaneresults of a sharing-aware thread sheduler that uses our sharing detetion and threadlustering approah.3.4.1 Experimantal PlatformThe multiproessor used in our experiments is an IBM OpenPower720 Express omputersystem. It is an 8-way POWER5 onsisting of a 2x2x2 SMPxCMPxSMT on�guration,as shown in Figure 3.1. Table 3.1 shows the spei�ation of the hardware omponents inthe system.While our evaluation platform is su�iently omplete to show the e�etiveness andoverhead of our basi tehniques and mehanisms, in order to fully realize the potentials

Chapter 3. Hardware Data Sampling to Detet Thread Sharing 62and limitations of the thread lustering approah, we will have to evaluate it on mahineswith a larger number of proessors, whih is beyond the sope of this thesis.We used Linux 2.6.15 as the operating system. We modi�ed Linux to add the featureswe needed for hardware performane monitoring, inluding the stall breakdown (SeeSetion 2.5) and sampling of remote ahe miss addresses. We also modi�ed the LinuxCPU sheduler to allow for expliit reloation of threads at runtime, guided by the threadlustering information provided by our approah.3.4.2 WorkloadsFor our experiments, we used a syntheti mirobenhmark and three ommerial serverworkloads: VolanoMark whih is a benhmark for Internet hat servers [Vol℄, SPECJBB2000, whih is a Java-based appliation server workload [Sta℄, and RUBiS, whih is anOLTP database workload. For VolanoMark and SPEC JBB2000, we used IBM J2SE 5.0as our Java virtual mahine. For RUBiS [RUB℄, we used MySQL 5.0.22 as our databaseserver [MyS℄. These server workloads are written in a multithreaded, lient-server pro-gramming style, where there is a thread to handle eah lient onnetion for the life timeof the onnetion. We present details of eah benhmark below.Syntheti Mirobenhmark: The syntheti mirobenhmark is a simple multi-threaded program in whih eah worker thread reads and modi�es a soreboard. Eahsoreboard is shared by several threads, and there are several soreboards. All sore-boards are aessed by a �xed number of threads. Eah thread has a private hunk ofdata to work on whih is fairly large so that aessing it often auses data ahe misses.This is to verify that our tehnique is able to distinguish remote ahe misses that arebeing aused by aessing the soreboards from loal ahe misses that are aused byaessing private data. The lustering algorithm should be able to luster threads thatshare a soreboard.VolanoMark: VolanoMark is an instant messaging hat server workload. It onsistsof a Java-based hat server and a Java-based lient driver. The number of rooms, numberonnetions per room, and lient think times are on�gurable parameters. The serveris written using the traditional, multithreaded, lient-server programming model, where

Chapter 3. Hardware Data Sampling to Detet Thread Sharing 63eah onnetion is handled by a designated thread for the life-time of the onnetion.In atuality, Volanomark uses two designated threads per onnetion. Given the natureof the omputational task, threads belonging to the same room should experiene moreintense data sharing than threads belonging to di�erent rooms. In our experiments, weused four rooms with 8 lients per room as our test ase.SPEC JBB2000 SPEC JBB2000 is a self-ontained Java-based benhmark thatonsists of multiple threads aessing designated warehouses. Eah warehouse is approx-imately 25 MB in size and stored internally as a B-tree variant. Eah thread aessesa �xed warehouse for the life-time of the experiment. Given the nature of the ompu-tational task, threads belonging to the same warehouse should experiene more intensedata sharing than threads belonging to di�erent warehouses. In our experiments, wemodi�ed the default on�guration of SPEC JBB2000 so that multiple threads an aessa ommon warehouse.RUBiS RUBiS is an online transation proessing (OLTP) server workload thatrepresents an online aution site workload in a multi-tiered environment. The lientdriver is a Java-based web lient that aesses an online aution web server. The front-end web server uses PHP to onnet to a bak-end database. We fous on the performaneof the database server. We made a minor modi�ation to the PHP lient module so thatit uses persistent onnetions to the data base, allowing for multiple SQL requests to bemade within a onnetion. While this modi�ation improves performane by reduingthe rate of TCP/IP onnetion (and thread) reation on the database server, it alsoenables our algorithm to monitor the sharing pattern of individual threads in the longterm.In our workload on�guration, we used two separate database instanes within a singleMySQL proess. This on�guration may represent, for instane, two separate autionsites run by a single large media ompany. We expet that threads that belong to thesame database instane to experiene more intense sharing with eah other than withother threads in the MySQL proess.

Chapter 3. Hardware Data Sampling to Detet Thread Sharing 64

 0

 2

 4

 6

 8

 10

50201052
 0

 10

 20

 30

 40

 50

R
u

n
ti

m
e

 O
v

e
rh

e
a

d
 (

%
)

T
ra

c
k

in
g

 T
im

e
 (

B
il

li
o

n
 C

P
U

 C
y

c
le

s
)

Remote Misses Captured (%)

Overhead
Tracking Time

Figure 3.4: Runtime overhead of the sharing detetion phase for SPEC JBB2000 as a funtionof the temporal sampling rate, and the time (in billion CPU yles) that is required to olleta million remote miss samples given the temporal sampling rate.3.4.3 Runtime Sampling OverheadFigure 3.4 shows the runtime overhead of hardware data sampling as a funtion of therate we used for temporal sampling in terms of the perentage of the remote misses thatare atually examined for SPEC JBB2000. As a higher perentage of the remote ahemisses are aptured, the overhead naturally inreases. However, the time to ollet asu�ient number of remote ahe miss samples beomes shorter. In our experiments,we have found we need roughly a million samples to aurately detet sharing patterns.Therefore, the right Y-axis of Figure 3.4 represents how long (in billion CPU yles) weneed to stay in the detetion phase to ollet a million samples of remote ahe misses.The higher the sampling rate, the higher is the run-time overhead, but the shorter thesharing detetion phase will last.Aording to Figure 3.4, it appears that a temporal sampling rate of 10 (apturingone in every 10 remote ahe misses) is a good balane point in the trade-o� betweenruntime overhead and the length of sample olletion period as it results in a runtimeoverhead of around 2% for a period of 10 billion yles (roughly 7 seonds of exeution

Chapter 3. Hardware Data Sampling to Detet Thread Sharing 65on a 1.5GHz IBM POWER5).
3.4.4 Thread Clustering AurayFigure 3.5 shows a visual representation of shMap vetors after our lustering sheme isapplied for the four workloads. Eah appliation is represented by a gray sale matrixof pixels in whih eah row represents an shMap vetor for a thread. The gray salerepresents the frequeny of remote ahe misses that are reorded for entries in theshMap vetor. Darker pixels represent higher frequenies.Aording to the sheme used to onstrut shMap vetors, two shMaps having non-zero values on the same entry is a sign of ative read-write sharing. In the visual represen-tation in Figure 3.5, this e�et is demonstrated as vertial dark lines (whih are formed bythe dark pixels on idential olumns for di�erent rows). In order to simplify the piture,we have removed the dark pixels that are shared by almost all threads (globally-shareddata).From Figure 3.5 it is lear that the shMap's are e�etive in deteting sharing andlustering threads for three appliations out of four (mirobenhmark, SPEC JBB2000,and RUBiS). In the three ases, the automatially deteted lusters are idential to lustersthat would have been identi�ed manually, with spei� knowledge of appliations logi(i.e., a luster for eah soreboard for the mirobenhmark, for eah warehouse in SPECJBB2000, and for eah database instane in MySQL).For VolanoMark however, the deteted lusters do not onform to our pereption ofthe way data is paritioned in the server (i.e., there is one data partition per hat room).It turns out that the read-write sharing patterns among the threads in VolanoMark isfairly ompliated. Due to unavailability of the workload soure ode, we were unableto explore the exat behaviour of the appliation's threads. However, our performaneresults (desribed in the next Setion) shows that signi�ant performane improvementan be gained by a thread sheduler that takes even suh a seemingly imperfet threadlustering information into aount.

Chapter 3. Hardware Data Sampling to Detet Thread Sharing 663.4.5 Performane Impat of Thread ClusteringIn this subsetion, we brie�y desribe performane results of our sharing-aware threadsheduler, developed by my olleague David Tam. The details of the experiments andtheir performane analysis an be found in Tam et. al [TAS07℄. To summarize, our ex-periments with a sharing-aware thread sheduler that uses our thread lustering shemedemonstrates that most (up to 70%) expensive, ross-hip read-write sharing an be elim-inated aross the set of workloads we studied, ompared to the default thread shedulerthat is used in the Linux kernel.Also, our experiments on our IBM OpenPower720 mahine show that the sharing-aware thread sheduler is able to improve end performane by up to 7% ompared to thedefault Linux thread sheduler. Early results of running similar experiments on a largermultiproessor (with 8 IBM POWER5 hips, instead of two) shows that the potentialend-performane improvement an be substantially higher (e.g., up to 20%).

Chapter 3. Hardware Data Sampling to Detet Thread Sharing 67
Cluster1

Cluster2

Cluster4

Cluster3

shMap
Vectors

shMapVector Entriesa. Mirobenhmark

b. SPECJBB

. RUBiS

d. VolanoMarkFigure 3.5: Visual representation of shMap vetors. Eah shMap entry is represented with agray sale pixel. A row of pixels in eah piture represents a single thread's shMap vetor. Themore frequent remote misses on the entry, the darker the point.

Chapter 3. Hardware Data Sampling to Detet Thread Sharing 683.5 Related WorkMost of the existing hardware data sampling tehniques are already disussed in Se-tion 3.1.2 where advantages and disadvantages of eah of them are desribed. In thissetion, we desribe some of the researh work that use alternative approahes of moni-toring data at the hardware level.Intel Itanium 2 supports a lateny-based �ltering approah to ontrol hardware datasampling [Inta℄. In this sheme, users an speify a lower bound, in terms of number ofyles, on the lateny of a data ahe miss [MMdS05℄. In theory, this sheme an be usedto implement soure-based sampling, given there is signi�ant di�erene in the aesslateny for di�erent memory soures. A major problem with this approah, however,is that due to a potentially large variation in the lateny of aessing single soure, itis di�ult to �nd a right lower bound for lateny that guarantees the apture of mostdata aesses to a soure. Moreover, an aliasing e�et may our for di�erent souresthat have similar average aess lateny. Nonetheless, this tehnique is used by Buk andHollingsworth [THa℄ and also Lu et al. [LCF+03℄ to isolate data addresses that frequentlyause long-lateny ahe misses without further exploring the soure of the ahe misses.However, our approah for soure-based sampling of data ahe misses is more robustthan the lateny-based approah used in Itanium 2, as it does not rely on potentially�utuating aess latenies in order to identify the soure of the data.In order to address some of the inherent limitations of data sampling, some researhershave suggested alternative tehniques mainly by introduing semantially riher datamonitors at the hardware level. For instane, Qureshi and Patt suggest hardware UtilityMonitors to monitor every L1 ahe miss and build a summary histogram at the hard-ware level based on the reuse distane of ahe misses [QP06℄. Also, the authors of theiWather framework suggest a spei� hardware data monitoring support to onstantlymonitor aesses to ertain designated memory region, so that whenever an aess to aspei�ed region ours, a user-de�ned funtion runs automatially by hardware withoutgenerating a trap to the operating system [ZQLT04℄. While these approahes appear tobe e�etive, they serve only spei� purposes. Ideally, in the new generation of hardware

Chapter 3. Hardware Data Sampling to Detet Thread Sharing 69data monitoring arhiteture, there should be a fairly small set of mehanisms that aresu�iently �exible to be used by a wide range of optimization or debugging purposes.3.6 Conluding RemarksHardware data sampling is a potentially powerful mehanism as many researhers havebeen able to build e�etive optimization shemes using data samples generated by hard-ware. However, in our attempt to do the same, we enountered some limitations in theexisting hardware data sampling mehanisms embedded in today's proessors.First, supported hardware data sampling seletion riteria are often too oarse-grainedand in�exible. In partiular, it is is not possible to sample data ahe misses spei�allybased on the memory or ahe soure from whih ahe misses are served. As a result,extra software �ltering is required in order to selet ahe miss samples of a ertainsoure from a potentially large set of data ahe misses. In this hapter, we desribeda tehnique based on features provided by the IBM POWER5 proessor to solve thisproblem e�iently. We showed how suh a �ltering sheme an be used to generatesample addresses of remote ahe misses.A seond limitation in today's miroproessors is that only one sampling seletionriterion an be set at a time. In partiular, it is not possible to ombine multipleseletion riteria onjuntively or disjuntively at the hardware level. In this hapter, wedesribed how to use �ne-grained HPC multiplexing to be able to use multiple samplingriteria disjuntively at �ne granularity.As a ase study, we desribed how to use soure-based data sampling to addressthe problem of automatially deteting sharing among onurrently running threads.We showed how to e�iently build small sharing signatures for eah thread out of thehardware data samples generated for remote ahe misses. Furthermore, we showedthat a simple thread lustering algorithm an be used to luster threads into groups ofthreads that atively share data. Our experimental analysis shows that both our soure-based data sampling and our thread lustering algorithm are reasonably aurate for realommerial server workloads.

Chapter 3. Hardware Data Sampling to Detet Thread Sharing 70In the study, we used a tehnique to indiretly sample the address of data ahe missesbased on their soures. Although our approah works reasonably well, it is spei� toIBM POWER5 proessor, as it uses spei� features of this proessor (i.e., ontinuousdata sampling, and the ability to ount data ahe misses by their soures). For moregeneral and reliable soure-based data sampling, spei� hardware support would berequired. Suh extra hardware support would be modest, as urrent PMUs are alreadyable to distinguish the soure from whih ahe misses are satis�ed. It only requiresanother level of �ltering at the hardware level so as to update the DAR only if the dataahe miss is handled by a soure spei�ed by software.Another harateristi of the ontinuous data sampling feature we used in our studyis that the DAR is onstantly updated whether the orresponding instrution ompletes(retires) or not. As a result, the DAR may be updated while the CPU is exeuting a odepath speulatively, whih may turn out to be a mispredited path and must be �ushedlater. The DAR, in this ase, will be the operand address of an instrution that neverexeuted to ompletion. This is a serious problem onsidering that approximately onein �ve instrutions is a branh, and at any point in time, there are potentially severalbranhes predited in a nested fashion. Hene, it will be di�ult to analyze whether thereorded DAR orresponds to a valid path or not. We believe that in order to ompletelyresolve this issue additional hardware support is required either to invalidate the ontentof the DAR or restore its previous value in the ase of a mispredited path �ush.Finally, we believe our hardware data sampling tehniques an be used for otherpurposes than sharing detetion. For instane, one an explore the use of soure-basedsampling in adaptive funtion and data plaement algorithms in a NUMA environment.Another idea is to use soure-based data sampling to identify highly ontended loks.

Chapter 4
Page Aess Traking to ImproveMemory Management
4.1 IntrodutionComputer system physial memory sizes have inreased onsistently over the years, yetoptimizing the alloation and management of memory ontinues to be important. Apopular pereption is that memory is abundant and inexpensive. While the former maybe true, the latter is ertainly not. Figure 4.1 shows how the prie of three medium-saledmultiproessor systems hanges as physial memory size is inreased. The base prie isfor a setup in whih eah system is equipped with its maximum proessing power. Allpries are taken from the orresponding ompanies list-pries. From the �gure, it is learthat memory prie is the dominant fator in the ost of omputer systems as they areequipped with more memory than in their standard setups.Moreover, numerous appliations exist that an exhaust any amount of physial mem-ory available. For instane, many appliations from omputational biology may approaha terabyte in terms of memory requirements [ZAKB+05, BRS05℄. With the re-emergeneof Virtual Memory Monitors (VMMs), as a key tehnology for server onsolidation, thenumber of appliations simultaneously running on the same hardware inreases signi�-antly with an attendant inrease in memory pressure. Worse, extending available mem-ory through demand paging ontinues to grow more unattrative as disk aess times,71

Chapter 4. Page Aess Traking to Improve Memory Management 72

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50 60 70

P
ri

ce
 (

$1
00

0
U

S
)

Memory Size (GBytes)

IBM-XSeries 366
HP-DL580

Dell Power-Edge 6800

Figure 4.1: The prie of medium-sized omputer systems as a funtion of physial memory size.dominated by positioning delays, fall farther behind relative to CPU and memory speeds.To utilize memory e�etively, aurate information about the memory aess patternof appliations is needed. Traditionally, operating systems trak appliation memoryaesses either by monitoring page faults or by periodially sanning page table entriesfor spei� bits set by hardware. These approahes provide only a oarse approximationof the true order of page aesses for use in memory management algorithms, limitingthe ability to implement sophistiated strategies.An alternative approah available in systems with software-managed TLBs is to reordand proess page aesses upon eah TLB miss. While this approah an provide signif-iantly more �ne-grained page aesses information, it adds prohibitively large overheadto a software TLB miss handler, whih is already a performane-ritial omponent.An entirely software-based alternative has been suggested by reent work [ZPS+04,YBKM06℄, where virtual pages are divided into an ative set and an inative set. Pagesin the inative set are proteted by manipulating page-table bits, so that every aess tothem will generate an exeption and hene the operating system will be noti�ed. Pagesin the ative set are not proteted, and as a result, aesses to these are not diretlytraked. One a page in the inative set is aessed, it is moved to the ative set. Asimple replaement algorithm suh as CLOCK [CH81℄ is used to move stale pages out ofthe ative set and into the inative set. While the ative set is muh smaller than theinative set, it is meant to absorb the majority of page aesses, whih results in muhredued software overhead ompared to raising an exeption on every page aess.

Chapter 4. Page Aess Traking to Improve Memory Management 73
 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 450 500 550 600 650 700 750 800

P
ro

je
c

te
d

 E
x

e
c

.
T

im
e

(b
il
li
o

n
 c

y
c

le
s

)

Memory Size (MB)

Global LRU
LIRS

 70

 80

 90

 100

 110

 120

 130

32K16K8K4K2K512128
 0

 50

 100

 150

 200

 P
ro

je
c

te
d

 E
x

e
c

.
T

im
e

 (
b

il
li
o

n
 c

y
c

le
s

)

S
o

ft
w

a
re

 O
v

e
rh

e
a

d
 (

%
)

Active Set Size (# of Pages)

Exec. Time
Overhead

(a) Performane of LIRS vs. LRU (b) The e�et of ative set sizeFigure 4.2: Graph (a) shows how LIRS outperforms LRU when exeuting fft, for di�erentmemory sizes. Graph (b) shows for a �xed memory size (703Mbytes), how LIRS' performanehange as the ative set size inreases, while the runtime overhead of maintaining the ative setdereases (the projeted exeution time does not inlude the runtime overhead).While this software-approah is shown to be e�etive with ertain types of applia-tions, its overhead for many memory-intensive appliations is unaeptably high. An ap-proah to redue the overhead is to inrease the size of the ative set adaptively [YBKM06℄.However, the bigger the ative set, the less aurate the sequene of page aesses willbe, sine more aesses are absorbed by the ative set. As a result, the utility of havingthe sequene of page aesses for a partiular memory management algorithm will dimin-ish. An example of suh a ase is shown in Figure 4.2 for FFT taken from the Splash-2suite [WOT+95℄. On the left, the performane of LIRS [JZ02℄, a well-known memorymanagement algorithm is ompared against LRU. LIRS takes into aount not only re-eny of page aesses, but also reuse distane when onsidering a page for replaement.A more detailed desription of LIRS is presented in Setion 4.3.2. The measurement isdone under the assumption that the overhead of olleting page aess information is zeroand the ative set is 128 entries. The graph on the right shows how LIRS performanedegrades as the ative set size inreases, while the overhead of reording page aessesnaturally dereases. As a result, to ahieve LIRS' potential in improving performane, ahigh runtime overhead (100% or more) must be paid, otherwise, most of the advantageof LIRS over LRU disappear.

Chapter 4. Page Aess Traking to Improve Memory Management 74To ope with this potentially large overhead, ustom hardware is suggested by Zhouet al. [ZPS+04℄. While their approah is e�etive in traking physial memoryMiss RatioCurves, it does not provide raw page aess information to the operating system, andthus annot be used for memory management algorithms other than the one whih isintended for. Moreover, the hardware required by this approah is substantial and growswith the size of physial memory.In this hapter, we propose a novel Page Aess Traking Hardware (PATH) to beadded to the proessor miro-arhiteture for the purpose of monitoring appliation mem-ory aess patterns at �ne granularity and with low overhead. Similar to the softwareapproah, PATH is designed based on two observations. First, a relatively small set ofhot pages is responsible for a large fration of the total page aesses. Seond, the exatorder of page aesses within the hot set is unimportant sine these pages should alwaysbe in memory. By ignoring aesses to hot pages, we an vastly redue the number ofaesses that must be traked, while fousing on the set of pages that are interestingandidates for memory management optimizations.The key innovation with our PATH design lies in the tradeo� between funtionalityassigned to hardware and funtionality assigned to software. The hardware we proposeis (i) small and simple, (ii) salable, in that it is independent of system memory size,and (iii) introdues little overhead, imposing no delays on the ommon exeution path ofthe miro-arhiteture. We delegate to software (spei�ally, an exeption handler) theonline maintenane of data strutures to be used by the memory manager when makingpoliy deisions.We show that the operating system an bene�t from our approximate informationby onsidering three uses for the memory manager: (i) implementing more adaptivepage replaement poliies (ii) alloating memory to VMMs, proesses or virtual memoryregions so as to provide better isolation and to better support proess priorities, and(iii) prefething pages from virtual memory swap spae or memory-mapped �les whenappliations have non-trivial memory aess patterns. We brie�y desribe these use asesin more details.Adaptive Page Replaement: There is a large body of prior art in page and

Chapter 4. Page Aess Traking to Improve Memory Management 75bu�er ahe replaement poliies [MM03, SKW03, JS94, BM04, GC97, JZ02, JCZ05,GBH04, ZvBB05, CNMC00, KMC02℄. Many of the algorithms proposed are based on anapproximation of LRU with various extensions to adapt to sequential and looping patternsfor whih LRU behaves poorly. In most ases, the e�etiveness of these algorithmshas only been shown in the ontext of �le system ahing, where preise informationon the timing and order of aesses is available. With �ner-grained virtual memoryaess information, adaptive page replaement algorithms, suh as the one we present inSetion 4.3, an lead to signi�ant performane improvements.Memory Alloation: Most existing operating systems alloate memory pages toappliations on-demand and from a global pool. This strategy an lead to unfair prior-itization e�ets, whereby a low-priority proess with a high page fault rate is alloateda large number of physial pages to the detriment of higher priority proesses. Systemthroughput may also su�er sine extra pages may be alloated to appliations that donot bene�t from them. Working set models, as implemented on urrent arhitetures,do not provide an aurate estimate of memory requirements sine they only take intoaount whether a page is aessed or not over a period of time. The number of distintpages aessed before a given page is reused (i.e., the reuse distane [ZPS+04℄) gives abetter indiation of memory needs, but operating systems often do not have aess tosu�iently detailed page aess information to estimate of reuse distane. In Setion 4.4,we show how our PATH provides aurate reuse distane information that an be usedto improve memory alloation.Virtual Memory Prefething: I/O bandwidth has inreased dramatially over theyears, whih allows for more aggressive and speulative prefething of memory pages. Thedanger with an aggressive prefething sheme, however, is that pages ould be replaedthat would still be of use (to the same or other appliations). Hene it is importantto prefeth wisely. Conventional operating system prefething shemes based on spatialloality assume that whenever a page is aessed, it is likely that neighboring pages willalso soon be aessed. While simple and e�etive for many appliations, this an performpoorly for appliations with little spatial loality in their aess patterns. The availabilityof �ner-grained page aess information allows for alternative prefething shemes; we

Chapter 4. Page Aess Traking to Improve Memory Management 76desribe one strategy based on temporal loality in Setion 4.5.Underlying all these tehniques for improved memory management is our PATH sup-port for traking page aesses at relatively �ne granularity, whih we desribe in detailin Setion 4.2.Our simulation results show that substantial performane improvements (up to 500%in some ases) an be ahieved, espeially when the system is under memory pressure.While the algorithms based on PATH have di�erent time and spae overhead tradeo�s,the basi overhead of providing �ne-grained page-aess information to the operatingsystem is less than 6% aross all the appliations we examined (less than 3% in all buttwo appliations) whih is at least an order of magnitude less than the overhead of existingsoftware approahes.4.2 Traking Page AessesMemory management algorithms are often �rst desribed assuming the omplete pageaess sequene is available and later implemented using a oarse approximation of thissequene. For example, the well-known Least-Reently-Used (LRU) page replaementalgorithm requires the omplete aess sequene to implement exatly, but is ommonlyapproximated by the CLOCK algorithm, whih oarsely groups pages into reently-used,somewhat reently-used, and not reently-used ategories. Optimizations to the basiLRU algorithm, and other sophistiated memory management strategies, require moredetailed page aess information than systems urrently provide. Traking all page a-esses, however, is prohibitively expensive and generates too muh information for onlineproessing. The key question, then, is how to redue the volume of information to amanageable level, while retaining su�ient detail on the order of page aesses.Our approah is based on two observations: (i) a relatively small set of hot pages areresponsible for a large fration of the total page aesses, and (ii) the exat order of pageaesses within the set of hot pages is unimportant sine these pages should always be inmemory. By ignoring aesses to hot pages, we an vastly redue the number of aessesthat must be traked, while fousing on the set of pages that are interesting andidates

Chapter 4. Page Aess Traking to Improve Memory Management 77for memory managmenet optimizations.4.2.1 Design OptionsCurrent memory management hardware already ontains an e�etive �lter to ath a-esses to the hottest N pages: the Translation Lookaside Bu�er (TLB). Thus, one pos-sibility for traking page aesses is to augment existing hardware or software TLB misshandlers to reord a trae of all TLB misses. Aside from the overhead that this wouldadd to the ritial path of address translation, the primary problem with this strategyis that TLBs are too small on today's proessors to apture the set of hot pages, whihin turn leads to traes that are still too large for online use. Simply inreasing the TLBsize is not a viable option, sine the size is limited by fast aess requirements. We note,however, that the TLB provides more funtionality than is needed to simply trak pageaesses. Thus, we propose the addition of a new hardware struture that essentiallyfuntions as a signi�antly larger TLB for the purpose of �ltering out aesses to hotpages, while reording a trae of aesses to other pages. We all this struture PageAess Traking Hardware (PATH). Although software TLB miss handlers ould olletthe same information (for arhitetures that provide them), extra work would be requiredon the performane-ritial miss handling path.The existing TLB an ontinue to �lter out aesses to the hottest pages, while thenew PATH maintains a superset of the pages handled by the TLB, and is only neededwhen a TLB miss ours. Further, PATH is not required for address translation, andan be aessed asynhronously with respet to TLB miss handling. Sine the speed ofaess is not ritial, the omponents in PATH an be sized independently, onstrainedonly by the resoures available on hip and the desired preision of traking. In thefollowing subsetions, we present the details of our PATH design and show how theaess traes it ollets an be used to build various software data strutures used formemory management.Figure 4.3 depits the three major omponents of our PATH design. The Page AessBu�er (PAB) and the Assoiative Filter work together to remove aesses to hot pagesfrom the trae; other aesses are reorded in the Page Aess Log (PAL), whih raises

Chapter 4. Page Aess Traking to Improve Memory Management 78

Figure 4.3: The Arhiteture of Page Aess Traking Hardware (PATH).an exeption when it beomes full, in order to allow for software proessing.The Page Aess Bu�er (PAB) ontains the set of reently aessed virtual pages,augmented with an address spae identi�er to distinguish between pages from di�erentproesses. The PAB is struturally similar to a TLB exept that (i) it is updated onlyon a TLB miss, (ii) it need not ontain the physial addresses of the pages it holds, and(iii) it is signi�antly larger than a typial TLB. As the PAB size inreases, more pagesare onsidered hot and more aesses are �ltered out of the trae, thus reduing bothproessing overhead and auray. Our experiments show that a PAB with 2048 entriesis a good point in this tradeo�. In Setion 4.6.6, we examine, in detail, the tradeo�between overhead and usefulness of the traes with varying PAB sizes. Moreover, witha 2K-entry PAB, PATH will have a very small hip footprint. Finally, some existingarhitetures suh as IBM POWER and AMD Opteron already have a fairly large (e.g.512 to 1024 entry) seond-level TLB1. One an envision integrating PATH with a slightlylarger version of suh a seond-level TLB. We show in Setion 4.6.7 that using the same1IBM POWER's �rst level address translation ahe is 128 entries and is alled the E�etive-to-RealAddress Table (ERAT).

Chapter 4. Page Aess Traking to Improve Memory Management 792K size for the ative set in the software approah will result in an unaeptably highoverhead.A page aess is onsidered for reording only if it misses in the PAB. However,beause of the limited assoiativity of the PAB, it an be suseptible to repeated on�itmisses from the same small set of (hot) pages. To deal with this problem, PATH inludesan Assoiative Filter that �lters page aess information further. The assoiative �lteris a small (e.g., 64 entries), fully-assoiative table with an LRU replaement poliy thatis updated on every PAB miss. It e�etively �lters out the reording of aesses to hotpages due to short term on�it misses in the PAB.Finally, misses in the assoiative �lter are reorded in the Page Aess Log (PAL)whih is a small (e.g., 128 entry) bu�er. When the log beomes full, an exeption israised, ausing an operating system exeption handler to read the ontents of the PALand reset the PAL pointer. In the following subsetion, we show how system softwarean use the information reorded in the PAL to onstrut a variety of data struturesused in memory management.PATH must also provide an interfae to allow software to ontrol it and performlookup operations. This interfae allows the operating system to empty the PAL when-ever the CPU beomes idle, say during I/O, to redue the overhead of PAL serviing.The operating system an also dynamially turn o� PATH when the system is not undermemory pressure, thereby reduing power onsumption.Given this arhiteture, PATH provides a �ne-grained approximation of the sequeneof pages that are aessed. Sequential or looping aess patterns over an area larger thanwhat is overed by the PAB (e.g., 64MB) are very likely to be ompletely reorded byPATH in their proper order. Moreover, if a page is not hot so that it does not permanentlyreside in the PAB, its reuse distane an also be aurately aptured by PATH due tothe subsequent PAB misses it auses.4.2.2 Low-level Software StruturesThe bene�ts of having LRU staks and/or Miss Rate Curves available are well reog-nized and, orrespondingly, hardware support to generate these data strutures has been

Chapter 4. Page Aess Traking to Improve Memory Management 80previously proposed [ZPS+04℄. In this setion, we argue that these data strutures anbe onstruted e�iently in software from the information obtained by PATH desribedabove. Spei�ally, we show how both LRU staks and Miss Rate Curves an be main-tained on-line by the PAL over�ow exeption handling ode. Both strutures an, inturn, be used by memory management software to make informed deisions. By dele-gating the maintenane of these data strutures to software, our design provides greater�exibility and ustomizability than previously proposed hardware support.LRU StakThe LRU stak maintains a reeny order among the pages within an address range. Thetop of the stak is the most reently aessed page, while the bottom of the stak is theleast reently aessed page. In our sheme, eah page aessed (as reorded by the PAL)is moved from its urrent loation in the stak to the top of the stak. The LRU stak isupdated for every page aess reorded in the PAL.To enable fast page lookup and e�ient update in the LRU stak, we suggest usinga struture typially used to maintain page tables, suh as a traditional multi-level pagetable or a hash table. Eah element in this struture represents a virtual page andontains two referenes: one to the previous page in the LRU stak and one to the nextpage in the LRU stak. Coneptually, the LRU stak is a doubly-linked list, and elementsare repositioned within the stak by adjusting referenes to neighboring elements. Thus,a virtual page an be looked up with a few (usually 2 or 3) linear indexing operations,and moving a page to the top of the LRU stak involves updating at most 6 referene�elds in the stak: 2 referenes assoiated with the page being moved, 2 of its previousneighbors, 1 at the previous head of the list, and the head of the list itself.The LRU stak has an element for eah page that was ever aessed (not just thepages urrently in memory). Assuming 4 KB virtual pages, 32-bit page referenes an beused for address ranges up to 16 TB, resulting in a spae overhead of 8 bytes per virtualpage used. To save on physial memory usage, LRU stak pages an be swapped out todisk if the elements they ontain represent pages that are not urrently being aessed.The working set size of the LRU stak is roughly proportional to the working set size of

Chapter 4. Page Aess Traking to Improve Memory Management 81the address range. Hene, a working set size of several GB implies that several MB willbe onsumed by the LRU stak.Miss Rate CurveA Miss Rate Curve (MRC) depits the page miss rate for di�erent memory sizes, givena page replaement strategy. More formally, MRC is a funtion, λr,p(M), de�ned foraddress range r and page replaement poliy p. λr,p(M) identi�es the number of pagemisses the proess will inur on r over a ertain time period if M physial pages areavailable. Often, the slope of λ at a given memory size is of more interest than its atualvalue. If the slope is �at then making additional pages available will not signi�antlyredue the miss rate, but if the slope is steep then even a few additional pages ansigni�antly redue the page miss rate.We use a de�nition of MRC that is slightly di�erent from the one used by Zhou etal. [ZPS+04℄ to make it more suitable for our proposed hardware support. Our variant ofMRC identi�es the absolute number of misses that our over a period of time and notthe miss ratio that is normalized by dividing the number of misses by the total numberof aesses. Not requiring the total number of memory aesses signi�antly simpli�esthe hardware support required.Our method of maintaining λ on-line is based on Mattson's stak algorithm [MGST70℄and Kim et al.'s algorithm [KHW91℄ used for o�-line analysis. We augment the elementsof the LRU stak desribed above with a rank �eld used to reord the distane of theelement from top of the stak (i.e., the reuse distane). Eah λ is maintained as a his-togram. Coneptually, whenever a page is aessed, the histogram values orrespondingto memory sizes smaller than the rank of the aessed page are inremented by one. Inaddition, the page is moved to the top of the stak, while setting its rank �eld to zeroand derementing the rank �eld of every element between the original position of thepage and the previous top of stak by one.Time is divided into a series of epohs (e.g., a few seonds). At the end of eah epoh,the value of λ (i.e., the histogram) is saved and reset. Eah proess may store a historyof values of λ for several epohs in order to be able to make more aurate deisions.

Chapter 4. Page Aess Traking to Improve Memory Management 82
000011119898989899 99 9999

Stack
 Top

Stack
 Bottom

Group
Boundary

LRU Group Headers

Group
RankFigure 4.4: The LRU stak with group headers that are used for updating the LRU-ranks ofpages e�iently.In order to redue overhead, page groups of size g an be de�ned and the rank �eldan be rede�ned to reord the distane to the top of the stak in terms of number ofpage groups. Adding an array of referenes to the head of eah page group redues theoverhead of updating the rank �elds by a fator of g. Figure 4.4 shows how the groupheader array is used to �nd the group boundaries, sine only the elements at the groupboundaries need to be updated.Algorithm 2 shows the basi steps that must be taken for every page that appearsin the PAL to maintain λ histograms for the LRU page replaement poliy. Note thatthe group size g is de�ned by software and an hange aording to the desired level ofpreision for λ.A further optimization is possible based on the observation that at any instane intime, we are only interested in λ at the point orresponding to the amount of physialmemory alloated to the virtual address range under study and the slope of λ around thatpoint. Hene, the LRU stak an be divided into only 4 groups as shown in Figure 4.5:the top M − g pages, where M is the urrent physial memory alloated to the addressrange, two groups of g pages on both sides of M , and all the remaining pages at thebottom of the LRU stak. With this optimization, only four entries need to be updatedon eah page aess to maintain λ.In the next three setions, we present algorithms to improve memory managementperformane in three di�erent areas: adpative page replaement, proess memory allo-

Chapter 4. Page Aess Traking to Improve Memory Management 83Require: V addr ≥ RegionStart ∧ V addr ≤ (RegionStart + RegionSize)1: lruRank ⇐ Stack[V addr].rank2: move V addr element to the top of the LRU stak3: Stack[V addr].rank = 0{update group headers and page ranks for groups lower than lruRank}4: for i = 0 to lruRank do5: GroupHeaders[i] ⇐ Stack[GroupHeaders[i]].prev6: Stack[GroupHeaders[i]].rank + +7: end for{update MRC for LRU}8: for j = 0 to lruRank do9: λLRU [j] + +10: end forAlgorithm 2: Update λLRU and the LRU stak on eah reorded page Vaddr.ation, and virtual memory prefethinag. We desribe how these algorithm utilize theinformation generated by PATH either in the raw form, or in the form of LRU stak orMRC.
4.3 Adaptive Replaement PoliiesUsing information from PATH, we have implemented two adaptive page replaementalgorithms. The �rst one, Region-Spei� Replaement, attempts to automatially applythe appropriate replaement poliy on a per-region basis for di�erent regions de�ned inthe appliation's virtual address spae. The seond one is a reently proposed adaptivepoliy alled Low Inter�Referene Set (LIRS) [JZ02℄. The reason for hoosing LIRS isthat it is fairly simple and, for �le system ahing, has proven to be ompetitive with thebest algorithms.

Chapter 4. Page Aess Traking to Improve Memory Management 84
11112222

Stack
 Top

Stack
 Bottom

LRU Group Headers

Current
Physical Memory

Size

0 0

Figure 4.5: The optimized struture for the LRU group headers, onsidering in most ases it isimportant to know the slope of λ only around the urrent physial memory size. Only a �xednumber of page groups (4 in this �gure) are onsidered to be updated at eah page aess.4.3.1 Region-Spei� ReplaementThe rationale behind region-spei� page replaement is the desire to be able to reatindividually to the spei� aess patterns of eah large data struture within a singleappliation. Studies in the ontext of �le system ahing [CNMC00℄ have shown thatby analyzing the aesses to individual �les separately, one an model the aess pat-tern of the appliations more aurately. Also, Harty and Cheriton [HC92℄ presenteda framework for appliation-ontrolled page ahing in whih eah appliation an em-ploy ahing poliies that �t its needs most. We argue that memory-onsuming datastrutures (e.g., multidimensional arrays, hash-tables, graphs) usually have stable aesspatterns, and by deteting these patterns, one an optimize the ahing sheme for eahof these data strutures individually.Seleting RegionsMost large data strutures reside in ontiguous regions in the virtual address spae. Theontiguity of data struture memory is not an essential fator but signi�antly simpli�esthe implementation of region-spei� replaement. For large data strutures that do notreside in ontiguous regions, one an use ustom alloators that alloate orrelated datafrom a pre-alloated large hunk of virtual memory. Lattner and Adve [LA05℄ show how

Chapter 4. Page Aess Traking to Improve Memory Management 85to luster individually alloated, but orrelated, memory items in an automated fashion.As a result, large data strutures (e.g., a graph of millions of nodes) are more likely tobe loated in a large ontiguous region of address spae. In our simulation studies, wehave assigned a region for eah large stati data struture as well as any large mmappedareas.Choosing Replaement PoliyWe separately but simultaneously ompute λ for eah region for both the LRU and MRUpoliies, and we pik the poliy that would result in a lower miss rate. To ompute λMRU ,we use the same sheme shown in Figure 4.5 and Algorithm 2, but with pages ranked inreverse order. Hene, for eah page, we maintain two ranks, one for LRU and the otherfor MRU. Given that the rank value is at most 4, the rank an be represented by twobits, so the orresponding spae overhead is negligible.Swithing Replaement PoliyWe swith to a new poliy only if it is onsistently better than the urrent poliy. Thedefault poliy is LRU. If a region is being aessed in a looping pattern, it will have lowervalues for λMRU , but if the region is being aessed in temporal lusters, λLRU will havelower value.The algorithm for swithing page replaement poliy is ativated only if a ertainthreshold in the number of apaity misses is reahed in an epoh. Otherwise, we assumethe urrent replaement poliy is working well.However, swithing is an expensive operation and should not be done lightly. To avoidover-reating to short-lived �utuations, we use a saturating ounter that is inrementedwhen one poliy is better than the other in an epoh, and deremented otherwise. Thepoliy swith is triggered whenever the ounter reahes one of two extreme points. Also,to redue swithing overheads, we do not evit the urrent pages from physial memorywhen a poliy swith is made. We have observed in our experiments that for many realappliations poliy swithing is indeed a rare event.

Chapter 4. Page Aess Traking to Improve Memory Management 86Alloating Memory to RegionsWith region-spei� page replaement, it is neessary to deide how many physial pagesto alloate for eah region. At the end of eah epoh, we use the preomputed λ valuesto alulate how muh memory eah region atually needs. We de�ne benefit and penaltyfuntions for eah region as follows:
benefitr(g) = λr,p(M − g) − λr,p(M)

penaltyr(g) = λr,p(M) − λr,p(M + g)We balane memory among regions within a single proess address spae by takingaway memory from regions with low penalty and awarding them to the regions withhigher bene�t. The number of regions in an appliation is typially small (e.g., usuallyless than 10). Thus, balaning memory within a single appliation at the end of eahepoh is not a ostly operation.4.3.2 LIRSThe key idea behind LIRS is to onsider not only reeny, but also reuse distane whenonsidering a page for replaement. The LIRS algorithm divides pages into two sets:High Inter-referene Reeny (HIR) and Low Inter-referene Reeny (LIR) sets. Thepages in the LIR set are always kept resident in memory even if they have not beenreently aessed. Candidate pages for replaement are always hosen from the HIR seteven if they have been reently aessed. One a page in the HIR set is aessed with areuse distane shorter than that of some pages in the LIR set, it is moved to the LIR set.If a page stays in LIR for a long time without being aessed again, it is purged from theLIR set. Only a small fration of physial memory is alloated to pages in the HIR set.A more detailed desription of the algorithm an be found in the LIRS paper [JZ02℄.LIRS e�etively eliminates LRU's poor handling of sequential and looping patternsin �le system ahing. However, to apply LIRS to virtual memory, one must be ableto measure the distane between two onseutive referenes to a page fairly aurately,whih is hallenging with traditional operating system page aess monitoring tehniques.

Chapter 4. Page Aess Traking to Improve Memory Management 87In fat, a follow-up attempt to implement LIRS for virtual memory by the LIRS design-ers using onventional operating system tehniques resulted in a ompliated algorithmto approximate the reuse distane information and limited suess [JCZ05℄. By usinginformation from PATH, we were able to implement the original LIRS algorithm in astraightforward way. In fat, we adopted the LIRS designers' original algorithm in oursimulation environment with minor modi�ations.4.4 Memory AlloationIn multi-programmed environments, how the operating system deides to alloate phys-ial memory to eah proess is of great importane when the system is under memorypressure. In this setion, we show how the availability of �ne-grained page aess infor-mation an help improve memory alloation among proesses.In most general-purpose operating systems today, memory is alloated to a proessfrom a global pool of pages, on-demand, when the proess inurs a fault. All pages areequal andidates for replaement, irrespetive of whih proess they belong to. The atualamount of memory alloated to eah proess is a diret funtion of the page replaementpoliy in use and the page fault rate of the proess. Proesses that aess more pagesthan others over a period of time will be alloated a larger number of pages, sine theyfault on more pages and keep their own pages reent.Global memory alloation has two major advantages. First, it is simple and easy toimplement with little overhead. Seondly, for workloads with similar aess patterns,global memory alloation naturally tends to minimize the total number of page-faults.Despite its wide adoption, global memory alloation has two signi�ant shortomings:(i) sub-optimal system throughput for workloads with di�erent aess patterns, and (ii)lak of proess isolation and unfair prioritization e�ets. We brie�y disuss these twoshortomings in more detail.Sub-optimal System Throughput: Global memory alloation makes the assump-tion that eah appliation bene�ts the same when given an extra page. In reality, however,one appliation's throughput may rise sharply as it is given more pages, whereas others

Chapter 4. Page Aess Traking to Improve Memory Management 88may experiene no performane gains. If the goal is to maximize overall system through-put, memory should be taken away from proesses that are not bene�tting muh fromthem and be given to proesses that bene�t the most. The rationale is that while thethroughput of the vitim proesses are not seriously a�eted, a large boost in the through-put of the proesses that are assigned more memory an be obtained. However, a majorhallenge is how to aurately measure the utility of pages for di�erent appliations.Lak of Isolation and Prioritization: In a system under memory pressure, pro-ess prioritization done only through CPU sheduling an be ine�etive. Chapin hasillustrated the prioritization problem due to lak of memory isolation in operating sys-tems, and motivated the onept of memory prioritization [Cha97℄. As a simple example,onsider two proesses A and B, with A's working set size larger than system memorysize and B's working set size onsiderably smaller. Moreover, B is slow to touh the pagesin its working set (e.g., due to a high amount of omputation). Even if the user givesmuh higher priority to B than A, a system with global memory management will notisolate B from A. A's page-fault rate will be muh higher than B's, despite the fat thatB has more CPU time. As a onsequene, pages from proess B will be vitimized inorder to aommodate page faults from proess A. Prioritization is espeially importantin large servers used for server onsolidation where eah user runs its appliation withina virtual mahine. In order to maintain a ertain level of servie for eah user, the op-erating system must be able to protet proesses (i.e., virtual mahine instanes) frombeing deprived of memory by other memory-onsuming appliations.To address the two shortomings of global memory alloation disussed above, weemploy a loal memory alloation sheme, where eah proess is given a pool of privatepages that an then be governed by its independent page replaement poliy. Memorypools are dynamially sized as new proesses are launhed, existing proesses' memorydemand hanges, or proesses exit. A major hallenge in loal memory alloation isto detet how muh memory an appliation needs at any given point in time. Simplesampling shemes, suh as the one suggested by Waldspurger et al., have been shown tobe e�etive in measuring the working set of an appliation [Wal02℄. The problem withthe working set model is that it does not give an indiation of how the performane

Chapter 4. Page Aess Traking to Improve Memory Management 89of an appliation will hange if it is given less memory than the measured working setsize, whih beomes an issue in systems under memory pressure. We use the MRC modelboth for maximizing throughput and enforing e�etive isolation and prioritization amongproesses.Maximizing ThroughputOur approah to optimizing throughput is similar to the greedy algorithm used by Zhou etal. [ZPS+04℄ with a di�erent level of hardware integration. In this approah, eah proessis initially alloated an equal amount of physial memory. At eah memory alloationstep, given λ is alulated for all proesses, penaltyP and benfitP for proess P are al-ulated as follows:
benefitP (g) = λp(M) − λp(M + g)

penaltyP (g) = λp(M − g) − λp(M)The greedy algorithm takes g pages away from the proess with the least value for
penaltyP (g), and assigns them to the proess with the highest value for benefitP (g).We alulate λ for eah proess by treating the entire proess address spae as a singleregion. If a proess uses region-spei� page replaement, as desribed in Setion 4.3.1,we an measure the penalty of reduing proess memory by using λ funtions alreadyalulated for eah region, and de�ne benefitP and penaltyP funtions for the proess as:

benefitP (g) = λrmax,p(Mrmax
) − λrmax,p(Mrmax

+ g)

penaltyP (g) = λrmin,p(Mrmin
− g) − λrmin,p(Mrmin

)where rmin is the region with minimum penalty , and Mrmin
is the number of pages ur-rently alloated to region rmin. Similarly rmax is the region with maximum benefit , and

Mrmax
is the number of physial pages alloated to region rmaxEnforing PrioritiesTo better support proess priorities, we have implemented a simple poliy to try tobalane appliation miss rates among appliations with the same priority. Figure 4.6shows an abstrated example for two proesses. At any point in time, the available

Chapter 4. Page Aess Traking to Improve Memory Management 90
Memory

Size

Memory
Size

Miss
Rate

Process 1 Process 2

N N’1 1 N N’2 2

Miss
Rate

Figure 4.6: Enforing priority through balaning page miss rate. At eah point in time thepoliy is to ensure same page fault rate for both appliations. As available memory hanges,di�erent page fault rate is set for both appliations.
physial memory is dynamially partitioned between the two proesses so that the twoproesses su�er the same page miss rate. In the example, N1 pages are alloated to
Process1 and N2 pages are alloated to Process2, where N1 +N2 is equal to the amountof available memory and both proesses su�er from the same miss rate. If the amount ofavailable physial memory hanges (as other proesses launh or exit, for instane), thebalane line will be moved to a new level to aommodate the hange. In this ase, N ′

1pages are alloated to Process1 and N ′

2 pages to Process2, suh that N ′

1 + N ′

2 is equalto the amount of available memory and both proesses su�er from the same miss rate.Another poliy might dynamially partition memory aording to λ values so thateah proess runs with a performane that is within a small margin of the performanelevel required by a Servie-Level Agreement (SLA). In this approah, physial memoryalloated to a proess hanges freely as long as the miss rate stays within the aeptablemiss rate range that is spei�ed by the SLA. The λ funtion is used to predit the missrate for any given physial memory size. We are ontinuing to explore fairness and proessisolation using the �ne-grained memory aess information provided by PATH.

Chapter 4. Page Aess Traking to Improve Memory Management 914.5 PrefethingAnother ommon tehnique to lose the lateny gap between disk and memory aessis prefething by prediting whih pages an appliation will use in the near future, andstart fething these pages to memory before they are atually used. Prefething is par-tiularly e�etive for appliations with working set sizes so large that even an optimalpage replaement poliy still results in a high page fault rate.Given the rapid growth of disk I/O bandwidth in reent years, one an aggressivelyemploy speulative prefething tehniques that trade potentially wasted I/O bandwidthfor additional improvement in lateny. The problem with speulative prefething is thatit may result in still-needed pages of either the same or other appliations being replaed.In order to avoid this problem, speulation preision must be high, meaning a page thatis replaed by a prefethed page should not be aessed earlier than the prefethed pageagain.There are several poliies for prediting whih pages to prefeth. A simple approah isbased on spatial loality: pages that are adjaent to a faulted page in the virtual addressspae are andidates for prefething on the assumption that they will also be aessedsoon. More preisely, whenever a page-fault ours, the next w next pages in the addressspae would be prefethed, where the value of w ould be either �xed or dynamiallyadjusted based on how aurately the prefething poliy has been performing. Thissheme is e�etive for many ases, sine many large memory-onsuming appliationsaess pages in ontiguous hunks that are muh larger than a virtual page size. However,there are important lasses of appliations that aess memory with di�erent types ofregularity than spatial loality.Another prefething approah is based on automatially analyzing appliation logi inorder to identify regular aess patterns. With this approah, a ompiler inspets programsoure ode and inserts ode into the exeutable to provide hints to the operating systemon whih pages should be prefethed soon. The main advantage of this approah is thatit automatially exploits high-level information on programs page aesses and henean identify regularities that are hard to identify by just monitoring the sequene of

Chapter 4. Page Aess Traking to Improve Memory Management 92
Proximity

Set

P5

P4

P7

P3

P2

P1

P6

3

8

1 4

4

1

1

Figure 4.7: Page Proximity Graph (PPG). Eah node represents a virtual page. Eah nodehas a �xed maximum number of edges to other nodes. An edge represents the fat that there istemporal proximity between the adjaent nodes. The weight on eah edge represent the numberof times suh temporal proximity is observed between the two nodes.aessed virtual pages. The major drawbaks of ompiler hint-based prefething are twofold. First, it is appliable only to appliations whose aess pattern an be analyzedby a stati ompiler analysis. In priniple, one an extend this approah to a run-timeenvironment (e.g., Java virtual mahine) where more information regarding program datastrutures and exeution path is available. To the best of our knowledge, this approahhas not been explored yet. The seond drawbak of ompiler hint-based prefething isthat it is spei� to partiular programming environments that have a ompiler modi�edfor generating prefething hints.As an alternative, we have developed a predition model, similar to a Markov predi-tor [JG99℄, that inorporates the temporal loality of aesses to pages into the prefeth-ing strategy. By temporal loality we refer to the fat that a set of pages are aessedwithin a short period of time (e.g., time to aess a few pages).Similar to reeny-based predition models, suh as the one proposed by Saulsbury el.al [SDS00℄, we use the LRU stak to �nd temporal loality among pages. Note, however,that for this purpose the LRU stak must be preisely maintained. As we showed in

Chapter 4. Page Aess Traking to Improve Memory Management 93Setion 4.2.2, the LRU stak is aurately maintained by using the PATH-generatedinformation.We propose a new strategy based on temporal loality, whih assumes that if a setof pages are aessed repeatedly, they are likely to be aessed again together within ashort period of time.To detet pages that are aessed with temporal loality, we build a weighted diretedgraph, alled Page Proximity Graph (PPG). Eah virtual page is a node in the graph.An edge (p1, p2) indiates that page p2 was aessed shortly after p1. Eah edge has aweight, w, that indiates how many times the two pages were aessed within a shortperiod of time. To save spae, PPG's degree D is limited to a small number (e.g., 10).For eah page p, we maintain a Proximity Set, Xp, where |Xp| is at most D. Figure 4.7shows a simple example of PPG where D is equal to 8.The PPG is updated on eah page fault as follows. A window of Wscan pages in theLRU stak is onsidered, starting from the urrent loation of the faulted page p towardsthe top of the stak. If any page q in the san window is already in Xp, the weighton (p, q) is inremented by one. Otherwise, q is onsidered as a andidate to be addedto Xp. The weight to all other nodes in Xp that do not appear in the san window isderemented in order to deay obsolete proximity information. If the weight on any edge
(p, s) reahes zero, s is removed from Xp.Prefething is initiated whenever a page fault ours on a page, suh as p. To generatethe set of pages to be prefethed, the PPG is traversed starting from p in a breadth-�rst fashion, and all pages enountered are added to the prefeth set. In Figure 4.7,the prefethed set starting from P1 is shown in gray, when traversing to a depth of 2.The deeper the breadth-�rst traversal, the more speulative prefething will be. Onean dynamially adjust the depth of the traversal aording to the urrent prefethinge�etiveness and available I/O bandwidth. If a page in the prefeth set is already residentin memory, it will be arti�ially touhed to prevent the page replaement algorithm fromeviting it under the assumption that the page will likely be aessed soon.We evaluate prefething e�etiveness using two metris, reall and preision, wherereall is measured as the number of page-faults that are prevented from ourring by

Chapter 4. Page Aess Traking to Improve Memory Management 94Appliation Suite Desription Footprint (MB)MrBayes N/A Bayesian inferene of phylogeny 600MMCubing Illimine Data Cubing by fatorizing lattie spae 480SPECJbb2000 N/A Commerial Server Workload 850FFT Splash 2 Fast-Fourier Transform 770Oean(ontiguous partitions) Splash 2 Large-sale Oean Movement Simulator 889Oean(non-ontiguous partitions) Splash 2 Large-sale Oean Movement Simulator 903LU(ontiguous partitions) Splash 2 Simulated CFD using SSOR 760LU(non-ontiguous partitions) Splash 2 Simulated CFD using SSOR 800FMM Splash 2 N-body problem, Fast Multipole Method method 480CG NPB Conjugate Gradient Method 476BT NPB Blok Approximate Fatorization 691MG NPB Mult-Grid Kernel 430SP NPB Solving a system of Pentadiagonal equations 724Table 4.1: Seleted Memory Intensive Appliationsprefething, and preision is measured by measuring the extra I/O bandwidth that isimposed by prefething. The more preise prefething is, the lower the required I/Obandwidth will be.In order to limit the potential negative e�et of prefething in eviting still-neededpages, we limit the number of pages that are prefethed but not yet aessed by theappliation. One this limit is reahed, the prefething algorithm stops until some of theprefethed pages are atually used. As a result, a prefething sheme that is mispreditingwill not be able to pollute the ahe of pages more than a ertain amount. The limit anbe set as a proportion of the size of the ahe of pages.4.6 Experimental Evaluation4.6.1 Experimental FrameworkThe goal of our evaluation is to show that the information generated by PATH is indeeduseful for the memory management algorithms disussed in this hapter. Towards thisgoal, we used a trae-based simulation approah for two reasons. First, the informationgenerated by PATH is not diretly available in any of today's proessors. One solutionwould be to implement PATH funtionality in a yle-aurate simulator. The problem

Chapter 4. Page Aess Traking to Improve Memory Management 95with this approah is that yle-aurate simulation is extremely slow, espeially for thetype of memory-intensive appliations we are onsidering.Seondly, fully implementing all of the algorithms disussed in this hapter in a realoperating system would require substantial hanges to the operating system kernel. More-over, many implementation-spei� issues that are not neessarily related to memorymanagement may interfere. For instane, prefething from swap spae annot be e�e-tive unless the layout of the swap spae is dynamially re-organized in order to minimizethe number of disk head seeks. Otherwise, no matter how aurate prefething is, per-formane will be ompletely determined by the disk I/O subsystem. Our investigationof the swap spae implementation in the Linux kernel showed that swap spae beomesquikly fragmented under most workloads we examined. As a result, only a very smallfration of available I/O bandwidth an be utilized for prefething. Dealing with allsuh issues is simply beyond the sope of this evaluation, whih is to simply show thatPATH-generated information is useful.Therefore, to measure the exeution time of appliations, we ran all workloads individ-ually on a real system with an AMD Athlon 1.5GHz proessor, and timed their exeutionwith their entire working set size �tting in memory so that no page faults our. Weestimate projeted exeution time given the page fault rate determined by our simulationexperiments. We use Bohs [Bo℄, a widely used full-system funtional simulator for theIA-32 arhiteture, to run the appliations and reord their memory aesses. The mem-ory trae generated by the mahine simulator is fed into a memory manager simulatorthat simulates the memory-management algorithms in a multi-programmed environment.The projeted exeution time is alulated using the following formula:
Projected_Exec_Time = Exec_Time0 + WaitPF

WaitPF = Average_LatencyPage_Fault ∗ Total_Page_Faultswhere Exec_T ime0 is the exeution time measured when no page fault ours. We assumethat one a proess faults on a page, it will be bloked for Average_LatencyPage_Faultyles; we use a �xed value of one million CPU yles for Average_LatencyPage_Fault.This value onservatively underestimates the ost of page faults as the average disk aess

Chapter 4. Page Aess Traking to Improve Memory Management 96lateny of even fast disks is in the order of a few milliseonds.Moreover, we optimistially assume that I/O bandwidth is not a bottlenek; i.e., weassume that saturation of I/O hannel apaity will not delay exeution. However, wemeasured the potential impat of the algorithms on required I/O bandwidth.We added a TLB simulator to Bohs so it ould gather TLB misses generated byappliations. In our experiments we set the TLB size to 128 entries and its assoiativityto 16. Although Bohs simulates the entire software stak (i.e., user programs as well asthe operating system kernel), we reord only user-level TLB misses. A memory trae isessentially a series of page aesses that are time�stamped by the number of instrutionsompleted by an appliation sine the last TLB miss. In order to reord modi�ationof pages by the appliations, a memory write instrution that hits on a non-dirty TLBentry is onsidered to be a TLB write miss, and is also reorded into the trae. Weslightly modi�ed the Linux kernel version 2.6.10 to inform the mahine simulator of anyproess fork, exit, ontext-swith, or page-fault events. Moreover, all mmap relatedsystem alls are relayed to the simulator. Having this information enables us to isolatethe exat sequene of virtual addresses eah proess has aessed or modi�ed throughoutits exeution.4.6.2 AppliationsTable 4.1 shows the set of memory-onsuming appliations we use from various benh-mark suites: six appliations from the Splash-2 suite [WOT+95℄, four from the NASParallel Benhmark (NPB) suite [NAS℄, SPECjbb2000 [Sta℄, MMCubing from the Illim-ine data mining suite [Ill℄, and MrBayes, a Bayesian inferene engine for phylogeny [MrB℄.We did not inlude SPEC CPU benhmarks, as they have fairly small memory footprints.Also, we did not inlude database benhmarks, primarily beause database servers usuallyexploit their omplete knowledge of aessed pages to optimize the replaement poliiesmore e�etively inside the server.We ran the appliations with large problem sizes within the pratial limits of thesimulation environment. However, all of these appliations ould onsume tens of gi-gabytes of memory for large but still realisti problem sizes. For our experiments, we

Chapter 4. Page Aess Traking to Improve Memory Management 97
 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 300 350 400 450 500 550 600 650 700 750 800

P
ro

je
c
te

d
 E

x
e
c
.
T

im
e
 (

b
il
li
o

n
 c

y
c
le

s
)

Memory Size (MB)

Global LRU
LIRS

Region-based

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 450 500 550 600 650 700 750 800 850 900

P
ro

je
c
te

d
 E

x
e
c
.
T

im
e
 (

b
il
li
o

n
 c

y
c
le

s
)

Memory Size (MB)

Global LRU
LIRS

Region-based

a. LU ont. (FMM, MG, and SP) b. Oean ont. (Oean non-ont.)
 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 100 200 300 400 500 600 700 800

P
ro

je
c

te
d

 E
x

e
c

.
T

im
e

 (
b

il
li
o

n
 c

y
c
le

s
)

Memory Size (MB)

Global LRU
LIRS

Region-based

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 500 550 600 650 700 750 800 850 900 950 1000 1050

P
ro

je
c

te
d

 E
x

e
c

.
T

im
e

 (
b

il
li
o

n
 c

y
c
le

s
)

Memory Size (MB)

Global LRU
LIRS

Region-based

. BT (FFT and MrBayes) d. SPEC JBB (LU non-ont. and CG)Figure 4.8: Projeted exeution time of seleted appliations with di�erent replaement poliies.The appliations listed within parentheses have similar behavior.olleted memory traes that over the exeution of a few hundred billion instrutionsfor eah appliation. A warm up time is onsidered at the beginning of the simulationin whih no measurement is done. The length of the warm up time is observed by eahappliation's initialization time. Note, however, that we did not exeute appliations toompletion.4.6.3 Analysis of Adaptive Replaement PoliiesFigure 4.8 shows the e�et of using di�erent replaement poliies on appliation exeutiontime as memory size is varied. The �gure shows the results for a set of four appliationswith representative behavior. For most of the appliations, using one of the adaptivepoliies (i.e., LIRS or region-based) resulted in a signi�ant improvement in the projeted

Chapter 4. Page Aess Traking to Improve Memory Management 98

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140 160

IP
C

Cycles (billion)

Multi-Process Global LRU

SpecJBB
BT

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140 160

IP
C

Cycles (billion)

Local Allocation (Performance)

SpecJBB
BT

a. Global LRU (IPC) b. Loal Performane (IPC)
 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 0 20 40 60 80 100 120 140 160

P
a
g

e
 F

a
u

lt
s

Cycles (billion)

Multi-Process Global LRU

SpecJBB
BT

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 0 100 200 300 400 500 600

P
a
g

e
 F

a
u

lt
s

Cycles (billion)

Local Allocation (Fairness)

SpecJBB
BT

. Global LRU (Faults) d. Loal Fairness (Faults)Figure 4.9: Global and Loal Alloation poliy in multi-programmed senario: SpeJBB andBT. In (a) and (b), the performane of the two algorithms is shown, while the goal is to maximizeoverall system throughput (in terms of IPC). In () and (d), the fairness of the two algorithmsis shown, while the goal is to reah the same page-fault rate for both appliations.
exeution time (e.g., around 500% for LU ont.). Comparing region-spei� and LIRSpoliies, in some ases one performs slightly better than the other and vie versa, butgenerally their di�erene is not signi�ant. There are also rare ases in whih one of theadaptive poliies performs slightly worse than the basi LRU algorithm (e.g., Oean forLIRS and SPECJbb for region-spei�).

Chapter 4. Page Aess Traking to Improve Memory Management 994.6.4 Analysis of Loal Memory AlloationTo demonstrate the bene�ts of �ne-grained memory aess pattern information for loal(per-proess) memory alloation shemes, we have designed two experiments. In the �rstexperiment, we show that total system throughput (in terms of Instrutions Per Cyle)an be improved over a traditional global alloation sheme. The seond experimentdemonstrates that in a system under memory pressure, it is possible to obtain fairness,in terms of page-fault rate, through memory isolation.In all setups, two appliations are running simultaneously: SPECJbb and BT. Withoutloss of generality, in order to make the experiment more lear, we assumed that the IPCof both appliations is 1 when running in isolation. Also, as mentioned earlier, eah pagefault is onsidered to have �xed lateny of one million yles. We used a warm-up timeof 30 billion instrutions and a running time of 60 billion instrutions ombined.Figure 4.9 (a) shows the average IPC for both appliations when run with globalalloation mode; graph (b) shows the average IPC when the appliations run with loalmemory alloation, set to maximize throughput. The trend in IPC is similar for bothsetups; however, our loal alloation poliy ahieves higher overall IPC in that the numberof yles needed to exeute 60 billion instrutions with loal memory alloation is about18% lower than that is required with global memory alloation (145 vs. 178 billionyles). This is mainly beause SPECJbb has a higher bene�t from getting extra pagesthan BT while a global memory alloation sheme onsiders the utility of eah page thesame for both appliations.Graphs () and (d) of Figure 4.9 show the page-fault rate of the same two appliationsrunning with global and loal alloation poliies, respetively. For the loal alloationpoliy, however, we have on�gured the poliy to maintain page-fault fairness, as de-sribed in Setion 4.4. Although the loal alloation poliy on�gured for fairness takesmuh longer to omplete, it is quite visible that the page-fault rate eah appliation issu�ering is similar, therefore suessfully reahing its objetive.

Chapter 4. Page Aess Traking to Improve Memory Management 1004.6.5 Analysis of PrefethingIn a set of experiments, we have ompared the temporal and spatial loality-basedprefething algorithms. Figure 4.10 shows their e�et on both page-fault rate and re-quired I/O bandwidth for a set of seleted appliations. The rest of the appliations weexamined perform similarly to one of the appliations shown in the �gure, and are listedin parenthesis in the �gure. For eah appliation two graphs are shown. The graphs onthe left show how the page-fault rate is a�eted as a result of prefething. The graphson the right side show the impat of prefething on I/O bandwidth both for page-in andpage-out operations.For the spatial loality-based poliy, we set the initial prefething window w to 64whih an dynamially grow depending on ahieved preision. For the temporal loality-based poliy, we set the size of the proximity set for eah page to 10 and the san windowsize Wscan to 64 pages. The depth of the breadth��rst traversal in the PPG graph waslimited to 3. Finally, for both algorithms we set the size of the pool of pages that areprefethed but not aessed yet to be at most 10% of the physial memory.In our experiments, we assumed unlimited I/O bandwidth and that the only soure ofstall is I/O lateny. This means that one a set of pages are designated to be prefethed(at most 64 pages), they are assumed to be available in memory within a onstant delaytime. Furthermore, we have not taken the e�et of disk positional delays into aount.For many appliations, suh as MG and FFT, the spatial loality-based poliy is quitee�etive both in terms of reall and preision. Our temporal loality-based algorithm thatmonitors the sequene of the aessed pages is also able to detet regularity in the aesspattern with similar e�etiveness. There are appliations, suh as LU non-ontiguous,for whih the temporal loality-based algorithm signi�antly outperforms the spatialloality-based algorithm, both in terms of reduing the page-faults and preision. Thee�et of prefething on I/O bandwidth for LU non-ontiguous is remarkable in the sensethat prefething manages to prevent pages in the prefethed set from being replaed byarti�ially touhing them. As a result, the required I/O bandwidth with prefething islower than that required without prefething for some memory sizes. Finally, for some

Chapter 4. Page Aess Traking to Improve Memory Management 101appliations, suh as SPECJbb, neither of the prefething algorithms is e�etive. Thisan indiate that more appliation-level information is required to predit next aesses.For instane, Demke-Brown et al. shows e�etive use of ompiler analysis to generateaurate prefething hints automatially [BMK01℄.4.6.6 E�et of PAB SizeFigures 4.11 and 4.12 show the e�et of di�erent PAB sizes on the projeted exeutiontime and runtime overhead for both the page replaement and prefething algorithms forsome of the appliations that bene�t from �ne-grained page aess information. Reallthat the PAB absorbs the aesses to hot pages and prevents them from appearing inthe page aess trae. In these experiments, we vary the PAB size from 128 to 32Kentries, So that the PAB will span from 512KB to 128MB respetively. As the PAB sizeinreases, we expet that an inreased number of page aesses to be �ltered by PATHand thus the page aess information generated beomes less aurate. At the same time,we expet proessing overhead to derease as fewer page aesses are reorded.As we see in the graphs, runtime overhead drops signi�antly as PAB size inreases.At the same time, the projeted exeution time does not seem to be varying muh as thePAB size is inreased from 128 to 2K entries. One exeption is FFT with LIRS (shown inFigure 4.2). Overall, it appears that a 2K-entry PAB represents a good tradeo� betweenoverhead and auray.

Chapter 4. Page Aess Traking to Improve Memory Management 102

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 300 350 400 450 500 550 600 650 700 750 800

P
ro

je
c
te

d
 E

x
e
c
.
T

im
e
 (

b
il
li
o

n
 c

y
c
le

s
)

Memory Size (MB)

No Prefetching
Spatial Locality

Temporal Locality

 0

 50

 100

 150

 200

 250

 300 350 400 450 500 550 600 650 700 750 800

I/
O

 (
M

B
 i
n

 a
 b

il
li
o

n
 i
n

s
tr

s
)

Memory Size (MBytes)

No Prefetching
Spatial Locality

Temporal Locality

a. LU Non-ontiguous Partitions (MMCubing, and MrBayes)
 0

 1000

 2000

 3000

 4000

 5000

 6000

 150 200 250 300 350 400 450 500

P
ro

je
c

te
d

 E
x

e
c

.
T

im
e

 (
b

il
li
o

n
 c

y
c

le
s

)

Memory Size (MB)

No Prefetching
Spatial Locality

Temporal Locality

 0

 20

 40

 60

 80

 100

 120

 140

 160

 200 250 300 350 400 450 500

I/
O

 (
M

B
 i
n

 a
 b

il
li
o

n
 i
n

s
tr

s
)

Memory Size (MBytes)

No Prefetching
Spatial Locality

Temporal Locality

b. MG (SP, LU ont., BT, FFT, and Oean)
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 500 550 600 650 700 750 800 850 900

P
ro

je
c
te

d
 E

x
e

c
.
T

im
e

 (
b

il
li
o

n
 c

y
c

le
s

)

Memory Size (MB)

No Prefetching
Spatial Locality

Temporal Locality

 0

 50

 100

 150

 200

 250

 300

 550 600 650 700 750 800 850 900

I/
O

 (
M

B
 i
n

 a
 b

il
li
o

n
 i
n

s
tr

s
)

Memory Size (MBytes)

No Prefetching
Spatial Locality

Temporal Locality

. SPEC JBB (FMM)Figure 4.10: The e�et of prefething both on page-fault rate and on required I/O bandwidth.In parenthesis are appliations that exhibit similar behaviour.

Chapter 4. Page Aess Traking to Improve Memory Management 103

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

128 256 512 1K 2K 4K 8K 16K 32K
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

P
ro

je
c
te

d
 E

x
e
c
.
T

im
e
 (

b
il
li
o

n
 c

y
c
le

s
)

P
A

T
H

 O
v
e
rh

e
a
d

 (
%

)

PAB Entries

Exec. Time
Overhead

 0

 100

 200

 300

 400

 500

 600

 700

 800

128 256 512 1K 2K 4K 8K 16K 32K
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

P
ro

je
c
te

d
 E

x
e
c
.
T

im
e
 (

b
il
li
o

n
 c

y
c
le

s
)

P
A

T
H

 O
v
e
rh

e
a
d

 (
%

)

PAB Entries

Exec. Time
Overhead

(a) LU Contiguous LIRS (575 MB) (b) Oean Contiguous LIRS (780 MB)
 0

 50

 100

 150

 200

 250

 300

 350

 400

128 256 512 1K 2K 4K 8K 16K 32K
 0

 10

 20

 30

 40

 50

 60

P
ro

je
c

te
d

 E
x

e
c

.
T

im
e

 (
b

il
li
o

n
 c

y
c
le

s
)

P
A

T
H

 O
v

e
rh

e
a

d
 (

%
)

PAB Entries

Exec. Time
Overhead

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

32K16K8K4K2K1K512256128
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

P
ro

je
c

te
d

 E
x

e
c

.
T

im
e

 (
b

il
li
o

n
 c

y
c
le

s
)

P
A

T
H

 O
v

e
rh

e
a

d
 (

%
)

PAB Entries

Exec. Time
Overhead

() FFT Region-Spei� Repl. (576 MB) (d) BT Region-Spei� Repl. (515 MB)Figure 4.11: The e�et of PAB size on the projeted exeution time and runtime overhead forpage replaement algorithms.

 0

 50

 100

 150

 200

 250

 300

128 256 512 1K 2K 4K 8K 16K 32K
 0

 1

 2

 3

 4

 5

 6

 7

P
ro

je
c
te

d
 E

x
e
c
.

T
im

e
 (

b
il

li
o

n
 c

y
c

le
s

)

P
A

T
H

 O
v
e
rh

e
a
d

 (
%

)

PAB Entries

Exec. Time
Overhead

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

128 256 512 1K 2K 4K 8K 16K 32K
 0

 1

 2

 3

 4

 5

 6

 7

P
ro

je
c
te

d
 E

x
e
c
.

T
im

e
 (

b
il

li
o

n
 c

y
c

le
s

)

P
A

T
H

 O
v
e
rh

e
a
d

 (
%

)

PAB Entries

Exec. Time
Overhead

(a) MMCubing Prefething (234 MB) (b) LU Non Contiguous Prefething (312 MB)Figure 4.12: The e�et of PAB size on the projeted exeution time and runtime overhead forprefething algorithms.

Chapter 4. Page Aess Traking to Improve Memory Management 1044.6.7 Analysis of OverheadIn this setion, we ompare PATH's runtime overhead to a software-only approah. Tomeasure PATH's basi overhead, we emulated exeptions generated by PATH in a realenvironment using an 1.5GHz AMD Athlon proessor. For eah appliation, we olleteda trae of PAL over�ow exeptions along with the ontent of the PAL at the time ofexeption. Eah over�ow event is time-stamped using the number of instrutions retiredsine the start of the appliation. We then replayed these traes by arti�ially generatingexeptions at the same rate as in the trae by using hardware performane ounter over-�ow exeptions. At eah exeption, we read the ontents of the PAL from the trae andupdated the LRU stak and MRC data strutures. To alulate the overhead, we mea-sure the total number of CPU yles needed to exeute a ertain number of appliationinstrutions (e.g. a few tens of billions), with and without PATH exeptions.The software-only approah is implemented in Linux-2.6.15. We measure only theost of maintaining the ative set whih inludes the ost of extra page protetion faults,page table walks to set the protetion bits, �ushing the orresponding TLB entries, andoasionally trimming the ative set using CLOCK.Figure 4.13 shows the runtime overhead of both PATH and the software-only approahaross the seleted set of appliations, as a funtion of ative set size (PAB size inPATH). There are a number of observations. First, the overhead of the software-onlyapproah is quite high (up to more than 200% of the base exeution time) for a numberof appliations (e.g., FFT, LU-non., MMCubing and SPECJbb) even with a fairly largeative set size. Seond, the runtime overhead of PATH is very small in all appliationsif a large PAB (e.g., 32K) is used. For the target 2K PAB size, the overhead of PATHremains less than 3% in all but two appliations (LU-non., and SPECJbb for both ofwhih the overhead is less than 6%). The relatively small overhead is easily o�set bythe substantial performane improvement ahieved by the PATH-generated informationwhen the system is under memory pressure. Note that the OS an turn PATH o� whenthe system is not under memory pressure, and as a result there will not be any unwantedruntime overhead.

Chapter 4. Page Aess Traking to Improve Memory Management 105
O

ce
an

 (P
A

T
H

)

O
ce

an
 (S

O
FT

)
L

U
-n

on
c.

 (P
A

T
H

)

L
U

-n
on

c.
 (S

O
FT

)
M

G
 (P

A
T

H
)

M
G

 (S
O

FT
)

M
rB

ay
es

 (P
A

T
H

)

M
rB

ay
es

 (S
O

FT
)

C
G

 (P
A

T
H

)
C

G
 (S

O
FT

)

M

M
C

ub
in

g
(P

A
T

H
)

M
M

C
ub

in
g

(S
O

FT
)

FF
T

 (P
A

T
H

)
FF

T
 (S

O
FT

)
L

U
-c

on
. (

PA
T

H
)

L
U

-c
on

. (
SO

FT
)

FM
M

 (P
A

T
H

)

FM
M

 (S
O

FT
)

B
T

 (P
A

T
H

)
B

T
 (S

O
FT

)
SP

E
C

JB
B

 (P
A

T
H

)

SP
E

C
JB

B
 (S

O
FT

)
SP

 (P
A

T
H

)
SP

 (S
O

FT
)

�

��

��

��

��

��

��

��

	�

�

���
���

���

��

��

��

���

���

�
�

��
�
�
��
�
�
��
�
�
�
��
�
�

Figure 4.13: Runtime overhead of PATH-generated information ompared to the software-onlyapproah (SOFT). To help visualize the omparison, all runtime overhead numbers larger than100% are trunated.It is important to note that our approah for measuring the overhead is pessimistias we ensure the programs' working sets �t in memory and no page faults our duringthe ourse of our measurement. In pratie, however, muh of the proessing of PATH-generated information an be overlapped with potentially long I/O operations aused bypage faults.4.7 Related WorkZhou et al. suggest the use of a ustom-designed hardware monitor on the memory busto e�iently alulate MRC online [ZPS+04℄. In their approah, muh of the overhead ofomputing MRC an be avoided by o�oading to hardware almost ompletely. In ontrast,we argue in favor of having a simpler hardware that provides lower-level, but more generi,information about page aesses that an be used to solve many problems inluding thememory alloation problem. We have shown that with the use of �ne-grained page aessinformation, the operating system an make better deisions on at least three di�erent

Chapter 4. Page Aess Traking to Improve Memory Management 106problems. In terms of hardware resoures required, the data strutures in PATH aresimpler and smaller, and unlike the MRC monitor in Zhou et al.'s approah, do not growproportionally with the size of system physial memory.Cooperative Robust Automati Memory Management(CRAMM) ollets detailedmemory referene information to be used to adjust the heap size of a Java virtual mahinedynamially in order to prevent a severe performane drop during garbage olletion dueto paging [YBKM06℄. The authors have used the software-only approah to trak MRCin order to predit memory usage and adjust the JVM heap size aordingly. To redueoverhead, CRAMM dynamially adjusts the size of the ative set by monitoring runtimeoverhead. Suh an approah is presumably e�etive in traking MRC for JVM's heapsize. However, our results show that for many memory intensive appliations, inreasingthe size of the ative set will result in signi�ant performane degradation of memorymanagement algorithms.Traking memory aesses at the hardware level has been suggested by other re-searhers, although to address di�erent problems. For instane, Qureshi et al. suggestedthe use of hardware utility monitors to monitor memory aesses solely to ompute MRCat the granularity of individual CPU ahe lines [QP06℄. Their hardware uses the om-puted urves to dynamially partition shared L2 ahes to improve performane or enforeprioritization.4.8 Conluding RemarksTraditionally, operating systems trak appliation memory aesses either by monitoringpage faults or by periodially sanning page table entries. With this approah, importantinformation on the reuse distane and temporal proximity of virtual page aesses thatan be used for improving memory management algorithms is lost. Previous work hassuggested the use of a purely software-based approah that uses virtual page protetionto trak page aesses more aurately. While this software-based approah is e�etivefor some appliations, for many appliations it inurs unaeptably high overhead.In this hapter, we proposed novel Page Aess Traking Hardware (PATH) that

Chapter 4. Page Aess Traking to Improve Memory Management 107reords page aess sequenes in a relatively aurate, yet e�ient way. In terms ofstruture and funtion, PATH is simple and easy to implement. In terms of hardwareresoures required, PATH's strutures are fairly small (e.g., around 10KB in size in total)and, unlike previously proposed hardware mehanisms for page aess traking, they donot grow proportionally with the size of physial memory.We explored several algorithms in the operating system that an exploit the informa-tion provided by PATH to improve memory management in three di�erent areas: (i) toimplement more adaptive adaptive page replaement poliies, (ii) to make smart deisionin alloating memory to onurrently running proesses, and (iii) to guide the prefeth-ing of pages from virtual memory swap spae. Our experimental analysis showed thatwith PATH, signi�ant performane improvements (e.g., as high as 500% in some ases)an be ahieved for appliations, espeially when systems are under memory pressure.Unlike software-only approahes for traking �ne-grained page aess information, theruntime overhead of PATH remains small (i.e., in the 3%-6% range) aross a wide rangeof memory-intensive appliations.Further work is still required in evaluating the e�etiveness of information generatedby PATH with a more diverse set of appliations. Moreover, to ensure salability ofPATH for very large memory setups, more experiments with larger appliation problemsizes must be onduted.Another important extension is to explore the use of PATH in a multiproessor setup.There are important open issues, suh as how to olletively use PATH traes of parallelappliations that are generated on multiple proessors. Similarly, work needs to be donein perfeting PATH support for multithreaded appliations. Currently, the PATH traegenerated for an appliation running on a CPU is proessed into a single LRU stak orthe Page Proximity Graph. If the appliation is multithreaded, this approah resultsin intermingling traes of several threads into a single aggregate data struture. As aresult, important information about both reuse distane and temporal proximity of pageaesses on a per thread basis is lost. To solve this problem, simple extensions an bemade to the software layer to keep trak of multiple LRU staks on a per thread basis.We believe that additional uses of information provided by PATH will beome appar-

Chapter 4. Page Aess Traking to Improve Memory Management 108ent over time, as we experiment with a wider variety of memory intensive appliations.Two possible ideas are super page management and page plaement in a NUMA arhi-teture.Finally, we have observed that steps have already been taken by the hardware per-formane monitoring ommunity to failitate integration of PATH into real hardware.For instane, the idea of adding a generi trae bu�er to the PMU of next generationCPUs seems to have attrated attention [Mer06, Cal06℄. One an easily envision addingmodest-sized �lters, suh as those in PATH (or to use a seond level TLB for this pur-pose), to the existing hardware substrate to support aurate apture of the page aessessequenes, as proposed in this hapter.

Chapter 5
Conluding Remarks
Over the past several deades, miroproessor arhitetures have evolved to inreasinglyprovide system software with information for implementing new funtionality or for im-proving the performane of appliation and operating system ode. This evolution ispartially aelerated by the inreasing abundane of silion in modern miroproessors,whih enables embedding new hardware features other than those that are diretly re-quired for exeuting ode.In this dissertation, we explored hardware performane monitoring features of today'smiroproessors and we explored software tehniques for exploiting these features at theoperating system level to improve software performane.At a high level, our approah, has been to try to utilize, as muh as possible, existingmiroproessor performane monitoring features for the purpose of performane analysisand optimization. If the information required for spei� performane optimization teh-niques was not provided through existing hardware performane monitoring features, orwas too ostly to obtain, we proposed minimal extra hardware support.We based our researh and experimentation primarily on existing hardware, and de-fault to simulation only when we explore newly propose hardware support. This approahhas several advantages. First, it allows us to observe hardware-software interation se-narios in a real environment, taking into aount all omplexities of real systems. Se-ondly, using real hardware allows us to run long-running experiments at real-time speedwhih is several orders of magnitude faster than a detailed system simulator. Finally,109

Chapter 5. Conluding Remarks 110having explored existing hardware in great detail provides us with the insight to proposenew hardware support more realistially, and to the minimal extent needed.To onlude this thesis, we �rst provide a brief summary of our work and the majorontributions of this thesis. We then provide diretions for future researh in improvingthe e�etiveness and utility of hardware performane monitoring and how the operatingsystem an bene�t from suh improvements.
5.1 SummaryWe �rst present a summary of our researh e�ort on di�erent areas of hardware perfor-mane monitoring. We then enumerate spei� researh ontribution our researh hasmade.5.1.1 CPU Bottlenek AnalysisWe explored the problem of aurately and e�iently identifying CPU bottleneks byusing Hardware Performane Counters (HPCs). Towards ahieving this goal we faedtwo hallenges. First, too few HPCs are available in miroproessors today. Seondly,there has to be a simple and e�ient performane model with whih CPU bottleneksan be de�ned and quanti�ed. We addressed the �rst hallenge by applying low-levelHPC multiplexing to make a large set of logial HPCs available. We addressed theseond hallenge by haraterizing a simple, but powerful, performane model, alled stallbreakdown, to identify those proessor omponents that are stressed most. Our modelfouses on yles where the instrution ompletion stops. We show that suh yles areresponsible for most of the di�erene between the ideal and real throughput of today'sCPU. To generate stall breakdown online, we used IBM POWER5 and PowerPC970hardware performane monitoring features to speulatively assoiate stalls to the CPUomponents that are likely to have aused them. By using our HPC multiplexing engine,we build the stall breakdown model online with negligible runtime overhead.

Chapter 5. Conluding Remarks 1115.1.2 Hardware Data SamplingWe explored di�erent methods of �ne-grained data sampling at the hardware level, havingreognized that preise information on the data aess patterns of appliations is requiredfor implementing many performane optimizations. Aurately analyzing appliationdata aess patterns is partiularly important beause of the widening gap between CPUand memory speed ausing most CPU yles to be spent waiting for long-lateny memorymodules to provide data.We found existing hardware data sampling tehniques to have major limitations,making them only partially useful. For instane, the soure from whih data is fethedis not diretly identi�ed by any of the existing miroproessor performane monitoringunits. However, using IBM POWER5's ontinuous data sampling features, we were ableto implement a tehnique to sample data based on soure indiretly. Moreover, we wereable to sample data based on multiple seletion riteria simultaneously by using ourHPC multiplexing engine. In a ase study, we showed how to use soure-based datasampling to aurately haraterize data sharing patterns among onurrent threads ina multiproessor environment. We further showed how to use this haraterization ofsharing among threads to luster them into groups of threads that atively share data.5.1.3 Page Aess Traking HardwareTo improve the performane of memory management, we proposed simple hardware a-pable of traking memory aesses at the granularity. Our proposal was based on theobservation that the existing data sampling methods have inherent limitations. First, itis di�ult to �nd the reuse distane of a partiular memory address, and seondly, it isnot possible to preisely identify sets of pages that are aessed together.Our proposed hardware is simple and salable, and it is generi in that it produes araw trae of memory aesses from whih the most frequently aesses pages are automat-ially removed by the hardware. We used our proposed page aess traking hardware(PATH) in e�iently onstruting preise LRU stak and Miss Rate Curves (MRCs)for virtual pages. We further showed the use of these data strutures in implement-

Chapter 5. Conluding Remarks 112ing algorithms for three di�erent areas of memory management. In all three ases weshowed, through simulation, that signi�ant performane improvement an be ahievedwith negligible software overhead.
5.1.4 Summary of ContributionsOur researh has resulted in the following spei� ontributions:

• Our tehniques and in partiular the proposed arhiteture for HPC multiplexingwith the sampling engine based in the operating system kernel, allows for samplingat a �ner granularity and more e�iently than previously possible. Moreover,through the use of �ne-grained HPC multiplexing we were able to make a largerset of logial HPCs available.
• We developed the Stall Breakdown model that assists in identifying the moststressed omponents of the miroproessor. The key insight in developing thissimple model was fousing on non-ompletion CPU yles, as opposed to fousingon individual stages in the proessor pipeline. Using IBM POWER5 failities, wewere able to generate stall breakdown information online with negligible overhead.
• We identi�ed a novel tehnique to sample data ahe misses based on the sourefrom whih they are served. WE demonstrated the value of this type of datasampling by e�iently onstruting sharing signatures for onurrent threads tosupport sharing-aware shedulers.
• We proposed a novel page aess traking hardware (PATH) that has negligibleoverhead and high preision, and we showed how to use this hardware support toimprove memory management in three di�erent areas: (i) adaptive page replae-ment poliies, (ii) proess memory alloation, and (iii) virtual memory prefething.

Chapter 5. Conluding Remarks 1135.2 Future DiretionsThe arhiteture of the Performane Monitoring Unit (PMU) has dramatially evolvedover the last deade. Proessor arhitets have started to devote additional resouresto provide more preise and diverse funtionality in the miroproessor PMU. Today,in almost every major miroproessor, a large set of di�erent hardware events an bemonitored. Furthermore, there have been major enhanements in tehniques of loselymonitoring individual instrutions as they �ow through the pipeline to allow pinpointingexat root auses of performane problems. Finally, several proessor PMUs have intro-dued new data strutures, suh as trae bu�ers. These data strutures greatly inreasethe power of PMUs, whih traditionally have been omposed of only a set of ounters.Despite the fat that PMUs an be found in most today's miroproessors, their fea-tures are not widely exploited by software developers and thus, PMUs have remained"seond lass itizens" [Cal06℄. On the one hand, the software ommunity often �ndsPMU features inadequate or omplex to use. On the other hand, the hardware arhite-ture ommunity is not willing to adopt new PMU features unless their utility is learlydemonstrated. We believe that, in order to further motivate the evolution of PMUs, thesoftware ommunity will need to provide more onrete ases of real performane im-provements (or redution in energy onsumption) that are only made possible by usingaurate PMU-generated information. Moreover, we believe our approah of using theexisting PMU as muh as possible and proposing only minimal extra hardware, wheneverneessary enourages further enhanements in the arhiteture of next generation PMUs.A key reason why PMU features are not widely used for software-level optimizationsmay be due to the fat that spei� PMU features required are available only on apartiular arhiteture. Even when the required features are available aross severalarhitetures, it is often a non-trivial task to exploit these features beause of substantialdi�erenes in the user-interfae, terminology, and semantis of hardware events arossdi�erent proessor PMUs. We believe that, in order to resolve this issue, PMU featuresshould, at least partially, be standardized. The proess of standardization may involvemaking a lear distintion between (i) hardware implementation-spei� features intended

Chapter 5. Conluding Remarks 114primarily for proessor arhitets to aid in the debugging and performane tuning ofseveral revisions of a proessor family, and (ii) higher-level, implementation-independentfeatures to aid software designers in understanding and improving the performane oftheir software.Towards standardization of PMU features to aid software optimization, we believean extended stall-breakdown model, whih fouses on preisely measuring the penalty ofmiss events is a useful feature that should be implemented with a similar interfae arossall proessor families with similar semantis. The key underlying feature is the abilityto attribute CPU yles wasted as a result of a miss event to proessor omponents,program instrutions, and a�eted data addresses that are involved in the miss event.Additionally, the hardware performane monitoring infrastruture should be extendedto all omponents in of the omputer system, not only the CPU. Components of interestinlude the memory bus (or any other type of memory interonnet in a NUMA sys-tem), the proessor interonnet, the I/O interonnet, and the individual I/O deviessuh as network interfae, graphial proessing unit (GPU), and hard disks. Having a-urate information on the performane of all these omponents will enable the systemsoftware to have a more omplete view of system performane and its potential bottle-neks. For instane, Antonopoulos et al. demonstrate the onrete possibility of memorybus bandwidth limitation to beome a performane bottlenek for highly optimized par-allel appliations, and how a bandwidth onsious CPU-sheduler an utilize memorybus bandwidth information to avoid this bottlenek [ANP03℄. There are also lear in-diations that the omputer hardware industry has aknowledged the importane of thesystem-wide hardware performane monitoring and is taking meaningful steps towardsit [Kei06, Kag06, NZ℄.Finally, with the widespread revival of virtualization tehnology, we believe an impor-tant future hallenge for hardware performane monitoring failities is to provide propersupport for virtualized environments. As virtual mahines have beome inreasingly pop-ular, they introdue new questions on how the hardware an monitor the system to �ndperformane bottleneks of a virtual mahine running on a physial mahine shared bymany other virtual mahine instanes. When a virtual mahine is sheduled to run, it

Chapter 5. Conluding Remarks 115inherits the residual state of virtual mahines running previously on the same CPU. Thise�et introdues additional noise to the performane measurements done through thePMU. Also, onurrently running virtual mahines interfere with eah other on sharedresoures suh shared on-hip ahes, memory bus, and I/O interonnet fabri.

Bibliography
[ABD+97℄ J. Anderson, L. Ber, J. Dean, S. Ghemawat, M. Henzinger, S. Leung,D. Sites, M. Vandervoorde, C. Waldspurger, and W. Weihl. Continuouspro�ling: Where have all the yles gone? In Proeedings of the 16th ACMSymposium of Operating Systems Priniples (SOSP), Saint Malo, Frane,Otober 1997.[ACD+96℄ C. Amza, A.L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu,and W. Zwaenepoel. TreadMarks: Shared memory omputing on networksof workstations. IEEE Computer, 29(2):18�28, February 1996.[AMD℄ AMD. AMD64 arhiteture programmer's manual volume 2: System pro-gramming rev 3.11.[AMD02℄ AMD. Athlon Proessor X86 ode optimization guide. AMD In., pages235�243, 2002.[ANP03℄ Christos Antonopoulos, Dimitrios S. Nikolopoulos, and Theodore S. Pap-atheodorou. Shedulding algorithms with bus bandwidth onsiderations forsmps. In International Conferene on Parallel Proessing (ICPP), Taiwan,Otober 2003.[App℄ Apple Computer In. Computer Hardware Understanding Development(CHUD) tools. http://developer.apple.om/tools/performane/.116

Bibliography 117[AV02℄ D. H. Ahn and J. S. Vetter. Salable analysis tehniques for miroproessorperformane ounter metris. In Proeedings of Conferene on Superom-puting, Baltimore, MD, USA, November 2002.[BH℄ Bryan Buk and Je�rey Hollingsworth. Using hardware performane mon-itors to isolate memory bottleneks.[BH00℄ Bryan Buk and Je�rey K. Hollingsworth. An API for runtime ode path-ing. Pro. of the International Journal of High Performane ComputingAppliations, 14(4):317�329, Winter 2000.[BH04℄ Erik Berg and Erik Hagersten. StatCahe: A probabilisti approah toe�ient and aurate data loality analysis. In In Proeedings of the IEEEInternational Symposium on Performane Analysis of Systems and SoftwareISPASS, Austin, TX, USA, Marh 2004.[BH05℄ Erik Berg and Erik Hagersten. Fast data-loality pro�ling of native exeu-tion. In In Proeedings of the ACM SIGMETRICS International Confereneon Measurement and Modeling of Computer Systems, June 2005.[BM04℄ Sorav Bansal and Dharmendra S. Modha. CAR: Clok with adaptive re-plaement. In Proeedings of the USENIX Conferene on File and StorageTehnologies (FAST), San Franiso, CA, USA, Marh 2004.[BMK01℄ Angela Demke Brown, Todd C. Mowry, and Orran Krieger. Compiler-based I/O prefething for out-of-ore appliations. ACM Transations onComputer Systems, 19(2), 2001.[Bo℄ Bohs. The open soure IA-32 emulation projet.http://bohs.soureforge.net/.[BRS05℄ David A. Bader, Usman Roshan, and Alexandros Stamatakis. Computa-tional grand hallenges in assembling the tree of life: Problems and so-lutions. Proeedings of ACM/IEEE onferene on Superomputing (SC),tutorial session, November 2005.

Bibliography 118[Cal06℄ Jim Callister. The future of hardware performane monitors. In Presenta-tion at the 2nd Workshop on Funtionality of Hardware Performane Mon-itors, held at MICRO-39, Orlando, FL, USA, Deember 2006.[CDSW05℄ Calin Casaval, Evelyn Duesterwald, Peter F. Sweeney, and Robert W.Wisniewski. Multiple page size modeling and optimization. In Proeedingsof the 14th International Conferene on Parallel Arhitetures and Compi-lation Tehniques (PACT), Saint Louis, MS, USA, September 2005.[CH81℄ Rihard W. Carr and John L. Hennessy. WSCLOCK: a simple and e�etivealgorithm for virtual memory management. In Proeedings of the eighthACM symposium on Operating systems priniples, (SOSP), Pai� Grove,CA, USA, 1981.[Cha97℄ John Chapin. A fresh look at memory hierarhy management. In Proeed-ings of the 6th Workshop on Hot Topis in Operating Systems (HotOS-VI),page 130, 1997.[CI06℄ David Christie and Anoop Iyer. Performane monitoring features in AMDBarelona. In Presentation at the Workshop on Funtionality of HardwarePerformane Monitors, held at MICRO-39, Orlando, FL, USA, Deember2006.[CMDAN06℄ Matthew Curtis-Maury, James Dzierwa, Christos D. Antonopoulos, andDimitrios S. Nikolopoulos. Online power-performane adaptation of multi-threaded programs using event-based predition. In Proeedings of the 20thACM International Conferene on Superomputing (ICS), pages 157�166,Queensland, Australia, June 2006.[CNMC00℄ Jongmoo Choi, Sam H. Noh, Sang Lyul Min, and Yookun Cho. Towardsappliation/�le-level haraterization of blok referenes: a ase for �ne-grained bu�er management. In Proeedings of the 2000 ACM SIGMET-RICS International Conferene on Measurement and Modeling of ComputerSystems, June 2000.

Bibliography 119[CSL04℄ Bryan M. Cantrill, Mihael W. Shapiro, and Adam H. Leventhal. Dynamiinstrumentation of prodution systems. In Proeedings of the USENIX An-nual Tehnial Conferene, General Trak, Boston, MA, USA, June 2004.[CT03℄ Thomas M. Cover and Joy A. Thomas. Elements of Information Theory.John Wiley & Sons, In., 2003.[DCD03℄ E. Duesterwald, C. Casaval, and S. Dwarkadas. Charaterizing and pre-diting program behavior and its variability. In Proeedings of 12th Inter-national Conferene on Parallel Arhiteture and Compiliation Tehniques(PACT), New Orleans, LA, USA, Deember 2003.[DHW+℄ J. Dean, J. E. Hiks, C. A. Waldspurger, W. E. Weihl, and G. Z. Chrysos.Pro�leMe: Hardware support for instrution-level pro�ling on out-of-orderproessors. In Proeedings of the 30th International Symposium on Miroar-hiteture (MICRO), Researh Triangle Park, NC, USA, Deember.[DLM+03℄ J. Dongarra, K. London, S. Moore, P. Mui, D. Terpstra, H. You, andM. Zhou. Experienes and lessons learned with a portable interfae to hard-ware performane ounters. In Proeedings of Workshop Parallel and Dis-tributed Systems: Testing and Debugging (PATDAT), joint with the 19th In-ternational Parallel and Distributed Proessing Symposium (IPDPS), Niee,Frane, April 2003.[EEKS06℄ Stijn Eyerman, Lieven Eekhout, Tejas Karkhanis, and James E. Smith. Aperformane ounter arhiteture for omputing aurate CPI omponents.In Proeedings of the International Conferene on Arhitetural Support forProgramming Languages and Operating Systems (ASPLOS), San Jose, CA,USA, Otober 2006.[FBHN03a℄ B. A. Fields, R. Bodik, M. D. Hill, and C. J. Newburn. Slak: Maximizingperformane under tehnologial onstraints. In Proeedings of the 30thInternational Symposium on Computer Arhiteture (ISCA), San Diego,CA, USA, June 2003.

Bibliography 120[FBHN03b℄ B. A. Fields, R. Bodik, M. D. Hill, and C. J. Newburn. Using interationosts for miroarhitetural bottlenek analysis. In Proeedings of the 36thInternational Symposium on Miroarhiteture (MICRO), San Diego, CA,USA, Deember 2003.[GBH04℄ Ghris Gniady, Ali R. Butt, and Y. Charlie Hu. Program-ounter-base pat-tern lassi�ation in bu�er ahing. In Proeedings of the 6th Symposium onOperating System Design and Implementation(OSDI), San Franiso, CA,USA, Deember 2004.[GC97℄ Gideon Glass and Pei Cao. Adaptive page replaement based on memoryreferene behavior. In Proeedings of ACM SIGMETRICS InternationalConferene on Measurement and Modeling of Computer Systems, Seattle,WA, USA, June 1997.[HC92℄ Kieran Harty and David R. Cheriton. Appliation-ontrolled physial mem-ory using external page-ahe management. In Proeedings of the 5th Inter-national Conferene on Arhitetural support for Programming Languagesand Operating Systems (ASPLOS), Boston, MA, USA, Otober 1992.[HP03℄ J. L. Hennessy and D. A. Patterson. Computer Arhiteture: A QuantitativeApproah. Morgan Kaufmann Publishers, Los Altos, CA, 2003.[IBMa℄ IBM Corporation. K42 researh Operating System.http://www.researh.ibm.om/k42.[IBMb℄ IBM Corporation. The POWER4 proessor introdution and tuning guide.http://www.redbooks.ibm.om/pubs/pdfs/redbooks /sg247041.pdf.[IBM06℄ IBM Corporation. IBM PowerPC 970FX rismiroproessor user's manual. http://www-3.ibm.om/hips/tehlib/tehlib.nsf/produs/PowerPC_970_and_970FX_Miroproessors,2006.[Ill℄ Illimine. An open�soure data mining toolset. http://illimine.s.uiu.edu/.

Bibliography 121[Inta℄ Intel Corporation. Intel Itanium 2 referene manual for software devel-opment and optimization. http://www.intel.om/design/itanium2/ manu-als/251110.htm.[Intb℄ Intel Corporation. VTune performane analyzers.http://www.intel.om/software/produts/vtune.[JCZ05℄ Song Jiang, Feng Chen, and Xiaodong Zhang. CLOCK-Pro: an e�etiveimprovement of the lok replaement. In Proeedings of the Usenix Teh-nial Conferene (USENIX'05), Anaheim, CA, USA, April 2005.[JG99℄ Doug Joseph and Dirk Grunwald. Prefething using markov preditors.IEEE Transations on Computers, 48(2):121�133, 1999.[JMF99℄ A. K. Jain, M. N. Murty, and P. J. Flynn. Data lustering: a review. ACMComputing Surveys, 31(3):264�323, 1999.[JS94℄ Theodore Johnson and Dennis Shasha. 2Q: a low overhead high perfor-mane bu�er management replaement algorithm. In Proeedings of theTwentieth International Conferene on Very Large Databases (VLDB), San-tiago, Chile, September 1994.[JZ02℄ Song Jiang and Xiaodong Zhang. LIRS: an e�ient low inter-referenereeny set replaement poliy to improve bu�er ahe performane. SIG-METRICS Performane Evaluation Review, 30(1), 2002.[Kag06℄ Mihael Kagan. In�niband hardware performane monitoring future andvisions. In Presentation at the 2nd Workshop on Funtionality of HardwarePerformane Monitors, held at MICRO-39, Orlando, FL, Deember 2006.[Kei06℄ Je�ery Keil. GPU performane analysis: A developer's perspetive. In Pre-sentation at the 2nd Workshop on Funtionality of Hardware PerformaneMonitors, held at MICRO-39, Orlando, FL, Deember 2006.

Bibliography 122[KHW91℄ Yul H. Kim, Mark D. Hill, and David A. Wood. Implementing stak sim-ulation for highly-assoiative memories. In Proeedings of the 1991 ACMSIGMETRICS Conferene on Measurement and Modeling of Computer Sys-tems, San Diego, CA, USA, May 1991.[KMC02℄ Sott F. Kaplan, Lyle A. MGeoh, and Megan F. Cole. Adaptive ahingfor demand prepaging. In Proeedings of the 3rd International Symposiumon Memory Management (ISMM), Berlin, Germany, June 2002.[KS04℄ Tejas Karkhanis and James E. Smith. Modeling supersalar proessors. InProeedings of the 31th International Symposium on Computer Arhiteture(ISCA), Munhen, Germany, June 2004.[LA05℄ Chris Lattner and Vikram Adve. Automati pool alloation: improvingperformane by ontrolling data struture layout in the heap. In Proeedingsof the 2005 ACM SIGPLAN onferene on Programming Language Designand Implementation (PLDI), Chiago, IL, USA, June 2005.[LCF+03℄ Jiwei Lu, Howard Chen, Rao Fu, Wei-Chung Hsu, Bobbie Othmer, Pen-Chung Yew, and Dong-Yuan Chen. The performane of runtime data aheprefething in a dynami optimization system. In Proeedings of the 36thannual IEEE/ACM International Symposium on Miroarhiteture, Wash-ington, DC, USA, 2003.[Lem96℄ G. Lemieux. Hardware performane monitoring in multiproessors. Mas-ter's thesis, University of Toronto, 1996.[May01℄ John M. May. MPX: Software for multiplexing hardware performane oun-ters in multithreaded systems. In Proeedings of the International Paralleland Distributed Proessing Symposium (IPDPS), San Franiso, CA, USA,April 2001.[MC05℄ Wiplove Mathur and Jeanine Cook. Improved estimation for software mul-tiplexing of performane ounters. In Proeedings of the 13th Interna-

Bibliography 123tional Symposium on Modeling, Analysis, and Simulation of Computer andTeleommuniation Systems (MASCOTS), Atlanta, GA, USA, September2005.[Mer06℄ Alex Merias. IBM Cell hardware performane monitoring and what's hardabout multi-threading. In Presentation at the Workshop on Funtionalityof Hardware Performane Monitors, held at MICRO-39, Orlando, FL, De-ember 2006.[MGST70℄ R. L. Mattson, J. Gesei, D. Slutz, and I. Traiger. Evaluation tehniquesand storage hierarhies. IBM Systems Journal, 9(2):78�117, 1970.[MM03℄ Nimrod Megiddo and Dharmendra S. Modha. ARC: A self-tuning, lowoverhead replaement ahe. In Proeedings of the 2nd USENIX Confereneon File and Storage Tehnologies (FAST), San Franiso, CA, USA, Marh2003.[MMdS05℄ Jaydeep Marathe, Frank Mueller, and Bronis de Supinski. A hybrid hard-ware/software approah to e�iently determine ahe oherene bottle-neks. In Proeedings of the 19th International Conferene on Superom-puting (ICS'05), Cambridge, MA, USA, June 2005.[MOH96℄ Margaret Martonosi, David Ofelt, and Mark Heinrih. Integrating perfor-mane monitoring and ommuniation in parallel omputers. In In Proeed-ings of the ACM SIGMETRICS International Conferene on Measurementand Modeling of Computer Systems, May 1996.[MrB℄ MrBayes. Bayesian inferene of phylogeny. http://mrbayes.sit.fsu.edu.[MyS℄ MySQL. Open soure database. http://www.mysql.om.[NAS℄ NASA Advaned Superomputing. NAS Parallel Benhmarks.http://www.nas.nasa.gov/Software/NPB/.

Bibliography 124[NZ℄ Lisa Noordergraaf and Robert Zak. SMP system interonnet instrumen-tation for performane analysis.[OPr℄ OPro�le. A system pro�ler for Linux. http://opro�le.soureforge.net/.[PCL℄ PCL. The Performane Counter Library: A ommon interfae to a-ess hardware performane ounters on miroproessors. http://www.fz-juelih.de/zam/PCL/ do/pl/pl.html.[QP06℄ Moinuddin K. Qureshi and Yale N. Patt. Utility-based ahe partitioning:A low-overhead, high-performane, runtime mehanism to partition sharedahes. In Proeedings of the 39th Annual IEEE/ACM International Sym-posium on Miroarhiteture (MICRO), pages 423�432, Washington, DC,USA, 2006.[RUB℄ RUBiS. Objetweb open soure middleware. http://rubis.objetweb.org.[SDS00℄ Ashley Saulsbury, Fredrik Dahlgren, and Per Stenstrom. Reeny-basedTLB preloading. In Proeedings of the 27th International Symposium onComputer Arhiteture (ISCA), Vanouver, Canada, 2000.[SHC+04℄ P. F. Sweeney, M. Hauswirth, B. Cahoon, P. Cheng, A. Diwan, D. Grove,and M. Hind. Using hardware performane monitors to understand the be-havior of Java appliations. In Proeedings of 3rd Virtual Mahine Researhand Tehnology Symposium (VM), May 2004.[SKT+℄ B. Sinharoy, R. N. Kalla, J. M. Tendler, R. J. Eikemeyer, and J. B. Joyner.[SKW03℄ Yannis Smaragdakis, Sott Kaplan, and Paul Wilson. The EELRU adaptivereplaement algorithm. Performane Evaluation, 53(2):93�123, 2003.[(SP℄ Standard Performane Evaluation Corporation (SPEC). Spe pu2000.http://www.spe.org/pu2000.[Spr02℄ Brinkley Sprunt. Pentium 4 performane monitoring features. IEEE Miro,22(4):72�82, July/August 2002.

Bibliography 125[Sta℄ Standard Performane Evaluation Corporation (SPEC). SPECjbb2000.http://www.spe.org/jbb2000.[TAS07℄ David Tam, Reza Azimi, and Mihael Stumm. Thread lustering: Sharing-aware sheduling on smp-mp-smt multiproessors. In Proeedings of theseond EuroSys Conferene (EuroSys'07), Lisbon, Portugal, Marh 2007.[THa℄ Mustafa M. Tikir and Je�rey Hollingsworth. Data entri ahe measure-ment on the Intel Itanium 2 proessor.[THb℄ Mustafa M. Tikir and Je�rey Hollingsworth. Using hardware ounters toautomatially improve memory performane.[TM94℄ A. Tamhes and B. Miller. Fine-grained dynami instrumentation of om-modity operating system kernels. In Proeedings of the Symposium onProgramming Languages Design and Implemenation (PLDI), Orlando, FL,USA, June 1994.[TTC02℄ E.S. Tune, D. M. Tullsen, and B. Calder. Quantifying instrution ritiality.In Proeedings of the 11th International Conferene on Parallel Arhitetureand Compilation Tehniques (PACT), Charlottesvill, VA, USA, September2002.[TTG95℄ J. Torrellas, A. Tuker, and A. Gupta. Evaluating the performane of ahe-a�nity sheduling in shared-memory multiproessors. Journal of Paralleland Distributed Computing, 24(2):139�151, 1995.[VMTO05℄ D. Villa, M. Meswani, P. Teller, and B. Olszewski. Pro�ling memory sub-system performane in an advaned POWER virtualization environment.In Proeedings of the Workshop on Operating System Interferene on HighPerformane Appliations, Saint Louis, MS, USA, September 2005.[Vol℄ VolanoMark. Volano LLC, San Franiso.http://www.volano.om/benhmarks.html.

Bibliography 126[Wal02℄ C. Waldspurger. Memory resoure management in vmware esx server. InProeedings of the Fifth Symposium on Operating Systems Design and Im-plementation (OSDI), Boston, MA, USA, Deember 2002.[WLLB97℄ Harvey J. Wassermann, Olaf M. Lubek, Yong Luo, and Federio Bassetti.Performane evaluation of the SGI Origin2000: a memory-entri harater-ization of lanl asi appliations. In Proeedings of ACM/IEEE Confereneon Superomputing (SC), San Jose, CA, USA, November 1997.[WOT+95℄ Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder PalSingh, and Anoop Gupta. The SPLASH-2 programs: haraterization andmethodologial onsiderations. SIGARCH Computer Arhiteture News,23(2):24�36, 1995.[WR03℄ Robert W. Wisniewski and Bryan Rosenburg. E�ient, uni�ed, and sal-able performane monitoring for multiproessor operating systems. In Pro.of the Superomputing Conferene (SC), Phoenix, AZ, USA, November2003.[WSS+04℄ R. W. Wisniewski, P. F. Sweeney, K. Sudeep, M. Hauswirth, E. Duester-wald, C. Casaval, and R. Azimi. Performane and environment monitor-ing for whole system haraterization and optimization. In Pro. of the 2ndIBM Watson Conferene on Interation between Arhiteture, Ciruits, andCompilers (PAC), Yorktown Heights, NY, USA, Otober 2004.[YBKM06℄ Ting Yang, Emery D. Berger, Sott F. Kaplan, and J. Eliot B. Moss.CRAMM: Virtual memory support for garbage-olleted appliations. InProeedings of the Symposium on Operating System Design and Implemen-tation (OSDI), Seattle, WA, USA, November 2006.[ZAKB+05℄ Yun Zhang, Faisal N. Abu-Khzam, Niole E. Baldwin, Elissa J. Chesler,Mihael A. Langston, and Nagiza F. Samatova. Genome-sale omputa-tional approahes to memory-intensive appliations in systems biology. In

Bibliography 127Proeedings of the ACM/IEEE onferene on Superomputing (SC), Wash-ington, WA, USA, November 2005.[ZLF+04℄ Pin Zhou, Wei Liu, Long Fei, Shan Lu, Feng Qin, Yuanyuan Zhou, SamuelMidki�, and Josep Torrellas. AMon: Automatially deteting memory-related bugs via program ounter-based invariants. In Proeeedings of the37th International Symposium on Miroarhiteture (MICRO), Portland,OG, USA, Deember 2004.[ZPS+04℄ Pin Zhou, Vivek Pandey, Jagadeesan Sundaresan, Anand Raghuraman,Yuanyuan Zhou, and Sanjeev Kumar. Dynami traking of page miss ratiourve for memory management. In Proeedings of the 11th InternationalConferene on Arhitetural Support for Programming Languages and Op-erating Systems (ASPLOS), Boston, MA, USA, November 2004.[ZQLT04℄ Pin Zhou, Feng Qin, Wei Liu, and Josep Torrellas. iWather: E�ientarhiteture support for software debugging. In Proeedings of the 31st In-ternational Symposium on Computer Arhiteture (ISCA), Munhen, Ger-many, June 2004.[ZvBB05℄ Feng Zhou, Rob von Behren, and Eri Brewer. AMP: Program ontextspei� bu�er ahing. In Proeedings of the USENIX Tehnial Conferene(USENIX'05), Anaheim, CA, USA, April 2005.

