
INTERPOSING ON CALLSIN THE K42 OPERATING SYSTEM

Raymond Fingas

A thesis submitted in conformity with the requirements

for the degree of Master ofApplied Science

Graduate Department of Electrical and Computer Engineering

University of Toronto

© Copyright by Raymond Fingas 2007

Interposing On Calls In The K42 Operating System

Raymond Fingas

Master ofApplied Science

Graduate Department of Electrical and Computer Engineering

University of Toronto

2007

Codeinterposition allows new code to be dynamically inserted into a call path at run time. This

workpresents the design and implementation ofa facility that allows new codeto be inserted

into calls to functions in clustered objects in the K42 operating system. Indirection through

K42’s object translation tables is used as an insertion point. Potential uses include debugging,

performance monitoring, and hot swapping of clustered objects. Performance evaluation shows

that the interposition facility developed has low enough overheadto be suitable for these uses.

i

Acknowledgements

Thanks to my fellow lab members David Tam, Jonathan Appavoo and Reza Azimifortheir

guidance andassistance. Also, thanks to my supervisor, Michael Stumm, for much guidance and

support. Finally, thanks to the students of ece299 in 2005, for providing endless amusement and

distraction.

iti

Table of Contents

ADSHIaCteecseecsesessssensstensecsecssssesscessesesesessesseasseeasacscesesseessceesoesaseescorecsscssenesarsssdesaseesascsusosssassdsassooesaasessuses ti

Acknowledgementssssssscsessssesessesssscsrscessscssssnsssssscscsscessssecssatesssesssecsssessesesssstensssseneassneaeereneseonseesnees iti

Table of Contents 00.0... ccsseesescecsecescserssceaceeeseesesseaeseesessesesasensseeresessenseasseeseeaceeseassaesesrasesesessessuesacsusanssaseseiv

Table of Figurescecssceccecsscecssessseesecetsesseecscsaescecenecceccsceesscasssessecseseasscasssesesesacsasesssosesassesassssasssseessousees vii

Chapter 1

Introduction seooe

1.1 Object-Oriented Code Interpositionccecessesesseseeeceseeseececceceeceeccescesceseenseacencesesaceeeeastaeeeeseeeeeneeasens 3

1.2 Sample Applications of Object Oriented Code Interpositioneeeeeecssersereeseeeceseeaeeeeteesetseeseeat’4

1.2.1 PerformanceMonitoringc.cccesssssessesssssesesseesssscsesecsecseeseenecsesessessesussscseaseaecsecueneeneenenseneeseenenes 5

1.2.2 Hot-Swappingcccssescesccscessceseeneeseeeaseseeseseccscessessansceeeceaenerseseetsanonsenseceasssasenesesossssassaseasonens 5

1.3 Interposition Facility and Arbiters for the K42 Operating System...ececeeeeeseeeeeceeseecseeeseeeneeseees 6

1.4 Interposition Facility Requirements 20.0...eeeeeteeceneeseceeeeeeesscnsesesseesessecesceeessseasssessesseessesseesseeseseeeeees 7

1.5 Structure of Dissertation0.00....sssvsssessvsesvonsvssonssvoessssosssessoussonssosssossnsssssanasisensenssseseusrstesseensensssesenes 8

Chapter 2

Related Work 9

2.1 Precursor to ImterpOSing.....:..... ce eeeeseeeesesseneesseessessesansccecuesseseeesssnssesssssseesesessoseesasseasssssasonessesoeeesensatees 9

2.2 Trampolines 2.00...eeeeeeeeeseceeeeerseteesensesenseeseenaaescessesesstusestinestinnesianeevsnsenenseseene seeenaeeegeeaneneeas 11

2.2.1 Debugger.......cccccssscssessssesencesssssscnccsseeseeseceseecenscenenseessssaeeeseseesetececoceosensseeeeriecssenadessssesecsesasasoass 11

2.2.2 DyMist...cecessccecescssccsneescccsecenecsnnerseceneeesaeenaeronecssecneceneecetsnecsnesccesseseceesecsesssasossesaeesseseseoosees 12

2.2.3 KITLACE oo. eeeeeseseecceecssescenceeceeeecescenesseeeessensenessseaesessesaneaseseessesseesseesseeseneneridcsseusscaseeasseusasssneees 13

2.2.4 DTrace...eeesesseesessceesessonseseconsssecsssssscseseessessssceesessonsssessecssssssessseecesonsseusceuesusccesseasseseseseeeoses 14

2.3 Interposing at Logical Boundaries in Systems .00....0te cesssssssesesesssoresssssssesesseessteeneseeseesesseeentseseesones 15

2.3.1 PC-DOSInterrupt Service Routinescccscscsccssesssssecsscsssecteceecscessestaeeseeeenenecssusteseseecntonseses 15

2.3.2 The Mach Operating System 00.0... eceeceseceeeeecseesseeseesseeeesanseeseesecesseseseeesseessasssesenssssonensesseesees 15

2.3.3 Linux Kernel Modules..0........ccccccccsscssssseeesesseeseesesensenessennasaceeaeeeeacenanecsseueadeccacenaceusreseaeeeues 16

2.4 Extensible Operating Systemsccccssssessesssessenssaseccssesseneeeseccsseceseescceceaseesecesseeaeeeseaseaesassnsseeseensens 18

ZALL SPIN.ccccsccscsssescsssssencsccsssscsecesseeeseseetscesesaccessessscaneeeescescsesnccasoneseeseeacenesseeeesasesseeseateassereaseeesereee 18

Iv

2.4.2 VINO oeeeceecscssssesscesenessonseacensseeseescesseassescesscessanseneccnesesessessesdssrsssessnssssssesdsssssasenssesseoeessatiaseges 19

DAB. KAcccsessssessesecsenseececsensensessesessessssesaescessesesensesucsaseseseesesssessasecessceasscesessnseaceaseesasseeserenensessoaers 20

2.5 Summary of Interposing Techniques...............eeeececessesceeceeseceecescsecsceeeeasensseesesseescesaenseseesesaseseeeessseneeaes 21

Chapter 3

The K42 Operating System 25

3.1 K42’s Object Oriented Structure 220...eeeecceeceeeseesseeeseetesecesceceeceaesaeaeeessseseescesassasseeseessessonsseseasenes 26

3.2 Clustered Object OVELVIEW es eeessceccssseeseeacccseseseesssaceseesesessensesessnessaeeosesesecsaassassacessesessesossonasontons 27

3.3 Implementation of Clustered Objects 0...seeeseeeeeeeeeeeeetaseccneseesesscesseecsassatanssenseeeesesseseacsdeedesseesed 29

3.3.1 Local Translation Tables octeteeseessesseeserseecceeesecsseresececessseeeesceeasenssasesssssssseseassessessussnsaaeeeses 30

3.3.2 Miss Handling...seseseececeeseeceesesseeeesessnsesecacscsesessesessssesseassesssesssossseoncoesasensessastsmsensoesenentes 31

3.3.3 Clustered Object Destruction...ceeseecssssssssesssessensesseesceecseseaesenseeescessssenaeesesneteascaseeececcerettaeee 33

Chapter 4

Design and Implementation 35

A.1 Requirement.......... sec eeceeecsecsesseseeseensenseneneesecncenenseanenceassnsanensenscucsnseacsecsesnsensensaseaceceaccusseensenssnsaneasensaesy® 35

4.2 High Level Design... ssssssssssssssssssccsessssesssesssscsssenseessssssonseessessscsssssesevscssssessessssseesesseesesssssseseoesesas 37

4.2.1 Interposing on a Clustered Object 00... esesessscssesssssssscecescesecesecseceasensenaeseaseneseeeeassseeeseeoesoseaes 39

4.2.2 Role of the ArbiterProxyocceieesccescsceseesrsecsseseeerseescescscescesccaseoesasseesensesseesessersesaseasesseneseeeees42

4.2.3 Intercepting Function Call.secseatonceceseeaceneosceessnessensnatsetaceasesesscsasssenesassessetateeseaseaseaseataase42

4.2.4 Calling the Target Object...cccseesssesceecersesesceecenseceseescenesetstssceeecesseesaesesaeaesaesessssnsoneeaseateaes43

4.2.5 Removing an Arbiter..ssscnssnnssnnsnnusnnunnnuninunnnnusnusnunninusnnneae44

4.3 Design Decisionsccccccscssscscceresscsecsncsesssesenccaceesssaescesceanasecsenaeesesensencenesnaasasaesesaeeceeoeeageceseeneatens 44

4.3.1 Interposing Using Translation Tables...esteseeseesseseseesecsceeceeseeesnsseseateassesseessesseeeeateaesess 44

4.3.2 Role of the ArbiterProxyoe.ssssessesesseeesseeeseesernneans sateseeeteseeseseesesesscasedssevescsseeavasseness 46

4.3.3, Multiple ArbiterProxy Objects with a Single Target ..00.... ce cssscssscsesseseeredeecetsececceseersseoeeentensees 47

4.3.4 Interactions between Multiple Arbiters with a Single Target ec cccessessecsstesseteceseeseceeeseaeeeeees 48

4.3.5 Removing ArbiterS..........:cccseeeeesesessuescecsesesesesesesesesescsusescasacaeseseaeseseaeaesessussesesqeeseueecaeeeteeesers 49

4.3.6 Object Destruction Interactions 00.0...eesescescesseeceseesascaessttseeecsecessseesesssssuaeonsssssseseesnssasoneen 52

4.4 Implementation Details... eeeeecceseserestserecsasssscessecsecesessseessseessoussssesssesscsssseesssssesssssssesssorssesesesensneseseres 53

4.4.1 Arbiters as Clustered Objectsteeeeeeseesceeeeeeeeeeeeeeeeeeeessesecuecsessssessesseseseesseassnesesseeseeseseenses 53

4.4.2 Intercepting and Packaging Untyped Function Calls 00.0. cceesccsssessessssosessesessasenssssensnssseseees 54

4.4.3 Calling a Target Object 0.0... .ccecceceesecseceeeeceesecsseesceceesseeccsccsuseaeesseeaceceesseesarausessescesaesaeeaeeonensenaee 55

4.4.4 Locating an Alternate Stack0.0... ccsscsssscesssesscecesssnatenecnsessesececcecesoesseceasesseecanscessdsecdesseaeenssans 57

4.4.5 Reusing Alternate Stacks0...eseeeessessecccsnsssetsesssesseesstececesseesseeseesaecnessenseceacessensessesnssssosasees 59

4.4.6 Debug Stack Checks on Page Faults...eseeseeeeseeeeesssesseeseeaceassesseeacenenesasateaeeseateaeenensenesasaneaes 62

4.4.7 Removing an Arbiter...ececssescesseeseeeeeseesnescceeceesaeeesesassceaesscaeoeesacsesacessseeseesesaseseeesenseataass63

4.4.8 Changes to R42...cecccsesecseeeseceeeeeessetscceesesscesccecessesseaesecessesscessceseessassesstssasseseessesseseeaeeatsaees 65

4.4.9 Correctness of Concurrent Operation...eessccscescssecenseesecceseeenesseesenssteseeesersacesseseseaeeereasenenaes 65

4.5 Specific Arbiter Implementations...eeeseeceseeeeeeeeeenecsceececceeeecsensersnsaseeccesseressesessdsecsecsussssssoeeness 66

Chapter 5

Evaluation 72

5.1 Fulfillment of Requirement...ceccescecesceecesceseeeeceneseeeseesecseccseesecsaesassassseseeseesoeaonseneasecesessasensons 72

SLA Transparency...cececsccessescssssssssesseesessesscessenseusseussssssssuscessesseussnesesssseeesasssssasseessscssaneseeeseseaes 72

5.1.2 Clustered Object Structure... .ccssssessesscsssessesssesseescssesucscescessesseceacsasenesseeeacesseaeesseneeeacensenss 73

5.1.3 Base OfUse occeeesesseccsssesesscsceeceesscsscesceessaseassnesasseesescsseesenssassnssevacensoasessessensteseasaateessasaeeasees 73

5.1.4 Efficiency ..c.ccscccscssscssessssssssssssssesseessssssseeeens sesessesssssesscsessseatsucsessesacssessssssessessseatsssesacssssseceess 74

5.1.5 Generality and Flexibility 0.0.0eeeeeseesseeceesceeceesceseessessesaeeaeeseeescsosesssonsessnesateneeneesasessonseees 76 .

5.2 Performance Evaluation...eeeeseseesesececeeceeteeteetseesseecensasscaneeeaeoesesesssaesesteneaeaeseseaseesesasssseeeeaeatecers 77

5.2.1 Basic Times...esesesesscsscesesssseccesseseesseceesnecssceseeeceensssessaceaesanssesesseesenscecsssnsesueoneosssansosaesaosnenaes 78

5.2.2 Avoiding Synchronization for Stack ACqQUiSitiON 2.0.0...eeececceseeseeseeneeeaeessseretcnccneeeceeenersaesaes 78

5.2.3 Parameter Saving 0.0... csscsessesssescesseecessecseceseeseeceesenscsecsssesceccceseseseeoessessaeesseeenecaeeaeeeeeesseseneeeats 80

5.2.4 Arbiter Overhead Breakdownann...essssecssessecscecesseaceesessnenecsecsscncensenseasssseaseeesessnsaseeseaeeateates 81

5.2.5 Performance Overhead of Call Counter andBreakpoint Arbiters oo...ccceeeseesesscseeeeeeesaeeeeees 82

Chapter 6

Concluding Remarks . 85

6.1 Lessons Learned... eeseseeesceesecceecesssenscesceseestsaesesensscecsecenseseesceessessasssescenesassasseseaseaeeessnsseesseaesasseesee® 86

6.2 Future Work .00..eeeessescccseeesscsscseesceesseesseaseeeeasnesessecseesscesaseeesseaseessssseeseeccaseneasessesenesesessaseaenssaseeseess 87

Bibliography 88

vi

Table of Figures

Figure 1.1: Two Examples of Interposition 0.00...ee eeseseeseectscecesssseseessssensaseesssessssessacrseeasssassenensssesesesseseres 1

Figure 1.2: Interposing on an Object....... ce ccsssesssscsescssssssssenesssssssscssssenenssssessessssssssassssssesasssseseeeeasssneseceeas 2

Figure 1.3: Hot-Swapping.........csccsssccsccessssseeceseeseecseceeceeseceseesesssenseassssecsesssesseseseecatsausesnssnesesseeraserseedensessoeses 4

Figure 2.1: Linux Kernel Modules and Nooks Reliability Subsystem0...ccssssssssesseeseccensseeseseeeeseneenees 17

Figure 2.2: Interposing Using a Trampoline...ecescsseceeecccceneeeecoeseesasssnssaensonsessneseseeseseesssscsnsssesseoness 22

Figure 2.3: Interposing Using an Indirection Tableoeeeeeceeeeseesscseeeesescssesassacsussessenssessseesesnenaes 23

Figure 3A: Traditional and Object Oriented Operating System Structure...eceseeecceseeeeeeeaereeeaeeees27

Figure 3.2: Logical View of Clustered ODjects:.csssscsssssssscssensssecsessssccessessstetseceacesceeesaeeeeceseessseseatees 27

Figure 3.3: Sample Local Translation Table ..0.........ccccesscsscescescceseseetensesensesasesercaecarsseeeneenecenseeesaecsnssnsensoees 29

Figure 3.4: Sample Global Translation Table 0.0.0.0... .ccsscsssssesscescesseeseeseeseeseseeeeeseeessesnaeecnesavenssaeeenseesensones 32

Figure 3.5: Object Layout with Virtual Function TADIC.....sscsessseeesssecesesseenssseenssneensanes eesaecsueeceecesseesaceuaeeass 32

Figure 4.1: Example Code for ArbiterPassthru...........ccsesceescesscesecsetsecececceeetecsenensesaeesaeesascssossessesscesnssasenes 38

Figure 4.2: Interposing on a Target Clustered Object...eeeseeececeersesesessenesessesansssssssseessessessesenensaeeees 38

Figure 4.3: Layers of Indirection in K42 oo.ceeeeeeseeeersceeseeeeeecsecseeseceeessseesesessessseseessesaasesnataneanees 39

Figure 4.4: Interposing Using Translation Tables 0.0.00... cccccccsssssesssssescsssssessessssssseeeeseseaesassesenessesssaseeeeases 4]

Figure 4.5: Data Involved in a Function Call 0...cceeeessesceceecceeseeeaeeeeneesesseersscesseesenaesateassateeesesseeasees 41

Figure 4.6: Arbiters Package Function Call Data .0..00..ccccscscessssssesseseneseseesesecseccesceeeeecseeseeeseaeteeteaceesesseeaes41

Figure 4.7: Removing an Arbiter from its Target...cecesce seceeereeceeeerseceecsccecessensseussessssassesseseneaeents 42

Figure 4.8: Recursive Scenarios Involving Arbiter...eessseesesceeseeseeseeseeeseesesesseseesssasssesonssssessoessananes 45

Figure 4.9: Failure due to Improper Arbiter Removal of Multiple Arbiters 00.0.0... eeeeceeeeeeeceeeeeeeeeereees 50

Figure 4.10: High Level View of Removing an Arbiter 00.0...cei cesssceeesseseeecenseesecesateaseasatsesseeeseeeeesneess 51

Figure 4.11: Removal Procedure for Multiple Arbiters Interposed on a Single Target 0.0.0.0...eee51

Figure 4.12: Arbiter Class Hierarchy.............:cccccsssessesseescesceescescseseesssasenecaceaeeacsneessenaeessersncsesessereessaesaseasones 53

Figure 4.13: Calling the Arbiter’s Target ..0.00..ccceeeceseneceeeeeeeeeeseeseessesscseceeedeasenenssssisseesessesseeseseutaanaeaes 55

Figure 4.14: Parameters Passed on Stack...csessssscsececsssssssesssseeseessssseeseaseentessessssseceseessessesensasnnaneres 57

Figure 4.15: Lock Free Linked List 0...tet ceessecseccsecseeeecseenecessassessecesseesseseceecaseesecserseenatessessasagesesassroeeees 58

Figure 4.16: Algorithm for Acquiring an Alternate Stack...escsesessssesseeeeeeeenseecsesaseeseeteenseesntessaoseaes 58

Figure 4.17: Alternate Stack with a Recursive Clustered Object...eeeeeceeerseeeeesseseeeeeeesensensesssesseeaees 60

Figure 4.18: Arbiters Sharing an Alternate Stack 0.0.0...eceeseeencssessessceeosecenasessasssssosssassesseensseseanees61

vil

Figure 4.19: Arbiters Sharing the Alternate and Original Stacks...cesses esereceeteceoceeeresersneeeceeseeuenane 61

Figure 4.20: Kernel Stack Layout With Debug Check Information Enabledcssesesseesseseesteetessees 62

Figure 4.21: Removing an Arbiter ccc ccecsessscsscsnsssessncenecsccncesseessesesssesscccceccenserseessesaceceessseeseaeteaeenseess 64

Figure 4.22: Example Code for ArbiterBreakpoint.........cc cscsscessessessceseeresateseseesnattecesseececesetsetseneseoesenscsets 68

Figure 4.23: Example Code for ArbiterCallCountero...eeeceseeseseeseeseteeeeeseesseeccecescesessnesssssosseesenseneaes 69

Figure 4.24: Pseudocode for Hot Swapping Arbiter...escsesccsssceessecceteeteeceeeeceseetaceseeseesseeceestaesasees 70

Figure 5.1: Interposing on a per-Object Basisceseesescesesecessceecesseceeceececcesessaressersaeconsoeereeeenesseouseees 75

Figure 5.2: Times for Interposing and Removing an Arbiter...ccesesceeceececeeeeescecceeceaeeaeenesetssenecesees 79

Figure 5.3: Time to Call an Empty Function With Various Arbiters .00........:.ccccccsessescesceeceeecceateeeeeeeeeeneeceas 719

Figure 5.4: Time to Call an Empty Function Without Synchronization for Stack Acquisition 80

Figure 5.5: Time to Call an Empty Function Without Parameter Savingccsseseessersesesesecsseesoeeenss 81

Figure 5.6: Arbiter Overhead Breakdow2..........ccesscessessesccsscceccsccescedecsseecennseacensenassasesseeteceosenessateeeeeceeaeens 82

Figure 5.7: Time to Call an Atomically Incremented Counter...eeceecceeseeeeeneeeeeseeeeseesensetseeseeseeeees 83

Figure 5.8: Time to Evaluate a Conditional Breakpoint 0.0.0.0... .cscesecsseeeessecenseesetseeseececeasenensaeteateoseosonas 83

vil

Chapter1

Introduction

Code interposition refers to dynamic alteration ofprogram control flow at runtime so that the program

executes code in a way unforeseen at the time the original code was written. Perhaps the best known

application of code interposition is in the context of debuggers, when breakpoints are added to a program

at runtime. When a breakpoint is reached during code execution, controlis passed to code belonging to the

debugger, which in turn may at somelater point pass control back to the original code. Codeinterposition can

be used for many things besides debugging, including performance monitoring, performance optimization,

adaptation and integration of system updates into a running system.

Figure 1.1 shows two examples of code interposition. In the first example, interposed code is used to

augmentoriginal code by adding new functionality. At a particular point in the program,control passes to

interposed code, and when done, the interposed code passes control back to the place in the original code

where the program’s control was intercepted. In the second exampie, interposed code is used to replace

someofthe original code. Whenthe interposed code finishes running, the original code resumes running at

some point after where control was intercepted.

Original with augmented with interposed

code code being code replacing

interposed original code

Figure 1.1: Two Examples of Interposition

Code interposition has been used in a numberofsystemsin the past. For example, in IBM PC-DOS, new

interrupt handlers were interposed by overwriting an entry in the interrupt table with a jumpinstruction to

1

normal function call interposed functioncall

virtual function table virtual function table

interposed
object function calls

 object

Figure 1.2: Interposing on an Object

the new handle and chaining the existing handlers onto the newly inserted handler so that the handlers would

execute in sequence [12]. More recent operating systems, such as Mach, provided support for interposing

on system calls by reflecting the system call back to the application for handling [1]. Some operating

systems, such as SPIN,also support interposing on functions within their kernels. SPIN allowsapplications

to download code into the kernel, and an elaborate mechanism is used to decide at runtime which one

of several functions should be called during execution, depending on the currently running application

[19]. Debugging and tracing systems such as KITrace, DynInst and Sun’s DTrace allow the overwriting

of instructions with “trampolines”that divert the flow of execution so that additional functionality can be

“executed [16, 8, 9].

In a system supporting code interposition, it must be possible to divert the flow of control in a way

that is easy from a software engineering viewpoint, without adding much complexity or overhead. Yet,

interposition can be difficult to implement in practice because it needs to be done transparently to the

original code base. Often, jump instructions are placed at trampoline points, and the interposed code is

required to execute or emulate the replaced instructions before jumping back to the point of interposition.

However, the compiler can remove much information for optimization purposes that would otherwise make

code interposition easier. It can even be difficult to determine what points in a piece of code are safe to

interpose on. For many applications performanceis an issue in that execution of interposed code should not

introduce excessive overhead.

This dissertation describes work on the design, implementation and evaluation ofafacility for interposing

code at object granularity in the context of the K42 research operating system. Before outlining this work

in more detail, an overview of object-oriented code interposition and K42 is presented.

1.1 Object-Oriented Code Interposition

In an object-oriented operating system, where objects have public interfaces that consist solely ofvirtual

functions, codeinterposition on the virtual functions is possible by exploiting the system’s virtual dispatch

infrastructure. Thevirtual dispatch infrastructure allows functions from derived classes to replace functions

with the same namein a base class. Base classes can declare virtual functions that may be superseded in a

derived class or even left unimplemented until the derived class. A per-object virtual functiontable is often

used to locate the correct version of the function specified by the most derived class. The virtual function

table is an array of pointers to functions. Calls to a virtual function of an object are invoked indirectly

by indexing into the virtual function table, then jumping to the function that is pointed to in the table to

complete the call. This is depicted on the left hand side of figure 1.2.

Usingthis object oriented infrastructure, it is possible to implementcodeinterposition at object function

granularity in a straightforward way by overwriting entries in the virtual function table with pointers to

alternate functions. In systems, where objects have interfaces that consist solely of virtual objects, such as

K42, an entire object can be interposed on by replacing all entries in its virtual function table with a set of

pointers to compatible virtual functions belonging to a different object. In that case, calls to the original

object are automatically redirected to the interposed object, as shownin the right handside offigure 1.2.

Comparedto other existing interposition methods, the object oriented approach is very generalin that

it can be used onall objects that are part of the system without requiring specialization for each type of

potential target object. It isn’t limited to interposing only on system calls or only within the OS kernel.

However, the object oriented approach to code interposition can only be applied in a general way ifall

objects use virtual functions in their interfaces.

Object-oriented interposing has an advantage over other methods of interposition. For example,

interposition at the object level allows targeting of a single object instance, as opposedto all objects of

a class. Moreover overhead is incurred only when a method ofan interposed instance is invoked. The

alternative involves inserting instructions directly into program code, which means that the interposed

code is executed each time the function is invoked, regardless for which object instance. If only one object

instance is of interest, then a check has to be made to determine if the code is being run on behalf of that

instance or on behalf of another instance. The overhead of this check is incurred wheneverthe codeis run,

and not just when the correct object instance is being invoked. Object oriented interposing is also safer and

easier to use than some other approaches wheredifficulties can arise if code is interposed in poorly chosen

locations.

1.2 Sample Applications of Object Oriented Code Interposition

This object-oriented approach to code interposition has a numberof uses. For one, it can be used for

debugging purposes. This is done by interposing a debugging object capable ofperforming some debugging

action, such as connecting to a debugger. Codeinterposition can also be used to multiplex calls between

multiple compatible objects to divide calls to a service between multiple objects implementing that service.

Codeinterposition can also be used to perform temporary redirection ofcalls to a different object, to change

the destination of a data stream, or to allow for repair of a failed software or hardware component. Two of

the most exciting applications of interposing are real time performance monitoring and hot-swapping of

stage | stage 2

. >
original original

target > targetetl ET:object —— .
functioncalls 3 function calls object

interposed object

stage 3

pe] original

— target

~~ object
function calls

interposed object

stage 4 stage 5

eeniS

function calls function calls

interposed object

Figure 1.3: Hot-Swapping

objects within a system.

1.2.1 Performance Monitoring

Performance monitoring in real time at fine granularity is a useful application of code interposition.

Whenit is desirable to monitor the performanceofa target object, an object can be interposed onthe target

object that is capable of tracking performance information suchascall frequency orcall duration. Object

interposition allowsthe informationto be tracked with no changesto the code ofthe objects being monitored.

That is, monitoring of the target object can be done completely transparently to the invoking code and

the target object. The interposed object can track each call at a per-object instance granularity, avoiding

global checks, giving it an advantage over non-object-oriented methods of interposing for performance

monitoring.

Interposed objects for monitoring can potentially track many different types ofperformancedata. Simple

objects can track the number of function calls and function call timing. Other performance monitoring

objects could track system statistics such as the numberofpage faults, system calls, or the ratio oftime spent

in user space to time spent executing in the kernel when a particular function was called. By using hardware

counters, interposed objects could give detailed micro-architectural breakdowns of function performance,

such as cache missrates or branch predictor accuracy, as well as reasons for processor pipeline stalls [5].

1.2.2 Hot-Swapping

Anotherapplication ofcode interposition at the object level is hot-swapping, where an object is swapped

out of a running system and replaced with a different object having the sameinterface [11]. Hot-swapping

can be used for various purposes, including dynamic system optimization, online reconfiguration, system

extensions and software updates of live systems. An interposed object be can be used to temporarily block

calls so that a new object can be created, state transferred from the old object, and then the old object

replaced and destroyed, before allowing the blockedcalls to continue.

Figure 1.3 showsthe use of an interposed object during a hot-swap operation. In stage 1, the original

target object is being used normally. In stage 2, an object is interposed that blocks incoming calls to the

target object. After some time,all the calls running in the original target object will have completed, andit

will no longer be in use. At this point, a new target object can be created to replace the old one. The new

target object must have the same interface as the old target object so that it can handle the same function

calls as the old one. After being created, the new target objectis initialized using the state from the oldtarget

object. The old object is then no longer needed and can be destroyed and replaced by the new object, as seen

in stage 3. After the object swapping has been completed,the interposed object allows the functioncalls that

it had blocked to proceed. This is shown in stage 4. In stage 5, the interposed object removesitself and the

system operates normally again, only with the new object instead of the old one.

There are many potential applications of hot-swapping. Some of the exciting ones include dynamic

optimization, where performance monitoring is used to decide which type of object is optimal for managing

a resource underthe current workload, and to switch automatically to that type. As the workload changes,

different objects that better handle the changed conditions can be installed. Online reconfiguration and

system extensions would allow an operating system to change the tasks that it performs, or perform new

tasks without shutting down the system. Software updates of live systems could allow operating system

components to be updated without interrupting the system. This could enable version upgrades or patches

to eliminate security bugs to be applied to a running system.

1.3. Interposition Facility and Arbiters for the K42 Operating System

This dissertation describes the design, implementation and evaluation of an object level interposing

facility for the K42 operating system. K42 is an operating system that uses an object-oriented approach to

achieving goodscalability on large multiprocessors, and in order to benefit from the software engineering

advantages that object-oriented systems have. K42 has an object system thatis tailored to suit these goals.

Objects that are part of the K42 object system are called clustered objects, explained in greater detail

in Chapter 3. The extensive use of objects within the system and the sophisticated object infrastructure

make K42 anideal platform for implementing and evaluating interposition within an operating system and

system libraries. The facility presented interposes on K42 clustered objects and inserts other objects, called

Arbiters, in their place.

Arbiters are objects that can interpose on K42 clustered objects. They are called “Arbiters” because

they are objects that have the ability to arbitrate function calls; that is, they can decide whatactions should

be taken when a function call is made, and decide if the function that was the original target of the call

should be invokedornot.

The facility presented in this dissertation is capable of interposing at object instance granularity,

which meansthat in many scenarios it incurs less overhead than other approaches that modify global code

paths. This is particularly important in the context of K42 where different objects may represent different

resources, or particular instances of a service, delivered only to a specific program. Avoiding global code

paths is particularly poignant on a multiprocessor, where interposing on global code paths may lead to

cache lines bouncing between caches on different processors with attendant degradation of performance.

The specific interposing facility described here only works with K42 clustered objects, although many

of the techniques developed and observations made would apply more generally to other object-oriented

interposing facilities as well.

The interposing infrastructure has been fully implemented, and several Arbiters have been written. The

infrastructure supports the interposition ofArbiters around any K42 clustered object that can be paged out of

memory and the removal ofinterposed Arbiters. Arbiters have been written that count function invocations

and that time function calls. Arbiters that set a breakpoint have also been written. Micro benchmarks have

been used to evaluate the overheads of interposing, and to compare interposing to a traditional debugger

and to static performance instrumentation. These experiments show that the overhead of using Arbiters is

acceptably low in performancesensitive situations.

1.4 Interposition Facility Requirements

In order to be useful, both in general and specifically within the context ofK42, the interposing facility

has a number of requirements. In addition to being able to interpose functionality on objects, the facility

must be transparent so that neither objects that are interposed on, nor callers of those objects need to know

aboutor run different code paths because of any interposition taking place.

The facility must be inexpensive to use. Overhead can come from interposing and removing Arbiters,

and from the overhead that is added to each call to an interposed function. The more expensive these

overheads are, the morelimited the usefulness ofthe facility.

There are also software engineering requirements. It must be relatively easy to write Arbiters. In the

context of K42, this meansthatthe interposition facility must integrate well with the K42 Clustered Object

System.It also meansthat the Arbiters should not require morespecific knowledgeofthe target objects than

is necessary for the function of an Arbiter. For example, an Arbiter to time a function call should not need

manualspecialization for each type of object it can time calls for.

Finally, the interposing facility must be general and flexible. It should have as much coverage in the

operating system as is practical, and should not be limited in the tasks it can perform when interposing.

1.5 Structure of Dissertation

The remainder of this dissertation is structured as follows. Chapter 2 first describes previous work

related to code interposition. Chapter 3 then gives background on K42. Chapter 4describes the design

and implementation of an interposition facility for K42. In Chapter 5, the implementation is evaluated

using micro-benchmarks, and some simple applications for debugging and performance monitoring are

presented. Thedissertation concludes with a discussion of future work, and ofpossible applications of code

interposition as a starting point for higher level operating system features.

Chapter 2

Related Work

A number of systems have used various techniques to interpose code. Static instrumentation is a

precursorto interposition, where source codeis inserted at strategic points in the code before compile time.

Chaining of function calls or handlers is a form of code interposition used in some systems. Other systems

have used the natural boundaries within the system to allow interposing on calls that. cross boundaries,

such as modules or system calls. A more sophisticated technique involves replacing an instruction with a

“trampoline” that transfers control elsewhere to interpose code. Some systems also use runtime systems

to support things such as object orientation or modules, and these systems can also provide a means for

interposing. Each of these approaches to code interposition is discussed in this chapter.

2.1. Precursor to Interposing

Althoughinterposing occurs, by definition, dynamically, the same objectives that interposition addresses

can also often be approachedstatically. This is the case, for example, for instrumentation. Instrumentation

is inserted dynamically if the need to insert it is not anticipated, or for flexibility or cost advantages.If the

need to insert instrumentation is anticipated and the type of instrumentation decided in advance,it can be

addedstatically.

One example ofstatic instrumentation is the commontechnique of inserting printf statements in C

programs in order to aid debugging. These statements are added and removed as the program is being

debugged, and the program is recompiled and run in order to gain insight about exactly what the program

is doing. The insertion of simple counters that are incremented at various places in a program is another

form ofstatic instrumentation. This technique is used extensively in operating systems to count events like

context switches or page faults suffered. Counters are used to collect many of the statistics found in the

Linux/proc filesystem, which provides data about the state of the Linux kernel and user processes. Linux

9

has counters for memory subsystem events, network interface events, a numberofper-process events, and

SO On.

Static instrumentation has several advantages over dynamic approaches that makeit useful in some

situations. First, it is relatively inexpensive for each instance of instrumentation. Often it consists ofjust a

single increment instruction. Another advantageis the ease ofadding static instrumentation. Instrumentation

is inserted in the original source code. As long as the programmer makes sure that the instrumentation is

correct in a logical sense, the compiler will take care of making sure that the instrumentation goesinto the

correct location and doesnot disrupt the program or cause incorrect results.

Static instrumentation also has disadvantages, however. Static instrumentation cannot be added to a

running program; the program needs to be recompiled each time a change is made. Moreover, while static

instrumentation is inexpensive in small amounts, in large amounts it can become expensive. This is a

problem in particular because it can not be turned offwhenit is not needed. There is thus a lack offlexibility

with static instrumentation, as needs must be anticipated at compile time because they can not be added

later. |

Active instrumentation, instrumentation that measures something andtriggers events on some condition,

is also problematic with a static approach; making the instrumentation say, “Dothis, but if it happens more

than twenty times use a different approach,” is expensive because the check for more than twenty times

must happen each time the code is executed. The check must happen evenif the event is triggered and the

code is run many more times, because it is compiled statically into the program. Active instrumentation

using static instrumentation has a significantly higher cost, so its usefulness is limited. The lack offlexibility

makesstatic instrumentation inferior in many scenarios.

Whenusing languages that support dynamic recompilation, static instrumentation can be interposed

in a more versatile way. Many Java Virtual Machines are able to compile code on a just-in-time basis, and

some can recompile code that has been previously compiled [15]. When the code is recompiled, static

instrumentation can be added or changed [3]. This instrumentation can be used to identify locations for

optimization, such as code that runs often and shouldbe compiled aggressively. Although the instrumentation

is compiledin statically, it can be removed whenit is no longer needed by recompiling the code. JVMs can

also insert active static instrumentation to ensure correctness of an optimization. Code may be optimized

by assuming that some variable always maintains the same value. Static checks can be compiled in to make

sure thatthis is true, and to run different code if the value changes. The ability to interpose instrumentation

dynamically in Java programs helps JVMsachieve better performance than they could otherwise.

10

2.2. Trampolines

Trampolines are jump points that cause execution to leave the current execution flow and execute

interposed code instead. Trampolines are often implemented by replacing anexisting instruction with ajump

instruction to the interposed code. The insertion point is called a trampoline, because when the program

reaches the trampoline, control jumps to the interposed code. Trampolines are versatile because they can

replace almost any instruction in the program, and so can be inserted almost anywhere in a program. Since

trampolines are inserted at runtime, they can be used whenstatic instrumentation is not suitable. There

are a numberof systems that use trampolines to interpose code; the list presented later in this section is

representative rather than complete.

Trampolines pose a number of implementation challenges. A first challenge is locating instructions to

replace. Variables and constants are often mingled with program code,and replacing these with a trampoline

will not have the desired effect. On x86 machines,instructions are variable length, and can be particularly

difficult to locate. Replaced instructions have to be executed or emulated by the interposed code. This is

difficult and is not possible for some instructions, such as PC relative jumps, under some emulation or

execution schemes. Another challenge is retaining the context of the calling program. Program registers

and processorstatus bits must be saved so that they are not overwritten by the interposed code. Another

challenge is shared with static instrumentation: trampolines interpose on global code paths. This is not

always a disadvantage, but it means that all threads and all object instances that run code with a trampoline

willjump to the interposed code. Sometimesit is desirable to interpose for only a particular thread or object

instance. To do this with trampolines requires explicit checks for thread or object instance.

The application of trampolines in a numberof systemsis described next.

2.2.1 Debuggers

Traditional debuggers use trampolines to break out of the normal flow of control of a program [13].

Debuggers interpose on programsthat are being debuggedin order to examine the program state by inspecting

variables and memory locations, or to pass control to an operator that can inspect the program. Debuggers

typically overwrite an instruction in the program with a trampoline instructionthat raises an exception. The

debuggerintercepts the exception whenit occurs and transfers control to the debugger. Debuggers can then

perform actions such as examining andsetting variables in the program being debugged,setting additional

breakpoints, and single stepping through the program to allow an operator to examine execution. When the

11

debugger returnsto the program,it uses the single step ability to execute the instruction that it overwrote.

It puts the original instruction back inthe place that it overwrote with its trampoline and then executes the

instruction in single step mode. Flow control returns to the debuggerafter executing that single instruction.

The debugger then puts the trampoline back in and returns from the exception.The program then resumes

execution at the point after the trampoline instruction.

The approach taken by debuggersis versatile because it can interposeanywhere in a program. There

are limitations, however. Generating an exception is an expensive operation, so debuggers have a high cost

relative to many other systems for interposing. Debuggers have proven very valuable for debugging,but,

because ofthe overheadincurred,are not commonly used for more general applications ofcodeinterposition,

such as performance monitoring or changing program functionality.

2.2.2 DynInst

DynInst is a dynamic instrumentation library that is intended to add instrumentation to a program

to monitor its behavior [8]. DynInst provides a simple instruction set that can be used to write simple

instrumentation programs. DynInstis also able to call functions in the program it is interposing on. This

makes DynInst capable of more complex modifications to a program’s functionality, since it can use the

capabilities of the original program to modify data. For example, a programmer could anticipate the use

of DynInst to interpose code to change a policy and provide functions implementing different policies.

DynInst could then be used to interpose on a location where a decision is made, andcall a function to make

the decision using an alternate policy. DynInst uses trampolines to dynamically insert instrumentation or

functionality at runtime. When an application is running, DynInst can send a signal to interrupt it and

overwrite an instruction with a trampoline tojump out to interposed code, similar to the way that a debugger

works.

In order to ensure correctness, DynInst has a sequence of steps that it goes through to run interposed

code. The trampolinejumpsto block ofcode that consists of(i) ajumpinstruction leadingto a pre-instruction

instrumentation block, (ii) the overwritten instruction, (iii) a jump to a post-instruction instrumentation

block, and (iv) a jump back to the original code. This block of code allows instrumentation blocks to be

run before andafter the instruction that has been interposed on, and it solves the problem ofhow to execute

the instruction that has been displaced by the trampoline. To execute the interposed code transparently,

DynInst saves the registers and other necessary machine state such as condition code registers in each

instrumentation block and runs the instrumentation code that has been installed. As part of the process,

12

DynInst checks the current thread in order to ensure that instrumentation only runs on the thread for which

it is intended.It then restores the registers and machine state and jumps back to the program codein which

the trampoline wasinserted. .

This method does not work with many instructions that affect control flow, such as jumps and returns,

so instrumentation blocks can only be added around someinstruction types. To decide whereto install a

trampoline, DynInst needs to examine images ofprogramsthat include a symboltable. This allows DynInst

to find function entries. DynInst then parses the program to find other valid insertion points. Points that

DynInst identifies as suitable for inserting instrumentation are the beginning and end of functions and the

beginning of all basic blocks. DynInst also allows the operator to specify an address to insert a trampoline

at. This has limitations though, since the operator must decide manually which sites are valid, and the

program may execute improperly or crash if the operator puts a trampoline in a bad location.

2.2.3 KITrace

KiTrace, the Kernel Interactive Trace tool, dynamically inserts instrumentation code into operating

system kernels using trampolines [16]. KITrace runs on various types of hardware, including Motorola

68000 and Sun SPARC systems running SunOSand Intel 80386 systems running Linux. KITrace uses

a small component inside the operating system kernel that includes code to insert trampolines and

instrumentation code, and space for a trace log. KITrace also has a user space component that commands

the kernel componentand reads andinterprets the trace log.

KITrace requires some facility to allow insertion ofcode into the operating system kernel. SunOS has a

standard facility for inserting code into the kernel, and a patch to the Linux kernel allows KITraceto dothis

on x86 Linux machines. To ensure safety, KITrace allows only a limited set of instrumentation commands

that can be used to write instrumentation programs. KITrace does not support running of user supplied C

functions and it does not allow the calling offunctions within the kernel. KITrace instrumentation commands

specify what data should be collected in the KITrace trace log for observation and analysis at a later time.

KITrace trampolines are not implemented with jumpinstructions, but with trap instructions, so there is a

relatively high overhead each time a trampoline is executed.

Like debuggers, KITrace trampolines save processorstate and set up a an execution environment. When

the interposed instrumentation returns, KITrace executes the overwritten instruction in single step mode,

before returning to the original program. By doing this, KITraceis able to interpose safely on a wide range

of instructions, including instructions such as branch andreturn, that change the location of execution, and

13

thus is able to interpose in more different places than DynInst.

2.2.4 DTrace

Another interactive tool that uses code interposition to generate traces of operating system events is

Sun’s DTrace tool for Solaris 10 [9]. DTrace has both user space and kernel components and is able to

interpose instrumentation in both user space and kernel portions of the operating system. DTrace uses

trampolines to interpose in a way similar to DynInst. The feature that DTrace offers over other trampoline

based interposing frameworks is safety; DTrace has been designed so that unprivileged users can install

instrumentation in the kernel with norisk of crashing the operating system or causing incorrect behaviour,

either of which could happen if systems such as KITrace were used improperly.

DTraceuses these techniquesto ensure that unprivileged users interposing codein the operating system _

kernel will not affect the integrity of the operating system.First, instrumentation can only be inserted at

predetermined locations in the code. These locations include ali function entry and exit points, as well as a

large numberof statically predetermined locations. Secondly, instrumentation is written in an application-

specific scripting language that does not allow loops and canbestatically checked for safety properties.

Thirdly, when instrumentation code is being executed, interrupts are disabled and any exceptions generated

go to an instrumentation handler that (i) records the fault that the instrumentation generated, (ii) stops

execution of the instrumentation and(iii) carries on with the original program.

To install instrumentation, scripts, written in the DTrace scripting language, are submitted to the

DTrace subsystem for validity checking, along with a location specifying where to interpose. Together,

these are called a probe. DTrace maintains a list of probes that have been checked. For a program touse

instrumentation, it specifies a probe that it wishesto install, and DTrace installs the probe at the request of

the program by creating a trampoline and overwriting the instruction at the location to be interposed on,

Trampolines in DTrace have several different implementations depending on the location being

interposed on and the machine architecture. There are two distinct kinds of locations: function boundaries

and statically defined locations. Statically defined locations are identified by annotation in the program

source code. The compiler inserts a no-op instruction in the object code at the specified location. To

interpose instrumentation, the no-op instruction is replaced with a jump into a trampoline that calls the

instrumentation code. Usingthis strategy, the replaced instruction(i.e. the no-op) need not be executed. The

trampoline saves and restores machine state before executing the targetscript.

To insert instrumentation at function boundaries, instructions at the beginning or end ofthe function are

14

replaced with a jump instruction for SPARCor a trap for x86. The jump instruction on SPARC machines

leads to trampoline code that saves machine state and then jumpsto a function to run the instrumentation

script. Upon return, machinestate is restored and theoriginal instruction is executed within the trampoline

code before returning controlto the original code. The trap on x86 is handled by a special handler that sets

up the machineto run the instrumentation script, looks up the correct instrumentation script based on the

instruction pointer of the trap, and passes control to the function to run the instrumentation script. Upon

return, the replaced instruction is emulated. The original state is then restored and the trap returns.

2.3 Interposing at Logical Boundaries in Systems

Some systems support codeinterposition at natural boundaries ofthe system. Since boundary crossings

often represent some logical divisions and haveclear interfaces or conventions,it is often easier to interpose

at these interfaces. Code interposition then allows one to monitor or modify interactions between the parts

of the program. Trap handlers and jump tables are examples of places that allow for relatively simple

interposition by replacing one address with a different one, as with the PC-DOSinterrupt and system call

handlers.

2.3.1 PC-DOSInterrupt Service Routines

PC-DOSsupports the interposition of interrupt handlers and system call handlers dynamically at

runtime [12]. In PC-DOS,all interrupts and system calls are routed through an interrupt vector table located

’ at a fixed location in memory. The system calls and interrupts form a boundary on which code can be

interposed. An interrupt or system call handler to be installed is interposed by first reading and locally

storing the entry at the corresponding location in the vector table and then overwriting the entry to point to

the code being interposed, so that subsequent interrupts or system calls result in the interposed code being

executed. The interposed code can then explicitly call the previous handler, if necessary, by jumping to the

code originally pointed to in the vector table entry. Thus, the handlers can be chained so that all handlers

associated with the interrupt or system call are called. Effectively, new handlers are interposed in front of

previously installed handlers.

2.3.2 The Mach Operating System

The Mach microkernel [1] supports code interposition at the system call boundary by having the ability

to reflect system calls back to the user level process that generated the system call [14]. Call interposition

15

is used to enable Mach to run UNIX and MS-DOSbinaries. User level libraries and servers handle the

functionality that would traditionally be in the UNIX keel. This is in line with the Mach project goal of

providing a microkernelthatis suitable for constructing a modern UNIX like operating system.

Mach doesnot provide a complete UNIX environment within the kernel; instead, a user level library

within the address space of UNIX applications provides the missing services and interfaces that are

compatible with the particular UNIX version for which the application was compiled. UNIX applications

that dynamically link to libe are instead linked to the Mach user level library. System calls that libe would

normally makeare instead handledinternally by the library, or by making appropriate calls to Mach servers

and kernel as necessary. For applications that make system calls using a mechanism other than a dynamically

linked libc, such asa statically linked libc that make system calls directly, this library replacementis not

sufficient. To allow the Machuser levellibrary to handle the system call even in such cases, Mach interposes

on the system call boundary andreflects calls that are not made by the Machuserlevel libraries back to the

calling process so that the Machlibraries can handle the system call.

Mach has a function that instructs the kernel to intercept system calls based on the type of system call

and the address space it comes from. The Machinterposing toolkit uses this functionto redirectto itself any

system calls that it wants to interpose on. Whenit receives an intercepted system call, the interposing toolkit

examines the list of handlers it has registered and decides where to redirect the system call to. This can

include user level code in the address space that made the system call. When the handler finishes dealing

with the system call, it restores the previous state and returns to the application. This mechanism is not

limited to implementing operating system features that are not provided by the Mach microkernel; it can

also be used to execute arbitrary user level code on a system call.

2.3.3 Linux Kernel Modules

The boundary between the Linux kernel [17] and loadable Linux kernel modules is another place

where code interposition is possible. Many Linux kernel components can be either linked statically into the

kernel or compiled as relocatable object files and linked dynamically at runtime. Some third party kernel

- components are available as loadable modules that can be linked into the system dynamically at run time.

Loadable kernel modules can be filesystems, protocols or other system components that are not necessary

for the basic functionality of the kernel. Device drivers are the most common type of kernel module.

Users ofthe system with appropriate permissions can load kernel modulesat run time, or loading can be

done automatically in order to satisfy requests by programs or other kernel components, if the appropriate

16

kernel kernel module kernel kernel module

——__—_——_——_> EE

dul | dulmodule module >

dispatch | dispatch
 table table

Linux kernel Linux kernel with Nooksreliability subsystem

Figure 2.1: Linux Kernel Modules and Nooks Reliability Subsystem

Linux kernelinfrastructure is enabled. Since the modules are loaded dynamically,it is not possible to know

in advance where in memory they may beplaced. Instead, a dispatch table in the module contains the

relative position for all of the functions that the module exportsfor the rest of the kernel to use. To access a

function in the module, the kernel uses a pointer to the dispatch table and an index numberfor the function

that indexes into the table to get the address of the function it wants to call. This level of indirection is what

enables Linux kernel modules to work, and is shown in the leftside of figure 2.1.

The dispatch table and the indirection through it form a boundary between the kernel module and the

rest of the Linux kernel that can be easily interposed on. To interpose on the functions of a kernel module,

it is only necessary to maintain a shadow dispatch table that points to its own functions instead of the

functions in the module, andset the pointer that normally points to the dispatch table to point to the shadow

table instead. Interposing functions can call the original functions in the kernel module by caching the

function’s address, or by using the original dispatch table located in the module.

As an example, the Nooksreliability subsystem for Linux uses shadow dispatch tables to interpose on

calls made to Linux kernel modules [22]. The general approach as used by the Nooks system is shown in

the right side offigure 2.1.

Nooks attempts to protect the kernel from faults in device drivers and other kernel extensions through

17

two mechanisms. First, whenever a function in an interposed module is called, and whenit returns, Nooks

checks the parameters to makesure they are valid. This includes pointer validity checks and possibly other

checks specific to a particular module. The second thing Nooksdoesis isolate the kernel from the modules.

Modules interposed on by Nooksare run with reduced permissionsso that they can not overwrite memory

belonging to the kernel. Data structures used by modules are copied back into the kernel by the interposed

code. Nooks tracks changes so that they can be checked for correctness before being copied back into the

kernel, and also so that the changes can be rolled back if the kernel module crashes.

2.4 Extensible Operating Systems

An extensible operating system is one that allows code to be downloaded into the kernel by user level

programs. Extensions can be used to modify policies or implement new services or support new hardware

devices. There are two significant challenges when designing extensible operating systems. Thefirst is

enabling extension code to be loaded into the kernel and dispatched. The second challengeis ensuring that

extension code loaded by user programs does not compromise the integrity of the kernel.

2.4.1 SPIN

The SPIN operating system was designed to be extensible by using code interposition within the kernel

[19]. In SPIN,all function calls are treated as events, and the functions are called as event handlers. SPIN

uses a runtime system that allows event handlers to be replaced or interposed on dynamically, and SPIN

supports the downloading of event handler functions at runtime. This allows SPIN to be extended to do

things that it can not doin its basic configuration. For example, SPIN can be extended to emulate a MACH

system call interface.

Extensions consist of one or more modules that are loaded into the system dynamically. A module is

made of an interface with one or more functions, each of which handles some type of event. When SPIN

extensions are loaded, the dynamic linker resolves references in the extension to code in the system, then

runs the module’s initialization code that register handlers for events so that they will be called when

appropriate. SPIN also registers any new event handlers provided by the extension so that it can be called

by other modules within the system.

SPIN is written in Modula-3 and takes advantage of the Modula-3 runtime to interpose event handlers.

Interfaces for event handlers are found in the interfaces of SPIN modules. New interfaces are passed to the

18

kernel when a new moduleis loaded. The runtimeallows handlers to look like and be called as function calls;

however, there is a dispatch system that allows for more sophisticated treatmentthan a simple function, call.

When an eventis raised with just one handler attached, the runtime system dispatches the single handler as

a function call. If multiple handlers are attached, then the runtime system dispatches each of them.

Extensions can also have guard functions that get installed together with each oftheir handlers. Guards

determineif the associated handler should run in a particular invocation. Guard functions are functions that

havenoside effects and return a boolean value indicating that the event handler they guard should or should

not be executed on this invocation of the event. Often, guard functions are used to ensure that a handler is

executed only for a particular application, but there are other uses as well.

The runtime system gives good safety properties for the execution of downloaded handlers. Handlers

are procedures and hence have a type signature. They can only beinstalled for interfaces that have the

same type signature. This limits the scope of event handlers and makes instrumentation harder to write,

but it means that handlers can not be installed in places where they might be incorrect or dangerous. Type

compatibility will not catch all possible mismatches between handlers, however, since different interfaces

may have the sametype signature.

2.4.2 VINO

The VINO operating system [21] is also designed for extensibility by supporting interposition of

functions in the kernel. VINOis particularly concerned with allowing policy and priority decisions to be

replaced by users. VINO kernel extensions are written in C++ and can be interposed at predetermined

locations. VINO maintains a registry of objects and functions that can be extended. VINO is designed so

that policy decisions are made in separate objects, and functionsin these objects are registered as extendable.

Functions for computation and stream handling are also made extensible. At runtime, extensions can be

loaded and later removed, and extendable functions can be added to or removed from the registry. VINO

uses sandboxing andstatic analysis to ensure that extensions will not compromise the integrity or forward

progress of the system.

The VINO kernel maintains registries of functions both globally and per-process. Per-process functions

can be extended by the process, but global functions can only be extended by the process that created the

object the function belongs to. Entries in the registry consist of link information needed to interpose on the

function, and a name. VINO has system calls so that user processes can look up entries in the registry by

19

name, load and interpose new extension code, or remove and unload an extension.

VINO extensionsare statically checked and run in a sandbox. This is considered acceptable from

a performance perspective, because usually only small amounts of code are needed to make policy and

priority decisions. Running in a sandboxthat protects memory belongingto otherparts of the kernel incurs

some performance penalty; however the overhead is less than that of the context switch that would be

necessary if the extension code was run in user space. The static checker examines the assembly code for

the extension, and does not needthe original source code. The static checker generates a stub function for

the extension function that sets up the sandbox; it creates a new stack for the extension, sets up memory

protection andinitializes regions for the extension to read and write, before calling the extension function.

To interpose an extension, the kernel first loads the extension code and then examinesit before

interposition. The examination verifies that the static checker has signed the extension, and determines what

functions in the VINO kernel the extension uses, and ensures that it has permission to do so. Extensible

functions are called indirectly, so interposing is done by replacing the pointerto the original function with

a pointerto the stub function thatcalls the extension. After this is done,calls to the extensible function will

be intercepted by the extension. Dismantling of the sandbox for the extension function is also done by the

stub function before returning control to the caller.

2.4.3 K42

Code interposition already exists in the K42 operating system in two places. First, the K42 object

system uses code interposition to instantiate K42 clustered object instances that have not been accessed

before. Second, the existing hot-swapping infrastructure in K42 uses code interposition to block calls until

an object can be safely swapped. Both of these interpose using similar methods.

The K42 object system uses an indirection table to locate K42 clustered objects. Code is interposed

in K42 by changing an entry in this table to point to an interposed object. A “default object”is initially

interposed on all K42 clustered objects; its job is to locate an object instance to handle a call, and instantiate

a new instance if one does not exist yet. This is explained fully in chapter 3. The default object saves the

program state that is needed to make the function call, sets up a C execution environment, and then calls a

function to locate an object instance. After an object instanceis located, the state is restored and the function

call is made to that instance.

To allow hot-swapping in K42 a mediator objectis interposed in front ofthe object to be swapped. Like

the default object, the mediator saves the program state that is needed to make the function call, sets up a C

20

execution environment, and thencalls a function to block the original functioncall until it is safe to proceed.

After the target object has been replaced by a different instance (i.e. swapped) the mediator unblocks the

calls by restoring the call path’s state and making the function calls. Unlike the default object, the mediator

may have to perform additional workafter the original function call has been made. Only minimal program

state needs to be saved, but some information does need to be passed between the pre- and post-function

mediator calls. In a normal program, this information would be stored on the stack, but the mediator is not

able to use the stack. A mediator table of contents is required. Since the table of contents is globally the

same, it is stored in the program text and its location is retrieved by calculating the address relative to the

program counter. The other information that the mediator needsto store is a pointer to the mediator object.

This is different for each mediator instance, so thread-specific storage is needed. The mediator stores the

pointer in a non-volatile register, and stores the original contents of the register in a hash table.

The work presented in this dissertation differs by offering a more general solution to interposition that

allowsarbitrary code to be run before or after the original function call is made, or allows the functioncall

to be aborted. In addition, the local storage problem is taken care of by allowing the stack to be used by

interposed code.

2.5 Summaryof Interposing Techniques

Examination of related work shows that there are two common methods for implementing code

interposition. The first method is to use trampolines to jump out of an instruction stream. The second

method is to use an existing level of indirection.

Trampolines are implemented by overwriting some instruction in the program with an instruction that

causes the program flow to be modified, allowing code to be interposed. The interposed code may examine

or changethe state of the program it is interposed on. Figure 2.2 shows an instruction stream, with each

box representing an instruction. The secondpart ofthe figure showsan instruction stream with a trampoline

in place ofthe load instruction. The trampoline jumps to the interposed code. Whenthe interposed code

completes, it executes the original instruction and then jumps back to the original instruction stream

immediately following the trampoline. As the previous examples have shown, there are multiple ways

to jump out of the original instruction stream, and multiple ways of executing the code that has been

overwritten, however the same general approach is taken in each case.

Trampolines are versatile because they can interpose almost anywhere in a program. Although notall

21

instructions

add Id cmp bet

instructions trampoline

add jmp | cmp bgt

interposed instructions

> va Id jmp

Figure 2.2: Interposing Using a Trampoline

methods can insert a trampoline at any instruction, they are all able to. choose from a very wide variety of

locations. Trampolines do not need to have an interface or boundary to interpose on.

Using trampolines for interposition also presents some challenges. Trampolines are usually specified

in terms of a particular instruction to interpose on, which requires parsing the object code ata lowlevel.If

some instructions can not be interposed on, they mustbe identified by the interposing system. Trampolines

expose the interposed code to a broad part of the program’s state, so transparency is a challenge. It may be

necessary to save all machine registers and to be careful not to overwrite any part of the program’sstack.

Another challenge is executing the instruction that was overwritten by the trampoline. There are several

approachesto this, but no single approach seemsto be best for every case. For example, in somecasesit is

necessary to emulate the replaced instruction instead ofjust executing it.

The second common form ofinterposition exploits a level of indirection that already exists in the

system. An indirection table is often used to locate functions. whosefinal location or value is not known

at compile time. The indirection table shownin figure 2.3 is a virtual functiontable. In thefirst part of the

figure, the table has pointers to various functions that a system uses. In the second part ofthe figure, the

first and third functions have been interposed on by replacing the pointers in the indirection table. The new

pointers go to the interposed code, which can examine and modify the system state, or block, redirect or

delay the functioncall.

Interposing through an indirection table is convenient because many systems already have indirection

tables, so the applicability is reasonably broad. Indirection tables usually exist at a function granularity.

They are not as versatile as trampolines that can be interposed almost anywhere in a program, but they are

22

original functions

original virtual function table

1

2

3

interposed functions

interposed virtual function table

1

2

3

Figure 2.3: Interposing Using an Indirection Table

often good enough for monitoring or modifying specific functionality in a system. Indirection tables also

require less knowledge about the specific code being interposed on, because indirection tables provide

a consistent interface. In contrast, trampolines are not valid for all instructions, and so the code being

interposed on must be parsed more carefully to determine which ones are safe to interpose on. In some

ways,indirection tables allow for more versatile interposition than trampolines. Indirection tables makeit

mucheasier to replace code that is interposed on with different code. With an indirectiontable, it is merely

necessary to run different code in its place. Using trampolines, this would require knowledge ofthe target

program to know where execution could safely continue, and what patch up work would be necessary to

jump executionto that point. Dueto the difficulty involved in this, trampoline based systems usually require

that the instruction displaced by the trampoline be executed, makingit possible to add interposed code, but

not to replace existing code.

The primary disadvantage of interposing through indirection tables is that it can only be done in a

system that contains indirection tables. Maintaining transparency is also challenging when interposing

through indirection tables. Although the indirection tables provide a consistent interface, the calls that go

through these tables often involve transferring significant amounts of state between the caller and thecallee.

This state that must be saved and later restored so the interposed code can run without being noticed by the

caller, or the function that is interposed on, if it is called by the interposed call.

23

The system proposedin this dissertation uses indirection tables for interposition. The described work

was donein the context ofthe K42 operating system which containsindirection tables that are used for

invoking functions for all objects in K42.

24

Chapter 3

The K42 Operating System

K42 is an operating system that is designed to be flexible, adaptable, and efficiently scalable to large

multiprocessor shared memory computers.It is currently being developed by IBM Research in collaboration

with the University of Toronto and other academic institutions. K42 is heavily influenced by the Tornado

operating system developed at the University of Toronto [10].

Achieving good performance for shared memory multiprocessor programs has received considerable

attention. K42’s overall structure, algorithms and data structures have been designed to achieve good

multiprocessor performance without sacrificing uniprocessor performance. The K42 philosophy is that

scalability is best achieved by minimizing shared data and global code paths. This is accomplished with

an object-oriented approach, where every virtual and physical resource in the system is represented by an

independentobject instance to ensure natural locality and independencefor all resources. Locks are internal

to the objects that they protect, and global locks are not used.

Parallel applications have many specialized needs, from specific memory layout to particular

communication and scheduling demands. Here, K42’s adaptability providestheability to tailor the operating

system to the demandsof any specific application.

In addition to the challenges of multiprocessors, there are other difficulties faced in operating system

design. The requirements ofsupporting the system acrossdifferent architectures (PowerPC, EM64T,etc), and

having to support a wide rangeofapplications with differing and conflicting resource demands,all contribute

to difficulties in achieving good operating system performance. In varying degrees, these challenges cause

both programmability and performance problemsin operating systems. Programmability issues arise when

code for various architectures is conditionally compiled using preprocessordirectives, makingit difficult to

understand the code or to modify it. Performanceissuesarise if code contains conditional code fordifferent

hardware platforms or has to perform in a generic way to meetall possible application demands.

K42 has been designedto alleviate these difficulties by supporting adaptability in a first class way. A

25

running K42 operating system can use resource implementations chosen at run time specifically for the

workload it is running and the hardwareit is running on. It can change the implementation of any object

at run time to adapt to changes in workload. This way, K42 achieves the benefits associated with other

customizable operating systemsthat can tune for application behaviour [4]. K42’s object-oriented approach

also yields significant benefits in terms of structuring and programmability of the operating system.

K42 achieves scalability and adaptability using object oriented structure along with K42clustered

objects. The object oriented structure of K42 allows scalability by minimizing data sharing and avoiding

global locks, and allows adaptability by defining interfaces that can be implementedin different ways and

composedto allow different configurations. K42 clustered objects are special objects that have a structure

that allows for locality optimizations for objects that are inherently stared in a multiprocessor environment.

K42’s object oriented structure and clustered objects are described in more detail in the remainderofthis

chapter.

3.1 K42’s Object Oriented Structure

K42 uses an object oriented structure. Each resource or service is represented by object instances.

Access to a resource or service is obtained by making a function call to the object instance representing

the resource. This allows K42 to contain multiple implementations of an object for a service; each one

specialized for someparticular usage scenario. K42 then adapts to the running application by instantiating

objects optimized for the needs of the application. For example, objects that read files from disk may be

optimized for small file sizes.

Another performance benefit from object orientation is the logical separation of different components,

with attendant reduction in sharing. This gives performance benefits because locks and data are not shared

by unrelated parts of the system. Since different instances of services, such as different files on disk, are

accessed through different object instances, their data is logically separated and they can be accessed

simultaneously on different processors without sharing. Figure 3.1 shows how the object oriented structure

of K42 reducesimplicit sharing. On the left side is a traditionally structured operating system. The system

shares global code paths and data structures. Even if the locking granularity is reduced, many things are

shared implicitly. The right side of the figure shows an object oriented structure. Since different code paths

use different data structures belonging to different objects, sharing is reduced implicitly. K42 clustered

objects extend this benefit further by making it convenientto partition objects representing resources so that

26

27

traditionally

structured

kemel

calls calls

Figure 3.1: Traditional and Object Oriented Operating System Structure

clustered object root
| [
| | clustered

object

| l representatives

| |
local

| N translation
dt. .

infrastructure

@ | processors

— —/

|
|

© ,@ (|®@L
i

Figure 3.2: Logical View of Clustered Objects

requests from each processor can be handled independently.

3.2 Clustered Object Overview

K42’s object oriented structure alone does not necessarily achieve good multiprocessor performance,

since some objects end up being shared. For example, in the K42 virtual memory manager, the address

space mappinglist in the process object and the free page list in the global page manager object can became

bottlenecks in a large multiprocessor system because of shared data access from multiple processors. For

these objects, locality needs to be maximized to avoid slower remote memory accesses, minimize lock

contention, and reduce cache-coherencetraffic. Clustered object technology extends the object-oriented

design by providing management of the level of distribution of data and locality of execution. Based on

Tornado, K42’s clustered object infrastructure provides a framework for controlling concurrency and

locality of reference in objects [2].

From a client’s perspective, a clustered object appears similar to a C++ object; that is, their interfaces

are the accessed and used through similar mechanisms. A logical view ofclustered objects is shown in figure

3.2. A clustered object is logically a single object, but internally it is composed of one or more component

objects called representatives. Each representative handles calls from a specified subset of the processors.

A clustered object is accessed via a clustered object identifier, which is commontoall processors. Function

calls on clustered objects are done using this identifier. The local translation infrastructure automatically

redirects each call to the appropriate representative based on the processor from which the call is made.

A representative may be responsible for calls on any number of processors as decided by the clustered

object, but most clustered objects have either one representative handling calls from every processor, or one

representative per processor (as shown in the figure). Each representative provides its clients with the full

functionality ofthe clustered object. If necessary, the representatives of the clustered object communicate

with each other to maintain consistency.

In addition to the representatives, each clustered object has a root object. The clustered object root is

responsible for maintaining the list of representatives, and creating new ones as needed. The root may also

serve as a place to store information that is shared by all of the representatives.

The internal data representation and algorithms of the clustered object are transparentto the client. If

the shared object data is read mostly, replication may be adopted, with each processor’s local representative

maintaining its own replicated copy ofthe data. Some objects are partitioned so that the data most accessed

by a processor will stay local to that processor. With appropriate internal implementation, an object can be

optimized for locality and concurrency depending upon an assumed access pattern. With implementations

involving multiple representatives, it is necessary to keep them consistent. While internal implementation

and data distribution of a clustered object can be modified and fine-tuned to suit its locality requirement,

the interface that it exposes to its client remains the same. While the internal data may bereplicated,

migrated, or partitioned, the clients can make function calls to the object without knowledgeofits actual

28

local representatives

pointers to local representatives

or default objects

4
| | | |
CrCeOD
default objects

Figure 3.3: Sample Local Translation Table

implementation.

Theclustered object infrastructure ofK42 has a numberofbenefits. It provides a framework to optimize

objects for locality and concurrency using commonly applied techniques such as replication or partitioning.

These techniques can be applied both to data structures and locks. The interface exposed by the clustered

objectisolates the internal organization ofthe representatives from the clients. Also, clustered objectsfacilitate

incremental optimization and experimentation for each system object. A system object can be implemented

initially as a single-representative clustered object whose implementation would be almost identical to that

of a common non-clustered object. If the object becomes a bottleneck, a multi-representative clustered

object could be implemented and used instead. Since the interface remains consistent, implementations

with different degrees of clustering and consistency protocols can be experimented, withoutmodifying the

rest of the system. The interface provides the flexibility to allow different implementations of a clustered

object to exist, each of them optimized for different usage requirements.

3.3 Implementation of Clustered Objects

In order to implementclustered objects, more infrastructure is required than C++ provides. K42 clustered

objects require an extra runtime system that allowsclustered objects to instantiate representative objects and

locate an appropriate representative on calls to clustered object functions. C++ provides several features

in its runtime system, including runtime type identification, exceptions, virtual functions and multiple

inheritance. Use of some features of the standard C++ runtimeis restricted within K42. In particular, K42

does not permit exceptions, runtime type identification or multiple inheritance. These features cannot be

supported alongside the clustered object runtime without adding significant extra complexity. The K42

runtime system and the K42 interposing framework do, however, make extensive use of virtual functions

and their underlying implementation in C++.

29

3.3.1 Local Translation Tables

Clients access a clustered object by means of a clustered object identifier. The identifier is actually a

pointer to an entry in a per-processortable, called a local translation table, which contains pointers to the

corresponding local representative objects. When a representative has not yet been installed for a clustered

object, then the entry points to a stand-in object called the default object. The default object allows the

translation mechanism to determine the correct representative if the pointer to the local representative has

not yet beenset. Figure 3.3 depicts a local translation table with someentries that have local representatives

installed and somethat point to their default objects. Each entry in the localtranslation table contains two

things, (i) a pointer to a-clustered object representative or default object and (ii) a default object. Entries

for objects that do not have a local representative on the current processor pointto the default object in the

second part ofthe translation table entry.

The local translation table is defined on a per-processor basis. The entries on different processors for

a particular object could point to the same representative, or to different representatives, depending upon

the degree of clustering. Using the extra level of indirection introduced by the object translation table, the

distribution of internal object data can be optimized independently oftheinterface.

~ To allow clustered object invocations on each processor with the same identifier, K42 uses aliased

virtual memory, which allows the same virtual memory address to be mappedto different physical addresses

on different processors. Per-processoraliased virtual memory regions are used within the address space to

give each processor its own unique local translation table, located at the same virtual address. Since many

objects are only accessed on the processor on which they are created, ownership of the table is partitioned

into disjoint sub-ranges, one per processor. This way, allocation of entries in the table does not require

synchronization across processors.

Clustered objects use virtual functions, which means that calls to functions in clustered objects go

through the local translation tables. This is necessary so that the default object can be called and miss

handling invoked when there is no representative of the clustered object on the current processor. For

normal C++ objects, virtual function calls are made by locating the object instance, then looking in the

object instance to find the object’s virtual function table. The target function is then located by looking

in the virtual function table. The process is similar for clustered objects. The difference is that the object

instance for a clustered object is the local representative that is specified by a clustered object identifier.

To make a virtual function call, the local representative is found by dereferencing the clustered object

identifier, which is actually a pointer into the local translation table. In the local translation table is a pointer

30

to a clustered object representative, which is either a default object or the desired object instance.If it is the

desired object instance, then the call is made in the same way as a normal C++ virtual functioncall. If the

pointer is to a default object, the call is made to the default object, which uses the miss handling procedure

that is described below to locate a local representative and makethecall.

The local translation table is a key location for interposition in K42. By placing pointers to interposed

objects in the local translation tables, code can be interposed. The miss handling system is used to ensure

that interposed objects are placed in the localtranslation tables.

3.3.2 Miss Handling

Representatives are created lazily. This is done for two reasons.First, requests to a particular clustered

object are not necessarily made from all processors; for some clustered objects only a small subset of

processors make requests, and it would be wasteful to install a representative on every processor on a

multiprocessor if only a small subset of the representatives would be used. Further, lazy creation spreads

out the creation time, so that there is no pause after a clustered object is created while all of the local

representatives are created.

Lazy creation is accomplished by initially installing a pointer to a generic handler object called the

default object, instead of to a local representative, in all local translation table entries. The purpose of

the default object is to modify the table entry to point to a particular representative on demand whenthe

processor invokes a function on the clustered object is for the first time [20]. This way, processors that

do not access a particular object will not need to perform unnecessary setup. The process: ofsetting the

translation entry point to point to a representative is called miss handling. The processorthat incurs the

missis said to befaulting.

- Different clustered object implementations may have different ways of handling misses. In particular,

a clustered object with multiple representatives must manage the set of representatives and instantiate a

new representative corresponding to the faulting processor if it has not already been instantiated. In the

clustered object system, the object that managesthe set of representatives is called the miss handler. The

miss handleris responsible for object-specific miss handling,andis instantiated whenthe clustered objectis

instantiated. The pointer to the miss handler isinstalled in an auxiliary table called the global translation

table, indexed the same waythelocaltranslation tables are. The structure of the global translationtable is

shownin figure 3.4. In addition to a pointer to the object-specific miss handler, the globaltranslation table

entry for a clustered object contains a numberofstatus flags. The miss handleris part of the root of the

31

32

pointers to miss handlers

A A AOU
DDD

 unused

 writing,

switching,

pendingDestroy,

destroying,

cleaned

mhcount
flags

Figure 3.4: Sample Global Translation Table

object virtual function table code

function
vft pointer

=

-—-————}_ destructor,

=

~———-»} pointer

data more

items ;
virtual

functions

here .

Figure 3.5; Object Layout with Virtual Function Table

clustered object.

Entries in the local translation tablesare initialized to point to a generic handler object called the default

object. The default object uses a special generic function that is compatible with any set of parameters to

invokethe corresponding miss handler andits object-specific miss handling code. Theresult ofinvoking this

miss handling codeis a pointer to a representative that is responsible for handling the call. After obtaining

a pointer to the appropriate representative from the miss handler, the default object forwards the original

invocation to the representative. This forwarding is transparent to both the representative and the client

that faulted. Once a pointer to a representative in the local translation table has been installed during miss

handling, subsequent function calls to the clustered object will be handled by the representative directly.

The implementation of the default object used to perform miss handling transparently is closely tied to

the implementation of virtual functions in C++. Figure 3.5 shows the layout of a C++ object with virtual

functions, as generated by the compiler for K42. Thefirst element of an object is a pointer to the object’s

virtual function table, which is followed by the data membersof the object. The virtual function table

contains a pointer to a function descriptor for each virtual function in the class. Each descriptor contains a

function pointer that points to the code for its respective functions.

The default object is allocated and assigned a virtual function table with enough generic functions to

support any clustered object. Since the default object knowsnothing aboutthe invocation context, each virtual

function of the default object, when called, saves all the registers of the original caller before performing

the miss handling work. Once the miss handling is done and a representative is obtained, the default object

restores the register contents, replaces the this pointer argument with the pointer to the representative that

will handle the call, and forwardsthe call to the corresponding function of the representative by looking up

the representative’s virtual function table. While the operation has a non-negligible overhead,it is typically

performed only once to establish the translation table entry, and only infrequently thereafter'.

A consequence of using the virtual function table for miss handling and call redirection is that all

clustered object functions needto be virtual. While in some waysthisis a restriction, it also offers advantages

in that inheritance and polymorphism can letclients access clustered objects without being concerned about

whatparticular implementation is being used.

Miss handlers are important for code interposition because they locate the function to call when the

local translation table is empty. A new miss handler must be interposed for a clustered objectthat is being

interposed on. In addition, interposed code can be called by clearing the local translation tables andletting

the interposed miss handler handle any faults that are generated.

3.3.3, Clustered Object Destruction

One final responsibility of the clustered object system is to ensure proper destruction of clustered

' The local translation tables are caches that can be cleared, for example if they are paged out of memory. The

local translation table entries are not saved in this case since they can be re-established faster by faulting and getting

the entries from the miss handlers.

33

objects. Since clustered objects can be used concurrently from different processes, there is a potential

problem in deciding whenit is safe to destroy a clustered object. K42 solves this problem by allowing

objects to be submitted for destruction, but postponing the actual destruction until the object is known to

be no longer in use andthere are no longer any referencesto the clustered object [10]. An algorithm called

read-copy update is used by K42 to determine whenall parts of the system have finished using a clustered

object [18].

Read-copy update keeps track of which threads are able to access the object. When an object is

submitted for destruction, a flag is set in the global translation table indicating that the object is waiting

to be destroyed. Although the object has been marked for destruction, existing threads maystill access

representatives that have already been instantiated. The read-copy update algorithm tracks which threads

can access the object, and determines that the clustered object is safe to destroy whenall ofthe threads that

can access the object have finished running. After it is determined that the object can be destroyed safely, a

flag is set in the global translation table indicating that it is being destroyed. Then all entries for the object

in the localtranslation tables are set to point to the default object and the clustered object’s rootis called to

delete all ofthe representatives ofthe object and then itself. Finally, the global translation table entry for the

object is marked as being unused.

The interaction of interposition and object destruction raises two challenges. First, when an interposed

object is destroyed, it is necessary to removeit from its target. Second, destruction of target objects is a

challenge, since the interposed object must correctly identify and forwardall of the actions required for

object destruction that it intercepts.

34

Chapter 4

Design and Implementation

This chapter describes the design and implementation of an object oriented interposing subsystem for

K42.First, requirements for the interposition facility are presented. Then the design is described in three

stages: (i) high level overview, (ii) discussion of implementation issues and (iii) low level implementation

details. A number ofArbiters that have been implemented are presented in section 4.5.

The interposing subsystem allows objects, called Arbiters, to be interposed on functioncalls to a target

clustered object in K42. Once an Arbiter has been installed, the Arbiter will obtain control whenevera caller

calls a function of the target object. Once it has control, the Arbiter may decide to override the function of

the target object by executing its own code and then returning control back to the caller, or it may decide

to invoke the called function of the target object after executing its own prelude code and then executing

postlude codeafter the call.

4.1 Requirements

The primary requirementof the interposition subsystem in K42is the ability of an Arbiter to intercept

all function calls to a target object and for the Arbiter to be able to call through to the originally targeted

function. Other requirements include (i) transparency to the target object and the caller of the target object,

(ii) efficient operation,(iii) integration with K42 clustered objects, (iv) ease of use for both programmers

writing Arbiters and for users installing Arbiters, and (v) flexibility to use Arbiters throughout the K42

operating system and in applications running on K42. These requirements are elaborated further in this

section.

Transparency: Transparency to both the target object and the caller of that object means that neither

should require code modification to allow Arbiter interposition. Reducing the exposureofthe interposition

subsystem, both in changes to the program environment and in overhead such as execution time and

35

memory footprint of the Arbiter, is also desirable. Achieving complete transparency is impossible. For

example, execution overheads or changes to memory locations may be detectable by the caller. However,

these should be kept to a minimum

Efficiency: With respect to efficiency, the interposition subsystem mustbe efficient enough to be usable

for a wide variety of applications, such as performance monitoring and hot swapping of objects. Inefficient

interposition would result in perturbations that may be unacceptable for some applications. Moreover, poor

performance would also hinder applications of interposition related to performance improvements. In K42,

there are two aspects of efficiency that must be considered. Thefirst is low overhead on a single processor.

The secondis low overhead whenrun on a multiprocessor system. Since oneofthe goals ofK42is excellent

performance on large multiprocessor computers, both of these types of efficiency are important to the K42

interposition subsystem. Although large overheads on a single processor will translate to large overheads

on a multiprocessor, maintaining good performance on a highly parallel computer can introduce additional

problems due to contention on shared resources, even if interpositionis efficient on a uniprocessor.

Integration with K42 Clustered Objects: Integration with the K42 clustered object system implies

twothings. First, the interposition subsystem must be able to interpose on K42 clustered objects. Thisis a

requirement because clustered objects are used to encapsulate all resources and services in K42. Clustered

objects are composed from multiple (at least two and possibly many) C++ objects,but to users they logically

appear as one object. It is important that the interposing subsystem continues to presentto users the familiar

view of a clustered object being just one object. The second implication is that the interposing subsystem

should itself be implemented using clustered objects, and in particular, the Arbiters themselves should

be clustered objects. This is important because it maintains consistency in the system. Implementing the

interposing subsystem in some other way would violate users’ expectation of consistency, making it harder

to use and maintain.

Ease of Use: Ease ofuse is another requirement for the K42 interposition subsystem. In particular, it

mustbe relatively easy to write Arbiters. While Arbiters to perform sophisticated tasks may be complex,

Arbiters that do simple things must be simple to write. Moreover, it must be easy to interpose an Arbiter

on a target clustered object so that users are willing to interpose. It is envisioned that the interposition

subsystem makesavailable a function that takes a target object reference as a parameter andhidesall of the

complexities of interposition.

Flexibility. The flexibility requirement is to ensure that as many tasks as possible can be implement

using an interposition strategy. Two things are necessary forflexibility. First, it must be possible to interpose

36

. on all significant components of K42 in the kernel and system servers as well as the K42 system libraries

that reside in the address space ofeach application, and any clustered objects that are part ofthe application.

Secondly, there should beas few restrictions on Arbiter codeas possible. For example, interposed code must

run with the same permissionsandrestrictions as the thread that called the object that is interposed on.

4.2 High Level Design

The K42 interposition subsystem design described here enables programmers to write Arbiter objects

that users can then interpose on a target K42 clustered object. Once interposed, the Arbiter will intercept

all function calls to the target object and execute its own code instead. At a high level, the interposition

subsystem exploits the clustered object translation tables. To install an Arbiter, the appropriate entries in

the (local and global) translation tables are overwritten so that they point to the Arbiter instead of the target

object. All subsequent calls then automatically go to the Arbiter instead ofthe target object.

To simplify the writing of Arbiters, interposition functionality is split between the Arbiter object and

a helper object called the ArbiterProxy. The ArbiterProxy is a generic object provided by the interposition

subsystem and is used for all Arbiters (although there is flexibility to modify where required). The

ArbiterProxy deals with the low level system complexities and is responsible for ensuring transparency.In

particular, on interception, it saves all required registers (and other information), allocates a stack for the

interposed Arbiter, and then calls the Arbiter.

The Arbiter is an object that has whatever domain specific functionality is required for the task it is

supposed to perform andis written by programmers. The structure of an Arbiter is shownin figure 4.1. The

handleCall() function, declared in lines 6-11 is called by the ArbiterProxy whenit intercepts a function call.

HandleCall() takes two parameters, a CallDescriptor object (described later in this chapter) that contains

the information saved by the ArbiterProxy, and an unsigned integer that specifies which function in the

target object’s virtual function table was called. To transparently call the target object should it wish to do

so, the Arbiter calls the makeCallQ function, as in line 8 of the figure, which takes the same parameters

as handleCall(). After makeCall() returns, the Arbiter optionally executes postlude code and then returns.

Control returns to the ArbiterProxy object, which after restoring the environment, returns control back to

the original caller. |

Completing the description of the code in figure 4.1, line 3 declares the Arbiter’s clustered object root

37

1 class RepArbiterPassthru : public CObjRepArbiter{

2 protected:

3 friend class CObjRootArbiterTemplated<RepArbiterPassthru, CObjRepArbiterProxy>;

4 RepArbiterPassthru() {}

5 DEFINE_LOCALSTRICT_NEW(RepArbiterPassthru);

6 virtual SysStatus handleCall(CallDescriptor* cd, uval fnum){

7 // Arbiter specific prelude code

8 SysStatus rc = makeCall(cd, fnum);

9 // Arbiter specific postlude code

10 return rc;

11 }

12. public:

13 static RepArbiterPassthru** Create(){

14 return CObjRootArbiterTemplated<RepArbiterPassthru,

15 CObjRepArbiterProxy>::Create();

16 }

17 };
Figure 4.1: Example Code for ArbiterPassthru

1 ArbiterRef arbiter = ArbiterType::Create();

2 DREF(arbiter)->captureTarget(co);

Figure 4.2: Interposing on a Target Clustered Object

class! as a friend of the Arbiter; this must be done in the Arbiter rather than in the base Arbiter class, since

the root class is customized. The remaining lines are present to conform to clustered object conventions.

Line 4 defines an empty constructor and line 5 defines a protected new operator. These lines are necessary

to allocate memory for the representative from the appropriate memory pooland toprevent clustered object

representatives from being created outside of the clustered object framework. Lines 13-15 define a static

Create() function that is used to create a new Arbiter. It calls a corresponding static Create() function in

the Arbiter’s clustered object root that creates a new Arbiter root and registers it with the clustered object

system.

' Clustered object roots were described in Chapter 3.

38

function pointer

clustered object

representative

function code

virtual function table

local translation

table

call path

Figure 4.3: Layers of Indirection in K42

Arbiters provide two additional functions: captureTargetQ), which interposes the Arbiter on the

target object, and releaseTarget(), which stops the Arbiter from interposing on any more function calls.

CaptureTarget() takes a single parameter, the clustered object reference of the target object to interpose

on. ReleaseTarget() does not require any parameters. Both of these functions, CaptureTarget() ‘and

ReleaseTarget(), are inherited from the CObjRepArbiterclass and do not need to be redefined or redeclared

in the specific Arbiter.

4.2.1 Interposing on a Clustered Object

Asdescribed in chapter 3, the clustered object system uses indirection tables on each function call

to locate the target clustered object and the appropriate representative. By replacing the target object’s

entries in the translation tables with entries for the ArbiterProxy, the ArbiterProxy is invoked instead of the

target object. The ArbiterProxy object interposes the Arbiter and run its code in place ofthe target object’s

function. 4.2 depicts code that is typically used to interpose an Arbiter on a target clustered object. The first

line creates an Arbiter of type ArbiterType using the ArbiterType’s Create() function andinitializes it as

having no target. The Create() function is specific to each type of Arbiter, and an Arbiter author may add

further initialization. The secondline instructs the Arbiter to capture the target clustered object, co.

All calls to clustered objects are made by using the DREF() macro.A call then goes through four levels

of indirection, shown in figure 4.3. Clustered objects are identified by a pointer that indexes into the local

translation table, where a pointer to the appropriate local representative is found. Hence,thefirst level of

indirection is through the local translation table in the clustered object system, which is used to locate the

39

correct representative for the clustered object. The second level of indirection is generated by the C++

compiler in the clustered object representative and is usedto locate the virtual function table. The third level

is through the virtual function table, and the fourth level of indirection is a pointer to the function code.

The interposition subsystem usesthe first level of indirection in the localtranslation table to interpose

on target objects. All calls to the public interface of a clustered object go through the local translation

table in order to locate the correct clustered object representative. By overwriting the target object’s local

translation table entries with pointers to ArbiterProxy representatives, function callsto the target object can

be redirected to the ArbiterProxy, which in turn calls the Arbiter.

To install the ArbiterProxy representatives in the local translation tables, the ArbiterProxy’s miss

handler is entered in the globaltranslation table in place of the target object’s entry andall local translation

table entries for the target object are reset to point to the default object. This is shown in figure 4.4. On the

left side of the figure, the Arbiter has been instantiated but not interposed. A target clustered objectis also

shown. Onthe right side of the figure, the Arbiter has interposed on the target object. The Arbiter calls a

function in the clustered object system to substitute the ArbiterProxy miss handler for the target object’s

miss handlerin the global translation table and reset the local translation table entries. The local translation

table entries are reset to point to the default object, as is standard in K42, by sending a message-to each

processorto tell that processor. The target object’s clustered object reference is passed with the message so

that the correct local translation table entry is reset. After performing the substitution and resetting the local

translation table entries, the clustered object system returns a pointer to the target object’s miss handler,

whichis cached by the Arbiter for later use.

Then, as discussed in the previous chapter, when the default object is accessed, the clustered object

system will call the miss handler installed in the global translation table to obtain and install a local

representative before forwarding the call to the representative. Thus, after the ArbiterProxy miss handler

has beeninstalled in the globaltranslation table and the local translation table entries have beenreset, a call

to the target object will ultimately result in an ArbiterProxy representative beinginstalled and subsequently

called.

Note that with this schemeis it possible to interpose multiple Arbiters on a target object, with the Arbiters

being effectively stacked. The last Arbiter installed will have its ArbiterProxy’s miss handler installed in

the global translation table, and its target will be the ArbiterProxy of the Arbiter installed immediately

priorto it. Each subsequent Arbiter will likewise have as its target the ArbiterProxy of the Arbiter installed

immediately prior to it, except for the first Arbiter installed, which will have the original target clustered

40

 target

clustered

object

Arbiter not interposed

program code

branch to

function and

link

program code

branch to

link
function and

global

translation

table

target

clustered

object

ArbiterProxy

Arbiter interposed

Figure 4.4: Interposing Using Translation Tables

| parameter | | | parameter2 | *

| stack pointer | | return address}

return value

code of

called

function

 branch to

link register

Figure 4.5: Data Involved in a Function Call

LT

glue cod

save

e

4

 |

A
ArbiterProxy

[eat]

 link

branch to

Arbiter and
LIL

CallDescriptor object

Arbiter code

Figure 4.6: Arbiters Package Function Call Data

1 DREF(arbiter)->releaseTarget();

Figure 4.7; Removing an Arbiter from its Target

object as its target. Through the mechanism described above, an intercepted call will initially be directed

throughthe translation tables and goto the lastArbiter installed. When eachArbiter in turn calls handleCallQ),

the call will pass through the chain ofArbiters, from last installed to first installed, and then to the original

target clustered object.

4.2.2 Role of the ArbiterProxy

The ArbiterProxy is a clustered object. Its role is to stand in for the target object, assuming the role

of miss handler, and when a call is madeit (i) transparently saves state related to the call and existing

execution environment, (ii) sets up an execution environmentfor the Arbiter, and then(iii) transfers control

to the Arbiter. After the Arbiter returns, the ArbiterProxy tears down the execution environmentand returns

controlto the caller. Each ArbiterProxy instance serves a single Arbiter.

When an ArbiterProxyis created, it is initialized with several temporary stacks and the reference ofthe

Arbiterinstance thatitis to call. TheArbiterProxy has onlysingle function, namelyarbiterMethodCommon().

Anycall to a target object that has an Arbiter interposed is intercepted by a stub that determines which

function was called and jumps to the ArbiterProxy’s arbiterMethodCommon() function. This process is

described in detail in the next subsection.

4.2.3 Intercepting Function Calls

Thecall to an interposed object is sent to an ArbiterProxy representative via the translation tables. The

ArbiterProxy hasa set of generic stubsthatare installed into its virtual function table. They record the index

in the virtual function table of the function that was called and then call a function in the ArbiterProxy to

save information aboutthe functioncall.

Figure 4.5 expands on the details of a function call. A call to a function is made with a branch andlink

instruction, which jumps to the function and saves the address of the next caller instruction in a register.

Call information, such as parameters, a stack pointer, and the address for the function to return to upon

completion, are located in well knownplaces, such as in registers and on the stack . The compiler lays out

this information so that each function knows what information is available and where to findit.

Whena call is made to a clustered object with an Arbiter installed, the ArbiterProxy first acquires a

42

temporary stack.The temporary stack is necessary for transparency, because the Arbiter can not run on the

samestackasthe target function withoutfacing unacceptable restrictions (describedlater). The ArbiterProxy

then packages the call information into a CallDescriptor object, which it places on the temporary stack,

beforecalling the Arbiter object that handles the call. The CallDescriptor object is an object that contains

space for saved parameters, a stack pointer, return address, and any other information that needsto be saved

on the architecture it is running on. This is shown in figure 4.6. Packaging the call information into the

CallDescriptor must be done carefully, as registers can not be overwritten and used until after their contents

are saved. After packaging the relevant call information into the CallDescriptor object, the ArbiterProxy

calls the Arbiter’s handleCall() function to execute the base functionality of the Arbiter. When handleCaliQ

is called, it is passed the CallDescriptor object, allowing it to examine or change that information, along

with a numberidentifying which function of the target object was called. HandleCall() passes control back

to the ArbiterProxy object whenit returns. At this point the ArbiterProxy releases the alternate stack thatit

had acquired and then returnsto the caller.

4.2.4 Calling the Target Object

To call through to the target object’s function, should it decide to do so, the Arbiter must locate a local

representative of the target object, create an environment that the target function can run in, including

restoring the saved call parameters on the stack and in appropriate registers, and then call the target function.

To do this, the author of an Arbiter calls the makeCall() function, defined in the CObjRepArbiter class.

MakeCall() restores the original execution environment and performsthecall to the target object. The most

important change to the execution environmentto ensure transparencyis to restore the original stack before

the target function is called, and then reverting back after the call returns. Care has to be taken to do this

in a way thatis transparentto the target function. The saved parameters for the function call are obtained

from the CallDescriptor object. After the target function returns, makeCall() restores the Arbiter’s execution

environment before continuing.

It should be noted that local representatives from target objects can not be obtained by calling through

the local translation tables, since the relevant entries point to ArbiterProxy representatives. Similarly, the

global translation table entry points to an ArbiterProxy miss handler. To locate a local representative, the

Arbiter must have saved the target object’s miss handler when the Arbiter was installed. This miss handler

is called when the Arbiter needs to locate a local representative for the target object. Once obtained, the

Arbiter representative caches it for faster accessifit is called again.

43

4.2.5 Removing anArbiter

Arbiters are removed bycalling the releaseTarget() function of the interposed Arbiter, shown in figure

4.7. In most cases, removing an Arbiter is similar to interposing an Arbiter; however, removal canbe more

complex if there are multiple Arbiters installed on a single target object.

In the simplest case, when no otherArbiter is interposed on the target or when the Arbiter being removed

is the last Arbiter that was interposed on the target, removal is done by switching the ArbiterProxy miss

handler in the target’s global translation table entry back to the target object’s miss handler that the Arbiter

stored when it interposed. To complete the removal, the local translation table entries for the target object

are reset to point to the default object. A subsequentcall to the target object will result in a translation miss,

causing the local representative to be installed in the local translation table before thecall is executed.

When a second Arbiter is interposed in front of the Arbiter being removed, the removal of the first

Arbiter is done by replacing the target miss handler stored in the second Arbiter with the target object miss

handler from thefirst Arbiter, and resetting the local representatives cached by the second Arbiter. Initially

the second Arbiter’s target will be the first Arbiter, and by changing the miss handler andresetting the local

representative caches,the first Arbiter removesitselffrom the stack ofArbiters installed, and instead makes

the second Arbiter have the target that the first Arbiter originally had. Arbiters can tell if another Arbiter has

interposed on them by examining the miss handler stored in the target object’s global translation table entry.

If the installed miss handler belongs to their ArbiterProxy object, then there is no Arbiter interposed on

them.Ifthe miss handler does not belongto their ArbiterProxy object, then the Arbiter knowsthat a second

Arbiter has interposedafter it has. This detection and removal process is described in detail in subsection

4.3.5.

4.3 Design Decisions

This section discusses some of the more important design choices that were made in the design of the

K42interposition subsystem.

4.3.1 Interposing Using Translation Tables

The local translation tables are a good place to interpose Arbiters because they allow calls to a single

target clustered objectinstanceto be redirected to Arbiter representatives directly, without any modification

to the representatives of the target clustered object or to the calling function and without affecting any other

44

45

target

clustered

The recursive call path reaches

the target object, so eventually it

will finish (assumingthetarget

object is correct).

ArbiterProxy

DREF(targetObject)

~>function()

good recursive scenario

bad recursive scenarios

target

clustered

DREF(targetObject)

->function()

call path ArbiterProxy

DREF(targetObject)

The recursive call path does not ->function()

reach the target object. Since the

base case is never réached,the

call may recurse infinitely. DREF(targetObject)

target

clustered |

object

other

clustered

ArbiterProxy object
call path.

DREF(targetObject)
->function(

Figure 4.8: Recursive Scenarios Involving Arbiters

clustered object instances. This permits interposing to be done on a per-object instance basis. In contrast,

indirection through the virtual function table or function pointers, the third and fourth indirection points

in figure 4.3, would interpose on every object that used the virtual function table, which would be every

instance of the object class. Indirection through the virtual function table pointer stored in the object, the

secondindirection point in figure 4.3, would require modifying every representative of the target object.

Whenthe Arbiteris installed, the target object’s local translation table entries are reset to refer to the

default object described in chapter 3, and its miss handlerin the global translation table is overwritten with

a replacement miss handler belonging to the ArbiterProxy. Since the localtranslation table entries are reset,

whena call is made to the target object, the ArbiterProxy’s replacement miss handler is called to install an

ArbiterProxy representative. While this adds the overhead of handling a miss on every processorthe target

object is called on after the Arbiter is interposed, this overhead is only caused on thefirst such call.

Interposing on the translation tables introduces a potential for infinite recursion that users of Arbiters

must be awareofand avoid. If a clustered object is recursive, and an Arbiter interposedonit calls the target

object with makeCall(), then the Arbiter will be called with each recursive call without any problems. The

top part of figure 4.8 showsthis case. At some pointthe target object will reach its base case and return, and

the call stack will unwind. |
On the other hand, if the Arbiter makes a call to the target object in the standard K42 way using the

DREFmacro, then unintended infinite recursion on the Arbiter will result, as depicted in the center part

of figure 4.8. The target object is never reached because the Arbiter continuously intercepts thecall to the

target object that used DREF, leading to infinite recursion. In fact, the Arbiter is even further constrained

in that it may not call any function of any object that might invoke a function of the target object. This

scenario is shown in the bottom offigure 4.8, where the target object is never reached, becausecalling the

other clustered object indirectly leads to infinite recursion.

4.3.2 Role of the ArbiterProxy

The ArbiterProxy has tworoles, first as a miss handler to stand in for the target object, and second, to

process intercepted calls and then pass them to the Arbiter to handle. As a miss handler, there are distinct

advantages to having the ArbiterProxy be a proper clustered object with its ‘own root and representatives.

In its role in intercepting function calls, the ArbiterProxy must transparently intercept and package function

call details, set up an execution environmentfor the Arbiter, and then call the Arbiter.

The primary purpose of introducing the concept of a separate ArbiterProxy object is to simplify the

46

structure of the Arbiter object for programmers. The ArbiterProxy object encapsulates all of the common

and typically low level code required to intercept function calls, save their state and set up an execution

environment for Arbiters to run in. This includes saving floating point and integer parameter registers, and

the link register that specifies where execution will resumeafter the Arbiter returns.

The advantage of implementing the ArbiterProxy as a clustered object is that this approach does not

require miss handlersto take differentactions based on whichtranslation table they are handling a miss for.

This avoids problems with target object miss handlers, since target objects install their local representatives

in dummylocal translation table entries contained in the Arbiter. The dummy entry looks exactly like the

real entry, so this is transparent to the target object. If there was no ArbiterProxy, the miss handler would

not be able to correctly detect which translation table entry was causing the miss. If clustered object miss

handlers could take different actions for different translation table entries, then problems could arise if a

dummy local translation table was used by an Arbiter trying to locate a local representative of the target

object.

In summary, when intercepting calls, the ArbiterProxy transparently intercepts calls made to the

target object and redirects them to the Arbiter. When it intercepts a function call, the ArbiterProxy’s

arbiterMethodCommon() function is called automatically, which saves the function parameters and other

call state. The ArbiterProxy also acquires a temporary stack and initializes it, and then calls the Arbiter’s

handleCall() function to take whatever action is appropriate to deal with the functioncall.

4.3.3 Multiple ArbiterProxy Objects with a Single Target

When multiple Arbiters are interposed on the same target object, each Arbiter installs its own

ArbiterProxy object. An alternative strategy would be to instead use a single ArbiterProxy were used for

all Arbiters. In that case, the Arbiter would have to know wheninterposing if there was already an Arbiter

installed. Ifthere was no Arbiter installed, it would create and interpose an ArbiterProxy object as described

previously. If there was already an ArbiterProxy object, the Arbiter would register with the ArbiterProxy

object and get placed in some position in the chain of interposed Arbiters. When called, the ArbiterProxy

would save the call state, and thencall the first Arbiter in the chain. After that, each Arbiter’s makeCall()

function would call the next Arbiter in the chain, if there was one, and if there were no Arbiters remaining

in the chain, the Arbiter would restore the target object’s execution environmentandcall it. There are two

advantages to using only one ArbiterProxy object per target object. First, there would be a reduction in the

amount ofmemory used when multiple Arbiters are installed. Each ArbiterProxy keepsa poolofstacks, and

47

having fewer stack pools would reduce memory usage. Second, there would be a reduction in the overhead

of multiple Arbiters, since the time required to restore and save the target object’s execution environment

each time an Arbiter is called would be eliminated. A disadvantage of using a single ArbiterProxy object

is that the ArbiterProxy class could not be specialized, since it would have to be suitable for all possible

Arbiter types. Using just a single ArbiterProxy for multiple Arbiters would add too much complexity in

relation to the advantages.

Performanceresults (presented in Chapter 5) show that the primary overhead of changing execution

environments is obtaining an alternate stack when needed. This overhead only occurs oncepercall, since

multiple Arbiters can reuse the same stack, so the efficiency savings are minimal. Dueto the flexibility

gained by being able to specialize the ArbiterProxy if needed, and considering that the case of multiple

Arbiters interposed on the sametarget object is expected to be uncommon,it was decided that each Arbiter

should install its own ArbiterProxy instance, even though the memory requirementis larger for more stack

pools whenthere are multiple ArbiterProxy objects.

4.3.4 Interactions between Multiple Arbiters with a Single Target

When multiple Arbiters are interposed on the same target object, interactions between Arbiters may

occur in three cases:(i) interposition of an additional Arbiter, (ii) making a call through to the next Arbiter

and(iii) removal of an Arbiter. The first two cases of interaction are reasonably straight forward given the

design, and they are discussed in this section. The third case, removal of an Arbiter is more complex when

multiple Arbiters are involved, and is discussed in the next section.

Interposing multiple Arbiters on a single clustered object is straightforward, with the current design.

Arbiters are able to interpose on any clustered object, and interposing on a clustered objectthatis already

interposed on will simply cause the second Arbiter to interpose on an ArbiterProxy object instead of the

original target object. As a result, Arbiters are effectively stacked, with the first Arbiter interposed referring

to the target object, and the last interposed Arbiter being referred to by the translation table. The Arbiter

installation process is protected by a lock, so that multiple Arbiters attempting to interpose on the same

clustered object at the same time will not result in any race conditions. The procedure used is exactly the

samefor the case involving multiple Arbiters as it is when there is only one Arbiter.

Onepotential problem is that is that the same type of Arbiter can be interposed on the same target

multiple times (perhaps by different clients). In some cases, such as performance monitoring, it may be

preferable to have only one Arbiter to perform the monitoring and report it to multiple clients, rather than

48

haveseveral Arbiters gather the same monitoring information. Currently this issue is not addressedsinceit

is a performanceissue rather than a correctness issue. Arbiters will work properly with multiple identical

Arbiters installed.

When a call is made to an object that has multiple Arbiters interposed, there are several issues to

consider. The first issue is correctness. If multiple Arbiters are interposed then there will be a chain of

ArbiterProxy and Arbiter objects leading to the target object. Each ArbiterProxy installed after the first

interposes on the previously interposed ArbiterProxy object. With the current design, this happens in a

way that is transparent to the previously interposed ArbiterProxy objects. Moreover, when an Arbitercalls

its target, it does not know whetherthe target is the actual target or another Arbiter. Overall, this works as

expected, presenting no problem to the interposing Arbiteror to the previously interposed Arbiter.

The secondissue is one of semantics. Ifthere is a chain ofArbiters leading to the target, then any ofthe

Arbiters may decide notto call through (and return instead). Hence,it is possible that an Arbiter in the chain

maynot be called even thougha client has invoked thetarget. It is also possible that an Arbiter (early in the

chain) is invoked even though in the end the target object is never called. As a result, interposers may want

to have precise control of the order of the Arbiter chain. However, this is not currently supported.

4.3.5 Removing Arbiters

Removing Arbiters is significantly complicated due to the possibility of there being multiple Arbiters

installed. and a number of scenarios can lead to complications. For example, if the Arbiter being removed

restored the clustered object that was present when it was interposed, then the remaining Arbiters might

no longer be called. As another example, if one were to simply and naively remove an Arbiter from the

chain, then one of the remaining Arbiters may be left with a reference to an Arbiter that had been removed.

If an Arbiter is removed from the chain, and possibly destroyed, and then called, the results would be

unpredictable, and could lead to a system crash.

Some of these scenarios are shown in figure 4.9. The left side of the figure shows three Arbiters

interposed ona single target object. The simplified diagram represents each Arbiter and ArbiterProxy pair

with a single circle. When an Arbiter is removed, it naively restores the miss handler of its target into the

global translation table. In the middle part of the figure, Arbiter A is removed, andsets the target object’s

translation table entries to reference A’s target, which is the original target object. Note that Arbiters B and

C are not included in the new chain of interposed Arbiters, butstill believe themselves to be interposed. In

the right handside ofthe figure, Arbiter C is removed. It also restored the miss handlerofits target into the

49

target object ———___—p> target object 7 target object

x
catastrophic failure

Arbiter A x
Arbiter B Arbiter B Arbiter B

x
|

orphaned Arbiters

 “
O
O
:

J

logical call paths

Figure 4.9: Failure due to Improper Arbiter Removal of Multiple Arbiters

translation tables, andthe target object’s translation table entries refer to Arbiter B. Catastrophic failure can

result when Arbiter B intercepts a call and attempts to call its target, the now-destroyed Arbiter A.

To solve these problems, multiple Arbiters interposed on the same target object are treated as a list,

with the translation tables pointing to the first interposed Arbiter, and each Arbiter containing a pointer to

either the target object or the next Arbiter in the list. The algorithm is shownin figure 4.10. Conceptually,

removing an Arbiter is equivalent to removing an object from thelist of Arbiters. This requires obtaining

the pointerto the head ofthe list from the translation table, with a special case if the Arbiter being removed

is the head. Otherwise, the list ofArbiters is followed, maintaining a reference to the previous Arbiter until

the Arbiter being removed is found. The pointer to the previous Arbiter is then swungto the target of the

Arbiter being removed, removing the Arbiter from the list. Complications due to concurrency and other

details are discussed in the next section.

Alternatively, a doubly linked list could be kept by keeping a backpointerto the previous Arbiter inside

of each Arbiter. This would eliminate the need to scan through the list of Arbiters. It would, however,

50

1 // get head of Arbiterlist

2 currArbiter = translation table entry

3 if currArbiter != ArbiterToRemove

4 | // find the Arbiter to remove

5 while currArbiter != ArbiterToRemove

6 prevArbiter = currArbiter

7 currArbiter = currArbiter->next

8 // remove Arbiter from list of Arbiters

9 prevArbiter->next = currArbiter->next

10 else

11 // special case for removingfirst (or only) Arbiter

12 translation table entry = currArbiter->next

Figure 4.10: High Level View of Removing an Arbiter

Arbiter B Arbiter A target object

ArbiterProxy B ArbiterProxy A

globaltranslation table

Figure 4.11: Removal Procedure for Multiple Arbiters Interposed on a Single Target

increase the complexity of interposing Arbiters, as it would be necessary to determine if there was another

Arbiter installed at installation time, and to patch the other Arbiter’s backpointer if that were the case. A

doubly linked list ofArbiters would also require an additional special case to handle the tail Arbiter, as the

target object would not have a backpointer.

Locating the head Arbiter when an Arbiter is removed is easily done by examining the miss handler

of the target object. The target object’s miss handler will be an ArbiterProxy object, which will contain a

reference to its corresponding Arbiter.

Figure 4.11 shows the removal process in more detail, with Arbiter A as the Arbiter being removed

and Arbiter B having been interposed after Arbiter A. Arbiter A knows how to find the location of Arbiter

B from its ArbiterProxy object. This is done by calling the master() function, which is found in every

51

ArbiterProxy miss handler. Since each Arbiter stores the location ofthe target miss handlerthatit interposed

on, ArbiterA can follow the chain ofArbiterProxy objects and Arbiters until it finds the one that interposed

immediately after it did. (This is no different than the functionality required to remove an element from

a single linkedlist.) In the example, Arbiter A sees that Arbiter B’s target is its own ArbiterProxy. Arbiter

A then replaces Arbiter B’s target miss handler pointer with its own, removingitself from the chain. To

complete the replacement, Arbiter A overwrites any pointers to target local representatives cached in the

local representatives ofArbiter B.

The singly linked is used to chain Arbiters instead of a doubly linkedlist due to the simplicity. A doubly

linked list would allow Arbiters to be more easily inserted anywhere in the list, which could help in solving

the semantic problems discussed earlier. However, it would also be necessary to detect other Arbiters at

install time to solve these issues. The singly linked list of Arbiters does solves the stability problem in

Arbiter removal in simple manner, with a reduced numberofspecial cases and no need to modify the Arbiter

installation procedure. Unlike solutions using a doubly linkedlist, a singly linked list does not imply any

solution to the additional problem of the semantics of multiple Arbiters, which were not comprehensively

examined due to time constraints.

If there is a hot-swap in progress, then an object other than an Arbiter may have interposed. To avoid

problems, Arbiters check for hot-swapping whenthey are installed or removed, and these operationsfail

if there is a hot-swap in progress, since the Arbiter can not deal with the hot-swap mediator. This issueis

expectedto be resolved shortly, as there is currently work underwayto rewrite the hot-swap mediator as an

Arbiter.

4.3.6 Object Destruction Interactions

Theinteractions ofArbiters during object destruction require careful design to ensure correct operation.

Two scenariosare haridled in order to avoid problems.Thefirst scenario is when an Arbiter thatis interposed

is destroyed, and the second scenario is when a target clustered object that has some Arbiter interposed on

it is destroyed.

K42 clustered objects can not be destroyed by a user; instead users must removeall permanentreferences

to the object in the system and then submit the object to a garbage collection system. The garbage collection

system waits until all threads that may bein flight and using the object to be destroyed have completed.

After this happens, the garbage collection system safely destroys the object. To solve the first scenario, an

Arbiter that is submitted to the garbage collection system immediately removesitself from its target object

52

(other clustered object ancestor classes)

CObjRep |

CObjRootMultiRep

clustered object

classes

Arbiter classes

CObjRepArbiter CObjRepArbiterProxy CObjRootArbiter CObjRootArbiterProxy

local representative classes clustered object root classes

Figure 4.12: Arbiter Class Hierarchy

before submitting itself to the garbage collection system. This ensures that destroyed Arbiters do not remain

interposed.

The second scenario, where a clustered object that is targeted by an Arbiter is being destroyed, is

more complex. An Arbiter can block the destruction request, since it is intercepted by the Arbiter. Hence,

it is important that the Arbiter not block the.call to destroy the target clustered object it is interposing

on. Requests to delete clustered objects go to the miss handler, which has a cleanup function. Clustered

objects are deleted by calling the cleanup function of their miss handler. This call will be intercepted by an

interposed Arbiter. When an interposed Arbiter intercepts a call to the target object’s cleanup function, it

doesnotdelete itself. Instead, the Arbiter removesitselffrom the target objectthen forwardsthe cleanupcall

to its formertarget. This ensures that Arbiters do not remain interposed on destroyed clustered objects.

4.4 Implementation Details

In this section, the implementation of the K42 interposition subsystem is discussed in greater detail.

4.4.1 Arbiters as Clustered Objects

Arbiters and ArbiterProxies are implemented as clustered objects. They are part of the clustered object

class hierarchy. The class hierarchy is shownin Figure 4.12. Since clustered objects have two parts, root and

representative, the Arbiter and ArbiterProxy both have root (CObjRootArbiter and CObjRootArbiterProxy,

respectively) and representative (CObjRepArbiter and CObjRepArbiterProxy, respectively) parts. Both

53

root objects are descendants ofCObjRootMultiRep, which provides support for objects that have a different

local representative for each processor. CObjRep is the standard base class for representative objects,

and BaseObj adds support for interprocess communication so that objects can be called from external

address spaces. The ArbiterProxy does not need this support, since it is not called directly by a user. Any

interprocess communication support that is necessary will be done by the target object whenit is called

using makeCall().

4.4.2 Intercepting and Packaging Untyped Function Calls

Call state that must be saved on calls through an Arbiter include the parameters of the target function,

the stack pointer, and return address of the callee. Since the ArbiterProxy can not know in advance what

parameters the target object’s function maytake, it must save all potential parameters. The parameters are

potentially located in integer registers, floating point registers, and the thread’s stack. Stack parameters are

left on the stack, and all potential parameter registers are saved in a helper object called the CallDescriptor.

To do this, the interposing subsystem uses a solution modeled after the K42 default object and generic

function, whichstand in for any clustered object that does not have a representative on the processorthey are

being called on [20]. The ArbiterProxy representatives stand in for the target object’s representative. Each

ArbiterProxy representative consists of a virtual function table with entries that point to stub functions that

record their index numberandjumpto the ArbiterProxy’s generic function, called arbiterMethodCommon().

The generic function is written in assembly code andfirst saves the call state, and then call a stub that calls

the Arbiter’s handleCall() function to perform additional work.

Thefirst source of state that must be savedis the set of registers that may contain parameters. On the

PowerPC systems that K42 runson,these are integer registers r4 through r9, and floating pointregisters f1

through f13. Integer register r3 is also a parameter register; however it is not saved because it contains the

“this” pointer for the object. Since the object being called is the ArbiterProxy the “this”pointer in r3 refers

to the ArbiterProxy, not the target object. The correct “this” pointer for the target object can be determined

later. The second source of state is the stack. Hence the stack pointer must also be saved to allow the

parameters on the stack to be located. The third sourceofstate is the call itself; to handle the call the Arbiter

must record the link register that specifies where to return to, and it must record the index numberin the

virtual function table of the function that wascalled.

To permit the saved state to be examined later or used for calling the target object, it is saved in

the CallDescriptor. Since the amount of state is dependent upon the architecture that K42 is being run

54

callerfuncion =- = ™

arbiterMethodCommon() """"""*""" --

CObjRepArbiterTarget_callHandieCali(_ .

Arbiter::yhandleCalO “™=“™="""""="

Arbiter::makeCall() ous = 0 sew oo om

arbiterCallOriginalMethod()) " " "= ° *

target function

local

- translation

table

~
T

Figure 4.13: Calling the Arbiter’s Target

on, the CallDescriptor has an architecture dependent portion that acts as a data store, and an architecture

independentportion that serves as an interface to the state information. The architecture dependent portion

storesall information that needs to be saved to memory, and has methods to read and write the parameters

the function call was made with. The architecture independentportion allows the parameters to be read and

written in a uniform manneron any platform, even though they maybe in varying locations(i.e. in different

locations on the stack, and in varying numbers of processorregisters).

Upon return from the function in the Arbiter, the ArbiterProxy representative’s generic function only

needs to restore the original stack, return the alternate stack and return to the caller. The return value is

always a K42 error code, and unless there is a failure in the ArbiterProxy, it just passes on the returned

value. Theregisters that stored parameters for the target function do not needto be restored whenreturning,

and the generic function does not use any other resources that need to be restored or returned.

4.4.3 Calling a Target Object

To properly call a function of the target object (from the Arbiter), it is necessary to first locate the

representative ofthe target object on the current processor. Thenit is necessary to restore the state associated

with the original call, before making the call to the target object’s function. When the call returns, it is

necessary to restore the Arbiter’s state. All of this is implemented in the makeCallQ function so that the

writer of the Arbiter need not concern himself with these details (in the commoncase).

Figure 4.13 showsthe path taken by a call that is interposed on. The one function in the ArbiterProxy’s

interface is the generic function, arbiterMethodCommon(),an architecture-specific function that saves the

function call state and sets up an execution environment for the Arbiter, as described previously. It then

55

calls CObjRepArbiterProxy_callHandleCall(), which is a helper function to call the Arbiter’s handleCallQ

function in an architecture-independent way. This call is a normal clustered object function call, which

meanscontrol flows through the local translation table. In the figure, the Arbiter’s handleCall() function in

the figure decides to call the target object as part of handling thecall. It does so by calling the makeCall()

function, which locates a local representative of the target object, using the target object’s miss handler.

MakeCall() calls a second function, arbiterCallOriginalMethod(),that takes care ofthe low level, architecture

specific details of restoring the call parameters and setting up the target object’s execution environment,

before calling the target object. After the call has completed, controlreturns to arbiterCallOriginalMethod(),

which restores the Arbiter’s execution environment, then returns to the Arbiter, which continues with any

other tasks that it would like to. After it has completed its work, the Arbiter returns, passing control back to

the ArbiterProxy, that in turn passes control back to the caller.

For makeCall() to obtain a pointerto a local representativeofthe target object, eachArbiter representative

can use the target object’s miss handler that was stored when the Arbiter was interposed. In general, miss

handlers would fill in the correspondinglocaltranslation table entry. In this case, the Arbiter passes the miss

handler a dummylocal translation table entry, which the miss handlerfills and the Arbiter can use this value

later to locate the local representative. The local representative pointer is thus cachedso that it can be reused

if itis needed again. Although the normal semantics of K42are that pointers to local representatives should

notbe stored, the Arbiter can safely store these pointers. The Arbiter obtains the pointeritself, so it knows

that it is a valid representative pointer, rather than a pointer to the default object. Since the Arbiter stores the

pointerin its local representative on the same processor,it is in no danger of using it on other processors.

In the arbiterCallOriginalMethod() function, the Arbiter restores the call state that was saved in the

CallDescriptor object when intercepting the call. This is similar to the steps taken when intercepting the

original call, except in reverse. To restore the parameters, all parameters saved in the CallDescriptor object

are restored to their original locations, and the original stack pointer is restored so that the target object’s

function will use the original stack. The alternate stack is saved in the thread descriptor so that it can be

conveniently located whenthe target function returns without having to access thread-specific storage in the

Arbiter in this very low level section of code, and as an optimization to allow it to be reused, as described

in the following sections. In addition the “this” pointer for the target object needs to be determined. The

“this” pointer for the original call comes from the representative that was obtained to handle the call, so the

target’s local representative is used as the new value. Then the target object’s functionis called.

After the call to the target object has completed and control returns to the Arbiter, arbiterCallOrigi

56

stack stack original stack alternate stack

caller frame caller frame caller frame

 -W)| Arbiter frame

stack stack stack

parameters parameters parameters y

callee frame Arbiter frame callee frame

 callee frame

with Arbiter interposed

without interposin,
TPOSIDE on the same stack

with Arbiter interposed on an alternate stack

Figure 4.14: Parameters Passed on Stack

nalMethod(restores the call state required for the Arbiter to run. In particular, this means restoring the

Arbiter’s stack pointer. Copying parameters is not necessary on the return path because the only parameter

is the return value. Since all clustered object functions have an error code as the return, this value is passed

directly back to the Arbiter.

4.4.4 Locating an Alternate Stack

To permit the caller’s stack and any parametersonit to be used by the target object, the Arbiter uses an

alternate stack. The alternate stack is allocated and the switch is made by the ArbiterProxy before calling

the Arbiter. Figure 4.14 showsthe issue that is addressed by the alternate stack. The first part of the figure

showsa stack that a caller and callee share without an Arbiter interposed. Parameters for the callee that do

not fit in the parameterregisters reside in the bottom part of the caller’s stack frame. The next frame belongs

to the caller, whichis able to find the parameters directly above its own frame. The secondpart ofthe figure

showsa naive implementation, in which an Arbiter is interposed on the callee using the caller’s stack. The

Arbiter’s stack frame is in between the caller’s frame and the callee’s frame. This case presents a problem

becausethe callee will get incorrect values whenit attempts to access the stack parameters located directly

above its own frame. Copying the callee parameters will not help, because the Arbiter can not know in any

general way how many ofthem there are. The third part ofthe figure showsthe chosen solution. Twostacks

are used, oneforthe caller and the callee, and a separate one for the Arbiter. Instead ofplacing the Arbiter’s

frame below the caller’s frame, the Arbiter’s frame is placed on the alternate stack, and the callee’s frame

goes directly below the caller’s frame. Whenthe Arbiter calls the callee function,it must switch back to the

original stack, and restore its own stack uponthe callee’s return.

57

1. QO» eo eo e linked list

(oI e> e> e load head pointer using Load Linked

instruction

“= rewrite head pointer using Store Conditional

3. O eo . e—>) e instruction to acquire record

4. retry from step 1 on failure

Store Conditional only returns successifno other thread performed a Load Linked

or Store Conditional since the corresponding Load Linkedinstruction. Therefore the

thread that succeeded can proceed, and other threads will fail and mustretry.

Figure 4.15: Lock Free Linked List

1 if ThreadDescriptor->altStack == null

2 repeat

3 stackHead = LoadLinked(stackList)

4 stackNext = head->next

5 until stackList = StoreConditional(stackNext)
Figure 4.16: Algorithm for Acquiring an Alternate Stack

The thread descriptor has been augmented with a field to locate the alternate stack; the Arbiter uses this

field to permit the same stack to be used for recursive calls to a clustered object or for multiple Arbiters

interposing on calls to the sameordifferent clustered objects that are called in the same thread. Withoutthis

field, each Arbiter would have to have somethread specific storage to locate stacks for recursion, and stacks

would not be shared by multiple Arbiters.

When an Arbiter intercepts a call to its target object, the alternate stack is acquired by the

arbiterMethodCommon() function. The Arbiter also restores the original stack when calling the target

object’s function and whenreturning to the caller. It switches back to the alternate stack when the target

object’s function returns. In this cases the alternate stack has already been acquired, so only switching is

necessary and no newallocation is required.

Arbiters acquire alternate stacks from a fixed size pool ofstacks that is maintained in eachArbiterProxy’s

local representative. To handle multiple processorsefficiently, each ArbiterProxy has stacks allocated to

each processorit has a local representative on. Replication of resources is a common approach in K42

and in this case allows acquisition of stacks without worrying about contention from other processors.

Stacks are stored in the ArbiterProxy rather than the Arbiter because the number of available registers is

58

very limited, and storing stacks in the ArbiterProxy reduces the numberofregisters that must be spilled to

memory to acquire a stackin the arbiterMethodCommon()function. Each ArbiterProxy representative has a

pool of stacks because there may be several concurrent threads on the same processor. When a thread needs

a stack for an Arbiter to run on, it gets one from the pool in the ArbiterProxy. The fixed size ofthe stack pool

is a limitation of the current Arbiter implementation.

The ArbiterProxy‘s stack pool is implemented as a list of stacks, allocated when the ArbiterProxy

representative is created. When an Arbiter obtains a stack, it removesit from thelist of free stacks so that

another Arbiter will not attempt to use it at the same time. To avoid locking when stacks are allocated

or deallocated, the Arbiter uses lock free synchronization based on the PowerPC’s load linked and store

conditionalinstructions. Figures 4.15 and 4.16 illustrate how a stack is allocated, The Arbiter loads a pointer

to a record containing information about a temporary stack from a memory address using load linked,

creating a link for that address. It then reads the pointer to the next record and savesit back into memory

using store conditional. If the memory at that address has been changedsince the link was created then the

link will have been destroyed and the store conditional will fail, causing the ArbiterProxy will retry.

4.4.5 Reusing Alternate Stacks

To prevent allocation ofnumerous stacks when an interposed target object is called recursively, threads

only acquire one alternate stack for Arbiters and reuse it for recursive calls. Since the Arbiter acquires a

new stack for eachcall, recursive calls to clustered objects that have an interposed Arbiter would otherwise

acquire many stacks, Acquisition of multiple stacks by a single thread would not lead to synchronization

problems or race conditions, but allocating a large numberof stacks could waste significant amounts of

memory. Using many stacks would also cause problems dueto the limited numberof stacks available in

the current implementation. This problem is solved by having each thread descriptor contain a pointer to an

alternate stack. Before attempting to acquire a new stack for an Arbiter to run on, the ArbiterProxy thread

first checks the alternate stack pointer in the thread descriptorto see if it has already obtained a stack.If it

finds one, it uses that stack.

Figure 4.17 showsthe stacks of a set of recursive function calls with an interposed Arbiter that reuses

the same alternate stack for each recursive call. Before calling the target object, the Arbiter pushes a frame

on the alternate stack. It then restores the original stack, saves the pointer to the alternate stack in the

thread’s alternate stack record and calls the target function. Then, when the target clustered object calls

itself, resulting in another call to the Arbiter, it uses the next frame on the alternate stack. This is repeated

59

caller frame

recursive > voter

object 15' frame ame
original stack >| Arbiter alternate stack

recursive ondfy,

object 24 frame ame

recursive > ie

object 3° frame rame

>|.

Figure 4.17: Alternate Stack with a Recursive Clustered Object

as many times as the recursive target clustered object calls itself. The Arbiter keeps track of the depth of

recursion in field that is stored along with each alternate stack so that the stack can be released whenit is

no longerin use.

The algorithm also reuses the stack when there are multiple Arbiters in use simultaneously; this can be

when multiple Arbiters interposed on the same target object, or multiple Arbiters interposed on different

target objects that are all invoked in a single call path. Different Arbiters can each have frames on the

alternate stack ifthe target object makesa call that is intercepted by an Arbiter. This is shownin figure 4.18,

in which ArbiterA calls its target, which through some chain of function calls invokes Arbiter B. Arbiter B

finds Arbiter A’s alternate stack already in place and usesit. |

Figure 4.19 shows a further optimization that enables the original stack to also be reused when an

Arbiter calls a clustered object that has an Arbiter interposed. For example, if Arbiter A is interposed on

object A and Arbiter B is interposed on object B, and Arbiter A calls object B. In this case, Arbiter B will

intercept the call and will use the original stack, rather than allocating a second alternate stack. To enable

this, the original stack is saved in the alternate stack field in the thread descriptor when the ArbiterProxy

switches to the alternate stack. This case occurs when Arbiter A directly or indirectly calls the Arbiter B’s

target object. When Arbiter B attempts to acquire an alternate stack, it finds that the original stack is saved

in the thread descriptor’s alternate stack field, and uses the original stack as its alternate stack. Arbiter A

still switches back to the original stack and places its own alternate stack in the thread descriptor’s alternate

stack field when it calls its target object, as described previously; however, Arbiter A has to restore the

original stack pointer into the thread descriptor’s alternate stack field (in addition to restoring the Arbiter’s

alternate stack) whenthe target function returns. The only other change neededfor this optimization is that

60

caller frame

thread descriptor alternate stack

alternate stack

target object

frame

 = original stack

thread descriptoralternate stack

other

= alternate stack

functions

original stack

caller frame

thread descriptoralternate stack

= original stack
Arbiter A

frame

Arbiter B

frame

Figure 4.18: Arbiters Sharing an Alternate Stack

thread descriptoralternate stack

alternate stack

Arbiter B

frame

original stack

 = original stack

thread descriptor alternate stack

= alternatestack

Arbiter A

frame

Figure 4.19: Arbiters Sharing the Alternate and Original Stacks

other

functions

61

thread descriptor

stack

 guard BSLOL

region sIS

reserved space

for page faults
Figure 4.20: Kernel Stack Layout With Debug Check Information Enabled

the ArbiterProxy mustclear the alternate stack field when the Arbiter finishes running and returns.

4.4.6 Debug Stack Checks on Page Faults

When K4?is built with debug modeset, the system performs a numberofruntime checksthatinterfere

with interposed Arbiters. Specifically, when a kernel thread raises a page fault and K42 is built with debug

modeset, it performs some checksto ensure that the currentstack is valid and has enough space remaining

to handle the page fault because K42 handles the page fault using the active thread’s stack when kernel code

causes a page fault. Figure 4.20 showsthe layout of the stack when debug checks are compiled in, with

no Arbiter interposed. At the very top of the stack is the thread descriptor. Below that are the active stack

frames, then free space. At the bottom ofthe stack is a guard areathatis filled with a test pattern. The guard

area contains a reserved section so that even a full stack will be able to handle page faults properly. The

debug code examinesthe stack pointer to determine how much memory is left on the stack, and inspects

the test pattern in the guard region to ensure that the stack is valid and has not overflowed. The end ofthe

page fault handler’s stack frame is checked to ensure that the page fault handler will have sufficient space

to run in.

Whenan Arbiter is interposed, there are two problems. First, the check uses the location of the stack

relative to the thread descriptor to locate the guard region, but the Arbiter uses an alternate stack thatis in

a different position relative to the thread descriptor. Second, the Arbiter may raise a page fault whileit is

switching stacks, and the debug information that is used to verify stack correctness will not be consistent

with the state of the stack when Arbiters are interposed.

Two approaches are used to enable debug checks to continue alongside interposed Arbiters. To solve

62

the first problem, an additional field specifying the end of the reserved section was added to the thread

descriptor. When the interposing subsystem switches to an alternate stack, it fills in correct values for

the fields in the thread descriptor that are used by the debug checks, specifically the fields pointing to

the beginning of the guard area and to the end of the reserved section of the stack. This is an appropriate

solution becauseit allows the debug checks to take place when an Arbiter is running.

Second, debug checks are disabled during the brief periods of time when the information about the

stacks is not consistent, and the debug checks were modified to be aware of alternate stacks. Hence, while

switching stacks, the Arbiter disables debug stack checks. Disabling the checks reduces their usefulness,

so they are only disabled for the short sequence ofinstructions that manipulates stack pointers. After the

alternate stack is in place, the debug checks are re-enabled. This permits the debug checksto take place

even when an Arbiter is interposed. Disabling interrupts here would not be helpful, since the primary

concern is a page fault caused by the Arbiter switching stacks. Since the debug checks only happen when

the K42 kernelis built with debug modeset, the actions the Arbiter takes that are described abovealso only

happen when the K42 kernelis built in debug mode.

4.4.7 Removing an Arbiter

The algorithm for removing an Arbiter is shownin figure 4.21. It considers two cases, one for locating

and removing Arbiters in the list of interposed Arbiters, and a special case for removing the Arbiter at

the head ofthelist. The first case applies if another Arbiter was interposed after the Arbiter that is being

removed Arbiters are not automatically destroyed when they are removed, since users may wish to access

them at a later time to examine any information that they have collected.

WheneveranArbiter is removed,it examinesthe global translation table ofthe target object to determine

if its own miss handler is currently installed, or if another Arbiter was interposedafterit. In the latter case,

the Arbiter knowsthat an ArbiterProxy belonging to another Arbiter is the miss handlerfor the target object.

If so, it locates the previous Arbiter by recursively calling the ArbiterProxy miss handler’s master() function

to get the location of the next Arbiter, until it locates the Arbiter that was installed immediately after it was.

An example ofthis is shownin figure 4.11, where there are only two Arbiters. ArbiterA is the Arbiter being

removed, and Arbiter B is the Arbiter installed immediately prior to it. Arbiter A acquires its own target

lock, and after locating Arbiter B, Arbiter B’s target lock as well. After acquiring the locks, it double checks

that Arbiter B is still installed (releasing locks and trying again ifArbiter B was removed). Arbiter A then

reads its own target and overwrites Arbiter B’s target pointer with its own. Arbiter A then directs Arbiter B

63

1 lockTarget()

2 while interposed

3 targetMH = target global translation table entry

4 if targetMH != myArbiterProxyRoot

5 // another Arbiter is interposed

6 while targetMH != myArbiterProxyRoot

7 nextMaster = targetMH->master()

8 targetMH = nextMaster->target

9 nextMaster->lockTarget()

10 // make sure nextMaster wasn’t removed while we were gettingits lock

11 if !nextMaster->interposed

13 nextMaster->unlockTarget()

14 continue

15 nextMaster->target = target

16 nextMaster->resetTargetRepresentativeCaches()

17 nextMaster->unlockTarget()

18 else

19 // we are thefirst (possibly only) Arbiter interposed

20 lockTargetGlobalTranslationTableEntry()

22 // make sure no arbiter interposed while we were locking the translation tables

21 if myArbiterProxyRoot != target global translation table entry

23 unlockTargetGlobalTranslationTableEntry()

24 continue

25 // substitute will install target as the miss handler for targetRef, and put the

26 // existing GTT entry into dummyMH.

27 DREFGOBJ(TheCOSMgrRef)->substitute(targetRef, &dummyMH,target)

28 unlockTargetGlobalTranslationTableEntry()

29 interposed = false

30 unlockTarget()
Figure 4.21: Removing an Arbiter

to flush any target representative pointers in its local representatives. To complete the removal, the locks

are released.

If the removing Arbiter is installed in the global translation table, it has to restore the global translation

table to the original target and reset the local translation table entries. The Arbiter locks its target and the

target global translation table entry, and double checks thatit is still the first Arbiter installed (releasing the

64

locksandtrying again if it is not) and then sends a messageto the other processors in the system to reset the

target object’s entries in their local translation tables. The removing Arbiter. then releases its target lock.

There is a significant issue whereby there may still be threadsin flight that have called the Arbiter even

after it has been removed. To allow these threads to complete without interruption, the removed Arbiter

must remain able to run for sometime after the removal. Thatis, if the Arbiter is destroyed, or if it captures

a new target, then it would not be able to properly run threads that remain in flight. To avoid problems,

the Arbiter is prevented from capturing a new target, so that any threads that call makeCall() will call the

correcttarget. It is safe to submit the Arbiter for destruction at any time after it has been removed. The K42

garbage collection facility ensures that the object will not be deleted until threads that could have hadcalls

in flight when the destruction request was issued have completed [10].

4.4.8 Changes to K42

The interposition subsystem is modular and does not require many modifications to K42 codethatis

notpart ofthe subsystem itself. There are three places where changes were required for the implementation.

First, the addition of functions to the clustered object system manager to allow Arbiters to change miss

handlers in the global translation table and allow the locking of global translation table entries for this

change. Due to the manipulations of the global translation table, this was the appropriate place to put this

functionality. Second, the addition of the alternate stack field in the thread descriptor. This change was not

strictly necessary, since per-thread storage could be implemented within the Arbiter object itself. However,

placing this information in the thread offers significant efficiency improvements and allows some of the

stack optimizations described previously. The final place where K42 code changes were necessary was the

handling of debug checks.

4.4.9 Correctness of Concurrent Operation

K42 is designed to run on multiprocessor computers and as such exposes its components to concurrent

operation. Arbiters are exposed to concurrency, from threads running on the same processoror on different

processors, in several situations. In these situations, measures have been taken to ensure that correctness

is maintained. Arbiters can experience concurrent operation during installation of an Arbiter, during calls

intercepted by an Arbiter, and during removal of an Arbiter. Measuresare also taken to ensure that no calls

can take place during destruction of an Arbiter. Safe concurrent operation ofparticular functionality added

to an Arbiter by the author of specific Arbiters is the responsibility of the author of each particular Arbiter.

65

Locking in two places protects Arbiters during installation. While installing, Arbiters acquire a lock that

protects write accessoftheir target data. The Arbiter musthold this lock to set the target wheninstalling, and

also sets a flag that indicates the Arbiter has interposed. This lock and flag prevents concurrent installations

of an Arbiter and ensures that an Arbiter can only be installed on one target. In addition, the Arbiter locks

the target’s global translation table entry to prevent interactions with other Arbiters or other events that

would modify the global translationtable.

Arbiters begin intercepting calls-as soon as its ArbiterProxy object is installed in the global translation

table. The installation is ordered so thatthe pointer to the target’s miss handleris stored in the Arbiter before

the ArbiterProxy is installed in the global translation table, so the Arbiter is able to correctly locate target

representatives as soon as it can receive calls. No resources in the Arbiter are modified while intercepting

calls, as the only necessary data is stored on the stack. In the ArbiterProxy,a stack must be acquired by each

thread. Stacks are acquired by looking in the thread descriptor (whichis different for each thread), and from

the stack pool in each ArbiterProxy representative. As described previously, the stack pool is implemented

using lock free techniquesthat allow stacks to be safely acquired during concurrent operation. Hence, calls

can be intercepted safely during concurrent operation with installation and other intercepted calls.

Removal of Arbiters uses the algorithm described previously, using the Arbiter target data locks and

global translation table entry locks. This ensures correct operation when multiple Arbiters are removed

simultaneously. The Arbiter target data lock protects Arbiters from simultaneous removal requests from

multiple threads, and also prevents interactions between installation and removal ofArbiters. To ensure that

intercepted calls that are in progress proceed correctly while an Arbiter is being removed (andafterit is

removed, as calls may take longer to complete than the time it takes to remove an Arbiter), it is necessary

for the Arbiter to have a valid target, even after it is removed. As longasthis is the case, calls can proceed

even during and after removal ofan Arbiter.

As mentioned previously, the K42 garbage collector ensures that are not destroyed while there arestill

threads running. Again, the only requirementis that the Arbiter still has a valid target while it is waiting for

threads that are still running.

4.5 Specific Arbiter Implementations

To give a better idea of how Arbiters are written and what they can be used for, several specific

Arbiters are presentedin detail in this section. The ArbiterPassthru is the simplest Arbiter that is able to

66

emulate the function of the target clustered object by calling the target function. ArbiterBreakpoint and

ArbiterCallCounter are used for debugging and performance monitoring, respectively. Finally, a more

complex example is presented, namely the Arbiter used for hot-swapping.

ArbiterPassthru interposes on all function calls to a target clustered object. On every invocation it

simplycalls the corresponding function in the target and returns whatever error code is returned by the target

clustered object. This Arbiter was written for evaluating the performance of the interposing subsystem,

rather than any practical application. ArbiterPassthru was presented as an example earlier in figure 4.1.

The first line gives the class declaration; RepArbiterPassthru is a direct descendant of CObjRepArbiter.

RepArbiterPassthru has two functions: handleCallQ), which is the function called when a function call to the

target clustered object is intercepted, and Create(), which is called to create a new ArbiterPassthru.

A specialization of the (provided) CObjRootArbiterTemplated class is used as the root of the

ArbiterPassthru. The class template takes two parameters, the Arbiter’s representative class,

RepArbiterPassthru in this case, and the representative class for the ArbiterProxy. Here, the basic

CObjRepArbiterProxy representative is used, which is appropriate for most Arbiters, including all of the

examples given here. The handleCall()} function, starting at line 6, merely takes the description of the

original call and the index number of the invoked function and passes them to makeCall(). MakeCallQ

calls the function in the target clustered object and returns the error code resulting from thecall to the target

object. HandleCall() finishes by returning that sameerror codeto the caller. The Create() function on line 29

is used to create an ArbiterPassthru clustered object. It calls the create function in the root class, and returns

the clustered object ID for the newly created ArbiterPassthru object. The root and its ancestor class’ Create()

functions take care of creating the object’s miss handler andinstallation in the clustered object system, as

_ per clustered object conventions. The codeofthis very simple Arbiter (figure 4.1) can be used as a template

for constructing more complex Arbiters.

The ArbiterBreakpoint shown in figure 4.22 is a simpleArbiter that can be used for debugging.It allows

breakpoints to be set at function entry points on a per-object basis. As discussed in Section 5.1, setting

breakpoints on a per-object basis is significantly more efficient than setting breakpoints in global code

paths, as is done with traditional debuggers. |

Structurally, ArbiterBreakpoint is very similar to ArbiterPassthru. There is some of extra code,

principally because a custom root object containing an array of flags is used. The flags are used to indicate

which functions should trigger a breakpoint. The custom root object takes up lines 4 through 14 ofthe code.

The root’s Create() function is typical of clustered object roots. The things to note are the declaration of

67

class RepArbiterBreakpoint : public CObjRepArbiter{

protected:

friend class RootArbiterBreakpoint;

class RootArbiterBreakpoint : public CObjRootArbiterTemplated<RepArbiterBreakpoint,

CObjRepArbiterProxy>{

public:

DEFINE_LOCALSTRICT_NEW(RootArbiterBreakpoint);

bool breakOn[256];

static Create(){

RootArbiterBreakpoint root = new RootArbiterBreakpoint();

return reinterpret_cast<RepArbiterBreakpoint**>(root->getRef());
}

RootArbiterBreakpoint(){ for(int i = 0; i < 256; breakOn[i++] = 0); }

};

RepArbiterBreakpoint() {}

DEFINE_LOCALSTRICT_NEW(RepArbiterBreakpoint);

virtual. SysStatus handleCall(CallDescriptor* cd, uval fnum){

if(reinterpret_cast<RootArbiterBreakpoint* >(myRoot)->breakOn[fnum])

breakpoint();

SysStatus rc = makeCall(cd, fnum);

return rc;

}

public:

virtual SysStatus setBreakpoint(unsigned char fnum){

reinterpret_cast<RootArbiterBreakpoint*>(myRoot)->breakOn[fnum] = true;

return 0;

}

virtual SysStatus unsetBreakpoint(unsigned char fnum){

reinterpret_cast<RootArbiterBreakpoint*>(myRoot)->breakOn[fnum] = false;

return 0;

}

static RepArbiterBreakpoint** Create(){

return RootArbiterBreakpoint: :Create();

hi
Figure 4.22: Example Code for ArbiterBreakpoint

68

1 class RepArbiterCallCounter : public CObjRepArbiter{

2 protected:

3 uval callCount[256];

4 friend class CObjRootArbiterTemplated<RepArbiterCallCounter, CObjRepArbiterProxy>;

5 RepArbiterCallCounter() { for(int i = 0; i < 256; callCount[i] = 0); }

6 DEFINE_LOCALSTRICT_NEW(RepArbiterCallCounter);

7 virtual SysStatus handleCall(CallDescriptor* cd, uval fnum){

8 FetchAndAddSignedSynced(&(callCount[fnum]), 1);

9 SysStatus rc = makeCall(cd, fnum);

10 return rc;

11 = }bs

12 public:

13 virtual SysStatus getCallCount(unsigned char fnum, uval& count){

14 *count = 0;

15 root->lockReps();

16 CObjRep* rep = 0;

17 for(void* curr = root->nextRep(0, rep); curr; curr = root->nextRep(curr, rep))

18 count += reinterpret_cast<RepArbiterCallCounter* >(rep)->callCount[fnum];

19 root->unlockReps();

20 return 0;

21 =}

22 static RepArbiterCallCounter** Create(){

23 return RootArbiterCallCounter::Create();

24 }

25 };
Figure 4.23: Example Code for ArbiterCallCounter

the array of flags, breakOn, andthe initialization in the constructor. The ArbiterBreakpoint representative

is similar to that of ArbiterPassthru with two changes:first, there are two additional public functions for

changing the status of a breakpoint(lines 24-31), and second, some changes to handleCall() to check if the

Arbiter should break on a call or just call it normally (lines 18-20).

Another Arbiter, the ArbiterCallCounter shown in figure 4.23, showsthat simple Arbiters can be used

for performance monitoring. This example showshowthe clustered object nature ofArbiters makesit easier

to write efficient data collection tools. ArbiterCallCounter counts the numberofcalls to each functionofthe

target object. To do this, it uses a distributed array of counters. Each ArbiterCaliCounter local representative

69

1 stage = checkStage()

2 if stage = InitialThreadsUncompleted

3 entryCount[currentThreadID]++

4 makeCall()

5 entryCount[currentThreadID]--

6 if stage = InitialThreadsCompleted && allEntryCountsAreZero()

7 // initial threads completed while we were running

8 swapTargetObject()

9 wakeBlockedThreads()

10 removeArbiter() .

11 makeCall()

12 return

13 else if stage = InitialThreadsCompleted

if allEntryCountsAreZero() swapTargetObject()

wakeBlockedThreads()

10 removeArbiter()

11 makeCall()

13 else if entryCount[currentThreadID] > 0

14 makeCall()

15 else

16 blockUntilSwapComplete()

17 makeCall()

Figure 4.24: Pseudocode for Hot Swapping Arbiter

has an array, declared on line 3, with a counter for each function in the target object. The array entries are

incremented by handleCall(Q) whenthe functionis called on the processor served bythat local representative.

The atomic increment shown online 8 is used because there may be multiple threads running on the same

processor. ArbiterCallCounter provides the getCallCount() function in its public interface that returns the

call counts for a function. This function works by summingthe call count values ofeach local representative.

Using this strategy, the cost of obtaining the call count is proportional to the number of representatives, but

the cost of incrementing the counter remains constant evenifthere target object has manyrepresentatives in

the system. This example demonstrates how the clustered object infrastructure makesthis easy to do since

Arbiters are themselves clustered objects.

The Arbiter used for hot swapping is more sophisticated than the Arbiters described so far. This Arbiter

has not been implemented yet, but the general approach would be to use an Arbiter to intercept calls and

allow them to proceed or block them, based on the phase of the switch. Pseudocode is shown in figure

4.24,

The hot swapping Arbiter worksin twostages.In thefirst stage, calls to the target object are monitored,

but allowed to proceed. In the second stage, existing threads are allowed to continue until they haveleft the

target object, but new threads are blocked. After all threads runningin the target object have drained, the

target object is hot swapped, and then the blocked threads are allowed to continue.

Initially, the hot swapping Arbiter monitors calls, but allows all calls to proceed (lines 3-5). The

entryCount for all threadsis initialized to 0. EntryCount keeps track of how many times each thread is

running inside the target object by incrementing each time a thread enters the target object and decrementing

each time the thread leaves. Since existing threads may be runningin the target object without the Arbiter’s

knowledge at this stage, it is not safe to hot swap the target, even if the Arbiter is not aware of any threads

running in it. Once all ofthe threads that existed at the time when hot swapping wasstarted have completed,

the Arbiter will be aware ofall calls that are running in the target object. New calls are then blocked (line

16). To allow recursive calls to complete, the hot swapping Arbiter allows threads that are running in the

target object to make new calls into the target (lines 13 and 14). Once the existing calls have drained, the

entryCount forall threads reaches 0 (line 7) andit is safe to hot swap the target object (line 8). Once the

hot swapping is complete, blocked calls are allowed to continue, and the hot swapping Arbiter is removed

(lines 9-12).

In addition to the Arbiter functionality described, the hot swapping Arbiter also needs a way to detect

whenall ofthe initially running threads have completed, and needs some method for obtaining new objects

and transferring state from the old object to the new one. Threadlifetime detection is already tracked by K42

for use in the garbage collection subsystem,and this information can be used to implementthe checkStage()

function in line 1 of the hot swapping pseudocode. Methodsfor creating objects and transferring state must

be provided along with the hot swap Arbiter to complete the swapTargetObject() function in line 8.

71

Chapter5

Evaluation

The K42 interposition subsystem meets, with only minor caveats, the design requirements set out for

it in Section 4.1. In addition, experimental results show that Arbiters introduce only small overheads when

they are used. On a 2.0 GHz Apple X-serve G5 runningin single processor mode, interposing on a clustered

object takes 2404 ns, and removing an Arbiter from a clustered object takes 513 ns. Calling a function thatis

interposed on by the ArbiterPassthru, as described in Chapter 4, adds 102 ns of overhead. Simple scenarios

involving breakpoints and counters using an Arbiter instead of a conditional breakpoint or static counters

placed at compile time show that Arbiters are competitive with traditional techniques for debugging and

instrumentation when performanceis a consideration.

| This chapter has two sections. The first examines how the K42 interposition subsystem fulfills the

requirements set out in Section 4.1. The second provides an evaluation ofArbiter performance with various

microbenchmarks and simple usage scenarios.

5.1 Fulfillment of Requirements

The requirements listed in Section 4.1 are basically met by the current design, as discussed below.

5.1.1 Transparency

Neither the calling code nor the code of the target object needs to be altered to work properly with

interposition. Two measures are essential in giving the interposition subsystem this level of transparency.

First, Arbiters can intercept functioncalls with any type signature, allowingArbiters to be used with functions

conforming to the standard K42 calling conventions. Second, alternate stacks are used for Arbiters so that

the target object’s function runs using the same place on the stack that it would whenthere is no interposed

Arbiter. This allows stack parameters to be passed normally, and means that functions that have knowledge

72

of the stack they run on will also work properly.

There are, however, a number of ways where an interposed Arbiter can be visible to interposed

target objects or their callers. Slightly reduced performance is one visible effect, although the design and

implementation aim to minimize overhead. There are also two ways in which an object may see different

values in memory if it is being interposed on. Thefirst is in the return address that a function will jump to

upon completion. An interposed object will have a return address that lies within a function of the Arbiter

as opposedto within the originally calling function. Since an object may be invoked from multiple places,

this will typically not be a serious limitation. A second differenceis that the translation table entries for the

object will be different if it is interposed on. A function in a clustered object normally hasa localtranslation

table entry that is equal to its “this” pointer, and a globaltranslation table entry that is equalto the clustered

object’s miss handler. Since these entries are easy to locate, and the miss handler is typically the root of

the clustered object, it would be straightforward for a clustered object to detect that it is interposed on,ifit

wishes to. This is an unfortunate breach of transparency; howeverit does not affect programsthat are not

actively trying to determine if they are interposed on.

5.1.2 Clustered Object Structure

The use of the ArbiterProxy object as the miss handler for the target object enables the Arbiter to be

responsible for only one clustered object interface, simplifying the construction of Arbiters by normal

programmers. Normal K42 clustered objects are only permitted to have one entry in the clustered object

system. With the design presented, the Arbiter is able to provide an interface that other objects can call

to control and obtain information from the Arbiter, while the ArbiterProxy intercepts function calls to

the Arbiter’s target. Although the ArbiterProxy implementation is reasonably complex, it is provided as

infrastructure, and typically programmers need not concern themselves with the implementation.

5.1.3 Ease of Use

Writing an Arbiter is easy because of the provided infrastructure, and the fact that the rules that

must be followed are not arduous. The Arbiter class hierarchy, shown in figure 4.11, can be extended to

allow the construction of simple Arbiters without re-implementing large amounts of functionality. The

CObjRootArbiter can often be used as is, and the CObjRepArbiterProxy can almost always be used without

modification. Using the ArbiterPassthrough as a template, a simple Arbiter such as the ArbiterCallCounter

takes only 12 additionallines of code. Itis easy for Arbiters to transparently call their target objects using

73

the provided makeCall() function. People writing or using Arbiters do not have to worry aboutlow level

details of interposition, or about which processors have target object representatives instantiated. Ofcourse,

Arbiters that perform complex tasks can be more complex than the simple Arbiters presented so far, and

they take correspondingly more effort to write.

There are somesimple rules that people writing or using Arbiters do have to follow, however. When

calling the target object, Arbiter authors must use the handleCallQ function. Users ofArbiters must avoid

the recursion that would resultif they directly or indirectly called any function of the target object without

using handleCall(). Users must also makesure thatthey do not interpose Arbiters that need services the

system is not able to provide. For example, an Arbiter that may cause page faults must not be interposed on

a pinned clustered object that runs when the system is not able to handle page faults.

Arbiters are easy to interpose and remove because they provide simple interfaces. The captureTarget()

function shownin figure 4.2 is used to interpose an Arbiter on a target clustered object. Its only parameter

is the clustered object ID of the target object. The releaseTarget() function shownin figure 4.7 is used to

remove an Arbiter from its target. Although Arbiters do not include interfaces for controlling functionality

that has been added by an Arbiter author or for retrieving data from the Arbiter, these are easy to add.

Because Arbiters are created by inheriting from the Arbiter infrastructure classes provided, new functions

can be added to command the Arbiter and retrieve data. These functions can then be accessed through the

sameclustered object interfaces that are standard throughout K42.

5.1.4 Efficiency

While the performance of the K42 interposition subsystem is fully evaluated in Section 5.2, design

choices to achieve efficiency are discussed here. In designing a system, there is a natural tension between

efficiency and simplicity (and the attendant ease of use).

The K42 interposing system interposes at a per-object granularity, avoiding global code paths and

thus leading to improved efficiency. This is made possible by the indirection through the local translation

tables. Figure 5.1 shows how this gives an advantage over systems that interpose on global code paths.

Theleft half of the figure shows globally interposed code that might, for example, occur with trampoline

interposition mechanisms. All of the object instances of the sametype experience overhead. Theright half

ofthe figure showsper-object interposition using Arbiters. If there are two or more object instances of the

same class in K42, only one will be interposed on, and the others will not experience any overhead due

to the interposition. There is the added overhead of indirection through the translation tables, but this is

74

caller code

code interposed

on a per-object
basis using

oa Ww an Arbiter

object instances

globally

interposed code
code for object

Figure 5.1: Interposing on a per-Object Basis

standard in K42, independentof the interposition subsystem.

The design of the K42 interposing subsystem avoids shared data and locking in common paths to

promote efficiency. Shared data reduces performance on multiprocessor systems. Access to shared data

increases the likelihood of communication with remote caches, increasing overhead. If shared data is

modified by more than one processor then the data may bounce back and forth between the caches of the

processors, which can cause significant performance degradation. While the interposition and removal of

Arbiters requires setting global data, once a processor has a local Arbiter representative, no global data

needs to be accessed to intercept function calls or make calls to target objects. Arbiters do use resources

that must be protected from concurrent access on a single processor. Only a single resource, the alternate

stacks, must be accessed in the most commoncase,andit is protected using lock-free data structures, rather

than more expensive locks.

Since the code path for interposing is mostly linear, it is relatively easy to optimize. Efficient

implementation is a matter of looking at the code that runs and reducing the instruction count, and in

particular the number of expensive instructions such as branches and memory writes and reads. Careful

attention was paid when writing the Arbiter and ArbiterProxy objects to make sure that the common code

paths are short.

Someof the design choices for the Arbiter do lead to unnecessary overhead in order to improve ease

75

of use, but are designed so that they can be specialized to eliminate the overhead in cases where thatis

necessary. In particular, the ArbiterProxy object emphasizes ease ofuse and ease ofmaintenance. The choice

to use clustered object protocols for calling the Arbiter, and the choice to intercept all functions in a generic

way causes additional overhead.If there are cases where this overhead is excessive, the ArbiterProxy can

be reimplemented, with specialization to make it more efficient for interposition on a particular type of

target clustered object. For example, it could be made to bypass interposition on some important function

of its target, thereby eliminating overhead forthat particular function, and only interpose on the remaining

functions. Although this specialization causes significant extra work and hurts maintainability (by linking

the specialized ArbiterProxy toa particular target object) this can be done while still taking advantage of

the rest of the Arbiter infrastructure.

5.1.5 Generality and Flexibility

Being able to interpose on clustered objects gives the K42 interposing subsystem extensive coverage

within the K42 operating system kernel and system libraries. The freedom to run arbitrary code when

interposing, including the target function of the intercepted function call, allows interposing to.be used

for many purposes in K42. This is enhanced by theability to interact with the intercepted function call by

reading and modifying parameters and return values. Arbiters can be written to be general so that they work

with all objects (e.g. the ArbiterCallCounter presented earlier), or specialized so that they perform a task

that is particular to only one type of object.

To achieve good coverage ofthe K42 operating system, the interposing subsystem works with clustered

objects. With K42’s object oriented structure, all system resources and services in the kernel and system

libraries are made into components that are implemented as clustered objects. Access to these resources and

‘ services is obtained through function calls to the appropriate clustered object. Being able to interpose on

clustered objects meansthe interposing subsystem is able to interpose on accesses to resources and services

at a fine granularity. Since interactions between components are necessary forall significant operationsthat

the operating system performsafter it has been bootstrapped, the coverage of the interposing subsystem in

K4?2is excellent.

Arbiters in K42 are able to run arbitrary code, limited only by the state of the system when a function

call is intercepted. Arbiters may use resources or services from any clustered object in the system that is

available when the Arbiter intercepts a call. Programmers writing Arbiters can call the target function ofthe

intercepted call. They can also block the call or delay it.

76

As noted in the previous subsection, Arbiters can be specialized to reduce overhead when overhead

must be minimized. General purpose Arbiters that can interpose on any object are useful for tasks such as

breakpoints and simple performance counters where the type of clustered object being interposed on does

not affect the actions of the Arbiter. However, the flexibility to specialize Arbiters to particular clustered

object implementations increases the set of possible applications. Arbiters can be used for purposes that

require special knowledge about the target object, such as multiplexing between resources or monitoring

performance characteristics that are dependent upon the implementation of the clustered object being

monitored. Arbiters that are specialized to a particular type of clustered object do not perform any checks

wheninstalled, so it is up to the user of the Arbiter to ensure that they are only interposed on appropriate

clustered objects.

To help with specialization, the interposing subsystem gives access to the parameters that the function

wascalled with. These can be read and be logged, or used to makecalls to other functions. They can also

be modified so that an Arbiter can act as a filter that changes values between caller and callee functions.

Arbiters can also read and modify the return code from any functions they call, and can view and modify

variables that are passed by reference after the function has returned.

5.2 Performance Evaluation

Tests were performed on an Apple X-Serve G5 computer running the K42 operating system. The X-

Serve has two PPC970 processors operating at 2.0 GHz. This computer is a modern low-end server. The

PPC970 is a high performance 64-bit microprocessor that is derived from IBM’s POWER4+processor.

The POWER4+ targets high end workstations and servers with up to 32 processors, while the PPC970 is

typically used in single and double processor configuration. The PPC970 features 32 KB of L1 data cache

and 64 KB ofinstruction cache, along with 512 KB ofL2 cache. Each test was performed 10 times to warm

up the caches andfill in K42’s local translation tables, then the test was run 500 times, and the run times

averaged. This was repeated 20 times to obtain confidence intervals. For testing purposes, the Arbiters

were run inside the K42 kernel, although they are available in user space as well. All tests were run at the

“noDeb” debugging level of K42, which is optimized for fast performance, except for the gdb breakpoint

test, as breakpoints can not be set in a noDeb kernel using gdb.

77

5.2.1 Basic Times

Interposing an Arbiter on a clustered object takes 2404 ns, and removing an Arbiter takes 513 ns, as

shownin figure 5.2. Interposing and removing Arbiters is significantly more expensive on multiprocessor

systems becauseit requires sending messages to other processors due to the time to create and send messages

to the other processors to reset their local translation table entries. Presumably the time would increase

proportionally with the number of additional processors in a multiprocessor system. On a large system,

adding Arbiters could be a heavyweight operation.

Figure 5.3 showsthe time required to call an empty function that has no parameters in the scenarios: (i)

without an Arbiter, (ii) using the ArbiterNull that intercepts the call but does notcall the originally targeted

function, and (iii) using the ArbiterPassthru, described earlier. When compared to a function call to an

empty function that has no Arbiter interposed, the basic functionality of the Arbiter is many times slower.

The Arbiter takes 94 nsto intercept a functioncall and return immediately, and 109 ns to intercept a call and

call an empty function. Thatis, it is 13 times slower to have an Arbiter intercept a null function call, and 15

times slowerto intercept a null function call and then havethe Arbitercall the original target. Section 5.2.4

shows a breakdown ofthe time spent by the Arbiter.

Although the overhead of using an Arbiter is high relative to calling an empty function, the absolute

overheadis acceptable. While the overhead suggests that it would not be feasible to interpose onall clustered

objects in an operating system, the remaining results will show that Arbiters can be used in some scenarios

without causing performance problems.

5.2.2 Avoiding Synchronization for Stack Acquisition

In somecases, the threadthat is calling an object that is interposed on has already acquired an alternate

stack. This can happen if a clustered object calls itself recursively, or if a thread’s control flow leads it to

call multiple objects that are interposed on. Whenthis happens, the Arbiter can avoid synchronization and

reuse the stack without the possibility of interference from other threads when allocating the stack. This

case is simulated experimentally by having a clustered object that calls an empty function repeatedly, but

by interposing on both the calling object and the object with the empty function. Using this setup, the

repeated calls to the empty function will already have a stack and will not attempt to acquire another. Figure

5.4 showsthe results of this test. Approximately half of the overhead of interposing is due to acquiring a

temporary stack. If the stack is already in place, intercepting a function call takes 34 ns, or five times as

long as an empty function call, and interposing and calling the empty function takes 51 ns, or seven times

78

Ti
me
(
n
s
)

Ti
me
(
n
s
)

{Install Arbiter Hi Remove Arbiter

3500

3000 T.

 2500

1

Figure 5.2: Times for Interposing and Removing an Arbiter

120

 100

80

60

40

20
No Arbiter Arbiter Null Arbiter Passthru

Arbiter Tvne
Figure 5.3: Time to Call an Empty Function With Various Arbiters

79

80

60

T
i
m
e
(
n
s
)

No Arbiter Arbiter Null No Sync Arbiter Passthru No Sync

Arbiter Type

Figure 5.4: Time to Call an Empty Function Without Synchronization for Stack Acquisition

as long as making the empty functioncall directly. It would be possible to change the designofthe arbiter

subsystem to eliminate this overhead. However, this change is not obviously beneficial since it would add

overhead in other code paths that are more frequently used, such as thread creation. Barring that, it may be

advisable to manually install an alternate stack for threads on which heavy Arbiter use is anticipated.

5.2.3 Parameter Saving

Another factor that consumestime in the Arbiter path is the saving and restoring of the call parameters.

The Arbiter must save and restore a parameterlist consisting of 7 integer parameters and 13 floating point

parameters, all passed in registers, each time it intercepts and calls a function. To determine the overhead

involved in parameter saving, the Arbiter code was modified so that it did not save parameters. As shown

in figure 5.5, Arbiters that did not haveto save and loadthecall parameters took 82 ns to interceptthe call,

and 89 ns to intercept and then makethe original function call. Saving the parameters took approximately

12 ns and restoring them took approximately 8 ns. These numbers are subject to the same absolute error as

the other larger numbers, which meansthat they have a much higher percentage of error than the total call

times.

100

T
i
m
e

(n
s)

No Arbiter Arbiter Null No Params Arbiter Passthru No Params

Arbiter Type

Figure 5.5: Time to Call an Empty Function Without Parameter Saving

The overheadofsaving and restoring parameters is small compared to the overhead ofusing an Arbiter;

it is high relative to an empty functioncall. The overheadrelated to call parameters could be reduced further

by writing a specialized Arbiter version that did not save floating point parameters. Considering the small

gain versusthe loss in generality, this optimization does not seem worthwhile

5.2.4 Arbiter Overhead Breakdown

From the sequence of experiments performed, the breakdown of the overhead of using an Arbiter

was determined to be as shownin figure 5.6. The overhead is given for an ArbiterPassthru intercepting

a call to an empty function, and assumes that both the processor caches and the local clustered object

representative cachesin the local translation table and Arbiter representative are warmed up. The greatest

part of the overhead, 53 percent, comes from acquiring and releasing an alternate stack. This is due to the

atomic memory accessinstructions used for synchronization. Calling the empty target function contributes

approximately seven percent of the Arbiter’s run time. Saving and loading parameters takes up another 19

percent of the overhead of the Arbiter. The remaining 22 percent of the overhead is due to other Arbiter

details, including switching stacks, locating representative objects for the Arbiter and ArbiterProxy, and

81

Calling Target Synchronization for
Stack Acquisition

 Parameter Saving

Figure 5.6: Arbiter Overhead Breakdown

calling and returning from the internal functions of the Arbiter and ArbiterProxy.

5.2.5 Performance Overhead of Call Counter and Breakpoint Arbiters

Twoexperiments werecarried out to measure the overhead oftwo specific Arbiters. The first experiment

compares the overhead of the ArbiterCallCounter that was presented in Section 4.5 to the overhead of a

counter statically embedded in the program directly. In the second experiment, the overhead of using an

Arbiter to implement a conditional breakpoint is compared with the overhead of using gdb to implementa

conditional breakpoint.

For the counter test, a function was created that atomically increments a counter each timeit is called,

and the cost of calling the function was measured. Then, an Arbiter was created that atomically increments

a counter each time the object that it is interposing on is called, and the overhead was measured. Figure

5.7 showsthe results; calling the empty function with an Arbiter counter interposed took approximately

two times as long as calling the counter function; 254 ns compared to 128 ns. Although Arbiters are more

expensive than static counters, the difference is not very large in absolute terms. And again, Arbiters can

be interposed on specific target object instances, while statically placed counters incur overhead on each

82

Ti
me
(
n
s
)

83

300

250

50 +
Static Counter Arbiter Counter

. Counter Type
Figure 5.7: Time to Call an Atomically Incremented Counter

gdb Arbiter Breakpoint

_ Breakpoint Implementation .
Figure 5.8: Time to Evaluate a Conditional Breakpoint

object instance.

The breakpoint test was carried out by writing an Arbiter that checks a condition each timeit is called,

and triggers a breakpointif the condition is true. For the non-Arbiter breakpoint, gdb was attached to the

program and a conditional breakpoint wassetin the empty function. Breakpoints in K42 are very expensive

because K42 does not support running a debugger natively, and the debugger must be attached from a

remote machine over the network. A breakpoint condition that always evaluated to false was used, since

the goal was to determine how quickly a conditional breakpoint could be evaluated. Figure 5.8 shows the

test results; evaluating a breakpoint condition with an Arbiter took 107 ns, whereas evaluating a breakpoint

condition using gdb took 677 ms, or more than twothirds ofa second. Gdb took more than one million times

longer than the Arbiter breakpoint to evaluate a conditional breakpoint. This test is not a fair comparison,

however, since conditional breakpoints can be evaluated much quicker than this, but it does represent the

situation currently faced by people developing software for K42.

84

Chapter 6

Concluding Remarks

The primary goalof the interposition subsystem wasto allow interposition of code into the kernel and

user programs in K42. The interposition subsystem designed and implemented for K42 allows code to be

interposed oncalls to functions of targeted K42 clustered objects. Code can be inserted dynamically into

most parts of the K42 kernel, system libraries and within applications written using K42 clustered objects.

The facility implemented supports many applications, including performance monitoring, debugging and

hot-swapping. Interposing code allows the behaviour of objects to be monitored, and actions taken each

time a particular object is called. Interposition can be used for debugging, either to monitor or act on data

or to efficiently add breakpoints or conditional breakpoints at a per-object granularity. Code interposition

is essential for implementing hot-swapping, which can in turn be used foron line updates or customization

of a running operating system.

The implementation of the interposition subsystem described in this dissertation supports these

applications by allowing transparent interposition of code before calls to K42 clustered objects in an easy,

flexible and efficient manner. Interposition is implemented by taking advantage of the additional level of

indirection through the K42 clustered object translation tables. When a call is made to a function of an

object that has code interposed, that function call is redirected through the translation tables to a different

object called an Arbiter. The Arbiter can perform arbitrary actions, such as those mentioned previously.

Optionally, the Arbiter can also call the original function of the clustered object that it is interposed on.

To enable this to be done transparently, the Arbiter is run on an alternate stack, and switches back to the

original stack to call the original function.

Arbiters are made easy to use by being written as clustered objects, and by having simple interfaces to

initiate interposition on and removal ofArbiters from clustered objects. Similarly, new Arbiters can easily

be written, since the basic functionality is provided in the Arbiter base classes that can be easily accessed

and extended, since much of the complexity is hidden in an ArbiterProxy object that is provided by the

85

infrastructure. Flexibility is achieved by allowing interposition on clustered objects within the K42 kernel,

system libraries and user programs, and by allowing arbitrary actions to be performed before and after the

optionalcall to the original function.

Careful design and implementation allow Arbiters to be used with low overhead. Per-object interposition

avoids overhead onglobal code paths. The chosen design also avoids locking on the most commonpaths.

Careful implementation reduces the numberofinstructions that must be executed by an Arbiter, and allows

parameters to the original function to be saved and restored once each. The low overhead of the Arbiter

is confirmed by experimental results, in particular the 94 ns overhead involved in function calls that are

intercepted by an Arbiter.

6.1 Lessons Learned

The work done implementing the interposition subsystem in K42 has shown that codeinterposition can

be done efficiently, and that it has advantages over traditional approaches to debugging and performance

monitoring. |

Someaspects ofthe implementation proved more challenging than expected. Obtaining representatives

for target objects was challenging. Usually, miss handlers in K42 install their representatives directly

into the local translation tables. This is not possible when an Arbiter is interposed, since doing so would

bypass the ArbiterProxy and prevent calls from being intercepted. Solving the problem required defining

more precisely the relation between miss handlers and translation tables in K42. This had not been done

. previously, since there had not been any reason to do so.

Anotherlesson learned wasthe value ofleveraging higher level constructs in lower level code. Machine

dependent code was regularly broken throughout the project by changes to higher level code that it relied _

on. In many cases, these problemscould be avoided by referencing higher level stubs that were updated by

the compiler each time the system wasrebuilt. In other cases, the infrastructure to generate these stubs was

’ not available, because its use is restricted to the K42 kernel and it is not available in the system libraries. In

particular, extending the asmConstants infrastructure to the system libraries would have madeit easier to

implementthe K42 interposition subsystem.

The difficulties in dealing with concurrency when removing multiple Arbiters were unforeseen. A

significant number of conditions needed to be handled, and multiple locks were required. —

Someparts ofthe interposition subsystem wereeasier to implement than expected. Agood understanding

86

ofhow the compiler worked proved invaluable. Switching stacks andcalling virtual functions proved to be

relatively simple to implement.

The ArbiterProxy was a great help in simplifying the implementation. Separating the Arbiter and

ArbiterProxy allowed the clustered object system to treat both the target object and the Arbiter in its normal

manner, without modification. Ifthe two parts were containedin only a single object it probably would have

been necessary to either modify the clustered object system to treat Arbiters differently than other objects

or to make the Arbiter considerably more complex than other clustered objects.

6.2 Future Work

Nevertheless, the experiences so far have been with only a few simple Arbiters. It will be interesting to

observe whatuses Arbiters will ultimately find given the availability of the interposition infrastructure.

Although the implementation of the interposition subsystem in K42 is complete, there are a few

features that may be revisited after sufficient experience is obtained with the use ofArbiters. In particular,

the overhead of acquiring an alternate stack for an Arbiter may be reduced significantly (at the expense

of additional overhead elsewhere) by allocating an alternate stack on thread creation. The scalability of

interposing and removing Arbiters may also need examination if these operations occur very frequently.

Although the current scheme works very well for the small SMPs it was tested on, it may become too

expensive on computers with many more processors.

Users of Arbiters have already requested the ability to have a single Arbiter interpose on multiple

clustered objects simultaneously. Although this is not part of the original design, it is a logical extension.

Arbiters will play an important part in future work on understanding K42 operation and performance.

Moreover, Arbiters are already being used for hot swapping in K42. Hot swapping will enable updates and

reconfiguration of a running K42 operating system to improve system reliability [6, 7]. Reconfiguration can

also be used for dynamic updates to improve system performance in response to changing workloads.

87

Bibliography

[1]

[2]

[3]

[4]

[6]

7]

[8]

[9]

[10]

M.Acetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, M. Young. MACH:Anew

kernel foundation for UNIX development. In Proc. Summer USENIX, 1996,

Jonathan Appavoo. Clustered Objects: Initial Design and Evaluation. MSc thesis, Department of
Computer Science, University of Toronto, 1998.

M.Arnold, S. Fink, D. Grove, M. Hind, P. Sweeney. Adaptive Optimization in the Jalapeno JVM.

In ACM Conference on Object-Oriented Programming Systems, Langauges, and Applications,
2000.

M.Auslander, H. Franke, O. Krieger, B. Gamsa, M. Stumm. Customization-Lite. In Proceedings

ofthe 6th Workshop on Hot Topics in Operating Systems, pages 43-48, 1997.

R. Azimi, M. Stumm, R. Wisniewski. Online Performance Analysis by Stastical Sampling of

Microprocessor Performance Counters. In Proceedings ofthe 19th International Conference on
Supercomputing, 2005.

Andrew Baumann, Jonathan Appavoo, Dilma Da Silva, Jeremy Kerr, Orran Krieger, Robert
Wisniewski. Providing Dyanmic Update in an Operating System. In Proceedings ofthe USENIX
2005 Annual Technical Conference, pages 279-291, 2005.

Andrew Baumann, Jonathan Appavoo, Dilma Da Silva, Orran Krieger, Robert Wisniewski.

Improved Operating System Availability With Dynamic Update. In Workshop on Operating

System andArchitectural Supportfor the demandonITInfrastructure, pages 21-27, 2004.

Bryan R. Buck, Jeffrey K. Hollingsworth. An API for Runtime Code Patching. In Journal of

High Performance Computing Applications 14 (4), 2000.

Bryan M. Cantrill, Michael W. Shapiro, Adam H. Leventhal. Dynamic Instrumentation of

Production Systems. In Proceedings of the USENIX 2004 Annual Technical Conference, pages

15-28, 2004.

BenGamsa. Tornado: Maximizing Locality andConcurrency ona Shared-MemoryMultiprocessor
Operating System. PhD thesis, Department of Computer Science, University of Toronto, 1999.

88

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Kevin Hui. Design and Implementation of K42’s Dynamic Clustered Object Switching

Mechanism. MSc. Thesis, Department of Computer Science, University of Toronto, 2000.

Randall Hyde. The Art of Assembly Language Programming. http://webster.cs.ucr.edu/AoA/
index.html, 1996.

Mark Scott Johnson. Some Requirements for Architectural Support of Software Debugging.

In Proceedings of the International Conference on Architectural Support of Programming

Languages and Operating Systems, pages 140-148, 1982.

MichaelBlair Jones. Transparently Interposing User Codeat the System Interface. In Proceedings

ofthe Third Workshop on Workstation Operating Systems, 1992.

AndreasKrall. Efficient JavaVM Just-in-Time Compilation. In Proceedings ofthe International

Conference on Parallel Architectures and Compilation Techniques, pages 205-212, 1998. ©

G. H. Kuenning. Precise Interactive Measurement of Operating Systems Kernels. In Software—

Practice and Experience 25, pages 1-22, 1995.

The Linux Kernel Archives. http://vww.kernel.org.

Paul E. McKenney, Jonathan Appavoo, Andi Kleen, Orran Krieger, Rusty Russell, Dipankar

Sarma, Maneesh Soni. Read-Copy Update. Ottawa Linux Symposium,2001.

Przemyslaw Pardyak, Brian Bershad, Dynamic Binding for an Extensible System. In Proceedings
of the Second USENIX Symposium on Operating Systems Design and Implementation, pages

201-212, 1996.

Eric Parsons, Ben Gamsa, Orran Krieger, Michael Stumm. (De-)Clustering Objects for

Multiprocessor System Software. Fourth Workshop on Object Orientation in Operating Systems,

1995.

MargoSeltzer, Chris Small. Vino: An Integrated Platform for Operating System and Database

Research. Technical Report TR-30-94, Harvard University, 1994.

Michael M.Swift, Brian N. Bershad, Henry M. Levy. Improving the Reliability of Commodity

Operating Systems. InProceedings ofthe 19thACMSymposium on Operating Systems Principles,

2005.

89

