
Performance Monitoring and Visualization of Object-Oriented
Operating Systems

by

Adam Czajkowski

A thesis submitted in conformity with the requirements
for the degree of Master of Applied Science

Graduate Department of Electrical and Computer Engineering
University of Toronto

Copyright (c) 2008 by Adam Czajkowski

Abstract

Performance Monitoring and Visualization of Object-Oriented Operating

Systems

Adam Czajkowski

Master of Applied Science

Graduate Department of Electrical and Computer Engineering

University of Toronto

2008

Computer systems are becoming more complex every year, making it exceedingly diffi­

cult to understand how well a running system is performing. Various tools have been

developed to aid in systems analysis. Some of them can be used to monitor performance

and help identify performance bottlenecks. However, they all have limitations, and the

scope of their monitoring capabilities is usually limited.

This dissertation presents a new monitoring system called the Kernel Object Viewer

(KOV) that makes three primary contributions. First, it can dynamically track important

performance metrics using Hardware Performance Counters:

1. at object instance-level granularity,

2. requiring no changes to the code,

3. adding no overhead when monitoring is not required, and

4. allowing monitoring overhead to be varied by dynamically changing the sampling

frequency.

Second, it implements a system-wide scanning facility which extracts all live processes

and their objects. Finally, it implements a novel mechanism to dynamically track lock

acquisitions and lock contention.

n

Acknowledgements

I would like to express my sincere gratitude to my thesis supervisor, Professor Michael

Stumm. I am deeply grateful for the guidance, support, and encouragement he has

provided me with over the years. Throughout the course of my research his advice

has always been invaluable, and his extensive knowledge and expertise have made this

research possible.

I would like to thank my family, Dr. Gregory Czajkowski, Tatiana Czajkowska and

Tomasz Czajkowski, for their constant support and inspiration.

I would also like to acknowledge The Edward S. Rogers Sr. Department of Electrical &

Computer Engineering for its financial support.

iii

Contents

1 Introduction 1

1.1 Existing Monitoring Software 3

1.2 KOV Overview 6

1.3 Contributions 9

1.4 Outline 9

2 Background 10

2.1 Performance Monitoring Unit 10

2.1.1 PMU Limitations 13

2.1.2 Software Multiplexing of Hardware Performance

Counters 15

2.2 Instrumentation Techniques 17

2.2.1 Static Instrumentation 17

2.2.2 Dynamic Instrumentation 18

2.3 Instrumentation Tools 22

2.3.1 KLogger 23

2.3.2 K42's event log 23

2.3.3 Linux Trace Toolkit 24

2.3.4 Lockmeter 25

2.3.5 Kernlnst 25

IV

2.3.6 Kprobes 26

2.3.7 DTrace 26

2.3.8 SystemTap 27

2.3.9 JIFL 27

2.3.10 PAPI 28

2.4 K42 29

2.4.1 Design Features 29

2.4.2 Clustered Objects 31

2.4.3 Memory Management 35

3 System Design and Implementation 38

3.1 Overview 38

3.2 Monitoring Infrastructure 39

3.2.1 Kernel State and Performance Monitoring Module 41

Object Scan 41

Performance Monitoring Unit 43

Spin locks 47

Software Instrumentation 50

3.2.2 Data and Control Interface 52

3.3 Graphical User Interface 53

3.4 Limitations 60

3.5 Chapter Summary 61

4 Experimental Evaluation 63

4.1 Experimental Workloads 63

4.1.1 Apache Workloads 64

4.1.2 SPECjbb2000 Workloads 66

4.2 Experimental Results 67

v

4.2.1 Apache loaded with ApacheBench 68

4.2.2 Apache loaded with SURGE 74

4.2.3 SPECjbb2000 78

4.3 Overhead Considerations 83

4.3.1 Sampling Frequency 89

4.4 Correctness of Measurements 92

4.4.1 PMU 92

4.4.2 Software Instrumentation 96

5 Concluding Remarks 97

5.1 Lessons Learned 98

5.2 Future Work 100

Bibliography 101

VI

Chapter 1

Introduction

Computer systems, consisting of both hardware and software, are becoming more complex

every year. For example, processor architectures have added deeper pipelines, multi-level

caches, branch predictors, multiple cores, multi-threading, and other features in recent

years. Often, multiple processing units are combined to form a single multiprocessor.

Operating systems, which provide a layer of isolation between applications and the raw

hardware, have added support for multi-processor architectures, enhanced security, nu­

merous optimizations within the file system and memory management subsystems, as

well as support for many new devices.

This increased complexity makes it exceedingly difficult to qualitatively and quantita­

tively understand how well a running system is performing. Moreover, for performance-

critical applications it is equally challenging to deduce the effects of code (or design)

modifications on performance (i.e., whether the changes significantly affect branch mis­

predictions or cache miss rates, or whether the changes significantly affect the page miss

rate or load balancing). Similarly, a programmer might want to identify performance

bottlenecks and their precise causes with the goal of optimizing the code, yet this is

becoming more difficult as the complexity of the system substrate increases. Likewise,

operating system designers will want to identify performance bottlenecks under different

1

C H A P T E R 1. INTRODUCTION 2

workloads.

Various tools have been developed to aid in systems analysis. Some of them can

be used to monitor performance and help identify performance bottlenecks. However,

they all have limitations, and the scope of their monitoring capabilities is usually limited

to a particular layer. For example, the VTune monitoring tool monitors solely at the

hardware level by presenting information gathered from hardware performance counters.

Another performance monitoring tool, called GNU gprof, requires recompilation in order

to monitor a target application, and thus is not fit for production environments. Similarly,

neither of these tools simultaneously monitors a target application's performance as well

as kernel-level structures (e.g. memory manager) which serve this application. In cases

where an application performs a significant amount of I /O or network operations, a

combined user-level and kernel-level look at performance is more comprehensive and

thus more useful at accurate and precise identification of performance bottlenecks.

In this dissertation we present the design and implementation of the Kernel Object

Viewer (KOV), an object-oriented monitoring system which

1. combines hardware-level and software-level monitoring capabilities,

2. simultaneously monitors user-level and kernel-level software components,

3. can attribute performance bottlenecks to specific object-level code segments, and

4. provides sophisticated visualization support to aid in system performance debug­

ging.

We used KOV to analyze the performance of different applications on the K42 oper­

ating system. We demonstrate how KOV identifies hot objects in the operating system,

and how KOV provides useful visual information by showing the rate of hardware events

on a per-object basis.

C H A P T E R 1. INTRODUCTION 3

1.1 Existing Monitoring Software

Existing performance monitoring tools can be classified into two categories, called static

and dynamic instrumentation, based on the type of instrumentation used to quantify

performance. Static instrumentation tools augment the original binary with extra instru­

mentation off-line. In contrast, dynamic instrumentation tools are capable of plugging in

and removing monitoring functionality seamlessly at runtime. There exists a plethora of

commercial performance monitoring tools available for multiple operating system plat­

forms, as well as open-source alternatives available for several operating systems such as

Linux and Solaris. One can acquire proprietary tools, such as Intel VTune, Windows

System Performance Monitor, and LivePerf, or download open-source alternatives such

as GNU gprof and InfraRED.

We provide a brief overview of some of these tools and highlight their current limita­

tions.

Intel VTune

VTune is a sampling profiler developed by Intel and designed for generic performance

monitoring of applications running on Intel hardware [36]. VTune uses hardware perfor­

mance counters to monitor processor events (and thus the limitation to Intel hardware),

or simply to provide a CPU utilization breakdown on a per-function basis. VTune uses

the program counter (PC) value obtained automatically from each hardware performance

counter event to trace back the aforementioned hardware events to specific segments of

code.

Windows Performance Monitor

The Windows Performance Monitor tool is freely available for Windows 2000, Windows

Server 2003, and Windows XP [28, 33, 44]. It enables the user to gather operating system

level data such as number of memory pages swapped to disk, time spent executing each

CHAPTER 1. INTRODUCTION 4

process, or disk usage. Each performance metric is attributed by this tool to a physical

resource at coarse granularity. For example, execution time is attributed to "processor",

and disk usage to "physical disk". Data are presented at process granularity versus time

for each of the characteristics being monitored. All performance monitoring data gathered

with this tool are also displayed in a graphical user interface (GUI) provided with the

tool. This tool exclusively relies on performance gathering capabilities incorporated into

the Windows operating system.

LivePerf

The LivePerf performance monitoring tool is a performance data gathering and displaying

facility [27]. A GUI collects and displays data gathered from applications using their

built-in performance gathering capabilities. LivePerf does not contribute any of its own

monitoring capability, but rather relies on the targeted application's API to interface

with and gather data from it. It currently supports gathering data from Websphere, SQL

Server, DB2, Oracle, Unix and Windows operating system, Apache and IIS webservers,

.NET and J2EE applications. In addition, LivePerf enables logging and replaying of

different statistics.

GNU gprof

GNU gprof is a tool that allows a user to learn where a program spends its time executing,

which functions were called and how many times [21, 31]. With this information it is

possible to deduce which portions of a program are slower than expected. However,

gprof does not provide the reason for the slowdown. The type of information generated

by gprof can single out "hot" functions, and thus allows the user to focus their efforts.

Although somewhat useful for simple programs, gprof is not able to instrument multi­

threaded applications. As such, the utility of this tool is limited to simple programs, and

only provides course-grained timing measurements at function-level granularity.

C H A P T E R 1. INTRODUCTION 5

InfraRED

InfraRED is a tool for monitoring performance of J2EE applications and diagnosing

performance problems [24]. It collects metrics on various aspects of an application's per­

formance and makes it available for quantitative analysis of the application. InfraRED

uses Aspect-Oriented Programming (AOP) to inject performance monitoring code be­

tween distinct parts of the application, as defined by the AOP paradigm [25]. InfraRED

is a comprehensive monitoring tool for programs written in Java, however it only utilizes

software data gathering techniques (as provided by the instrumentation inserted between

the AOP blocks).

Generic Tools

It is not always necessary to buy or download a performance monitoring tool. Operating

systems typically provide useful utilities with the original distribution. For example, the

Linux or Solaris operating systems contain vmstat, iostat, netstat, and other simple tools.

Although these tools can provide statistics on virtual memory, disk access, processor

activity (in the case of vmstat), or I /O (iostat), the results are aggregated for the system

as a whole. These tools do not generally identify the source of a particular bottleneck.

Nevertheless, such tools can be helpful at identifying the existence of a performance

problem, but they are not specific enough for performance debugging.

Limitations of existing monitoring tools

The performance monitoring tools presented above gather performance data either at

the hardware level or at the software level, but not both. Only a few of the tools map

potential performance issues back to the code segments that incur them. Intel's VTune

is one of the few, as it is capable of tracing hardware events back to the lines of code

that caused them. However, none of the tools directly support object-oriented code by

mapping potential performance bottlenecks back to specific object instances. Yet this

C H A P T E R 1. INTRODUCTION 6

information could be useful. By identifying which object instance causes a performance

bottleneck, it becomes easier to perform accurate and precise performance debugging.

Not all of the above tools have a Graphical User Interface (GUI). The advantage of

having a GUI in a performance monitoring tool is clear. Clarity in displaying the data

makes it easier to interpret, and well designed graphs can highlight important trends.

1.2 KOV Overview

This dissertation describes the design and implementation of a performance monitoring

tool called the Kernel Object Viewer (KOV) that addresses the limitations described

above. KOV is comprised of two main parts connected by a common interface.

1. An ensemble of static and dynamic instrumentation together with a performance

data gathering module located in the operating system kernel, and

2. A graphical user interface which displays the performance data at process and

object-level granularity.

KOV was implemented for K42, an object-oriented operating system for shared mem­

ory multiprocessors. KOV uses both hardware-level and software-level monitoring ca­

pabilities. Hardware performance counters (HPCs) are used to obtain information on

hardware-level events (e.g. TLB misses, IPC rates), and software modifications enable

system analysis (e.g. by obtaining a list of live objects), as well as provide information

on software-level metrics (e.g. sleep lock queue lengths, object invocation counts).

HPCs can be configured to generate events periodically at a user-defined frequency.

As such, the KOV monitoring system allows for fine-grained, variable-overhead perfor­

mance readings of any hardware-level event being monitored. Using HPCs allows this

performance monitoring technique to be fully dynamic with respect to a target applica­

tion or OS subsystem, because monitored application or system-level code is not modified.

CHAPTER 1. INTRODUCTION 7

The benefit of this form of dynamic instrumentation is that it incurs no overhead when

turned off, and can be enabled or disabled at any time without restarting the system or

target application.

Software-level performance gathering capabilities have been implemented with direct

source-code modifications. Object classes were extended to allow for a scan of live objects,

as well as to provide a hierarchical relationship with other objects. When an object

is scanned, it responds with a list of other objects it refers to, and thereby positions

itself with respect to other objects within the system's hierarchy. Although this static

instrumentation cannot be removed without recompiling the system, it is outside of the

critical path, and is in fact not invoked outside the scope of the KOV performance

monitoring system. Other software-level instrumentation code enables logging of object

invocations, as well as measurement of sleep lock queue lengths. This code introduces

overhead to the system, even when disabled, and is quantified in Section 4.3.

KOV collects performance data from both kernel-level and user-level components.

HPCs can be configured to count hardware events generated by the execution of either

kernel-level code, user-level code, or both. Likewise, the object scan initiated by KOV is

on a per process basis, and thus the scan can include the kernel process and arbitrarily

many user processes. Software-level monitoring of sleep lock queue lengths is also avail­

able for both user-level and kernel-level code. Since the sleep lock instrumentation is

part of the class definition used to implement sleep locks (this class is provided as a part

of libc), any code which instantiates this object class will enable itself to be monitored

by KOV.

For object-oriented software, it is particularly important to be able to track per­

formance at object instance granularity. Because an object instance encapsulates data

specific to the instance, two objects of the same class may experience observably dif­

ferent performance behaviour even though they share the same code base. As a result,

optimizations on an entire class may improve performance for some instances but worsen

C H A P T E R 1. INTRODUCTION 8

performance for other instances. Some object-oriented systems support dynamic opti­

mization at object instance granularity, such as K42's hot-swapping facility [8], where

individual object instances may be replaced dynamically at run-time by an instance of

another (related) class providing the same functionality but with a different implemen­

tation.

The live representation of the system, as well as all performance data gathered, are

shown in a graphical user interface. The aforementioned object hierarchy is shown in

the form of a tree, and performance bottlenecks are shown either directly on the tree

(by highlighting the problem objects), or in one of many types of graphs. By displaying

performance data in a KOV graph, the user can depict behaviour over time for a specific

object instance, or the system as a whole. It is also possible to display all the objects

with their attributed percentage of total data.

We have implemented KOV on the K42 operating system running on PowerPC hard­

ware. KOV obtains data from the architecture's Performance Monitoring Unit (PMU)

using the statistical PMU sampling system we developed as an extension of Azimi et

al [11]. Currently, we use a GUI to display the performance statistics gathered and

updated in real-time. The GUI displays a hierarchical tree of object instances and per­

formance statistics in two ways: (i) object instances are displayed ordered by severity of

performance impact, and (ii) performance statistics for any object instance are displayed

over time. Using the GUI, it is possible to observe correlations between different perfor­

mance metrics (such as correlation between lock contention and TLB misses). Ultimately,

we envision a scenario where dynamic run-time optimizers will obtain the statistics from

the monitoring infrastructure and use object hot-swapping [8] to improve system perfor­

mance.

C H A P T E R 1. INTRODUCTION 9

1.3 Contributions

In this dissertation we make three primary contributions. First, we describe a perfor­

mance monitoring infrastructure we have developed, called the Kernel Object Viewer

(KOV), that dynamically tracks important performance metrics using Hardware Perfor­

mance Counters:

• at object instance-level granularity,

• requiring no changes to the code,

• adding no overhead when monitoring is not required, and

• allowing monitoring overhead to be varied by dynamically changing the sampling

frequency.

The second contribution of this dissertation is a comprehensive, system-wide scanning

facility which extracts all live processes and their objects. In addition, the scanning

capabilities of KOV encompass both the kernel process and user processes, and cause no

overhead when not in use.

The third contribution of this dissertation is a novel mechanism to track lock acqui­

sitions and lock contention in a way that requires no changes to the code. To gather

statistics on locks, we use PMU features of IBM PowerPC processors to count occur­

rences of load-linked and store-conditional instructions and then walk the stack to tie

lock events to specific object instances.

1.4 Outline

The rest of this dissertation presents background information relevant to KOV in Chapter

2, the design and implementation of our tool in Chapter 3, followed by an experimental

evaluation of KOV in Chapter 4, and concluding remarks in Chapter 5.

Chapter 2

Background

This chapter presents background material to allow a better understanding of the re­

mainder of this dissertation. Specifically, we present a brief overview of the Performance

Monitoring Unit, provide a more in-depth explanation of static and dynamic software

instrumentation, and conclude by describing the structure of the K42 operating system,

the platform upon which the Kernel Object Viewer (KOV) prototype was evaluated.

2.1 Performance Monitoring Unit

Today's complex, speculative, out-of-order execution cores usually come with sophisti­

cated Performance Monitoring Units (PMUs). A modern processor will have a PMU

that supports memory hierarchy profiling, instruction sampling, functional unit event

sampling, and potentially other implementation dependent functionalities. An example

architecture of a performance monitor is shown in Figure 2.1. A Hardware Performance

Counter (HPC), accumulates occurrences of a distinct hardware event, chosen by a series

of multiplexers which lead to the counters block in which the actual HPCs reside.

A typical PMU will have many HPCs (e.g. PowerPC 970FX has eight), where a single

HPC can be configured to count only one type of event from a subset of all hardware

events at any given time. The size of this subset of events available for monitoring by

10

CHAPTER 2. BACKGROUND 11

each HPC is determined by multiplexing logic leading up to the counters block, as shown

in Figure 2.1. Although actual implementation details vary depending on the specific

processor architecture, it is sufficient to point out that events are chosen by a network of

multiplexers comprised of several stages.

In the platform used to develop the prototype described in this dissertation, specifi­

cally the PowerPC 970FX, three stages of multiplexers choose which events end up being

counted by each HPC. Given that the total number of events that could potentially be

counted on this architecture is roughly 500, from a hardware implementation point of

view, it is too costly to have eight, 500-way multiplexers to allow each and every HPC to

count any event. Consequently, the cheaper three-stage network of multiplexers allows

each HPC to count only a specific subset of all hardware events. By assigning each HPC

to a different set of hardware events, it is then possible to span all events by using all

available counters. On the PowerPC 970FX there is some overlap between the sets of

events each counter can monitor, consequently giving the programmer some flexibility in

terms of configuration parameters.

Functionally, a Hardware Performance Counter is a register which accumulates the

occurrences of hardware events. A software program, running in kernel-space, can directly

read from, and write to, all HPC registers.

A simple usage model for performance monitoring involving the use of HPCs could

be realized by periodically polling (reading) all counters to obtain an update of all event

counts being monitored. Since polling is considered an inefficient programming technique,

due to the constant overhead associated with periodic reads, the PMU also allows counters

to generate interrupts.

The use of PMU interrupts for performance monitoring is a two step process. The

first step involves configuring a set of Special Purpose Registers (SPRs) on the PMU

(registers referred to as MMCRx). A software program, running in kernel-space, will

write to these SPRs values that will determine when a PMU interrupt is to be generated,

C H A P T E R 2. BACKGROUND 12

Threshold
Logic

Event Selection Muxes

IDU

Event Logic

Time Base
Select

Instruction
Marking

Logic

Counter
Defaults

SPR Interface

Control Registers
(MMCRx)

Counters

HPC 1

HPC2

HPC 3 —

HPC 4

HPC 5 —

HPC 6 —

HPC 7

HPC 8

4>

Control
Logic

Exception
Generation

Logic
P M U

Exception

Figure 2.1: Performance Monitor Architecture for the PowerPC 970FX RISC Micropro­

cessor. Hardware Performance Counters (HPCs) receive signals from a variety of sources,

ranging from a thresholder, event generator, time base selector, instruction marker, pro­

cessor functional units (i.e. arithmetic-logic unit), and others. The crucial link between

the hardware and software layer is the Exception Generation Logic. Based on a set of

flags set in Special Purpose Registers (SPR), an interrupt will be generated once any of

the counters meets a pre-defined condition set in performance monitor specific control

registers (MMCRx).

CHAPTER 2. BACKGROUND 13

and which HPCs are to generate interrupts. PMU interrupts can be generated when a

specific HPC overflows, or periodically after executing a specified number of processor

cycles.

The second step of using PMU interrupts for performance monitoring involves the

Interrupt Service Routine (ISR), which is called whenever a PMU interrupt occurs. The

ISR is a software program which runs at exception-level and is capable of performing

low-level tasks, such as reading from, and writing to, SPRs and HPCs, or saving data

to software buffers for later analysis. The programmer must be careful when writing an

ISR, because an exception (such as a page-fault) when executing an ISR will cause the

system to crash. As such, an ISR should only perform simple tasks.

A simple usage model for performance monitoring involving the use of interrupts could

consist of setting one HPC to generate an interrupt every 10,000 branch misprediction

events, and the aforementioned ISR to read the HPC value and save it in a dedicated

software buffer. Another program could subsequently read this data from the buffer and

use it for performance analysis.

In conclusion, HPCs allow counting of detailed micro-architectural events in the pro­

cessor [4, 17, 18, 40], enabling new ways to monitor and analyze performance. There

has been a considerable amount of work done using HPCs to explore the behaviour of

applications, as well as to identify performance bottlenecks resulting from excessively

stressed micro-architectural components [3, 19, 42].

2.1.1 P M U Limitations

Most microprocessor PMUs offer a limited number of HPCs. For instance, the IBM

POWER4 and PowerPC970 provide eight HPCs, the POWER5 has six per SMT (two

of which are hard-wired), Intel Itanium II has four generic HPCs and five registers for

holding instruction and data address samples, and the AMD Athlon has four generic

HPCs. In addition to the limited number of HPCs, there are often restrictions on the

CHAPTER 2. BACKGROUND 14

combinations of hardware events that the HPCs can count, as previously mentioned for

the PowerPC970. Other architectures have similar limitations. For instance, although

Intel P4 and Xeon have 18 HPCs, they are divided into nine groups, each of which can

only count events from a specific subset of 48 available hardware events.

In many performance monitoring scenarios, several low-level hardware events must

be counted simultaneously to obtain information of interest. For instance, to obtain the

LI data cache miss rate on an IBM POWER4 processor, at least four separate events

must be counted (LI load misses, LI store misses, LI loads, and LI stores). Also, usually

two HPCs have to be dedicated to counting processor cycles and instructions retired

to provide context for other data being gathered. For example, one thousand branch

mispredictions per one million retired instructions is less significant than one thousand

branch mispredictions per fifty thousand retired instructions (a 20x difference). On a

processor such as the AMD Athlon, that leaves only two unused HPCs to gather other

hardware events. These two remaining HPCs are not sufficient to count LI load misses,

LI store misses, LI loads, and LI stores.

Even if one had eight counters available, such as on the PowerPC 970FX, and could

fit all the LI events as well as processor cycles and retired instructions in a single PMU

configuration, there is other information available which, if monitored, could aid in ac­

curate and precise performance debugging. It might be desirable to also monitor L2

cache misses, L3 cache misses, branch mispredictions, TLB misses, instruction mix (in­

teger/floating point), instruction cache misses, or other events that are important for

obtaining a complete picture of application and system performance depending on the

workload being explored.

C H A P T E R 2. BACKGROUND 15

2.1.2 Software Multiplexing of Hardware Performance

Counters

To address the need for a large number of hardware counters to enable comprehensive

hardware event monitoring, Azimi et al proposed and implemented a system which dy­

namically multiplexes the set of hardware counters by using fine-grained time slices [11].

The programming interface component takes a set of events to be counted as input and

automatically assigns them to a number of HPC groups such that in each group there are

no conflicts due to PMU constraints. The sampling engine assigns each group a fraction

of cycles out of the total sampling period. At the end of each HPC group's time slice,

the sampling engine automatically assigns another HPC group to the PMU. The value

that is read from an HPC is scaled up linearly as if that group was active during the

entire period. As a result, the user's program (e.g. a run-time optimizer) is presented

with more logical counters than actually exist in the underlying processor architecture.

Some types of events exhibit more volatile behaviour than others. For example, LI

miss rates change dramatically depending on the current workload, whereas the number of

completed processor cycles does not. To capture greater variations in system performance

it becomes necessary to increase the sampling frequency for those events which change

more often. As defined by the Nyquist rate, the HPC sampling rate must be at least

twice the frequency of changes within the data being monitored (e.g. if LI miss rate

changes every 100ms, HPCs must sample at least every 50ms to accurately measure

event transitions).

The multiplexing system introduced by Azimi et al can easily be programmed to

favour certain HPC groups by using their configuration for longer periods of time. This

is accomplished by allocating multiple time slices to the group, rather than just one in

the default case. This PMU multiplexing scheme is analogous to time-sharing a CPU

amongst various processes. Moreover, the accuracy may differ for different hardware

C H A P T E R 2. BACKGROUND 16

events with the same share size. A default share assignment scheme might be overridden

by explicit requests from a user interested in closely monitoring a specific hardware event,

such as LI miss rates.

With multiplexing, time is usually measured in terms of CPU cycles. Therefore, one

counter in each HPC group is reserved to count CPU cycles. The use of cycle counters

as timers allows the user to define arbitrarily fine time-slices down to a few thousands of

cycles. Another metric that can be used to define HPC group share sizes is the number

of instructions retired. The main advantage of instruction-based multiplexing is that

the HPC group share sizes are aligned more closely with the progress of the application.

Actual share sizes will differ in terms of real time depending on the amount of available

instruction level parallelism (ILP) in the application currently running.

Sampling introduces inaccuracies in measurement. A pathological case for the mul­

tiplexing engine is the existence of a large number of short-lived bursts of a particular

hardware event. If the burst time is shorter than a particular number of cycles, the

HPC that counts that hardware event might be inaccurate because the PMU actually

counts the event only in a fraction of the total time slice, and thus it may miss short­

lived bursts. However, given that most applications will go through several execution

phases, each longer than a time slice, the occurrence rate of hardware events is stable

in the common case. Experimental results presented by Azimi et al demonstrate that

the statistical distance between the sampled and real rates of hardware events is small

in most cases.

KOV makes extensive use of Azimi's HPC multiplexing infrastructure. KOV provides

a Graphical User Interface (GUI) for configuring the PMU on the PowerPC 970FX. Each

set of configuration parameters can be saved in a config file, such as "TLB misses" or

"Branch mispredictions". The GUI logic prevents the user from choosing conflicting

events within a single configuration. The user can subsequently send both the "TLB

misses" and "Branch mispredictions" configurations to the multiplexing infrastructure

CHAPTER 2. BACKGROUND 17

and specify the percentage of time each configuration is to be used within the PMU. The

multiplexing infrastructure automatically switches between the two different configura­

tion parameters.

2.2 Instrumentation Techniques

To address the growing need for comprehensive performance monitoring systems, a va­

riety of tools have emerged that can loosely be classified into one of two categories

depending on the type of instrumentation being used to quantify performance. Static

instrumentation systems can be characterized by the fact that they augment the origi­

nal binary with extra instrumentation off-line. In contrast, dynamic instrumentation is

defined by the capacity to plug in and remove monitoring functionality seamlessly while

the system is running. Examples of static instrumentation systems include: KLogger[20],

K42's event log[45], Linux Trace Toolkit[46], and Lockmeter[15], and examples of dynamic

instrumentation systems include: Kernlnst[43], Kprobes[32], DTrace[16], SystemTap[34],

JIFL[30], and PAPI[14].

2.2.1 Static Instrumentation

Static instrumentation can be the done via direct source code modifications such as with

Paragon[37] and K42's event log[45] or by instrumenting the binary off-line as is done

with Atom[41]. Although not requiring source code in the latter case does increase the

system's utility, this type of approach still suffers from the need to restart the target

application when new instrumentation is added or removed. Similarly if the OS is being

instrumented, a full system reboot is necessary. An example of how static instrumentation

could be done is shown in Figure 2.2. When adding static instrumentation, the user has

unlimited freedom in where and how to instrument. However, static instrumentation

incurs constant overhead and requires recompilation to remove it completely.

CHAPTER 2. BACKGROUND 18

long int invocation_count;

void foo(}
{

/* Source code instrumentation counts number of function calls */
invoGation__count++;

/* Start of Original Function "/

} _.__

Figure 2.2: An example implementation of static instrumentation. Since the system is

not running when adding this type of instrumentation, the user has unlimited freedom

in where and how to instrument. Unfortunately, this approach incurs constant overhead

and requires recompilation to remove it completely.

As such, static instrumentation is inappropriate for production environments in which

restarts represent an unacceptable lapse in service. Moreover, static instrumentation does

not lend itself well to the analysis of systemic problems or emergent misbehaviour [29],

which only appears after prolonged and continuous system operation, because it implies

having all the necessary functionality already in place. This is difficult to achieve in

practice because the nature of an emergent problem is not know during development.

2.2.2 Dynamic Instrumentat ion

Dynamic instrumentation on the other hand entails no off-line modifications to the target

application or OS subsystem being monitored. Instead, the monitoring tool inserts dy­

namic instrumentation by modifying a target application's executable code in memory.

Alternatively, hardware generated events can be used to interrupt a currently execut­

ing program to take snapshots of its current state. These are only a few techniques of

dynamic instrumentation. Because dynamic instrumentation is not as direct as static

instrumentation, it is also much richer in terms of the assortment of existing approaches,

C H A P T E R 2. BACKGROUND 19

and currently remains an active field of research.

Within the scope of dynamic instrumentation, one can consider software and hardware

approaches. The former consists of two main groups, probe and just-in-time (JIT) based

paradigms, whereas the latter utilizes hardware performance counters (HPCs). Due to

the inherent level of abstraction at the software and hardware level, some information

lends itself better to either one of the two approaches. For example, when interested in

the behaviour of a scheduling algorithm, hardware has no notion of processes and thus

is not a good choice. Alternatively, when monitoring cache misses, a program does not

experience them directly, and thus HPCs are a better solution.

The first dynamic instrumentation technique to have emerged is the probe-based

approach. It works by overwriting instructions in the original program with trampolines

to instrumentation code. Effectively, only one instruction is overwritten whereas the

actual instrumentation function, which resides in a different location, can be arbitrarily

large. Since the overwritten instruction isn't executed once it is overwritten, its effects

have to be duplicated by the instrumentation function, to ensure correct execution of the

original program.

Probes can be implemented in a straight-forward way on fixed-length instruction

set architectures (ISAs), such as Sun's UltraSparc, by inserting jump instructions to

the relevant code at each instrumentation point; however, on variable-length ISAs, such

as the popular Intel x86 and AMD x86-64, probes have to be implemented with trap

instructions [43]. An example of what such an instrumented program would look like is

shown in Figure 2.3. At each instrumentation point, execution of the trap instruction

causes an exception handler to be dispatched. The handler must then determine what

type of instrumentation is needed at that point. The overhead of such traps can be

substantial, and it can make comprehensive and fine-grained instrumentation unfeasible

[30].

Just-In-Time (JIT) based dynamic instrumentation was developed to address some

CHAPTER 2. BACKGROUND 20

<foo>:

r Start of Original Function */

-pttah %obp- /* Instruction is overwritten 7

/" Trap instruction invokes interrupt which will execute instrumentation */
trap

/* Rest of Original Function 7
mo*/ ?/oesp.%obp
push %ebx
sub $0x4.%esp
call 80487a0 <call gmon _start+0xc>

ret

Figure 2.3: An example implementation of dynamic instrumentation using the probe-

based approach. In order to keep the binary the same size, and thus preserve the cor­

rectness of static branch targets, an existing instruction is overwritten with a trap. The

resulting interrupt will call the required instrumentation function based on the trap's

address and compensate for the overwritten instruction with extra code.

of the most prevalent shortcomings of the probe-based techniques. With this approach,

execution is redirected to a runtime system at the entry of a section of code that is

to be instrumented. A JIT compiler creates a duplicate copy of each basic block of

the original code immediately before it is executed, embedding calls to instrumentation

routines within it, much as if the instrumentation had been added to the source code

and the source recompiled. An example of what this type of instrumentation would look

like is shown in Figure 2.4. The resulting instrumented basic blocks are stored in a code

cache, from where they are dispatched instead of the original code.

JIT instrumentation can provide better performance and a better usage model than

probe-based techniques for large amounts of fine-grained instrumentation. The primary

CHAPTER 2. BACKGROUND 21

: <foo>:

/'* Call to instrumentation function *l
Save affected registers and condition flags
Jump to instrumentation function
Restore affected registers and condition flags

/* Start of Original Function */
push %ebp
mov %esp.%ebp
push %ebx
sub S0x4,%esp
call 80487a0 <cali_gmon_s1art+0xc>

•; ret

Figure 2.4: An example implementation of dynamic instrumentation using the JIT-based

approach. Since the code being instrumented is in the code cache, and not in the original

binary, no existing instructions need to be overwritten. A call to the desired instrumen­

tation function is inserted, as well as necessary instructions required to maintain the

original program's state which could be corrupted by instrumentation.

C H A P T E R 2. BACKGROUND 22

performance advantage stems from the fact that instrumentation can be inserted be­

tween instructions. This eliminates the need for expensive trap instructions to redirect

execution to instrumentation code on variable-length ISAs. In addition, when using the

JIT technique, instrumentation is only inserted into code after it is known that it will

execute, thereby eliminating any cost of instrumenting instructions that might not be

executed. Furthermore, if the instrumentation code is small enough, it can be inlined

directly into the copied basic blocks to eliminate the cost of executing function calls.

From a usability point of view, probe-based instrumentation requires a user to spec­

ify the exact locations in the code where instrumentation should be inserted. When

instrumentation of a large amount of code is desired, the user is required to manually

specify the location of a large amount of probes. Manually inserting hundreds of probes

can become erroneous. In contrast, JIT instrumentation requires only entry, and possi­

bly exit, points of the entire code being considered for instrumentation to be identified.

Because instrumentation is added as code blocks are discovered, there is no need for a

priori identification of possible instrumentation points. For example, when instrumenting

a system call with the JIT technique, only the appropriate entry in the system call table

needs to be identified. Conversely, the probe-based technique would require the user to

go through the entire system call code and specify the addresses for all the probes to be

inserted.

2.3 Instrumentation Tools

We have described the various techniques available to monitor performance. We now

describe several tools that implement these techniques in greater detail. Examples of

static instrumentation systems include: KLogger[20], K42's event log[45], Linux Trace

Toolkit [46], and Lockmeter[15], and examples of dynamic instrumentation systems in­

clude: Kernlnst[43], Kprobes[32], DTrace[16], SystemTap[34], JIFL[30], and PAPI[14].

CHAPTER 2. BACKGROUND 23

2.3.1 KLogger

KLogger monitors performance by recording occurrences of kernel events and using hard­

ware performance counters. The logging code is integrated into the kernel and activated

at runtime by a special sysctl call using the proc file system. KLogger logs events defined

at compile-time, including events such as context switching, recalculation of priorities,

forks, execs, changing the state of processes, and others. Logs are stored in a memory

buffer (typically 4MB). Every five seconds a daemon stores the contents of the memory

buffer to disk, allowing the user to analyze the data at a later time. Because the events

monitored by KLogger can only be specified at compile time, and results are not ana­

lyzed in real-time, this tool is not usable for performance debugging production systems,

where a full system reboot presents an unacceptable lapse in service. In contrast, KOV

can change the metrics it monitors while the system is running, and analyzes results in

real-time. This flexibility is important to detect bottlenecks immediately as they emerge,

and to ease the analysis of a newly identified bottleneck by choosing a more specific set

of metrics (e.g. when the memory subsystem becomes a bottleneck, KOV can start

monitoring LI cache, L2 cache, and TLB miss rates immediately upon a user's request).

2.3.2 K42's event log

K42's event tracing infrastructure provides for correctness debugging, performance de­

bugging, and performance monitoring of the system [7]. This infrastructure allows for

inexpensive and concurrent logging of events by applications, libraries, servers, and the

kernel. All events are stored in a special event log which can be read in several ways. This

event log may be examined while the system is running, written out to disk, or streamed

over the network. Post-processing tools allow the event log to be converted to a human

readable form or to be displayed graphically. The types of events that can be monitored

by this tracing facility are divided into 64 major classes. Events that are related to a

CHAPTER 2. BACKGROUND 24

common purpose are placed in the same major class (e.g. memory management events

are grouped into traceMem). All classes of events represent actions or positions in the

code deemed important by the developer.

Although useful, this infrastructure only monitors components of K42 explicitly iden­

tified at compile-time. In addition, when enabled, the tracing facility will log all events

from a selected major class of events, regardless of how many events are of interest to the

user. This can be problematic if the user is only interested in a small subset of events

from a particular class, because there can be a significant amount of data obscuring the

results the user is actually interested in seeing. In contrast, KOV only monitors occur­

rences of events the user has explicitly chosen, avoiding overhead resulting from gathering

superfluous data.

2.3.3 Linux Trace Toolkit

The Linux Trace Toolkit (LTT) [46] is a static instrumentation system that allows a user

to record and analyze system behaviour. The toolkit is capable of recording information

such as CPU time per process, instruction count, fraction of time spent in each function,

as well as disk and network I/O statistics. The main contribution of this work is its data

collection facility that records and stores pertinent information.

The data collection facility consists of three main components: a trace facility, a trace

module, and a daemon. The trace facility functions as a unique entry point to all other

kernel facilities. Once an event occurs, the trace facility forwards the event to the trace

module. The trace module can then determine the type of event that has occurred. If

the event is one identified to be monitored, then the trace module will keep track of it.

However, it is possible to configure the trace module to ignore some of the events it was

designed to track by the means of an ioctl system call. This permits a finer control of

the monitoring system.

One drawback of the Linux Trace Toolkit is the fact that it does not attribute per-

CHAPTER 2. BACKGROUND 25

formance bottlenecks to specific code segments. Although kernel events caused by the

execution of a program can be logged, the LTT does not identify which parts of the pro­

gram caused these events to occur. In contrast, KOV attributes performance bottlenecks

to specific code segments as well as individual object instances.

2.3.4 Lockmeter

Bryant and Hawkes designed and implemented a spin lock monitoring infrastructure

for the Linux kernel called Lockmeter [15]. Similarly to our approach, Lockmeter can

identify problematic spin lock instances with low overhead; however, Lockmeter requires

source code annotation of Linux lock macros. In contrast, our approach does not require

any direct source code instrumentation of locking structures and is based on exploiting

hardware performance counters which enable fine-grained overhead control by varying

the sampling frequency.

2.3.5 Kernlnst

Kernlnst [43] is a dynamic instrumentation framework designed for debugging, profiling,

and application tuning. Kernlnst was the first to implement probe-based dynamic instru­

mentation in the kernel. Because it targeted the UltraSparc RISC architecture, which is

a fixed-length ISA, Kernlnst was able to safely implement probes with branch instruc­

tions. Although this tool was only evaluated on the UltraSparc, Tamches and Miller

proposed using trap instructions for redirecting control on x86. The current code release

includes an x86 implementation which uses this trap-based strategy. Due to the high

overhead associated with using traps, this tool is only usable with a small set of probes,

thus limiting the scope of code being monitored. In contrast, KOV can simultaneously

monitor all user and kernel level code with minimal overhead (see Section 4.3).

CHAPTER 2. BACKGROUND 26

2.3.6 Kprobes

Kprobes [32] uses dynamic instrumentation to insert probes in the form of trap instruc­

tions. Using probes, this tool can instrument arbitrary code with extra code to record

information. Because execution is redirected to instrumentation routines by means of a

trap and hash table lookup, instrumentation is heavyweight. To alleviate this, a patch

called Djprobes is currently under development, which allows overwriting some addresses

with a 5-byte jump instruction, enabling direct jumps to instrumentation code. The most

prevalent shortcoming of this tool is its overhead. In contrast, KOV experiences minimal

runtime overhead even when simultaneously monitoring various metrics (see Section 4.3).

2.3.7 DTrace

DTrace [16] is an instrumentation framework for the Solaris operating system, designed

for use with production systems. DTrace instrumentation works by inserting jump-based

trampolines on fixed-length RISC architectures, but uses the same trap mechanism as

Kernlnst or Kprobes on variable-length ISAs. Anecdotally, DTrace runs quite fast on

Sparc architectures, however we expect it would suffer similar overheads as Kprobes on

x86 because of the need to use trap instructions. DTrace is also able to dynamically

instrument both user and kernel-level code. Because DTrace is intended for use in pro­

duction systems, it guarantees that user instrumentation cannot cause additional system

failures. User-supplied instrumentation code is expressed in a C-like high-level control

language which enforces safety. DTrace makes it easy to monitor system resources, al­

lowing system administrators to quickly identify the causes of system sluggishness, or to

examine the otherwise unattainable system resources used by software (e.g., the number

of I/O requests per second).

This tool suffers from the same drawbacks as Kernlnst and Kprobes when consider­

ing the scope and overhead trade-off associated with performance monitoring. As the

CHAPTER 2. BACKGROUND 27

amount of code being monitored increases, so does the number of probes. Consequently,

monitoring overhead is directly proportional to the amount of code being monitored. In

contrast, KOV can simultaneously monitor all user and kernel-level code with minimal

overhead (Section 4.3). KOV controls overhead by varying the accuracy of results when

adjusting the PMU sampling frequency, and not by specifying the scope of performance

monitoring. Consequently, KOV makes no a priori judgements about which segments of

code are expected to perform worse than others, and therefore is more comprehensive in

its measurements.

2.3.8 SystemTap

The SystemTap project [34] is a joint effort by Red Hat, IBM, Intel, and Hitachi to add

an easy to use front-end to Kprobes with functionality similar to DTrace, including the

use of a scripting language. Instrumentation scripts can make symbolic references to the

kernel, user programs, or included libraries (called 'tapsets'). Scripts are compiled into

a kernel module and loaded to start the probes and handlers. Although a stable version

of SystemTap is not yet released, some early adopters have found it useful. SystemTap

currently uses Kprobes for low-level instrumentation. Consequently, the performance

trade-offs when compared to KOV are similar to Kprobes.

2.3.9 JIFL

The JIT Instrumentation Framework for Linux (JIFL) [30] was the first instrumentation

technique to instrument kernel code. JIFL was designed to alleviate the high performance

cost associated with probe-based instrumentation techniques, such as Kprobes. JIFL

shows the feasibility and desirability of kernel-based JIT instrumentation for the Linux

kernel on an SMP machine. JIFL works by inserting instrumentation code directly into

a duplicate copy of the original code. By embedding calls to instrumentation routines

within the duplicate copy of the original code, the usual overhead associated with traps in

C H A P T E R 2. BACKGROUND 28

the probe-based approach is eliminated. Using JIT instrumentation, JIFL outperformed

Kprobes, at both micro and macro levels, by orders of magnitude when applying medium-

and fine-grained instrumentation.

Although superior to other dynamic instrumentation tools in terms of performance,

JIFL incurs considerable memory overhead associated with duplicating the original code.

As such, the scope of performance monitoring with JIFL is limited. In contrast, KOV

can monitor all user and kernel-level code simultaneously with minimal overhead (see

Section 4.3).

2 .3 .10 P A P I

PAPI [14] is a public domain tool that is implemented on many platforms. Its main

emphasis is on platform-independence rather than efficiency. The portable interface

is implemented in software, and as a result it may incur significant overhead in some

scenarios. PAPI also implements Hardware Performance Counter (HPC) multiplexing at

user-level. A fine-grained timer is used as a means for a HPC group switch. The timer

sends a signal to the process that has requested a multiplexed set of hardware events. A

major limitation of this approach is that the sampling granularity must be large due to

the large overhead of an HPC group switch, which requires a system call. As a result, the

sampling error may become high for some applications, where a high sampling frequency

is required to obtain an accurate measure of performance. In contrast, KOV has been

shown to achieve accurate results while incurring minimal overhead (see Section 4.3.1).

This advantage is largely the consequence of the fact that KOV uses a kernel module to

interact with the PMU, and thus avoids the associated system call overhead.

C H A P T E R 2. BACKGROUND 29

2.4 K42

K42 is a high performance, open source, general-purpose research operating system (OS)

kernel designed for cache-coherent multiprocessors. This OS was designed to address scal­

ability across server systems aimed at utilizing small to very large-scale multiprocessors.

Towards this end, primary focus was placed on achieving a high degree of spatial and

temporal locality in code and data. K42 features a modular, object-oriented structure

where each resource or entity is managed by a separate object instance [10]. Currently

K42 runs only on the PowerPC architecture, and supports both the Linux Application

Programming Interface (API) and Application Binary Interface (ABI).

2.4.1 Design Features

The K42 design team's initial goal was to start with a clean slate and examine what sys­

tem structures were needed to achieve excellent performance in a scalable, maintainable,

and extensible system [26]. In order to gain traction with the community, developers

aimed at fully supporting existing applications. To this end, K42 was made fully Linux

API and ABI compatible [6].

A large part of K42's design was oriented around providing an easily extensible in­

frastructure to tailor to emerging application requirements while at the same time pro­

viding an attractive systems research platform [38]. Various research groups have, using

K42, explored new approaches in memory management, scheduling, inter-process and

intra-process communication, event management, file systems, performance monitoring,

scalable data structures, and dynamic adaptation [8, 13, 26, 39].

The entire operating system was designed using an object-oriented structure. Each

virtual resource (e.g., virtual memory region, network connection, file, process) and phys­

ical resource (e.g., memory bank, network card, processor, disk) is managed by its own

object instance. Each object encapsulates the meta-data necessary to manage the re-

C H A P T E R 2. BACKGROUND 30

source as well as the locks necessary to manipulate the meta-data. Therefore, global

locks, global data structures, and global policies were entirely avoided. K42's modular

design enables developers to confine the impact of their changes within a fixed set of mod­

ified components, thereby greatly simplifying the debugging process as well as decreasing

the inherent complexity of the system as a whole.

K42 is structured around a client-server model, and much of the functionality tradi­

tionally implemented in the kernel or servers is moved to libraries in the application's

address space. For example, all thread scheduling is done by a user-level scheduler li­

brary that is linked into each process. This design supports flexibility on a per-application

basis. The specialization of services for a class of applications (e.g., games, scientific ap­

plications, databases, JVMs) is achieved by choosing the objects that are appropriate for

the requirements of the target application and packaging them into a library. Overhead

is reduced in many cases because crossing address space boundaries to invoke system

services can be avoided. Also, space and time are consumed in the application rather

than in the kernel or servers. For example, an application can have a large number of

threads or file descriptors without consuming any additional kernel memory.

As multi-core chips become more prevalent, the scalability of the operating system

becomes an important issue. K42 has been designed to achieve good multiprocessor per­

formance through its object-oriented structure by maintaining the following characteris­

tics. (1) Independent requests to different resources are serviced independently because

there are no shared data structures to be traversed and no shared locks to be accessed,

(2) locality is maintained for resources accessed by a small number of processors, and (3)

the use of clustered-object technology allows widely accessed objects to be implemented

in a distributed fashion.

Clustered objects are an enhanced object-oriented model supported by K42 [5, 9, 22].

Clustered objects, described in more detail in Section 2.4.2, improve access locality by

enabling selective partitioning, replication, and distribution of object implementations.

C H A P T E R 2. BACKGROUND 31

The systematic integration of support for flexible data distribution on a per-object basis

has yielded a simpler, incremental approach to scalable system design and implemen­

tation. The clustered object based infrastructure eases the addition of new scalable

services by allowing the developer to focus initially on functional aspects through a non-

distributed version, and then extend the implementation incrementally (for example, on

a per-method basis) to a distributed version.

Distributed implementations can offer better scalability, but they also typically suffer

greater overheads when scalability is not required. Distributed implementations also tend

to optimize certain operations, improving their scalability, while increasing costs of other

operations. In order to provide a means for coping with the tradeoffs of using distributed

implementations, K42 enables hot-swapping, a technique for dynamically replacing a live

clustered object instance with a different, but compatible, instance. This mechanism

can be used to switch between shared and distributed implementations and additionally

enable other forms of dynamic adaptation.

The design of K42, and the aforementioned hot-swapping capabilities, are centered

around the concept of clustered objects. The next subsection explains clustered objects

in greater detail.

2.4.2 Clustered Objects

Clustered objects are the building blocks of K42, and are integral to realizing scalability

and customizability within the K42 operating system. Each clustered object is identified

by a unique interface to which every implementation conforms [5]. K42 uses a C + + pure

virtual base class to express a clustered object interface (Clustered Object interface class).

An implementation of a clustered object consists of two definitions: a Root definition and

a Representative definition expressed as separate C + + classes. The Root class defines

the global portions of an instance of the clustered object. Every instance of a clustered

object has exactly one instance of its Root class that serves as the internal central anchor

C H A P T E R 2. BACKGROUND 32

or 'root' of the instance. The Representative (Rep) definition of a clustered object defines

the per-processor portion of the clustered object. The Representative class implements

the interface of the clustered object, inheriting from the clustered object's interface class.

Each Rep has a pointer to the Root of the clustered object instance. The methods of a

Rep can access the shared data and methods of the clustered object via its root pointer.

Clustered objects support distributed designs while preserving the benefits of a component-

based approach [5]. A clustered object can be internally decomposed into a group of

cooperating subparts, called Representatives, that implement a uniform interface, but

use distributed structures and algorithms to avoid shared memory and synchronization

on its frequent and critical operations. Clustered objects provide an infrastructure to

implement both shared and distributed implementations of objects, and transparently to

the client, permit the use of the implementation appropriate for the access pattern of the

object. Collections of C + + classes are used to define a clustered object, and run-time

mechanisms are used to support the dynamic aspects of the model.

Clustered objects allow each object instance to be decomposed into per-processor

Representatives 1, and therefore provide a vehicle for distributed implementations of ob­

jects. Figure 2.5 illustrates a clustered object of a simple distributed integer counter.

Externally, a single instance of the counter is visible, but internally, the implementation

of the counter is distributed across a number of Representatives, each local to a pro­

cessor. An invocation of a method of the clustered object's interface on a processor is

automatically and transparently directed to the Representative local to the invoking pro­

cessor. The internal distributed structure of a clustered object is encapsulated behind its

interface and transparent to clients of the object. In Figure 2.5, a single instance of the

counter, represented by the outer ring labeled with the counter's interface (inc, val and

dec), is accessed by code executing on the processors at the bottom of the diagram. All

XA Representative can be associated with a cluster of processors of an arbitrary size, from 1 to n,
and not necessarily per processor

CHAPTER 2. BACKGROUND 33

ProcO Proel Proc 2

Figure 2.5: Abstract Clustered Object Distributed Counter

processors invoke the inc method of the instance. Transparently to the invoking code,

the invocations are directed to internal per-processor Representatives, illustrated by the

three inner rings in the diagram. Each Representative supports the same interface, but

encapsulates its own data members. This ensures that the invocation of the inc method

on each processor results in the update of an independent per-processor counter, thereby

avoiding sharing and ensuring better performance.

At run-time, an instance of a given clustered object is created by instantiating an

instance of the desired Root class. Instantiating the Root establishes a unique Clustered

Object Identifier (COID also referred to as a Clustered Object ref) that is used by clients

to access the newly created instance. To the client code, a COID appears to be a pointer

to an instance of the Rep Class [5]. To provide better code isolation, this fact is hidden

from the client code with the macro: #define DREF(coid) (*(coid)). For example, if c is

a variable holding the COID of an instance of a clustered performance counter that has

CHAPTER 2. BACKGROUND 34

£

1
COID

Global Translation Table
(table of Root pointers)

Clustered Object Instance

Local Translation Tables
(tables of Rep pointers)

Figure 2.6: A Clustered Object Instance and Translation Tables

a method inc, a call would look like: DREF(c)->inc().

A set of tables and protocols are used to translate calls on a COID in order to achieve

the unique run-time features of clustered objects. There is a single shared table of Root

pointers called the Global Translation Table (GTT) and a set of Rep pointer tables called

Local Translation Tables (LTTs), one per processor. An illustration of how a clustered

object's Root and Reps relate to each other is shown in Figure 2.6.

In order to avoid overhead caused by redundant creation of Reps on processors that

do not use them, a Rep is not immediately created or installed into the LTTs when

the clustered object is instantiated. Instead, empty entries of the LTT are initialized

to refer to a special hand-crafted object called the Default Object. The first time a

clustered object is accessed on a processor, the same global Default Object is invoked.

The Default Object leverages the fact that every call to a clustered object goes through

a virtual function table. (Remember that a virtual base class is used to define the

CHAPTER 2. BACKGROUND 35

interface for a clustered object.) The Default Object overloads the method pointers in

its virtual function table to point at a single trampoline method. The trampoline code

saves the current register state on the stack, looks up the Root installed in the GTT entry

corresponding to the COID that was accessed, and invokes a well-known method that

all Roots must implement, called handleMiss. This method is responsible for installing a

Rep on the processor into the LTT entry corresponding to the COID that was accessed.

This is done either by instantiating a new Rep or by identifying a preexisting Rep and

storing its address into the address pointed to by the COID in the LTT. On return from

the handleMiss method, the trampoline code restarts the call on the correct method of the

newly installed Rep. The above process is called a Miss and its resolution Miss-Handling.

Note that after the first Miss on a clustered object instance, on a given processor, all

subsequent calls on that processor will proceed as standard C++ method invocations via

two pointer dereferences. Thus, in the common case, methods of the installed Rep will

be called directly with no involvement of the Default Object.

2.4.3 Memory Management

An overview of K42's overall memory management structure can be seen in Figure 2.7.

Each of the objects in the diagrams has the following functionality:

1. Process - root of the object tree representing a Process in the kernel. The Process

maintains a list of Regions that exist in its address space, and maintains a reference

to a virtual to physical memory address translator.

2. Region - represents the mapping from a range of virtual addresses to a range of file

offsets (all memory in K42 is accessed by using files).

3. File Representative (FR) - the kernel realization of a file. Facilitates communication

with the external implementation of the file to do I/O and for other file system

purposes.

CHAPTER 2. BACKGROUND 36

Process

Hardware
Address

Translator
(HAT)

I
Segment

HAT

Region

Region

File Cache
Manager
(FCM)

I
Page Manager

(PM)

I
FCM

File
Representative

(FR)

FR

Figure 2.7: An overview of K42 memory management structure. Each K42 Process

contains a single address space. The address space is made up of Regions, each of

which spans a range of virtual addresses in the Process's address space. A Region maps

its range of addresses onto a range of offsets in a file, handled by the FR. The FR

communicates with an external file system of choice, which is a service provided by a user-

level implementation. Although at first glance it seems that there is a duplicate version

of the Region object in this hierarchy, the different connectivity is used to represent a

specialized implementation. A Region can be used to only manage virtual addresses

(top), or to implement processor-specific memory by using the processor's number in its

mapping of virtual addresses to file offsets, in which case it needs the HAT (bottom).

CHAPTER 2. BACKGROUND 37

4. File Cache Manager (FCM) - controls the page frames currently assigned to contain

file contents in memory. It also implements the local paging policy for the file and

supports Region requests to make file offsets addressable in virtual memory.

5. Page Manager (PM) - controls the allocation of page frames to FCMs.

6. Hardware Address Translator (HAT) - manages the hardware representation of an

address space.

7. Segment HAT - manages the representation of a hardware segment. Segments are

of hardware dependent size and hold several virtual memory pages. Their size and

amount of pages they can store depends on both the underlying architecture and

page granularity.

We have presented background material which relates to the work described in this

dissertation, including HPCs, various instrumentation techniques, and the K42 operating

system. The next chapter will describe KOV's design and implementation details.

Chapter 3

System Design and Implementation

In this chapter we present the design and implementation of the Kernel Object Viewer

(KOV), a tool designed to aid programmers and operating systems designers in analyzing

performance. As previously mentioned, computer systems are becoming more complex

every year. This increased complexity makes it exceedingly difficult to qualitatively

and quantitatively understand how well a running system is performing. Moreover, for

performance-critical applications it is equally challenging to deduce the effects of code

(or design) modifications on performance. We have designed KOV to aid programmers in

the task of identifying performance bottlenecks and their precise causes, as well as to aid

operating system designers in identifying performance bottlenecks within the operating

system under different workloads.

3.1 Overview

Conceptually, the KOV performance monitoring tool is composed of two distinct parts:

a monitoring infrastructure and a graphical user interface (GUI). The monitoring infras­

tructure obtains a list of all live processes and their objects and gathers performance

data, whereas the GUI displays this data to the user.

A user interacts with KOV via the GUI. A user can issue commands in the GUI to

38

C H A P T E R 3. SYSTEM DESIGN AND IMPLEMENTATION 39

System Overview

Graphical User
Interface

(Java>

,.

Remote Machine

Monitoring Infrastructure

Data and Control
Interface

(C++)

i

•

Kernel State and
Perforniance .

Monitoring Module
(C++ and Assembly)

User-level
K42 Machine

Kernel-level
K42 Machine

Figure 3.1: A high-level view of the system's architecture. Two of the bottom elements

have to be on the same machine, whereas the GUI can run remotely.

obtain a list of all live processes and their objects and monitor performance. The GUI

sends these commands to the monitoring infrastructure to perform the desired tasks. The

monitoring infrastructure receives these commands and subsequently starts gathering

data from the system. This data is stored internally in the monitoring infrastructure.

The GUI periodically polls the monitoring infrastructure for this data and subsequently

displays it to the user.

An overview of KOV's design is shown in Figure 3.1. The figure shows the GUI,

and the two components that implement the monitoring infrastructure. The following

sections describe these two components and the GUI in more detail.

3.2 Monitoring Infrastructure

The monitoring infrastructure of KOV is comprised of two components, a data gather­

ing component which resides in the kernel, and a communication interface component

which resides in user-space. Both of these components must run on the machine being

C H A P T E R 3. SYSTEM DESIGN AND IMPLEMENTATION 40

monitored. The aforementioned components will be referred to as:

1. the Kernel State and Performance Monitoring Module (KM), and

2. the Data and Control Interface (DCI),

respectively, in the remainder of this dissertation.

The KM is a kernel module which maintains a list of all objects in the system and

monitors the performance of the system. Objects are identified by obtaining a list of all

live processes from the kernel and scanning the list of all instantiated objects within each

process. The KM monitors performance by using the processor's Performance Monitoring

Unit (PMU) (please refer to Section 3.2.1) and by using software instrumentation. A

kernel module is necessary to perform these tasks because only the kernel process, which

is privileged, is able to access the PMU. All the information gathered by the KM is stored

internally in a set of data buffers. These buffers are subsequently read by the DCI.

The DCI is the link between the KM and the outside world. The DCI communicates

with the KM by issuing system calls. Communication with the KM is comprised of

passing control parameters to the KM, and retrieving the list of all live processes and

their objects, and performance data from the KM's data buffers. Communication with

the outside world starts when a GUI connects to the DCI.

The DCI uses the network for communication with the outside world by listening for

connections on a specific network port. This allows the DCI to facilitate performance

monitoring from remote workstations. It is preferable to have the ability to monitor a

system's performance remotely because such a setup enables the user to monitor many

machines, located at varying geographical locations, from a single machine.

The following subsections describe the KM and DCI in greater detail.

CHAPTER 3. SYSTEM DESIGN AND IMPLEMENTATION 41

3.2.1 Kernel State and Performance Monitoring Module

The KM is solely responsible for obtaining object information and performance data

from the system being monitored. It is designed to work with K42, an object-oriented

operating system. Therefore information about the system can be extracted by obtaining

a list of all live processes, and scanning all instantiated objects within each process.

Performance monitoring data is gathered with the use of the architecture's PMU and

software instrumentation. Consequently, the KM can perform the following tasks:

1. perform a system scan by obtaining a list of all live processes and scanning their

objects,

2. configure and extract data from the PMU, and

3. obtain information through software instrumentation.

Object Scan

The list of objects is constructed by obtaining a list of all live processes and subsequently

scanning all instantiated objects within each process. The KM obtains a list of all live

processes by accessing K42's ProcessAnnex object. The ProcessAnnex object resides in

the kernel and keeps track of all live processes by maintaining a list of Process objects.

A Process object is the kernel's representation of a process and contains information

ranging from the process' identification number (PID), memory regions assigned to the

process, and other information.

Using the Processes' PIDs, the KM is able to scan for all instantiated objects within

each process. The object scan obtains two pieces of information. The first is a list of

all instantiated objects within a particular process, and the second is the object's state

(specifically, references to other objects). The first piece of information lets the user know

what objects a particular process has instantiated (for example, one Process object, five

Region objects, and five File objects), whereas the second piece of information lets the

CHAPTER 3. SYSTEM DESIGN AND IMPLEMENTATION 42

user know how these objects relate to each other (for example, the Process object has

a list of references to all five Region objects, and each Region object has a reference to

one File object). These two pieces of information allow an object hierarchy of the system

to be constructed. Before we explain in detail how the object scan is performed, a brief

overview of K42's design is necessary.

The K42 operating system is implemented with the use of clustered objects. All

clustered objects within a process are accessed through the use of one Global Translation

Table (GTT), and potentially multiple Local Translation Tables (LTTs) (please refer to

Section 2.4.2). A clustered object will have a reference to the Root object in the GTT and

each instantiated Representative object (Rep) will have a reference in a LTT. The Reps

handle requests from local processors and store local data, and the Root object stores

all shared data for that clustered object. A part of a Rep's local data are references to

other clustered objects.

The aforementioned object scan proceeds as follows:

1. references to the Root object of each clustered object are obtained by traversing

the entire GTT,

2. for each clustered object a corresponding local Rep is found for the current processor

by using the LTT,

3. The Rep object is called to obtain its state.

Obtaining all kernel-level clustered objects is straight-forward since the KM is running

in kernel-space. User-level clustered objects are obtained by following the same set of

steps described above by using inter-process communication (IPC). The IPC call invokes

the clustered object manager for the targeted user-level process and performs the three

object scan steps described above.

The Translation Tables for each process are accessible through a clustered object

manager. The clustered object manager maintains the GTT and LTTs for a particular

C H A P T E R 3. SYSTEM DESIGN AND IMPLEMENTATION 43

process. There is an instance of a clustered object manager for each process. The

clustered object manager class was extended to allow the KM access to the Translation

Tables.

Each clustered object Rep class has been extended with new methods to provide in­

formation about its state. The methods getNumChildrenQ and getChildren() are invoked

by the KM for each Rep. The returned information is a list of clustered object references

this Rep contains.

The only difference between a kernel-level and a user-level object scan is the way in

which scan results are saved. The KM stores object scan results performed at kernel-

level in a dedicated buffer which resides in kernel-space. Because the KM uses IPC to

obtain scan results from user-level processes, scan results are first saved into a shared

region *, and then copied into a dedicated buffer in the kernel. The user-level process

writes the results of its object scan in the shared region, and the KM subsequently reads

this data, and saves it in its kernel-level buffer. Information from these dedicated buffers

is subsequently read by the DCI.

We have discussed how the list of all live processes and their objects is obtained; in

the following sections we discuss how the KM monitors performance using the PMU and

software instrumentation.

Per fo rmance Moni to r ing Uni t

Today's execution cores come with sophisticated Performance Monitoring Units (PMUs).

A typical PMU will have several Hardware Performance Counters (HPCs) (e.g., PowerPC

970FX has eight), where a single HPC can be configured to count one type of event from

a subset of all hardware events at any given time. For example, an HPC can accumulate

occurrences of branch mispredictions or TLB misses.

The use of PMU interrupts for performance monitoring is a two step process. The first

: A shared region is a segment of memory accessible by both the user- and kernel-level processes

C H A P T E R 3. SYSTEM DESIGN AND IMPLEMENTATION 44

step involves configuring the PMU to increment a HPC when a desired hardware event

occurs. The KM configures the PMU by writing to a set of Special Purpose Registers

(SPRs). Values written to these SPRs determine which events are counted by each HPC,

and which HPCs can generate interrupts. PMU interrupts can be generated when a

specific HPC overflows, or periodically after executing a specified number of processor

cycles.

The second step of using PMU interrupts for performance monitoring involves the

Interrupt Service Routine (ISR), which is invoked whenever a PMU interrupt occurs.

The ISR is a kernel routine which runs at exception-level and is capable of performing

low-level tasks, such as reading from, and writing to, SPRs and HPCs, or saving data to

buffers for later analysis. We wrote our own ISR to allow for performance monitoring of

the system at object-level granularity. Our ISR performs three tasks:

1. Extracts an object reference from the interrupted process' stack,

2. Saves the object reference in a dedicated buffer, and

3. Saves the address of the instruction at which the interrupt occurred in a dedicated

buffer for later analysis.

The PMU generates interrupts at the hardware level when a software program is executing

code within a kernel or user level process. When a PMU interrupt occurs, execution of

this program is halted, and the ISR starts executing. If the interrupted program was

written in an object-oriented programming language, such as C + + , then the program

being executed has a reference to an object which stores the program's data. By C + +

convention, this object reference (which we call the 'context object reference') is stored

in a specific location on the program's stack. Figure 3.2 shows the data stored on a

function's stack for the PowerPC architecture. By C + + convention, the 'context object

reference' is stored in location sp + OxbO. The ISR can therefore extract the context

C H A P T E R 3. SYSTEM DESIGN AND IMPLEMENTATION 45

object reference by performing a stack walk in the interrupted program 2.

The context object reference extracted by the ISR by performing a stack walk is then

saved in a dedicated buffer that was instantiated when the PMU was first initialized. In

addition to the object pointer, the ISR also uses the dedicated buffer to store the address

of the instruction at which the interrupt occurred. The address of this instruction will

coincide with a segment of code within this object's class. Consequently, given the HPC

threshold used to generate the interrupt and the extracted object pointer, performance

measurements can be attributed to specific object instances within the system. Using

the instruction address, performance measurements can also be attributed to exact code

segments within the object's class, thereby specifying any performance bottlenecks with

greater accuracy. All data from this buffer is subsequently read by the DCI.

The dedicated buffer used to store PMU information is implemented as a simple wrap­

around buffer class. This buffer class has been designed such that one writer and one

reader can use it concurrently. Hence, a single HPC can write to this buffer at any time,

and the DCI can read from it at any time. There is a single dedicated buffer instance per

HPC to simplify the task of identifying which information in the buffer was written by

which HPC, which is important when matching PMU events to specific object instances.

Consequently, since on the PowerPC 970FX there are eight HPCs per processor, there are

also eight dedicated buffers per processor. The size of this dedicated buffer is set during

initialization. The size is approximated to allow the buffer to hold at least one second

worth of HPC information, because the DCI reads information from these buffers once

every second. The default buffer size is 8KB, where each sample is composed of one 64 bit

object pointer, and one 64 bit instruction address. Therefore, a default buffer can hold

512 samples (8192 bytes / 16 bytes = 512). This size was determined experimentally to

be sufficient for most PMU configurations. If an HPC generates more than 512 samples

2Non object-oriented programs are monitored using the same technique; however, the value extracted
from location sp + OxbO will not correspond to a valid COID. All values extracted from the ISR are
checked against COIDs extracted from the GTT by the GUI to verify that the object pointer is valid.

C H A P T E R 3. SYSTEM DESIGN AND IMPLEMENTATION 46

OxbO

0xa8

I
0x70

0x68

I
0x30

0x28

0x20

0x18

0x10

0x08

0x00

OBJECT POINTER

LOCAL
VARS

FUNCTION
PARAMETERS

TOC

BINDER

COMPILER

LINK REGISTER

CONDITION REG

BACK POINTER

Figure 3.2: This figure shows the data stored on a function's stack. A stack pointer (sp)

holds the address of the location 0x00. Since the stack grows down, i.e. the stack address

decreases for each new function call, data for the current function is stored above the

current sp. The 'context object reference' is stored at address OxbO above the current

sp.

C H A P T E R 3. SYSTEM DESIGN AND IMPLEMENTATION 47

within a second, only the first 512 samples are stored, whereas the rest are lost. When a

sample is lost, the number of lost samples is counted. When the DCI reads information

from each of the dedicated buffers, it checks if any samples were lost. If samples were

lost a new, larger, buffer is created to replace it. Given the old buffer's capacity, and

the number of lost samples, the new buffer size is determined by incrementing the old

buffer's size by 4KB until the new size can hold all the samples 3.

We have discussed how the PMU is used to monitor performance. The following

section will describe how the PMU is used to specifically monitor spin lock contention.

Spin locks

A novel contribution of this dissertation is the monitoring of spin lock contention without

requiring any changes to the target code. Spin lock contention is measured with the use of

the same ISR as mentioned above. The key lies in the PMU event that is used to trigger

the ISR. The PMU enables instruction op-code comparisons of up to six partial op-codes

and one full op-code entry. A match results in an increment to an HPC and upon overflow

causes an interrupt to occur. For the monitoring of spin locks, instructions of interest

are the load-linked (ldarx/ lwarx in PowerPC) and store-conditional (s tdcx/stwcx in

PowerPC) instructions, which are used to implement spin locks. Figure 3.3 shows the

control flow in the PMU when monitoring load-linked instructions and all completed

instructions.

To estimate the amount of lock contention as a percentage of total execution time,

it is necessary to count the time spent executing spin locks. To estimate the time spent

executing spin locks, one must consider how spin locks work.

Spin locks operate by first reading a specific memory location into a register us­

ing a load-linked instruction. Secondly, the value in the register is tested, and set to

another value if the tested condition holds true. Thirdly, the modified value in the reg-

34KB is the size of a virtual memory page

CHAPTER 3. SYSTEM DESIGN AND IMPLEMENTATION 48

Instruction Stream

Acquire_Loop:
Idarx
or
stdcx.
bne-
isync
and.
beqlr+
li

r11,0,r3
r0,r11,r4
r0,0,r3
Acquire_Loop

r0,r11,r4

r6,0

J Completed
Instructions

Performance Monitoring Unit

I No Filtering

HPC 1 - Count all completed
instructions

Interrupt Service Routine
Traverse up the stack to context of

interrupted routine and extract local object
reference

Performance
Monitoring Interrupt

Compare Op-code

1
HPC 2 - Count completed

load-linked instructions
(eg. Idarx or Iwarx)

Figure 3.3: An illustration of the control flow within the PMU when configured to monitor

spin lock contention. HPC 1 has been configured to count all instructions. HPC 2 has

been configured to count only load-linked instructions (specified by op-code). Once an

HPC threshold is exceeded, an interrupt will be generated. The interrupt service routine

will extract the context object reference from the program's stack.

C H A P T E R 3. SYSTEM DESIGN AND IMPLEMENTATION 49

ister is written back to the same memory location using a store-conditional instruction.

The store-conditional instruction will succeed only if the memory location has not been

changed by other threads running concurrently. Thus, if successful, we are guaranteed

that the above three steps were done atomically with respect to other threads. If unsuc­

cessful (stdcx. in Figure 3.3 is not executed), the code will need to 'spin' back and start

with the first step again. This loop is executed indefinitely until the store-conditional

succeeds, hence the term 'Spin Lock'.

The KM monitors spin lock contention by configuring the PMU to count the number

of load-linked instructions executed. Each load-linked instruction executed represents

four instructions being executed. These instructions are load, test-and-set, store, and

branch. Hence, when estimating the percentage of total execution time spent in spin

locks versus other code, the number of counted load-linked instructions is multiplied by

four and compared to the total number of executed instructions (as counted in a second

HPC). Once a HPC counts a sufficient number of load-linked instructions (as defined

by a HPC threshold), an interrupt will be generated. The interrupt service routine will

extract the context object reference from the program's stack. Subsequently, this object

reference is used to attribute lock contention to specific object instances.

A manual inspection of K42's binaries and user libraries has confirmed that the load-

linked instruction is not used for any other purpose than to implement locking structures.

However, if any user-level applications running on K42 were to use load-linked instruc­

tions for purposes other than to implement spin locks, it is possible that the execution of

these load-linked instructions might introduce errors into measurements performed using

our technique. However, if such load-linked instructions are not used within a loop as

described above, then it is not likely that they would significantly affect the accuracy

of our results. Nevertheless, to guarantee a greater accurary of results, the user can

mark any process with the PMU to exclude it from monitoring. Consequently, only the

processes of interest and the operating system will be monitored for spin lock contention.

C H A P T E R 3. SYSTEM DESIGN AND IMPLEMENTATION 50

Software Instrumentation

In addition to monitoring performance with the PMU, the KM also uses software instru­

mentation to monitor other events. For example, we have added software instrumentation

to monitor the use of sleep locks, as well as to monitor the number of object invocations.

The rest of this subsection describes each of these software instrumentation techniques

in greater detail.

A sleep lock is a technique of providing access to shared data where all threads

except the owner of the lock are prevented from accessing the data. Consider an example

implementation of a sleep lock where only one thread can hold the lock at any given time.

Assume that a thread acquires the lock successfully and subsequently starts performing

its operations. When a second thread tries to acquire the lock while it is being held by

the first thread, the second thread will add itself to a wait queue and stop executing by

going to sleep. As more threads try to acquire the lock while it is held, they will similarly

add themselves to the wait queue and stop executing. When the first thread completes

its work and relinquishes the sleep lock, it will notify the wait queue that the lock is free.

The notification wakes up the thread at the head of the queue, which then removes itself

from the queue, and acquires the lock. This process continues until there are no more

threads on the wait queue.

K42 provides an implementation of the aforementioned queue operations in the Blocked-

ThreadQueues class. The BlockedThreadQueues class provides a method for the enqueue,

dequeue and wake-up operations.

Performance monitoring of sleep locks has been implemented by adding static instru­

mentation to the BlockedThreadQueues class that logs all enqueue and dequeue opera­

tions, by saving the queue pointer and the thread identification number in a buffer. The

buffer used by this instrumentation is the same type of buffer as used by the PMU. Given

this information, the length and members (threads) of each queue can be deduced.

There is a dedicated log buffer for each BlockedThreadQueues object instance, created

CHAPTER 3. SYSTEM DESIGN AND IMPLEMENTATION 51

when monitoring of sleep locks is enabled. Since performance monitoring of sleep locks

is implemented using static instrumentation, the instrumentation code is always present.

However, events are logged only when the KM sets the enable flag. Due to the object-

oriented nature of this implementation, the enable flag can be set only in specifically

targeted lock objects, thus limiting overhead.

We have described how the KM monitors sleep locks; in the rest of this section we

will describe the software instrumentation used to monitor object invocations.

An object invocation is an access to an object's data or use of an object's method. For

example, if object A accesses the data of object B, or if object A executes a method of

object B, then object A has invoked object B. By monitoring the number of invocations of

all the objects in the system, it is possible to identify which object's data and methods are

used most frequently. If a particular object is accessed very frequently, then optimization

on that object might potentially yield greater performance improvements.

As previously mentioned, K42 is implemented using clustered objects. Key operating

system subsystems, such as the memory manager, scheduler, and I/O handlers, as well as

user-level objects provided with libc are implemented using clustered objects. Clustered

objects in K42 are always accessed using the dereference macro (DREF) (please refer to

Section 2.4.2). As a result, we have added static instrumentation to the DREF macro to

count object invocations. Consequently, the monitoring of object invocations is restricted

to clustered object invocations.

The instrumentation consists of two additional function calls on top of the normal

operations performed by DREF. The first function call retrieves the enable flag which

determines whether logging of object invocations is turned on. The second function call

increments an object invocation counter associated with the target object. A hashtable

is used for this purpose, where the object reference is the key, and the value for each key

is the total number of times this particular object reference (key) has been passed to the

DREF macro.

CHAPTER 3. SYSTEM DESIGN AND IMPLEMENTATION 52

A hashtable was used to monitor object invocations, rather than a dedicated buffer,

due to the great volume of data that is generated by this instrumentation. A particular

object can be invoked millions of times during the execution of a program. Using the

buffer approach, this instrumentation would have generated millions of entries. Using

the hashtable, there is one entry per object with the key corresponding to the object

reference, and the value corresponding to the cumulative invocation count (e.g., one

million). The drawback of using a hashtable rather than a buffer, is that there is no

resolution over time, since samples are not time-stamped. It is possible to overcome this

limitation by periodically reading the hashtable. A time-stamp is created by each read

of the hashtable, creating an artificial measure of progress over time. For example, the

first read after one second returns a key and value pair stating that object A has been

referenced 10 times. A second read one second after the first read returns a key and value

pair stating that object A has been referenced 100 times. Thus, during a period of one

second, object A has been referenced 90 times. Using such a technique, a coarse-grained

time-stamp can be added to data read from the hashtable.

We have discussed how KM obtains the list of live processes and their objects, and

monitors performance. The following section will describe how this information is re­

trieved from the KM.

3.2.2 Data and Control Interface

The DCI is the link between the KM and the outside world. The DCI communicates with

the KM by issuing system calls, and with the outside world through network connections.

Communication with the KM is comprised of passing control parameters to the KM, and

retrieving of the list of all live processes and their objects, and performance data from

the KM's data buffers.

The DCI runs as a stand-alone user-level process on the machine being monitored.

Before the DCI is able to perform any actions, it must first accept a connection from the

CHAPTER 3. SYSTEM DESIGN AND IMPLEMENTATION 53

GUI. Once a GUI has successfully connected to the DCI, from either the local machine

or remotely, the DCI provides the following functionality:

1. Passes control parameters to the KM,

2. Retrieves object information and performance data from the KM.

Control parameters that can be sent to the KM include PMU configuration parame­

ters, flag settings to enable or disable software instrumentation, and requests to perform

an object scan. The DCI receives these control parameters directly from the GUI.

The DCI retrieves information from the KM by issuing system calls. Separate system

calls fetch performance data and object information. The DCI stores the data it has

fetched from the KM in its own set of user-level buffers, which are subsequently read by

the GUI.

The DCI essentially forwards information from the GUI to the KM, and retrieves

data from the KM to be read by the GUI. As such, the DCI only performs rudimentary

operations. Nevertheless, The DCI allows the GUI to monitor performance from a remote

workstation. It is preferable to have the ability to monitor a system's performance

remotely because such a setup enables the user to monitor many machines, located at

varying geographical locations, from a single machine.

We have described the entire monitoring infrastructure used by KOV, including the

KM and DCI. The following section will describe how data gathered by the monitoring

infrastructure is displayed to the user in the GUI.

3.3 Graphical User Interface

The objective of the GUI is to retrieve object information and performance data and

present it in a concise fashion. The GUI retrieves all its information from the DCI by

issuing requests for data over the network.

C H A P T E R 3. SYSTEM DESIGN AND IMPLEMENTATION 54

The GUI can present information to the user in many ways. Figure 3.4 shows a

sample of what the user can expect to see with the GUI when monitoring the system

under the ApacheBench workload. The Kernel Object Tree on the left hand side of the

screen shows a tree of objects for the process handling the Process File System, labeled

'/kbin/procfsServer', with a process identification (pid) number of 13. Underneath this

process label is a tree of clustered objects (sorted by name). These objects belong to this

process either explicitly (i.e. created in user-space by this process for a specific purpose)

or implicitly (i.e. created by the kernel on behalf of the process to keep track of memory,

handle I/O, and perform other core functions for this process). Effectively, the sub-tree

for each process contains all user- and kernel-level clustered objects related to a process.

All objects shown in the tree are also differentiated by a suffix indicating their specific

identification number, since there can be many instances of the same object class (e.g.

COList).

The five windows to the right of the Kernel Object Tree show performance monitoring

results for five metrics:

1. successful lock acquisition rate,

2. spin lock contention,

3. branch misprediction rate,

4. Translation Look-aside Buffer (TLB) miss rate, and

5. Instructions Per Cycle (IPC).

This particular snapshot shows the aforementioned data aggregated over all the listed

objects belonging to all the listed processes, and shows how they progress over time.

Another way the user can view information with the GUI is by looking at performance

results for one specific metric in greater detail. One can display a list of the most

CHAPTER 3. SYSTEM DESIGN AND IMPLEMENTATION 55

Htt View N«ii» Claim Acllv«(il.'*i)is liutOOjecf

hf'Ttl

-* i M h t l f t *sbjn^[£cl*S8r*ar 1

mm ©bcfesdftsrsaciQiJsuss - -

^ c c t i v t — laci-xrarttc

^tkcCtM — lOCITKOOtf

•? { £ C O L K (— 13QKOC0IM

£> ;OLf l t t — 1JQ130001*0

* H^*-01*131 — 13013000!SC

£ f e c C & J S t - • IGr-'Uiii&JIS'J

i||j<:ou?t — locr

| | | CQUslServsr ~ ' •

A FMUniK3i1r«irarT\' - - 1

$ j j rftUmrtSfrMnTrv ~- 1

& & F*o*i*SirjMrtt!TV — i

{ £ fMjrKKSfrMnTlY ••* J

tf| FjtoLriu^SiHsararrY — J

| | p FfeUiu-^irasrelTY — !

sipFSeL*iU'=S*r«*rarTV — '

* ^ f e HATDefaUl — WQW& .

| j ^ MPMt^jfr M^£<*tgrfi-

^ p w lPM i^^ l^ssMgrS-1

| J P Mc^ftwiMgrCfenl -•• '

< • >

jgpKl^F,

i Mewiii'ifiij

A t •'- •-•.

\ fw$*rtt&*

! • / i '

3,333
1 •

u> • ' • • > • • . • • . . - •••

:
•».e*-«..p«

77r7

5

1 . , • • • • • : * • ? . '

f6*'?*-?*!!??

; KB 1 *

jib*

-' /1
I am

r-f^i^c-tJK |

1 * .*.
1

•

• ^

0315
; I,;,;

: - ' • ' - • ' ' . ' , . ' . • :• . • ' !

V t" ' T • ^ • \, 1 J " T 7

gmBBsun

^ • i . ' - . - i r - t :

• • • ! , " , •

^ a

: • • . . . •

Vi • .

. •, • •••• . • . . . v . , J ' i ^ j - ; ; . . | i i i i / : - , ;i

I 1
1 1 1 . . ' . , • ! ! ' • •

1

. 1

1 , 1

1
1

1
•.. ..,;::••; m

.
-"•rwa&di

m m m ^ ^

";.'cSuJ::.i

.••. a&4

• * """ r 1 # - i .

. , , , . , , . ^^^

- ••' i .

:• 43^

• • • ^ • . • . : ' - s

Figure 3.4: A snapshot of the complete first run of ApacheBench on the Apache web­

server with five metrics from time index 10s to 75s (indicated by the vertical black lines)

being measured. From top to bottom, the windows show the measured successful lock

acquisition rate, spin lock contention, branch misprediction rate, TLB miss rate, and

IPC respectively. ApacheBench was configured to generate a request concurrency of 70,

and a total of 5000 requests.

C H A P T E R 3. SYSTEM DESIGN AND IMPLEMENTATION 56

significant contributors to a specific metric, as is shown in Figure 3.5, or the contributions

of a single, specific object over time to the metric of choice as is shown in Figure 3.6.

The intended purpose of displaying information in this fashion is to use multiple

forms of data representation to identify bottlenecks in the system as a whole, and also

on a per-object basis. For example, Figure 3.4 referenced in the above example can be

used to identify the most severe problems. Subsequently, Figure 3.5 can show the list of

highest contributing objects to the results seen in Figure 3.4. Finally, Figure 3.6 breaks

down an individual object's contributions to a metric of choice over time as it is tracked

throughout the execution of a benchmark. One could use such a step-by-step process

to determine which object causes the most lock-contention in the system, and roughly

how far into the program's execution this contribution is most significant. This is just an

example use of this GUI, and one can certainly do other things with the collected data

such as simple logging or displaying it in an activity indicator.

The GUI and the monitoring system can be configured using the configuration utility

shown in Figure 3.7. The configuration utility allows the user to configure the hardware's

PMU and to toggle performance monitoring for specific objects. The prototype described

in this dissertation is specific to the PowerPC 970 PMU, and the PMU configuration

utility is therefore specific to this architecture's hardware events. The user can configure

the PMU to monitor any and all of the events across the eight available hardware counters.

The user can also enable the monitoring of object invocations and sleep lock contention,

which are not tied to the underlying hardware.

The GUI is the only part of KOV that connects to the DCI. However, the communi­

cation protocol between the GUI and the DCI consists of a simple exchange of commands

and data. Therefore, it would be potentially feasible to use other programs to connect

to the DCI directly and obtain monitoring information on their own.

C H A P T E R 3. SYSTEM DESIGN AND IMPLEMENTATION 57

$"7

Hew Graph AdbeGrdfihs GatOfcjecis Maaonfly

ffifUAiAld 10S! 000233)

^*4tLm SfrsamTTV IKHQCtmi;

| | | f &5vste*Cev ifiBiOCCOOiO

| P •rSs-'V-ls^'^Fwif* t a 0CO1

(SB f t e a V S a ' f c M ^ * ^ ~ !tC i f t ^ l

| 8 ' to-y^W«4 f*<Bsf3 - IPC HS&I

^ l f ^ a % *3*fef$ 1001 »» i r t u

^ * * . * * » • * f MWHWfefwO

£ 1

$k m a - T f « * ' * ^

^ ! * taeT««t«5. i , t ;S

^P 'JaMt f twOraxK

^ h**»Tf#«t * ^

f p f f c i i - l n i e u fS

| | | ^ ^ t e r t j f t t R

| | | i-|**Tt«*ii * *ft>

j£*imfil**«!L */?<

nmg n *

IMOIO-^**^

*U»fl*X H1-3

nei&^f^

f WTS*' * '

s mtf si_(tio

sooi J & ^ i

1*H$i&K$U

fc»ICBnpwi«==

Ft- ' * „.**?•

V - — M

:na7

rift'<r*rrTyir^«Jr*r<&,"f

f ive*. & , * « » « «-i-» MOOajMH
! i l l j Wfc itt&£i%C16CI6tt'>6

J J M J J E »"1 .1 ^ • u

1>! he «i. Hrji^Hni «4d! X#k Cfe)

1i Fl Mi c i% * W «4)W>j0lO033l*3

K&VS ' I t

1 (.ntn. > t- S5O0ft6CI«K)!S*a

Unto oet wtt'Ce >KI000M«*

J! S UKtta,r.Jltiu 3«W**«MiO00 a ^

) **yi * tat** mo. ceicc<*«e

1 Fff o«4s«a« si eOiwUtuolOs. I t i ^ i

14 FC <*i.!,-tjut» eOf/(HJ(^it.'w!Jifc
15 f'*t*»ft3H< <KK»000Q1<^1'M
1 Fft em^ijfat-*

w..feei - Bi&oeeoci&i.,.

- s*e*xsoii0i9e*iBd

Figure 3.5: Lock contention on a per-object basis using different PMU counter thresholds

when measured for the first run of ApacheBench on the Apache webserver. From top to

bottom: 10k, 100k, and 1M per one sample. ApacheBench was configured to generate a

request concurrency of 50, and a total of 5000 requests.

CHAPTER 3. SYSTEM DESIGN AND IMPLEMENTATION 58

i K4I tarrwl abject »'

| llta W w HmtOTJUik AetKwGiaetni CmOtijects

•̂ .Kerne- n h ^ t - Ire** fm l*~?%'

P mt MfoeiK'TAJiitmt if

Wlk B§ccfc«d fhr«ad<2Meuei

^ P COUst ~ 1001030018

| J | CQUJI - laMooont*

^ COCMjOttM CQSM»

^ p c«p«ichit!iCsf • rim

^ p FfaUKKStounrrY —

q P HaUnKSlMMTW -

^ P r»u»>u>:a*mrry •-

Q P RWjnu<Ur»amnV —

4prMUnu<Sl r«mrT< —

if jpFfcUUKStrMMrrY ...

j j ^ n m t B u 3 i r « « m ' —

^ p muutSraamTTV —

I p Ptoure«*»*«™r'Pi —

| | > FiiyrmsSlrMmTTi" -

(P WrDilNiiul ~ fflKCO

^ j p MPMtgMgr MPMsjW»«

liliKP-1

4473 I

•Ss l W&A

i : FCMCoroputation

, 1 if(.Nttsi«eiU!.*cn SoOSSQ

H f M f W bty#««t - t%mt$Q

•as P< tyy*t*ji»£.ut - &QCH&

•w bnu«a^t eueecoo&iu

*4

Ul-Uiin.u.1 * TOM WW wimu'wiim'

dLJ.

m m - •••Hi' • • iw <«••'•• •<* w 1 " L i » *w m w <§' " " * » •

Figure 3.6: Lock contention on a per-object basis when measured for the first run of

ApacheBench on the Apache webserver. The top window shows the contribution of

each object to the global amount of lock contention, experienced throughout the entire

run of the program. 44.73 % of all lock contention is caused by the FCMComputation

object. The bottom window shows the contribution of the FCMComputation object

to the global lock contention total on a per second basis. During the first 20 seconds

of the run, there are periods during which 100 % of contention was attributed solely

to the FCMComputation object. ApacheBench was configured to generate a request

concurrency of 70, and a total of 5000 requests.

CHAPTER 3. SYSTEM DESIGN AND IMPLEMENTATION 59

na w» meant Kiwaadu caaneti iMutw j

I'iH I mtCUfMi'iHttiisIf 4 iK5J&M,ihtopiP'riflH)it$

m

Ccurslcrs

PMC1.

PfcCi.

P*£3

CMC 4

CUCfi

race

WC/

PMC a

Direit Events

Of" v

'Off *

h ^ ^ r j r f i ^ u s it-fete**^ •»

h*rtff»»pjr'eiM,!StLWI6*tei»,*Jh "*

fiff v

OfF v

OFF *

* f *

Moratomg Coxitis*

•5) fcjr j e w . r m ' i i j ^ .

funcJlimat iNiifc* Events / Sfietalaih* Events (PMC 5 M * 7)

Or! PJ

Of 1 fU

limiRjj event

f'MCI)'hint; l '« t mi l !

5*i*«*i)i« 0-1 st J-

uauif^ofi iun**w$ rrm-

V

t by J

v 3 B-«id! ms pra*? * * to i*?& v&m preatf "

v i 8ranaj «,«£ufem sfssx vsial *

insNctsw mwm SNJ Martt«3

Stage)

1J3a*£,rtsi£Siw?*y v

WWffc- 4

Is***

r

fitaflel

Al riefrattidrurisis ffOPs; v

Stage J

^ j j& tb l t iJKtr. Mtiuriff

'C8i)w»««<fi''^*w^' 4 w i t

cotmie* Threshold

* <* KJOGS?

I * lljOK

* w te„exi

f **:i<K)«»C

* V, 1V&

* * li/XE

M V IC»)

* v iK©»$

TttrgstioUtMarkefJinstr

HN^rrhfiitioidlirrirti.uimur

£*&. ww, i'«4s a*Hjj ^ v i

Figure 3.7: A snapshot of the PMC configuration utility that allows the user to configure

the Performance Monitoring Unit (PMU) on the PowerPC 970FX. The setup shown

here is used to configure Branch Mispredictions monitoring. Monitoring of executed

instructions is also possible, and is supported by the PMU (currently being pointed to

by the cursor).

C H A P T E R 3. SYSTEM DESIGN AND IMPLEMENTATION 60

3.4 Limitations

There are three limitations to the KOV performance monitoring tool. The first two are

design limitations resulting from KOV's reliance on hardware performance monitoring

capabilities and the use of K42. The third limitation is the result of KOV's current

prototype implementation.

The monitoring infrastructure used by KOV is dependent on the processor's Perfor­

mance Monitoring Unit (PMU). The PMU monitors micro-architectural events specific

to the processor it is implemented on (in our case the PowerPC 970FX). Consequently,

if KOV were to use the PMU on another processor, the PMU configuration utility and

multiplexing logic would have to be ported to use the new architecture.

KOV has been designed for K42, an object-oriented operating system. The object

scan capabilities of the monitoring infrastructure are specific to K42's design. If one

were to port KOV to another operating system, the whole scan portion of our tool would

have to be redesigned (and if the target operating system is not object-oriented, then the

object capabilities of KOV become moot).

The current implementation of the KOV performance monitoring tool allows for the

DCI to accept only one GUI connection, and similarly the GUI can only connect to one

DCI at a time. This is only a limitation of the present implementation of KOV. In theory

both the DCI and GUI can be extended to allow for multiple connections. The DCI can

be extended to allow multiple GUIs to read the same list of all live processes and their

objects, and performance data. In addition, the GUI can be extended to monitor multiple

machines by maintaining separate data structures for each machine being monitored.

We have described the KOV performance monitoring tool and its limitations. We

will conclude this chapter by providing a brief summary of all the components of KOV

in the following section.

CHAPTER 3. SYSTEM DESIGN AND IMPLEMENTATION 61

3.5 Chapter Summary

Figure 3.8 shows an overview of all the components of KOV and how they interact with

one another. The top box shows the GUI, the only part of KOV the user interacts with

directly. Via the GUI, the user can request information about the system by issuing

commands to start an object scan, use the PMU, monitoring sleep locks, or monitor

object invocations. The DCI receives these commands from the GUI and forwards them

to the KM in the form of system calls. Subsequently, the KM starts gathering data

requested by the user. All data gathered by the KM is read by the DCI. The GUI

periodically polls the DCI for any data it has retrieved from the KM, and once the GUI

has obtained information from the DCI, it is displayed to the user.

CHAPTER 3. SYSTEM DESIGN AND IMPLEMENTATION 62

Remote Machine

Connection Successful

Connection Lost

User
Actions

A/Vork Completei

Request Response

'W^TV^38^

Disconnect Confirm

Request Interpreter

/ \ / \ / \ / \
* . » Monitor » • Hash of All ff , . . , »

lfia and PM _ • . Get „ . „ • . . . List of Pn

Config and PMU "££££' Q u e u * L o Get Invocations Get Snapshot
Run PMU Data i „_i« v-u^«= •_««<» invocations -

List of Processes
and their objects

S e n d reques t f r o m P C I to K M / R e t u r n rep ly f r o m K M to P C I

Kernel Space

Counter Threshold Reached

KM

Data Saved, Threshold Reset

Globally Accessible Kernel Objects

Each request uses different kernel tools
specified by their numbers

Figure 3.8: This figure shows an overview of all the components of KOV, and how they

interact with one another. The top box shows the GUI, the middle box shows the DCI,

and the bottom box shows the KM. The arrows represent the flow of information between

different components.

Chapter 4

Experimental Evaluation

In this chapter we present the experimental evaluation of the Kernel Object Viewer

(KOV), a tool designed to aid programmers and operating systems designers in perfor­

mance analysis. As previously mentioned, computer systems are becoming more complex

every year. This increased complexity makes it exceedingly difficult to qualitatively and

quantitatively understand how well a running system is performing. In Section 4.2 we

evaluate and analyze the performance of several workloads using KOV to demonstrate

how KOV can be used to accurately identify a performance bottleneck, and subsequently

identify the cause of the bottleneck. Ultimately, we aim to show how KOV can be used

to ease qualitative and quantitative analysis of a running system. We then analyze the

overheads introduced by KOV in Section 4.3.

4.1 Experimental Workloads

We use two workloads to demonstrate the feasibility of our tool. The first workload is

Apache 1.3 when running under the ApacheBench 0.5 and SURGE 1.0 generated work­

loads. The second workload is SPECjbb 2000 running on the IBM J2SE 5.0 Java virtual

machine. The two workloads are described in more detail in the following subsections.

63

C H A P T E R 4. EXPERIMENTAL EVALUATION 64

4.1.1 Apache Workloads

Apache HTTP webserver version 1.3 is an open-source HTTP server which can run on a

multitude of operating systems including Linux, Solaris, and Windows 2000 [35]. Apache

is capable of handling multiple client requests simultaneously.

This version of Apache handles multiple client requests by maintaining a pool of child

processes. The parent process distributes incoming requests amongst its child processes

for servicing, and does not directly handle any requests itself. An initial set of child

processes is created when Apache starts (by default five), and more child processes are

created lazily once the number of outstanding requests exceeds the number of active

child processes. The maximum number of child process that Apache creates is limited by

parameters read during the webserver's initialization. Once created, child processes are

not destroyed until the server shuts down. The end result of this design choice is that

during periods of low server load, child processes that are not handling requests are put

to sleep. As more connections are made to the webserver, and server load increases once

again, the parent process will wake up existing child processes to handle outstanding

requests.

Apache configuration parameters also allow the user to set the maximum number of

keep-alive requests. A keep-alive request is a technique of implementing HTTP persis­

tent connections. A persistent connection allows multiple HTTP requests and responses

to be exchanged between the client and server during one connection. Normal HTTP

connections allow for only one request/response pair to be exchanged. When the client

first initiates a connection with the server, the client will specify that it wishes to estab­

lish a persistent connection using keep-alive requests. The server will then periodically

send a keep-alive request to the client (every x seconds). The client has to respond to

each keep-alive request to maintain the persistent connection. The connection remains

open until the client or server explicitly terminate the connection, or the client stops

responding to the server's keep-alive requests and a period of time passes (the timeout

C H A P T E R 4. EXPERIMENTAL EVALUATION 65

period).

All performance measurements made on Apache used the setting for a maximum of

100 child processes and 100 keep-alive requests. By setting the maximum number of

keep-alive requests and child processes equal to each other, every child process is able to

complete all client requests during one connection. If a workload also uses the keep-alive

option when issuing its requests, then each child process will only accept one connection

throughout the entire run of the workload.

To measure performance of the Apache HTTP webserver, we use two programs that

generate workloads for the server to handle: ApacheBench and SURGE.

ApacheBench

ApacheBench is a command line computer program designed to measure performance

of HTTP webservers [1]. ApacheBench generates a steady stream of requests, putting

a constant load on the server. The user can specify the number of requests generated

concurrently, and the total number of requests sent. The number of concurrently gener­

ated requests tests the amount of server parallelism available, whereas the total number

of requests determines the total running time of ApacheBench.

ApacheBench was run multiple times by varying request concurrency from 10 to 150

in increments of 10, and keeping the total number of requests steady at 5000. All requests

use the keep-alive option. Each particular configuration of ApacheBench was measured

three times using three consecutive runs. The purpose of measuring multiple consecutive

runs is to show the difference in performance resulting from initialization (e.g. process

creation). The first run is expected to perform worse than the remaining two, whereas

run two and three are expected to perform similarly to one another.

CHAPTER 4. EXPERIMENTAL EVALUATION 66

SURGE

The Scalable URL Reference Generator (SURGE) is a tool designed to generate a Web

workload which mimics a set of real users accessing a webserver [12]. SURGE generates

file references matching empirical measurements of 1) server file size distribution; 2) re­

quest size distribution 3) relative file popularity; 4) embedded file references; 5) temporal

locality of references; and 6) idle periods of individual users.

SURGE can be configured in two ways. An initial set of parameters is fixed before

compile time. They include:

1. Total number of requests for the most popular file, which we set to 20,000, and

2. Total number of documents to be used in the test, which we set to 20,000.

The total number of requests for the most popular file will affect the magnitude of server

load at peak time. This is because the majority of requests for the most popular file are

timed to coincide with peak load.

In addition to the aforementioned pre-compile parameters, the user can also vary

several options dynamically, such as the number of client processes used and the number

of threads per client. The user also specifies benchmark duration in seconds. Finally,

SURGE requires the user to specify the directory path of the files created on the web

server.

All of our SURGE tests used two clients and a runtime of 60 seconds, whereas the

number of threads per client was varied from 5 to 60 in increments of 5. Each particular

configuration of SURGE was measured three times using three consecutive runs.

4.1.2 SPECjbb2000 Workloads

This version of the Standard Performance Evaluation Corporation (SPEC) Java business

benchmark (jbb) was released in 2000 to evaluate the performance of multi-tier server-side

CHAPTER 4. EXPERIMENTAL EVALUATION 67

Java applications [2]. The benchmark runs on several versions of UNIX, Windows/NT,

Linux and other operating systems.

SPECjbb2000 represents an order processing application for a wholesale supplier.

SPECjbb2000 models a wholesale company, with warehouses that serve a number of

districts. Customers initiate a mix of operations, such as placing new orders or requesting

the status of an existing order. Additional operations are initiated by the company, such

as processing orders for delivery, entering customer payments, and checking stock levels.

SPECjbb2000 assigns one active customer per warehouse. A warehouse is imple­

mented as a unit of about 25MB of data stored in binary trees. Warehouses map directly

to Java threads. As the number of warehouses increases during the full benchmark run,

so does the number of threads. SPECjbb2000 measures the throughput of the underlying

Java platform, which is the rate at which business operations are performed per second.

A typical benchmark run takes about three minutes per warehouse. SPECjbb2000 mea­

sures throughput in a fixed amount of time, so faster machines do more work in the

allotted time.

A complete run of SPECjbb2000 consists of two phases: a warm-up phase and a

measurement phase. The warm-up phase creates data for all the warehouses and typically

lasts 30 seconds. After the warm-up phase is complete, the measurement phase will

emulate customer accesses to the warehouse as described previously.

We have configured SPECjbb2000 to use a maximum of four warehouses. We used

the standard 30 second warm-up phase followed by a 120 second application-level mea­

surement phase.

4.2 Experimental Results

This section presents results for the Apache and SPECjbb2000 workloads gathered by

KOV. KOV was configured to measure:

CHAPTER 4. EXPERIMENTAL EVALUATION 68

1. successful lock acquisition rate,

2. spin lock contention,

3. branch misprediction rate,

4. Translation Look-aside Buffer (TLB) miss rate, and

5. Instructions Per Cycle (IPC).

The successful lock acquisition rate is measured by counting the number of successfully

executed store-conditional instructions multiplied by the number of instructions in a spin

lock (four) as a percentage of all retired instructions.

Spin lock contention is measured by utilizing the technique described in Section 3.2.1.

The results for this metric show the amount of lock contention as a percentage of all

retired instructions.

The branch misprediction rate is measured by counting the number of correctly and

incorrectly predicted branches (also referred to as predicted and mispredicted branches,

respectively). Results for this metric show the total number of mispredicted branches as

a percentage of the total number of branches (predicted plus mispredicted branches).

The TLB miss rate is measured by counting the number of TLB misses caused by

fetching instructions as well as reading and storing data. The results for this metric show

the cumulative number of TLB misses as a percentage of all retired instructions.

IPC is measured by counting the number of retired instructions and completed pro­

cessor cycles. Performance results for this metric show the total number of retired in­

structions as a percentage of the total number of completed processor cycles.

4.2.1 Apache loaded with ApacheBench

Figure 4.1 shows the results for Apache loaded with ApacheBench. The figure shows

results for the first (left) and third (right) run of ApacheBench. The x-axis on each graph

C H A P T E R 4. EXPERIMENTAL EVALUATION 69

A p a c h e B e n c h : Lock Acquis i t ion Rats

4

/
^

;. frrrtTTTr.rrlr^

,—, h-^m.

10 20 30 40 SO 60 70 80 90 100 110 120 130 140 150

Number ol concurrent requests

A p a c h e B e n c h : L o c k Conten t ion

30 40 80 60 70 80 90 100 110 120 130 140 '

Number of concurrent requests

A p a c h a B e n c h : B r a n c h M ispred ic t ion Rate

e
? 10

* !
2

•

]
10 20 30 40 50 60 70 SO 90 100 110 120 130 140

Number of concurrent requests

0.14

0.12

0.1

S> 0.08

1 0.06

0.04

ApachaBench: TLB Miss Rate

" * 1

'

f

_—

^ •

10 20 30 40 60 60 70 80 90 100 110 120 130 140 150

Number ol concurrent requests

ApachaBench: IPC

^ ^ U r m T
40 50 60 70 80 90 100 110 120 130 140 1

Number ol concurrent requests

A p a c h a B e n c h : Lock Acqu is i t ion R a t e

, iT*^rrrrtirrT»=*?r^»^E3:
40 50 60 70 80 90 100 110 120 130 140 150

Number o l concurrent requests

16

14

12

n
4

2

ApachaBench: Lock Contention

m. «. m.

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Number of concurrent requests

20
18
16

I •
6
4
2

A p a c h a B e n c h : B r a n c h M i s p r e d i c t i o n Rate

'
10 20 30 40 50 60 70 80 SO 100 110 120 130 140 150

Number of concurrent requests

A p a c h a B e n c h : T L B Miss R a t e

30 40 50 60 70 80 90 100 110 12(

Number of concurrent requests

ApachaBench: IPC

t=t=TTTT"
10 20 30 40 60 60 70 80 90 100 110 120 130 140 1

Number of concurrent requests

Figure 4.1: This figure depicts the monitoring results for ApacheBench for five metrics:

successful lock acquisition rate, spin lock contention, branch misprediction rate, TLB

miss rate, and IPC. The figure shows results for the first (left) and third (right) run of

ApacheBench. The x-axis on each graph shows request concurrency, which is varied from

10 to 150 in increments of 10. The y-axis shows the percentage composition for each

metric. Each individual graph shows three plots, from top to bottom, the maximum,

average, and minimum values for each run.

CHAPTER 4. EXPERIMENTAL EVALUATION 70

.Ml Necnel s&jtct vtewer

IfiiH Vww towGiaiiR ftttM»<k^itii G»tO£M& MiMKlutwu {

'did id]

f

9 tt (ls ***«•*»*""'« *
« 9 Bfe<:tescifHr***au*u8S ~~

A i c a m ~- looioaeoouo

A c o U i t ~ lostaoaKteo

H i cotw — lestaooaiM)

i i (f f t COLM - - 1O31OM0I00

I p cast — ionioa»no

• A COUst — 100100001X

A cousi... lasiooeois)

^ P CGttet ™ 10010003150

A COLMSMW • tomn

| A COGer«8kC3««.*!lM»idfc

A COSMgrOt«Kfc COSHptt

| | | C S O U M n H m i i r — T

| 1 | BspntctmrMst — ?«!«(

j l h r M nu i',t.*k«slr«(_ . I f

1 ^ mUnu*9NmTTV — 1

i j j r*unuxsir»»»rr¥ ~ i

PpPfc^riuxSlrsariim" -~ 1

| i p ri&Lwianswin*,' -.. i

^ muiiuaMmrrv — 1

^ MAjnu^Sli«iirarrv — 1

* £ nHUmustwmTY — i

| S ffcUiuiSlrsamTrv — S

^ FMjfHKSMwulTY — 1

* (J (HA7D«t»il — 80000000

I I P MSM&#^ MPMssMgtftei

^>!PHi4'*g »>M.tjM..jfis^

| f t MartPmlMgrCkrt -. 7

U p P»*sMK:*t0!lls*f MyRce

^ R ProcesrsUrKixCteert — 71

mm Proc*ss5etU5er . - 7fWS ^

*

3.3SSJ
Ig'iitlijijIiiifB^^ ' W& ^ "^& **»

cJch'JI

m W T r W f l H I I IB

l i . 4 w . ^ i . J H « » . U . > « i & ^ l

^,^.J

KJG

T <!T v!*>^ a 4 nr-^ •% •£•!«•** r'Sr-

am

4HI

0345

• - . • • • • • I • • ,

Figure 4.2: A snapshot of the complete first run of ApacheBench on the Apache webserver

with five metrics from time index 10s to 75s (indicated by the vertical black lines) being

measured. From top to bottom, the windows show the amount of measured successful

lock acquisition rate, spin lock contention, branch misprediction rate, TLB miss rate,

and IPC respectively. ApacheBench was configured to generate a request concurrency of

70 and a total of 5000 requests.

CHAPTER 4. EXPERIMENTAL EVALUATION 71

' 4 ^ cunt — \mamms

f>j^ ccust - toaioaoau

| p COSSrentjMMMlisrtam

| ^ CO£Wgr!*n»a COaKp

| p COS-WMloHimsfct ...

g Oop«fch«rMgr ? tM

q p rsfcUmiiSwararrV - -

| P FMUmuStwnrTr ' •

^ p f*iuwxsfr»«»rri' —

^ rMjrMtStramTTY —

I p nw>>u<sar«nrTY —

• | p | F««u»iu<sfrMr»rrv —

40FMJmKSlNNnrT/ —

< | P F*iLirw!»MraTrv —

« P FfeUniKStrsjwTTV -

Wgf FiaUiy^SHaraTTy • •

l | | r*rLmc<iSlrt»TTY -

* 9 HATCatsui — mxm

< | p W«Utjiiftr..l*M!!gHarR

^ p MPMlsMjr::li«*!**arfS

« '

1 : FCMComputation

•to M Mp*tauiiieui - fetttpy

IfftgBBWIlL-. ftwrufw^wwsrww^^r.

s i ^ ^ 1

J-Mmk w -m m ••*»•• """tNT*

Figure 4.3: Lock contention on a per-object basis when measured for the first run of

ApacheBench on the Apache webserver. The top window shows the contribution of

each object to the global amount of lock contention, experienced throughout the entire

run of the program. 44.73 % of all lock contention is caused by the FCMComputation

object. The bottom window shows the contribution of the FCMComputation object

to the global lock contention total on a per second basis. During the first 20 seconds

of the run, there are periods during which 100 % of contention was attributed solely

to the FCMComputation object. ApacheBench was configured to generate a request

concurrency of 70, and a total of 5000 requests.

file:///mamms

C H A P T E R 4. EXPERIMENTAL EVALUATION 72

shows request concurrency as it is varied from 10 to 150 in increments of 10, whereas

the y-axis shows the percentage composition for each metric (calculated as described

above). The first run measures the metrics of Apache when loaded with ApacheBench

as well as the overhead associated with creating child processes. Recall that Apache is

initialized with only five child processes, where extra processes are created lazily once

there are enough outstanding requests to warrant their creation. The third run measures

the metrics of Apache when loaded with ApacheBench with no child process creation

overhead (since child processes are not destroyed once created).

Before we discuss the results, we will elaborate on the significance of considering

peak values, in addition to the overall average. A program, through the course of its

execution, can go through several different phases of execution. Each phase can result

in a different behaviour of the program and its interactions with the operating system,

either because the code being executed is different, or because the actions performed by

the code are different. In both cases, the average value for a metric will consider the

aggregate performance results over the entire run of a program, and therefore hide the

behaviour of individual execution phases.

The rest of this section discusses the results for Apache loaded with ApacheBench in

greater detail.

Using performance results obtained with KOV, we can see a gradual rise in peak lock

contention during the first run of ApacheBench, shown in Figure 4.1 top curve, as request

concurrency increases. There is a significant difference in peak lock contention between

the first run (left), where the value increases to almost 16 % (which is roughly five times

the average) and the third run (right), where this increase is absent. Using KOV's GUI,

we investigated the performance of the first run of ApacheBench when configured with

a request concurrency of 70 to gain further insight.

The complete first run of ApacheBench configured for 70 concurrent requests is shown

in Figure 4.2. Each window in Figure 4.2 shows the five metrics as obtained by KOV

CHAPTER 4. EXPERIMENTAL EVALUATION 73

over the course of the entire run of ApacheBench (isolated by vertical black lines from

other monitoring information).

The peak values of interest are represented by the first several seconds of the ApacheBench

run (10-30s). Since the difference between the first run and the third run of ApacheBench

is only the creation of child processes by the Apache webserver, the process creation phase

is a likely cause of the increased lock contention. Consider the fact that ApacheBench

sends 70 concurrent requests to be handled by the webserver. However, Apache was only

initialized with five child processes. The Apache webserver will create an additional 65

child processes, in order to handle all remaining 65 requests.

Process creation requires a significant amount of work to be performed by the oper­

ating system. This includes allocating memory pages for the process and initializing the

process' data structures. In addition to increased lock contention during the initialization

period, Figure 4.2 also shows a corresponding increase in TLB misses for ApacheBench.

This information suggests that the likely cause of the contention is the memory subsys­

tem, since TLB misses are directly related to accessing memory pages. Further use of

KOV's performance monitoring and visualization capabilities validates this hypothesis.

A per-object breakdown of lock contention, shown in Figure 4.3, has attributed the

majority of lock contention to one object instance, namely the FCMComputation object.

We identified the purpose of the FCMComputation class by investigating K42's source

code. The FCMComputation class is responsible for fetching and allocating memory

pages. In addition, Figure 4.3, in the bottom window, shows the amount of lock con­

tention contributed by the FCMComputation object to the global lock contention total

shown in Figure 4.2. The contribution of the FCMComputation object shown in the

bottom window of Figure 4.3 is calculated on a per second basis, and shows that the

contention occurs primarily during the first 20 seconds. With the contribution equaling

100 %, this indicates that all lock contention during that time period was attributed

to the FCMComputation object. Considering the findings discussed above, we can con-

CHAPTER 4. EXPERIMENTAL EVALUATION 74

elude that the most likely cause of the increased peak lock contention was the following

scenario.

As Apache creates new child processes, each process' request for new pages is handled

by the memory subsystem. Since Apache's child processes are all created when the initial

requests arrive, there is contention on the memory subsystem to provide pages for 65

processes as quickly as possible. As the initialization phase finishes, Figure 4.2 shows

that lock contention drops to the average level shown in Figure 4.1.

We have shown how KOV can be used to identify a performance bottleneck within

the operating system by using performance results obtained by monitoring the execution

of Apache when loaded with ApacheBench. A key aspect of this is the unique capability

of KOV to obtain metrics from specific object instances. In the following section we will

show how KOV can be used to understand the execution of a program by comparing

performance results of Apache loaded with SURGE, against those we obtained in this

section using ApacheBench.

4.2.2 Apache loaded with SURGE

Figure 4.4 shows results for Apache loaded with SURGE for the aforementioned five

metrics. The figure shows results for the first (left) and third (right) run of SURGE.

The x-axis on the each graph shows the number of threads per client ranging from 5

to 60 in increments of 5, whereas the y-axis shows the percentage composition for each

metric (calculated as described in a previous section). Figure 4.5 shows a snapshot of the

complete execution of the first run of SURGE, when configured to generate 35 requests

per client, using two clients.

Figure 4.4 and Figure 4.5 show performance results for various configurations of two

runs of SURGE, and one detailed run displayed in KOV's GUI respectively, similarly to

what was shown in Figure 4.1 and Figure 4.2 for ApacheBench.

By looking at Figure 4.4 and Figure 4.1 we can see that there is a similarity between

CHAPTER 4. EXPERIMENTAL EVALUATION 75

S u r g e : Lock Acquisi t ion Rata

rrrm=rg
T h r e a d s per cllen

1:

S u r g e : Lock Acquis i t ion Rate

T h r e a d

• - „ - *

L 1 J
r~"T~1

1
m per clisnt

S u r g e : Lock Conten t ion Rate

as: £ k i i t
T h r e a d a per client

S u r g e : Branch Mispred ic t ion Rate

rm n FFffi
T h r e a d * per client

S u r g e : T L B M i s s Rate

rTr 2
T h r e a d s per client

S u r g e : T L B M i s s Rate

T h r e a d s per cl ient

„°..

! : :

-i—i
t TT

N

r^M
r^

UL \ i

Sur

P*—«

ge: IPC

' T~ ——

T h r e a d s por cllant

i: ,
\

S u r g a : I P C

• — .

L—J

—f—

L-X-, r—-

— —f—

-~l ^ \ /

T h r e a d s per cl ient

Figure 4.4: This figure depicts the monitoring results for SURGE for five metrics: suc­

cessful lock acquisition rate, spin lock contention, branch misprediction rate, TLB miss

rate, and IPC. The figure shows results for the first (left) and third (right) run of Apache

loaded with SURGE. The x-axis on each graph shows the number of concurrent requests

generated by each of the two clients, ranging from 5 to 60 in increments of 5. The y-axis

shows the percentage composition for each metric. Each individual graph shows three

plots, from top to bottom, the maximum, average, and minimum values for each run.

CHAPTER 4. EXPERIMENTAL EVALUATION 76

Figure 4.5: A snapshot of the complete first run of SURGE on the Apache webserver

measured using five metrics from time index 20s to 80s (indicated by the vertical black

lines). From top to bottom, the windows show the amount of measured lock acquisition

rate, lock contention, branch misprediction rate, TLB miss rate, and IPC respectively.

SURGE was configured to generate a 35 requests per client, use two clients, and execute

for a total of 60 seconds.

CHAPTER 4. EXPERIMENTAL EVALUATION 77

the rise in peak lock contention for Apache loaded with SURGE and ApacheBench.

Figure 4.5 also indicates that Apache loaded with SURGE experiences a peak in lock

contention during the initial seconds of the run. From analysis of Apache loaded with

ApacheBench, we learned that a workload's initialization phase can create high lock

contention, corresponding to the child process creation phase in Apache. However, Figure

4.4 does not indicate that values for peak lock contention continue increasing for higher

concurrency with SURGE, as they did with ApacheBench. For a possible cause of this

difference, we will examine performance results gathered using other metrics.

Let us consider the behaviour of TLB misses with SURGE and ApacheBench. With

ApacheBench, the TLB miss rate is constantly rising; however, with SURGE this is not

the case. With SURGE, the TLB miss rate goes up until about 15 requests per client

and does not increase much further for a greater number of requests. With SURGE, 15

requests per client corresponds to a request concurrency setting of 30 for ApacheBench

(SURGE uses two clients).

The analysis for ApacheBench concluded that the memory subsystem was responsible

for the increased level of lock contention. The TLB miss rate is directly proportional to

the rate at which new pages are being fetched by the system. Consequently, the fact

that the TLB miss rate does not increase for SURGE with a corresponding increase in

the number of requests per client, indicates that the rate at which new pages are fetched

by Apache during a SURGE workload does not increase either.

We validated our hypothesis by examining the documentation on the SURGE work­

load. Contrary to ApacheBench, a SURGE generated workload does not immediately

open all of its connections. Rather the number of connections steadily increases until

finally reaching the maximum value, specified by the number of clients and requests per

client. This period of maximum load is the period of the so called 'surge'. The effect

this steady increase in the number of requests has on the system is that only several new

child processes are created by Apache at any given time, rather than all at the same

CHAPTER 4. EXPERIMENTAL EVALUATION 78

time, which is the case when running ApacheBench. Consequently, under SURGE there

is a lower demand for new memory pages at any given time. A lower demand for new

memory pages manifests itself in the form of a lower TLB miss rate.

We have shown how KOV can be used to identify a performance bottleneck within

the operating system using ApacheBench, and how KOV can help the user understand

how a program's behaviour can manifest itself on the system using SURGE. The next

section shows a similar analysis using KOV for SPECjbb2000.

4.2.3 SPECjbb2000

The performance of SPECjbb2000 was monitored during a complete run of the bench­

mark which consists of a 30 second warm-up phase and a 120 second measurement phase.

Figure 4.6 and Figure 4.7 show the results obtained for SPECjbb2000 for the aforemen­

tioned five metrics. Figure 4.6 shows the first 82 seconds of execution. The 30 second

warm-up phase can be identified on the figure as the portion of execution between the

two black lines (time indices 18s to 48s), whereas the measurement phase starts after the

second black line (time index 48s) in Figure 4.6 and continues up until its conclusion,

which is shown in Figure 4.7 (at time index 70s).

We will proceed by analyzing each phase of execution in detail using to the results

gathered for our five metrics. We will then compare these results against the ones ob­

tained for Apache workloads.

Looking at the warm-up phase in Figure 4.6 (the region between the two vertical black

lines) we can see that the results for three metrics vary substantially from the average:

spin lock contention, TLB miss rate, and IPC. From the analysis of Apache we have

learned that high lock contention can be caused by the memory subsystem, but also that

memory pressure is usually accompanied by a high rate of TLB misses. Although Figure

4.6 shows high lock contention, the TLB miss rate during that period is insignificant.

Consequently, by looking at the results gathered with KOV, we can conclude that the

C H A P T E R 4. EXPERIMENTAL EVALUATION 79

memory subsystem is not a bottleneck in the warm-up phase because the TLB miss rate

is not correlated with lock contention, as was the case with ApacheBench.

Figure 4.6 shows that there is a significant increase in IPC (up to 0.545 from an average

of roughly 0.400) during the period of low TLB miss rate and high lock contention. Two

reasons for a high IPC rate could be the execution of highly optimized code, or the

execution of very few memory operations. Code optimizations such as prefetching, loop

unrolling, or branch hinting, reduce the number of processor stalls, and thus increase

IPC. Code which contains few memory operations has a lower chance of accessing data

not present in the cache, or TLB, and therefore causes fewer processor stalls, which

translates into increased IPC.

We consulted the documentation of SPECjbb2000 for reasons that could explain the

higher IPC, higher lock contention, and lower TLB rates in the warm-up phase. The

documentation indicates that the warm-up phase for SPECjbb2000 is composed of two

tasks. The first task creates data structures, whereas the second task executes several

threads which populate the aforementioned data structures. We will proceed by analyzing

each of these tasks in greater detail.

The first task of the warm-up phase creates binary trees for each warehouse (please

refer to description of SPECjbb2000 in Section 4.1.2) which are accessed during the

measurement phase. This task is computational in nature and therefore puts more stress

on the CPU rather than the memory subsystem. Thus, one possible reason for a low

TLB miss rate and increased IPC is that this task exhibits good cache locality, which

would manifest itself by exhibiting fewer TLB misses and fewer processor stalls. A

second possible reason is the presence of the JIT compiler in the JVM. It is possible

that the highly computational task was optimized by the JIT compiler, in which case

extra prefetching instructions, loop unrolling, or branch hints might have been inserted to

increase performance. Finally, the higher incidence of lock contention during the warm-

up phase is likely the result of concurrent accesses to the binary trees created at this time,

CHAPTER 4. EXPERIMENTAL EVALUATION 80

K4?tai*M!Ul>)e<.t * l ew i

f ta Vmrn Mtmi G I B I * ACIMS ti>.>jil« * * Ottjaci* Mawotuiu j

(Scnio'MlijMf Irec< |_ |t-i j y j

t £ < 2 i

•t | » H7j Atst/sfc*r%g.hfl

lava

l * "

war

J •c- ,. . . i ' " } ! * - : i - r ' : ' K - " ' ' f ^ w v ^ ' - i ! ' 1 i 5 l . J l V ^ j ! (j , j J | { ^

i l l :

it m ...wr«tg.«nar' ' t f^ j j iMiy^vpi i i iyw^^

Ht-.^wa,:

2830

W *T» ^m^m^m^m^m^m^r>^m^^r^^m^milf^ww^t!^mf^

"kd
» • • » . , -

.a a a

i
"tit y " W " . w '"'mi* # ""W Tiga'"" m

wwm

I W tlSifSlt

.ih %r- tf^)p1)igwq,i^iplwff-^Ty^^ii,pw^Biy

d^lui

1)545

*<r<n»i F » w w | y ^ y i » W w i | | | i ^ ^

Figure 4.6: A snapshot of the first 82 seconds of execution of SPECjbb2000. The results

for the 30 second warm-up phase of the SPECjbb2000 run are between time index 18s

and 48s (indicated by the vertical black lines). From top to bottom, the windows show

the successful lock acquisition rate, spin lock contention, branch misprediction rate, TLB

miss rate, and IPC, respectively. A complete run of SPECjbb contains a 30 second warm-

up phase, and a 120 second measurement phase. The first 52 seconds of the measurement

phase shown start after time index 48s (right vertical black line).

CHAPTER 4. EXPERIMENTAL EVALUATION 81

HA2 kernel mhhcl tfmmr
I Iflu Vtow HUM GUI* ALIMII (.r.iiiln (,i*ot|ii.n Moiiiliumu

Bill®

- KL-iwH)h;i '" I I - I -

*' flp<r) *******

* s » 0 ^) bae«S«f¥8rs

* w K34) iafJa

• i . m
W

7.534

1

"i '. . :

'&

:EOU • • ' . . . , . : , : : : • : . : . ' • '

• .• "i1 '•' '• 'i

:>

1E.GG
'. ' •• a : r :. .

" . J\ 0 s . :", •'

• • ! • ' : '

cm

- • 1 1

• . . • ; ' , • • : ' • : ,

• : . : , • • ' • - • ; ; T j :

w !.'."!"!'.'.'."

IUE3 .uasratraeKaxEsJ^i

. , f - i . f t . ' . . • •. ' '

•• • • • . , ' • * • • = . • ' • & . < • . • • • . : • • ' , ,

' • . - . • . 1 " ' • ' • . — • • • : • . ' . C . . .,

: • ' • ' ' '

- . • t. • • '

. . • • : : : • • • • ' - ' • • ' • - . • . - „ ; . • " :

* ; •; f..(1 - I f \ • -:

. • ,:; • . • . . • i - . . , ! : ' ^ : : . ; - 1 . . , !

. . * ; i i " " : ' ? ' - = ''-• • '• •

" ' " " • " "

„„ . ,,.

t-J-.

•'"• 7 "

_;".).",•
: i > #i

• ' " ' J t = J f 1 |

1

~yjr'::r^h3'li

'. '•'. • . ^ « s l J J

v«inw>cvk«>h>iiii«wr«ju>f.iiHU>IW.i.<i~h>kbJ

,.,,!,,5P.l"'!:J?J

1 ' • : V •.: ".".-_ r̂.. **L3tV?3j

»W Mi) w f • * ' * ^ Ti n w£> |

Figure 4.7: A snapshot of the last 65 seconds of the execution of SPECjbb2000. From

top to bottom, the windows show the successful acquisition rate, spin lock contention,

branch misprediction rate, TLB miss rate, and IPC, respectively. A complete run of

SPECjbb contains a 30 second warm-up phase, and a 120 second measurement phase.

This snapshot only shows the last 65 seconds of the measurement phase

C H A P T E R 4. EXPERIMENTAL EVALUATION 82

although we don't have access to further information that could prove this hypothesis.

The second part of the warm-up phase executes several threads which populate the

aforementioned binary trees. This task stresses memory, rather than the CPU, since a

large amount of data is accessed within a short amount of time. Figure 4.6 and Figure

4.7 show that there is a correlation in the results between the second part of the warm-up

phase and the 120 second long application measurement phase.

For the rest of this section, we will describe the measurement phase in greater detail

based on the documentation of SPECjbb2000. We conclude by analyzing the results of

the second part of the warm-up phase and the measurement phase together.

Documentation for SPECjbb2000 indicates that the benchmark simulates an order

processing application for a wholesale company, where customers initiate a set of oper­

ations such as placing new orders or requesting the status of an existing order. By this

definition, one can expect a mix of memory and CPU load. Performance results for the

measurement phase, shown both in Figure 4.6 and Figure 4.7, indicate that the load on

the memory subsystem is more significant than on the CPU. The higher rate of TLB

misses, combined with a lower IPC rate support this claim. Since the second part of

the warm-up phase consists of several threads, primarily issuing requests for data, the

similarity in performance results between this portion of the benchmark and the mea­

surement phase can be attributed to load being primarily put on the memory subsystem

in both cases.

In conclusion, we have shown using KOV that there is a significant difference in the

way in which Apache workloads, and the SPECjbb2000 benchmark affect the underlying

system. In addition, we show KOV's utility by displaying results for a variety of metrics.

The visualization of multiple metrics, rather than just one, such as TLB miss rate, or

spin lock contention, was crucial in understanding the operating system and application

performance behaviour.

We have described the results obtained with KOV by monitoring Apache and

CHAPTER 4. EXPERIMENTAL EVALUATION 83

Workload

ApacheBench

SURGE

SPECjbb2000

Average

Table 4.1: Overhead

PMU Overhead (%)

1.25

1.03

2.97

1.75

of monitoring per benchmark

Soft. Instrum. (%)

2.28

2.11

2.17

2.19

Data Traffic

and Scan(%)

2.05

2.06

2.31

2.14

Total(%)

5.58

5.20

7.45

6.08

SPECjbb2000 workloads. The next section will provide a detailed breakdown of overhead

introduced by KOV.

4.3 Overhead Considerations

The results presented in Section 4.2 incorporate the execution of a program as well as the

overhead introduced by our tool. The KOV performance monitoring tool incurs overhead

from:

1. PMU interrupt handling,

2. the presence of software instrumentation, even if disabled, and

3. transfer of monitoring data and from periodically performing object scans.

Table 4.1 shows the overhead introduced by KOV when running the Apache webserver

under ApacheBench and SURGE, and when running SPECjbb2000, distributed amongst

the aforementioned three categories with all software instrumentation disabled.

Overhead for each workload was measured by comparing results with and without

KOV. The overhead for ApacheBench was calculated by measuring the percentage in­

crease in execution time. For SURGE, the overhead was calculated by measuring the

percentage increase in transfer delay because the workload's execution time is fixed.

C H A P T E R 4. EXPERIMENTAL EVALUATION 84

Similarly, since the runtime of a SPECjbb2000 workload is constant, the overhead for

SPECjbb2000 was calculated by measuring the drop in throughput with KOV present.

Each overhead measurement is the average overhead incurred over three consecutive runs

of each workload calculated using arithmetic mean.

Overhead measurements presented in Table 4.1 indicate that the cost of performing

an object scan is relatively constant, as is the cost of disabled software instrumentation.

However, the PMU overhead varies slightly between different Apache workloads, and

more significantly when compared against SPECjbb2000. The higher overhead generated

by the PMU for SPECjbb2000 can be attributed to a higher rate of events for a majority

of the five PMU-collected metrics measured in our evaluation.

We present a more detailed analysis of the overhead incurred by measuring each of

the five metrics individually in Table 4.2. Because the overhead of monitoring each

metric separately is very small, the ApacheBench workload was extended to run for

50,000 requests, instead of 5,000, and the SURGE workload was extended to run for 600

seconds, rather than 60. The SPECjbb2000 workload could not be extended to run for

a longer period of time, however SPECjbb2000 measures its throughput very accurately

(in tens of thousands of operations per second), and thus a noticeable difference was

still present for different overhead measurements. Table 4.2 also shows the overhead of

using the PMU to simultaneously measure all five metrics, similarly to the result shown

in Table 4.1. This result is shown because it measures the overhead for the extended

workloads.

Overhead generated by the PMU is the result of monitoring the following metrics:

1. successful lock acquisition rate,

2. spin lock contention,

3. branch misprediction rate,

4. TLB miss rate, and

CHAPTER 4. EXPERIMENTAL EVALUATION 85

Table 4.2: Overhead of using PMU to monitor five metrics for each workload

Workload

ApacheBench

SURGE

SPECjbb2000

Average

Successful lock

acquisition rate

(%)

0.35

0.37

0.68

0.47

Spin lock

contention

(%)

0.45

0.34

0.86

0.55

Branch mis-

-prediction rate

(%)

0.29

0.24

0.28

0.27

TLB miss

rate

(%)

0.35

0.28

1.20

0.61

IPC

(%)

0.19

0.20

0.24

0.21

Simult.

(%)

1.20

1.01

2.97

1.73

5. IPC.

Table 4.2 shows that on average, IPC, lock contention and TLB miss rates are higher

for SPECjbb2000 than for any Apache workload. The higher rate of events generated by

the PMU translates to more interrupts being handled by the system, which is directly

proportional to overhead.

It should be noted that measuring each of the five metrics separately with the PMU

incurs a total of 2.11 % overhead on average, whereas measuring all five metrics simul­

taneously incurs only 1.73 % overhead on average. The 0.38 % higher overhead for five

metrics measured separately results from the need to count the number of retired instruc­

tions four times, when monitoring successful lock acquisition rate, spin lock contention,

TLB miss rate, and IPC. When measuring all five metrics simultaneously, the number of

retired instructions is only counted once, hence the lower combined overhead generated

by the PMU.

In addition to a detailed breakdown of the overhead incurred by the PMU, we also

show in Table 4.3 a breakdown of the overhead incurred by disabled software instrumenta­

tion and KOV. Overhead generated by the presence of disabled software instrumentation

in our prototype consists of:

1. object invocation instrumentation, and

C H A P T E R 4. EXPERIMENTAL EVALUATION 86

Table 4.3: Overhead of disabled software instrumentation per workload

Workload

ApacheBench

SURGE

SPECjbb2000

Average

Object Invocations (%)

2.28

2.11

2.17

2.19

Sleep locks (%)

<0.01

<0.01

<0.01

<0.01

2. sleep locks instrumentation.

The presence of software instrumentation within the system causes overhead, whether it

is enabled or disabled. The results in Section 4.2 incorporate the overhead of disabled

software instrumentation which can monitor object invocations and sleep locks when

enabled. Overhead for each type of software instrumentation was measured by performing

the aforementioned three consecutive runs on three different versions of the binary. The

first binary contained no software instrumentation, the second binary only contained

instrumentation to monitor object invocations, whereas the third binary only contained

instrumentation to monitor sleep locks. The difference in performance runs for the first

and second binary expose the overhead of object invocation instrumentation, and the

difference in performance runs for the first and third binary expose the overhead of sleep

locks instrumentation.

Table 4.3 shows the overhead incurred by each type of disabled software instrumen­

tation when measured for Apache and SPECjbb2000 workloads. Recall that instrumen­

tation to monitor object invocations modified the DREF macro, and instrumentation

to monitor sleep locks modified the BlockedThreadQueues class (please refer to Section

3.2.1). The overhead measurements indicate that instrumentation designed to monitor

sleep locks incurs negligible overhead (below 0.01 %). The reason for such a negligible con­

tribution results from the implementation of sleep locks. The sleep locks instrumentation

is only executed when a sleep lock is acquired, or released, not during normal execution

CHAPTER 4. EXPERIMENTAL EVALUATION 87

Table 4.4: Overhead of software instrumentation on normal execution

Code Instrumented

DREF macro

BlockedThreadQueues

Overhead when disabled(%)

51.4

2.3

Overhead when enabled (%)

250.5

10.5

in or outside the critical section. In addition, sleep locks instrumentation, when disabled,

only executes a single if-statement on top of the original sequence of instructions to deter­

mine whether logging should be performed. Contrary to this, instrumentation designed

to monitor object invocations is used frequently, and even when disabled executes at

least one function call and if-statement. The function call is necessary to access the en­

able flag for this instrumentation, because the flag is not present in the object using the

DREF macro. A more detailed breakdown of the overhead of software instrumentation

on normal execution of the DREF macro and BlockedThreadQueues class is shown in

Table 4.4.

The overhead shown in Table 4.4 shows the overhead of software instrumentation on

execution time of the DREF macro and the BlockedThreadQueues class when ran repeat­

edly inside a loop. Each loop was iterated 1 million times to generate enough variation

in execution time between the instrumented and uninstrumented runs. The significantly

higher cost of software instrumentation in the DREF macro contributes to the higher

overhead for object invocation instrumentation shown in Table 4.3. The notably higher

cost of enabled instrumentation within the DREF macro than BlockedThreadQueues

class is due to the simplicity of the DREF macro's original implementation. By default

the DREF macro performs only one function call. When DREF instrumentation is en­

abled, there is an additional function call, for a total of two, being executed to save the

object pointer, which constitute a significantly higher percentage of the original execu­

tion time than for the BlockedThreadQueues class (which originally performs a hash and

calls several functions within each instrumented method).

CHAPTER 4. EXPERIMENTAL EVALUATION 88

Table 4.5: Overhead of performing actions and data traffic within KOV

Workload

ApacheBench

SURGE

SPECjbb2000

Average

Processes and Objects (%)

Action

0.10

0.10

0.15

0.12

Data Traffic

0.16

0.13

0.20

0.16

Object State (%)

Action

0.74

0.77

0.77

0.76

Data Traffic

1.13

1.22

1.19

1.18

PMU

Action

1.20

1.01

2.97

1.73

Data Traffic

0.38

0.33

0.55

0.42

Finally, KOV incurs overhead by passing data and performing periodic object scans

of the system. Data passed include results gathered from the PMU, and the following

two tasks performed during an object scan:

1. obtaining a list of live processes and extracting objects from the GTT, and

2. obtaining state information from all the objects.

Table 4.5 shows overhead for performing each task required for the object scan and

using the PMU, separated into the overhead incurred by gathering data by the KM

(Action column), and the transfer of data from the KM to the GUI (Data Traffic column).

The values for the PMU in the Action column are the same as in Table 4.2 (Simult.

column), but have been added to this table for completeness. The period with which the

object scan was repeated is five seconds. These results for each overhead measurement

were obtained by comparing the performance of extended workloads, similarly to the

extended workloads used to measure the overhead of each PMU metric.

The overhead of performing each action separately, and moving the generated data,

was measured by using different binaries. A different version of the binary was used

to specify whether data should, or should not be passed back to the GUI from each of

the actions shown in Table 4.5. Overhead shown in the 'Action' column of the PMU is

identical to the overhead measurement for the PMU from Table 4.2.

CHAPTER 4. EXPERIMENTAL EVALUATION 89

4.3.1 Sampling Frequency

Many of the results presented in this Chapter were obtained by using the PMU. A critical

parameter when configuring the PMU is the counter threshold value which determines

the sampling frequency used. Sampling frequency affects the accuracy of statistical sam­

pling, and it affects the overhead associated with using the PMU. In this section, we

present an exploration of various PMU sampling frequencies, and study their affects on

the accuracy of our results and the overhead associated with performance monitoring.

Before we discuss the results, a short overview of the trade-off of sampling frequency and

measurement overhead is given.

In essence, the trade-off between sampling frequency and measurement overhead can

be summarized into one point. A lower sampling frequency generates results with lower

accuracy, but also introduces less overhead. Conversely, a higher sampling frequency

generates results with greater accuracy, but also introduces more overhead.

The link between sampling frequency and measurement accuracy can be explained

by referring to the Nyquist frequency (please refer to Section 2.1.2). Effectively, as the

sampling frequency of the PMU decreases, so does the range of frequencies of events the

PMU is capable of detecting.

Ideally, one would configure the PMU to the maximum sampling frequency and there­

fore capture all available events; however, a higher sampling frequency translates to a

greater number of PMU interrupts. Each PMU interrupt not only stops the execution of

the currently running program, but also executes the instructions of an interrupt service

routine. These actions delay the execution of the main program, and thus lengthen its

total execution time. Consequently, a greater incidence of interrupts means a longer

execution time for the main program, and thus greater measurement overhead.

Figure 4.8 shows a per-object breakdown of lock contention when running ApacheBench

with 5000 total requests and a concurrency level of 50. The three windows show the re­

sults obtained using different PMU counter thresholds. The three window show, from

C H A P T E R 4. EXPERIMENTAL EVALUATION 90

sp

%
9

*%£«. "ireamTT 1Wi3»33&

feGvsta^sv 1C-£t«iGG9l!>

B fE*r-yal«iC»»' irEl&OQfiJQ

irrrr>«Ki

IGO!0flt!22-

i&rissm

IQOIOGCSOSG

; I p m&V2i!mK*2Rml?% •

ifpswVf' fg6Li«*6*S •

fis&issfsj -

rreeura&f̂ «

im.xmf$ -

"(«*«&#§ ~

"i*etiw>*s -

r**Utf#f'$ -

•1001

• 10J1

- 1001

- 1081

•KW!

. i09i

- mi

- *.<m

mam

zkim I: fCMCwnputation:

m

i i W f r B u f f w i

fw i f f 1 ^ ww m is* *&•

I: FCMCanputaftra

" 1 I 1 w n,rJ AM 800U& WilWSWiilfeiO
' F M » &•,«*,#* * « 9QQW Ofil
* l . * i I lAi>l,V^K1C«0lB^
1 1) j * , t «WWS*C1U») iO

t hi-* 4(* 1?* I »*,[M« ^ I * * 1

-* J V * text »<• *wu* i« i iGaa 'yu

1 H fe! kM/~t.rn 9CK»aaun3uy;! !d
11 L * 3a ttuttytt£i<i6&K*l!
1* P Mt^tiWM * « t &** «&!3 AW

11 f M an* # iter SS436900KK)301-*3
1 f M l * t * i t * * * SWJO&SCtilUUW/JfcE!
1 Ffr « • * * » # * few> eecoiuOG. U

« 6 * y W <•$ H £«*W*f10COI0 0

9 J! iMi t^««Vt. *«y<lJ(WlO00^jJ

l i ff" HV« et*tX^t£t ntUCdC

1* fMk»**>jjl *jOOOCsWlMl11rtiJ

rT»5T

i r t i ranrww'M'w igwi rw '

I: Pii)CDssR8p!iC3teii::Root"

J.1JI

J i^^-^ '«n^tg^r^M i ! i r t r '^* ,*a i W"w".

Figure 4.8: Lock contention on a per-object basis using different PMU counter thresholds

when measured for the first run of ApacheBench on the Apache webserver. From top to

bottom: 10k, 100k, and 1M per one sample. ApacheBench was configured to generate a

request concurrency of 50 and a total of 5000 requests.

C H A P T E R 4. EXPERIMENTAL EVALUATION 91

top to bottom, results obtained with the highest sampling frequency (lowest threshold),

medium sampling frequency (medium threshold), and low sampling frequency (highest

threshold). From the figure we can see that the highest lock contention is attributed

to the same set of objects for the high and medium sampling frequencies. For exam­

ple, in the former case FCMComputation is attributed with 47.05 % of total contention,

whereas in the latter, FCMComputation is attributed with only 33.06 % of total con­

tention. The relationship between the objects attributed with the highest lock contention

also remains the same for the high and medium sampling frequencies. For example, if

one were to choose the objects with the highest lock contention to optimize, the choice

across both sampling frequencies remains the same. More specifically, FCMComputa­

tion, ProcessReplicated::Root, and two LinuxSockets (differentiated by their object ID)

are the highest contributors to lock contention in both cases.

Under the smallest sampling frequency (bottom display window of Figure 4.8) the data

is no longer representative of the system. Some of the objects with high lock contention

detected using higher sampling frequencies are not shown (e.g. LinuxSock), and the

relationship between the objects is not similar to that obtained using a higher sampling

frequency. Consequently, using a low sampling frequency does not provide representative

information on the system.

Since performance overhead is directly proportional to the interrupt overhead gener­

ated by individual HPCs, it is intuitive then that the smallest sampling frequency that

still provides meaningful information on the system should be chosen for monitoring. As

such, a sampling threshold of 100,000 was chosen to monitor spin lock contention.

A similar study was done for other PMU events, and the counter thresholds we decided

to use, including the spin lock contention threshold, were set as follows:

1. successful lock acquisition rate - 100,000

2. spin lock contention - 100,000

CHAPTER 4. EXPERIMENTAL EVALUATION 92

3. branch misprediction rate - 10,000,000 for predicted and mispredicted branches

4. TLB miss rate - 100,000 for instruction and data TLB misses

5. IPC - 10,000,000 for instructions and 100,000,000 for cycles

We have shown the overhead KOV induces on the system during monitoring and the

decision process we used to pick our PMU configuration parameters. We will conclude

this chapter by discussing the micro-benchmarks we used to validate the correctness of

our measurement results.

4.4 Correctness of Measurements

The validity of the results gathered using KOV's performance monitoring capabilities

was tested using hand-written micro-benchmarks. Since monitoring information on the

system is gathered by using the PMU and software instrumentation, we will discuss the

micro-benchmarks used to validate each of these separately.

4.4.1 PMU

The validity of individual performance configurations of the PMU was tested using hand

written micro-benchmarks for each of the five metrics used in the previous sections, which

include:

1. successful lock acquisition rate,

2. spin lock contention,

3. branch misprediction rate,

4. TLB miss rate, and

5. IPC.

C H A P T E R 4. EXPERIMENTAL EVALUATION 93

The lock acquisition rate is measured by counting the number of successfully exe­

cuted store-conditional instructions. To test correct counting we inserted an assembly

block with a loop containing all the instructions that are necessary to implement a spin

lock, including the load-linked, test-and-set, and store-conditional instructions. The con­

ditional branch that usually follows the above sequence and would execute the locking

instructions indefinitely was replaced with a conditional branch based on a loop index.

Two types of tests were performed using the above code. The first test involved setting

the test-and-set condition such that it is always false, and thus the store-conditional never

executes. The second test involved setting the test-and-set condition such that it is always

true so that the store-conditional always executes. No other threads were ran in parallel

when testing to ensure that the store-conditional is not affected by other store instructions

being executed in parallel By varying the loop limit as well as the sampling frequency, the

number of obtained data samples was verified against the expected number of samples.

In addition, since the interrupt routine extracts the local object pointer, the micro-

benchmark used object-oriented programming. Subsequently, the interrupt extracted

object pointer was compared against the benchmark's object pointer for correctness. The

micro-benchmark used to validate lock acquisition rate measurements was very similar

to the one used to validate lock contention measurements.

Lock contention is measured by counting the number of executed load-linked instruc­

tions. Similarly to measuring the lock acquisition rate, an assembly block was used to

insert locking instructions within an indexed loop. Because the load-linked instruction

always executes, whereas the store-conditional does not, only one test was necessary to

validate the measurements. Thus, by varying the loop limit as well as the sampling fre­

quency, the number of obtained data samples was verified against the expected number

of samples.

The branch misprediction rate is measured by counting the number of predicted and

mispredicted branches. We used manually inserted branch prediction hints to validate

CHAPTER 4. EXPERIMENTAL EVALUATION 94

our measurements. Our micro-benchmark contains an indexed loop, where we hinted

the backwards branch in the looping structure as not taken. Since a backwards branch

is not taken only when exiting the loop, and the typical branch predictor will predict a

backwards branch as taken, we can vary the number of mispredicted branches by setting

the loop limit. Predicted branches were counted by setting the branch hint to indicate

that the backwards branch is always taken, and similarly varying the number of predicted

branches by setting the loop limit.

The TLB miss rate is measured by counting the amount of TLB misses caused by

fetching instructions and reading and storing data. The PowerPC 970FX, the processor

used to evaluate our tool, has a 1024-entry, 4-way set associative TLB, with a Least-

Recently Used (LRU) page replacement policy and uses 4KB memory pages [23]. The

easiest way to simplify the behaviour of the TLB is to generate a series of sequential

accesses that has no page reuse, because then the page replacement policy and set asso­

ciativity do not matter. To achieve this, we designed a micro-benchmark which performs

a series of 4KB memory allocations, and subsequently performs a read and write oper­

ation to that region of memory. The above operations are contained within an indexed

loop. Therefore, each iteration of the loop will cause one TLB miss. By varying the loop

limit as well as the sampling frequency, the number of obtained data samples was verified

against the expected number of samples.

IPC is measured by counting the number of completed instructions and completed

processor cycles. We validated our measurements for the number of processor cycles

without the aid of a micro-benchmark. Given that the clock speed of the PowerPC

970FX is equal to 2.3 GHz [23], one second of measurement of the system was verified

against the expected number of samples which should be equivalent to 2.3 Giga cycles.

Before we elaborate on the micro-benchmark we used to validate our measurements of

completed instructions, we will give a brief explanation of PowerPC 970FX processor's

architecture.

C H A P T E R 4. EXPERIMENTAL EVALUATION 95

The PowerPC 970FX processor contains ten execution pipelines, and can maintain

a maximum of 215 instructions in various stages of execution across all of its pipelines

at any given time [23]. Logic within the processor will attempt to extract maximum

instruction-level parallelism (ILP) by considering data dependencies, branch prediction,

etc., with the goal of filling all ten pipelines with instructions. Since the goal of our

micro-benchmark is to obtain an accurate count of completed instructions, the micro-

benchmark must contain no ILP that the processor can detect, so that the processor will

retire one instruction per one processor cycle (IPC of one). To ensure an IPC of one,

the micro-benchmark must also cause no processor stalls, which can be caused by cache

misses, or branch mispredictions.

Based on the above analysis, we constructed a micro-benchmark which consists of

arithmetic operations contained within an indexed loop. The result of each individual

arithmetic operation is used as input into the following arithmetic operation. There­

fore there are direct data dependencies between all the arithmetic instructions between

consecutive loop iterations.

The arithmetic-logic unit (ALU) can forward the result of one ALU operation to the

input of another ALU operation without using the cache at all (called forwarding). By

strictly using arithmetic operations (adds) no stalls will result from memory accesses. In

addition, since all the instructions are within a loop, backwards branches are predicted

as taken and therefore no stalls will be introduced by branch mispredictions. We used

this micro-benchmark to validate our measurements, and monitored the system to obtain

an IPC of one.

We have discussed the set of micro-benchmarks we used to validate our performance

results gathered using the PMU. The next section will describe the micro-benchmarks

we used to validate our software instrumentation.

CHAPTER 4. EXPERIMENTAL EVALUATION 96

4.4.2 Software Instrumentation

The performance monitoring capabilities of KOV include monitoring sleep locks, and

counting object invocations. Instrumentation of sleep locks counts the number of threads

that add and remove themselves from a queue, as well as the thread identifications

numbers (IDs) which perform these operations. We verified the correctness of our sleep

lock instrumentation by first instantiating a single BlockedThreadQueues object (please

refer to Section 3.2.1) within our micro-benchmark and then creating a number of threads

which add and remove themselves from a queue using the BlockedThreadQueues object.

We verified the correctness of our sleep locks instrumentation while varying the order in

which the threads add and remove themselves from the queue, and the total number of

threads and their IDs.

Instrumentation of object invocations counts the number of invocations by logging

all clustered object identification numbers passed to the DREF macro (please refer to

Chapter 3.2.1). Correctness was verified by creating several clustered objects and invok­

ing them within an indexed loop. The identification number of each clustered object,

which is known to the micro-benchmark, was verified against the log obtained from DREF

during the run of the micro-benchmark. By varying the amount of clustered objects used,

the loop size, and the order in which the objects use the DREF macro, we verified the

correctness of our instrumentation.

Chapter 5

Concluding Remarks

We presented the design and implementation of the Kernel Object Viewer (KOV), an

object-oriented monitoring system which:

1. combines hardware-level and software-level monitoring capabilities,

2. simultaneously monitors user-level and kernel-level software components,

3. can attribute performance bottlenecks to specific object-level code segments, and

4. provides sophisticated visualization support to aid in system performance debug­

ging.

Our design goals were to create a tool which could aid programmers and operating

systems designers in performance analysis and identifying bottlenecks. Towards this end,

we have shown how KOV can be used to analyze the performance of different applications

on the K42 operating system. We demonstrated how KOV can be used to accurately

identify a performance bottleneck and subsequently identify the cause of that bottleneck.

We also showed how KOV can be used to ease qualitative and quantitative analysis of a

running application and the underlying system substrate.

In this dissertation we make three primary contributions. First, we describe a system

that dynamically tracks important performance metrics using Hardware Performance

97

C H A P T E R 5. CONCLUDING REMARKS 98

Counters:

1. at object instance-level granularity,

2. requiring no changes to the code,

3. adding no overhead when monitoring is not required, and

4. allowing monitoring overhead to be varied by dynamically changing the sampling

frequency.

The second contribution is a comprehensive, system-wide scanning facility which extracts

all live processes and their objects. The third contribution is a novel mechanism to track

lock acquisitions and contention in a way that requires no changes to the code.

During the course of development of KOV we encountered many obstacles and chal­

lenges. Several of them were conceptual, whereas others were implementation details. In

the following section we discuss the lessons we learned by developing KOV.

5.1 Lessons Learned

Throughout KOV's development we encountered three main problems. The first problem

concerned visualization. Essentially, the list of live processes and their objects, composed

of potentially thousands of objects had to be represented in a concise and legible fashion.

The second problem was to design a method which could extract all live processes and

their objects in a general way. Since there can be hundreds of Clustered Object classes,

the technique we used had to be able to scan them all without knowing what each

object class implements explicitly. The third problem concerned the technique with

which we would obtain the performance monitoring data. The technique had to be able

to attribute performance measurements to object instances (since K42 is object oriented),

and secondly it had to be dynamic to incur no overhead when not in use such that it

could be usable in real systems.

C H A P T E R 5. CONCLUDING REMARKS 99

r

To solve the visualization problem, we decided that the tree approach would be a

suitable method of visualization because it introduces levels of abstraction by design. For

example, the root of the tree is the machine name, the first level shows all the processes

running on that machine, the second level shows high level objects like the memory

manager, memory regions, and so on, where eventually the leafs show file representatives,

and individual memory segments.

To extract the list of live processes and their objects, we considered several approaches.

Initial approaches to extract this information revolved around the Process object. The

Process object keeps track of the memory manager, memory regions, and the hardware

address translator (HAT) for a particular process. As such it appeared a suitable choice

because once the memory manager, memory regions, and HAT were obtained, they them­

selves would reference further objects, such as file representatives, and more. However,

quite quickly we realized that some objects in a process' address space cannot be reached

by looking at the Process object alone. For example, references to globally accessible

kernel objects are stored in static variables of the Clustered Object Manager, and thus

other classes do not need to store them explicitly. At that point, we considered including

the Clustered Object Manager in our scan along side the Process object, but very soon

the list of objects we'd have to scan explicitly kept growing. In addition, we also would

have had to include file system nodes, network sockets, and many more objects. Eventu­

ally, we decided that this approach was not only tedious, but also error prone. We could

not guarantee that all objects were included in the scan without performing exhaustive

analysis. Even if the analysis was made, and all the relevant objects were found, once

K42 was modified in any way and new Clustered Objects were added, the scan results

would become invalid.

To overcome this obstacle, we studied K42's implementation in great detail. Even­

tually, we discovered that the Global Translation Table (GTT) (please refer to Section

2.4.2) contains a reference to the Root object of every Clustered Object. Using the Root

CHAPTER 5. CONCLUDING REMARKS 100

object, subsequent Representative objects could be found by consulting Local Transla­

tion Tables on each processor. This approach essentially solved all of the problems we

had with the previous technique because reading the GTT provides the scan with all

Clustered Objects. By K42's design, all new Clustered Objects have to register with the

GTT.

The last major problem we encountered required KOV to acquire performance mon­

itoring data dynamically at object granularity. Towards this end we utilized Hardware

Performance Counters (HPCs), which were used extensively and expanded upon by Az-

imi et al to include multiplexing support that overcame previous hardware limitations

associated with using HPCs. Our further work with HPCs lead to the development of

our own interrupt service routine which extracted the object pointer needed to trace back

performance measurements to object instances. By taking advantage of C++ convention,

we designed a stack walk routine to read the context object pointer from the interrupted

program's stack.

Inadvertently, as a direct consequence of our implementation, we realized that our

performance measurement technique could be extended to measure spin lock contention

dynamically. Since the implementation of atomic memory operations is composed of a

unique sequence of instructions, such as the load-linked and store-conditional instruc­

tions, the next goal became to configure the Performance Monitoring Unit (PMU) prop­

erly. Further in-depth study of the PMU and its architecture resulted in the measurement

technique we described in Section 3.2.1.

5.2 Future Work

The system presented in this dissertation can track performance at object instance-level

granularity and graphically display the information that was gathered. However, ulti­

mately we envision a tool capable of utilizing the performance data gathered to automati-

CHAPTER 5. CONCLUDING REMARKS 101

cally optimize the system and relieve performance bottlenecks. As previously mentioned,

K42 allows for a distributed implementation of its services as part of the Clustered Ob­

jects design paradigm. Distributed implementations can offer better scalability, but they

also typically suffer greater overheads when scalability is not required. Distributed im­

plementations also tend to optimize certain operations, improving their scalability, while

increasing costs of other operations. In order to provide a means for coping with the

tradeoffs of using distributed implementations, K42 enables hot-swapping, a technique

for dynamically replacing a live Clustered Object instance with a different, but compati­

ble, instance [8]. This mechanism can be used to switch between shared and distributed

implementations and additionally enable other forms of dynamic adaptation. Future

work on KOV will focus on utilizing K42's hot-swapping capabilities aimed at optimizing

performance on a per-object basis.

Bibliography

[1] ApacheBench. http://www.apache.org.

[2] SPECjbb 2000. http://www.spec.org/jbb2000/.

[3] D. H. Ahn and J. S. Vetter. Scalable analysis techniques for microprocessor
performance counter metrics. In Proceedings of the ACM/IEEE Conference on
Supercomputing (SC'02), pages 1-16, November 2002.

[4] AMD. Athlon processor x86 code optimization guide. Technical report,
http://www.amd.com/us-
en/assets/content_type/white_papers_and_tech_docs/22007.pdf.

[5] J. Appavoo. Clustered Objects. PhD thesis, University of Toronto, 2005.

[6] J. Appavoo, M. Auslander, D. Edelsohn, D. M. Da Silva, O. Krieger,
M. Ostrowski, B. Rosenburg, R. W. Wisniewski, and J. Xenidis. Providing a linux
api on the scalable k42 kernel. In Proceedings of the USE NIX Annual Technical
Conference (USENIX'03), pages 323-336, June 2003.

[7] J. Appavoo, M. Auslander, D. M. Da Silva, D. Edelsohn, O. Krieger,
M. Ostrowski, B. Rosenburg, R. W. Wisniewski, and J. Xenidis. K42's
performance monitoring and tracing infrastructure. Technical report, IBM,
http://www.research.ibm.com/K42/white-papers/PerfMon.pdf, August 2002.

[8] J. Appavoo, K. Hui, C. A. N. Soules, R. W. Wisniewski, D. M. Da Silva,
O. Krieger, M. A. Auslander, D. J. Edelsohn, B. Gamsa, G. R. Ganger,
P. McKenney, M. Ostrowski, B. Rosenburg, M. Stumm, and J. Xenidis. Enabling
autonomic behavior in systems software with hot swapping. IBM Systems Journal,
42(l):60-76, January 2003.

[9] J. Appavoo, K. Hui, M. Stumm, R. Wisniewski, D. M. Da Silva, O. Krieger, and
C. Soules. An infrastructure for multiprocessor run-time adaptation. In
Proceedings of the 1st Workshop on Self-Healing Systems (WOSS'02), pages 3-8,
November 2002.

[10] M. Auslander, H. Franke, B. Gamsa, O. Krieger, and M. Stumm. Customization
lite. In Proceedings of the 6th Workshop on Hot Topics in Operating Systems
(HotOS'97), pages 43-48, May 1997.

102

http://www.apache.org
http://www.spec.org/jbb2000/
http://www.amd.com/us-
http://www.research.ibm.com/K42/white-papers/PerfMon.pdf

BIBLIOGRAPHY 103

[11] R. Azimi, M. Stumm, and R. W. Wisniewski. Online performance analysis by
statistical sampling of microprocessor performance counters. In Proceedings of the
19th Annual International Conference on Supercomputing (ICS'05), pages 101-110,
June 2005.

[12] P. Barford and M. Crovella. Generating representative web workloads for network
and server performance evaluation. In Proceedings of the ACM Conference on
Measurement and Modeling of Computer Systems (SIGMETRICS'98), pages
151-160, June 1998.

[13] A. Baumann, J. Appavoo, D. M. Da Silva, O. Krieger, and R. W. Wisniewski.
Improving operating system availability with dynamic update. In Proceedings of
the 1st Workshop on Operating System and Architectural Support for the
On-Demand IT Infrastructure (OASIS'04), pages 21-27, October 2004.

[14] S. Browne, J. Dongarra, N. Garner, K. London, and P. Mucci. A scalable
cross-platform infrastructure for application performance tuning using hardware
counters. In Proceedings of the ACM/IEEE Conference on Supercomputing
(SC'OO), November 2000.

[15] R. Bryant and J. Hawkes. Lockmeter: Highly-informative instrumentation for spin
locks in the Linux kernel. In Proceedings of the J^th Annual Linux Showcase and
Conference, pages 271-282, October 2000.

[16] B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal. Dynamic instrumentation of
production systems. In Proceedings of the USENIX Annual Technical Conference
(USENIX'04), pages 15-28, June 2004.

[17] IBM Corporation. The power4 processor introduction and tuning guide. Technical
report, http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg247041.pdf.

[18] Intel Corporation. Intel itanium 2 reference manual for software development and
optimization. Technical report,
http://www.intel.com/design/itanium2/manuals/251110.htm.

[19] E. Duesterwald, C. Cascaval, and S. Dwarkadas. Characterizing and predicting
program behavior and its variability. In Proceedings of the 12th International
Conference on Parallel Architecture and Compilation Techniques (PACT'03),
pages 220-231, December 2003.

[20] Y. Etsion, D. Tsafrir, S. Kirkpatrick, and D. G. Feitelson. Fine grained kernel
logging with klogger: Experience and insights. In Proceedings of the European
Conference on Computer Systems (EuroSys'07), pages 259-272, March 2007.

[21] J. Fenlason. GNU gprof SunOS 5.8 : Man pages, January 29 1993.

[22] B. Gamsa, O. Krieger, J. Appavoo, and M. Stumm. Tornado: maximizing locality
and concurrency in a shared memory multiprocessor operating system. In

http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg247041.pdf
http://www.intel.com/design/itanium2/manuals/251110.htm

BIBLIOGRAPHY 104

Proceedings of the 3rd USENIX Symposium on Operating Systems Design and
Implementation (OSDI'99), pages 87-100, February 1999.

[23] IBM. PowerPC 970FX User Manual. December 2005.

[24] Tavant Technologies Inc. InfraRED: Opensource J2EE Performance Monitoring
Tool, http://infrared.sourceforge.net/versions/latest/, May 17 2006.

[25] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J. M. Loingtier,
and J. Irwin. Aspect-oriented programming. In Proceedings of the European
Conference on Object-Oriented Programming (ECOOP'97), pages 220-242, June
1997.

[26] O. Krieger, M. Auslander, B. Rosenburg, R. W. Wisniewski, J. Xenidis, D. M. Da
Silva, M. Ostrowski, J. Appavoo, M. Butrico, M. Mergen, A. Waterland, and
V. Uhlig. K42: Building a complete operating system. In Proceedings of the
European Conference on Computer Systems (EuroSys'06), pages 133-145, April
2006.

[27] LivePerf. Application Performance Monitoring Tool.
http://www.sharewareconnection.com/liveperf.htm, 2008.

[28] Microsoft. Microsoft Windows XP: System Monitor overview.
http://lbl.www.ms.akadns.net/resources/documentation/windows/xp/all/proddocs
us/sag_mpmonperf_01.mspx?mfr=true.

[29] J. C. Mogul. Emergent (mis)behavior vs. complex systems. In Proceedings of the
European Conference on Computer Systems (EuroSys '06), pages 293-304, April
2006.

[30] M. Olszewski, K. Mierle, A. Czajkowski, and A. Demke Brown. JIT
instrumentation: A novel approach to dynamically instrument operating systems.
In Proceedings of the European Conference on Computer Systems (EuroSys '07),
pages 3-16, March 2007.

[31] J. Osier. Online Manual on GNU gprof
http://www.cs.utah.edu/dept/old/texinfo/as/gprof.html, 1993.

[32] P. Panchamukhi. Kernel debugging with kprobes: Insert printk's into the linux
kernel on the fly. Technical report, IBM,
http://www.ibm.com/developerworks/library/l-kprobes.html, August 19 2004.

[33] B. M. Posey. Windows Server 2003 Performance Tuning.
http://www.windowsnetworking.com/articles_tutorials/Windows-Server-2003-
Performance-Tuning.html, July
2005.

http://infrared.sourceforge.net/versions/latest/
http://www.sharewareconnection.com/liveperf.htm
http://lbl.www.ms.akadns.net/resources/documentation/windows/xp/all/proddocs
http://www.cs.utah.edu/dept/old/texinfo/as/gprof.html
http://www.ibm.com/developerworks/library/l-kprobes.html
http://www.windowsnetworking.com/articles_tutorials/Windows-Server-2003-

BIBLIOGRAPHY 105

[34] V. Prasad, W. Cohen, F. Eigler, M. Hunt, J. Keniston, and B. Chen. Locating
system problems using dynamic instrumentation. In Proceedings of the 2005
Ottawa Linux Symposium, pages 49-64, July 2005.

[35] Apache HTTP Server Project. Apache HTTP Server Version 1.3 Documentation.
http://httpd.apache.org/docs/L3/.

[36] J. Reinders. VTune Performance Analyzer Essentials: Measurement and Tuning
Techniques for Software Developers. Intel Press, 1st edition, 2005.

[37] B. Ries, R. Anderson, W. Auld, D. Breazeal, K. Callaghan, E. Richards, and
W. Smith. The paragon performance monitoring environment. In Proceedings of
the ACM/IEEE Conference on Supercomputing (SC'93), pages 850-859, November
1993.

[38] D. M. Da Silva, O. Krieger, R. W. Wisniewski, A. Waterland, D. Tarn, and
A. Baumann. K42: an infrastructure for operating system research. In Proceedings
of the ACM SIGOPS Operating Systems Review, pages 34-42, April 2006.

[39] C. A. N. Soules, J. Appavoo, K. Hui, R. W. Wisniewski, D. M. Da Silva, G. R.
Ganger, O. Krieger, M. Stumm, M. Auslander, M. Ostrowski, B. Rosenburg, and
J. Xenidis. System support for online reconfiguration. In Proceedings of the
USENIX Annual Technical Conference (USENIX'03), pages 141-154, July 2003.

[40] B. Sprunt. Pentium 4 performance monitoring features. IEEE Micro Journal,
22(4):72-82, July/Aug 2002.

[41] A. Srivastava and A. Eustace. Atom: A system for building customized program
analysis tools. In Proceedings of the Conference on Programming Languages Design
and Implementation (PLDI'94), pages 196-2005, June 1994.

[42] P. F. Sweeney, M. Hauswirth, B. Cahoon, P. Cheng, A. Diwan, D. Grove, and
M. Hind. Using hardware performance monitors to understand the behavior of Java
applications. In Proceedings of the Conference on Virtual Machine Research and
Technology Symposium (VM'04), pages 57-72, May 2004.

[43] A. Tamches and B. P. Miller. Fine-grained dynamic instrumentation of commodity
operating system kernels. In Proceedings of the 3rd USENIX Symposium on
Operating System Design and Implementation (OSDI'99), pages 117-130, February
1999.

[44] Microsoft TechNet. Windows 2000: Overview of Performance Monitoring.
http://www.microsoft.com/technet/prodtechnol/Windows2000Pro/reskit/part6/
proch27.mspx?mfr=true.

[45] R. W. Wisniewski and B. Rosenburg. Efficient, unified, and scalable performance
monitoring for multiprocessor operating systems. In Proceedings of the ACM/IEEE
Conference on Supercomputing (SC'03), pages 15-21, April 2003.

http://httpd.apache.org/docs/L3/
http://www.microsoft.com/technet/prodtechnol/Windows2000Pro/reskit/part6/

BIBLIOGRAPHY 106

[46] K. Yaghmour and M. R. Dagenais. Measuring and characterizing system behavior
using kernel-level event logging. In Proceedings of the USENIX Annual Technical
Conference (USENIX'00), pages 13-26, June 2000.

