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Computer systems are becoming more complex every year, making it exceedingly diffi­

cult to understand how well a running system is performing. Various tools have been 

developed to aid in systems analysis. Some of them can be used to monitor performance 

and help identify performance bottlenecks. However, they all have limitations, and the 

scope of their monitoring capabilities is usually limited. 

This dissertation presents a new monitoring system called the Kernel Object Viewer 

(KOV) that makes three primary contributions. First, it can dynamically track important 

performance metrics using Hardware Performance Counters: 

1. at object instance-level granularity, 

2. requiring no changes to the code, 

3. adding no overhead when monitoring is not required, and 

4. allowing monitoring overhead to be varied by dynamically changing the sampling 

frequency. 

Second, it implements a system-wide scanning facility which extracts all live processes 

and their objects. Finally, it implements a novel mechanism to dynamically track lock 

acquisitions and lock contention. 
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Chapter 1 

Introduction 

Computer systems, consisting of both hardware and software, are becoming more complex 

every year. For example, processor architectures have added deeper pipelines, multi-level 

caches, branch predictors, multiple cores, multi-threading, and other features in recent 

years. Often, multiple processing units are combined to form a single multiprocessor. 

Operating systems, which provide a layer of isolation between applications and the raw 

hardware, have added support for multi-processor architectures, enhanced security, nu­

merous optimizations within the file system and memory management subsystems, as 

well as support for many new devices. 

This increased complexity makes it exceedingly difficult to qualitatively and quantita­

tively understand how well a running system is performing. Moreover, for performance-

critical applications it is equally challenging to deduce the effects of code (or design) 

modifications on performance (i.e., whether the changes significantly affect branch mis­

predictions or cache miss rates, or whether the changes significantly affect the page miss 

rate or load balancing). Similarly, a programmer might want to identify performance 

bottlenecks and their precise causes with the goal of optimizing the code, yet this is 

becoming more difficult as the complexity of the system substrate increases. Likewise, 

operating system designers will want to identify performance bottlenecks under different 
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workloads. 

Various tools have been developed to aid in systems analysis. Some of them can 

be used to monitor performance and help identify performance bottlenecks. However, 

they all have limitations, and the scope of their monitoring capabilities is usually limited 

to a particular layer. For example, the VTune monitoring tool monitors solely at the 

hardware level by presenting information gathered from hardware performance counters. 

Another performance monitoring tool, called GNU gprof, requires recompilation in order 

to monitor a target application, and thus is not fit for production environments. Similarly, 

neither of these tools simultaneously monitors a target application's performance as well 

as kernel-level structures (e.g. memory manager) which serve this application. In cases 

where an application performs a significant amount of I /O or network operations, a 

combined user-level and kernel-level look at performance is more comprehensive and 

thus more useful at accurate and precise identification of performance bottlenecks. 

In this dissertation we present the design and implementation of the Kernel Object 

Viewer (KOV), an object-oriented monitoring system which 

1. combines hardware-level and software-level monitoring capabilities, 

2. simultaneously monitors user-level and kernel-level software components, 

3. can attribute performance bottlenecks to specific object-level code segments, and 

4. provides sophisticated visualization support to aid in system performance debug­

ging. 

We used KOV to analyze the performance of different applications on the K42 oper­

ating system. We demonstrate how KOV identifies hot objects in the operating system, 

and how KOV provides useful visual information by showing the rate of hardware events 

on a per-object basis. 
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1.1 Existing Monitoring Software 

Existing performance monitoring tools can be classified into two categories, called static 

and dynamic instrumentation, based on the type of instrumentation used to quantify 

performance. Static instrumentation tools augment the original binary with extra instru­

mentation off-line. In contrast, dynamic instrumentation tools are capable of plugging in 

and removing monitoring functionality seamlessly at runtime. There exists a plethora of 

commercial performance monitoring tools available for multiple operating system plat­

forms, as well as open-source alternatives available for several operating systems such as 

Linux and Solaris. One can acquire proprietary tools, such as Intel VTune, Windows 

System Performance Monitor, and LivePerf, or download open-source alternatives such 

as GNU gprof and InfraRED. 

We provide a brief overview of some of these tools and highlight their current limita­

tions. 

Intel VTune 

VTune is a sampling profiler developed by Intel and designed for generic performance 

monitoring of applications running on Intel hardware [36]. VTune uses hardware perfor­

mance counters to monitor processor events (and thus the limitation to Intel hardware), 

or simply to provide a CPU utilization breakdown on a per-function basis. VTune uses 

the program counter (PC) value obtained automatically from each hardware performance 

counter event to trace back the aforementioned hardware events to specific segments of 

code. 

Windows Performance Monitor 

The Windows Performance Monitor tool is freely available for Windows 2000, Windows 

Server 2003, and Windows XP [28, 33, 44]. It enables the user to gather operating system 

level data such as number of memory pages swapped to disk, time spent executing each 



CHAPTER 1. INTRODUCTION 4 

process, or disk usage. Each performance metric is attributed by this tool to a physical 

resource at coarse granularity. For example, execution time is attributed to "processor", 

and disk usage to "physical disk". Data are presented at process granularity versus time 

for each of the characteristics being monitored. All performance monitoring data gathered 

with this tool are also displayed in a graphical user interface (GUI) provided with the 

tool. This tool exclusively relies on performance gathering capabilities incorporated into 

the Windows operating system. 

LivePerf 

The LivePerf performance monitoring tool is a performance data gathering and displaying 

facility [27]. A GUI collects and displays data gathered from applications using their 

built-in performance gathering capabilities. LivePerf does not contribute any of its own 

monitoring capability, but rather relies on the targeted application's API to interface 

with and gather data from it. It currently supports gathering data from Websphere, SQL 

Server, DB2, Oracle, Unix and Windows operating system, Apache and IIS webservers, 

.NET and J2EE applications. In addition, LivePerf enables logging and replaying of 

different statistics. 

GNU gprof 

GNU gprof is a tool that allows a user to learn where a program spends its time executing, 

which functions were called and how many times [21, 31]. With this information it is 

possible to deduce which portions of a program are slower than expected. However, 

gprof does not provide the reason for the slowdown. The type of information generated 

by gprof can single out "hot" functions, and thus allows the user to focus their efforts. 

Although somewhat useful for simple programs, gprof is not able to instrument multi­

threaded applications. As such, the utility of this tool is limited to simple programs, and 

only provides course-grained timing measurements at function-level granularity. 
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InfraRED 

InfraRED is a tool for monitoring performance of J2EE applications and diagnosing 

performance problems [24]. It collects metrics on various aspects of an application's per­

formance and makes it available for quantitative analysis of the application. InfraRED 

uses Aspect-Oriented Programming (AOP) to inject performance monitoring code be­

tween distinct parts of the application, as defined by the AOP paradigm [25]. InfraRED 

is a comprehensive monitoring tool for programs written in Java, however it only utilizes 

software data gathering techniques (as provided by the instrumentation inserted between 

the AOP blocks). 

Generic Tools 

It is not always necessary to buy or download a performance monitoring tool. Operating 

systems typically provide useful utilities with the original distribution. For example, the 

Linux or Solaris operating systems contain vmstat, iostat, netstat, and other simple tools. 

Although these tools can provide statistics on virtual memory, disk access, processor 

activity (in the case of vmstat), or I /O (iostat), the results are aggregated for the system 

as a whole. These tools do not generally identify the source of a particular bottleneck. 

Nevertheless, such tools can be helpful at identifying the existence of a performance 

problem, but they are not specific enough for performance debugging. 

Limitations of existing monitoring tools 

The performance monitoring tools presented above gather performance data either at 

the hardware level or at the software level, but not both. Only a few of the tools map 

potential performance issues back to the code segments that incur them. Intel's VTune 

is one of the few, as it is capable of tracing hardware events back to the lines of code 

that caused them. However, none of the tools directly support object-oriented code by 

mapping potential performance bottlenecks back to specific object instances. Yet this 
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information could be useful. By identifying which object instance causes a performance 

bottleneck, it becomes easier to perform accurate and precise performance debugging. 

Not all of the above tools have a Graphical User Interface (GUI). The advantage of 

having a GUI in a performance monitoring tool is clear. Clarity in displaying the data 

makes it easier to interpret, and well designed graphs can highlight important trends. 

1.2 KOV Overview 

This dissertation describes the design and implementation of a performance monitoring 

tool called the Kernel Object Viewer (KOV) that addresses the limitations described 

above. KOV is comprised of two main parts connected by a common interface. 

1. An ensemble of static and dynamic instrumentation together with a performance 

data gathering module located in the operating system kernel, and 

2. A graphical user interface which displays the performance data at process and 

object-level granularity. 

KOV was implemented for K42, an object-oriented operating system for shared mem­

ory multiprocessors. KOV uses both hardware-level and software-level monitoring ca­

pabilities. Hardware performance counters (HPCs) are used to obtain information on 

hardware-level events (e.g. TLB misses, IPC rates), and software modifications enable 

system analysis (e.g. by obtaining a list of live objects), as well as provide information 

on software-level metrics (e.g. sleep lock queue lengths, object invocation counts). 

HPCs can be configured to generate events periodically at a user-defined frequency. 

As such, the KOV monitoring system allows for fine-grained, variable-overhead perfor­

mance readings of any hardware-level event being monitored. Using HPCs allows this 

performance monitoring technique to be fully dynamic with respect to a target applica­

tion or OS subsystem, because monitored application or system-level code is not modified. 
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The benefit of this form of dynamic instrumentation is that it incurs no overhead when 

turned off, and can be enabled or disabled at any time without restarting the system or 

target application. 

Software-level performance gathering capabilities have been implemented with direct 

source-code modifications. Object classes were extended to allow for a scan of live objects, 

as well as to provide a hierarchical relationship with other objects. When an object 

is scanned, it responds with a list of other objects it refers to, and thereby positions 

itself with respect to other objects within the system's hierarchy. Although this static 

instrumentation cannot be removed without recompiling the system, it is outside of the 

critical path, and is in fact not invoked outside the scope of the KOV performance 

monitoring system. Other software-level instrumentation code enables logging of object 

invocations, as well as measurement of sleep lock queue lengths. This code introduces 

overhead to the system, even when disabled, and is quantified in Section 4.3. 

KOV collects performance data from both kernel-level and user-level components. 

HPCs can be configured to count hardware events generated by the execution of either 

kernel-level code, user-level code, or both. Likewise, the object scan initiated by KOV is 

on a per process basis, and thus the scan can include the kernel process and arbitrarily 

many user processes. Software-level monitoring of sleep lock queue lengths is also avail­

able for both user-level and kernel-level code. Since the sleep lock instrumentation is 

part of the class definition used to implement sleep locks (this class is provided as a part 

of libc), any code which instantiates this object class will enable itself to be monitored 

by KOV. 

For object-oriented software, it is particularly important to be able to track per­

formance at object instance granularity. Because an object instance encapsulates data 

specific to the instance, two objects of the same class may experience observably dif­

ferent performance behaviour even though they share the same code base. As a result, 

optimizations on an entire class may improve performance for some instances but worsen 
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performance for other instances. Some object-oriented systems support dynamic opti­

mization at object instance granularity, such as K42's hot-swapping facility [8], where 

individual object instances may be replaced dynamically at run-time by an instance of 

another (related) class providing the same functionality but with a different implemen­

tation. 

The live representation of the system, as well as all performance data gathered, are 

shown in a graphical user interface. The aforementioned object hierarchy is shown in 

the form of a tree, and performance bottlenecks are shown either directly on the tree 

(by highlighting the problem objects), or in one of many types of graphs. By displaying 

performance data in a KOV graph, the user can depict behaviour over time for a specific 

object instance, or the system as a whole. It is also possible to display all the objects 

with their attributed percentage of total data. 

We have implemented KOV on the K42 operating system running on PowerPC hard­

ware. KOV obtains data from the architecture's Performance Monitoring Unit (PMU) 

using the statistical PMU sampling system we developed as an extension of Azimi et 

al [11]. Currently, we use a GUI to display the performance statistics gathered and 

updated in real-time. The GUI displays a hierarchical tree of object instances and per­

formance statistics in two ways: (i) object instances are displayed ordered by severity of 

performance impact, and (ii) performance statistics for any object instance are displayed 

over time. Using the GUI, it is possible to observe correlations between different perfor­

mance metrics (such as correlation between lock contention and TLB misses). Ultimately, 

we envision a scenario where dynamic run-time optimizers will obtain the statistics from 

the monitoring infrastructure and use object hot-swapping [8] to improve system perfor­

mance. 
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1.3 Contributions 

In this dissertation we make three primary contributions. First, we describe a perfor­

mance monitoring infrastructure we have developed, called the Kernel Object Viewer 

(KOV), that dynamically tracks important performance metrics using Hardware Perfor­

mance Counters: 

• at object instance-level granularity, 

• requiring no changes to the code, 

• adding no overhead when monitoring is not required, and 

• allowing monitoring overhead to be varied by dynamically changing the sampling 

frequency. 

The second contribution of this dissertation is a comprehensive, system-wide scanning 

facility which extracts all live processes and their objects. In addition, the scanning 

capabilities of KOV encompass both the kernel process and user processes, and cause no 

overhead when not in use. 

The third contribution of this dissertation is a novel mechanism to track lock acqui­

sitions and lock contention in a way that requires no changes to the code. To gather 

statistics on locks, we use PMU features of IBM PowerPC processors to count occur­

rences of load-linked and store-conditional instructions and then walk the stack to tie 

lock events to specific object instances. 

1.4 Outline 

The rest of this dissertation presents background information relevant to KOV in Chapter 

2, the design and implementation of our tool in Chapter 3, followed by an experimental 

evaluation of KOV in Chapter 4, and concluding remarks in Chapter 5. 



Chapter 2 

Background 

This chapter presents background material to allow a better understanding of the re­

mainder of this dissertation. Specifically, we present a brief overview of the Performance 

Monitoring Unit, provide a more in-depth explanation of static and dynamic software 

instrumentation, and conclude by describing the structure of the K42 operating system, 

the platform upon which the Kernel Object Viewer (KOV) prototype was evaluated. 

2.1 Performance Monitoring Unit 

Today's complex, speculative, out-of-order execution cores usually come with sophisti­

cated Performance Monitoring Units (PMUs). A modern processor will have a PMU 

that supports memory hierarchy profiling, instruction sampling, functional unit event 

sampling, and potentially other implementation dependent functionalities. An example 

architecture of a performance monitor is shown in Figure 2.1. A Hardware Performance 

Counter (HPC), accumulates occurrences of a distinct hardware event, chosen by a series 

of multiplexers which lead to the counters block in which the actual HPCs reside. 

A typical PMU will have many HPCs (e.g. PowerPC 970FX has eight), where a single 

HPC can be configured to count only one type of event from a subset of all hardware 

events at any given time. The size of this subset of events available for monitoring by 

10 
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each HPC is determined by multiplexing logic leading up to the counters block, as shown 

in Figure 2.1. Although actual implementation details vary depending on the specific 

processor architecture, it is sufficient to point out that events are chosen by a network of 

multiplexers comprised of several stages. 

In the platform used to develop the prototype described in this dissertation, specifi­

cally the PowerPC 970FX, three stages of multiplexers choose which events end up being 

counted by each HPC. Given that the total number of events that could potentially be 

counted on this architecture is roughly 500, from a hardware implementation point of 

view, it is too costly to have eight, 500-way multiplexers to allow each and every HPC to 

count any event. Consequently, the cheaper three-stage network of multiplexers allows 

each HPC to count only a specific subset of all hardware events. By assigning each HPC 

to a different set of hardware events, it is then possible to span all events by using all 

available counters. On the PowerPC 970FX there is some overlap between the sets of 

events each counter can monitor, consequently giving the programmer some flexibility in 

terms of configuration parameters. 

Functionally, a Hardware Performance Counter is a register which accumulates the 

occurrences of hardware events. A software program, running in kernel-space, can directly 

read from, and write to, all HPC registers. 

A simple usage model for performance monitoring involving the use of HPCs could 

be realized by periodically polling (reading) all counters to obtain an update of all event 

counts being monitored. Since polling is considered an inefficient programming technique, 

due to the constant overhead associated with periodic reads, the PMU also allows counters 

to generate interrupts. 

The use of PMU interrupts for performance monitoring is a two step process. The 

first step involves configuring a set of Special Purpose Registers (SPRs) on the PMU 

(registers referred to as MMCRx). A software program, running in kernel-space, will 

write to these SPRs values that will determine when a PMU interrupt is to be generated, 
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Figure 2.1: Performance Monitor Architecture for the PowerPC 970FX RISC Micropro­

cessor. Hardware Performance Counters (HPCs) receive signals from a variety of sources, 

ranging from a thresholder, event generator, time base selector, instruction marker, pro­

cessor functional units (i.e. arithmetic-logic unit), and others. The crucial link between 

the hardware and software layer is the Exception Generation Logic. Based on a set of 

flags set in Special Purpose Registers (SPR), an interrupt will be generated once any of 

the counters meets a pre-defined condition set in performance monitor specific control 

registers (MMCRx). 
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and which HPCs are to generate interrupts. PMU interrupts can be generated when a 

specific HPC overflows, or periodically after executing a specified number of processor 

cycles. 

The second step of using PMU interrupts for performance monitoring involves the 

Interrupt Service Routine (ISR), which is called whenever a PMU interrupt occurs. The 

ISR is a software program which runs at exception-level and is capable of performing 

low-level tasks, such as reading from, and writing to, SPRs and HPCs, or saving data 

to software buffers for later analysis. The programmer must be careful when writing an 

ISR, because an exception (such as a page-fault) when executing an ISR will cause the 

system to crash. As such, an ISR should only perform simple tasks. 

A simple usage model for performance monitoring involving the use of interrupts could 

consist of setting one HPC to generate an interrupt every 10,000 branch misprediction 

events, and the aforementioned ISR to read the HPC value and save it in a dedicated 

software buffer. Another program could subsequently read this data from the buffer and 

use it for performance analysis. 

In conclusion, HPCs allow counting of detailed micro-architectural events in the pro­

cessor [4, 17, 18, 40], enabling new ways to monitor and analyze performance. There 

has been a considerable amount of work done using HPCs to explore the behaviour of 

applications, as well as to identify performance bottlenecks resulting from excessively 

stressed micro-architectural components [3, 19, 42]. 

2.1.1 P M U Limitations 

Most microprocessor PMUs offer a limited number of HPCs. For instance, the IBM 

POWER4 and PowerPC970 provide eight HPCs, the POWER5 has six per SMT (two 

of which are hard-wired), Intel Itanium II has four generic HPCs and five registers for 

holding instruction and data address samples, and the AMD Athlon has four generic 

HPCs. In addition to the limited number of HPCs, there are often restrictions on the 
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combinations of hardware events that the HPCs can count, as previously mentioned for 

the PowerPC970. Other architectures have similar limitations. For instance, although 

Intel P4 and Xeon have 18 HPCs, they are divided into nine groups, each of which can 

only count events from a specific subset of 48 available hardware events. 

In many performance monitoring scenarios, several low-level hardware events must 

be counted simultaneously to obtain information of interest. For instance, to obtain the 

LI data cache miss rate on an IBM POWER4 processor, at least four separate events 

must be counted (LI load misses, LI store misses, LI loads, and LI stores). Also, usually 

two HPCs have to be dedicated to counting processor cycles and instructions retired 

to provide context for other data being gathered. For example, one thousand branch 

mispredictions per one million retired instructions is less significant than one thousand 

branch mispredictions per fifty thousand retired instructions (a 20x difference). On a 

processor such as the AMD Athlon, that leaves only two unused HPCs to gather other 

hardware events. These two remaining HPCs are not sufficient to count LI load misses, 

LI store misses, LI loads, and LI stores. 

Even if one had eight counters available, such as on the PowerPC 970FX, and could 

fit all the LI events as well as processor cycles and retired instructions in a single PMU 

configuration, there is other information available which, if monitored, could aid in ac­

curate and precise performance debugging. It might be desirable to also monitor L2 

cache misses, L3 cache misses, branch mispredictions, TLB misses, instruction mix (in­

teger/floating point), instruction cache misses, or other events that are important for 

obtaining a complete picture of application and system performance depending on the 

workload being explored. 
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2.1.2 Software Multiplexing of Hardware Performance 

Counters 

To address the need for a large number of hardware counters to enable comprehensive 

hardware event monitoring, Azimi et al proposed and implemented a system which dy­

namically multiplexes the set of hardware counters by using fine-grained time slices [11]. 

The programming interface component takes a set of events to be counted as input and 

automatically assigns them to a number of HPC groups such that in each group there are 

no conflicts due to PMU constraints. The sampling engine assigns each group a fraction 

of cycles out of the total sampling period. At the end of each HPC group's time slice, 

the sampling engine automatically assigns another HPC group to the PMU. The value 

that is read from an HPC is scaled up linearly as if that group was active during the 

entire period. As a result, the user's program (e.g. a run-time optimizer) is presented 

with more logical counters than actually exist in the underlying processor architecture. 

Some types of events exhibit more volatile behaviour than others. For example, LI 

miss rates change dramatically depending on the current workload, whereas the number of 

completed processor cycles does not. To capture greater variations in system performance 

it becomes necessary to increase the sampling frequency for those events which change 

more often. As defined by the Nyquist rate, the HPC sampling rate must be at least 

twice the frequency of changes within the data being monitored (e.g. if LI miss rate 

changes every 100ms, HPCs must sample at least every 50ms to accurately measure 

event transitions). 

The multiplexing system introduced by Azimi et al can easily be programmed to 

favour certain HPC groups by using their configuration for longer periods of time. This 

is accomplished by allocating multiple time slices to the group, rather than just one in 

the default case. This PMU multiplexing scheme is analogous to time-sharing a CPU 

amongst various processes. Moreover, the accuracy may differ for different hardware 
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events with the same share size. A default share assignment scheme might be overridden 

by explicit requests from a user interested in closely monitoring a specific hardware event, 

such as LI miss rates. 

With multiplexing, time is usually measured in terms of CPU cycles. Therefore, one 

counter in each HPC group is reserved to count CPU cycles. The use of cycle counters 

as timers allows the user to define arbitrarily fine time-slices down to a few thousands of 

cycles. Another metric that can be used to define HPC group share sizes is the number 

of instructions retired. The main advantage of instruction-based multiplexing is that 

the HPC group share sizes are aligned more closely with the progress of the application. 

Actual share sizes will differ in terms of real time depending on the amount of available 

instruction level parallelism (ILP) in the application currently running. 

Sampling introduces inaccuracies in measurement. A pathological case for the mul­

tiplexing engine is the existence of a large number of short-lived bursts of a particular 

hardware event. If the burst time is shorter than a particular number of cycles, the 

HPC that counts that hardware event might be inaccurate because the PMU actually 

counts the event only in a fraction of the total time slice, and thus it may miss short­

lived bursts. However, given that most applications will go through several execution 

phases, each longer than a time slice, the occurrence rate of hardware events is stable 

in the common case. Experimental results presented by Azimi et al demonstrate that 

the statistical distance between the sampled and real rates of hardware events is small 

in most cases. 

KOV makes extensive use of Azimi's HPC multiplexing infrastructure. KOV provides 

a Graphical User Interface (GUI) for configuring the PMU on the PowerPC 970FX. Each 

set of configuration parameters can be saved in a config file, such as "TLB misses" or 

"Branch mispredictions". The GUI logic prevents the user from choosing conflicting 

events within a single configuration. The user can subsequently send both the "TLB 

misses" and "Branch mispredictions" configurations to the multiplexing infrastructure 
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and specify the percentage of time each configuration is to be used within the PMU. The 

multiplexing infrastructure automatically switches between the two different configura­

tion parameters. 

2.2 Instrumentation Techniques 

To address the growing need for comprehensive performance monitoring systems, a va­

riety of tools have emerged that can loosely be classified into one of two categories 

depending on the type of instrumentation being used to quantify performance. Static 

instrumentation systems can be characterized by the fact that they augment the origi­

nal binary with extra instrumentation off-line. In contrast, dynamic instrumentation is 

defined by the capacity to plug in and remove monitoring functionality seamlessly while 

the system is running. Examples of static instrumentation systems include: KLogger[20], 

K42's event log[45], Linux Trace Toolkit[46], and Lockmeter[15], and examples of dynamic 

instrumentation systems include: Kernlnst[43], Kprobes[32], DTrace[16], SystemTap[34], 

JIFL[30], and PAPI[14]. 

2.2.1 Static Instrumentation 

Static instrumentation can be the done via direct source code modifications such as with 

Paragon[37] and K42's event log[45] or by instrumenting the binary off-line as is done 

with Atom[41]. Although not requiring source code in the latter case does increase the 

system's utility, this type of approach still suffers from the need to restart the target 

application when new instrumentation is added or removed. Similarly if the OS is being 

instrumented, a full system reboot is necessary. An example of how static instrumentation 

could be done is shown in Figure 2.2. When adding static instrumentation, the user has 

unlimited freedom in where and how to instrument. However, static instrumentation 

incurs constant overhead and requires recompilation to remove it completely. 
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long int invocation_count; 

void foo(} 
{ 

/* Source code instrumentation counts number of function calls */ 
invoGation__count++; 

/* Start of Original Function "/ 

} _.__ 

Figure 2.2: An example implementation of static instrumentation. Since the system is 

not running when adding this type of instrumentation, the user has unlimited freedom 

in where and how to instrument. Unfortunately, this approach incurs constant overhead 

and requires recompilation to remove it completely. 

As such, static instrumentation is inappropriate for production environments in which 

restarts represent an unacceptable lapse in service. Moreover, static instrumentation does 

not lend itself well to the analysis of systemic problems or emergent misbehaviour [29], 

which only appears after prolonged and continuous system operation, because it implies 

having all the necessary functionality already in place. This is difficult to achieve in 

practice because the nature of an emergent problem is not know during development. 

2.2.2 Dynamic Instrumentat ion 

Dynamic instrumentation on the other hand entails no off-line modifications to the target 

application or OS subsystem being monitored. Instead, the monitoring tool inserts dy­

namic instrumentation by modifying a target application's executable code in memory. 

Alternatively, hardware generated events can be used to interrupt a currently execut­

ing program to take snapshots of its current state. These are only a few techniques of 

dynamic instrumentation. Because dynamic instrumentation is not as direct as static 

instrumentation, it is also much richer in terms of the assortment of existing approaches, 
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and currently remains an active field of research. 

Within the scope of dynamic instrumentation, one can consider software and hardware 

approaches. The former consists of two main groups, probe and just-in-time (JIT) based 

paradigms, whereas the latter utilizes hardware performance counters (HPCs). Due to 

the inherent level of abstraction at the software and hardware level, some information 

lends itself better to either one of the two approaches. For example, when interested in 

the behaviour of a scheduling algorithm, hardware has no notion of processes and thus 

is not a good choice. Alternatively, when monitoring cache misses, a program does not 

experience them directly, and thus HPCs are a better solution. 

The first dynamic instrumentation technique to have emerged is the probe-based 

approach. It works by overwriting instructions in the original program with trampolines 

to instrumentation code. Effectively, only one instruction is overwritten whereas the 

actual instrumentation function, which resides in a different location, can be arbitrarily 

large. Since the overwritten instruction isn't executed once it is overwritten, its effects 

have to be duplicated by the instrumentation function, to ensure correct execution of the 

original program. 

Probes can be implemented in a straight-forward way on fixed-length instruction 

set architectures (ISAs), such as Sun's UltraSparc, by inserting jump instructions to 

the relevant code at each instrumentation point; however, on variable-length ISAs, such 

as the popular Intel x86 and AMD x86-64, probes have to be implemented with trap 

instructions [43]. An example of what such an instrumented program would look like is 

shown in Figure 2.3. At each instrumentation point, execution of the trap instruction 

causes an exception handler to be dispatched. The handler must then determine what 

type of instrumentation is needed at that point. The overhead of such traps can be 

substantial, and it can make comprehensive and fine-grained instrumentation unfeasible 

[30]. 

Just-In-Time (JIT) based dynamic instrumentation was developed to address some 



CHAPTER 2. BACKGROUND 20 

<foo>: 

r Start of Original Function */ 

-pttah %obp- /* Instruction is overwritten 7 

/" Trap instruction invokes interrupt which will execute instrumentation */ 
trap 

/* Rest of Original Function 7 
mo*/ ?/oesp.%obp 
push %ebx 
sub $0x4.%esp 
call 80487a0 <call gmon _start+0xc> 

ret 

Figure 2.3: An example implementation of dynamic instrumentation using the probe-

based approach. In order to keep the binary the same size, and thus preserve the cor­

rectness of static branch targets, an existing instruction is overwritten with a trap. The 

resulting interrupt will call the required instrumentation function based on the trap's 

address and compensate for the overwritten instruction with extra code. 

of the most prevalent shortcomings of the probe-based techniques. With this approach, 

execution is redirected to a runtime system at the entry of a section of code that is 

to be instrumented. A JIT compiler creates a duplicate copy of each basic block of 

the original code immediately before it is executed, embedding calls to instrumentation 

routines within it, much as if the instrumentation had been added to the source code 

and the source recompiled. An example of what this type of instrumentation would look 

like is shown in Figure 2.4. The resulting instrumented basic blocks are stored in a code 

cache, from where they are dispatched instead of the original code. 

JIT instrumentation can provide better performance and a better usage model than 

probe-based techniques for large amounts of fine-grained instrumentation. The primary 
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: <foo>: 

/'* Call to instrumentation function *l 
Save affected registers and condition flags 
Jump to instrumentation function 
Restore affected registers and condition flags 

/* Start of Original Function */ 
push %ebp 
mov %esp.%ebp 
push %ebx 
sub S0x4,%esp 
call 80487a0 <cali_gmon_s1art+0xc> 

•; ret 

Figure 2.4: An example implementation of dynamic instrumentation using the JIT-based 

approach. Since the code being instrumented is in the code cache, and not in the original 

binary, no existing instructions need to be overwritten. A call to the desired instrumen­

tation function is inserted, as well as necessary instructions required to maintain the 

original program's state which could be corrupted by instrumentation. 
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performance advantage stems from the fact that instrumentation can be inserted be­

tween instructions. This eliminates the need for expensive trap instructions to redirect 

execution to instrumentation code on variable-length ISAs. In addition, when using the 

JIT technique, instrumentation is only inserted into code after it is known that it will 

execute, thereby eliminating any cost of instrumenting instructions that might not be 

executed. Furthermore, if the instrumentation code is small enough, it can be inlined 

directly into the copied basic blocks to eliminate the cost of executing function calls. 

From a usability point of view, probe-based instrumentation requires a user to spec­

ify the exact locations in the code where instrumentation should be inserted. When 

instrumentation of a large amount of code is desired, the user is required to manually 

specify the location of a large amount of probes. Manually inserting hundreds of probes 

can become erroneous. In contrast, JIT instrumentation requires only entry, and possi­

bly exit, points of the entire code being considered for instrumentation to be identified. 

Because instrumentation is added as code blocks are discovered, there is no need for a 

priori identification of possible instrumentation points. For example, when instrumenting 

a system call with the JIT technique, only the appropriate entry in the system call table 

needs to be identified. Conversely, the probe-based technique would require the user to 

go through the entire system call code and specify the addresses for all the probes to be 

inserted. 

2.3 Instrumentation Tools 

We have described the various techniques available to monitor performance. We now 

describe several tools that implement these techniques in greater detail. Examples of 

static instrumentation systems include: KLogger[20], K42's event log[45], Linux Trace 

Toolkit [46], and Lockmeter[15], and examples of dynamic instrumentation systems in­

clude: Kernlnst[43], Kprobes[32], DTrace[16], SystemTap[34], JIFL[30], and PAPI[14]. 
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2.3.1 KLogger 

KLogger monitors performance by recording occurrences of kernel events and using hard­

ware performance counters. The logging code is integrated into the kernel and activated 

at runtime by a special sysctl call using the proc file system. KLogger logs events defined 

at compile-time, including events such as context switching, recalculation of priorities, 

forks, execs, changing the state of processes, and others. Logs are stored in a memory 

buffer (typically 4MB). Every five seconds a daemon stores the contents of the memory 

buffer to disk, allowing the user to analyze the data at a later time. Because the events 

monitored by KLogger can only be specified at compile time, and results are not ana­

lyzed in real-time, this tool is not usable for performance debugging production systems, 

where a full system reboot presents an unacceptable lapse in service. In contrast, KOV 

can change the metrics it monitors while the system is running, and analyzes results in 

real-time. This flexibility is important to detect bottlenecks immediately as they emerge, 

and to ease the analysis of a newly identified bottleneck by choosing a more specific set 

of metrics (e.g. when the memory subsystem becomes a bottleneck, KOV can start 

monitoring LI cache, L2 cache, and TLB miss rates immediately upon a user's request). 

2.3.2 K42's event log 

K42's event tracing infrastructure provides for correctness debugging, performance de­

bugging, and performance monitoring of the system [7]. This infrastructure allows for 

inexpensive and concurrent logging of events by applications, libraries, servers, and the 

kernel. All events are stored in a special event log which can be read in several ways. This 

event log may be examined while the system is running, written out to disk, or streamed 

over the network. Post-processing tools allow the event log to be converted to a human 

readable form or to be displayed graphically. The types of events that can be monitored 

by this tracing facility are divided into 64 major classes. Events that are related to a 



CHAPTER 2. BACKGROUND 24 

common purpose are placed in the same major class (e.g. memory management events 

are grouped into traceMem). All classes of events represent actions or positions in the 

code deemed important by the developer. 

Although useful, this infrastructure only monitors components of K42 explicitly iden­

tified at compile-time. In addition, when enabled, the tracing facility will log all events 

from a selected major class of events, regardless of how many events are of interest to the 

user. This can be problematic if the user is only interested in a small subset of events 

from a particular class, because there can be a significant amount of data obscuring the 

results the user is actually interested in seeing. In contrast, KOV only monitors occur­

rences of events the user has explicitly chosen, avoiding overhead resulting from gathering 

superfluous data. 

2.3.3 Linux Trace Toolkit 

The Linux Trace Toolkit (LTT) [46] is a static instrumentation system that allows a user 

to record and analyze system behaviour. The toolkit is capable of recording information 

such as CPU time per process, instruction count, fraction of time spent in each function, 

as well as disk and network I/O statistics. The main contribution of this work is its data 

collection facility that records and stores pertinent information. 

The data collection facility consists of three main components: a trace facility, a trace 

module, and a daemon. The trace facility functions as a unique entry point to all other 

kernel facilities. Once an event occurs, the trace facility forwards the event to the trace 

module. The trace module can then determine the type of event that has occurred. If 

the event is one identified to be monitored, then the trace module will keep track of it. 

However, it is possible to configure the trace module to ignore some of the events it was 

designed to track by the means of an ioctl system call. This permits a finer control of 

the monitoring system. 

One drawback of the Linux Trace Toolkit is the fact that it does not attribute per-
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formance bottlenecks to specific code segments. Although kernel events caused by the 

execution of a program can be logged, the LTT does not identify which parts of the pro­

gram caused these events to occur. In contrast, KOV attributes performance bottlenecks 

to specific code segments as well as individual object instances. 

2.3.4 Lockmeter 

Bryant and Hawkes designed and implemented a spin lock monitoring infrastructure 

for the Linux kernel called Lockmeter [15]. Similarly to our approach, Lockmeter can 

identify problematic spin lock instances with low overhead; however, Lockmeter requires 

source code annotation of Linux lock macros. In contrast, our approach does not require 

any direct source code instrumentation of locking structures and is based on exploiting 

hardware performance counters which enable fine-grained overhead control by varying 

the sampling frequency. 

2.3.5 Kernlnst 

Kernlnst [43] is a dynamic instrumentation framework designed for debugging, profiling, 

and application tuning. Kernlnst was the first to implement probe-based dynamic instru­

mentation in the kernel. Because it targeted the UltraSparc RISC architecture, which is 

a fixed-length ISA, Kernlnst was able to safely implement probes with branch instruc­

tions. Although this tool was only evaluated on the UltraSparc, Tamches and Miller 

proposed using trap instructions for redirecting control on x86. The current code release 

includes an x86 implementation which uses this trap-based strategy. Due to the high 

overhead associated with using traps, this tool is only usable with a small set of probes, 

thus limiting the scope of code being monitored. In contrast, KOV can simultaneously 

monitor all user and kernel level code with minimal overhead (see Section 4.3). 
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2.3.6 Kprobes 

Kprobes [32] uses dynamic instrumentation to insert probes in the form of trap instruc­

tions. Using probes, this tool can instrument arbitrary code with extra code to record 

information. Because execution is redirected to instrumentation routines by means of a 

trap and hash table lookup, instrumentation is heavyweight. To alleviate this, a patch 

called Djprobes is currently under development, which allows overwriting some addresses 

with a 5-byte jump instruction, enabling direct jumps to instrumentation code. The most 

prevalent shortcoming of this tool is its overhead. In contrast, KOV experiences minimal 

runtime overhead even when simultaneously monitoring various metrics (see Section 4.3). 

2.3.7 DTrace 

DTrace [16] is an instrumentation framework for the Solaris operating system, designed 

for use with production systems. DTrace instrumentation works by inserting jump-based 

trampolines on fixed-length RISC architectures, but uses the same trap mechanism as 

Kernlnst or Kprobes on variable-length ISAs. Anecdotally, DTrace runs quite fast on 

Sparc architectures, however we expect it would suffer similar overheads as Kprobes on 

x86 because of the need to use trap instructions. DTrace is also able to dynamically 

instrument both user and kernel-level code. Because DTrace is intended for use in pro­

duction systems, it guarantees that user instrumentation cannot cause additional system 

failures. User-supplied instrumentation code is expressed in a C-like high-level control 

language which enforces safety. DTrace makes it easy to monitor system resources, al­

lowing system administrators to quickly identify the causes of system sluggishness, or to 

examine the otherwise unattainable system resources used by software (e.g., the number 

of I/O requests per second). 

This tool suffers from the same drawbacks as Kernlnst and Kprobes when consider­

ing the scope and overhead trade-off associated with performance monitoring. As the 
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amount of code being monitored increases, so does the number of probes. Consequently, 

monitoring overhead is directly proportional to the amount of code being monitored. In 

contrast, KOV can simultaneously monitor all user and kernel-level code with minimal 

overhead (Section 4.3). KOV controls overhead by varying the accuracy of results when 

adjusting the PMU sampling frequency, and not by specifying the scope of performance 

monitoring. Consequently, KOV makes no a priori judgements about which segments of 

code are expected to perform worse than others, and therefore is more comprehensive in 

its measurements. 

2.3.8 SystemTap 

The SystemTap project [34] is a joint effort by Red Hat, IBM, Intel, and Hitachi to add 

an easy to use front-end to Kprobes with functionality similar to DTrace, including the 

use of a scripting language. Instrumentation scripts can make symbolic references to the 

kernel, user programs, or included libraries (called 'tapsets'). Scripts are compiled into 

a kernel module and loaded to start the probes and handlers. Although a stable version 

of SystemTap is not yet released, some early adopters have found it useful. SystemTap 

currently uses Kprobes for low-level instrumentation. Consequently, the performance 

trade-offs when compared to KOV are similar to Kprobes. 

2.3.9 JIFL 

The JIT Instrumentation Framework for Linux (JIFL) [30] was the first instrumentation 

technique to instrument kernel code. JIFL was designed to alleviate the high performance 

cost associated with probe-based instrumentation techniques, such as Kprobes. JIFL 

shows the feasibility and desirability of kernel-based JIT instrumentation for the Linux 

kernel on an SMP machine. JIFL works by inserting instrumentation code directly into 

a duplicate copy of the original code. By embedding calls to instrumentation routines 

within the duplicate copy of the original code, the usual overhead associated with traps in 
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the probe-based approach is eliminated. Using JIT instrumentation, JIFL outperformed 

Kprobes, at both micro and macro levels, by orders of magnitude when applying medium-

and fine-grained instrumentation. 

Although superior to other dynamic instrumentation tools in terms of performance, 

JIFL incurs considerable memory overhead associated with duplicating the original code. 

As such, the scope of performance monitoring with JIFL is limited. In contrast, KOV 

can monitor all user and kernel-level code simultaneously with minimal overhead (see 

Section 4.3). 

2 .3 .10 P A P I 

PAPI [14] is a public domain tool that is implemented on many platforms. Its main 

emphasis is on platform-independence rather than efficiency. The portable interface 

is implemented in software, and as a result it may incur significant overhead in some 

scenarios. PAPI also implements Hardware Performance Counter (HPC) multiplexing at 

user-level. A fine-grained timer is used as a means for a HPC group switch. The timer 

sends a signal to the process that has requested a multiplexed set of hardware events. A 

major limitation of this approach is that the sampling granularity must be large due to 

the large overhead of an HPC group switch, which requires a system call. As a result, the 

sampling error may become high for some applications, where a high sampling frequency 

is required to obtain an accurate measure of performance. In contrast, KOV has been 

shown to achieve accurate results while incurring minimal overhead (see Section 4.3.1). 

This advantage is largely the consequence of the fact that KOV uses a kernel module to 

interact with the PMU, and thus avoids the associated system call overhead. 
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2.4 K42 

K42 is a high performance, open source, general-purpose research operating system (OS) 

kernel designed for cache-coherent multiprocessors. This OS was designed to address scal­

ability across server systems aimed at utilizing small to very large-scale multiprocessors. 

Towards this end, primary focus was placed on achieving a high degree of spatial and 

temporal locality in code and data. K42 features a modular, object-oriented structure 

where each resource or entity is managed by a separate object instance [10]. Currently 

K42 runs only on the PowerPC architecture, and supports both the Linux Application 

Programming Interface (API) and Application Binary Interface (ABI). 

2.4.1 Design Features 

The K42 design team's initial goal was to start with a clean slate and examine what sys­

tem structures were needed to achieve excellent performance in a scalable, maintainable, 

and extensible system [26]. In order to gain traction with the community, developers 

aimed at fully supporting existing applications. To this end, K42 was made fully Linux 

API and ABI compatible [6]. 

A large part of K42's design was oriented around providing an easily extensible in­

frastructure to tailor to emerging application requirements while at the same time pro­

viding an attractive systems research platform [38]. Various research groups have, using 

K42, explored new approaches in memory management, scheduling, inter-process and 

intra-process communication, event management, file systems, performance monitoring, 

scalable data structures, and dynamic adaptation [8, 13, 26, 39]. 

The entire operating system was designed using an object-oriented structure. Each 

virtual resource (e.g., virtual memory region, network connection, file, process) and phys­

ical resource (e.g., memory bank, network card, processor, disk) is managed by its own 

object instance. Each object encapsulates the meta-data necessary to manage the re-
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source as well as the locks necessary to manipulate the meta-data. Therefore, global 

locks, global data structures, and global policies were entirely avoided. K42's modular 

design enables developers to confine the impact of their changes within a fixed set of mod­

ified components, thereby greatly simplifying the debugging process as well as decreasing 

the inherent complexity of the system as a whole. 

K42 is structured around a client-server model, and much of the functionality tradi­

tionally implemented in the kernel or servers is moved to libraries in the application's 

address space. For example, all thread scheduling is done by a user-level scheduler li­

brary that is linked into each process. This design supports flexibility on a per-application 

basis. The specialization of services for a class of applications (e.g., games, scientific ap­

plications, databases, JVMs) is achieved by choosing the objects that are appropriate for 

the requirements of the target application and packaging them into a library. Overhead 

is reduced in many cases because crossing address space boundaries to invoke system 

services can be avoided. Also, space and time are consumed in the application rather 

than in the kernel or servers. For example, an application can have a large number of 

threads or file descriptors without consuming any additional kernel memory. 

As multi-core chips become more prevalent, the scalability of the operating system 

becomes an important issue. K42 has been designed to achieve good multiprocessor per­

formance through its object-oriented structure by maintaining the following characteris­

tics. (1) Independent requests to different resources are serviced independently because 

there are no shared data structures to be traversed and no shared locks to be accessed, 

(2) locality is maintained for resources accessed by a small number of processors, and (3) 

the use of clustered-object technology allows widely accessed objects to be implemented 

in a distributed fashion. 

Clustered objects are an enhanced object-oriented model supported by K42 [5, 9, 22]. 

Clustered objects, described in more detail in Section 2.4.2, improve access locality by 

enabling selective partitioning, replication, and distribution of object implementations. 
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The systematic integration of support for flexible data distribution on a per-object basis 

has yielded a simpler, incremental approach to scalable system design and implemen­

tation. The clustered object based infrastructure eases the addition of new scalable 

services by allowing the developer to focus initially on functional aspects through a non-

distributed version, and then extend the implementation incrementally (for example, on 

a per-method basis) to a distributed version. 

Distributed implementations can offer better scalability, but they also typically suffer 

greater overheads when scalability is not required. Distributed implementations also tend 

to optimize certain operations, improving their scalability, while increasing costs of other 

operations. In order to provide a means for coping with the tradeoffs of using distributed 

implementations, K42 enables hot-swapping, a technique for dynamically replacing a live 

clustered object instance with a different, but compatible, instance. This mechanism 

can be used to switch between shared and distributed implementations and additionally 

enable other forms of dynamic adaptation. 

The design of K42, and the aforementioned hot-swapping capabilities, are centered 

around the concept of clustered objects. The next subsection explains clustered objects 

in greater detail. 

2.4.2 Clustered Objects 

Clustered objects are the building blocks of K42, and are integral to realizing scalability 

and customizability within the K42 operating system. Each clustered object is identified 

by a unique interface to which every implementation conforms [5]. K42 uses a C + + pure 

virtual base class to express a clustered object interface (Clustered Object interface class). 

An implementation of a clustered object consists of two definitions: a Root definition and 

a Representative definition expressed as separate C + + classes. The Root class defines 

the global portions of an instance of the clustered object. Every instance of a clustered 

object has exactly one instance of its Root class that serves as the internal central anchor 



C H A P T E R 2. BACKGROUND 32 

or 'root' of the instance. The Representative (Rep) definition of a clustered object defines 

the per-processor portion of the clustered object. The Representative class implements 

the interface of the clustered object, inheriting from the clustered object's interface class. 

Each Rep has a pointer to the Root of the clustered object instance. The methods of a 

Rep can access the shared data and methods of the clustered object via its root pointer. 

Clustered objects support distributed designs while preserving the benefits of a component-

based approach [5]. A clustered object can be internally decomposed into a group of 

cooperating subparts, called Representatives, that implement a uniform interface, but 

use distributed structures and algorithms to avoid shared memory and synchronization 

on its frequent and critical operations. Clustered objects provide an infrastructure to 

implement both shared and distributed implementations of objects, and transparently to 

the client, permit the use of the implementation appropriate for the access pattern of the 

object. Collections of C + + classes are used to define a clustered object, and run-time 

mechanisms are used to support the dynamic aspects of the model. 

Clustered objects allow each object instance to be decomposed into per-processor 

Representatives 1, and therefore provide a vehicle for distributed implementations of ob­

jects. Figure 2.5 illustrates a clustered object of a simple distributed integer counter. 

Externally, a single instance of the counter is visible, but internally, the implementation 

of the counter is distributed across a number of Representatives, each local to a pro­

cessor. An invocation of a method of the clustered object's interface on a processor is 

automatically and transparently directed to the Representative local to the invoking pro­

cessor. The internal distributed structure of a clustered object is encapsulated behind its 

interface and transparent to clients of the object. In Figure 2.5, a single instance of the 

counter, represented by the outer ring labeled with the counter's interface (inc, val and 

dec), is accessed by code executing on the processors at the bottom of the diagram. All 

XA Representative can be associated with a cluster of processors of an arbitrary size, from 1 to n, 
and not necessarily per processor 
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Figure 2.5: Abstract Clustered Object Distributed Counter 

processors invoke the inc method of the instance. Transparently to the invoking code, 

the invocations are directed to internal per-processor Representatives, illustrated by the 

three inner rings in the diagram. Each Representative supports the same interface, but 

encapsulates its own data members. This ensures that the invocation of the inc method 

on each processor results in the update of an independent per-processor counter, thereby 

avoiding sharing and ensuring better performance. 

At run-time, an instance of a given clustered object is created by instantiating an 

instance of the desired Root class. Instantiating the Root establishes a unique Clustered 

Object Identifier (COID also referred to as a Clustered Object ref) that is used by clients 

to access the newly created instance. To the client code, a COID appears to be a pointer 

to an instance of the Rep Class [5]. To provide better code isolation, this fact is hidden 

from the client code with the macro: #define DREF(coid) (*(coid)). For example, if c is 

a variable holding the COID of an instance of a clustered performance counter that has 
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Figure 2.6: A Clustered Object Instance and Translation Tables 

a method inc, a call would look like: DREF(c)->inc(). 

A set of tables and protocols are used to translate calls on a COID in order to achieve 

the unique run-time features of clustered objects. There is a single shared table of Root 

pointers called the Global Translation Table (GTT) and a set of Rep pointer tables called 

Local Translation Tables (LTTs), one per processor. An illustration of how a clustered 

object's Root and Reps relate to each other is shown in Figure 2.6. 

In order to avoid overhead caused by redundant creation of Reps on processors that 

do not use them, a Rep is not immediately created or installed into the LTTs when 

the clustered object is instantiated. Instead, empty entries of the LTT are initialized 

to refer to a special hand-crafted object called the Default Object. The first time a 

clustered object is accessed on a processor, the same global Default Object is invoked. 

The Default Object leverages the fact that every call to a clustered object goes through 

a virtual function table. (Remember that a virtual base class is used to define the 
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interface for a clustered object.) The Default Object overloads the method pointers in 

its virtual function table to point at a single trampoline method. The trampoline code 

saves the current register state on the stack, looks up the Root installed in the GTT entry 

corresponding to the COID that was accessed, and invokes a well-known method that 

all Roots must implement, called handleMiss. This method is responsible for installing a 

Rep on the processor into the LTT entry corresponding to the COID that was accessed. 

This is done either by instantiating a new Rep or by identifying a preexisting Rep and 

storing its address into the address pointed to by the COID in the LTT. On return from 

the handleMiss method, the trampoline code restarts the call on the correct method of the 

newly installed Rep. The above process is called a Miss and its resolution Miss-Handling. 

Note that after the first Miss on a clustered object instance, on a given processor, all 

subsequent calls on that processor will proceed as standard C++ method invocations via 

two pointer dereferences. Thus, in the common case, methods of the installed Rep will 

be called directly with no involvement of the Default Object. 

2.4.3 Memory Management 

An overview of K42's overall memory management structure can be seen in Figure 2.7. 

Each of the objects in the diagrams has the following functionality: 

1. Process - root of the object tree representing a Process in the kernel. The Process 

maintains a list of Regions that exist in its address space, and maintains a reference 

to a virtual to physical memory address translator. 

2. Region - represents the mapping from a range of virtual addresses to a range of file 

offsets (all memory in K42 is accessed by using files). 

3. File Representative (FR) - the kernel realization of a file. Facilitates communication 

with the external implementation of the file to do I/O and for other file system 

purposes. 
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Figure 2.7: An overview of K42 memory management structure. Each K42 Process 

contains a single address space. The address space is made up of Regions, each of 

which spans a range of virtual addresses in the Process's address space. A Region maps 

its range of addresses onto a range of offsets in a file, handled by the FR. The FR 

communicates with an external file system of choice, which is a service provided by a user-

level implementation. Although at first glance it seems that there is a duplicate version 

of the Region object in this hierarchy, the different connectivity is used to represent a 

specialized implementation. A Region can be used to only manage virtual addresses 

(top), or to implement processor-specific memory by using the processor's number in its 

mapping of virtual addresses to file offsets, in which case it needs the HAT (bottom). 
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4. File Cache Manager (FCM) - controls the page frames currently assigned to contain 

file contents in memory. It also implements the local paging policy for the file and 

supports Region requests to make file offsets addressable in virtual memory. 

5. Page Manager (PM) - controls the allocation of page frames to FCMs. 

6. Hardware Address Translator (HAT) - manages the hardware representation of an 

address space. 

7. Segment HAT - manages the representation of a hardware segment. Segments are 

of hardware dependent size and hold several virtual memory pages. Their size and 

amount of pages they can store depends on both the underlying architecture and 

page granularity. 

We have presented background material which relates to the work described in this 

dissertation, including HPCs, various instrumentation techniques, and the K42 operating 

system. The next chapter will describe KOV's design and implementation details. 



Chapter 3 

System Design and Implementation 

In this chapter we present the design and implementation of the Kernel Object Viewer 

(KOV), a tool designed to aid programmers and operating systems designers in analyzing 

performance. As previously mentioned, computer systems are becoming more complex 

every year. This increased complexity makes it exceedingly difficult to qualitatively 

and quantitatively understand how well a running system is performing. Moreover, for 

performance-critical applications it is equally challenging to deduce the effects of code 

(or design) modifications on performance. We have designed KOV to aid programmers in 

the task of identifying performance bottlenecks and their precise causes, as well as to aid 

operating system designers in identifying performance bottlenecks within the operating 

system under different workloads. 

3.1 Overview 

Conceptually, the KOV performance monitoring tool is composed of two distinct parts: 

a monitoring infrastructure and a graphical user interface (GUI). The monitoring infras­

tructure obtains a list of all live processes and their objects and gathers performance 

data, whereas the GUI displays this data to the user. 

A user interacts with KOV via the GUI. A user can issue commands in the GUI to 

38 
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Figure 3.1: A high-level view of the system's architecture. Two of the bottom elements 

have to be on the same machine, whereas the GUI can run remotely. 

obtain a list of all live processes and their objects and monitor performance. The GUI 

sends these commands to the monitoring infrastructure to perform the desired tasks. The 

monitoring infrastructure receives these commands and subsequently starts gathering 

data from the system. This data is stored internally in the monitoring infrastructure. 

The GUI periodically polls the monitoring infrastructure for this data and subsequently 

displays it to the user. 

An overview of KOV's design is shown in Figure 3.1. The figure shows the GUI, 

and the two components that implement the monitoring infrastructure. The following 

sections describe these two components and the GUI in more detail. 

3.2 Monitoring Infrastructure 

The monitoring infrastructure of KOV is comprised of two components, a data gather­

ing component which resides in the kernel, and a communication interface component 

which resides in user-space. Both of these components must run on the machine being 



C H A P T E R 3. SYSTEM DESIGN AND IMPLEMENTATION 40 

monitored. The aforementioned components will be referred to as: 

1. the Kernel State and Performance Monitoring Module (KM), and 

2. the Data and Control Interface (DCI), 

respectively, in the remainder of this dissertation. 

The KM is a kernel module which maintains a list of all objects in the system and 

monitors the performance of the system. Objects are identified by obtaining a list of all 

live processes from the kernel and scanning the list of all instantiated objects within each 

process. The KM monitors performance by using the processor's Performance Monitoring 

Unit (PMU) (please refer to Section 3.2.1) and by using software instrumentation. A 

kernel module is necessary to perform these tasks because only the kernel process, which 

is privileged, is able to access the PMU. All the information gathered by the KM is stored 

internally in a set of data buffers. These buffers are subsequently read by the DCI. 

The DCI is the link between the KM and the outside world. The DCI communicates 

with the KM by issuing system calls. Communication with the KM is comprised of 

passing control parameters to the KM, and retrieving the list of all live processes and 

their objects, and performance data from the KM's data buffers. Communication with 

the outside world starts when a GUI connects to the DCI. 

The DCI uses the network for communication with the outside world by listening for 

connections on a specific network port. This allows the DCI to facilitate performance 

monitoring from remote workstations. It is preferable to have the ability to monitor a 

system's performance remotely because such a setup enables the user to monitor many 

machines, located at varying geographical locations, from a single machine. 

The following subsections describe the KM and DCI in greater detail. 
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3.2.1 Kernel State and Performance Monitoring Module 

The KM is solely responsible for obtaining object information and performance data 

from the system being monitored. It is designed to work with K42, an object-oriented 

operating system. Therefore information about the system can be extracted by obtaining 

a list of all live processes, and scanning all instantiated objects within each process. 

Performance monitoring data is gathered with the use of the architecture's PMU and 

software instrumentation. Consequently, the KM can perform the following tasks: 

1. perform a system scan by obtaining a list of all live processes and scanning their 

objects, 

2. configure and extract data from the PMU, and 

3. obtain information through software instrumentation. 

Object Scan 

The list of objects is constructed by obtaining a list of all live processes and subsequently 

scanning all instantiated objects within each process. The KM obtains a list of all live 

processes by accessing K42's ProcessAnnex object. The ProcessAnnex object resides in 

the kernel and keeps track of all live processes by maintaining a list of Process objects. 

A Process object is the kernel's representation of a process and contains information 

ranging from the process' identification number (PID), memory regions assigned to the 

process, and other information. 

Using the Processes' PIDs, the KM is able to scan for all instantiated objects within 

each process. The object scan obtains two pieces of information. The first is a list of 

all instantiated objects within a particular process, and the second is the object's state 

(specifically, references to other objects). The first piece of information lets the user know 

what objects a particular process has instantiated (for example, one Process object, five 

Region objects, and five File objects), whereas the second piece of information lets the 
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user know how these objects relate to each other (for example, the Process object has 

a list of references to all five Region objects, and each Region object has a reference to 

one File object). These two pieces of information allow an object hierarchy of the system 

to be constructed. Before we explain in detail how the object scan is performed, a brief 

overview of K42's design is necessary. 

The K42 operating system is implemented with the use of clustered objects. All 

clustered objects within a process are accessed through the use of one Global Translation 

Table (GTT), and potentially multiple Local Translation Tables (LTTs) (please refer to 

Section 2.4.2). A clustered object will have a reference to the Root object in the GTT and 

each instantiated Representative object (Rep) will have a reference in a LTT. The Reps 

handle requests from local processors and store local data, and the Root object stores 

all shared data for that clustered object. A part of a Rep's local data are references to 

other clustered objects. 

The aforementioned object scan proceeds as follows: 

1. references to the Root object of each clustered object are obtained by traversing 

the entire GTT, 

2. for each clustered object a corresponding local Rep is found for the current processor 

by using the LTT, 

3. The Rep object is called to obtain its state. 

Obtaining all kernel-level clustered objects is straight-forward since the KM is running 

in kernel-space. User-level clustered objects are obtained by following the same set of 

steps described above by using inter-process communication (IPC). The IPC call invokes 

the clustered object manager for the targeted user-level process and performs the three 

object scan steps described above. 

The Translation Tables for each process are accessible through a clustered object 

manager. The clustered object manager maintains the GTT and LTTs for a particular 
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process. There is an instance of a clustered object manager for each process. The 

clustered object manager class was extended to allow the KM access to the Translation 

Tables. 

Each clustered object Rep class has been extended with new methods to provide in­

formation about its state. The methods getNumChildrenQ and getChildren() are invoked 

by the KM for each Rep. The returned information is a list of clustered object references 

this Rep contains. 

The only difference between a kernel-level and a user-level object scan is the way in 

which scan results are saved. The KM stores object scan results performed at kernel-

level in a dedicated buffer which resides in kernel-space. Because the KM uses IPC to 

obtain scan results from user-level processes, scan results are first saved into a shared 

region *, and then copied into a dedicated buffer in the kernel. The user-level process 

writes the results of its object scan in the shared region, and the KM subsequently reads 

this data, and saves it in its kernel-level buffer. Information from these dedicated buffers 

is subsequently read by the DCI. 

We have discussed how the list of all live processes and their objects is obtained; in 

the following sections we discuss how the KM monitors performance using the PMU and 

software instrumentation. 

Per fo rmance Moni to r ing Uni t 

Today's execution cores come with sophisticated Performance Monitoring Units (PMUs). 

A typical PMU will have several Hardware Performance Counters (HPCs) (e.g., PowerPC 

970FX has eight), where a single HPC can be configured to count one type of event from 

a subset of all hardware events at any given time. For example, an HPC can accumulate 

occurrences of branch mispredictions or TLB misses. 

The use of PMU interrupts for performance monitoring is a two step process. The first 

: A shared region is a segment of memory accessible by both the user- and kernel-level processes 
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step involves configuring the PMU to increment a HPC when a desired hardware event 

occurs. The KM configures the PMU by writing to a set of Special Purpose Registers 

(SPRs). Values written to these SPRs determine which events are counted by each HPC, 

and which HPCs can generate interrupts. PMU interrupts can be generated when a 

specific HPC overflows, or periodically after executing a specified number of processor 

cycles. 

The second step of using PMU interrupts for performance monitoring involves the 

Interrupt Service Routine (ISR), which is invoked whenever a PMU interrupt occurs. 

The ISR is a kernel routine which runs at exception-level and is capable of performing 

low-level tasks, such as reading from, and writing to, SPRs and HPCs, or saving data to 

buffers for later analysis. We wrote our own ISR to allow for performance monitoring of 

the system at object-level granularity. Our ISR performs three tasks: 

1. Extracts an object reference from the interrupted process' stack, 

2. Saves the object reference in a dedicated buffer, and 

3. Saves the address of the instruction at which the interrupt occurred in a dedicated 

buffer for later analysis. 

The PMU generates interrupts at the hardware level when a software program is executing 

code within a kernel or user level process. When a PMU interrupt occurs, execution of 

this program is halted, and the ISR starts executing. If the interrupted program was 

written in an object-oriented programming language, such as C + + , then the program 

being executed has a reference to an object which stores the program's data. By C + + 

convention, this object reference (which we call the 'context object reference') is stored 

in a specific location on the program's stack. Figure 3.2 shows the data stored on a 

function's stack for the PowerPC architecture. By C + + convention, the 'context object 

reference' is stored in location sp + OxbO. The ISR can therefore extract the context 
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object reference by performing a stack walk in the interrupted program 2. 

The context object reference extracted by the ISR by performing a stack walk is then 

saved in a dedicated buffer that was instantiated when the PMU was first initialized. In 

addition to the object pointer, the ISR also uses the dedicated buffer to store the address 

of the instruction at which the interrupt occurred. The address of this instruction will 

coincide with a segment of code within this object's class. Consequently, given the HPC 

threshold used to generate the interrupt and the extracted object pointer, performance 

measurements can be attributed to specific object instances within the system. Using 

the instruction address, performance measurements can also be attributed to exact code 

segments within the object's class, thereby specifying any performance bottlenecks with 

greater accuracy. All data from this buffer is subsequently read by the DCI. 

The dedicated buffer used to store PMU information is implemented as a simple wrap­

around buffer class. This buffer class has been designed such that one writer and one 

reader can use it concurrently. Hence, a single HPC can write to this buffer at any time, 

and the DCI can read from it at any time. There is a single dedicated buffer instance per 

HPC to simplify the task of identifying which information in the buffer was written by 

which HPC, which is important when matching PMU events to specific object instances. 

Consequently, since on the PowerPC 970FX there are eight HPCs per processor, there are 

also eight dedicated buffers per processor. The size of this dedicated buffer is set during 

initialization. The size is approximated to allow the buffer to hold at least one second 

worth of HPC information, because the DCI reads information from these buffers once 

every second. The default buffer size is 8KB, where each sample is composed of one 64 bit 

object pointer, and one 64 bit instruction address. Therefore, a default buffer can hold 

512 samples (8192 bytes / 16 bytes = 512). This size was determined experimentally to 

be sufficient for most PMU configurations. If an HPC generates more than 512 samples 

2Non object-oriented programs are monitored using the same technique; however, the value extracted 
from location sp + OxbO will not correspond to a valid COID. All values extracted from the ISR are 
checked against COIDs extracted from the GTT by the GUI to verify that the object pointer is valid. 
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Figure 3.2: This figure shows the data stored on a function's stack. A stack pointer (sp) 

holds the address of the location 0x00. Since the stack grows down, i.e. the stack address 

decreases for each new function call, data for the current function is stored above the 

current sp. The 'context object reference' is stored at address OxbO above the current 

sp. 
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within a second, only the first 512 samples are stored, whereas the rest are lost. When a 

sample is lost, the number of lost samples is counted. When the DCI reads information 

from each of the dedicated buffers, it checks if any samples were lost. If samples were 

lost a new, larger, buffer is created to replace it. Given the old buffer's capacity, and 

the number of lost samples, the new buffer size is determined by incrementing the old 

buffer's size by 4KB until the new size can hold all the samples 3. 

We have discussed how the PMU is used to monitor performance. The following 

section will describe how the PMU is used to specifically monitor spin lock contention. 

Spin locks 

A novel contribution of this dissertation is the monitoring of spin lock contention without 

requiring any changes to the target code. Spin lock contention is measured with the use of 

the same ISR as mentioned above. The key lies in the PMU event that is used to trigger 

the ISR. The PMU enables instruction op-code comparisons of up to six partial op-codes 

and one full op-code entry. A match results in an increment to an HPC and upon overflow 

causes an interrupt to occur. For the monitoring of spin locks, instructions of interest 

are the load-linked ( ldarx/ lwarx in PowerPC) and store-conditional (s tdcx/stwcx in 

PowerPC) instructions, which are used to implement spin locks. Figure 3.3 shows the 

control flow in the PMU when monitoring load-linked instructions and all completed 

instructions. 

To estimate the amount of lock contention as a percentage of total execution time, 

it is necessary to count the time spent executing spin locks. To estimate the time spent 

executing spin locks, one must consider how spin locks work. 

Spin locks operate by first reading a specific memory location into a register us­

ing a load-linked instruction. Secondly, the value in the register is tested, and set to 

another value if the tested condition holds true. Thirdly, the modified value in the reg-

34KB is the size of a virtual memory page 
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Figure 3.3: An illustration of the control flow within the PMU when configured to monitor 

spin lock contention. HPC 1 has been configured to count all instructions. HPC 2 has 

been configured to count only load-linked instructions (specified by op-code). Once an 

HPC threshold is exceeded, an interrupt will be generated. The interrupt service routine 

will extract the context object reference from the program's stack. 
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ister is written back to the same memory location using a store-conditional instruction. 

The store-conditional instruction will succeed only if the memory location has not been 

changed by other threads running concurrently. Thus, if successful, we are guaranteed 

that the above three steps were done atomically with respect to other threads. If unsuc­

cessful (stdcx. in Figure 3.3 is not executed), the code will need to 'spin' back and start 

with the first step again. This loop is executed indefinitely until the store-conditional 

succeeds, hence the term 'Spin Lock'. 

The KM monitors spin lock contention by configuring the PMU to count the number 

of load-linked instructions executed. Each load-linked instruction executed represents 

four instructions being executed. These instructions are load, test-and-set, store, and 

branch. Hence, when estimating the percentage of total execution time spent in spin 

locks versus other code, the number of counted load-linked instructions is multiplied by 

four and compared to the total number of executed instructions (as counted in a second 

HPC). Once a HPC counts a sufficient number of load-linked instructions (as defined 

by a HPC threshold), an interrupt will be generated. The interrupt service routine will 

extract the context object reference from the program's stack. Subsequently, this object 

reference is used to attribute lock contention to specific object instances. 

A manual inspection of K42's binaries and user libraries has confirmed that the load-

linked instruction is not used for any other purpose than to implement locking structures. 

However, if any user-level applications running on K42 were to use load-linked instruc­

tions for purposes other than to implement spin locks, it is possible that the execution of 

these load-linked instructions might introduce errors into measurements performed using 

our technique. However, if such load-linked instructions are not used within a loop as 

described above, then it is not likely that they would significantly affect the accuracy 

of our results. Nevertheless, to guarantee a greater accurary of results, the user can 

mark any process with the PMU to exclude it from monitoring. Consequently, only the 

processes of interest and the operating system will be monitored for spin lock contention. 
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Software Instrumentation 

In addition to monitoring performance with the PMU, the KM also uses software instru­

mentation to monitor other events. For example, we have added software instrumentation 

to monitor the use of sleep locks, as well as to monitor the number of object invocations. 

The rest of this subsection describes each of these software instrumentation techniques 

in greater detail. 

A sleep lock is a technique of providing access to shared data where all threads 

except the owner of the lock are prevented from accessing the data. Consider an example 

implementation of a sleep lock where only one thread can hold the lock at any given time. 

Assume that a thread acquires the lock successfully and subsequently starts performing 

its operations. When a second thread tries to acquire the lock while it is being held by 

the first thread, the second thread will add itself to a wait queue and stop executing by 

going to sleep. As more threads try to acquire the lock while it is held, they will similarly 

add themselves to the wait queue and stop executing. When the first thread completes 

its work and relinquishes the sleep lock, it will notify the wait queue that the lock is free. 

The notification wakes up the thread at the head of the queue, which then removes itself 

from the queue, and acquires the lock. This process continues until there are no more 

threads on the wait queue. 

K42 provides an implementation of the aforementioned queue operations in the Blocked-

ThreadQueues class. The BlockedThreadQueues class provides a method for the enqueue, 

dequeue and wake-up operations. 

Performance monitoring of sleep locks has been implemented by adding static instru­

mentation to the BlockedThreadQueues class that logs all enqueue and dequeue opera­

tions, by saving the queue pointer and the thread identification number in a buffer. The 

buffer used by this instrumentation is the same type of buffer as used by the PMU. Given 

this information, the length and members (threads) of each queue can be deduced. 

There is a dedicated log buffer for each BlockedThreadQueues object instance, created 
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when monitoring of sleep locks is enabled. Since performance monitoring of sleep locks 

is implemented using static instrumentation, the instrumentation code is always present. 

However, events are logged only when the KM sets the enable flag. Due to the object-

oriented nature of this implementation, the enable flag can be set only in specifically 

targeted lock objects, thus limiting overhead. 

We have described how the KM monitors sleep locks; in the rest of this section we 

will describe the software instrumentation used to monitor object invocations. 

An object invocation is an access to an object's data or use of an object's method. For 

example, if object A accesses the data of object B, or if object A executes a method of 

object B, then object A has invoked object B. By monitoring the number of invocations of 

all the objects in the system, it is possible to identify which object's data and methods are 

used most frequently. If a particular object is accessed very frequently, then optimization 

on that object might potentially yield greater performance improvements. 

As previously mentioned, K42 is implemented using clustered objects. Key operating 

system subsystems, such as the memory manager, scheduler, and I/O handlers, as well as 

user-level objects provided with libc are implemented using clustered objects. Clustered 

objects in K42 are always accessed using the dereference macro (DREF) (please refer to 

Section 2.4.2). As a result, we have added static instrumentation to the DREF macro to 

count object invocations. Consequently, the monitoring of object invocations is restricted 

to clustered object invocations. 

The instrumentation consists of two additional function calls on top of the normal 

operations performed by DREF. The first function call retrieves the enable flag which 

determines whether logging of object invocations is turned on. The second function call 

increments an object invocation counter associated with the target object. A hashtable 

is used for this purpose, where the object reference is the key, and the value for each key 

is the total number of times this particular object reference (key) has been passed to the 

DREF macro. 
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A hashtable was used to monitor object invocations, rather than a dedicated buffer, 

due to the great volume of data that is generated by this instrumentation. A particular 

object can be invoked millions of times during the execution of a program. Using the 

buffer approach, this instrumentation would have generated millions of entries. Using 

the hashtable, there is one entry per object with the key corresponding to the object 

reference, and the value corresponding to the cumulative invocation count (e.g., one 

million). The drawback of using a hashtable rather than a buffer, is that there is no 

resolution over time, since samples are not time-stamped. It is possible to overcome this 

limitation by periodically reading the hashtable. A time-stamp is created by each read 

of the hashtable, creating an artificial measure of progress over time. For example, the 

first read after one second returns a key and value pair stating that object A has been 

referenced 10 times. A second read one second after the first read returns a key and value 

pair stating that object A has been referenced 100 times. Thus, during a period of one 

second, object A has been referenced 90 times. Using such a technique, a coarse-grained 

time-stamp can be added to data read from the hashtable. 

We have discussed how KM obtains the list of live processes and their objects, and 

monitors performance. The following section will describe how this information is re­

trieved from the KM. 

3.2.2 Data and Control Interface 

The DCI is the link between the KM and the outside world. The DCI communicates with 

the KM by issuing system calls, and with the outside world through network connections. 

Communication with the KM is comprised of passing control parameters to the KM, and 

retrieving of the list of all live processes and their objects, and performance data from 

the KM's data buffers. 

The DCI runs as a stand-alone user-level process on the machine being monitored. 

Before the DCI is able to perform any actions, it must first accept a connection from the 
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GUI. Once a GUI has successfully connected to the DCI, from either the local machine 

or remotely, the DCI provides the following functionality: 

1. Passes control parameters to the KM, 

2. Retrieves object information and performance data from the KM. 

Control parameters that can be sent to the KM include PMU configuration parame­

ters, flag settings to enable or disable software instrumentation, and requests to perform 

an object scan. The DCI receives these control parameters directly from the GUI. 

The DCI retrieves information from the KM by issuing system calls. Separate system 

calls fetch performance data and object information. The DCI stores the data it has 

fetched from the KM in its own set of user-level buffers, which are subsequently read by 

the GUI. 

The DCI essentially forwards information from the GUI to the KM, and retrieves 

data from the KM to be read by the GUI. As such, the DCI only performs rudimentary 

operations. Nevertheless, The DCI allows the GUI to monitor performance from a remote 

workstation. It is preferable to have the ability to monitor a system's performance 

remotely because such a setup enables the user to monitor many machines, located at 

varying geographical locations, from a single machine. 

We have described the entire monitoring infrastructure used by KOV, including the 

KM and DCI. The following section will describe how data gathered by the monitoring 

infrastructure is displayed to the user in the GUI. 

3.3 Graphical User Interface 

The objective of the GUI is to retrieve object information and performance data and 

present it in a concise fashion. The GUI retrieves all its information from the DCI by 

issuing requests for data over the network. 
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The GUI can present information to the user in many ways. Figure 3.4 shows a 

sample of what the user can expect to see with the GUI when monitoring the system 

under the ApacheBench workload. The Kernel Object Tree on the left hand side of the 

screen shows a tree of objects for the process handling the Process File System, labeled 

'/kbin/procfsServer', with a process identification (pid) number of 13. Underneath this 

process label is a tree of clustered objects (sorted by name). These objects belong to this 

process either explicitly (i.e. created in user-space by this process for a specific purpose) 

or implicitly (i.e. created by the kernel on behalf of the process to keep track of memory, 

handle I/O, and perform other core functions for this process). Effectively, the sub-tree 

for each process contains all user- and kernel-level clustered objects related to a process. 

All objects shown in the tree are also differentiated by a suffix indicating their specific 

identification number, since there can be many instances of the same object class (e.g. 

COList). 

The five windows to the right of the Kernel Object Tree show performance monitoring 

results for five metrics: 

1. successful lock acquisition rate, 

2. spin lock contention, 

3. branch misprediction rate, 

4. Translation Look-aside Buffer (TLB) miss rate, and 

5. Instructions Per Cycle (IPC). 

This particular snapshot shows the aforementioned data aggregated over all the listed 

objects belonging to all the listed processes, and shows how they progress over time. 

Another way the user can view information with the GUI is by looking at performance 

results for one specific metric in greater detail. One can display a list of the most 
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Figure 3.4: A snapshot of the complete first run of ApacheBench on the Apache web­

server with five metrics from time index 10s to 75s (indicated by the vertical black lines) 

being measured. From top to bottom, the windows show the measured successful lock 

acquisition rate, spin lock contention, branch misprediction rate, TLB miss rate, and 

IPC respectively. ApacheBench was configured to generate a request concurrency of 70, 

and a total of 5000 requests. 
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significant contributors to a specific metric, as is shown in Figure 3.5, or the contributions 

of a single, specific object over time to the metric of choice as is shown in Figure 3.6. 

The intended purpose of displaying information in this fashion is to use multiple 

forms of data representation to identify bottlenecks in the system as a whole, and also 

on a per-object basis. For example, Figure 3.4 referenced in the above example can be 

used to identify the most severe problems. Subsequently, Figure 3.5 can show the list of 

highest contributing objects to the results seen in Figure 3.4. Finally, Figure 3.6 breaks 

down an individual object's contributions to a metric of choice over time as it is tracked 

throughout the execution of a benchmark. One could use such a step-by-step process 

to determine which object causes the most lock-contention in the system, and roughly 

how far into the program's execution this contribution is most significant. This is just an 

example use of this GUI, and one can certainly do other things with the collected data 

such as simple logging or displaying it in an activity indicator. 

The GUI and the monitoring system can be configured using the configuration utility 

shown in Figure 3.7. The configuration utility allows the user to configure the hardware's 

PMU and to toggle performance monitoring for specific objects. The prototype described 

in this dissertation is specific to the PowerPC 970 PMU, and the PMU configuration 

utility is therefore specific to this architecture's hardware events. The user can configure 

the PMU to monitor any and all of the events across the eight available hardware counters. 

The user can also enable the monitoring of object invocations and sleep lock contention, 

which are not tied to the underlying hardware. 

The GUI is the only part of KOV that connects to the DCI. However, the communi­

cation protocol between the GUI and the DCI consists of a simple exchange of commands 

and data. Therefore, it would be potentially feasible to use other programs to connect 

to the DCI directly and obtain monitoring information on their own. 
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Figure 3.5: Lock contention on a per-object basis using different PMU counter thresholds 

when measured for the first run of ApacheBench on the Apache webserver. From top to 

bottom: 10k, 100k, and 1M per one sample. ApacheBench was configured to generate a 

request concurrency of 50, and a total of 5000 requests. 
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Figure 3.6: Lock contention on a per-object basis when measured for the first run of 

ApacheBench on the Apache webserver. The top window shows the contribution of 

each object to the global amount of lock contention, experienced throughout the entire 

run of the program. 44.73 % of all lock contention is caused by the FCMComputation 

object. The bottom window shows the contribution of the FCMComputation object 

to the global lock contention total on a per second basis. During the first 20 seconds 

of the run, there are periods during which 100 % of contention was attributed solely 

to the FCMComputation object. ApacheBench was configured to generate a request 

concurrency of 70, and a total of 5000 requests. 
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Figure 3.7: A snapshot of the PMC configuration utility that allows the user to configure 

the Performance Monitoring Unit (PMU) on the PowerPC 970FX. The setup shown 

here is used to configure Branch Mispredictions monitoring. Monitoring of executed 

instructions is also possible, and is supported by the PMU (currently being pointed to 

by the cursor). 
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3.4 Limitations 

There are three limitations to the KOV performance monitoring tool. The first two are 

design limitations resulting from KOV's reliance on hardware performance monitoring 

capabilities and the use of K42. The third limitation is the result of KOV's current 

prototype implementation. 

The monitoring infrastructure used by KOV is dependent on the processor's Perfor­

mance Monitoring Unit (PMU). The PMU monitors micro-architectural events specific 

to the processor it is implemented on (in our case the PowerPC 970FX). Consequently, 

if KOV were to use the PMU on another processor, the PMU configuration utility and 

multiplexing logic would have to be ported to use the new architecture. 

KOV has been designed for K42, an object-oriented operating system. The object 

scan capabilities of the monitoring infrastructure are specific to K42's design. If one 

were to port KOV to another operating system, the whole scan portion of our tool would 

have to be redesigned (and if the target operating system is not object-oriented, then the 

object capabilities of KOV become moot). 

The current implementation of the KOV performance monitoring tool allows for the 

DCI to accept only one GUI connection, and similarly the GUI can only connect to one 

DCI at a time. This is only a limitation of the present implementation of KOV. In theory 

both the DCI and GUI can be extended to allow for multiple connections. The DCI can 

be extended to allow multiple GUIs to read the same list of all live processes and their 

objects, and performance data. In addition, the GUI can be extended to monitor multiple 

machines by maintaining separate data structures for each machine being monitored. 

We have described the KOV performance monitoring tool and its limitations. We 

will conclude this chapter by providing a brief summary of all the components of KOV 

in the following section. 
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3.5 Chapter Summary 

Figure 3.8 shows an overview of all the components of KOV and how they interact with 

one another. The top box shows the GUI, the only part of KOV the user interacts with 

directly. Via the GUI, the user can request information about the system by issuing 

commands to start an object scan, use the PMU, monitoring sleep locks, or monitor 

object invocations. The DCI receives these commands from the GUI and forwards them 

to the KM in the form of system calls. Subsequently, the KM starts gathering data 

requested by the user. All data gathered by the KM is read by the DCI. The GUI 

periodically polls the DCI for any data it has retrieved from the KM, and once the GUI 

has obtained information from the DCI, it is displayed to the user. 
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Figure 3.8: This figure shows an overview of all the components of KOV, and how they 

interact with one another. The top box shows the GUI, the middle box shows the DCI, 

and the bottom box shows the KM. The arrows represent the flow of information between 

different components. 



Chapter 4 

Experimental Evaluation 

In this chapter we present the experimental evaluation of the Kernel Object Viewer 

(KOV), a tool designed to aid programmers and operating systems designers in perfor­

mance analysis. As previously mentioned, computer systems are becoming more complex 

every year. This increased complexity makes it exceedingly difficult to qualitatively and 

quantitatively understand how well a running system is performing. In Section 4.2 we 

evaluate and analyze the performance of several workloads using KOV to demonstrate 

how KOV can be used to accurately identify a performance bottleneck, and subsequently 

identify the cause of the bottleneck. Ultimately, we aim to show how KOV can be used 

to ease qualitative and quantitative analysis of a running system. We then analyze the 

overheads introduced by KOV in Section 4.3. 

4.1 Experimental Workloads 

We use two workloads to demonstrate the feasibility of our tool. The first workload is 

Apache 1.3 when running under the ApacheBench 0.5 and SURGE 1.0 generated work­

loads. The second workload is SPECjbb 2000 running on the IBM J2SE 5.0 Java virtual 

machine. The two workloads are described in more detail in the following subsections. 

63 
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4.1.1 Apache Workloads 

Apache HTTP webserver version 1.3 is an open-source HTTP server which can run on a 

multitude of operating systems including Linux, Solaris, and Windows 2000 [35]. Apache 

is capable of handling multiple client requests simultaneously. 

This version of Apache handles multiple client requests by maintaining a pool of child 

processes. The parent process distributes incoming requests amongst its child processes 

for servicing, and does not directly handle any requests itself. An initial set of child 

processes is created when Apache starts (by default five), and more child processes are 

created lazily once the number of outstanding requests exceeds the number of active 

child processes. The maximum number of child process that Apache creates is limited by 

parameters read during the webserver's initialization. Once created, child processes are 

not destroyed until the server shuts down. The end result of this design choice is that 

during periods of low server load, child processes that are not handling requests are put 

to sleep. As more connections are made to the webserver, and server load increases once 

again, the parent process will wake up existing child processes to handle outstanding 

requests. 

Apache configuration parameters also allow the user to set the maximum number of 

keep-alive requests. A keep-alive request is a technique of implementing HTTP persis­

tent connections. A persistent connection allows multiple HTTP requests and responses 

to be exchanged between the client and server during one connection. Normal HTTP 

connections allow for only one request/response pair to be exchanged. When the client 

first initiates a connection with the server, the client will specify that it wishes to estab­

lish a persistent connection using keep-alive requests. The server will then periodically 

send a keep-alive request to the client (every x seconds). The client has to respond to 

each keep-alive request to maintain the persistent connection. The connection remains 

open until the client or server explicitly terminate the connection, or the client stops 

responding to the server's keep-alive requests and a period of time passes (the timeout 



C H A P T E R 4. EXPERIMENTAL EVALUATION 65 

period). 

All performance measurements made on Apache used the setting for a maximum of 

100 child processes and 100 keep-alive requests. By setting the maximum number of 

keep-alive requests and child processes equal to each other, every child process is able to 

complete all client requests during one connection. If a workload also uses the keep-alive 

option when issuing its requests, then each child process will only accept one connection 

throughout the entire run of the workload. 

To measure performance of the Apache HTTP webserver, we use two programs that 

generate workloads for the server to handle: ApacheBench and SURGE. 

ApacheBench 

ApacheBench is a command line computer program designed to measure performance 

of HTTP webservers [1]. ApacheBench generates a steady stream of requests, putting 

a constant load on the server. The user can specify the number of requests generated 

concurrently, and the total number of requests sent. The number of concurrently gener­

ated requests tests the amount of server parallelism available, whereas the total number 

of requests determines the total running time of ApacheBench. 

ApacheBench was run multiple times by varying request concurrency from 10 to 150 

in increments of 10, and keeping the total number of requests steady at 5000. All requests 

use the keep-alive option. Each particular configuration of ApacheBench was measured 

three times using three consecutive runs. The purpose of measuring multiple consecutive 

runs is to show the difference in performance resulting from initialization (e.g. process 

creation). The first run is expected to perform worse than the remaining two, whereas 

run two and three are expected to perform similarly to one another. 
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SURGE 

The Scalable URL Reference Generator (SURGE) is a tool designed to generate a Web 

workload which mimics a set of real users accessing a webserver [12]. SURGE generates 

file references matching empirical measurements of 1) server file size distribution; 2) re­

quest size distribution 3) relative file popularity; 4) embedded file references; 5) temporal 

locality of references; and 6) idle periods of individual users. 

SURGE can be configured in two ways. An initial set of parameters is fixed before 

compile time. They include: 

1. Total number of requests for the most popular file, which we set to 20,000, and 

2. Total number of documents to be used in the test, which we set to 20,000. 

The total number of requests for the most popular file will affect the magnitude of server 

load at peak time. This is because the majority of requests for the most popular file are 

timed to coincide with peak load. 

In addition to the aforementioned pre-compile parameters, the user can also vary 

several options dynamically, such as the number of client processes used and the number 

of threads per client. The user also specifies benchmark duration in seconds. Finally, 

SURGE requires the user to specify the directory path of the files created on the web 

server. 

All of our SURGE tests used two clients and a runtime of 60 seconds, whereas the 

number of threads per client was varied from 5 to 60 in increments of 5. Each particular 

configuration of SURGE was measured three times using three consecutive runs. 

4.1.2 SPECjbb2000 Workloads 

This version of the Standard Performance Evaluation Corporation (SPEC) Java business 

benchmark (jbb) was released in 2000 to evaluate the performance of multi-tier server-side 
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Java applications [2]. The benchmark runs on several versions of UNIX, Windows/NT, 

Linux and other operating systems. 

SPECjbb2000 represents an order processing application for a wholesale supplier. 

SPECjbb2000 models a wholesale company, with warehouses that serve a number of 

districts. Customers initiate a mix of operations, such as placing new orders or requesting 

the status of an existing order. Additional operations are initiated by the company, such 

as processing orders for delivery, entering customer payments, and checking stock levels. 

SPECjbb2000 assigns one active customer per warehouse. A warehouse is imple­

mented as a unit of about 25MB of data stored in binary trees. Warehouses map directly 

to Java threads. As the number of warehouses increases during the full benchmark run, 

so does the number of threads. SPECjbb2000 measures the throughput of the underlying 

Java platform, which is the rate at which business operations are performed per second. 

A typical benchmark run takes about three minutes per warehouse. SPECjbb2000 mea­

sures throughput in a fixed amount of time, so faster machines do more work in the 

allotted time. 

A complete run of SPECjbb2000 consists of two phases: a warm-up phase and a 

measurement phase. The warm-up phase creates data for all the warehouses and typically 

lasts 30 seconds. After the warm-up phase is complete, the measurement phase will 

emulate customer accesses to the warehouse as described previously. 

We have configured SPECjbb2000 to use a maximum of four warehouses. We used 

the standard 30 second warm-up phase followed by a 120 second application-level mea­

surement phase. 

4.2 Experimental Results 

This section presents results for the Apache and SPECjbb2000 workloads gathered by 

KOV. KOV was configured to measure: 
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1. successful lock acquisition rate, 

2. spin lock contention, 

3. branch misprediction rate, 

4. Translation Look-aside Buffer (TLB) miss rate, and 

5. Instructions Per Cycle (IPC). 

The successful lock acquisition rate is measured by counting the number of successfully 

executed store-conditional instructions multiplied by the number of instructions in a spin 

lock (four) as a percentage of all retired instructions. 

Spin lock contention is measured by utilizing the technique described in Section 3.2.1. 

The results for this metric show the amount of lock contention as a percentage of all 

retired instructions. 

The branch misprediction rate is measured by counting the number of correctly and 

incorrectly predicted branches (also referred to as predicted and mispredicted branches, 

respectively). Results for this metric show the total number of mispredicted branches as 

a percentage of the total number of branches (predicted plus mispredicted branches). 

The TLB miss rate is measured by counting the number of TLB misses caused by 

fetching instructions as well as reading and storing data. The results for this metric show 

the cumulative number of TLB misses as a percentage of all retired instructions. 

IPC is measured by counting the number of retired instructions and completed pro­

cessor cycles. Performance results for this metric show the total number of retired in­

structions as a percentage of the total number of completed processor cycles. 

4.2.1 Apache loaded with ApacheBench 

Figure 4.1 shows the results for Apache loaded with ApacheBench. The figure shows 

results for the first (left) and third (right) run of ApacheBench. The x-axis on each graph 
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Figure 4.1: This figure depicts the monitoring results for ApacheBench for five metrics: 

successful lock acquisition rate, spin lock contention, branch misprediction rate, TLB 

miss rate, and IPC. The figure shows results for the first (left) and third (right) run of 

ApacheBench. The x-axis on each graph shows request concurrency, which is varied from 

10 to 150 in increments of 10. The y-axis shows the percentage composition for each 

metric. Each individual graph shows three plots, from top to bottom, the maximum, 

average, and minimum values for each run. 
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Figure 4.2: A snapshot of the complete first run of ApacheBench on the Apache webserver 

with five metrics from time index 10s to 75s (indicated by the vertical black lines) being 

measured. From top to bottom, the windows show the amount of measured successful 

lock acquisition rate, spin lock contention, branch misprediction rate, TLB miss rate, 

and IPC respectively. ApacheBench was configured to generate a request concurrency of 

70 and a total of 5000 requests. 
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Figure 4.3: Lock contention on a per-object basis when measured for the first run of 

ApacheBench on the Apache webserver. The top window shows the contribution of 

each object to the global amount of lock contention, experienced throughout the entire 

run of the program. 44.73 % of all lock contention is caused by the FCMComputation 

object. The bottom window shows the contribution of the FCMComputation object 

to the global lock contention total on a per second basis. During the first 20 seconds 

of the run, there are periods during which 100 % of contention was attributed solely 

to the FCMComputation object. ApacheBench was configured to generate a request 

concurrency of 70, and a total of 5000 requests. 
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shows request concurrency as it is varied from 10 to 150 in increments of 10, whereas 

the y-axis shows the percentage composition for each metric (calculated as described 

above). The first run measures the metrics of Apache when loaded with ApacheBench 

as well as the overhead associated with creating child processes. Recall that Apache is 

initialized with only five child processes, where extra processes are created lazily once 

there are enough outstanding requests to warrant their creation. The third run measures 

the metrics of Apache when loaded with ApacheBench with no child process creation 

overhead (since child processes are not destroyed once created). 

Before we discuss the results, we will elaborate on the significance of considering 

peak values, in addition to the overall average. A program, through the course of its 

execution, can go through several different phases of execution. Each phase can result 

in a different behaviour of the program and its interactions with the operating system, 

either because the code being executed is different, or because the actions performed by 

the code are different. In both cases, the average value for a metric will consider the 

aggregate performance results over the entire run of a program, and therefore hide the 

behaviour of individual execution phases. 

The rest of this section discusses the results for Apache loaded with ApacheBench in 

greater detail. 

Using performance results obtained with KOV, we can see a gradual rise in peak lock 

contention during the first run of ApacheBench, shown in Figure 4.1 top curve, as request 

concurrency increases. There is a significant difference in peak lock contention between 

the first run (left), where the value increases to almost 16 % (which is roughly five times 

the average) and the third run (right), where this increase is absent. Using KOV's GUI, 

we investigated the performance of the first run of ApacheBench when configured with 

a request concurrency of 70 to gain further insight. 

The complete first run of ApacheBench configured for 70 concurrent requests is shown 

in Figure 4.2. Each window in Figure 4.2 shows the five metrics as obtained by KOV 
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over the course of the entire run of ApacheBench (isolated by vertical black lines from 

other monitoring information). 

The peak values of interest are represented by the first several seconds of the ApacheBench 

run (10-30s). Since the difference between the first run and the third run of ApacheBench 

is only the creation of child processes by the Apache webserver, the process creation phase 

is a likely cause of the increased lock contention. Consider the fact that ApacheBench 

sends 70 concurrent requests to be handled by the webserver. However, Apache was only 

initialized with five child processes. The Apache webserver will create an additional 65 

child processes, in order to handle all remaining 65 requests. 

Process creation requires a significant amount of work to be performed by the oper­

ating system. This includes allocating memory pages for the process and initializing the 

process' data structures. In addition to increased lock contention during the initialization 

period, Figure 4.2 also shows a corresponding increase in TLB misses for ApacheBench. 

This information suggests that the likely cause of the contention is the memory subsys­

tem, since TLB misses are directly related to accessing memory pages. Further use of 

KOV's performance monitoring and visualization capabilities validates this hypothesis. 

A per-object breakdown of lock contention, shown in Figure 4.3, has attributed the 

majority of lock contention to one object instance, namely the FCMComputation object. 

We identified the purpose of the FCMComputation class by investigating K42's source 

code. The FCMComputation class is responsible for fetching and allocating memory 

pages. In addition, Figure 4.3, in the bottom window, shows the amount of lock con­

tention contributed by the FCMComputation object to the global lock contention total 

shown in Figure 4.2. The contribution of the FCMComputation object shown in the 

bottom window of Figure 4.3 is calculated on a per second basis, and shows that the 

contention occurs primarily during the first 20 seconds. With the contribution equaling 

100 %, this indicates that all lock contention during that time period was attributed 

to the FCMComputation object. Considering the findings discussed above, we can con-
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elude that the most likely cause of the increased peak lock contention was the following 

scenario. 

As Apache creates new child processes, each process' request for new pages is handled 

by the memory subsystem. Since Apache's child processes are all created when the initial 

requests arrive, there is contention on the memory subsystem to provide pages for 65 

processes as quickly as possible. As the initialization phase finishes, Figure 4.2 shows 

that lock contention drops to the average level shown in Figure 4.1. 

We have shown how KOV can be used to identify a performance bottleneck within 

the operating system by using performance results obtained by monitoring the execution 

of Apache when loaded with ApacheBench. A key aspect of this is the unique capability 

of KOV to obtain metrics from specific object instances. In the following section we will 

show how KOV can be used to understand the execution of a program by comparing 

performance results of Apache loaded with SURGE, against those we obtained in this 

section using ApacheBench. 

4.2.2 Apache loaded with SURGE 

Figure 4.4 shows results for Apache loaded with SURGE for the aforementioned five 

metrics. The figure shows results for the first (left) and third (right) run of SURGE. 

The x-axis on the each graph shows the number of threads per client ranging from 5 

to 60 in increments of 5, whereas the y-axis shows the percentage composition for each 

metric (calculated as described in a previous section). Figure 4.5 shows a snapshot of the 

complete execution of the first run of SURGE, when configured to generate 35 requests 

per client, using two clients. 

Figure 4.4 and Figure 4.5 show performance results for various configurations of two 

runs of SURGE, and one detailed run displayed in KOV's GUI respectively, similarly to 

what was shown in Figure 4.1 and Figure 4.2 for ApacheBench. 

By looking at Figure 4.4 and Figure 4.1 we can see that there is a similarity between 
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Figure 4.4: This figure depicts the monitoring results for SURGE for five metrics: suc­

cessful lock acquisition rate, spin lock contention, branch misprediction rate, TLB miss 

rate, and IPC. The figure shows results for the first (left) and third (right) run of Apache 

loaded with SURGE. The x-axis on each graph shows the number of concurrent requests 

generated by each of the two clients, ranging from 5 to 60 in increments of 5. The y-axis 

shows the percentage composition for each metric. Each individual graph shows three 

plots, from top to bottom, the maximum, average, and minimum values for each run. 
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Figure 4.5: A snapshot of the complete first run of SURGE on the Apache webserver 

measured using five metrics from time index 20s to 80s (indicated by the vertical black 

lines). From top to bottom, the windows show the amount of measured lock acquisition 

rate, lock contention, branch misprediction rate, TLB miss rate, and IPC respectively. 

SURGE was configured to generate a 35 requests per client, use two clients, and execute 

for a total of 60 seconds. 
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the rise in peak lock contention for Apache loaded with SURGE and ApacheBench. 

Figure 4.5 also indicates that Apache loaded with SURGE experiences a peak in lock 

contention during the initial seconds of the run. From analysis of Apache loaded with 

ApacheBench, we learned that a workload's initialization phase can create high lock 

contention, corresponding to the child process creation phase in Apache. However, Figure 

4.4 does not indicate that values for peak lock contention continue increasing for higher 

concurrency with SURGE, as they did with ApacheBench. For a possible cause of this 

difference, we will examine performance results gathered using other metrics. 

Let us consider the behaviour of TLB misses with SURGE and ApacheBench. With 

ApacheBench, the TLB miss rate is constantly rising; however, with SURGE this is not 

the case. With SURGE, the TLB miss rate goes up until about 15 requests per client 

and does not increase much further for a greater number of requests. With SURGE, 15 

requests per client corresponds to a request concurrency setting of 30 for ApacheBench 

(SURGE uses two clients). 

The analysis for ApacheBench concluded that the memory subsystem was responsible 

for the increased level of lock contention. The TLB miss rate is directly proportional to 

the rate at which new pages are being fetched by the system. Consequently, the fact 

that the TLB miss rate does not increase for SURGE with a corresponding increase in 

the number of requests per client, indicates that the rate at which new pages are fetched 

by Apache during a SURGE workload does not increase either. 

We validated our hypothesis by examining the documentation on the SURGE work­

load. Contrary to ApacheBench, a SURGE generated workload does not immediately 

open all of its connections. Rather the number of connections steadily increases until 

finally reaching the maximum value, specified by the number of clients and requests per 

client. This period of maximum load is the period of the so called 'surge'. The effect 

this steady increase in the number of requests has on the system is that only several new 

child processes are created by Apache at any given time, rather than all at the same 
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time, which is the case when running ApacheBench. Consequently, under SURGE there 

is a lower demand for new memory pages at any given time. A lower demand for new 

memory pages manifests itself in the form of a lower TLB miss rate. 

We have shown how KOV can be used to identify a performance bottleneck within 

the operating system using ApacheBench, and how KOV can help the user understand 

how a program's behaviour can manifest itself on the system using SURGE. The next 

section shows a similar analysis using KOV for SPECjbb2000. 

4.2.3 SPECjbb2000 

The performance of SPECjbb2000 was monitored during a complete run of the bench­

mark which consists of a 30 second warm-up phase and a 120 second measurement phase. 

Figure 4.6 and Figure 4.7 show the results obtained for SPECjbb2000 for the aforemen­

tioned five metrics. Figure 4.6 shows the first 82 seconds of execution. The 30 second 

warm-up phase can be identified on the figure as the portion of execution between the 

two black lines (time indices 18s to 48s), whereas the measurement phase starts after the 

second black line (time index 48s) in Figure 4.6 and continues up until its conclusion, 

which is shown in Figure 4.7 (at time index 70s). 

We will proceed by analyzing each phase of execution in detail using to the results 

gathered for our five metrics. We will then compare these results against the ones ob­

tained for Apache workloads. 

Looking at the warm-up phase in Figure 4.6 (the region between the two vertical black 

lines) we can see that the results for three metrics vary substantially from the average: 

spin lock contention, TLB miss rate, and IPC. From the analysis of Apache we have 

learned that high lock contention can be caused by the memory subsystem, but also that 

memory pressure is usually accompanied by a high rate of TLB misses. Although Figure 

4.6 shows high lock contention, the TLB miss rate during that period is insignificant. 

Consequently, by looking at the results gathered with KOV, we can conclude that the 
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memory subsystem is not a bottleneck in the warm-up phase because the TLB miss rate 

is not correlated with lock contention, as was the case with ApacheBench. 

Figure 4.6 shows that there is a significant increase in IPC (up to 0.545 from an average 

of roughly 0.400) during the period of low TLB miss rate and high lock contention. Two 

reasons for a high IPC rate could be the execution of highly optimized code, or the 

execution of very few memory operations. Code optimizations such as prefetching, loop 

unrolling, or branch hinting, reduce the number of processor stalls, and thus increase 

IPC. Code which contains few memory operations has a lower chance of accessing data 

not present in the cache, or TLB, and therefore causes fewer processor stalls, which 

translates into increased IPC. 

We consulted the documentation of SPECjbb2000 for reasons that could explain the 

higher IPC, higher lock contention, and lower TLB rates in the warm-up phase. The 

documentation indicates that the warm-up phase for SPECjbb2000 is composed of two 

tasks. The first task creates data structures, whereas the second task executes several 

threads which populate the aforementioned data structures. We will proceed by analyzing 

each of these tasks in greater detail. 

The first task of the warm-up phase creates binary trees for each warehouse (please 

refer to description of SPECjbb2000 in Section 4.1.2) which are accessed during the 

measurement phase. This task is computational in nature and therefore puts more stress 

on the CPU rather than the memory subsystem. Thus, one possible reason for a low 

TLB miss rate and increased IPC is that this task exhibits good cache locality, which 

would manifest itself by exhibiting fewer TLB misses and fewer processor stalls. A 

second possible reason is the presence of the JIT compiler in the JVM. It is possible 

that the highly computational task was optimized by the JIT compiler, in which case 

extra prefetching instructions, loop unrolling, or branch hints might have been inserted to 

increase performance. Finally, the higher incidence of lock contention during the warm-

up phase is likely the result of concurrent accesses to the binary trees created at this time, 
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Figure 4.6: A snapshot of the first 82 seconds of execution of SPECjbb2000. The results 

for the 30 second warm-up phase of the SPECjbb2000 run are between time index 18s 

and 48s (indicated by the vertical black lines). From top to bottom, the windows show 

the successful lock acquisition rate, spin lock contention, branch misprediction rate, TLB 

miss rate, and IPC, respectively. A complete run of SPECjbb contains a 30 second warm-

up phase, and a 120 second measurement phase. The first 52 seconds of the measurement 

phase shown start after time index 48s (right vertical black line). 
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Figure 4.7: A snapshot of the last 65 seconds of the execution of SPECjbb2000. From 

top to bottom, the windows show the successful acquisition rate, spin lock contention, 

branch misprediction rate, TLB miss rate, and IPC, respectively. A complete run of 

SPECjbb contains a 30 second warm-up phase, and a 120 second measurement phase. 

This snapshot only shows the last 65 seconds of the measurement phase 
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although we don't have access to further information that could prove this hypothesis. 

The second part of the warm-up phase executes several threads which populate the 

aforementioned binary trees. This task stresses memory, rather than the CPU, since a 

large amount of data is accessed within a short amount of time. Figure 4.6 and Figure 

4.7 show that there is a correlation in the results between the second part of the warm-up 

phase and the 120 second long application measurement phase. 

For the rest of this section, we will describe the measurement phase in greater detail 

based on the documentation of SPECjbb2000. We conclude by analyzing the results of 

the second part of the warm-up phase and the measurement phase together. 

Documentation for SPECjbb2000 indicates that the benchmark simulates an order 

processing application for a wholesale company, where customers initiate a set of oper­

ations such as placing new orders or requesting the status of an existing order. By this 

definition, one can expect a mix of memory and CPU load. Performance results for the 

measurement phase, shown both in Figure 4.6 and Figure 4.7, indicate that the load on 

the memory subsystem is more significant than on the CPU. The higher rate of TLB 

misses, combined with a lower IPC rate support this claim. Since the second part of 

the warm-up phase consists of several threads, primarily issuing requests for data, the 

similarity in performance results between this portion of the benchmark and the mea­

surement phase can be attributed to load being primarily put on the memory subsystem 

in both cases. 

In conclusion, we have shown using KOV that there is a significant difference in the 

way in which Apache workloads, and the SPECjbb2000 benchmark affect the underlying 

system. In addition, we show KOV's utility by displaying results for a variety of metrics. 

The visualization of multiple metrics, rather than just one, such as TLB miss rate, or 

spin lock contention, was crucial in understanding the operating system and application 

performance behaviour. 

We have described the results obtained with KOV by monitoring Apache and 
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Workload 

ApacheBench 

SURGE 

SPECjbb2000 

Average 

Table 4.1: Overhead 

PMU Overhead (%) 

1.25 

1.03 

2.97 

1.75 

of monitoring per benchmark 

Soft. Instrum. (%) 

2.28 

2.11 

2.17 

2.19 

Data Traffic 

and Scan(%) 

2.05 

2.06 

2.31 

2.14 

Total(%) 

5.58 

5.20 

7.45 

6.08 

SPECjbb2000 workloads. The next section will provide a detailed breakdown of overhead 

introduced by KOV. 

4.3 Overhead Considerations 

The results presented in Section 4.2 incorporate the execution of a program as well as the 

overhead introduced by our tool. The KOV performance monitoring tool incurs overhead 

from: 

1. PMU interrupt handling, 

2. the presence of software instrumentation, even if disabled, and 

3. transfer of monitoring data and from periodically performing object scans. 

Table 4.1 shows the overhead introduced by KOV when running the Apache webserver 

under ApacheBench and SURGE, and when running SPECjbb2000, distributed amongst 

the aforementioned three categories with all software instrumentation disabled. 

Overhead for each workload was measured by comparing results with and without 

KOV. The overhead for ApacheBench was calculated by measuring the percentage in­

crease in execution time. For SURGE, the overhead was calculated by measuring the 

percentage increase in transfer delay because the workload's execution time is fixed. 
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Similarly, since the runtime of a SPECjbb2000 workload is constant, the overhead for 

SPECjbb2000 was calculated by measuring the drop in throughput with KOV present. 

Each overhead measurement is the average overhead incurred over three consecutive runs 

of each workload calculated using arithmetic mean. 

Overhead measurements presented in Table 4.1 indicate that the cost of performing 

an object scan is relatively constant, as is the cost of disabled software instrumentation. 

However, the PMU overhead varies slightly between different Apache workloads, and 

more significantly when compared against SPECjbb2000. The higher overhead generated 

by the PMU for SPECjbb2000 can be attributed to a higher rate of events for a majority 

of the five PMU-collected metrics measured in our evaluation. 

We present a more detailed analysis of the overhead incurred by measuring each of 

the five metrics individually in Table 4.2. Because the overhead of monitoring each 

metric separately is very small, the ApacheBench workload was extended to run for 

50,000 requests, instead of 5,000, and the SURGE workload was extended to run for 600 

seconds, rather than 60. The SPECjbb2000 workload could not be extended to run for 

a longer period of time, however SPECjbb2000 measures its throughput very accurately 

(in tens of thousands of operations per second), and thus a noticeable difference was 

still present for different overhead measurements. Table 4.2 also shows the overhead of 

using the PMU to simultaneously measure all five metrics, similarly to the result shown 

in Table 4.1. This result is shown because it measures the overhead for the extended 

workloads. 

Overhead generated by the PMU is the result of monitoring the following metrics: 

1. successful lock acquisition rate, 

2. spin lock contention, 

3. branch misprediction rate, 

4. TLB miss rate, and 
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Table 4.2: Overhead of using PMU to monitor five metrics for each workload 

Workload 

ApacheBench 

SURGE 

SPECjbb2000 

Average 

Successful lock 

acquisition rate 

(%) 

0.35 

0.37 

0.68 

0.47 

Spin lock 

contention 

(%) 

0.45 

0.34 

0.86 

0.55 

Branch mis-

-prediction rate 

(%) 

0.29 

0.24 

0.28 

0.27 

TLB miss 

rate 

(%) 

0.35 

0.28 

1.20 

0.61 

IPC 

(%) 

0.19 

0.20 

0.24 

0.21 

Simult. 

(%) 

1.20 

1.01 

2.97 

1.73 

5. IPC. 

Table 4.2 shows that on average, IPC, lock contention and TLB miss rates are higher 

for SPECjbb2000 than for any Apache workload. The higher rate of events generated by 

the PMU translates to more interrupts being handled by the system, which is directly 

proportional to overhead. 

It should be noted that measuring each of the five metrics separately with the PMU 

incurs a total of 2.11 % overhead on average, whereas measuring all five metrics simul­

taneously incurs only 1.73 % overhead on average. The 0.38 % higher overhead for five 

metrics measured separately results from the need to count the number of retired instruc­

tions four times, when monitoring successful lock acquisition rate, spin lock contention, 

TLB miss rate, and IPC. When measuring all five metrics simultaneously, the number of 

retired instructions is only counted once, hence the lower combined overhead generated 

by the PMU. 

In addition to a detailed breakdown of the overhead incurred by the PMU, we also 

show in Table 4.3 a breakdown of the overhead incurred by disabled software instrumenta­

tion and KOV. Overhead generated by the presence of disabled software instrumentation 

in our prototype consists of: 

1. object invocation instrumentation, and 
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Table 4.3: Overhead of disabled software instrumentation per workload 

Workload 

ApacheBench 

SURGE 

SPECjbb2000 

Average 

Object Invocations (%) 

2.28 

2.11 

2.17 

2.19 

Sleep locks (%) 

<0.01 

<0.01 

<0.01 

<0.01 

2. sleep locks instrumentation. 

The presence of software instrumentation within the system causes overhead, whether it 

is enabled or disabled. The results in Section 4.2 incorporate the overhead of disabled 

software instrumentation which can monitor object invocations and sleep locks when 

enabled. Overhead for each type of software instrumentation was measured by performing 

the aforementioned three consecutive runs on three different versions of the binary. The 

first binary contained no software instrumentation, the second binary only contained 

instrumentation to monitor object invocations, whereas the third binary only contained 

instrumentation to monitor sleep locks. The difference in performance runs for the first 

and second binary expose the overhead of object invocation instrumentation, and the 

difference in performance runs for the first and third binary expose the overhead of sleep 

locks instrumentation. 

Table 4.3 shows the overhead incurred by each type of disabled software instrumen­

tation when measured for Apache and SPECjbb2000 workloads. Recall that instrumen­

tation to monitor object invocations modified the DREF macro, and instrumentation 

to monitor sleep locks modified the BlockedThreadQueues class (please refer to Section 

3.2.1). The overhead measurements indicate that instrumentation designed to monitor 

sleep locks incurs negligible overhead (below 0.01 %). The reason for such a negligible con­

tribution results from the implementation of sleep locks. The sleep locks instrumentation 

is only executed when a sleep lock is acquired, or released, not during normal execution 



CHAPTER 4. EXPERIMENTAL EVALUATION 87 

Table 4.4: Overhead of software instrumentation on normal execution 

Code Instrumented 

DREF macro 

BlockedThreadQueues 

Overhead when disabled(%) 

51.4 

2.3 

Overhead when enabled (%) 

250.5 

10.5 

in or outside the critical section. In addition, sleep locks instrumentation, when disabled, 

only executes a single if-statement on top of the original sequence of instructions to deter­

mine whether logging should be performed. Contrary to this, instrumentation designed 

to monitor object invocations is used frequently, and even when disabled executes at 

least one function call and if-statement. The function call is necessary to access the en­

able flag for this instrumentation, because the flag is not present in the object using the 

DREF macro. A more detailed breakdown of the overhead of software instrumentation 

on normal execution of the DREF macro and BlockedThreadQueues class is shown in 

Table 4.4. 

The overhead shown in Table 4.4 shows the overhead of software instrumentation on 

execution time of the DREF macro and the BlockedThreadQueues class when ran repeat­

edly inside a loop. Each loop was iterated 1 million times to generate enough variation 

in execution time between the instrumented and uninstrumented runs. The significantly 

higher cost of software instrumentation in the DREF macro contributes to the higher 

overhead for object invocation instrumentation shown in Table 4.3. The notably higher 

cost of enabled instrumentation within the DREF macro than BlockedThreadQueues 

class is due to the simplicity of the DREF macro's original implementation. By default 

the DREF macro performs only one function call. When DREF instrumentation is en­

abled, there is an additional function call, for a total of two, being executed to save the 

object pointer, which constitute a significantly higher percentage of the original execu­

tion time than for the BlockedThreadQueues class (which originally performs a hash and 

calls several functions within each instrumented method). 
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Table 4.5: Overhead of performing actions and data traffic within KOV 

Workload 

ApacheBench 

SURGE 

SPECjbb2000 

Average 

Processes and Objects (%) 

Action 

0.10 

0.10 

0.15 

0.12 

Data Traffic 

0.16 

0.13 

0.20 

0.16 

Object State (%) 

Action 

0.74 

0.77 

0.77 

0.76 

Data Traffic 

1.13 

1.22 

1.19 

1.18 

PMU 

Action 

1.20 

1.01 

2.97 

1.73 

Data Traffic 

0.38 

0.33 

0.55 

0.42 

Finally, KOV incurs overhead by passing data and performing periodic object scans 

of the system. Data passed include results gathered from the PMU, and the following 

two tasks performed during an object scan: 

1. obtaining a list of live processes and extracting objects from the GTT, and 

2. obtaining state information from all the objects. 

Table 4.5 shows overhead for performing each task required for the object scan and 

using the PMU, separated into the overhead incurred by gathering data by the KM 

(Action column), and the transfer of data from the KM to the GUI (Data Traffic column). 

The values for the PMU in the Action column are the same as in Table 4.2 (Simult. 

column), but have been added to this table for completeness. The period with which the 

object scan was repeated is five seconds. These results for each overhead measurement 

were obtained by comparing the performance of extended workloads, similarly to the 

extended workloads used to measure the overhead of each PMU metric. 

The overhead of performing each action separately, and moving the generated data, 

was measured by using different binaries. A different version of the binary was used 

to specify whether data should, or should not be passed back to the GUI from each of 

the actions shown in Table 4.5. Overhead shown in the 'Action' column of the PMU is 

identical to the overhead measurement for the PMU from Table 4.2. 



CHAPTER 4. EXPERIMENTAL EVALUATION 89 

4.3.1 Sampling Frequency 

Many of the results presented in this Chapter were obtained by using the PMU. A critical 

parameter when configuring the PMU is the counter threshold value which determines 

the sampling frequency used. Sampling frequency affects the accuracy of statistical sam­

pling, and it affects the overhead associated with using the PMU. In this section, we 

present an exploration of various PMU sampling frequencies, and study their affects on 

the accuracy of our results and the overhead associated with performance monitoring. 

Before we discuss the results, a short overview of the trade-off of sampling frequency and 

measurement overhead is given. 

In essence, the trade-off between sampling frequency and measurement overhead can 

be summarized into one point. A lower sampling frequency generates results with lower 

accuracy, but also introduces less overhead. Conversely, a higher sampling frequency 

generates results with greater accuracy, but also introduces more overhead. 

The link between sampling frequency and measurement accuracy can be explained 

by referring to the Nyquist frequency (please refer to Section 2.1.2). Effectively, as the 

sampling frequency of the PMU decreases, so does the range of frequencies of events the 

PMU is capable of detecting. 

Ideally, one would configure the PMU to the maximum sampling frequency and there­

fore capture all available events; however, a higher sampling frequency translates to a 

greater number of PMU interrupts. Each PMU interrupt not only stops the execution of 

the currently running program, but also executes the instructions of an interrupt service 

routine. These actions delay the execution of the main program, and thus lengthen its 

total execution time. Consequently, a greater incidence of interrupts means a longer 

execution time for the main program, and thus greater measurement overhead. 

Figure 4.8 shows a per-object breakdown of lock contention when running ApacheBench 

with 5000 total requests and a concurrency level of 50. The three windows show the re­

sults obtained using different PMU counter thresholds. The three window show, from 
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Figure 4.8: Lock contention on a per-object basis using different PMU counter thresholds 

when measured for the first run of ApacheBench on the Apache webserver. From top to 

bottom: 10k, 100k, and 1M per one sample. ApacheBench was configured to generate a 

request concurrency of 50 and a total of 5000 requests. 
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top to bottom, results obtained with the highest sampling frequency (lowest threshold), 

medium sampling frequency (medium threshold), and low sampling frequency (highest 

threshold). From the figure we can see that the highest lock contention is attributed 

to the same set of objects for the high and medium sampling frequencies. For exam­

ple, in the former case FCMComputation is attributed with 47.05 % of total contention, 

whereas in the latter, FCMComputation is attributed with only 33.06 % of total con­

tention. The relationship between the objects attributed with the highest lock contention 

also remains the same for the high and medium sampling frequencies. For example, if 

one were to choose the objects with the highest lock contention to optimize, the choice 

across both sampling frequencies remains the same. More specifically, FCMComputa­

tion, ProcessReplicated::Root, and two LinuxSockets (differentiated by their object ID) 

are the highest contributors to lock contention in both cases. 

Under the smallest sampling frequency (bottom display window of Figure 4.8) the data 

is no longer representative of the system. Some of the objects with high lock contention 

detected using higher sampling frequencies are not shown (e.g. LinuxSock), and the 

relationship between the objects is not similar to that obtained using a higher sampling 

frequency. Consequently, using a low sampling frequency does not provide representative 

information on the system. 

Since performance overhead is directly proportional to the interrupt overhead gener­

ated by individual HPCs, it is intuitive then that the smallest sampling frequency that 

still provides meaningful information on the system should be chosen for monitoring. As 

such, a sampling threshold of 100,000 was chosen to monitor spin lock contention. 

A similar study was done for other PMU events, and the counter thresholds we decided 

to use, including the spin lock contention threshold, were set as follows: 

1. successful lock acquisition rate - 100,000 

2. spin lock contention - 100,000 
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3. branch misprediction rate - 10,000,000 for predicted and mispredicted branches 

4. TLB miss rate - 100,000 for instruction and data TLB misses 

5. IPC - 10,000,000 for instructions and 100,000,000 for cycles 

We have shown the overhead KOV induces on the system during monitoring and the 

decision process we used to pick our PMU configuration parameters. We will conclude 

this chapter by discussing the micro-benchmarks we used to validate the correctness of 

our measurement results. 

4.4 Correctness of Measurements 

The validity of the results gathered using KOV's performance monitoring capabilities 

was tested using hand-written micro-benchmarks. Since monitoring information on the 

system is gathered by using the PMU and software instrumentation, we will discuss the 

micro-benchmarks used to validate each of these separately. 

4.4.1 PMU 

The validity of individual performance configurations of the PMU was tested using hand 

written micro-benchmarks for each of the five metrics used in the previous sections, which 

include: 

1. successful lock acquisition rate, 

2. spin lock contention, 

3. branch misprediction rate, 

4. TLB miss rate, and 

5. IPC. 
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The lock acquisition rate is measured by counting the number of successfully exe­

cuted store-conditional instructions. To test correct counting we inserted an assembly 

block with a loop containing all the instructions that are necessary to implement a spin 

lock, including the load-linked, test-and-set, and store-conditional instructions. The con­

ditional branch that usually follows the above sequence and would execute the locking 

instructions indefinitely was replaced with a conditional branch based on a loop index. 

Two types of tests were performed using the above code. The first test involved setting 

the test-and-set condition such that it is always false, and thus the store-conditional never 

executes. The second test involved setting the test-and-set condition such that it is always 

true so that the store-conditional always executes. No other threads were ran in parallel 

when testing to ensure that the store-conditional is not affected by other store instructions 

being executed in parallel By varying the loop limit as well as the sampling frequency, the 

number of obtained data samples was verified against the expected number of samples. 

In addition, since the interrupt routine extracts the local object pointer, the micro-

benchmark used object-oriented programming. Subsequently, the interrupt extracted 

object pointer was compared against the benchmark's object pointer for correctness. The 

micro-benchmark used to validate lock acquisition rate measurements was very similar 

to the one used to validate lock contention measurements. 

Lock contention is measured by counting the number of executed load-linked instruc­

tions. Similarly to measuring the lock acquisition rate, an assembly block was used to 

insert locking instructions within an indexed loop. Because the load-linked instruction 

always executes, whereas the store-conditional does not, only one test was necessary to 

validate the measurements. Thus, by varying the loop limit as well as the sampling fre­

quency, the number of obtained data samples was verified against the expected number 

of samples. 

The branch misprediction rate is measured by counting the number of predicted and 

mispredicted branches. We used manually inserted branch prediction hints to validate 
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our measurements. Our micro-benchmark contains an indexed loop, where we hinted 

the backwards branch in the looping structure as not taken. Since a backwards branch 

is not taken only when exiting the loop, and the typical branch predictor will predict a 

backwards branch as taken, we can vary the number of mispredicted branches by setting 

the loop limit. Predicted branches were counted by setting the branch hint to indicate 

that the backwards branch is always taken, and similarly varying the number of predicted 

branches by setting the loop limit. 

The TLB miss rate is measured by counting the amount of TLB misses caused by 

fetching instructions and reading and storing data. The PowerPC 970FX, the processor 

used to evaluate our tool, has a 1024-entry, 4-way set associative TLB, with a Least-

Recently Used (LRU) page replacement policy and uses 4KB memory pages [23]. The 

easiest way to simplify the behaviour of the TLB is to generate a series of sequential 

accesses that has no page reuse, because then the page replacement policy and set asso­

ciativity do not matter. To achieve this, we designed a micro-benchmark which performs 

a series of 4KB memory allocations, and subsequently performs a read and write oper­

ation to that region of memory. The above operations are contained within an indexed 

loop. Therefore, each iteration of the loop will cause one TLB miss. By varying the loop 

limit as well as the sampling frequency, the number of obtained data samples was verified 

against the expected number of samples. 

IPC is measured by counting the number of completed instructions and completed 

processor cycles. We validated our measurements for the number of processor cycles 

without the aid of a micro-benchmark. Given that the clock speed of the PowerPC 

970FX is equal to 2.3 GHz [23], one second of measurement of the system was verified 

against the expected number of samples which should be equivalent to 2.3 Giga cycles. 

Before we elaborate on the micro-benchmark we used to validate our measurements of 

completed instructions, we will give a brief explanation of PowerPC 970FX processor's 

architecture. 
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The PowerPC 970FX processor contains ten execution pipelines, and can maintain 

a maximum of 215 instructions in various stages of execution across all of its pipelines 

at any given time [23]. Logic within the processor will attempt to extract maximum 

instruction-level parallelism (ILP) by considering data dependencies, branch prediction, 

etc., with the goal of filling all ten pipelines with instructions. Since the goal of our 

micro-benchmark is to obtain an accurate count of completed instructions, the micro-

benchmark must contain no ILP that the processor can detect, so that the processor will 

retire one instruction per one processor cycle (IPC of one). To ensure an IPC of one, 

the micro-benchmark must also cause no processor stalls, which can be caused by cache 

misses, or branch mispredictions. 

Based on the above analysis, we constructed a micro-benchmark which consists of 

arithmetic operations contained within an indexed loop. The result of each individual 

arithmetic operation is used as input into the following arithmetic operation. There­

fore there are direct data dependencies between all the arithmetic instructions between 

consecutive loop iterations. 

The arithmetic-logic unit (ALU) can forward the result of one ALU operation to the 

input of another ALU operation without using the cache at all (called forwarding). By 

strictly using arithmetic operations (adds) no stalls will result from memory accesses. In 

addition, since all the instructions are within a loop, backwards branches are predicted 

as taken and therefore no stalls will be introduced by branch mispredictions. We used 

this micro-benchmark to validate our measurements, and monitored the system to obtain 

an IPC of one. 

We have discussed the set of micro-benchmarks we used to validate our performance 

results gathered using the PMU. The next section will describe the micro-benchmarks 

we used to validate our software instrumentation. 
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4.4.2 Software Instrumentation 

The performance monitoring capabilities of KOV include monitoring sleep locks, and 

counting object invocations. Instrumentation of sleep locks counts the number of threads 

that add and remove themselves from a queue, as well as the thread identifications 

numbers (IDs) which perform these operations. We verified the correctness of our sleep 

lock instrumentation by first instantiating a single BlockedThreadQueues object (please 

refer to Section 3.2.1) within our micro-benchmark and then creating a number of threads 

which add and remove themselves from a queue using the BlockedThreadQueues object. 

We verified the correctness of our sleep locks instrumentation while varying the order in 

which the threads add and remove themselves from the queue, and the total number of 

threads and their IDs. 

Instrumentation of object invocations counts the number of invocations by logging 

all clustered object identification numbers passed to the DREF macro (please refer to 

Chapter 3.2.1). Correctness was verified by creating several clustered objects and invok­

ing them within an indexed loop. The identification number of each clustered object, 

which is known to the micro-benchmark, was verified against the log obtained from DREF 

during the run of the micro-benchmark. By varying the amount of clustered objects used, 

the loop size, and the order in which the objects use the DREF macro, we verified the 

correctness of our instrumentation. 



Chapter 5 

Concluding Remarks 

We presented the design and implementation of the Kernel Object Viewer (KOV), an 

object-oriented monitoring system which: 

1. combines hardware-level and software-level monitoring capabilities, 

2. simultaneously monitors user-level and kernel-level software components, 

3. can attribute performance bottlenecks to specific object-level code segments, and 

4. provides sophisticated visualization support to aid in system performance debug­

ging. 

Our design goals were to create a tool which could aid programmers and operating 

systems designers in performance analysis and identifying bottlenecks. Towards this end, 

we have shown how KOV can be used to analyze the performance of different applications 

on the K42 operating system. We demonstrated how KOV can be used to accurately 

identify a performance bottleneck and subsequently identify the cause of that bottleneck. 

We also showed how KOV can be used to ease qualitative and quantitative analysis of a 

running application and the underlying system substrate. 

In this dissertation we make three primary contributions. First, we describe a system 

that dynamically tracks important performance metrics using Hardware Performance 

97 
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Counters: 

1. at object instance-level granularity, 

2. requiring no changes to the code, 

3. adding no overhead when monitoring is not required, and 

4. allowing monitoring overhead to be varied by dynamically changing the sampling 

frequency. 

The second contribution is a comprehensive, system-wide scanning facility which extracts 

all live processes and their objects. The third contribution is a novel mechanism to track 

lock acquisitions and contention in a way that requires no changes to the code. 

During the course of development of KOV we encountered many obstacles and chal­

lenges. Several of them were conceptual, whereas others were implementation details. In 

the following section we discuss the lessons we learned by developing KOV. 

5.1 Lessons Learned 

Throughout KOV's development we encountered three main problems. The first problem 

concerned visualization. Essentially, the list of live processes and their objects, composed 

of potentially thousands of objects had to be represented in a concise and legible fashion. 

The second problem was to design a method which could extract all live processes and 

their objects in a general way. Since there can be hundreds of Clustered Object classes, 

the technique we used had to be able to scan them all without knowing what each 

object class implements explicitly. The third problem concerned the technique with 

which we would obtain the performance monitoring data. The technique had to be able 

to attribute performance measurements to object instances (since K42 is object oriented), 

and secondly it had to be dynamic to incur no overhead when not in use such that it 

could be usable in real systems. 
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To solve the visualization problem, we decided that the tree approach would be a 

suitable method of visualization because it introduces levels of abstraction by design. For 

example, the root of the tree is the machine name, the first level shows all the processes 

running on that machine, the second level shows high level objects like the memory 

manager, memory regions, and so on, where eventually the leafs show file representatives, 

and individual memory segments. 

To extract the list of live processes and their objects, we considered several approaches. 

Initial approaches to extract this information revolved around the Process object. The 

Process object keeps track of the memory manager, memory regions, and the hardware 

address translator (HAT) for a particular process. As such it appeared a suitable choice 

because once the memory manager, memory regions, and HAT were obtained, they them­

selves would reference further objects, such as file representatives, and more. However, 

quite quickly we realized that some objects in a process' address space cannot be reached 

by looking at the Process object alone. For example, references to globally accessible 

kernel objects are stored in static variables of the Clustered Object Manager, and thus 

other classes do not need to store them explicitly. At that point, we considered including 

the Clustered Object Manager in our scan along side the Process object, but very soon 

the list of objects we'd have to scan explicitly kept growing. In addition, we also would 

have had to include file system nodes, network sockets, and many more objects. Eventu­

ally, we decided that this approach was not only tedious, but also error prone. We could 

not guarantee that all objects were included in the scan without performing exhaustive 

analysis. Even if the analysis was made, and all the relevant objects were found, once 

K42 was modified in any way and new Clustered Objects were added, the scan results 

would become invalid. 

To overcome this obstacle, we studied K42's implementation in great detail. Even­

tually, we discovered that the Global Translation Table (GTT) (please refer to Section 

2.4.2) contains a reference to the Root object of every Clustered Object. Using the Root 
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object, subsequent Representative objects could be found by consulting Local Transla­

tion Tables on each processor. This approach essentially solved all of the problems we 

had with the previous technique because reading the GTT provides the scan with all 

Clustered Objects. By K42's design, all new Clustered Objects have to register with the 

GTT. 

The last major problem we encountered required KOV to acquire performance mon­

itoring data dynamically at object granularity. Towards this end we utilized Hardware 

Performance Counters (HPCs), which were used extensively and expanded upon by Az-

imi et al to include multiplexing support that overcame previous hardware limitations 

associated with using HPCs. Our further work with HPCs lead to the development of 

our own interrupt service routine which extracted the object pointer needed to trace back 

performance measurements to object instances. By taking advantage of C++ convention, 

we designed a stack walk routine to read the context object pointer from the interrupted 

program's stack. 

Inadvertently, as a direct consequence of our implementation, we realized that our 

performance measurement technique could be extended to measure spin lock contention 

dynamically. Since the implementation of atomic memory operations is composed of a 

unique sequence of instructions, such as the load-linked and store-conditional instruc­

tions, the next goal became to configure the Performance Monitoring Unit (PMU) prop­

erly. Further in-depth study of the PMU and its architecture resulted in the measurement 

technique we described in Section 3.2.1. 

5.2 Future Work 

The system presented in this dissertation can track performance at object instance-level 

granularity and graphically display the information that was gathered. However, ulti­

mately we envision a tool capable of utilizing the performance data gathered to automati-
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cally optimize the system and relieve performance bottlenecks. As previously mentioned, 

K42 allows for a distributed implementation of its services as part of the Clustered Ob­

jects design paradigm. Distributed implementations can offer better scalability, but they 

also typically suffer greater overheads when scalability is not required. Distributed im­

plementations also tend to optimize certain operations, improving their scalability, while 

increasing costs of other operations. In order to provide a means for coping with the 

tradeoffs of using distributed implementations, K42 enables hot-swapping, a technique 

for dynamically replacing a live Clustered Object instance with a different, but compati­

ble, instance [8]. This mechanism can be used to switch between shared and distributed 

implementations and additionally enable other forms of dynamic adaptation. Future 

work on KOV will focus on utilizing K42's hot-swapping capabilities aimed at optimizing 

performance on a per-object basis. 
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