
TORNADO: MAXIMIZING LOCALITY AND CONCURRENCY
IN A SHARED-MEMORY MULTIPROCESSOR OPERATING SYSTEM

by

Benjamin Gamsa

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy

Graduate Department of Computer Science
University of Toronto

Copyright c 1999 by Benjamin Gamsa

Abstract

Tornado: Maximizing Locality and Concurrency
in a Shared-Memory Multiprocessor Operating System

Benjamin Gamsa
Doctor of Philosophy

Graduate Department of Computer Science
University of Toronto

1999

This dissertation presents novel operating system structuring techniques for dealing with the

problems of scalability in shared-memory multiprocessors. By using an object-oriented structure,

with each virtual and physical resource represented by an independent object, Tornado eliminates

most shared global objects, thus reducing contention and increasing locality. To improve perfor-

mance for contended components, Tornado uses a new structuring technique called Clustered Ob-

jects that allows an object to be partitioned and distributed across the machine in a manner trans-

parent to the outside consumers of the object. In addition, Tornado includes a new interprocess

communication facility, called the Protected Procedure Call facility, that provides the locality and

concurrency required to allow microkernels to scale effectively on multiprocessors. This disser-

tation also explores some of the other issues in multiprocessor operating system design, such as

efficient lock and memory allocation implementations, as well as the interactions between concur-

rency control and object destruction.

A prototype implementation of the techniques described have been implemented as part of the

Tornado operating system for the NUMAchine multiprocessor. This dissertation explores both the

design aspects of the system as well as experiences gained through its implementation and use on

both NUMAchine and a complete machine simulator, SimOS.

ii

A

N DO
TOR

Preface

Like most large systems projects, Tornado is a group effort. The contributions of many people
made the system possible.

Orran Krieger: implemented the original File System (HFS) and user-level I/O library (AFS),
and helped flesh out the Tornado architecture through many fruitful discussions.

Eric Parsons: implemented the locking routines and name service.

Paul Lu: implemented the debugging stub and event service.

Karen Reid: ported NFS to Tornado.

Daniel Wilks: implemented the memory manager.

Jonathan Appavoo: refined the implementation of the Clustered Object system.

Derek Devries: ported the pipe server, HFS, and other utilities to Tornado.

My primary role was as systems architect and lead implementor. In that position, I was respon-
sible for the overall system design, including the object-oriented structure of the system, the clus-
tered object design, the memory management design, the process management design, and the IPC
design. I was also responsible for most of the implementation of these and other components.

iii

A

N D
O

T

OR

Contents

1 Introduction 1
1.1 Problem Description . 1
1.2 System design goals . 3
1.3 Previous Approaches . 4
1.4 Design Approach . 7
1.5 Dissertation outline . 8

2 Background 10
2.1 Multiprocessor Hardware Issues . 10

2.1.1 Physical parallelism . 11
2.1.2 Cache coherence . 12
2.1.3 Cache miss latency . 13
2.1.4 Summary . 14

2.2 Design principles . 15
2.2.1 Structuring data for caches . 15
2.2.2 Locking data . 16
2.2.3 Localizing data accesses . 17

2.3 Summary . 18

3 System Overview 20
3.1 Operating environment . 20
3.2 Experimental Setup . 22

3.2.1 NUMAchine . 22
3.2.2 SimOS simulator . 23

3.3 Tornado Architecture . 24
3.3.1 Operating System structure . 24
3.3.2 Tornado programmer interface . 26

iv

A

N D
O

T

OR

3.3.3 Basic programmer-visible abstractions . 27
3.3.4 Key kernel classes . 27
3.3.5 Kernel and system server design strategies 31

3.4 Summary . 37

4 Clustered Objects 38
4.1 Motivation . 38
4.2 Implementation . 41

4.2.1 Object References and Translation . 44
4.2.2 Translation Misses . 45
4.2.3 Managing the translation table memory 48
4.2.4 Destruction . 48
4.2.5 External Access to Clustered Objects . 53

4.3 Examples . 56
4.4 Performance evaluation . 58

4.4.1 Component measurements . 58
4.4.2 Sample clustered objects . 60

4.5 Open Issues . 67
4.6 Related work . 68
4.7 Summary . 69

5 Protected Procedure Call 70
5.1 Motivation . 70
5.2 PPC model . 71

5.2.1 Overview of PPC . 72
5.2.2 Parameter passing mechanisms . 73
5.2.3 Naming and authentication . 74
5.2.4 Extended application of PPCs . 75
5.2.5 Remote PPC . 76
5.2.6 Error handling . 76
5.2.7 Process Initialization . 77

5.3 Implementation . 77
5.3.1 Overview . 77
5.3.2 Process Descriptor . 79
5.3.3 PortAnnex table . 79
5.3.4 Stacks . 80

v

A

N D
O

T

OR

5.3.5 IN/OUT pages . 82
5.3.6 Scheduling . 82
5.3.7 Exceptional conditions . 82
5.3.8 Hardware exceptions . 83
5.3.9 Remote PPCs . 84

5.4 Performance . 86
5.5 Open Issues . 90
5.6 Related work . 90
5.7 Summary . 91

6 Support Infrastructure 92
6.1 Locking facility . 93

6.1.1 Locking issues . 93
6.1.2 Tornado locking facility . 96
6.1.3 Performance evaluation . 100
6.1.4 Open Issues . 101
6.1.5 Related Work . 102

6.2 Memory allocation subsystem . 103
6.2.1 Multiprocessor allocator issues . 103
6.2.2 Tornado allocation facility . 107
6.2.3 Performance evaluation . 115
6.2.4 Open issues . 117

6.3 Related Work . 117
6.4 Summary . 118

7 Overall System Performance 119

8 Overall Summary 123
8.1 Object-Oriented Structure . 123
8.2 Clustered Objects . 124
8.3 Clustered Object Garbage Collection . 126
8.4 Protected Procedure Calls . 127
8.5 Locks . 128
8.6 Memory Allocation . 129
8.7 Overall Open Issues . 130

9 Lessons Learned 131

vi
AN
DO

T

O R

10 Concluding remarks 134

Bibliography 135

vii
AN
DO

T

O R

Chapter 1

Introduction

With processor speeds increasing faster than memory or multiprocessor interconnects, designing a
shared-memory multiprocessor operating system with good performance is becoming increasingly
difficult. Both scaling the operating system up to the size of the larger multiprocessors and provid-
ing performance competitive with uniprocessor systems is a challenging task.

This dissertation attempts to address these issues by presenting new system software structuring
techniques and key support facilities that help improve locality and concurrency. More specifically,
we present an object-oriented design that increases locality and concurrency by encapsulating each
resource instance within an independent object. We further extend this with a novel structuring
technique called Clustered Objects that improves scalability by supporting the replication, migra-
tion, and partitioning of shared data structures to increase locality and reduce contention. We also
present a new interprocess communication facility, called PPC, that provides a highly efficient and
concurrent glue for the multiple servers of the microkernel system. Finally, we describe locking
and dynamic memory allocation facilities that aid efficient system design by reducing the costs of
these key components and improving their scalability.

This work is presented within the context of a fully functional multiprocessor operating system,
Tornado, running on an experimental shared-memory multiprocessor called NUMAchine. The dis-
sertation consists of the design, implementation, and evaluation of Tornado.

The rest of this chapter provides an overview of the issues to be addressed, our design goals,
previous approaches to the problem, and a general outline of the direction we took.

1.1 Problem Description

Designing a high performance operating system for shared-memory multiprocessors is fundamen-
tally more difficult than designing one for uniprocessors. Multiprocessors require that a distinct set

1
TORNADO

CHAPTER 1. INTRODUCTION 2

of issues be considered. For small-scale bus-based shared-memory multiprocessors (4–16 proces-
sors), the overhead of cache consistency requires careful attention to the organization and sharing
of data in order to reduce the number of cache misses. For example, the cost of simple list manipu-
lations can increase by over two-orders of magnitude when the list is shared by just two processors.
In addition, more careful attention must be given to the concurrency control architecture to ensure
correctness and efficiency. Contention for locks and shared data must be carefully monitored for
potential bottlenecks.

With larger systems (32 processors and up), there has been a tendency to use what is called a
Non-Uniform Memory Access time (NUMA) architecture, in which processors, memory, and I/O
devices are physically distributed and interconnected by a general interconnection network, such as
a mesh, ring, or torus. Although a NUMA architecture increases total aggregate bandwidth, it also
introduces higher latencies for remote memory accesses and the potential for increased contention
within the network. In addition, the size of the system (independent of architecture) increases the
probability of contention at any system component, such as at the memory or I/O modules. As a
result of all of these attributes, attention must be paid to the placement of data in order to maxi-
mize locality and reduce hot spots. Although cache coherence partially addresses locality issues
by automatically migrating and replicating data, it is well known that operating systems have very
poor cache hit rates and therefore relying strictly on the caches may result in dramatically poorer
performance than what is possible.

Thus, to achieve good performance, it may be necessary to apply optimizations such as data
alignment, padding, regrouping, replication, migration, or sometimes completely different data
structures and algorithms altogether. Without some support, the systems programmer will need to
be aware of all the intricacies of the multiprocessor hardware and explicitly optimize for them.

Unfortunately, structuring the operating system so as to maximize the performance of large-
scale applications can have a detrimental affect on small-scale and sequential applications. For ex-
ample, to reduce a hot spot caused by concurrent page-faults for a common region of memory, the
key kernel data structures may be randomly distributed across the system. As a side effect, how-
ever, this may eliminate the possible localization of those same data structures when no sharing is
occurring, leading to higher overheads. In addition, elaborate data structures and fine-grained lock-
ing help increase concurrency but may result in unacceptable and unnecessary overhead, especially
when the operating system is deployed on small-scale systems. Hence it is important for the oper-
ating system to effectively scale up and down, both with respect to the hardware and the application
workload.

Multiprocessor workloads can pose many difficult challenges for the operating system, espe-
cially for large scale systems. One of the key benefits of large-scale shared-memory multiprocessors

TORNADO

CHAPTER 1. INTRODUCTION 3

over message-passing multiprocessors is the ability to use them as both a general purpose compute
server and as a target for high-performance large-scale parallel applications. The operating system
must thus support multiprogramming and simultaneously provide high responsiveness for what will
likely be a large number of small sequential interactive applications, and efficient resource manage-
ment for a smaller number of large parallel non-interactive applications.

Large-scale parallel applications have a number of special requirements. These include: the
desire to control their own resources (fueled by the desire to “get the operating system out of the
way”), predictable resource allocation to support compiler and run-time system optimizations that
are resource dependent (such as how much memory is available), interactive response for visualiza-
tion or debugging, and repeatability and consistency for performance debugging. And, of course,
the operating system must balance these needs against the demands of all other applications.

In summary, given these requirements, the primary objective for Tornado is to achieve high
throughput and responsiveness for both large and small applications on both large and small-scale
multiprocessors. The structure of the operating system must fit both the scale and distributed na-
ture of the hardware and the pattern of requests expected from the workload. To achieve this, the
operating system must be designed to avoid contention in the operating system data structures, in-
crease locality and reduce cache coherence overhead by reducing true and false sharing, and provide
policies that match the needs of the workload. At the same time, while attempting to achieve good
performance for large systems and applications, it is important that the operating system not hurt
either small application or small system performance. At the moment, no existing operating system
can meet all of these goals.

1.2 System design goals

Given the issues discussed above, Tornado’s primary design goal is the following:

The per-application operating system overhead should depend only on the number of
resources used by the application, not on the size of the system overall.

That is, an application under Tornado should execute with the same efficiency on a large-scale mul-
tiprocessor as it would on a small-scale multiprocessor.

In addition, Tornado has a number of secondary design goals:

The system should degrade gracefully as contention for a single resource grows, whether the
contention comes from a single large-scale parallel application or a large-number of sequen-
tial applications;

TORNADO

CHAPTER 1. INTRODUCTION 4

The performance of a given workload for a given system size under Tornado should be “com-
parable” to that of a system optimized just for the given workload and hardware (although we
are willing to accept a minimal cost to obtain the scalability benefits);

The system should provide multiple policies and implementations so as to match the require-
ments of a diverse set of application workloads;

The overall complexity of the system must remain manageable and permit a natural evolution
as the workload and hardware changes.

1.3 Previous Approaches

There have been three main approaches to developing operating systems for scalable multiproces-
sors. The first approach is to take a uniprocessor operating system and make all the changes neces-
sary to make it function correctly on a multiprocessor, and then tweak it incrementally until it runs
efficiently on whatever size machine it is being targeted for. This has been the approach taken by
most mainstream UNIX multiprocessor vendors, and has allowed them to slowly increase the scal-
ability of their systems from a couple of processors up to about 16 or 32 today [Chapin et al., 1995a,
Talbot, 1995, McCrocklin, 1995, Campbell et al., 1991a, Presotto, 1990]. However, this tends to
be a slow, ad hoc, and laborious task, that has to be repeated with each data structure every time
the system needs to be expanded, and still results in a system that falls short of being able to take
full advantage of the hardware when stressed. This is exemplified in Figure 1.1 that shows the re-
sults of a few simple micro-benchmarks run on a number of commercial multiprocessor operating
systems as well as on Tornado.1 (More details on these experiments are provided in Chapter 7.)
For each commercial operating system considered, there is a significant slowdown when simple
operations are issued in parallel that should be serviceable completely independently of each other.
We experienced similar difficulties in a multiprocessor operating system we developed previously
ourselves [Unrau et al., 1995].

We conjecture that these systems perform inadequately for two reasons. First, as suggested
above, it appears that they were developed in an evolutionary way, with locking protocols and in-
ternal structures adapted from their earlier uniprocessor counterparts and subsequently tuned for
improved performance. Second, in the tuning of these systems, the focus was almost entirely on
increasing concurrency, primarily by repeatedly breaking contended locks into finer grained locks.
We contend that this approach is fundamentally problematic. Adding fine-grained locking to a

1While micro-benchmarks are not necessarily a good measure of overall performance, these results do show that
the existing systems can have performance problems.

TORNADO

CHAPTER 1. INTRODUCTION 5

1 2 4 8 12 16
Processors (page fault)

1

10

100

Sl
ow

 D
ow

n sgi
convex
ibm
sun
tornado

1 2 3 4
1

10

Sl
ow

 D
ow

n

1 2 4 8 12 16
Processors (file stat)

1

10

100

Sl
ow

 D
ow

n

1 2 3 4
1

10

Sl
ow

 D
ow

n

1 2 4 8 12 16
Processors (thread creation)

1

10

100

Sl
ow

 D
ow

n

1 2 3 4
1

10

Sl
ow

 D
ow

n

Figure 1.1: These graphs show normalized execution time for three simple micro-benchmarks
across a number of different systems. The slowdown is shown on a log scale. Each benchmark is
shown for up to 16 processors (on the left) with a blowup up to 4 processors (on the right). Details
of these tests are presented later in Chapter 7.

locking protocol developed for uniprocessors adds overhead to the critical paths and adds substan-
tial complexity to the system, making the software difficult to maintain and optimize. Moreover,
uniprocessor data structures have little or no locality, so the operating system suffers the overhead
of many communication cache misses. In our experience, it is just as important to optimize for good
cache locality with minimal true and false sharing as it is to optimize for good concurrency. Poor
locality can lead to substantial miss overhead that will be exacerbated in the next generations of
multiprocessors, where a communication miss is likely to incur a latency of hundreds of processor
cycles.

Another approach to developing scalable multiprocessor operating systems is to start with a dis-
tributed operating system which is inherently scalable, and then provide the single system image

TORNADO

CHAPTER 1. INTRODUCTION 6

features expected of a single multiprocessor operating system [Popek and Walker, 1985, Zajcew et
al., 1993, Ousterhout et al., 1988]. The problem with this approach is that the protocols tend to be
heavy-weight since they are designed for an environment in which communication is expensive,
and it is exceedingly difficult to provide true single system semantics on top of a distributed soft-
ware architecture. Most of the effort for this work has focus on distributed memory multiprocessors
where traditional multiprocessor operating systems techniques (such as those above) are not appli-
cable. However, even in this limited domain they have not been very successful at providing both
high performance and a single-system image.

A final approach, taken by Hurricane [Unrau et al., 1995], the predecessor to Tornado, as well
as the Stanford Hive project [Chapin et al., 1995b], is to take an in-between approach and start
with a small-scale multiprocessor operating system and then extend it to larger systems by applying
distributed system protocols to connect multiple instances of the operating system within a single
machine.2 This structuring technique, called hierarchical clustering in Hurricane, manages physi-
cally proximate resources in a tightly coupled fashion, and more distantly-connected resources in
a gradually more loosely-coupled fashion. The idea is to provide the high performance of the tight
coupling of a small-scale multiprocessor for most local interactions, while providing the scalability
of a distributed system.

Our experience with this latter approach in Hurricane showed that it can deliver the desired scal-
able multiprocessor performance [Unrau et al., 1995], but that it also has the disadvantages of both
previous approaches (scaling up a small-scale operating system and increasing the coupling of a
distributed system). First, all the multiprocessor issues of concurrency control and performance
need to be addressed (albeit for a smaller system), and all the single system image issues of a dis-
tributed system must also be solved. Second, a fixed cluster size is applied to all resources, some-
times imposing a cluster size that is either too large or too small for a given resource for maximum
performance. Worse, resources that do not need to be clustered at all for performance still must pay
the complexity cost of clustering to function correctly in the distributed environment. Further, as
it was designed, all components of the system were required to share the same clustering hierarchy
and knowledge of this hierarchy was embedded in all parts of the system. As a result, hierarchical
clustering failed to provide the transparency and flexibility necessary for a maintainable system.
Finally, this approach greatly complicates the development of the system. From a pragmatic point
of view, as development proceeds, one tends to have either a small scale system that is reliable,
or a large scale system that is unstable, but nothing in between, making it difficult to debug and
develop clustering solutions for different components without the clustering problems of the other
components getting in the way.

2Note that the primary motivation for this approach in Hive was for fault containment.

TORNADO

CHAPTER 1. INTRODUCTION 7

As a result of these problems with hierarchical clustering, both groups have moved on to other
approaches. In the case of the Hive group, recent effort has focussed on a new approach, called
Disco [Bugnion et al., 1997], that provides a scalable virtual machine on which multiple traditional
operating systems can be run, each using some subset of the available processors. This provides a
transitional approach to scalability: the size of the partition given to each operating system instance
can grow over time as these systems are tuned for greater scalability. However, this partitioning of
resources defeats the purpose of having a single large-scale system. In the case of Hurricane, the
new approach is Tornado, which is the focus of this dissertation.

1.4 Design Approach

In Tornado, all system components were designed from scratch with the primary overriding design
principle of mapping any locality and independence that might exist in operating system requests
from applications, to locality and independence in the servicing of these requests in the operating
systems and system servers. We found that we could apply this principle by using a small number
of relatively simple techniques in a systematic fashion. As a result, Tornado has a simpler structure
than other multiprocessor operating systems, and hence can be more easily maintained and opti-
mized.

More specifically, the design of Tornado is based on the observation that: () operating systems
are driven by the requests of applications on virtual resources, () to achieve good performance
on multiprocessors, request to different resources should be handled independently, that is, with-
out accessing any common data structures and without acquiring any common locks, and () the
requests should, in the common case, be serviced on the same processor they are issued on. We
achieve this in Tornado by adopting an object-oriented approach:

Each virtual and physical resource in the system is represented by an independent ob-
ject so that accesses on different processors to different objects remain independent.

However, in the case where a single virtual resource is the target of multiple concurrent requests,
a single object is insufficient for scalability. What is desired is an approach, similar to hierarchical
clustering, that partitions and distributes a resource across the system, but applied on an object-by-
object basis rather to an entire small-scale operating system. The resulting system, which we term
Clustered Objects, allows an object to be partitioned into multiple representatives with independent
requests on different processors handled by different representatives of the object. Thus, simulta-
neous requests from a parallel application to a single virtual resource (i.e., page faults to different
pages of the same memory region) can be handled efficiently with as much locality and concurrency
as possible.

AN D OT OR

CHAPTER 1. INTRODUCTION 8

Although a clustered object is composed of multiple representative objects—allowing the state
of the single logical object to be replicated, migrated, or distributed as best fits the particular re-
source it is managing—it still provides the abstraction of a single object to the rest of the system.
Thus, clustered objects provide the locality-enhancing benefits of hierarchical clustering but do so
within an object-oriented framework, with its implementation-hiding benefits. This provides more
freedom to develop individual structural solutions for different components of the system indepen-
dently, making the best use of the traits of a shared-memory multiprocessor—efficient and conve-
nient fine-grained communication—and the best use of distributed operating system techniques—
which help reduce contention by distributing system components and reducing sharing.

Although clustered objects help address structural issues within the kernel, an operating system
is often composed of many cooperating servers, particularly in the case of a microkernel such as
Tornado. It is therefore important to maintain the locality and concurrency of the clustered object
design even in the communication between the kernel and system servers. Tornado therefore de-
pends on a highly concurrent and localizing interprocessor communication (IPC) subsystem. The
Tornado Protected Procedure Call facility was designed to preserve the locality and concurrency
in client requests, and yet perform competitively with the best uniprocessor IPC facilities. This al-
lows repeated requests to the same object to be serviced on the same processor as the client thread,
while concurrent requests are automatically serviced by different server threads without any need
for synchronization to start the server threads.

Finally, an infrastructure is required that provides the locality, concurrency, and efficiency
needed by each component as part of such basic facilities as dynamic memory allocation, concur-
rency control, and performance monitoring.

1.5 Dissertation outline

The rest of this dissertation will examine the design and implementation of Tornado, and demon-
strate how it achieves locality and concurrency in the services it provides. The design decisions of
Tornado are evaluated with a mostly complete prototype implementation running on a real scalable
multiprocessor, namely NUMAchine [Vranesic et al., 1995], and on a complete machine simulator,
SimOS [Rosenblum et al., 1997].

The dissertation begins with an examination of the multiprocessor hardware issues that motivate
much of this work, and the basic design principles that come out of these issues. This is followed,
in Chapter 3, with a description of the hardware and experimental framework within which the re-
search is conducted, plus the basic operating system structure that underlies Tornado and shapes its
design.

AN D OT OR

CHAPTER 1. INTRODUCTION 9

The next three chapters discuss a number of the key components of Tornado. Each chapter be-
gins with a motivational section that provides some background material, followed by a descrip-
tion of the design and implementation of the component. Next, the performance of the component
is evaluated, and the chapter concludes with a discussion of open issues, related work, and a sum-
mary of the chapter as a whole. The first component discussed, in Chapter 4, is the clustered ob-
ject system, which forms one of the cornerstones of Tornado. Chapter 5 then considers the other
key component of Tornado, the protected procedure call interprocess communication facility. In
addition to these two components, a number of other support facilities are required for a high per-
formance system, and Chapter 6 examines two of the most important ones: locking and dynamic
memory allocation.

Although each chapter includes performance evaluation of the individual components, it is left
to Chapter 7 to evaluate overall system performance on a number of benchmarks and compare Tor-
nado to other commercial multiprocessor systems. Finally, we consider the lessons that have been
learned from the experience with both Hurricane and Tornado in Chapter 9, and then end with some
concluding remarks in Chapter 10.

AN D OT OR

Chapter 2

Background

The Tornado clustered object model (and the overall Tornado design approach) is heavily motivated
by the multiprocessor hardware platform it is targeted for. To help understand the issues the oper-
ating system faces from the hardware, this chapter examines the impact of the hardware on system
software construction, and presents some of the design principles that we have derived from this
hardware/software interaction.

2.1 Multiprocessor Hardware Issues

In this section we describe how shared-memory multiprocessor hardware affects system software.
In particular, we consider the effects of () true parallelism resulting from multiple processors,
() cache coherence and its protocols, and () the high cache-miss latency of shared memory mul-
tiprocessors. The characteristics of the small-scale and large-scale multiprocessors we use for this
analysis are described in Figure 2.1. There are two main classes of multiprocessors we consider:
small-scale bus-based (or cross-bar based) multiprocessors, which commonly range in size from 4-
16 processors; and larger CC-NUMA systems (cache-coherent non-uniform memory access), typi-
cally built from nodes containing a small number of processors, memory, and disks, and connected
by some scalable interconnect (represented here by a cloud), which could be a mesh, tree, torus,
etc.

The primary differences between the two architectures are that CC-NUMA systems are able to
support larger numbers of processors, memory, and disks, that CC-NUMA systems have variable
memory access latencies while smaller systems have fixed latencies, and that CC-NUMA systems
are more sensitive to the memory access pattern of workloads which can degrade performance due
to contention in the memory subsystem and interconnection network. Despite these differences,
however, both architectures have one key thing in common: the performance of both systems is

10 AN D OTOR

CHAPTER 2. BACKGROUND 11

Size: 32−256
Interconnect: mesh, tree, etc...
Coherence: directory

I/O M

PPP

Small−Scale Large−Scale

Interconnection
Network

C C C

I/O M

P

to
 n

et
wo

rk C

Size: 4−16
Interconnect: bus, crossbar
Coherence: snoopy

Figure 2.1: This figure depicts the two basic classes of multiprocessors under consideration. The
left figure shows a small-scale bus-based multiprocessor, which commonly ranges in size from 4-16
processors. The figure on the right shows the general architecture of a large-scale system, typi-
cally built from nodes containing a small number of processors, memory, and disks, and connected
by some scalable interconnect (represented in the figure by a cloud), which could be a mesh, tree,
torus, etc. Important features common to both types of systems are the use of an invalidation-based
coherence scheme (rather than the less common update-based scheme), and in-cache synchroniza-
tion primitives (rather than network- or memory-based primitives).

heavily dominated by caching effects.

2.1.1 Physical parallelism

The most obvious difference between shared-memory multiprocessors (SMMPs) and uniprocessors
is the number of processors. Although uniprocessor system software may already deal with con-
currency issues, the true parallelism in multiprocessors introduces additional complications that can
affect both the correctness and performance of uniprocessor synchronization strategies.

The strategies often employed for synchronization on uniprocessors, such as disabling inter-
rupts in the kernel [Ritchie and Thompson, 1974] or relying on the non-preemptability of a server
thread [Hutchinson and Peterson, 1991], are not directly applicable on multiprocessors. Although
these strategies can be made to work by allowing only a single processor to be in the kernel at a
time (or a single process to be executing in a server at a time), this serializes all requests and is
not acceptable for performance reasons. For example, gcc spends over 20 percent of its time in the
kernel under Ultrix [Chen and Bershad, 1993], which would limit the useful size of a multiproces-
sor to 5 processors if all kernel requests were serialized. As a result, a fully preemptable (and fully

AN D OTOR

CHAPTER 2. BACKGROUND 12

parallelized) system software base is generally required [Eykholt et al., 1992, Talbot, 1995].
Fine-grained locks are generally needed to achieve a high level of concurrency and improved

performance. However, the finer the granularity of locks, the larger the number of locks that must be
acquired to complete an operation, resulting in higher overhead even if there is no contention for the
locks. For example, in a previous system, we found that locking overhead in the fully uncontended
case accounted for as much as 25 percent of the total page-fault handling time [Unrau et al., 1994].
It is therefore necessary to carefully balance the desire for high concurrency through finer-grained
locks, against the desire for lower overhead through coarser-grained locks.

In addition, there are complex tradeoffs to consider in the implementation of locks on a mul-
tiprocessor. Whereas the choice is straightforward for uniprocessors where the only sensible op-
tion is a simple blocking lock, multiprocessor locking must consider such issues as context-switch
overhead, wasted spin-cycles, bus and network contention due to spinning, fairness, and preemp-
tion effects for both lock holders and spinners. Fortunately, this area has been well-studied [An-
derson, 1990, Black et al., 1991, Campbell et al., 1991b, Gupta et al., 1991, Karlin et al., 1991,
Unrau et al., 1994], and in most cases spin-then-block locks with exponential back-off for the spin-
ning phase have proven to be highly effective [Gupta et al., 1991].1

2.1.2 Cache coherence

Software on a shared-memory multiprocessor suffers not only from cold, conflict, and capacity
cache misses as on a uniprocessor, but also from coherencemisses. Coherence misses are caused by
read/write sharing and the cache-coherence protocol,2 and are often the dominant source of cache
misses. For example, in a study of IRIX on a 4-processor system, Torrellas found that misses due
to sharing dominated all other types of misses, accounting for up to 50 percent of all data cache
misses [Torrellas et al., 1992]. In addition to misses caused by direct sharing of data, writes by
two processors to distinct variables that reside on the same cache line will cause the cache line to
ping-pong between the two processors. This problem is known as false sharing and can contribute
significantly to the cache miss rate. Chapin et al., in investigating the performance of IRIX ported
to a 32 processor experimental system, found that many of the worst-case hot spots were caused by
false sharing [Chapin et al., 1995a]. Although strategies for dealing with misses in uniprocessors

1Distributed queue-based spin locks are another well-studied option, whose prime value is for the less common
cases that can benefit from continual spinning (even under high contention) and which also require low-latency and a
high degree of fairness [Magnussen et al., 1994, Mellor-Crummey and Scott, 1991].

2To be more precise, invalidation-based cache coherence protocols require that the cache obtain exclusive access
to a line the first time it is written to, even if no sharing is taking place. These misses are sometimes referred to as
upgrade misses or initial-write misses. Hence there is an extra cost in multiprocessors both for sharing misses and
upgrade misses.

AN D OTOR

CHAPTER 2. BACKGROUND 13

by maximizing temporal and spatial locality and by reducing conflicts are well known, if not always
easily applied, techniques for reducing true and false sharing misses in multiprocessors are less well
understood. Semi-automatic methods for reducing false sharing, such as structure padding and data
regrouping, have proven somewhat effective, but only for parallel scientific applications [Jeremi-
assen and Eggers, 1995, Torrellas et al., 1994].

The effects of synchronization variables can have a major impact on cache performance, since
they can have a high degree of read/write sharing and often induce large amounts of false shar-
ing. For example, Rosenblum noted in a study of an 8 processor system that 18 percent of all co-
herence misses were caused by the false sharing of a single cache line containing a highly shared
lock [Rosenblum et al., 1995]. Even without false sharing, the high cost of cache misses can in-
crease the cost of a lock by an order of magnitude over the fully cached case.3

2.1.3 Cache miss latency

Besides the greater frequency of cache misses due to sharing, SMMP programmers are also faced
with the problem that cache misses cost more in multiprocessors regardless of their cause. The la-
tency increase of cache misses on multiprocessors stems from a number of sources. First, more
complicated controllers and bus protocols are required to support multiple processors and cache
coherence, which can increase the miss latency by a factor of two or more.4 Second, the probabil-
ity of contention at the memory and in the interconnection network (bus, mesh, or other) is higher
in a multiprocessor. Extreme examples can be found in early work on Mach on the RP3 where it
took 2.5 hours to boot the system due to memory contention [Chang and Rosenburg, 1992], and
in the work porting Solaris to the Cray SuperServer where misses in the idle process slowed non-
idle processors by 33 percent [McCrocklin, 1995]. Third, the directory-based coherence schemes
of larger systems must often send multiple messages to retrieve up-to-date copies of data or invali-
date multiple sharers of a cache-line, further increasing both latency and network load. This effect
is clearly illustrated in the operating system investigation by Chapin et al., which found that local
data miss costs were twice the local instruction cache miss costs, due to the need to send multiple
remote messages [Chapin et al., 1995a].

In the case of large systems, the physical distribution of memory has a considerable effect on
performance. Such systems are generally referred to as NUMA systems, or Non-Uniform Memory

3Some results suggest that there is often sufficient locality that the locks can generally be assumed to reside in the
cache [Torrellas et al., 1992]. However, later work (by the same author) suggests that coherence traffic due to lock-
ing is a significant problem [Xia and Torrellas, 1996]. The effects of false sharing may well explain this apparent
contradiction.

4Even the Digital 8400 multiprocessor, which is expressly optimized for read-miss latency, has a 50 percent higher
latency than Digital’s earlier, lower performance, uniprocessors [Fenwick et al., 1995].

AN
DOT

OR

CHAPTER 2. BACKGROUND 14

Access time systems, since the time to access memory varies with the distance between the proces-
sor and the memory module. In these systems, physical locality plays an important role in addition
to temporal and spatial locality. An example can be seen in the work of Unrau et al., where, due
to the lack of physical locality in the data structures used, the uncontended cost of a page fault in-
creased by 25 percent when the system was scaled from 1 to 16 processors [Unrau et al., 1995].

As a result of the high cost of cache misses, newer systems are being designed to support non-
blocking caches and write buffers in order to hide load and store latencies. Many of these systems
allow loads and stores to proceed while previous loads and stores are still outstanding. This re-
sults in a system in which the order of loads and stores may not appear the same to each processor;
these systems are sometimes referred to as being weakly consistent [Gharachorloo et al., 1990].
The implication of weakly consistent systems is that regular memory accesses cannot be used for
synchronization purposes. For example, if one processor fills a buffer and marks it filled, other pro-
cessors might see the buffer first being marked filled and then actually filled with data. This could
cause some processors to access stale data when they see the buffer marked filled. As a result of
this behaviour, software must generally switch from using simple flags to using full locking, with
significantly more expensive special memory synchronization instructions. This difference is illus-
trated by the cost of a lock/unlock pair in AIX on the PowerPC, which is 100 times more expensive
than a cached store [Talbot, 1995].5

Another result of the high cache-miss latency is the movement towards larger cache lines of 128
or even 256 bytes in length. These large cache lines are an attempt to substitute high bandwidth
(which is relatively easy to design into a system) for low latency (which is much harder to design
in). Unfortunately, large cache lines tend to degrade performance in SMMPs due to increased false
sharing.6 The example cited earlier of a single falsely-shared cache line being responsible for 18
percent of all coherence misses was due in part to the fact that the hardware had 128 byte cache
lines, causing a critical lock to be shared with 22 other randomly placed variables [Rosenblum et
al., 1995].

2.1.4 Summary

The memory access times in a multiprocessor span several orders of magnitude due to architectural
and contention effects (see Table 2.1). To mitigate these effects, system software must be struc-

5In principle, locks would not be required for single flag variables if it were possible to insert (or have the compiler
insert) the required memory barrier instructions at the right places, but such support is not generally available at this
time [Adve and Gharachorloo, 1995].

6To further complicate matters, with a wide variety of cache line sizes (sometimes even within the same product
line), ranging from 16 to 256 bytes, it is becoming increasingly difficult to optimize for a fixed or “average” cache line
size.

AN
DOT

OR

CHAPTER 2. BACKGROUND 15

Access Type Latency
Primary cache 1
Secondary cache 10
Local memory 100
Remote memory 200–500
Hot spot 1000–10000

Table 2.1: Typical latencies for different types of accesses in a typical large-scale shared-memory
multiprocessor, measured in processor cycles.

tured to reduce cache misses and increase physical locality. In the next section we present a set of
structuring techniques and the circumstances under which they should be applied.

2.2 Design principles

The issues described in the previous section clearly have a major impact on the performance of
multiprocessor system software. In order to achieve good performance, system software must be
designed to take the hardware characteristics into account. There is no magic solution for dealing
with the problem; the design of each system data structure must take into account the expected ac-
cess pattern, degree of sharing, and synchronization requirements. Nevertheless, we have found
a number of principles and design strategies that have repeatedly been useful, particularly when
applied to clustered object construction (discussed in more detail later in this dissertation). These
include principles previously proposed by us and others [Chapin et al., 1995a, Unrau et al., 1994,
Unrau et al., 1995, Xia and Torrellas, 1996], refinements of previously proposed principles to ad-
dress the specific needs of system software [Hill and Larus, 1990], and a number of new principles.

We have partitioned the design principles into so-called , and principles, described
in the following three subsections. refers to “structuring,” refers to “locking,” and refers
to “physical locality.”

2.2.1 Structuring data for caches

When frequently accessed data is shared, it is important to consider how the data is mapped to hard-
ware cache lines and how the hardware keeps the cached copies of the data consistent. Principles
for structuring data for caches include:

: Segregate read-mostly data from frequently modified data. Read-mostly data should not
reside in the same cache line as frequently modified data in order to avoid false sharing. Seg-
regation can often be achieved by properly padding, aligning, or regrouping the data. Con-

AN
DOT

OR

CHAPTER 2. BACKGROUND 16

sider a linked list whose structure is static but whose elements are frequently modified. To
avoid having the modifications of the elements affect the performance of list traversals, the
search keys and link pointers should be segregated from the other data of the list elements.7

: Segregate independently accessed read/write data from each other. This principle pre-
vents false sharing of read/write data, by ensuring that data that is accessed independently by
multiple processors ends up in different cache lines.

: Privatize write-mostly data. Where practical, generate a private copy of the data for
each processor so that modifications are always made to the private copy and global state is
determined by combining the state of all copies. This principle avoids coherence overhead in
the common case, since processors update only their private copy of the data. For example,
it is often necessary to maintain a reference count on an object to ensure that the object is not
deleted while it is being accessed. Such a reference count can be decomposed into multiple
reference counts, each updated by a different processor and, applying , forced into
separate cache lines.

: Use strictly per-processor datawherever possible. If data is accessed mostly by a single
processor, it is often a good idea to restrict access to the data to only that processor, forcing
other processors to pay the extra cost of inter-processor messaging on their infrequent ac-
cesses. In addition to the caching benefits (as in), strictly per-processor structures
allow the use of uniprocessor solutions to synchronize access to the data. For example, for
low-level structures, disabling interrupts is sufficient to ensure atomic access. Alternatively,
since data is only accessed by a single processor, the software can rely on the ordering of
writes for synchronization, something not otherwise possible on weakly consistent multipro-
cessors (see Section 2.1.3).

2.2.2 Locking data

In modern processors, acquiring a lock involves modifying the cache line containing the lock vari-
able. Hence, in structuring data for good cache performance, it is important to consider how ac-
cesses to the lock interact with accesses to the data being locked.

: Use per-processor reader/writer locks for read-mostly data. A lock for read-mostly
data should be implemented using a separate lock for each processor. To obtain a read-lock,

7This is in marked contrast to uniprocessors, where it is better to co-locate the linked list state and the list elements
so that when an element is reached some of its data will already have been loaded into the cache.

AN
D
OTO

R

CHAPTER 2. BACKGROUND 17

a processor need only acquire its own lock, while to obtain a write-lock it must acquire all
locks. This strategy allows the processor to acquire a read-lock and access the shared data
with no coherence overhead in the common case of read accesses. (This principle can be
viewed as a special case of principle .)

: Segregate contended locks from their associated data if the data is frequently modified.
If there is a high probability of multiple processes attempting to modify data at the same time,
then it is important to segregate the lock from the data so that the processors trying to access
the lock will not interfere with the processor that has acquired the lock.8

: Collocate uncontended locks with their data if the data is frequently modified.
When a lock is brought into the cache for locking, some of its associated data is then brought
along with it, and hence subsequent cache misses are avoided.

2.2.3 Localizing data accesses

For large-scale systems, the system programmer must be concerned with physical locality in order
to reduce the latency of cache misses, to decrease the amount of interconnection network traffic,
and to balance the load on the different memory modules in the system. Physical locality can be
especially important for operating systems since they typically exhibit poor cache hit rates [Chen
and Bershad, 1993].

: Replicate read-mostly data. Read-mostly data should be replicated to multiple mem-
ory modules so that processors’ requests can be handled by nearby replicas. Typically, repli-
cation should occur on demand so that the overhead of replicating data is only incurred when
necessary.

: Partition and migrate read/write data. Data should be partitioned into con-
stituent components according to how the data will be accessed, allowing the components to
be stored in different memory modules. Each component should be migrated on use if it is
primarily accessed by one processor at a time. Alternatively, if most of the requests to the
data are from a particular client, then the data should be migrated with that client.

: Privatize write-mostly data. Privatizing write-mostly data, as described in principle
, can be used not only to avoid coherence overhead, but also to distribute data across

the system to localize memory accesses.

8Special hardware support for locks has been proposed that results in no cache-coherence traffic on an unsuccessful
attempt to acquire a lock, making principle unnecessary [Kagi et al., 1995].

AN
D
OTO

R

CHAPTER 2. BACKGROUND 18

Although the following principles are not strictly for structuring data for locality, we have found
them equally important in achieving efficient localization of operating system data.

: Use approximate local information rather than exact global information. For cer-
tain operating system policies, it is possible to sacrifice some degree of accuracy in exchange
for performance by using local approximate information to make reasonable decisions rather
than exact global information. For example, having per-processor run-queues reduces short-
term fairness globally, but minimizes the cost to the dispatcher when a process is being sched-
uled to run.

: Avoid barrier-based synchronization for global state changes. When data is repli-
cated or partitioned, it is necessary to synchronize when making global changes to the repli-
cas and when determining a globally consistent value for the partitioned data. In this case,
the system should avoid using barrier-based synchronization because it wastes processor cy-
cles while waiting for other processors to reach the barrier, and results in a high overhead in
interrupting (and restarting) the tasks running on the processors [Xia and Torrellas, 1996].
There are a variety of alternative asynchronous schemes (e.g., as used for lazy TLB shoot-
down [Peacock et al., 1992]) which can, for example, allow multiple requests to be combined
together to reduce the amount of inter-processor communication.

In applying the , , and principles, the programmer must be aware that their over-zealous
application may actually reduce performance. For example, while a naive application of the
principles may result in a system with reduced coherence overhead, it may also result in an increased
total number of cache misses due to the fragmentation of data structures. Hence, significant exper-
tise is required to apply the design principles in a balanced fashion.

2.3 Summary

The main issues facing system software on multiprocessors is the high cost of cache misses and the
increased potential for high miss rates due to sharing. Thus the key to improved performance is to
reduce unnecessary sharing to a minimum through restructuring that divides and segregates data
structures based on the expected access pattern.

The issues and principles raised in this chapter are closely related to the design and implementa-
tion techniques discussed throughout this dissertation. In particular, the clustered object approach to

AN
D
OTO

R

CHAPTER 2. BACKGROUND 19

system design is based heavily on the principles that relate to localizing data structures through dis-
tribution, migration, and replication (principles , , , ,
and). These principles are used to help determine how to structure a clustered object in
terms of representatives (i.e., what data and functionality to partition in what way among the repre-
sentatives, or whether to have more than a single representative at all). Principle (use
approximate local knowledge rather than exact global knowledge) appears in many places where
local hints are used (as will be seen, for example, in the section on remote protected procedure calls
in section 5). Principle (avoid barrier-based synchronization) is also a key component
of the design of Tornado, in that we try to make protocols as asynchronous as possible (as will be
seen to be important in cluster object destruction discussed later in Section 4). The other principles
are used primarily to decide how to structure individual representatives as well as the components
that provide the infrastructure that support clustered objects and the rest of Tornado. Hence all the
principles form a critical substrate for the design and implementation of Tornado.

A
N

DO
TOR

Chapter 3

System Overview

This chapter provides an overview of the operating environment and an introduction to the basic
structure of Tornado in order to provide the context for a more detailed examination of a subset of
the components in subsequent chapters.

3.1 Operating environment

As we saw in the introduction, Tornado is a research operating system whose primary purpose is
to investigate operating system structuring issues in large-scale shared-memory multiprocessors,
as well as to investigate issues of scalability, flexibility, and application resource control. Other is-
sues of interest in the Tornado research are multi-resource scheduling issues (dealing with memory
and I/O demands of applications, in addition to CPU demands), support for memory and I/O in-
tensive large-scale parallel applications, and guaranteed resource delivery to facilitate application
optimizations and performance debugging.

Tornado is part of a larger project that involves the design and construction of a novel multipro-
cessor (NUMAchine [Vranesic et al., 1995], discussed below), an operating system (Tornado), a
parallelizing compiler (Jasmine [Abdelrahman et al., 1998]), and various parallel applications. As
such, Tornado must be reasonably stable and functional so as to permit production use, while still
supporting implementation and policy experimentation.

Tornado is targeted at the general class of large-scale multiprocessors of the form discussed in
Chapter 2 (see Figure 2.1).1 However, because this research is experimentally based, the Tornado
implementation is more specifically targeted at the NUMAchine multiprocessor (see Figure 3.1).

1Actually, many of the ideas presented in this dissertation would be effective even for small-scale bus-based sys-
tems, but to help maintain focus, most of the dissertation will concentrate on large-scale systems.

20
A

N
DO

TOR

CHAPTER 3. SYSTEM OVERVIEW 21

I/ONC M

SC

P c

SC

P c

SC

P c

SC

P c

Figure 3.1: This figure shows the general architecture of the NUMAchine multiprocessor. The sys-
tem is composed of stations (shown expanded on the right) consisting of multiple processors with
two-levels of cache, local disks andmemory, and a network cache for remote memory, all connected
by a bus. Multiple stations are connected by a hierarchy of high-speed, bit-parallel rings. The ar-
chitecture is intended to scale up to several hundred processors.

The NUMAchine architecture consists of a collection of small-scale bus-based stations con-
nected by a hierarchy of high-speed bit-parallel rings. The final prototype will have 2 levels of rings
(4 local rings connected by a single global ring) connecting 16 stations with four processors, 4-8
disks, and one 128MB memory module per station. From a performance perspective, the remote-
memory access time is about twice the local-memory access time, and, with contention in the inter-
connect, can increase several times further. Hence, memory modules cannot be treated uniformly
in terms of access latency.

From a workload perspective, Tornado is intended to support a wide variety of application mixes
with a diverse set of operating system requirements. For example, we expect the Tornado workload
to include:

Intelligent parallelizing compiler supported runtime systems: these systems could take ad-
vantage of complex and detailed information and control interfaces from the operating sys-
tem to manage the degree of parallelism of the application, its memory usage, locality, cache
reuse, etc.

Explicitly parallel applications: these applications need high-level interfaces that are easy and
intuitive for programmers to use to describe their application resource requirements, such as
those described above (parallelism, locality, etc).

Sequential applications: here, the issue is ensuring that sequential applications perform as
well on a large multiprocessor as on a uniprocessor, and that high throughput can be main-
tained for a large number of such applications. This requires that the resources dedicated to

A
N

DO
TOR

CHAPTER 3. SYSTEM OVERVIEW 22

each application be allocated close to the application and managed as independently as pos-
sible from the other applications’ resources.

Sequential interactive applications: as above, but here interactive responsiveness is critical
as well.

Parallel application debugging, visualization, and interactive program steering: these types
of applications require a combination of the resource management approaches discussed ear-
lier in addition to interactive responsiveness. This complicates resource management since
it is not possible to take advantage of the batch mode typically used for large-scale (non-
interactive) applications.

Databases: here the key is to provide the right interfaces that allow database systems to main-
tain the control they require over resources without interfering with other applications run-
ning on the same system; i.e., allowing databases to be good citizens within a shared system.

The purpose of these examples is to demonstrate the wide variety of requirements that the work-
loads on large parallel systems can have and the demands they are likely to place on the operating
system. This in turn, we maintain, argues for a powerful and flexible operating system interface that
allows applications to more directly control their physical resources than is possible with existing
systems.

3.2 Experimental Setup

The Tornado research is being conducted on both a prototype multiprocessor and a complete system
simulator. We describe each platform briefly in turn.

3.2.1 NUMAchine

As mentioned in the previous section, the NUMAchine architecture consists of multiple bus-based
stations with up to four processors connected by a bit-parallel ring, with multiple rings connected
by a global ring.

For the experimental work in this dissertation, we use a 4 station/16 processor NUMAchine sys-
tem (the largest currently available). The processors are 150 MHz MIPS R4400 processors (hence
with a 6.67ns cycle time) with 16KB direct-mapped instruction and data caches, and a 1MB uni-
fied direct-mapped secondary (off-chip) cache. Each station has four processor cards and a memory
card with 128MB of memory. The station bus is 64 bits wide and is clocked at 40 MHz, supporting
a maximum bus bandwidth of 320MB/s. The stations are connected by a 64-bit wide ring that also

A

N DO
TOR

CHAPTER 3. SYSTEM OVERVIEW 23

Access Type Latency
Primary cache 3
Secondary cache 15
Local memory 270
Remote memory 850

Table 3.1: This table presents the measured latencies for memory accesses to different levels of the
memory hierarchy. The latencies are presented in processor cycles (6.67ns per cycle).

runs at 40MHz and hence also supports 320MB/s of bandwidth. Multiple lower-level rings can be
connected by a global ring that is also 64 bits wide, but clocked at 82.5MHz, however the global
ring is not currently available. Additional NUMAchine features include support for broadcasting
data and interrupts, and a network cache which caches data from remote stations in local station
memory (with an access cost similar to that of local memory).

The measured performance of the key hardware components is given in Table 3.1. Of particular
note is the relatively high latencies for the secondary cache and main memory. This is due to the use
of FPGAs in the prototype. As a result, obtaining good performance is even more challenging on
NUMAchine than on comparable commercial multiprocessors. However, although slow in absolute
terms, the ratio of processor speed to memory speed for the various components is likely quite close
to what will be seen in next generation systems with order-of-magnitude faster processors.

3.2.2 SimOS simulator

An additional important target for Tornado is the SimOS simulator [Rosenblum et al., 1997], which
allows us to simulate a NUMA multiprocessor similar but not identical to the NUMAchine architec-
ture.2 Using a simulator for this allows us to experiment with different sizes and configurations and
also collect more detailed statistics about the relationship between the operating system structure
and the hardware.

For the base case we configure the simulator to mimic the basic structure of NUMAchine, with
four processors per station and cache and memory latencies similar to those of NUMAchine. The
resulting system is a reasonable match to that of NUMAchine. Figure 3.2 shows the results of a
number of different Tornado micro-benchmarks run on SimOS and on NUMAchine. The tests are
discussed in more detail throughout the dissertation. As with most of the graphs in this dissertation,
the number of processors is varied along the x-axis while the y-axis shows the average running time
(in this case, in microseconds, but sometimes in cycles) for the test across all processes. In general,

2In particular, the interconnect and the coherence protocol implementation are different, and SimOS does not sup-
port a network cache.

A

N DO
TOR

CHAPTER 3. SYSTEM OVERVIEW 24

1 2 4 8 12 16
Processors

0

100

200

300

400

500

M
ic

ro
se

co
nd

s

numa pfault 1 rep
simos pfault 1 rep
numa pfault multi rep
simos pfault multi rep
numa stat
simos stat

Figure 3.2: Comparison of SimOS vs. NUMAchine for various benchmarks. “pfault 1 rep” is a con-
current page fault test using a non-scalable underlying implementation of one of the components.
“pfault multi rep” is the same test, but with a more scalable implementation. “stat” is a concurrent
file stat test. More details on these benchmarks are presented throughout this dissertation.

SimOS tends to underestimate the time for short, cache-friendly codes, and over-estimate the time
for highly contended, memory-system intensive codes. As a result, the measured times between
SimOS and NUMAchine are not identical, but the general trends match relatively closely, allowing
us to reasonably evaluate the effect of various tradeoffs in the Tornado architecture using SimOS.

3.3 Tornado Architecture

In this section we look at the architecture of Tornado in more detail. It is important to note, how-
ever, that most of the design details that follow here and throughout the dissertation are concerned
with how Tornado should be implemented, not necessarily its current state. As usual with research
prototypes, time constraints prevented some features from being fully implemented. Where a de-
sign feature is described that has not been fully implemented, the degree of completeness of the
implementation and the expected complications of an actual implementation will be discussed.

3.3.1 Operating System structure

Tornado is a fully functional, multi-user operating system, providing a Posix-like environment that
allows many Unix utilities to be ported with a simple recompilation. Although it provides a Posix-
like interface for compatibility, its native interface and structure is quite different from that of most
Unix operating systems.

First, Tornado is a microkernel system, meaning that only key features are provided by the ker-
nel, with the rest provided by user-level servers. The Tornado kernel provides memory manage-

A

N DO
TOR

CHAPTER 3. SYSTEM OVERVIEW 25

Application 1

Application 2

micro−
kernel

File Server Name Server

Library

Library

Socket Server

disk
device

network
device

Figure 3.3: The Tornado operating system is shown here broken down into some of its constituent
parts: the microkernel, servers, libraries, and applications. The kernel, servers, and applications
all reside in separate address spaces. The black squares represent individual objects in the different
address spaces, with the lines connecting them representing paths of communication.

ment, process management, interprocess communication, and exception handling. Most other fea-
tures, such as terminal support, pipes, networking, local and networkedfile systems, and debugging
support, are provided by user-level servers and/or libraries linked into client applications (see Fig-
ure 3.3).

Second, Tornado is built on an object-oriented substrate: both the internal construction of the
kernel and servers, and the way they export resources to clients, make use of object-oriented facili-
ties and models. Objects in the system range from low-level components, such as process descrip-
tors, page-caches, and address translation objects, to more directly visible objects such as files, di-
rectories, sockets, and pipes. Clients communicate with servers by invoking operations (or methods
in C++ parlance) on these objects. For example, opening a file involves a call to a directory object
in which the file resides, which returns a reference to an open-file object supporting such operations
as read, write, and close.

Finally, interprocess communication (the facility that allows clients to request services from
objects in different servers), is based on the Protected-Procedure Call (PPC) model of communica-
tion. With PPC, rather than sending messages to waiting processes as in many other microkernel
systems, a client makes a call into another address space as if the client’s process actually crossed
into the server’s domain and invoked the corresponding method on the target object directly.3 This

3As we shall see, the actual mechanism involves creating a new thread in the server to handle the request, and ter-
minating the thread on returning from the call.

A

N D
O

T

OR

CHAPTER 3. SYSTEM OVERVIEW 26

XObj XIO

XNFSDirIO
XNamedDirIO

XConsole
XSockIO
XPty
XDirIO

XStreamIO

XPagedIO XNFSPagedIO

XMappedIO XNFSMappedIO

Figure 3.4: The External object (xobject) class hierarchy for I/O classes is displayed in this figure.
Classes to the right inherit from those on the left. Classes positioned vertically with respect to one
another are sibling classes.

provides a number of benefits, particularly on multiprocessors, as will be detailed later in chapter 5.

3.3.2 Tornado programmer interface

Access to the Tornado kernel and servers is generally provided through objects.4 Objects that allow
external access (to exported system services) are called external objects, or xobjects. Xobjects are
organized as a public class hierarchy to facilitate the use of standard interfaces.5 An example of the
use of the xobject hierarchy to define generic and specific interfaces to system services is show in
Figure 3.4.

In the figure, a subset of the hierarchy related to I/O is shown. Classes to the right are inherited
from those on the left. Classes positioned vertically with respect to one another are sibling classes.
Classes for entities such as network connections and ttys are subclasses of the XStreamIO class,
since they provide a streaming interface. Since files are generally accessed using memory mapped
I/O, two interfaces are provided: one, XMapppedIO, defines the generic interface for objects that
can be mapped into a program’s address space; a second interface, XPagedIO, is used by the kernel
to move pages of the object into and out of memory as a result of page faults by the application.

Applications typically obtain a reference to an xobject from one of four main sources: () from
their creator through inheritance; () from the name server as the result of a name lookup on some
object; () from the result of a C++ new call on an xobject’s class;6 or () from some other pro-
gram through an explicit transfer.

4Tornado currently only supports C++ object interfaces.
5Servers are of course free to define their own classes or specialize one of the existing classes.
6The new is actually performed on the xobject’s proxy class, to be discussed in Chapter 4.

A

N D
O

T

OR

CHAPTER 3. SYSTEM OVERVIEW 27

3.3.3 Basic programmer-visible abstractions

The Tornado kernel exports a relatively small set of abstractions, most in the form of objects.7 A
program in Tornado is the basic unit of resource allocation, and corresponds to what one would nor-
mally consider a process in Unix systems. It consists of an address space, a set of virtual processors
(described below), a set of threads of execution, which we call processes, that execute within the
address space and are associated with one of the program’s virtual processors, and a set of ports that
are the targets of PPC calls.

Virtual processors represent the unit of processor allocation and locality. It provides an abstrac-
tion for the programmer, allowing data and processes to be related through the virtual processor by
specifying distribution or locality requirements in terms of the virtual processor. For the system
scheduler, it provides a unit for allocation and a hint for the co-scheduling of memory and proces-
sors.

A program’s address space consists of a set of contiguous page-aligned regions that typically
correspond to page-aligned portions of files (including backing store files for anonymous mem-
ory). Memory mapped I/O is the prime method of accessing files (although a more traditional I/O
interface, provided by the ASF library [Krieger et al., 1994], is available for compatibility).

A program’s ports represent entry points that are available as targets of PPC calls. Most pro-
grams have just a single port that handles accesses to all objects exported by the program. For
servers, these exported objects generally represent the services they provide, such as file objects for
a file server, or socket objects for a network server. However, all programs also export special ob-
jects for facilities such as signal handling and debugging (with the appropriate security constraints
on their use).

Finally, each program is assigned a badge, which uniquely identifies it. The badge is primarily
used for authentication, allowing a server to quickly identify a client as one that has been previously
authorized to access some specific service. (Traditional user-ids are used for the initial authentica-
tion.)

More details concerning the PPC facility and ports and badges will be presented in Chapter 5.

3.3.4 Key kernel classes

The Tornado kernel is decomposed into a number of basic classes that provide the fundamental
facilities of the kernel. Each component, or building block, has a well defined interface, specified by
a C++ abstract class. This allows multiple implementations for each building block of the system,

7A few of the abstractions, as we shall see later, are represented by basic types, such as the virtual processor ab-
straction which is normally referred to simply by an integer identifying the particular virtual processor number.

A

N D
O

T

OR

CHAPTER 3. SYSTEM OVERVIEW 28

HAT

Region

FCMCOR

Region

FCM COR

PM

DRAM

PD PDPort

Program

Figure 3.5: This figure shows the key kernel objects and their functional relationships. In this ex-
ample a single Program is shown with a Port and two process descriptors (PDs) associated with
the Port, a hardware address translation (HAT) object (abstracting the multiple HATs normally as-
sociated with a Program), and two Regions. The Regions in turn connect to a file cache manager
(FCM) each (they map different objects) which are associated with their cached object represen-
tative (COR) and a page manager (PM) responsible for managing the amount of physical memory
given to this Program. The PM in turn is connected to the global free physical memory manager
(DRAM) that coordinates the various PMs.

and it allows these building blocks to be composed dynamically, as described later in Section 3.3.5.
A brief description of the main object classes follows, with the relationship between the different
objects illustrated in Figure 3.5.

Program The Program class is the central hub for all information associated with an individual
program, including memory management and process related information, as well as security in-
formation such as user and program identifiers. The program object is not directly responsible for
most of these resources, but instead is a central directory for finding the appropriate object. Hence
its implementation and role are quite simple.

HAT The hardware address translation (HAT) class is responsible for managing the hardware
memory management unit (MMU) resources associated with a segment of virtual memory of a
given program. It records the virtual-to-physical mappings and interacts with the processor’s MMU
to establish the mappings in the processor. Although a number of different organizations are possi-
ble, Tornado currently uses a two-level scheme, with the lower level consisting of a set of segment

AN
DO

T

O R

CHAPTER 3. SYSTEM OVERVIEW 29

Program HAT

tlb miss
handler

tlb miss
handler

tlb miss
handler

Segment HAT Segment HAT

Segment
table

pagetable pagetable

TLB miss
path

Figure 3.6: This figure shows the key HAT objects and their functional relationships. The thickly
outlined boxes represent the HAT clustered objects, the dashed boxes represent TLB miss handlers,
and the dotted boxes represent miss handler mapping tables. The logical path taken by a TLB miss
is shown by the thick dotted arrows.

HAT objects that are responsible for the segments8 of the virtual address space, and the upper level
consisting of a single program HAT object that keeps track of all the segment objects of a program
(see Figure 3.6). Different segment HAT object subclasses exist for handling different situations
such as aliased memory (virtual memory which maps to different physical memory on different
virtual processors), multiple page sizes, and special regions optimized for the interprocessor com-
munication facility.

The fact that our hardware supports software TLB miss handling allows us to organize the com-
ponents of the system that handle TLB misses in a unique, highly customizable fashion. Each pro-
gram HAT registers with the Program a piece of code for handling TLB misses for the program.
Similarly, each segment HAT registers with the program HAT a piece of code for handling TLB
misses for its segment of virtual memory. When a TLB miss happens, control is passed to the pro-
gram HAT’s piece of code, which looks up the segment code in a table (based on the address of
the TLB miss) and passes control to it; the segment HAT code in turn looks up the pagetable entry
for the address and loads the TLB. Because each object supplies its own code, different TLB miss
handling routines optimized for different situations are possible, such as large page size support or
special-case memory such as the interprocessor communication regions. Although at first glance

8The address space is divided into equal-sized chunks, called segments. This division is orthogonal to the division
into regions described below.

AN
DO

T

O R

CHAPTER 3. SYSTEM OVERVIEW 30

this might appear prohibitively expensive, by specializing the TLB miss handling code for each
HAT object as is needed, replacing variables with constants in the instruction stream, and by using
a simplified calling convention, the cost can be reduced substantially. As a result, a typical TLB
miss requires approximately 48 instructions, which although somewhat above average for current
systems [Jacob and Mudge, 1998], provides far greaterflexibility and opportunity for optimizations
according to the specific memory access pattern.

Region A Region in Tornado is a contiguous page-aligned portion of a program’s virtual address
space that is mapped to a contiguous page-aligned portion of a file (or file-like object). Binding Re-
gions to files is the primary means used to access data on secondary storage in Tornado. Regions
handle page faults by requesting the appropriate file blocks from the page-caching object and es-
tablishing virtual-to-physical mappings for the pages through calls to the HAT. Like HATs, regions
come in various flavours. In addition to regular regions, there are regions that support aliased map-
pings, where the same virtual address in a program may map to different parts of a file depending
on the processor which accesses it, and regions that support copy-on-write semantics.

COR The cached object representative (COR) is an in-kernel stand-in for a file-like object pro-
vided by a server. There is one COR instance for each object recently mapped into some program’s
address space. The COR’s primary purpose is to serve as an interface between the kernel and the
server. Hence there is one class of COR for each type of server that provides mappable objects.
Currently there is a CORhfs class for talking to the Tornado file system, a CORnfs class for talk-
ing to the Network File System, a CORphys class for mapping physical memory or devices into
an address space, and a CORzero for mapping the logical zero device which provides zero-filled
pages (e.g., for the BSS section of a program’s executable). Regions map objects by talking to the
appropriate COR, that in turn provides the region with a cache manager reference (known as an
FCM, described below) to talk to. The region can suggest a particular FCM to the COR if it wants
to use a specific cache management policy, but it is up to the COR to decide whether to honour
the request (depending, for example, on whether or not it conflicts with requests by other regions
currently mapping the same COR).

FCM The file chunk/cache manager (FCM) is responsible for managing a cache of pages for a
COR. It implements local (per FCM) page replacement policies and coordinates among the regions
that map the same associated COR. Regions request cached pages from the FCM and the FCM for-
wards the request on to the COR if it does not have the page cached. The FCM is also responsible for
informing the affected regions when a page must be removed (which in turn inform the appropriate
HATs to remove the virtual-to-physical mappings associated with the page). There is a one-to-one

AN
DO

T

O R

CHAPTER 3. SYSTEM OVERVIEW 31

correspondence between FCMs and CORs, however the FCM associated with a COR can change
over time, as the particular cache management policy desired by the COR or the regions mapping
it may change. Although the intent is to have many different types of FCMs to support different
cache management policies, only two (LRU and FIFO) have currently been implemented.

PM The page managers (PMs), are responsible for managing physical memory for the entire sys-
tem to ensure a fair distribution of memory across all applications and FCMs. Each program is
associated with a PM that controls the amount of memory given to all the FCMs the program is
mapping.9 PMs are organized in a hierarchy, allowing different page allocation and reclamation
policies for individual programs and collections of programs (such as all those belonging to a user
or a user’s session).

Port The Port object is used as the endpoint for interprocess communication. A program can
have one or more ports to which other processes send their requests. All processes in a program are
created as a side-effect of a call to a port. More details are provided in Chapter 5.

PD Process descriptors (PDs) encapsulate the state of a process (also known as a kernel thread in
some systems), including the virtual processor it belongs to, the port it belongs to, and some low-
level machine-specific information. A separate class is provided for kernel and user-level processes
to support special requirements of kernel processes.10

3.3.5 Kernel and system server design strategies

The internal structure of the kernel (as well as the system servers) can be viewed along three main
lines: () kernel decomposition for localized resource management; () building blocks for flexi-
bility; and () clustered objects for scalability. Each is discussed in turn below.

Kernel decomposition

As discussed earlier, operating systems are driven by the requests of applications on virtual re-
sources such as virtual memory regions, network connections, threads, address spaces, and files.
To achieve good performance on a multiprocessor, requests to different virtual resource should be

9When more than one program is mapping an FCM simultaneously, the situation is a little more complicated, but
such a discussion is beyond the scope of this dissertation. See [Wilk, 1997] for more details.

10This is primarily required to avoid certain circular dependencies in the system, but also provides improved per-
formance since kernel-specific processes can take advantage of certain special features that go along with operating in
kernel mode.

AN DTOR O

CHAPTER 3. SYSTEM OVERVIEW 32

handled independently, that is, without accessing any shared data structures and without acquiring
any shared locks. One natural way to accomplish this is to use an object-oriented strategy, where
each resource is represented by a different object in the operating system.

The key kernel data structures presented in the previous section and illustrated in Figure 3.5,
present a good example of the advantage of employing an object-oriented approach. In the perfor-
mance critical case of an in-core page fault, all objects invoked are specific to either the faulting
process (the HAT, the Program, and the Region) or the file(s) backing the memory being accessed
(the FCM). The locks acquired and data structures accessed are internal to the individual objects and
hence independent from other system components. Hence, when different processes are backed by
(logically) different files, there is no potential source of contention. Also, if processes run on differ-
ent processors, the operating system will not incur any communication misses when handling their
faults. In contrast, many operating systems maintain a global page-cache, and page faults by differ-
ent applications contend for the data structures of this page-cache. Moreover, a global page-cache
has no locality, and hence even in the absence of contention, the operating system will typically
incur the overhead of communication misses when traversing this data structure.

Localizing data structures in the Tornado fashion results in some new implementation and policy
tradeoffs. For example, without a global page-cache, it is difficult to implement global policies like
a clock replacement algorithm in its purest form [Wilk, 1997].11 Memory management in Tornado
is based on a working set policy (similar to that employed by NT [Custer, 1993]), and most decisions
can be made local to FCMs.

In Tornado, most operating system objects have multiple implementations, and the client or sys-
tem can choose the best implementation at run time. In the future we expect to be able to dynami-
cally change the objects used for a resource. This flexibility is an important tool in solving a number
of problems that arise in a multiprocessor environment. For example, it provides us with a mecha-
nism to easily extend the system, to add functionality, adapt the system to new hardware, or improve
performance.

One of the greatest benefits of Tornado’s object-oriented structure is that it greatly simplifies
Tornado’s implementation, allowing us to initially implement subsystems using only simple objects
with limited concurrency, improving the implementation of the objects only when performance (or
publication) requires it. Moreover, the implementation of an object can be specific to the degree
of sharing, so implementing an object with locking protocols and data structures that scale is only
necessary if the object is widely shared.

11On the other hand, many modern operating systems have already abandoned or are in the process of abandoning
such policies. For example, with the large amounts of physical memory available on modern systems, AIX and SCO
Unix have both moved towards per-file replacement policies to avoid having to traverse large numbers of physical page
descriptors that are never paged.

AN DTOR O

CHAPTER 3. SYSTEM OVERVIEW 33

One disadvantage of our approach is the space inefficiencies that result from partitioned man-
agement of resources. For example, in a system with a single global page cache, the hash table used
to access the cache can be optimized based on the total amount of memory in the system, while it
is more difficult to size such data structures when there are many smaller page caches.

Building blocks

System software provides applications with abstractions of virtual resources, such as virtual mem-
ory, network connections, files, and processes. In Tornado, each virtual resource instance (e.g., a
particular file, open file instance, memory region) is implemented by combining together a set of
what we call building blocks [Auslander et al., 1997]. Each building block encapsulates a particular
abstraction that might () manage some part of the virtual resource, () manage some of the physi-
cal resources backing the virtual resource, or () manage the flow of control through the building
blocks. Building blocks are implemented as clustered objects and thus contain state and export a
well-defined interface.

A building-block object exports an interface that specifies the operations that can be invoked by
other objects. It may also import (one or more) interfaces that are exported by other building-block
objects. Two building blocks are said to be connected if one of the building blocks has a reference
to the other, and hence can invoke methods on it. Two building blocks may be connected only if
the exported interface of the one is imported by the other.

The particular composition of building blocks that implement a virtual resource (i.e., the set of
objects and the way they are connected) determines the behaviour and performance of the resource.
As a simple example, Figure 3.7(a) shows four building-block objects that implement a file.12 In
the figure, the Compression object compresses and decompresses the stream of data, passing it on
to a RAID 0 object that stripes the data over two disks, driven by disk driver objects Driver A and
Driver B. The imported and exported interfaces are indicated by the patterned rectangle at the top
and bottom of each object. If two building blocks are connected then the corresponding imported
and exported interfaces must match.

It is important to note that each virtual resource instance will have a different building-block
composition. Thus, two openfile instances will be implemented by a different set of building blocks,
possibly with a different topology, making it possible to offer highly customized services. In our
system, it is the application that specifies the composition of resources created on its behalf. More-
over, the composition is dynamic and can, in principle, be changed repeatedly by the application
(assuming interface requirements are respected).

12The building block approach to system construction was first proposed and developed as part of the Hurricane file
system [Krieger, 1994].

AN DTOR O

CHAPTER 3. SYSTEM OVERVIEW 34

(a)

Compression

Driver A Driver B

RAID 0

Compression

Driver A Driver B Driver A Driver B

RAID 0

Compression

RAID 5

(b) (c)

Prefetch

Figure 3.7: Figure (a) depicts a simple building block composition for a file that uses compression
and is striped across two disks. Figure (b) shows how building blocks can be interchanged by, in this
example, replacing the RAID 0 striping object with a RAID 5 striping-with-parity object. Finally,
Figure (c) shows how the composition can be extended, in this case by adding a prefetching object
in between the compression object and the RAID 0 object.

In our building-block framework, flexibility can be achieved in a number of ways. First, given
a particular composition, it is possible to exchange one building block for another as long as the
interfaces of the two are the same. For example, in Figure 3.7(a), the RAID 0 striping object can
be replaced by a RAID 5 striping-with-parity object, yielding Figure 3.7(b). Thus for each type of
building block, multiple implementations may exist, each supporting a different policy or optimized
for a different application behaviour. In practice this is achieved by having multiple subclasses pro-
vide separate implementations with identical interfaces inherited from a common superclass. Even
with only a few subclasses, the combinatorial effect on the behaviour of an entire composition can
be huge.

Second, new building blocks can be added to an existing structure if the connecting interfaces
match, thus modifying the topology. This can be used to add new functionality. For example, Fig-
ure 3.7(c) shows how a Prefetching object can be inserted between the Compression and RAID 0
objects. This is possible because the Prefetching object imports and exports the same interface.
These types of building blocks (those that import the same interface they export) can be arbitrarily
stacked.

Finally, it is possible to support new interfaces to applications by introducing new building-
block objects that export these interfaces, but import existing interfaces so that they can be con-
nected to existing structures.

TORN DOA

CHAPTER 3. SYSTEM OVERVIEW 35

Region

Page Faults

HAT

Program FCM

COR

Figure 3.8: This figure illustrates the basic memory management components that a page fault
passes through.

Prefetching
Region

Page Faults

Page Faults

Default
Region

Stats Locking MRU

Sparse HAT

Default Program

Private
FCM

NFS COR Dense HAT

Default
Program

RAID COR

Figure 3.9: This figure shows two examples of a memory management subsystem built from building
blocks. The leftmost figure shows an example of a compound object, where the Region and FCM
have been combined into a single object. The rightmost figure shows an example of an expanded
object, where the FCM has been formed from three separate FCM sub-components.

In general, the finer the granularity of the building blocks used in a composition (and thus the
larger the number of building blocks in the composition) the larger the degree offlexibility in offered
customizability. In the case of the file system, we have found that we tend to use many fine-grained
building blocks in a composition, as opposed to using a few large ones. For example, the RAID 0
object above might execute only 2–3 lines of C code in a typical flow of control through the object.
Similarly, the larger the number of building-block classes with identical interfaces, the more flex-
ibility in (re-)defining compositions. This is particularly the case when building blocks export the
same interface they import.

An important consideration is that, in many cases, it is necessary to provide some structure for
the composition of building blocks to make it easier to design new building blocks that are com-
posable with existing ones. In practice, a structure often emerges naturally from the functional re-
quirements of a subsystem, such as the decomposition of the memory management subsystem into
the HAT, Program, Region, FCM, and COR classes (see earlier Figure 3.5). Given such a struc-
ture, the building block approach is used to obtain flexibility within each component, with standard
interfaces used for connecting building blocks across component boundaries.

A simplified version of Figure 3.5 is shown in Figure 3.8 to illustrate the path a page fault takes.
The path begins at the HAT, and then passes either first through the Program object or directly

TORN DOA

CHAPTER 3. SYSTEM OVERVIEW 36

through the Region object for the region in which the page fault occurred (depending on the type
of HAT and Region objects chosen). The request then passes through the FCM and then (assuming
the request cannot be satisfied from the FCM’s page cache) through the COR object which in turn
passes the request on to the appropriate file server.

Given such a structure, a couple of the options available when applying the building block ap-
proach to the memory manager are depicted in Figure 3.9.13 The leftmost figure shows the case
where a HAT object was chosen that optimizes for a sparsely populated address space; a region was
chosen that does prefetching and is combined with an FCM optimized for private memory regions
to form a compound object (a tightly coupled pair of objects); and a file system interface was chosen
to interact with an NFS file server. The rightmost figure depicts a case where a HAT optimized for
densely populated address spaces was chosen, coupled with some default region implementation,
which is attached to an FCM that has been expanded into three interconnected objects: a statistics
collecting object, a locking object to handle atomic transactions, and an MRU page-replacement
object. Finally, the far right object interfaces with a RAID file system.

Although the basic principles of building block composition have been fully applied in the Hur-
ricane File System (HFS) (subsequently ported to Tornado), only the first approach to flexibility
(choosing specific implementations for a given object) is fully implemented in the Tornado ker-
nel at this time. Applying the second principle, namely integrating several objects or expanding a
single object, and integrating it with the clustered object approach is part of ongoing research and
beyond the scope of this dissertation. There are several reasons why the application of the build-
ing block approach to the Tornado kernel raises new questions not seen in HFS. First, in the file
system, I/O overheads dominate the other costs, so building block overheads are insignificant; it
remains an open question whether this will be true for the often simple operations performed in the
kernel. A second open question is the degree of flexibility that can be achieved in the kernel com-
pared to the file system where there are many simple policies that can be stacked arbitrarily due to
the simple read/write I/O interface. A third issue is the potential conflict between composing ob-
jects for functionality (the building block approach) and composing objects for internal structuring
(the clustered object approach); there may be significant limits to the possible ways the two kinds
of composition may be applied. Finally, there is the problem of hidden dependencies not visible
in the calling interface—such as locking protocols which may require that certain locks be held or
not held at the point of a call—that may be difficult to standardize in such a way that they remain
efficient while still supporting arbitrary composition.14

13Not all of these options are actually implemented, for reasons that will soon become clear.
14Clustered objects partially address this issue, as we shall see.

TORN DOA

CHAPTER 3. SYSTEM OVERVIEW 37

Clustered objects

The third and final aspect of the internal design structure of the kernel and servers is the application
of clustered objects. Clustered objects provide the infrastructure for scalable system design and are
discussed in greater detail in Chapter 4.

3.4 Summary

In this chapter we described the environment in which this research takes place, as well as the fun-
damental components of the Tornado kernel and its internal design. In particular, we identified the
value of using an object-oriented approach for enhancing locality and concurrency as well as three
key additional design strategies: system decomposition into key components, component decom-
position into building blocks, and building block decomposition into clustered objects.

TORNADO

Chapter 4

Clustered Objects

In this chapter we examine the core structuring component of Tornado that allows the system to
replicate, migrate, and distribute objects in order to handle high contention for individual virtual
resources.

4.1 Motivation

As we saw in Chapter 2, a number of issues related to performance arise that are either particu-
lar to, or more pronounced in, large-scale multiprocessor systems, such as NUMAchine. First, re-
mote memory accesses have much greater latency than local memory accesses, leading to longer
processor stall times. Second, the potential for memory and network contention increases as more
processors concurrently access shared data. Third, blind reliance on cache-coherence to solve all
locality issues can result in excessive cache-coherence network traffic and congestion at the cache
controllers. Finally, false sharing at the cache-line level can compound problems in all parts of the
system, even with good cache locality.

A classic example that illustrates some of these problems is the process dispatch queue. Con-
sider the case where a single linked list is used to enqueue and dequeue runnable processes, and
whose head and tail pointers are stored in one memory module. The number of updates to this list
increases in proportion to the number of processors. If the pointers are left uncached, the memory
module will quickly become a bottleneck. If, on the other hand, they are cached, coherency traffic
will lead to network congestion and will likely make things worse (see Figure 4.1). Dealing with
such locality issues often involves certain tradeoffs, since potential solutions may entail changes to
the semantics of the object. In this particular case, if the dispatch queue were partitioned among
the processors of the system so that every processor had its own dispatch queue, it might become
difficult to respect system-wide priority requirements.

38
TORNADO

CHAPTER 4. CLUSTERED OBJECTS 39

1 2 4 8 12 16
Processors

0

1000

2000

3000

4000

5000

C
yc

le
s

cached
uncached

Figure 4.1: This graph illustrates the effects of contention for a common shared variable. The val-
ues measured are cycles per iteration with the loop overhead factored out. In this case, the variable
is just read and written; no locks are used. As a result, it is optimistic as to the effects of contention.
Note how the cached version is actually slower than the uncached version for all cases except for a
single processor (where there is no sharing), due to the cacheline bouncing back and forth between
the caches.

To achieve the best possible performance, it is necessary to distribute system data—through
replication, migration, or some form of partitioning—across the system memory in a way that min-
imizes both contention and the number of remote memory references. Such techniques have been
studied in isolation for many problems in operating systems, such as synchronization, memory al-
location, and scheduling. For example, contended spin-lock performance is improved by restruc-
turing the lock as a queue of waiters, all spinning on a local flag, thus eliminating the contention
effects of a central spinning approach [Mellor-Crummey and Scott, 1991]. Similarly, performance
of a multiprocessor memory allocation facility can be significantly improved by replacing the tra-
ditional central pool of free memory with per-processor pools that reduce lock and memory con-
tention for the common case, as well as improve cache reuse and reduce cache interference among
the competing processors [McKenney and Slingwine, 1993]. One goal of Tornado was to provide a
general-purpose framework that would facilitate the application of these techniques within a single
coherent framework so as to encourage its use in all layers of the system.

Most of the approaches for dealing with the problems of large-scale NUMA multiprocessors
outlined above fall into three broad categories:

An object can be migrated in response to an expected future access pattern. For instance, a
process descriptor might be migrated to the location where the process is running in order to
minimize the number of remote memory references during context switches.

An object can be replicated across the system, relying on software-based update or invali-
date protocols to ensure consistency when it is modified. This approach is attractive for read-

TORNADO

CHAPTER 4. CLUSTERED OBJECTS 40

mostly objects, such as a program object for a parallel program whose address space structure
is stable over an extended period of time. In this case the locality benefits obtained by having
multiple replicas would likely outweigh the costs of creating and managing the replicas.

An object can be partitioned and distributed across the system in a way such that each proces-
sor most often accesses and modifies data local to it. This approach might be used to distribute
the dispatch queue so that processors access remote queues only when there is no local work
remaining.

Each object in the system will, in general, require a different combination of techniques. For ex-
ample, a program object of a parallel program might be replicated across the set of processors the
program is scheduled on, but might choose to only partially replicate the region list that describes
the virtual address mappings of the program, reflecting the parts of the address space each process
of the program has actually accessed. Additionally, although the list of memory regions associ-
ated with the address space might be (partially) replicated, the file cache manager (FCM) objects
to which the region objects point will likely require a different strategy, since the contents of each
individual FCM will change frequently as pages are brought in and ejected with each page fault.
The best strategy will depend on the region’s access pattern, such as whether it is accessed by a sin-
gle processor or by a group of processors, and in the latter case, whether each processor accesses a
private part of the region or all processors share the region in its entirety.

Although it is important to hide the internal structures and strategies of an object, it is also impor-
tant for good performance to allow client requests to be efficiently directed to the most appropriate
component of a distributed object. Returning to the previous example, although the region list may
be replicated, the Region objects themselves may choose a centralized implementation (since they
are primarily read-only). However, the file cache manager (FCM), with which the Region com-
municates, may choose to partition itself in order to keep information about each page close to the
processor accessing it (or perhaps the memory holding it). Since, from the Region’s point of view,
the FCM is a single object, it is not clear to what object the Region should point. One option might
be for all references to point to a single front-end component of the FCM which redirects requests
to the appropriate component of the FCM, giving the FCM control over the distribution policy. Un-
fortunately, if implemented in the most straightforward way (see Figure 4.2), this structure would
itself become a bottleneck and eliminate many of the benefits expected from partitioning the FCM
in the first place. Ideally, we would like the appropriate FCM component to be invoked automati-
cally based on the processor that is referencing the object while always using a common reference
for the FCM across all processors.

In summary, our clustered object system must provide three key features:

TORNADO

CHAPTER 4. CLUSTERED OBJECTS 41

Region
(single shared object)

FCM
(multiple object version)

Figure 4.2: In this figure, we illustrate a potential approach where all references to an FCM refer to
a single object that employs a redirection table to forward requests to the component object local
to the requesting processor. In this case, the table is a centralized resource that leads to remote
memory references on each method invocation, and is therefore a potential bottleneck.

support for distributed object structures and policies including migration, replication, and par-
titioning of a single logical object;

efficient access to the most appropriate component of a distributed object (where appropriate
generally means most local);

transparent access to this distributed object from a client object through a single reference
that can be arbitrarily shared across the system.

The next section describes how the clustered object mechanism achieves these goals by using a
distributed redirection table for all objects across all processors.

4.2 Implementation

The clustered object mechanism provides a general framework for objects to hide their internal rep-
resentation from client objects, yet allow methods to be directed at localized portions of it. Exter-
nally, a clustered object is like any other object in that it supports a single, well-defined interface.
Internally, the object can migrate, replicate, or distribute data as needed for performance. The way
this data is arranged and accessed in the system is what we term the object’s clustering structure.

Figure 4.3 illustrates the different components of a clustered object. A clustered object consists
of multiple representative objects, or just reps, to which method invocations (i.e., C++ function
calls) on the clustered object may be directed. Typically, these representatives are distributed across

TORNADO

CHAPTER 4. CLUSTERED OBJECTS 42

rep rep

P0 P1 P2

rep

object reference

Clustered object

Figure 4.3: One clustered object consists of all its reps, in this example one per processor over
three processors. The Object ID (OID), or object reference as it is often called, is used to refer to
the clustered object as a whole, and is converted to a reference to one of the reps when a client uses
the OID to invoke a method of the clustered object.

the system, each providing a (local) point of access for a nearby set of processors (hence called
local representatives, or local reps). To reduce the representative creation costs in large systems,
clustered objects typically create their local reps on demand as they are needed. Although it is the
full collection of reps that together define the implementation of the clustered object, each local rep
supports the full object interface, and thus appears to client objects as the complete clustered object.
The clustering structure of an object is thus completely hidden from a client, which always refers
to the clustered object in a uniform manner using a single object identifier (OID).

As a simple example of a clustered object, consider an object, such as a process descriptor,
which contains some long-lived read-mostly data which might be queried on any processor (such as
the user id), and some read-write data that is primarily accessed by the processor the process is run-
ning on (such as the saved register contents). A possible clustering approach would be to maintain
a single copy of the read-write data that is migrated with the process it represents, while replicating
the read-mostly data on demand to the other processors accessing the process descriptor (see Fig-
ure 4.4). When a client makes a call to the process descriptor, it uses the universal object ID (OID)
to refer to the object, which is then translated by the clustered object system to the local rep for the
given processor. If the request needs to access the read-write state and the local rep contains only
the read-only state, the rep (and not the caller) must locate this state (through shared memory or a
form of message passing to be discussed later) in order to complete the operation.

The degree and type of distribution of a clustered object’s representatives may vary widely de-
pending on the type of object and how it is accessed, as well the architecture of the multiprocessor.
For example, consider the Region object which is used to map a portion of an address space, and
is responsible for handling page faults. Typically, its state is frequently accessed but infrequently
modified, so it may be sufficient to create only a single rep for some collection of nearby proces-
sors (such as the set of processors in the lower-level ring of NUMAchine) since there is little risk of

TORNADO

CHAPTER 4. CLUSTERED OBJECTS 43

Processor 1 Processor 2

Clustered Object

Update
Part B

Read
Part A

OID OID

Rep 1
Part A

Rep 2
Part A

Part B
Private

Figure 4.4: This is an example of a clustered object which has data that is frequently read (Part A),
and data which is frequently modified (Part B). The object has two reps, one on each processor, to
which local requests are directed. Part A is replicated, so both reps contain copies of Part A, thus
localizing access to this data. On the other hand, Part B is not replicated. If an operation on the
object by processor 1 involves modifyingPart B, then the local rep must locate andmodify the single
copy of Part B, synchronizing appropriately when necessary. The clustered object is identified by a
single OID which is valid (in this address space) across the system and used by processors 1 and 2
in this example.

cache thrashing due to write-shared state. In contrast, the file cache manager (FCM) for a particular
region of the program’s address space may be modified frequently, particularly if the program is ex-
periencing a significant amount of paging or I/O. Therefore, replication is likely not a good choice
for FCMs, since the cost of keeping the replicas consistent is likely to outweigh any benefits. Rather,
it may make sense to partition the pages of an FCM across the set of processors accessing it,1 or, in
the case of a process’ stack for example, to migrate the FCM as the process migrates.

The way different representatives of a clustered object communicate can also vary, primarily
between data shipping and function shipping. The data shipping approach corresponds to the tra-
ditional shared memory approach of operating on remote data by directly making remote memory
accesses (and thus, implicitly shipping the data from the memory to the cache of the processor oper-
ating on it). In contrast, function shipping corresponds to the traditional message passing approach
of sending a message to the processor with the data and requesting it to operate on the data in some
way. Both approaches can be appropriate depending on the desired tradeoffs between efficiency,
scalability, and simplicity. Some issues that need to be considered when choosing between these
two options include: the number and type (read/write) of memory accesses, the locking protocol
used, the potential for high contention, the amount of sharing expected, and the expected cache hit

1The partitioningstrategy might try to follow the logical partitioningof the data among the processes of the program,
or just randomize the mappings in order to distribute the load evenly, depending on the access pattern.

AN D OT OR

CHAPTER 4. CLUSTERED OBJECTS 44

rate. Many of these issues have analogues in the discussion in Chapter 2 on shared-memory multi-
processor performance issues.

The clustered object responsible for managing the clustered object subsystem itself is a good
example of some of the alternatives and tradeoffs between data and function shipping. For example,
a token passing scheme (used to coordinate clustered object destruction system-wide and discussed
further in Section 4.2.4) is implemented by having the processor that has the token pass it on by
simply writing a flag in the representative corresponding to the next processor in the chain. In this
case, because there are no locking issues, and the token passing involves just a single store, remote
memory access is a reasonable choice. In the case of clustered object cleanup, a message passing
approach is more appropriate, since the key data structures are located on the home node and the
cleanup operation can be quite complex.

In the following sections, we present the details of our clustered object infrastructure, beginning
with the way clustered objects are referenced and followed by the data structures used to manage
them. We also describe how local reps are created and deleted.

4.2.1 Object References and Translation

Although an OID is conceptually similar to a C++ reference, the OID must first be translated to a rep
object reference before it can be used. The specific rep the OID refers to depends on the processor
from which the reference is being made. It is important that the OID-to-rep translation occur in a
way that is scalable and efficient.

We use a per-processor2 object translation table, to perform the OID-to-rep translations. Each
OID has an entry in the table identifying the local rep that should be used for the local processor.
The clustered object of Figure 4.4 would have the table entry on processor 1 point to rep 1, while on
processor 2 it would point to rep 2 (see Figure 4.5). To invoke a method on the clustered object, the
OID is used to index into the table and the reference in that entry is used to invoke the corresponding
method on the local rep.

Since each processor may have a different local rep for a given clustered object, each processor
needs its own translation table. To avoid the need to explicitly locate the local table, each proces-
sor’s table is located at the same virtual address so that an OID can be represented as a pointer into
the table. Tornado supports a special memory region type specifically to allow this type of aliased
mapping (where a given virtual address can refer to different data on different processors).

To allow each processor to allocate new OIDs without having to synchronize with other pro-
cessors, the range of OIDs is partitioned and each processor allocates from its own subrange. This

2Throughout this dissertation the use of the term processor is often used as a shorthand for virtual processor, since
in most cases there is a simple one-to-one mapping between virtual processors and physical processors.

AN D OT OR

CHAPTER 4. CLUSTERED OBJECTS 45

Processor 1 Processor 2

Clustered Object

OID

Rep 1
Part A

Rep 2
Part A

Part B
Private

OID

Object Translation
Tables

Figure 4.5: Each processor has a private object translation table which is used to translate an OID
to the local rep for the processor.

also facilitates reuse of recently-released entries, thus improving spatial locality by having multi-
ple valid entries on a cache line, and improving temporal locality by reusing the same cache lines.
An added benefit of this partitioning is that the home processor of a clustered object (the proces-
sor where the clustered object was originally created and where certain bookkeeping information is
stored) can be identified given its OID, as the OID remains the same for the lifetime of the object.

4.2.2 Translation Misses

From a space and time overhead point of view, it is not feasible to initialize all translation table
entries on every processor, especially since most of them will never be used. Moreover, it is not
possible to know a priori which processors will access a given clustered object. For this reason,
translation tables are filled, and representatives are created, on demand when a processor invokes
an operation on a clustered object for the first time. Since objects can have different policies for
creating and sharing reps, it is necessary to invoke object-specific code when an uninitialized trans-
lation table entry is accessed. While translation misses are much less frequent than hits, it is still
important that both the task of directing the miss to the object-specific code and the task of handling
the miss are efficient and scalable.

An auxiliary global translation miss table is used to record a miss handling object (MHO) for
each clustered object (see Figure 4.6). This table is partitioned across the system so that each pro-
cessor maintains the portion corresponding to its range of OIDs. When a clustered object is created,
it registers an MHO in the translation miss table. Upon a translation miss, the clustered object sys-
tem examines the target OID to determine the entry in the global translation miss table that holds a
pointer to the appropriate MHO, and calls the MHO to have it handle the miss. Typically, the MHO

AN D OT OR

CHAPTER 4. CLUSTERED OBJECTS 46

rep rep

i

i

global
miss
handler

object
miss
handler

P0 P1 P2

Translation
Tables

i i

Miss Handling Table (partitioned)

Figure 4.6: This figure shows the state of the system for clustered object after it has been accessed
on processors and , but has not yet been accessed on . Reps have been installed on the
first two processors, while the entry still points to the global (or generic) miss handler.

will either create a new rep or locate a nearby existing rep, and fill in the appropriate translation ta-
ble entry accordingly. On completion, the clustered object system will invoke the rep provided by
the MHO, which handles the call as if it had been called directly.

The MHO may also choose to handle the call itself (or forward the call directly on to some other
object), for example if no further calls are expected (e.g., destroy method) or if the policy is to only
create local reps after a certain number of calls have been made. Because each clustered object
can define its own MHO, different miss-handling policies are possible on an object-by-object basis
(even for objects of the same type).

We use a simple scheme to avoid having to explicitly check for a translation miss on every access
to an object. The object translation table entries are initialized as pointers to a special object that
will handle the first part of the miss handling process (i.e., the part of looking up and invoking the
object’s MHO). This object has as many virtual methods as any of the clustered objects. When an
object method is invoked for the first time on a given processor, the corresponding method in the
generic miss handling object is invoked instead of the target clustered object’s method. The generic
MHO code locates and calls the MHO for that clustered object, as described above, which then
(usually) replaces the object translation table entry with a pointer to the processor’s local rep. The
only drawback with this approach is the requirement that all clustered object methods be virtual.
However, with our overall object-oriented strategy, this is generally required anyway.

To illustrate the different components involved, Figure 4.6 shows the state of the system for a
fully replicated clustered object , after it has been accessed on processors and , but not .
Because it has not yet been accessed on , the translation table entry on that processor still points
to the generic global miss handler. On a miss, the global miss handler will look up the miss handling

AN D OTOR

CHAPTER 4. CLUSTERED OBJECTS 47

Translation
miss occured
here

O−MHO
found here

Segmented
Direct−index Table

Hash−based Tables

Hash−based Tables

Figure 4.7: This figure illustrates the hierarchy of global search tables. The top table is logically a
single table but physically distributed across the system.

object (MHO) for object , which is located in the portion of the table held on . The global miss
handler then forwards the miss request on to ’s MHO for processing. When complete, a new rep
will be created, and the entry in ’s translation table will point to it.

Scalability

Although it may be sufficient to have a translation miss table that is partitioned (and not replicated)
for most systems, for very large systems (of several hundred processors) creating all local reps from
a single miss handling object may lead to unacceptably high contention. To deal with this problem, a
more scalable infrastructure has been designed but not yet implemented. The scalable version calls
a nearby rep to handle the miss rather than going to the central miss handling object in all cases. A
hierarchy of hash tables are used to record the location of local reps that have been created in a sub-
tree of processors below, as illustrated in Figure 4.7.3 When a miss occurs, the hierarchy of tables
is scanned, from bottom up, in order to find the closest rep to handle the miss. (Lower levels can be
skipped if the miss is near the home of the clustered object.) Multiple concurrent misses can also be
combined at the lower levels if necessary, further reducing the possibility of contention. Whether
such a design is necessary—and at what system sizes and workload intensities—will require further
experimentation with the current system.

3In NUMAchine, these subtrees would likely correspond to rings, but they do not necessarily have to.

AN D OTOR

CHAPTER 4. CLUSTERED OBJECTS 48

4.2.3 Managing the translation table memory

Physical memory for the translation tables must be carefully managed, particularly in the kernel
which normally never pages. There can be a large number of clustered objects (tens of thousands
per processor) and the translation table on each processor has to be large enough to handle all ob-
jects created anywhere in the system. However, many clustered objects are only ever accessed on
the processor on which they were created, and in general, it is expected that the sections of the trans-
lation table corresponding to remote processors will be progressively more sparse as the distance
to the processors increases.4 Given the size, sparseness, and locality of access of the translation
tables, it makes sense to keep them in virtual memory, even in the kernel. Although the increase
in the TLB miss rate could compromise performance, the locality in access pattern should keep the
extra misses due to the indirection through the mapped translation table to a minimum. To keep the
kernel simple, when memory runs low we simply discard victim pages rather than paging them out
to disk, since the table is really just a cache of entries, with the miss handlers of the clustered objects
keeping track of the existence and location of the reps (i.e., they maintain the backing copy). 5

4.2.4 Destruction

There are a number of factors that complicate the destruction of clustered objects:

To destroy a clustered object, one must coordinate the destruction of a collection of represen-
tatives spread over a potentially large number of processors.

Multiple processes may be in the process of executing clustered object calls through any num-
ber of the clustered object’s reps.

While destroying a clustered object, there may be some processors that are handling misses
and creating new representatives for the same clustered object.

One must ensure that there are no dangling references to the clustered object that might be
used in the future.

Dangling rep pointers may also exist if destruction were to take place between the time the
clustered object reference is dereferenced and the rep object pointer is used.

4Recall that the translation table is partitioned such that each processor only allocates objects from a certain range.
5As an optimization, it might make sense to compress the victim pages to a fixed size compression table (i.e., a

second-level cache), because of the sparseness of the table. A simple compression scheme such as replacing consecu-
tive null entries with a run-length would likely be sufficient. However, we have not yet implemented this.

AN D OTOR

CHAPTER 4. CLUSTERED OBJECTS 49

An additional factor that further complicates the destruction process is the relationship between
locking and object destruction. There are two kinds of locking issues in most systems: those related
to concurrency control with respect to modifications of data structures, which we refer to simply as
locking, and those related to protecting the existence of the data structures; i.e., providing existence
guarantees to ensure the data structure containing the variable is not deallocated during an update.
In a traditional system, before attempting to lock an object in which the lock variable is actually
part of the object, it is necessary to obtain some guarantee that the object will not be destroyed be-
tween the time the reference to the object is obtained and the attempt is made to acquire the lock.
This restriction is necessary since the act of locking the object involves modification to the object
(namely setting the lock variable itself). If the memory of the object were reallocated to some other
object during the attempt to lock the object, the lock acquisition would corrupt the new object. Fur-
thermore there would be no way for the process acquiring the lock to know that the object had been
destroyed and reallocated.

There are a number of ways of eliminating races between one process trying to lock (or in gen-
eral, access) an object and another trying to destroy it, each with its own drawbacks. The traditional
way is to ensure that all references to an object are protected by their own lock, and all the refer-
ences are used only while holding the lock on the reference. The disadvantage of this approach is
that the reference lock in turn needs its own protector lock, with the pattern repeating itself until
some root object is reached that can never be deallocated. This results in a complex global lock
hierarchy that must be strictly enforced to prevent deadlock, and it encourages holding locks for
long periods of time while operations on referenced objects (and their referenced objects) are per-
formed. For example, during a page fault, the traditional approach would require holding a lock on
the Program object for the duration of the page fault, solely to preserve the continued existence of
the regions it references.

Another approach is to use reference counts on objects, as was used in Mach[Black et al., 1991].
With a reference counting system, a counter is kept in every object and is incremented whenever
a new reference to the object is obtained, and decremented when a reference is released. Because
destruction of an object is delayed while the reference count is non-zero, no locks need to be held
to protect the object from being destroyed while a call is being made. However, cloning a reference
can be an expensive operation, since it requires locking the object to increment the reference count
and the same again to release it. Hence, it can actually increase the number of locking operations
required if over-used, as well as increase the write traffic for the object.

A different approach altogether is to use lock-free concurrency control. However, practical al-
gorithms often require additional instructions not currently found on modern processors, and they
have their own difficulties in dealing with memory deallocation [Greenwald and Cheriton, 1996,

AN
DOT

OR

CHAPTER 4. CLUSTERED OBJECTS 50

Herlihy, 1993]. The tradeoffs involved in lock-free concurrency control will be more thoroughly
considered in Chapter 6.

The Tornado approach

We address the issues of destruction in Tornado using a combination of features of the clustered
object system and a novel semi-automatic garbage collection scheme. This allows a clustered object
reference to be safely used at any time, whether any locks are held or not, even as the object is
being deleted. This simplifies the locking protocol, often eliminating the need for a lock entirely
(for example, for read-only objects). It also ensures that all locking issues can be contained within
the object, increasing modularity and obviating the need for an inter-object locking protocol in most
cases.

The key to our approach is to separate the clustered object existence guarantee issue (concerned
with the validity of an OID reference prior to its use) from the locking issue (concerned with con-
trolling concurrent accesses to data within an object). To address the guaranteed existence issue we
distinguish between two types of references: what we call temporary object references and persis-
tent object references. Temporary references are all object references that are held privately by a
single process, such as references on a process’ stack; these references are all implicitly destroyed
when the process terminates. In contrast, persistent references are references stored in shared mem-
ory that can be accessed by other processes and can survive beyond the lifetime of a single process.

We use this distinction between persistent references and temporary references to divide de-
struction into three phases. In the first phase, the object that is to be destroyed ensures that all per-
sistent references to it have been deleted. This is part of the normal cleanup process in any system
when an object is deleted, as references to the object must be removed from lists and tables and other
objects. Next, the object informs the clustered object system that it would like to be destroyed. This
starts the second phase where the clustered object system insures that all temporary references have
been eliminated. How this is achieved is described below. Finally, when no temporary references
remain, the clustered object system calls back to the object to inform it that it is now safe for it to
be fully destroyed (i.e., for all the reps to be destroyed, their memory released, and the clustered
object ID freed).

The key problem is tracking the implicit destruction of temporary references. We begin by con-
sidering just the uniprocessor case and then move on to the multiprocessor case. Although there are
many options (as covered in various garbage collection papers), we chose the one we felt was the
simplest and most efficient for our purpose. It is based on the observation that system servers are
event driven and that the processes that service those events have a short lifetime.6 We keep a (per-

6For Unix-like systems, one can consider each system call or event handler as a separate process for the sake of this

AN
DOT

OR

CHAPTER 4. CLUSTERED OBJECTS 51

processor) count of the number of active processes: every time a process is created (i.e., a call to
the server from some external client process is received), the count is incremented, and when the
call completes and the process terminates, the count is decremented. We can therefore be sure that
if the count is zero, there can be no live temporary references to any object (on that processor).

Hence, when an object is to be destroyed and all persistent references have been removed, we
simply wait until the count of active processes goes to zero, at which point it is safe to destroy the
object. (Note that we are considering only the uniprocessor case at this point.) Of course, this is
a much stronger requirement than actually required; for example, it would be sufficient to ensure
that all processes that were active at the time object destruction was initiated have completed, but
that would require keeping track of much more information than just a raw count.

One problem with our chosen approach is that there is no guarantee that the count of live pro-
cesses will ever actually return to zero, which could lead to a form of starvation. However, since
system server calls tend to be short, we do not believe this to be a problem.7

In order to efficiently determine when the count reaches zero, the active count has a special
WAS ZERO flag that is set when the count goes from non-zero to zero. This flag is reset by the
clustered object system when it is given an object to destroy and checked periodically to see if the
count has gone to zero. Although the counter adds to the critical path for all calls, it has good cache
locality because it is shared by all calls, and the code is very short, particularly for the common case
(see Figure 4.8). Because it is only necessary to track transitions to zero when a cleanup operation
is pending (and even then, only the first such transition must be noted) the code is optimized for
the case when no tracking is required. The key to the efficiency of the code in Figure 4.8 is that
when tracking is required, on the first transition from one to zero the highest bit of the count is set.
Thereafter, whenever the last active process leaves the system, the actual value in the active count
variable will still have the high bit set and hence the code will fall through the test for “active equal
to one”, skipping the extra work. In the mean time, it is only necessary to check the highest bit of
the count word to see if the count has gone to zero and reset it to turn on future checks. This keeps
the common case code as short and straight as possible.

For the multiprocessor case, we need to consider all processes running on any processor that
might contain temporary references to the clustered object being destroyed. Because of this, we
need to extend the technique so that it waits until the active count goes to zero across all processors.
Preferably we would like to bound the number of processors that need to be checked; however, this
can be difficult: as soon as a reference is stored in shared memory, any process on any processor can

discussion. For operations involving I/O, we split the request into separate initiate and complete operations.
7One approach under consideration is to periodically swap the active count variable, so that the count of new calls

is isolated from the count of previous calls. More careful investigation is still required however.

AN
DOT

OR

CHAPTER 4. CLUSTERED OBJECTS 52

funct IncActiveCalls
active

do
load linked

store conditional
while

end

funct DecActiveCalls
active

RETRY:
do

load linked
if then goto AT ONE fi /* about to decrement to zero */

store conditional
while
exit /* common case of simple decrement is done */

AT ONE: /* active is 1, so we should store 0, but we want to set a flag */
HIGH BIT SET /* constant with 1 in highest bit and 0 elsewhere */
store conditional

if then goto RETRY fi /* retry from the top */
end

Figure 4.8: Pseudo-code for incrementing and decrementing the count of active processes. Each
statement is roughly one assembly instruction, and each variable represents a register.

in theory read that reference into a local variable. However, in many cases, widely shared objects
use a distributed structure that limits the access to a given representative to a small set of processors.
Any reference stored in a representative can be accessed only by the set of processors that have
already made an access to it, and because the first access to an object on a processor always results
in a miss, each object knows the set of processors that can access any of its representatives. Hence,
as part of cleaning up all persistent references, the clustered object being destroyed determines the
set of all processors that could potentially have a reference to it, by forming the union of all the
processors that have previously accessed any other object that has a persistent reference to it. This
union is easily formed since each object already knows through the clustered object system which
processors have accessed itself, and can communicate this information to the object being destroyed
when that object requests that its persistent reference be removed.

AN
D
OTO

R

CHAPTER 4. CLUSTERED OBJECTS 53

Once one has collected the set of processors that potentially hold references to the object be-
ing destroyed, there is still the problem of figuring out when all the active counts on all of these
processors has gone to zero. For this we use a token that circulates among the processors. When a
processor receives the token it waits until its count of active processes goes to zero, before passing
it on to the next processor. When the token comes back to the initiating processor it knows that the
active count has gone to zero on all processors since it last had the token. At that point, any objects
that were pending destruction when the token was last circulated can be told to cleanup.

To deal with scalability, there can be multiple tokens circulating, covering different subsets of
processors. The set of processors involved in an object’s destruction can then be used to determine
which token to wait for.8

4.2.5 External Access to Clustered Objects

Up to now, we have described how clustered objects are invoked within a single address space.
However, clustered objects are used throughout the system—in the kernel, servers, and user appli-
cations—and need to interact to provide their services. For example, opening a file requires com-
munication between the clustered objects in the application (representing the open file state), the
name server (to look up the absolute path), the file server (where the file is actually managed), and
the memory manager (which sets up the mapped region for the client and brings data in from the
file server). To make these cross-address-space interactions efficient, the same principles that are
applied to the intra-address-space clustered object calls need to be applied to inter-address-space
calls as well. In particular, calls should be directed at local representatives and should involve little
or no shared memory accesses or locks to complete.

Cross-Address-Space Interactions

In order to be accessible from another address space, a target clustered object may require up to
three additional support objects.

An interface clustered object (one per target clustered object): this is the clustered object that
external clients communicate with and that shields the details of the communication mecha-
nism and authentication issues from the target clustered object. It accepts requests from exter-
nal clients and forwards them to the target clustered object after appropriate security checks
have been performed.

8Currently, all clustered objects are pessimistically assumed to be potentially accessible from any processor at the
time of destruction, and hence only a single token covering the entire system is used.

AN
D
OTO

R

CHAPTER 4. CLUSTERED OBJECTS 54

A meta clustered object (one per interface class): because some interface objects require
static C++ methods for which there is no associated object, the meta object acts as the desti-
nation for external clients for such methods.

A proxy object (one per client per interface object): this object resides in the address space of
the client and shields the client from interprocess communication mechanism details, allow-
ing the client to interact with a local object (the proxy object) as if it were interacting directly
with the target interface object.

The relationship between these components is illustrated in Figure 4.9.
An important distinction between the target clustered object and the interface and meta clustered

objects is that the target object can only be accessed from within the address space it is contained in
and hence is called an internal clustered object, while the other two are external clustered objects
that can be accessed from other address spaces as well as from within. The distinction is necessary
for a number of reasons. First, an external object will, in general, need to authenticate the caller,
while such authentication is unnecessary for intra-address-space calls. Second, an external object
must interface with the interprocess communication facility. Finally, parameters need to be mar-
shaled and demarshalled for cross-address-space calls.

The role of the interface object is to export an interface to clients that they can use to access the
functionality of the internal object, while hiding details of the internal object that should not concern
(and should not be accessible to) external clients. The interface object handles all of the server-
end aspects of cross-address-space calls (like authenticating the caller, demarshalling arguments,
etc.), and translates incoming requests into corresponding requests to the internal clustered object.
Moving authentication and interprocess communication concerns out of the internal object makes
the internal object more efficient for calls that come from within the address space.

The meta object and the proxy object are generated automatically from the interface object. The
proxy object is a simple C++ object that allows the client to invoke methods on the interface object
by calling the corresponding proxy methods. The proxy object marshals the arguments and invokes
the appropriate interprocess communication call to transfer control to the corresponding interface
object in the server’s address space. As explained above, the sole purpose of the meta object is to
provide a target for static C++ methods in the interface object. Static methods are used for class-
specific operations that are not directed at any particular object, such as object creation. The proxy
object directs static method calls to the corresponding meta object, which in turn invokes the static
method of the interface object. This ensures that all cross-address-space calls are directed to a clus-
tered object (which is required for security and authentication reasons).

AN
D
OTO

R

CHAPTER 4. CLUSTERED OBJECTS 55

InterfaceRegion

Region

ProxyRegion Client Space

Server Space
MetaRegion

1 2

calls to static functions
of InterfaceRegion

calls to virtual functions
of InterfaceRegion

2

1

external objects

internal objects

Figure 4.9: This figure shows the relationship between the different objects used in client-server in-
teractions for a generic Region object. The normal virtual method calls are handled by the interface
object (InterfaceRegion) directly; the static method calls are handled by the external metaobject
(MetaRegion) which simply redirects calls to static methods of the external object class.

Implementation Details

Interprocess communication in Tornado takes the form of a protected procedure call (PPC, dis-
cussed in detail in Chapter 5). On startup, each Tornado server identifies to the kernel the entry
point that will handle external requests to the server. This entry point is given aPortID by the kernel.
The PortID, together with the clustered object ID (OID) of the interface object, uniquely identify
an external clustered object in the system. Proxy objects contain these two pieces of information to
identify the particular external object for which they are acting as a proxy.

When a client invokes a method of a proxy object, the proxy calls the PPC facility identifying
the particular PortID which it wants to call and passing the OID and method number as two of the
arguments to the server. The PPC facility directs the request to the specified server, where the entry
point of the server performs some generic validation (described below) and invokes the specified
method on the specified external object.

In order for the server to be able to ensure that the OID and method number it has been given
are valid, four additional fields are provided in the clustered object translation table:

A flag indicating whether this clustered object is externally accessible.

A field containing the number of virtual methods defined for the clustered object. This is used
to ensure that the method number passed as a parameter to the PPC call corresponds to a valid
method in the external object.

A
N

DO
TOR

CHAPTER 4. CLUSTERED OBJECTS 56

Check bits that are used to increase the period between object identifier reuse. The check bits
are put in unused parts of the OID and also stored in the translation table entry. When a call
is made, the check bits are removed from the OID and compared with the check bits stored
in the table entry.

An optional badge field which identifies a particular client program that can make requests
to the external object. If this field is valid, the PPC-handling code verifies that the badge of
the calling program matches the value stored before allowing the invocation to continue.

Given an OID and a method number as an argument to a PPC call, the server entry-point code per-
forms the following sequence of operations: it verifies that the OID is in the range of valid ob-
ject identifiers, is properly aligned, and corresponds to a valid external object; it then verifies that
the method number is in the correct range and, if the badge field in the table is valid, verifies that
the badge of the caller matches the stored value; finally it dereferences the pointer to the local rep
recorded in the table entry and invokes the virtual method indexed by the method number.

Once the above checks have been passed and the interface method called, the next step is for
the interface object to authenticate the caller. There are three primary options for performing au-
thentication. The simplest case is when the interface object supports only a single client. Under
these conditions, the client’s badge can be stored in the translation table entry so that the authenti-
cation will be performed automatically by the basic sanity checks above. In the second case, there
are potentially multiple clients that can legitimately call the object. In this case, no badge checks
are performed in the entry point; instead the interface object checks the badge of the caller (sup-
plied in the PPC call) against a list of valid clients. Finally, there is the case of first time calls, such
as opening a file. In this case, the interface object uses traditional authentication techniques, such
as checking the user id associated with the client against an access control list associated with the
target internal object.

4.3 Examples

In our implementation, large-grain objects, like Program, Region, and FCM objects, are candidates
for clustered objects, rather than smaller objects like linked lists.9 In this section, we describe in
a bit more detail how clustered objects can be used, based on existing implementations and some
that are planned for the near future.

9Although all the main objects in Tornado are clustered objects, not all of them currently take advantage of all the
features of the clustered object system. In particular, many of them are implemented using a single shared rep, either
due to time constraints, or due to the fact that they are not performance-critical.

A
N

DO
TOR

CHAPTER 4. CLUSTERED OBJECTS 57

Dram manager

Because the Dram Manager is responsible for memory across the entire system it must be highly
concurrent. To achieve this, it uses one representative (rep) per processor, with the reps created
at boot time. Each rep manages a separate free list to maximize per-processor secondary cache
reuse, and each set of reps in the same hardware cluster shares a single pool of all free memory
in the cluster. Allocation requests are handled locally (either from the rep’s free list, or from the
cluster’s pool) if possible. If no memory is free, then the request is forwarded to neighbouring reps.
Deallocations are always forwarded to the rep from which the memory was allocated.

Clustered object manager

The Tornado clustered object manager manages the clustered object system itself. Because many
clustered objects are created, used, and destroyed on just a single processor, the metadata associated
with each clustered object is maintained local to the processor it is created on. There is therefore
one clustered object manager rep per processor, each maintaining the information about the clus-
tered objects created there. Operations on clustered objects whose home processors are remote use
shared memory to access the information for simple operations, but use remote execution for more
complex ones, like destruction.

Process descriptor

The process descriptor clustered object represents a single running process. Since the vast majority
of the accesses to the process descriptor are from the processor on which the process is running,
there is always only one rep and it is located on the same processor as the process. All other calls
use the rep remotely (for information lookup) or forward their calls to the processor on which the
rep resides for handling (such as for a wakeup call). If a process is migrated to another processor,
then the rep is migrated along with it.10

Program

A more complicated example is the Program clustered object in Tornado. Because a program can
have multiple processes running on multiple processors and most of the Program object accesses are
read-only, the Program clustered object is replicated to each processor the program has processes
running on. Some fields, like the base priority, are updated by sending all modifications to the home
rep and broadcasting an update to all the other reps. Other components, like the list of memory

10Although part of the design, process migration is not currently implemented.

A
N

DO
TOR

CHAPTER 4. CLUSTERED OBJECTS 58

Operation Instructions Cycles
Call (hit) 6
Call (miss) 150 206
Creation 250 465
Destruction 480 930
Stub overhead 10
External call 49

Table 4.1: Time (in instructions and cycles on NUMAchine) for some basic operations of the clus-
tered object system. Entries left blank are too short to measure effectively within their normal con-
text on NUMAchine, but should not deviate too radically from their instruction count since they
involve few memory accesses.

regions in the program, are replicated on demand as each rep references a region in the list for the
first time, reducing the cost of address space changes (i.e, adding and deleting regions) when regions
are not widely shared.

4.4 Performance evaluation

In this section we first look at the cost of the various components that make up the clustered object
system and then examine the performance implications of applying clustered objects to some typical
data structures found in Tornado.

4.4.1 Component measurements

Table 4.1 presents performance measurements of some of the key components of the clustered ob-
ject system. A Call (hit) is a clustered object method call that hits in the translation table (i.e., no
miss handler is involved), while a Call (miss) is one that invokes a miss handler as part of the call.
Creation and Destruction refer to creating and destroying a clustered object. The cost of cross-
address space overhead is covered by Stub overhead, which includes the client side cost, and Ex-
ternal call, which includes the server side cost (but not the cost of the interprocess call itself, which
is covered later in Chapter 5).

The results are presented in instructions and, where possible, in cycles as measured on NUMA-
chine.11 The difference between instruction counts and cycles can be due to a number of factors.
Foremost are cache misses, which can have varying effects depending on whether the miss is sat-
isfied by the secondary cache, local memory, remote memory, or some other processors cache. For

11Some measurements of very short sequences cannot be accurately made on the running machine within the context
they normally operate in, without severely perturbing the results.

A

N DO
TOR

CHAPTER 4. CLUSTERED OBJECTS 59

short, cache friendly sequences, other effects, such as pipeline delays due to branches or even cache
hits, can increase costs anywhere from 10 to 100 percent.

The cost of a clustered object call that hits in the translation table is one instruction more than
a regular C++ virtual function call, that is, 6 instead of 5 instructions, a relatively minor additional
cost.12 A translation miss involving a minimal handler requires 150 instructions and 206 cycles for
the entire sequence.13 Although this cost is non-negligible, it is still inexpensive enough to allow its
use as a general purpose mechanism for triggering dynamic actions. As an example of a dynamic
action, rather than simply inserting a rep into the table on a miss, the miss handler could keep track
of the number of misses and only install (or perhaps migrate) a rep after a certain threshold has
been reached. Alternatively, the handler might choose to install a rep only when certain methods
are called, in the meantime forwarding all calls to some existing rep.

The creation and destruction of clustered objects is fairly complicated, and this is reflected in
the relatively high costs for these two operations (465 and 930 cycles respectively). The creation
of a clustered object includes the allocation of its miss handler and the allocation and initialization
of a clustered object entry. The destruction of a clustered object (as measured for this test) includes
a request for destruction sent by the clustered object being destroyed to the clustered object system,
a garbage collection phase (involving only a single processor and triggered explicitly in this case),
a callback to the object, and the freeing of the memory and the clustered object entry. Although
these costs are significant, we feel that the various benefits that clustered objects provide make this a
reasonable tradeoff, especially if the ratio of object calls to object creation is high, as we expect it to
be. In particular, clustered objects tend to reduce overheads elsewhere in the system. For example,
because of the garbage collection system, fewer locks are needed and special case checks to deal
with the destruction of an object can be avoided.

The stub overhead presented in the table is for a simple cross-address space call with no C++
pass-by-reference arguments; each pass-by-reference argument would require an extra load and
store (as required by the system calling conventions). The cost does not include code common to
all cross-address space calls that must save and restore callee save registers.14 Although the stub
generator is relatively simple-minded, it produces reasonably efficient code by generating assem-
bly code directly and taking advantage of the register-based parameter passing mechanism that the
underlying interprocess communication system provides (more details are provided in Chapter 5).

The final entry in Table 4.1 is for the overheads on the server side of a cross-address space call.
This includes validating the target object reference and method number, locating the target object,

12On the down side, the extra instruction is a dependent load and hence is on the critical path for the call sequence.
13The entry can also be pre-filled to avoid the cost of the miss, should the rep structure be known in advance.
14The total cost for cross-address-space calls will be presented later in Chapter 5.

A

N DO
TOR

CHAPTER 4. CLUSTERED OBJECTS 60

performing some basic authentication, and invoking the target method. Given the necessity of these
types of checks for almost all IPC systems, we consider the cost of 49 instructions acceptable. Since
the code requires only a couple of references to a single cache line (the translation table), it should
scale with processor speeds.

Although efficiency is important for Tornado, scalability is even more important. Figure 4.10
shows the times required for creation, destruction, and miss handling when the same operations
are executed concurrently on 1 to 16 processors. The tests are run with one process per processor,
repeatedly performing the same operation in a tight loop. The results presented are the averages
for a large number of iterations across all processes involved in a given test. Figure 4.10(a) also in-
cludes range bars indicating the range of times for the different processes in the test. Although miss
handling performs well, creation and destruction show some increase as the number of processors
increase, and the range of times within each test varies quite widely. Figure 4.10(b) compares the
performance of NUMAchine to SimOS on these two problematic cases. SimOS appears to match
many of the quirks of the real hardware, and actually performs worse for larger number of proces-
sors.15 This provides some confidence in the ability of SimOS to explain these results, and allows
us to use SimOS to measure and vary a number of architectural components to determine the cause
of the performance fluctuation. As it turns out, the cause here, as in many other cases as we shall
see, is excessive cache conflicts in our direct-mapped cache. Different processors have data struc-
tures mapped to slightly different addresses, causing some processors to see many conflicts while
others see none. If we run the same tests under SimOS configured with 4-way associative caches
(as shown in Figure 4.10(c)), the variances disappear and the performance of these concurrent op-
erations is flat and uniform from 1 to 16 processors, indicating good scalability.16

4.4.2 Sample clustered objects

We now consider the application of clustered objects to a few simple data structures to illustrate
some of the cost/benefit tradeoffs.

Performance counters

We begin with a very simple example that nevertheless illustrates many of the issues. We consider
performance counters that simply count the number of occurrences of an event (or the total time
spent under some condition).17 Examples in existing systems include counters for context switches,

15As explained earlier, SimOS tends to over-estimate run times under high contention.
16Fortunately, most newer processors provide set-associative caches, so these pathological cases should become less

common in the future.
17This example and the implementations are taken from the Master’s thesis of Jonathan Appavoo [Appavoo, 1998].

A

N DO
TOR

CHAPTER 4. CLUSTERED OBJECTS 61

1 2 4 8 12 16Processors
0

500

1000

1500

2000

2500
Cy

cl
es

a) Concurrent tests on NUMAchine

cobj alloc
cobj dealloc
miss

1 2 4 8 12 16Processors
0

500

1000

1500

2000

2500

b) Comparison of NUMAchine and SimOS

numa cobj alloc
simos cobj alloc
numa cobj dealloc
simos cobj dealloc

1 2 4 8 12 16Processors
0

500

1000

1500

2000

2500

c) SimOS with 4-way associative caches

simos4way cobj alloc
simos4way cobj dealloc

Figure 4.10: These figures show results from concurrent stress tests on the clustered object system.
The leftmost figure shows the time in cycles to perform a single concurrent allocation, deallocation,
and clustered object call that misses. Each was measured by performing the test in a tight loop
and dividing the resulting time by the number of iterations. The bars indicate the range of values
measured across the different processes in the test. The middle figure compares the performance of
NUMAchine to SimOS on two of the three tests. The final figure shows how the results change with
a 4-way associative cache under SimOS.

network packet receptions, or page faults. The nature of these types of performance counters is
that they are incremented often (depending of course on the frequency of the event) but rarely read.
Even when they are being actively monitored, generally only a subset of the counters are examined
at a time, and usually at a rate of only once every few seconds, compared to an update rate of up
to thousands of times a second. We use the nature of this access pattern to construct a number of
different optimized versions of the performance counter.

As we saw in Chapter 2, the primary sources of performance degradation that we want to ad-
dress are: () synchronization contention; () cache coherence contention due to true or false shar-
ing; () memory contention; and () remote access delays. Each of the different versions of the
counter we will consider attempt to address different issues.

The results from tests of the different counter versions are presented in Figures 4.11(a) and (b).
Each test in Figure 4.11(a) consists of running processes concurrently, each repeatedly incre-
menting the same counter in a tight loop. The results are the averages across all iterations and all
processes. The tests in Figure 4.11(b) are for a single process reading the value of the counter after
the corresponding test presented in Figure 4.11(a). The details of the specific counter implementa-
tions and the implications of the results are discussed in the paragraphs that follow.

We first consider the non-clustered object versions of the counter, to get a sense of the issues to
be addressed and what approach might be taken in the absence of clustered objects. The most basic
counter is a single shared variable. For this, and all other versions, we use a lock-free sequence to
atomically update the value without the need for a lock. Hence, the object consists of just an in-
teger. Although lock-free, serialization still occurs in the atomic update sequence, and hence syn-

A

N D
O

T

OR

CHAPTER 4. CLUSTERED OBJECTS 62

1 2 4 8 12 16
Processors

0

500

1000

1500

2000

2500
C

yc
le

s

a) concurrent counter increment

shared
array
cobj shared
localalized array
padded array
cobj multi-rep

1 2 4 8 12 16
Processors

0

100

200

300

400

C
yc

le
s

b) get counter value

Figure 4.11: These figures show the results of two tests on a variety of different implementations of
a counter. The results are presented in CPU cycles per iteration of the test. Figure (a) is for concur-
rent increments, while (b) is for a single processor reading the value of the counter. The different
implementations are labeled as follows: shared is the straightforward shared counter variable; ar-
ray is an array of counters, one per processors; padded array is the same as array but each element
has been padded so that each is on a separate cache line; localized array is like array except that
each entry points to a separately allocated counter (allocated from memory near its corresponding
processor); cobj shared is the same as shared but implemented as a clustered object; cobj multi-rep
is a clustered object version with one rep per processor maintaining a local count.

chronization contention is a problem. This is clear from the shared case in Figure 4.11(a) which
shows a linear increase in the cost to increment the counter as the number of contending processors
increases.

To reduce synchronization contention we replace the single shared variable with an array of
counters, with one entry per processor. Each processor then increments its own copy, which reduces
synchronization contention. However, reading the value now requires reading each element of the
array. This should be a reasonable tradeoff, given the access pattern described above. However, as
shown by the line labeled array in Figure 4.11(a), performance is no better than the simple shared
counter. This is due to false sharing: since the entire array fits within a single cache line, each write
by a processor brings the entire cache line into its cache in exclusive mode, thus invalidating it from
every other processor’s cache, forcing them to re-retrieve their array element on the next increment.

To address the false sharing problem, we next try padding the array so that each entry occupies
128 bytes, or a full secondary cache line. This eliminates false sharing and provides the scalable per-
formance we seek as shown by the line labeled padded array. However, it requires pre-allocating
a large array and wasting most of the space due to padding. It also fails to provide any memory lo-
cality, since the array is allocated from a single memory module. This is not an issue with this test,
since there is good cache locality, and the machine is relatively small. However, in larger systems

A

N D
O

T

OR

CHAPTER 4. CLUSTERED OBJECTS 63

1 2 4 8 12 16
Processors

0

200

400

600

800

1000

C
yc

le
s

a) counter increment with cache flush

localalized array
padded array
cobj multi-rep

Figure 4.12: This figure considers the performance of top three counters (for the increment test)
when the counter is explicitly flushed from the cache before each increment. This gives some indi-
cation of their respective performance when the cache hit rate is poor.

with less ideal cache behaviour, performance could suffer.
To attempt to improve locality, a final (non-clustered object) version is considered (localized

array in Figure 4.11(a)), in which each element of the array no longer contains the counter, but in-
stead contains a pointer to the counter that is allocated from memory local to the processor that will
be incrementing it. As expected, there is no discernible improvement for this version because of
the good cache hit rate for the previous version. To simulate the effect of a poor cache hit rate, Fig-
ure 4.12 presents results that include an explicit flushing of the counter from the cache before each
increment. Although the differences are minor, the padded array version’s performance is generally
worse than the alternatives at larger system sizes.

We next consider clustered object versions of the performance counter. The first version is a
direct translation of the simplest shared case to clustered object form. As expected, since it is still
using a single counter variable with a single rep, the performance is roughly identical to the non-
clustered object case (as shown by the line labeled cobj shared in Figure 4.11). However, if we
switch to a fully replicated version with one rep per processor (cobj multi-rep), we get essentially
the same performance as the padded array case. However, we also get the locality benefits of the
localized array version, as seen in Figure 4.12. Furthermore, if we consider the base, uncontended
costs as presented in Table 4.2, we see that the clustered object version is also noticeably more
efficient than the array-based versions (56 cycles vs. between 62 and 93 cycles). This is due to the
need for the array-based versions to determine the local processor number in order to look up the
correct entry in the array (and the extra indirection in the case of the localized array version). Hence
the clustered object version delivers both good contended and uncontended performance, with the
additional benefit of providing a more structured environment.

A

N D
O

T

OR

CHAPTER 4. CLUSTERED OBJECTS 64

Operation Cycles
shared 55
array 62
padded array 62
localized array 93
cobj shared 57
cobj multi-rep 56

Table 4.2: This table presents the uncontended costs for a single increment operation for the various
counter implementations. All times are in cycles as measured on NUMAchine.

However, there is a down side to the clustered object version, and all the versions that performed
well on the increment test: the cost of reading the current value of the counter goes up significantly
as the number of copies increases (see Figure 4.11(b)) because all values must be read to return the
current value. As a result, the cost to read the counter is essentially the inverse of the cost to incre-
ment it, with the clustered object version performing worst of all. This demonstrates the expected
tradeoffs that must be considered when choosing a structure for a variable such as this.

Hash table

A common data structure used throughout system software is the hash table. In Tornado there are
many cases where a form of locality occurs naturally in the accesses to elements of the hash table.
For example, the dynamic memory allocator (described in more detail in Chapter 6) uses a hash
table in the kernel to map from memory block addresses to page descriptors. Because the allocator is
geared towards maximizing NUMA locality, most lookups are for local memory (memory allocated
from the local station). Similarly, a hash table is used to keep track of waiting processes for our bit-
based locks (also described in more detail in Chapter 6), and there is natural locality between the
processes that access a common lock.

In both these cases, and others, there is a natural way of partitioning the hash table so that op-
erations on it are most often directed at the local partition. In the case of the memory allocator, the
address of the block of memory already contains information about its home node (due to the de-
sign of the allocator). The same is true for locks, since the address of the lock is used as one of the
keys.

Based on these examples, we consider two implementations of a hash table optimized for the
types of uses just described: a single shared non-clustered object hash table, and a partitioned clus-
tered object hash table. Both implementations use the same total amount of space (summing across
all partitions in the case of the clustered object version), which is scaled according to the number of
processors in the system. We assume some bits in the upper part of the key is used to identify the

AN
DO

T

O R

CHAPTER 4. CLUSTERED OBJECTS 65

Operation Cycles
shared 325
clustered object 345

Table 4.3: Base times per hash table lookup for a single shared hash table and a clustered object
hash table.

home node in the case of the partitioned hash table. (For our examples this assumption is reason-
able, given that the key is just the address of some block of memory or a lock.) For the experiments,
we prefill the hash tables with the same evenly distributed values, with an average of four elements
per bucket. All experiments consist of processes searching for a large number of uniformly dis-
tributed keys. To keep the tests fair, each process uses a distinct range of keys, none of which are in
the hash table. This ensures that none of the processes benefit from the distribution of keys in the
hash chains, since all searches fail requiring the entire hash chain to be searched.

Table 4.3 shows the base, uniprocessor times, per lookup. The cost of the clustered object ver-
sion (345 cycles) is slightly higher that the non-clustered object (shared) version (325 cycles), in
part due to clustered object overhead itself, and in part due to the implicit cost of requiring the use
of virtual functions. However, the difference in cost is still quite low, particularly when we consider
multiprocessor performance.

Figure 4.13(a) shows the performance for a series of concurrent localized lookups, where each
process looks up keys that are local to it. The performance benefits of partitioning the hash table are
clear, as is expected given the locality of the requests. This is despite the fact that in the shared case,
the requests are evenly distributed across all buckets of the hash table and the size of the table is
grown with the number of processors. This is a result of the extra memory locality and smaller per-
processor working set size of the partitioned hash table for this workload. For the case of randomly
distributed requests, as shown in Figure 4.13(b), there is, however, no advantage in the clustered
object version, but it does not perform significantly worse either.

List

Another data structure that is commonly used is the list. Lists have many different types of access
patterns, but the type most applicable to clustered object optimization is a (shared) read-mostly list.
Examples from Tornado include the list of virtual processors in a program, the list of badges allowed
to access a file, and the list of memory regions in an address space. These are all lists that might
be widely shared (at least for parallel programs) and that tend to be searched much more frequently
than they are modified. As such, they are the perfect candidate for replication.

In Tornado, the Program clustered object replicates the region list to each processor the program

AN
DO

T

O R

CHAPTER 4. CLUSTERED OBJECTS 66

1 2 4 8 12 16
Processors

0

2000

4000

6000

8000

C
yc

le
s

a) concurrent local hash lookup test

1 2 4 8 12 16
Processors

0

2000

4000

6000

8000

b) concurrent random hash lookup test

shared
clustered

Figure 4.13: Figure (a) compares the performance of a single hash table to a partitioned hash table
for a localized lookup. Like the other microbenchmarks, these results were obtained by measuring
the time for a large number of lookups and dividing the resulting time by the number of iterations.
Figure (b) compares the same two hash tables but for a completely random (non-localized) distri-
bution of requests.

has processes on. The replication happens on demand, as a process accesses a region for the first
time. When regions are removed, an invalidation must be sent to all replicas. This is done from the
home node (where the program started) in order to ensure proper serialization, so removal requests
from other processors must be forwarded there. Similarly, additions to the region list are always
forwarded to the home node and then propagated on demand.

The performance impact of the replication can be seen in a simple experiment where separate
processes of a parallel program fault on independent regions concurrently. The data has already
been paged in, so no I/O is necessary. However, in order to verify that the faulting address is valid
and to determine what FCM it belongs to, the list of memory regions must be searched. The list
needs to be locked for this operation creating a potential bottleneck.

Figure 4.14(a) shows the effect of having a single shared list versus a replicated list for page
faults. Similar to the other experiments, the results are obtained by having processes concurrently
fault on a series of pages and then averaging the time over the total number of faults and the total
number of processes. As expected, in the replicated case the cost stays relatively flat compared
with the shared case, where the region list lock is clearly a bottleneck. However, as is often the
case with these types of data structures, there is a tradeoff. Figure 4.14(b) shows the time it takes
for a single process to delete a region for both cases. Here we see a reversal of the faulting case: as
the number of processors grows, the cost to remove a region grows linearly, since all lists must be
updated. The impact is highly exaggerated in this example, since this clustered object happens to
use function shipping, which is quite expensive for this simple operation. However, under normal

AN
DO

T

O R

CHAPTER 4. CLUSTERED OBJECTS 67

1 2 4 8 12 16
Processors

0

100

200

300
M

ic
ro

se
co

nd
s

a) concurrent page faults

shared
replicated

1 2 4 8 12 16
Processors

0

500

1000

1500

2000

b) region deletion

Figure 4.14: Figure (a) compares a single shared region list to a replicated region list for a test
involving concurrent processes of a parallel program faulting on different regions. Figure (b) com-
pares the same two region lists, but on a region removal operation.

circumstances, the number of faults is generally expected to be much higher than the number of
modifications to the region list, making this optimization worthwhile.

4.5 Open Issues

The work presented here represents just the beginning of the investigation into designing and im-
plementing clustered objects. Most of the effort has gone into the clustered object infrastructure.
Many issues remain to be addressed, primarily in the use of clustered objects on a large scale, but
also in some areas of the infrastructure. Some of the more important open issues include the fol-
lowing:

The size of the per-processor translation tables is still a potential problem. Ensuring that the
virtual space is large enough to accommodate any reasonable (large) number of clustered ob-
jects on a single processor, particularly on a large system, could be a problem. In addition,
the amount of physical memory needed to keep a reasonable working set of clustered objects
in a large system, with very sparsely filled tables, is unclear.

It still remains to determine whether there is a need for a method to ensure that garbage col-
lection is not indefinitely postponed while waiting for an active count to go to zero. This can
affect the entire system since it could hold up the circulation of the token.

Scalability concerns for the garbage collection scheme remain to be investigated to determine
whether there is a need for more than one circulating token.

AN DTOR O

CHAPTER 4. CLUSTERED OBJECTS 68

The migration of a clustered object rep is actually trickier than would first appear. In particu-
lar, if one tries to implement migration by first replicating the rep to the target processor and
then removing the previous copy, then one is faced with all the complications of destruction;
in particular, ensuring that no process is currently referencing that rep before it is deleted.
The similarity to destruction indicates some possible avenues for attack (e.g., waiting for the
active count to reach zero), but since the clustered object is not being destroyed, persistent
references remain and accesses can continue at any time. This requires more synchronization
in the object to deal with these problems, but not all the details have been worked out yet. For
now, migration is performed by migrating state and roles, rather than the actual rep object.

Managing distributed state, even if it is constrained to within a clustered object, is still a dif-
ficult task. It seems likely that higher level support services that facilitate managing such
distributed state are needed. It may be possible to build standard distributed data structures
using techniques similar to those used for the C++ standard template library.

4.6 Related work

The basic idea of improving performance for contended data structures through some form of dis-
tribution has recently become quite common. Examples can be found in most low-level system
components developed recently, such as distributed shared memory systems [Scales et al., 1996],
performance monitoring systems [Anderson et al., 1997], and dynamic memory allocation sys-
tems [McKenney and Slingwine, 1993]. The clustered object system goes beyond what these sys-
tems do by providing a general framework to facilitate the application of these types of optimiza-
tions.

Concepts similar to clustered objects have appeared in a number of distributed systems, most
notably in Globe [Homburg et al., 1995] and SOS [Makpangou et al., 1994]. In these two cases and
Tornado the goal is to hide the distributed nature of the objects from the users of the objects while
improving performance over a more naive centralized approach. However, the issues faced in a
tightly coupled shared-memory multiprocessor are very different from those of a distributed envi-
ronment. For example, communication is cheaper, efficiency (time and space) is of greater concern,
direct sharing is possible, and the failure modes are simpler. Hence, the Tornado clustered object
system is geared more strongly towards maximizing performance and reducing complexity than the
other systems.

Naturally, there are strong similarities between clustered objects and the clustered design of
Hurricane [Unrau et al., 1995] and Hive [Chapin et al., 1995b], as previously discussed. The key
difference is the application of clustering on an object-by-object basis, improving modularity and

AN DTOR O

CHAPTER 4. CLUSTERED OBJECTS 69

flexibility.
One key feature of clustered objects that is common to many systems is the extra level of indi-

rection in the translation table. For example, many early Smalltalk systems used an object table to
support paging of objects or to support garbage collection in a distributed system [Bennett, 1987].
Another more recent example is the use of an extra level of indirection in object references to sup-
port multiple versions of a given class within the same program, with dynamic class updates[Hjalm-
tysson and Gray, 1998]. Although their end-goal is quite different from ours, their basic infrastruc-
ture bears some resemblance to that of clustered objects, particular in the use of virtual functions
in C++ to intercept calls transparently.

The clustered object destruction scheme has obvious parallels with garbage collection
schemes [Wilson, 1992], particularly with multiprocessor and distributed garbage collection sys-
tems [Herlihy and Moss, 1991, Fessant et al., 1998] which are similarly concerned with reducing
communication between the processors. Although our garbage collection scheme is in some sense
a hack, it works reasonably well in our environment. The particular algorithm bears some similar-
ity to deferred reference counting garbage collection schemes in their attempt to avoid the need to
scan stacks for references [Wilson, 1992]. It is also quite similar to the scheme described in IBM’s
patent 4809168, which also delays sensitive operations until all active processes have reached a
known safe point. However, the IBM scheme appears to target uniprocessors only and is less gen-
eral than ours.

4.7 Summary

The clustered object system provides the infrastructure to facilitate various important multiproces-
sor optimizations, such as localizing data structures and locks. The key to the system is the use
of the per-processor translation table that allows a common clustered object reference to be used
uniformly throughout the system while always directing the request to the most appropriate repre-
sentative. It also provides a mechanism for uniformly referring to and accessing clustered objects
across the various servers and applications, creating a single clustered object space for accessing
all services.

Although there are tradeoffs in the cost and benefits of partitioning and distributing an object,
these decisions can be made on an object-by-object basis and periodically revisited and enhanced
as needed without altering the fundamental structure of the system.

AN DTOR O

Chapter 5

Protected Procedure Call

In the previous chapter we examined the internal structure and external interfaces of the Tornado
clustered object system. In this chapter we look at the interprocess communication subsystem that
allows clustered objects in different address spaces to invoke one another and that allows differ-
ent representatives of a single clustered object to communicate across processors. We examine the
particular aspects of Tornado and its target multiprocessor platform that influenced the unique de-
sign of the IPC system, and present a detailed implementation description as well as performance
results.

5.1 Motivation

In a microkernel system like Tornado that relies heavily on client-server communication, it is im-
portant to extend the locality and concurrency of the architecture beyond the internal design of in-
dividual components to encompass the full end-to-end system. All application interactions with
the kernel and system servers—to read a file, to draw on the screen, to get the time—require inter-
process communication (IPC). In order to ensure the microkernel structure does not add additional
overhead to an operating system design, the cost of these interactions must be similar to the cost of
a system call in more traditional (Unix-like) systems. In addition, on a multiprocessor, the operat-
ing system must match the degree of concurrency in its internal structure with that of the hardware
and the applications’ demands. This requires the IPC facility to allow servers to handle multiple re-
quests concurrently, ideally as many as there are clients. Finally, a shared-memory multiprocessor
requires system software to maximize memory locality in order to achieve optimal performance.
This means servers need to control where their processes run with respect to the clients they are
servicing and with respect to the data used to satisfy those requests.

We therefore require an IPC facility that provides low latency, high concurrency, and high lo-

70
TORN DOA

CHAPTER 5. PROTECTED PROCEDURE CALL 71

cality, and supplies the infrastructure that enables all system servers to be built with these same
characteristics. In addition, these characteristics must be maintained independent of the type of
workload, whether it consists of large numbers of independent sequential programs requesting ser-
vices from independent servers, small numbers of large-scale parallel programs requesting services
from a common server, or anything in between.

While designing Tornado’s IPC facility (originally developed in the context of the previous op-
erating system, Hurricane) we realized that the need for locality and concurrency required a new
model of IPC, rather than just an improved implementation of a traditional message-based IPC sub-
system.1 We found that direct translation of uniprocessor IPC facilities to multiprocessors generally
results in accesses to shared data and locks along the critical path. These shared data accesses can
result in cache misses and increased cache invalidation traffic, adding hundreds of cycles to the
cost of an operation, especially as the concurrency in the system grows. As the efficiency of IPC
implementations increases, locks quickly saturate, even if the critical sections are very short. More
importantly, the traditional IPC model, based on the notion of a single (or small number) server pro-
cess that waits for requests to process, does not provide the natural concurrency and locality that is
required if all parts of the system (and not just the kernel) are to scale effectively.

The new model we developed is based on the Protected Procedure Call (PPC) model in which
a process is considered to cross protection domains to make a procedure call in another address
space. The PPC model facilitates the implementation of an IPC facility that requires no locks or
accesses to shared memory for a typical call. With PPCs, we were not only able to achieve the high
performance we sought, but also found it straightforward and natural to extend it to support other
types of control transfers that appear throughout the system, such as: () asynchronous requests
(where the requester does not block waiting for the call to complete), () interrupt dispatching,
() upcalls, and () cross-processor calls.

5.2 PPC model

The Tornado PPC facility serves two main purposes:

It provides a cross-address space communication facility that allows a process in one address
space to invoke a method of an external clustered object in another address space.

It provides a facility to allow a representative on one processor to invoke methods of another
representative of the same clustered object on another processor.

1An example of the more traditional message-based IPC can be found in Hurricane’s original facility based on the
send/receive/reply model where messages are sent between processes; this in turn was derived from the V operating
system’s IPC facility [Cheriton, 1988].

TORN DOA

CHAPTER 5. PROTECTED PROCEDURE CALL 72

Caller Callee

Target
Procedure

Caller Callee

Target
Procedure

Figure 5.1: The leftmost figure shows the state before the call. The process running in the caller ad-
dress space (indicated by a wavy arrow) makes a call to the target procedure in the callee’s address
space. The rightmost figure shows the state during the call: the caller process is suspended and a
new process in the callee address space is started with a link back to the calling process. When the
call completes, the state will return back to the figure on the left.

Hence the Tornado PPC facility provides both a communication facility that crosses domains
while generally remaining on the same processor, and a facility that remains within a single domain
while crossing processors. Of course, other combinations of these alternatives are possible (cross-
address space, cross-processor calls, for example), but the PPC facility was optimized for these
two uses. We describe same-processor, cross address space communication first and then remote
processor communication later.

5.2.1 Overview of PPC

The basic model of a PPC is, as the acronym suggests, a procedure call that crosses protection do-
mains. As such, it is by default a synchronous call, where the caller blocks until the callee returns.
Also, the model suggests that the call is not directed at some waiting process, but at the procedure in
the other protection domain (i.e., address space). One possible implementation would be to strictly
follow the procedure call model and have the calling process actually switch into the protection do-
main of the callee, execute the code of the procedure, and then return back to the protection domain
of the caller. However, for a variety of pragmatic reasons, we chose to implement the PPC by cre-
ating a new process in the callee protection domain to handle each call.2 Hence a PPC call starts
a new process in the target domain and blocks the caller; the callee process then executes the code
associated with the call, and does a special return which terminates itself (the callee process) and
unblocks the waiting caller (see Figure 5.1).

2How this is made efficient is described later.

TORN DOA

CHAPTER 5. PROTECTED PROCEDURE CALL 73

The key advantages of the PPC model are that: () client requests are always serviced on their
local processor; () client and server share the processor in a manner similar to handoff schedul-
ing [Black, 1990]; and () there are as many threads of control in the server as client requests.
Points () and () aid concurrency, while () aids locality by allowing servers to maintain client-
specific state local to the client, reducing unnecessary cache traffic. For example, for page faults to
memory mapped files that require I/O, all of the state concerning the file that the client has mapped
can be maintained in data structures local to the process that is accessing the mapped file. In some
sense, the PPC facility is similar to extending the Unix trap-to-kernel process model to all servers
(and the kernel for Tornado), but without needing to dedicate resources to each client, as all clients
use the same server port to communicate with a given server. The PPC model is thus a key compo-
nent in enabling locality and concurrency within servers.

5.2.2 Parameter passing mechanisms

There are three ways of passing parameters back and forth through a PPC call (much of which is
hidden from the user through the use of the proxy generation facility). First, the PPC facility allows
up to eight register-sized arguments to be passed from caller to callee, and back again. This is done
very efficiently by simply not using the eight registers holding the arguments while processing a
PPC call in the kernel.

The second option is to use a special buffer provided by the PPC facility for passing page-size
chunks of data between caller and callee. This facility provides two special regions of memory:
one for an OUT page and one for an IN page. The OUT page is used to pass data out of the caller’s
domain and into the callee’s domain. The data is received by the callee in its IN page. On return,
anything that the callee places in the IN page is returned back to the caller’s OUT page (see Fig-
ure 5.2). The implementation actually remaps the physical memory from one domain to another,
removing the need for a copy. This also has the side effect of removing access to the caller’s OUT
page during the call, and the callee’s IN page after the call. If a callee in turn needs to make a PPC
call, it can fill in its own OUT page and pass it to its target and receive a response without interfering
with the contents of the IN page. In addition, for the case where the same data is passed through
several call chains, the IN and OUT pages of a process can be swapped, making the contents of the
IN page the OUT page, and the OUT page the IN page.

Finally, for much larger quantities of data, the preferred method of data transfer is to establish
a region of shared memory between the two protection domains. For example, a pipe might be
created by establishing a shared buffer into which the producer would place data and the consumer
would receive data, using the shared memory for synchronization, possibly obviating the need for
PPC calls at all, except to establish the shared buffers in the first place.

TORNADO

CHAPTER 5. PROTECTED PROCEDURE CALL 74

IN

OUT

IN

OUT
physical
memory
page

IN

OUT

IN

OUT
physical
memory
page

Caller Callee Caller Callee

Figure 5.2: The leftmost figure shows the state before the call. In the caller’s address space, the
OUT page region points to a physical page backing that region. When the callee is invoked the
OUT page is removed from the caller’s address space, and mapped into the IN page region of the
callee, as shown in the rightmost figure. On return, the page is returned back to the caller’s OUT
page region.

5.2.3 Naming and authentication

A client wishing to make a call to a server directs the request to the server’s port. It uses a PortID
to identify the port, which includes both a port number and either a virtual processor number or a
special ANY VP value. The latter is the common case, and normally results in the call being han-
dled on the local processor. The parameters to the PPC call generally include the target object, the
target method number, and parameters to the method. The entry point code in the server examines
these parameters to determine which object and method to call.

PortIDs are generally hidden in proxy objects, together with the target external object’s clus-
tered object reference. Typical client code only interacts with proxy objects and not with PortIDs,
external clustered object references, method numbers, or any other part of the lower layers of the
PPC facility.

As opposed to systems like Mach [Accetta et al., 1986] or Spring [Mitchell et al., 1994] that use
capabilities for both naming and security, we specifically chose to separate the two issues. Callers
are identified to servers by their badge, which, as described earlier, is an identifier for the program
or address space of the caller. The badge can be used by the server to retrieve client-specific state
so it can verify whether the client is permitted to make the call. This separation of naming and
authentication allows the service provider to choose the type and degree of security and protection it
desires, allowing for server-specific optimizations. For example, as we saw in the previous chapter,
when there is only a single client of a given clustered object, a direct check for matching badge can
be performed as part of the external call processing code. With more than one client, a list of pre-
authenticated badges can be used, or, in the case of a large number of clients, a hash table could be

TORNADO

CHAPTER 5. PROTECTED PROCEDURE CALL 75

used.
The use of capabilities can have strong negative performance implications for two primary rea-

sons. First, it can entail locking in the common path of an IPC call in order to verify that the capa-
bilities are valid. Second, because capabilities are often added and deleted with great frequency,3

the data structures must either be shared, incurring a high cost due to coherence traffic, or they must
be replicated, with the attendant cost of keeping the frequently changing replicas consistent. This
is not a problem for PPCs, since the global PPC data structures change only when servers are cre-
ated and destroyed, which happens much less frequently. Avoiding capabilities thus facilitates the
implementation of a highly concurrent and localized IPC subsystem.

5.2.4 Extended application of PPCs

In addition to the normal use of PPCs for protected procedure calls, PPCs are used in a number
of other circumstances. First, an asynchronous version of PPCs is provided, where the caller does
not wait for a response from the callee; it returns immediately and the caller and callee proceed
concurrently. This is used in a number of cases, but its most prominent use is to start new processes
in the same or different address space. In fact, all processes, even the first process in a program,
arise due to a PPC call (either synchronous or asynchronous), as PPC calls are the only way to
create processes in Tornado.

Second, interrupt dispatching is integrated into the PPC facility, using a technique similar to that
used for asynchronous requests. An asynchronous request from the kernel to the device server is
manufactured by the interrupt handler and dispatched as for a normal call. From the device server’s
point of view, the interrupt appears as a normal asynchronous PPC request.

Upcalls are essentially software-based interrupts and use the same implementation as the in-
terrupt dispatcher, but may be triggered by an arbitrary system event, rather that just an interrupt.
They have wide application and are currently used for debugging (breakpoints are converted into
upcalls to the parallel debugger), signals, page faults, and exception handling (various traps may
be converted into upcalls to the offending application).

All these situations benefit from PPC’s ability to () bypass the general scheduling facility,
() maximize locality, () dynamically create new processes, and () support unconstrained con-
currency. By comparison, in Hurricane, which used a more traditional IPC system, we needed a va-
riety of special case solutions for each of these situations that were often significantly more complex
and costly than the PPC-based approach.

3For example, in Mach send capabilities are often added and deleted with each request to allow the server to send
a response back to the caller.

TORNADO

CHAPTER 5. PROTECTED PROCEDURE CALL 76

5.2.5 Remote PPC

So far we have only discussed PPCs in the case where the caller and callee (the process created on
behalf of the caller’s request) are on the same processor. A PPC can also be directed at a particu-
lar virtual processor for a given port. This form is primarily used for communication among rep-
resentatives of a clustered object (hence, within a single address space), or to communicate with
servers that handle physical devices that must be accessed from specific processors. In addition,
asynchronous remote PPCs are used to create processes on different processors for parallel pro-
grams. A PPC request can be directed at a particular remote processor through two mechanisms:
either the caller can specify the virtual processor as part of the PortID, or the server can specify the
target virtual processor for all calls when the port is first created. Apart from potentially specifying
a target virtual processor, there is no difference from the caller or callee’s point of view between a
local and remote PPC (although there is a difference in implementation as described below).

A natural extension of the remote PPC is a multicast PPC. There are numerous potential ap-
plications of such a facility, such as for sending updates to multiple representatives of a clustered
object or for starting all the processes in a parallel program. However, there were enough unre-
solved issues surrounding both the implementation of such a facility and the interface to present to
the user, that multicast PPCs have not yet been either designed or implemented. Such seemingly
simple questions, such as how to report errors when some subset of the multicasted targets fails,
how to collect multiple responses, and how to deal with IN/OUT pages, proved more difficult than
initially expected.

5.2.6 Error handling

Error handling during a PPC transaction is relatively straightforward from a client’s point of view.
All PPC calls return a standard error code. The returned value can be set either by the server pro-
cess executing the call, or by the PPC subsystem itself if it can’t complete the call; standard error
codes ensure that there is no confusion between an error in the PPC subsystem and one in the server
handling the call.

If a server process executing a call is terminated for some reason, then its caller is unblocked
and given a PPC return code to indicate the failure. If the server process was itself blocked on a
PPC call to some other server, the server process being terminated is detached from its target, as if
the call had originally been an asynchronous call, and the target continues until it returns, at which
point it is treated just as if it was returning after an asynchronous call. If a server process needs to
know if a client has died, it can check for the existence of a caller at any time.

TORNADO

CHAPTER 5. PROTECTED PROCEDURE CALL 77

5.2.7 Process Initialization

We have found that in some cases processes need to execute initialization code when they are first
created (e.g., registering themselves with an exception server, or allocating a buffer). However,
as we shall see in the next section, processes are not created anew on every call, but instead are
recycled for the next call when they return. Therefore, this type of initialization only needs to be
performed once for each newly created process. In order to prevent this one-time cost from impact-
ing subsequent calls, we allow processes to change their own call handling routine independently.
Thus, when a service entry point is created, the call handling routine specified is the initialization
routine. The first call to a newly created process enters at the initialization routine which then, after
initialization, changes the process’ call handling routine to the normal handler so that subsequent
calls bypass the initialization routine.

This option is currently used to initialize a few key structures for each process. This includes a
per-process structure that allows each process to efficiently locate per-process information, such as
its virtual processor number, its own process proxy, and the location of its IN and OUT pages. A
special structure used by blocking locks for enqueuing the process onto a lock is also initialized.

5.3 Implementation

To present the Tornado implementation of PPCs, we begin with a brief overview of the steps fol-
lowed for a common-case PPC call and return. We then retrace these steps more carefully, exam-
ining in more detail the different components that go into a PPC call and the various exceptional
conditions that must be dealt with.

5.3.1 Overview

The common case PPC call path is quite straightforward. First, the client prepares in specific reg-
isters all the information to be passed to the PPC trap handler, including the type of call (e.g., syn-
chronous or asynchronous), PortID, and the 8 register arguments for the server. The client is also
responsible for saving on its stack all other registers that must be preserved across the call. Next,
the client issues a trap instruction, which transfers control to the kernel as an exception. The ker-
nel then saves some information, such as the caller’s instruction pointer and stack pointer, in the
caller’s process descriptor.

At this point, the kernel is still in what we call “exception mode”, which in Tornado means that it
cannot be preempted and cannot acquire locks or access any virtual memory. Because of this, and to
reduce the overhead of handling calls, all resources needed to complete a PPC call (for the common

TORNADO

CHAPTER 5. PROTECTED PROCEDURE CALL 78

P0 P1 P2

pd

pd

pd

pd

(Per−Processor) Port Annex Tables

PortID

Figure 5.3: Each processor has its own table of PortAnnexes indexed by the PortID. Each entry
contains a list of PDAnnex descriptors (PDs) to use on this processor for calls to the port.

case) are replicated on each processor. Hence, the call processing code can safely access any PPC
data structure knowing it is protected by the fact that interrupts are disabled and only the local pro-
cessor is allowed to access it. Coordination between different processors is handled by higher-level
code that deals with creation, destruction, and various exceptional conditions (described later).

The next step in processing a call is to use the PortID to look up a per-processor port structure
containing the list of processes that are ready to be used to run in the server’s address space and
to process the call (see Figure 5.3). One of the process descriptors is removed from the list and
linked to the process descriptor of the caller to record the caller/callee relationship. Stack memory
allocation and OUT page transfer are dealt with next (detailed in the next few sections), and control
is then passed to the new server process which starts executing as the active process at its recorded
starting address (i.e., its entry point).

When the server process completes, it issues a PPC return trap. No registers need to be saved
this time, since the process is finished. The PPC trap handler uses the process descriptor of the
returning process to locate the caller and the original port of the callee. The caller is unlinked from
the callee, the callee is put back on the list of processes ready for a call on the target port, the callee’s
IN page is transfered back to the caller’s OUT page if necessary, and any other resources, such as
stack and OUT page memory, is returned. Finally, control is returned to the caller at the location
just after where it made the original call.

The key benefits of this design all result from the fact that resources needed to handle a PPC
are accessed exclusively by the local processor. By using only local resources during a call, re-
mote memory accesses are eliminated. More importantly, since there is no sharing of data, cache
coherence traffic is eliminated and no locking is required apart from disabling interrupts, which is a
natural part of system traps. By eliminating memory, interconnection network, and lock contention,
the PPC facility imposes no constraints on concurrency whatsoever.

TORNADO

CHAPTER 5. PROTECTED PROCEDURE CALL 79

We next proceed to examine in more detail the various steps outlined above.

5.3.2 Process Descriptor

The first step in handling a PPC call in the kernel is saving some of the current process’s state in its
process descriptor. As explained earlier, all PPC processing is done at exception level, which makes
it more efficient, but introduces certain limitations and complications. In particular, running at ex-
ception level implies that locks cannot be acquired to protect the process descriptor from changes
while the PPC is being processed. To deal with this limitation, process descriptors (PDs) have an
additional component, called a process descriptor annex (PDAnnex) that can be accessed only by
the processor the process is currently running on, and that is protected by disabling interrupts. Any
operation on the PD object that requires access to the state in the PDAnnex must therefore be for-
warded to the correct processor for handling. In addition, although the PD object itself is a clustered
object and hence its implementation is fully hidden, the PDAnnex is exposed, allowing low-level
code to directly manipulate it for saving and restore registers and accessing certain critical state.

Because PPCs are initiated by applications explicitly, the kernel need only save a couple of key
registers (such as the instruction and stack pointers), so space for storing the full register set, in what
we call a savearea, is not required. As a result, we only need as many full-sized saveareas (stored
in a general pool) as there are processes currently in the ready queue.

5.3.3 PortAnnex table

Associated with each Port clustered object is a per-processor structure called the PortAnnex (see
Figure 5.4). The PortAnnex in effect maintains a cache of processes to use for PPCs, and is built up
as needed. It is analogous to the PDAnnex in that it holds per-processor information associated with
the Port, can only be accessed on its respective processor, is protected by disabling interrupts, and
has an open implementation to allow efficient low-level access. The PortAnnex contains a pointer
to a list of PDAnnexes, representing the set of processes (also referred to as workers when they are
discussed in the context of being the target of a PPC call) that are available for calls to the port. It
also contains an “info” field that identifies the virtual processor associated with this list of workers,
some other status bits, and a pointer to the next list of PDAnnexes for the case where multiple virtual
processors of a program are scheduled onto the same processor (discussed in more detail in later
sections dealing with remote PPCs).

To locate the PortAnnex given a PortID we chose the simplest and most time-efficient approach.
Because the PortAnnex is so small (just a couple of pointers), we preallocate an array of PortAn-
nex objects to hold all possible ports. We also replicate this array to each processor so that each

AN D OT OR

CHAPTER 5. PROTECTED PROCEDURE CALL 80

P0

VP

PD List

Next

PD PD

VP

PD List

Next

PortID

Figure 5.4: This figure shows a closeup of one of the PortAnnex structures for a given processor
(). It includes the virtual processor number, some status bits, a pointer to the list of process de-
scriptors (PDs) ready for a call, and a pointer to the next PortAnnex for this PortID for the case that
multiple virtual processors from the same program have been scheduled on to the same processor.

processor can have its own list of workers to handle a PPC call. With this design, a PortID is sim-
ply a direct index into the local PortAnnex table. Since authentication is performed by the server,
there is no need to protect access to the ports. Clearly, in a very large system, a fixed sized table
would be inappropriate, since it would need one entry for every running program and there could be
thousands of programs running in a large system. One choice would be to replace the direct index
with a hashed index. To avoid increasing the cost of a PPC call for the most critical servers, another
alternative would be to have a small fixed sized table for the Ports of privileged servers and a hash
table for the rest.

5.3.4 Stacks

After removing a worker from the PortAnnex worker list, a stack for the worker needs to be allo-
cated. Stacks are managed in a special way in Tornado in order to maximize the performance of
PPCs and provide the flexibility needed by different types of applications. Instead of each process
having a stack region similar to the other memory regions of the address space, stacks are part of
a special region of the address space that allows fast and efficient modifications to the virtual-to-
physical mappings.

By default, each PPC worker on the PortAnnex list has a region of virtual memory set aside for
its stack, but no physical or swap space backing it. When the process is selected to handle the call,
a chunk of physical memory held in a special list for the PPC subsystem is mapped in as the stack
of the process and, as an optimization, preloaded directly into the TLB. When the call completes,
the physical memory of the stack is unmapped from the TLB and put back on the list.

This approach to managing the physical memory of PPC stacks has a number of benefits. Since
the physical memory backing the stacks used by the worker processes is not bound to particular

AN D OT OR

CHAPTER 5. PROTECTED PROCEDURE CALL 81

workers or even particular servers, but instead are assigned to workers on an as-needed basis, they
are effectively recycled on each call. This improves the overall cache performance of the system,
due to the smaller cache footprint that arises when multiple servers are called in succession and
sequentially share physical stack pages. It also reduces the physical memory requirements of the
system, since multiple servers called in succession may share a single stack, and extra stacks created
during peak call activity can easily be reclaimed.

A concern of reusing stacks in this way is the possible security risk of sharing stacks amongst
potentially untrusting servers since the stack memory is not automatically cleared between uses.
This is currently addressed by permitting workers to permanently hold on to a stack (specified at
Port creation time), allowing them to safely put sensitive information on their stack. A possible
compromise solution would be to collect servers that trust each other into groups and only share
stacks between servers in the same group.

A limitation of this approach is that stacks are not part of the regular shared address space of
the program, and so variables on the stack can not be shared with other processes in the program.
This has not been a problem in practice, however, since sharing memory on the stack is often the
source of poor performance and bugs, and so sharing data on the stack is generally discouraged.
Nevertheless, it is still something that must be considered when designing servers in Tornado.

Another limitation of our current implementation is that we restrict stacks to a small fixed size
of 8KB on our platform. Although this has proven sufficient for all of our current servers, we have
considered a number of ways of addressing this limitation. For example, it would be straightforward
to support stack sizes of some fixed multiple of the page size, chosen on a service by service basis.
It simply requires mapping as many pages as required into the appropriate location. For speed, this
would be treated as an exceptional case.

Another approach would be to keep the current implementation and simply assign a larger vir-
tual space for the stack. Accesses beyond the first page would result in a page fault and be handled
by the normal page-fault handling mechanisms. This would keep the common case fast and only
penalize those servers that require the extra space (which are likely to execute longer and more
easily amortize the cost of the page-fault). Cleanup on return in this case, however, would require
the extra pages to be returned to the system, though this can be implemented so as not to slow the
common case.

Finally, it is also possible for the server to acquire a larger stack internally if required, using
whatever stack management strategy is appropriate for the server, albeit with a corresponding in-
crease in execution cost for each call. This is in fact the approach currently used for most regular
(non-server oriented) applications that generally require larger stacks and whose main process sur-
vives for the duration of the program.

AN D OT OR

CHAPTER 5. PROTECTED PROCEDURE CALL 82

5.3.5 IN/OUT pages

After acquiring physical memory and mapping in the process’s stack, the next step is to handle the
IN/OUT pages. As with stacks, the IN/OUT pages are part of a special region of the virtual address
space that allows efficient mapping and unmapping of physical memory. Normally, the OUT page
of the caller is simply unmapped from its address space, which just involves clearing the appropriate
TLB entry on the local processor and clearing a single word in the PDAnnex, and mapped into the
IN page region of the callee address space in the same manner as the stack. On return the reverse
happens. Because of the restrictions on the IN and OUT pages (as for the stack), the IN/OUT pages
can only ever be accessed by the process they are mapped into, but this allows the bookkeeping to
be kept simple and efficient.

5.3.6 Scheduling

Finally, once the memory of the stack and IN/OUT pages have been set up, the calling process is
linked to the worker, and a context switch to the worker occurs, causing it to become the active pro-
cess. In the case of an asynchronous call, the caller is put back on the ready queue rather than being
linked to the worker. The context switch to the worker is actually nothing more than recording the
identity of the currently running process and loading a couple of registers (the stack and instruction
pointer of the worker; all other registers are either scratch registers or parameters from the calling
process).

5.3.7 Exceptional conditions

So far, we have covered the common PPC call-handling cases, when all resources are available. The
general principle in our design is to make this common-case path as efficient as possible, putting
everything that is not part of the common case off to the side. For example, if, when allocating a
stack for a worker, there is no memory left in the local pool, the call proceeds as normal and the
lack of a stack is handled when the process page faults on the missing stack.

A few exceptional conditions must be handled more directly, however. The most common ex-
ceptional condition is an empty PortAnnex worker list, which can happen either because: () this
is the first access to the port on this processor, () the port has been accessed before but currently
has no available workers, or () the port has been marked for remote PPC redirection. On the
fast path, all three appear the same, but once detected, they are split into three separate cases. Case
() is discussed further below. The first two are handled by redirecting the original PPC to a spe-
cial Port, the MetaPort, whose sole purpose is to handle these types of special cases. The workers
for this port have resources pre-reserved for them so that these redirected calls will always succeed.

AN D OTOR

CHAPTER 5. PROTECTED PROCEDURE CALL 83

When a call is redirected to the MetaPort, the MetaPort worker checks the reason for the redi-
rection and calls an appropriate object to handle the situation. For example, in the case of an empty
worker list, a call is made to the Port object which creates a new worker and adds it to the list. When
the operation has been completed, the original caller is restarted from the point of the original call,
effectively repeating the call. The second time around, the resources required should be available.

The key to this approach is that none of the complicated cases need to be handled at exception
level during the actual PPC call; all the complicated work is redirected to special servers dedicated
to the job.

5.3.8 Hardware exceptions

The PPC facility is not just used for inter-processor communication, but also for redirecting hard-
ware exceptions (interrupts, page faults, process exceptions) to a port for handling. The design
of the PPC facility is sufficiently general that exceptions of any kind can be directed to any port,
whether to the kernel port (for page faults), some device server’s port (for interrupts), or, in the case
of process-generated software exceptions, to any program, such as the program issuing the excep-
tion or a debugger.

The implementation of exception upcalls is almost identical to the second half of an asynchro-
nous call. In the simplest case, the exception is treated as an asynchronous call trap: the caller is put
back on the ready queue, a worker is removed from the appropriate port, the parameters are filled
in as requested earlier when the server registered to receive the exception, and the worker is made
the active process and scheduled to run.

The key complications that arise in handling exceptions are due to priority issues and lack of
resources. The priority issue comes about from the need to decide whether tofirst schedule the target
of the exception (the worker on the port the exception is sent to) or the currently running process.
We chose to have the exception handler run if it has the same or higher priority when compared to
the process being interrupted, on the assumption that the handler may be more sensitive to latency
than the process being interrupted (for example, if the interrupt is a notification of the arrival of a
network packet or the completion of a disk request).

Dealing with lack of resources when making upcalls for exceptions is more difficult. There are
two primary cases to consider: those where the exception is caused by the process currently run-
ning, such as a page fault or floating point exception, and those independent of the current process,
primarily device interrupts. The first case is handled as if the process itself had issued a PPC call
to the handler by turning the exception into a regular PPC call. For the second case, an attempt is
made to redirect the original request to the MetaPort to allocate the needed resources as in regular
out-of-resource cases. A timer event is also queued so that the interrupt handler can be retried in

AN D OTOR

CHAPTER 5. PROTECTED PROCEDURE CALL 84

a few milliseconds. In the unlikely event that sufficient resources are unavailable even to take the
above corrective action (which should be very rare) the best that can be done is to increment a count
in a pre-allocated structure marking the fact that this interrupt has been missed. In general however,
sufficient resources are pre-allocated to handle the expected interrupt rate.4

5.3.9 Remote PPCs

The final component of the implementation is remote PPC handling. For the common cases, as
with local PPCs, the implementation of remote PPCs is quite straightforward. However, a number
of complications must also be dealt with, many of them related to keeping consistent views of what
is essentially distributed information. We begin by describing the common case scenarios, and then
examine some of the more exceptional conditions.

Common case

As for the local case, we assume initially that all resources and information required to complete the
call are available at the time of the call. A remote PPC starts off essentially as a regular PPC. When
the PortID is used to look up an entry in the port table, it encounters one of two conditions that cause
it to turn the PPC call into a remote PPC: () the PortID provided by the caller directly specifies a
particular virtual processor for the target that is not located on the current physical processor; or ()
the port itself specifies that the PPC should be redirected to a specified virtual processor. In either
case, the result of the search is a target virtual processor for the port.

The virtual processor (VP) must then be mapped to the correct physical processor, since the
mapping of virtual-to-physical processor is different for each application and can vary over time for
any given application. The mapping is performed with the aid of a per-processor (set-associative)
cache that maps port vp pairs to physical processors. A miss in the cache is treated the same
as many other exceptional cases, namely by redirecting the call to the MetaPort for handling. The
MetaPort worker, in turn, asks the original target Port object for the mapping information which
in turn requests the information from the program it is associated with. (The program is the final
repository for this information.) The cache is then updated and the original request restarted.

Equipped with the identity of the target physical processor, the real work can begin. Transfer of
control to a remote processor is accomplished using a low-level remote interrupt facility. The facil-
ity is based on inter-processor interrupts provided by the hardware. A simple interface is provided
above the hardware that allows an arbitrary kernel function to be invoked on a given remote proces-

4This is essentially the same requirement as bounding the interrupthandling time to avoid missing interrupts in more
traditional systems.

AN D OTOR

CHAPTER 5. PROTECTED PROCEDURE CALL 85

sor with a fixed number of parameters passed to it. The call is performed with interrupts disabled
and the calling processor spins until a response is received from the remote processor, so remote in-
terrupt calls must be short. To prevent deadlock (for example, in the case where the remote proces-
sor is sending the calling processor an interrupt at the same time) the calling processor periodically
checks for (and processes) remote interrupts while waiting for its call to complete. When a remote
interrupt is received, the call is processed at exception level without blocking (like all interrupts and
exceptions).

The remote interrupt passes along the target PortID, the original PPC arguments, and, if re-
quired, the physical address of the OUT page and the amount of data in the OUT page to be copied.
The remote end then handles it essentially as an interrupt upcall, but first sends back an acknowl-
edgment to the calling processor before starting the new process so that the calling processor can
continue operation. The remote end also marks the worker process as having been called from a
remote node in order to be able to handle the return case properly.

On return, the flag indicating the process was called remotely is checked5 and a remote interrupt
is sent back to the calling processor (whose identity was recorded when the call was received) pass-
ing back the return arguments and the IN page address. The receiving end of the return interrupt
then reschedules the blocked caller either by putting the caller on the ready queue, or by issuing
an upcall directly to the caller, depending on the respective priorities of the caller and the currently
running process.

Remote PPCs are thus like regular PPCs, but with a pair of remote interrupts on the call and
return to connect the two sides. One key difference, however, is that a full context switch is required
on both sides for both the call and return. One natural optimization we have not yet applied would
be to have the caller spin in the trap handler for a few microseconds before calling the scheduler in
case the remote PPC call completes quickly, avoiding the overhead of the two context switches on
the calling side.

Less common cases

As with the local case, there are a number of less common cases that need to be handled specially.
Most of them are handled in much the same way as in the local case, namely by redirecting the call
to the MetaPort, which rectifies the problem and restarts the caller to retry the request. However
there are some differences in the remote case. For example, if the remote port entry is empty, a reply
is returned to the calling processor (during the remote interrupt processing) indicating that it will get
a call back later when the port entry has been filled. An upcall is then made to the MetaPort on the

5Actually, there is a common flag for all exceptional conditions which is used to make the common case check fast,
after which a more detailed check of specific flags is performed.

AN
DOT

OR

CHAPTER 5. PROTECTED PROCEDURE CALL 86

remote processor, which performs the normal allocation and then issues a remote restart call back
to the originating processor. However, if the MetaPort worker, due to unavailability of resources,
cannot handle the call, then a retry response is sent back to the caller, and the calling process is
forced to delay for a few milliseconds before retrying the request. We expect this situation to occur
rarely.

Another possible situation is that by the time the request arrives at the remote processor, the
target program has migrated to another processor. In that case a response is sent back informing
the caller to update its virtual-to-physical cache and retry the request. This is then handled as if
there had been a cache miss at the beginning of the call.

Exceptional cases

Finally, there are some (hopefully very rare) situations that require more careful attention to get
right. For example, when the caller or callee is terminated in the middle of a call, careful sequencing
is required to ensure that deadlocks and inconsistencies do not arise.

Another exceptional case involves process migration. When a process migrates,6 all outstand-
ing local calls to or from the process must be converted into outstanding remote PPCs, and all re-
mote PPCs must have their status updated to indicate the new location of the process. Note, how-
ever, that this feature has been designed but not yet been implemented.

5.4 Performance

Table 5.1 presents performance results for various PPC operations in terms of instructions and mea-
sured cycles on NUMAchine. A subset of these operations are broken down into the instruction
counts of their key components in Table 5.2. The breakdown was obtained by collecting SimOS
traces and manually inspecting them. Each of the operations in Table 5.1 is discussed in detail in
the following paragraphs.

The first entry in Table 5.1 is for a regular PPC call, in which all resources to complete the call
are available at the time of the call. Although the design is primarily targeted at maximizing concur-
rency, it still compares favourable to some of the fastest uniprocessor IPC times. For example, two
one-way IPC calls for the L4 (uniprocessor) IPC (considered one of the fastest IPC implementa-
tions in existence today) running on the same (MIPS R4000 based) processor require 158 instruc-
tions [Liedtke et al., 1997]. The reported times for L4 include only the time spent in the kernel
handling the IPC requests. If we look at the column for regular PPC calls in Table 5.2 and sum up

6Actually, it is the process’ virtual processor that migrates, taking all its processes with it.

AN
DOT

OR

CHAPTER 5. PROTECTED PROCEDURE CALL 87

Operation Instructions Cycles
PPC call 377 695
PPC call IN/OUT 459 943
Empty port call 3830 19522
First PPC call 4116 33756
Interrupt latency 814 1618
Remote PPC call 1832 7016

Table 5.1: This table compares the number of instructions required to perform a few types of PPC
calls as measured under SimOS to the number of cycles as measured under NUMAchine.

regular in/out remote
stub overhead 14 14 16
save/restore 50 50 50
ppc call trap handling 50 50 50
debugging 30 30 30
stack management 62 62 91
IN/OUT transfer — 82 —
raw PPC overhead 117 117 721
xobject checking 49 49 93
remote interrupt — — 781
Total (instructions) 377 459 1832

Table 5.2: Instruction count breakdown of some more common PPC operations.

all the kernel components involved in a call, we have 259 instructions. If we further discount the
debugging code (30 instructions provided to ease development and debugging) and the stack man-
agement code (62 instructions, which are optional if stack sharing is disabled for a server), we have
a count of 167 instructions, reasonably close to the 158 instructions of L4. In addition, with PPCs,
8KB of data can be exchanged in both directions (IN/OUT PPC calls) at an extra cost of only 82
instructions.

From Table 5.1 we also see the cost of calls to an empty port (19522 cycles) and to a non-
initialized port (33756 cycles). These costs are quite high, but they have not been optimized in any
way. Calls to an empty port involve extra overhead, primarily for creating a new worker and restart-
ing the call, while calls to an uninitialized port involve one-time overheads beyond that, for example
to initialize the virtual processor data structures. In microseconds these measured times amount
to 133 microseconds for an empty port call, and 227 microseconds for a call to a non-intialized
port, which compare reasonably well to the time of 370 microseconds required for creating a ker-
nel thread under SGI IRIX 5.3 on a system with the same processor and a faster memory subsystem.

The entry Interrupt latency in Table 5.1 shows the cost for interrupts delivered by way of a PPC

AN
DOT

OR

CHAPTER 5. PROTECTED PROCEDURE CALL 88

to a user-level server. The cost of 1618 cycles (or almost 11 microseconds) is somewhat high. How-
ever, approximately 30 percent of the cost is due to the Tornado interrupt infrastructure that was
designed for flexibility and ease of development (rather than speed), and is independent of the use
of PPCs as the final interrupt delivery mechanism. Also, the core PPC components used in the case
of an interrupt have not been optimized, and hence are several times slower than they should be.
It should be possible to reduce the cost to that of a regular PPC call (likely even less), allowing
interrupts to be efficiently redirected to any server, not just the kernel.

The remote PPC case (shown in Table 5.1 and broken down in Table 5.2) is somewhat more
complex than the others, as it involves two processors, remote interrupts, full context switches, and
a certain amount of overlap.7 The total cost of 7016 cycles includes approximately 1500 cycles just
for communicating parameters and status information between the two processors, which entails
four cache misses, a pair for each of the call and return. A large part (more than a third) of the rest
of the cost is in the general remote interrupt facility. The raw PPC component is also large, due
to the use of an un-optimized version for the remote case (the same one used for PPC interrupts),
and can be expected to be reduced to roughly the same cost as a local PPC (117 instructions vs the
current 721). The same holds for the xobject checking component, which should be faster for the
same-program remote case than for the cross-program case, but this has not yet been optimized.

Despite these costs, remote PPCs still compare favourably with other highly optimized remote
communication facilities, such as that provided in the Hive operating system [Chapin et al., 1995b].
They report best-case times of 34 microseconds compared to our time of 47 microseconds. How-
ever, their system includes a faster processor (200MHz vs. 150MHz) with set-associative caches,
a faster memory system (700ns memory access time compared to our 1800ns time), and a faster
interprocessor interconnect (1.2 GB/s vs. 320 MB/s). Their system also includes special hardware
support for communicating small messages between processors (requiring only 1 microsecond to
send a cacheline vs. approximately 2.5 microseconds in our case). It is also a specialized facility
available just for the kernel, rather than a general purpose facility available to all programs.

As stated above, PPCs were primarily developed for concurrency. Figure 5.5(a) shows the per-
formance of concurrent PPC calls to a single port from 1 to 16 processors on three different plat-
forms. The range bars for the NUMAchine case (numa) indicate the range of times taken by differ-
ent processes, with the markers indicating the average across all processes. Although the average
performance is reasonable, it is not completely flat and there is a wide variability in process times.
The times for SimOS (simos) show a similar pattern, again providing confidence in the simulator at
reflecting the various quirks of the system. As was the case with the clustered object system, cache

7Note that the instruction counts reported include only those components that are on the critical path of the call, and
does not include some of the cleanup code that takes place concurrently with critical path work on the other processor.

AN
D
OTO

R

CHAPTER 5. PROTECTED PROCEDURE CALL 89

1 2 4 8 12 16
Processors

0

500

1000

1500

C
yc

le
s

a) Concurrent PPCs

numa
simos
simos4way

1 2 4 8 12 16
Processors

0

2000

4000

6000

8000

C
yc

le
s

a) Concurrent PPCs with shared write

Figure 5.5: The figure on the left shows the performance for a test of concurrent PPC requests to
a common server on NUMAchine (numa), SimOS (simos) and SimOS with 4-way set-associative
caches (simos4way). The figure on the right shows the same test, this time only on NUMAchine,
with a single shared write inserted in the critical path.

conflicts are the primary reason for this behaviour, as the results on SimOS configured with 4-way
set-associative caches (simos4way) demonstrate: SimOS with 4-way set-associative caches shows
almost perfect scalability.8

To give an impression of the importance of the various optimizations for improved concurrency
that have been implemented within the PPC subsystem, Figure 5.5(b) shows the performance of
the same concurrent PPC tests on NUMAchine, but this time with the PPC call code modified to
include one extra write to a shared word. In this case, the time for a call increases linearly with the
number of processors. This illustrates the importance of eliminating accesses to shared variables
for maximum performance and concurrency, as performance suffers significantly, even with just a
small number of processors.9

8The stair-step pattern in the results is due to some processors having a large number of cache conflicts and others
almost none at all. As a processor with cache conflicts is added to the test it brings the average up, while when a proces-
sor with no cache conflicts is added it brings the average down. The reason certain processors (for example, processors
3, 7, 11, and 15 in this test) experience cache conflicts while others don’t is unclear, but is likely due to the pattern of
memory allocation in the test.

9Note that no sychronization is used for accesses to this shared variable, making the example artificially optimistic.

AN
D
OTO

R

CHAPTER 5. PROTECTED PROCEDURE CALL 90

5.5 Open Issues

As with the clustered object system, there are a number of open issues in the PPC system (most of
which have been alluded to earlier):

The use of a shared stack pool provides a number of potential benefits in terms of improved
cache hit rate (through a smaller cache footprint) and reduced memory requirements, but the
security issues remain to be addressed. In addition, the actual benefits need to be evaluated
in a realistic setting to determine their true value.

The other limitation of the shared-stack approach, is the limit placed on the size of the stack.
Although a number of options were proposed for elimintating this restriction, they have yet
to be fully designed or evaluated. However, it is has so far not posed a problem with any of
our servers.

Finally, multicast PPCs would be very useful for the propagation of changes to distributed
and replicated clustered objects.

5.6 Related work

The majority of research on performance conscious interprocess communication (IPC) has been for
uniprocessor systems. Excellent results have been reported for these systems, to the point where it
has been argued that the IPC overhead has become largely irrelevant [Bershad, 1992].10 Although
many results have been reported over the years on a number of different platforms, the core cost for
a call-return pair (with similar functionality) is usually between 100 and 200 instructions [Liedtke,
1993, Ford and Lepreau, 1994, Hamilton and Kougiouris, 1993, Engler et al., 1995]. These imple-
mentations, and ours, apply a common set of techniques to achieve good performance: () regis-
ters are used to directly pass data across address spaces, circumventing the need to use slow mem-
ory [Cheriton, 1984]; () the generalities of the scheduling subsystem are avoided with hand-off
scheduling techniques [Black, 1990, Cheriton, 1984]; () code and data is organized to minimize
the number of cache misses and TLB faults; and () architectural and machine-specific features
are exploited or avoided depending on whether they help or hinder performance.

The PPC facility goes beyond the application of these techniques, optimizing for the multipro-
cessor case by eliminating locks and shared data accesses, and by providing concurrency to the
servers. In a multiprocessor, accesses to shared data can result in cache misses or increased cache

10We do not agree with these arguments.

AN
D
OTO

R

CHAPTER 5. PROTECTED PROCEDURE CALL 91

invalidation traffic which can add hundreds of cycles to the cost of an operation. (The relative cost of
cache misses and invalidations is still increasing as processor cycle times are further reduced.) With
the increases in efficiency of IPC implementations, locks can quickly saturate, even if the critical
sections are very short. Multiprocessor microkernel operating systems depend heavily on maintain-
ing concurrency in the servers as well as in the kernel and hence require a highly concurrent IPC
facility that supports concurrency in the servers. Tornado addresses all of these key multiprocessor
issues while none of the existing systems address any of them.

The key previous work done in multiprocessor IPC was by Bershad et. al. [Bershad et al., 1990],
where excellent results were obtained on the hardware of the time. However, it is interesting that the
recent changes in technology lead to design tradeoffs far different from what they used to be. The
Firefly multiprocessor [Thacker and Stewart, 1987] on which Bershad’s IPC work was developed
has a smaller ratio of processor to memory speed, has caches that are no faster than main memory
(used to reduce bus traffic), and uses an updating cache consistency protocol. For these reasons,
Bershad found that he could improve performance by idling server processes on idle processors (if
they were available), and having the calling process migrate to that processor to execute the remote
procedure. This approach would be prohibitively expensive in today’s systems with the high cost
of cache misses and invalidations.

5.7 Summary

The new IPC facility we developed for Tornado is based on the Protected Procedure Call (PPC)
model rather than a message passing model. In the PPC model, a client process is thought of as
crossing directly into the server’s address space when making a call. This model together with our
implementation has a number of important properties. First, the model inherently provides as much
concurrency in the server as the requesting clients, while the implementation uses no locks in the
common case thereby imposing no constraints of its own on concurrency. Second, no shared data
is accessed in the common case, minimizing cache consistency traffic. Finally, the model dictates
that requests are always handled on the same processor as the client, allowing the server to keep
state associated with the client’s requests local to the client. With our implementation, the resources
provided to the server to handle a request (in particular, the server’s stack) are local to the processor
on which the request is being serviced, hence minimizing implicit accesses by the server to shared
data.

A
N

DO
TOR

Chapter 6

Support Infrastructure

A multiprocessor operating system (including its system servers) depends on a significant infras-
tructure which can strongly influence its performance. Two key components are the locking facility
and the memory allocation facility (malloc/free in the C language or new/delete in C++). Partic-
ularly for an object-oriented microkernel multiprocessor operating system, such as Tornado, these
two facilities can severely limit performance if not implemented carefully.

A multiprocessor operating system has special requirements compared to most programs:

It has highly concurrent demands and therefore must be carefully structured to avoid bottle-
necks.

It spans the entire system and therefore must be scalable and efficient in its use of resources.

It must efficiently support a highly diverse set of workloads.

It runs continuously and therefore must manage resources carefully to avoid leaks and imbal-
ances in their distribution and availability.

It must be highly robust, both in terms of reliability and performance.

The supporting infrastructure must take these various requirements into account.
In this chapter, we look at the issues surrounding the design of the locking facility and the mem-

ory allocation facility for Tornado, and describe and evaluate the design choices made for each.

92
A

N
DO

TOR

CHAPTER 6. SUPPORT INFRASTRUCTURE 93

6.1 Locking facility

6.1.1 Locking issues

Although there are a large number of issues to consider when designing a locking facility, we were
primarily concerned with the following four:

Locking overhead: we wanted to minimize both the time and space overhead of locking.

Lock scheduling: we wanted to provide certain guarantees (or probabilistic assurances) about
the order in which contended locks are acquired by processes waiting for the lock.

Deadlock and races: it is critical to provide a structured environment for avoiding deadlock
and race conditions.

Miscellaneous: we needed to deal with exception level interactions, supporting both user and
kernel services equally, and consider the potential benefits of a lock-free approach to concur-
rency control.

We examine each of these issues in detail.

Locking overhead

One of the primary concerns of a locking subsystem is to minimize the time and space overhead
of locking; locking does not provide any end-user functionality and hence is all strictly overhead.
Although processor cycles spent waiting for a held lock can be justified in that no forward progress
can be made anyway, time spent acquiring an uncontended lock is pure overhead and should be
kept to a minimum (particularly assuming that the system is designed to minimize contention in
the common case). Our approach is one that is commonly used [Karlin et al., 1991], namely to
use two different algorithms on the same lock (also known as a two-phase or adaptive lock): a fast
algorithm built on a simple test-and-set style atomic sequence with spin-based exponential backoff,
and a slower but more scalable algorithm that places waiting processes in a queue. The key is to
combine these two algorithms without adding time or space overhead to the common (fast) case.

Although we are mostly concerned with minimizing the cost of the uncontended case (which
we expect to be the common case in Tornado), we are still concerned with reducing the cost of con-
tended locks. Of particular concern is minimizing the secondary effects that spinning processes
can have on performance, on both the lock holder and the rest of the system. This can occur, for
example, as a result of memory accesses that the waiting processes issue while spinning, causing
excessive interconnection traffic and slowing the entire system. In particular, if the lock and the data

A
N

DO
TOR

CHAPTER 6. SUPPORT INFRASTRUCTURE 94

are co-located on the same cache line (in order to bring the data to the lock holder on lock acqui-
sitions), false sharing occurs between the lock holder accessing the data and the waiting processes
accessing the lock, significantly increasing the lock hold time and forcing the waiting processes to
wait even longer. This argues for a design that ensures that waiting processes do not repeatedly
access (even for read-only purposes) the lock or any other shared variable. Although we currently
use a simple spin-then-block approach, we consider some alternatives in Section 6.1.4.

By comparison to reducing the time overhead, reducing the space overhead of locks is compar-
atively easy. It is even possible to reduce the space overhead to zero for simple atomic operations,
such as add, bitset, or enqueue, using primitives such as compare-and-swap or load-linked/store-
conditional. When a lock is needed, the overhead can be reduced to one or two bits, allowing the
combination of data and its lock in a single word, provided there is a spare bit or two available1

and provided contention is low enough that false sharing is not a concern. This will be described
in detail in the next few sections. Although the space overhead may not be a major factor if the
lock granularity is fairly coarse, the lower the space requirements, the more flexibility the locking
system affords the designer.

Lock scheduling

Another important issue is the type of scheduling to provided to the processes waiting for a lock.
Generally the options fall into three broad categories:) random;) first-in-first-out; and) high-
est priorityfirst. The first is typical of traditional spin-lock implementations, where the next process
to acquire the lock is essentially random (depending on the spinning backoff algorithm). The sec-
ond is usually the by-product of some sort of queue-based implementation, where the lock holder
explicitly hands-off the lock to the process at the head of the queue. The final one is a variation on
the queue-based implementation, where the order in the queue is determined by something other
than arrival time.

The most important scheduling issue (from our point of view) is starvation and overall fairness
(ensuring each processor has an equal probability of acquiring the lock). It is important that no
thread be denied a lock indefinitely, and that overall, the waiting time for a lock is evenly distributed
over all acquirers. Queue-based locks are generally the best to guarantee this, although properly
tuned spin-locks are statistically just as good with lower uncontended overhead. Again, adaptive
schemes should be able to achieve both.

1For example, pointers often must be aligned to word boundaries, leaving the bottom few bits available for lock
bits.

A

N DO
TOR

CHAPTER 6. SUPPORT INFRASTRUCTURE 95

Deadlock and races

Although not part of the actual locking implementation, the overall locking strategy used and the
choice for concurrency control are tightly intertwined with the methods required for dealing with
deadlock and race conditions. Typically, rigidly defined locking hierarchies are needed, where spe-
cific classes of locks must be acquired in specific orders. As a basic rule of thumb, the shallower the
lock hierarchy, the more flexibility there is in defining the system structure. Moreover, being able to
rely more on leaf-locks (locks under which no other locks are ever held) eases many of the locking
protocol decisions. Unfortunately, many systems with deep lock hierarchies restrict the ability to
use leaf-locks (or lock-free approaches, as both are generally used under the same conditions).

The Tornado clustered object system significantly simplifies the locking protocol by allowing
locks to be dropped and acquired under many more conditions than a typical system. This is because
there is no danger of objects being destroyed if their lock is dropped, making it safe to later access
the object even if it is being destroyed. Of course, the object state needs to be rechecked, since it
may have changed between the time the lock was dropped and reacquired. As a result, locking in
Tornado generally only needs to consider the issues of concurrent access to a data structure within
an object, and not the relationship between locking decisions in different objects.

Miscellaneous

Three separate but related issues that need to be considered are () the interaction between the lock-
ing protocol and exception handlers, () the use of a lock-free approach to simplify certain locking
issues, and () the need for a common framework for the kernel and user-level servers, including
debugging and performance monitoring.

Because an interrupt handler can run at arbitrary times, synchronization between regular kernel
processes and the interrupt handler are required. The normal way of dealing with this is to disable
interrupts around data structures that are shared between the two levels. Another approach is to use
a lock-free approach, which doesn’t suffer from the possibility of deadlock [Massalin and Pu, 1991].
Unfortunately, as we shall see, the limitations of current hardware prevent us from using lock-free
concurrency control as a general solution to the problem, even though it would offer many benefits.

The final issue—providing a common framework for the kernel and user-level—is important
because system servers face all the same issues as the kernel. They both need the ability to monitor
the performance of the locks and determine who is holding which locks when the system fails.

A

N DO
TOR

CHAPTER 6. SUPPORT INFRASTRUCTURE 96

6.1.2 Tornado locking facility

The design of the Tornado locking facility is heavily influenced by the clustered object architecture.
First, clustered objects encourage localization and distribution of objects, reducing the amount of
concurrency any single object (i.e., clustered object representative) must support. Second, the en-
capsulation encouraged by the clustered object framework requires each object to do its own lock-
ing, requiring fairly fine grained locks and necessitating a time and space efficient implementation.
Third, the clustered object garbage collection system removes the need for much of the complex
locking protocols, since objects can hide their locking protocol entirely within their own structure
and locks can be safely dropped under most circumstances.

These factors have led us to focus on space and time efficiency and less on the scalability of
any one lock. The encapsulation of locking decisions within each object means that most locks
are leaf-locks, allowing additional optimizations (such as the replacement of locks with lock-free
approaches) and limiting the time most locks are held. Hence we favour spin-then-block bit-based
locks for most purposes, and lock-free approaches where convenient.

The next few sections discuss the particular implementation issues the Tornado locking facility
faced.

Lock-free support

Tornado’s lock free support is built on the load-linked and store-conditional instructions provided
by the MIPS processor used in NUMAchine.2 The semantics of the two instructions are as follows:
the load-linked acts as a regular load instruction but in addition sets a marker (in the processor)
indicating the address of the memory location loaded. If, at any time prior to the store-conditional,
the processor detects a store to the same location by another processor (for example, through an
invalidation for that cache line) or if an exception of some sort occurs (such as a timer interrupt),
the marker is cleared.3 When the program issues a store-conditional, the store only proceeds and is
successful if the marker is still set. If unsuccessful, this is relayed to the program so it can retry the
sequence. The equivalent of spinning on a lock thus occurs through the retry mechanism.

The two load-linked/store-conditional instructions allow a large number of atomic primitives
to be synthesized. For example, a classic test-and-set instruction is implemented by doing a load-
linked, testing the value loaded, and if it is clear, doing a store-conditional of one, repeating the
sequence if the store conditional fails. Although there are restrictions as to what sequence of in-
structions can come between a load-linked and a store-conditional, most of the basic primitives,

2Most modern processors provide equivalent instructions.
3The marker is overwritten if another load-linked instruction is executed prior to the store-conditional. Thus load-

linked/store-conditional pairs cannot be nested.

A

N DO
TOR

CHAPTER 6. SUPPORT INFRASTRUCTURE 97

such as swap, compare-and-swap, fetch-and-set-bit, fetch-and-add, can be implemented in a simi-
lar way.

Because the two instructions are for the most part just load and store instructions, they don’t
slow down the processor and if the target data is in the cache, the instructions execute at processor
speeds, rather than at bus or memory speeds.

There are many other benefits to using these primitives. For example, in the case of simple
atomic operations like fetch-and-add, they can be used to eliminate the need for a lock altogether,
by embedding the critical section code between a load-linked for the data and the corresponding
store-conditional. The elimination of the lock not only saves space, but is more efficient, since it
eliminates much of the locking overhead. The other advantage is that deadlocking with an interrupt
handler cannot occur since the load-linked marker is cleared on an interrupt (making the sequence
an optimistic transaction).

In Tornado we use this lock-free approach for many of the simple cases like incrementing shared
counters or atomically updating certain bits in a word. We also use it in more specialized situations,
such as for optimizing the locking operations of the memory allocator free lists (described in detail
later in this chapter). In this case, we used the load-linked/store-conditional instructions to construct
a special fetch-and-lock routine that both locks the free list and returns the head of the list, but only
if the list is not empty and not already locked. This allows the common case, where the list is not
locked nor empty, to be implemented very efficiently, relying on a more general purpose routine to
handle all the exceptional conditions.

One of the drawbacks to the lock-free approach is that few options exist for dealing with high
contention besides retrying the entire operation until it succeeds. Another drawback is that since the
sequence of instructions that can be inserted between a load-linked and a store-conditional instruc-
tion is limited, only a limited number of atomic operations can be synthesized (these restrictions
are common to most load-linked/store-conditional implementations).4

Bit-based spin-then-block locks

The Tornado bit-based spin-then-block locks are two-phase locks that use only two bits in any word,
leaving the other bits of the word untouched. Other lock variations, like spin-only and non-bit-based
locks are also provided. These locks exploit the flexibility of the load-linked/store-conditional in-
structions for constructing atomic primitives. The implementation can be broken down into a few

4There are more complex algorithms that can bypass these problems[Herlihy, 1993, Valois, 1995b], but they have
other limitations.

A

N D
O

T

OR

CHAPTER 6. SUPPORT INFRASTRUCTURE 98

simple steps.5 A lock acquire proceeds as follows:

1. an assembly language routine does an atomic test-and-set on the first of two bits reserved
in the lock word for the exclusive use of the locking routine (the rest of the bits may hold
anything the user desires, such as a pointer or counter, and are left untouched by the locking
routines);6

2. If the test-and-set is successful, then the lock has been acquired and we are done;

3. otherwise, we increment a spin count and if the second bit is not set and the spin count has
not been exceeded, we go back to step 1;

4. if the spin count exceeds a limit7 or the second bit is set, we give up spinning and enqueue our-
selves (our process id) on a list of processes waiting for the lock, atomically set the second bit
in the lock, and go to sleep. Because the lock consists of just two bits, the list is maintained in
a separate structure, namely a hash table keyed by the lock address and the lock bit numbers;

5. when woken up (presumably by the previous lock holder) we verify that we are marked to
get the lock next (going back to sleep otherwise), unlink ourselves, and return.

Releasing the lock is somewhat simpler:

1. atomically clear the first bit if the second bit is clear;

2. if the above succeeds, we have released the lock and are done;

3. otherwise, there may be someone queued up waiting for the lock who must be woken up;

4. if no one is queued, we clear both bits;

5. if someone is queued, we set a flag in the record of the next process in line for the lock, wake
it up, and return.

5We leave out some of the precautions that must be taken to prevent race conditions within the lock implementation
itself.

6The particular bits reserved are chosen by the user by instantiating the appropriate C++ template lock class provided
by the locking facility.

7This limit is usually chosen so that the spin time is equal to the blocking time, ensuring that the overhead is never
more than twice the optimal overhead [Karlin et al., 1991]. Finding a spin count that corresponds to the desired spin
time can be difficult however. We return to this issue in Section 6.1.4.

A

N D
O

T

OR

CHAPTER 6. SUPPORT INFRASTRUCTURE 99

This design provides both a time and space efficient implementation for the common case of
low-contention, with only a modest increase in time and space when there is contention.

Unfortunately, there was a subtle problem with the design that went unnoticed for a long time.
The problem is related to the fact that although our locking facility ensured there were no races in
the manipulation of the lock word within the locking system itself, it didn’t consider races with other
routines that might be manipulating the user data portion of the same word (recall that the lock sub-
system is only given jurisdiction over two of the bits in the word). Under certain circumstances this
could result in the second bit being accidentally cleared after having been set by a waiting process,
thus leaving the waiting process in limbo after the lock is released, potentially indefinitely.

The solution to the problem requires that all other manipulations of the word use a specific pro-
tocol. Because the lock is often used to protect the rest of the contents of the lock word itself, we
return the contents of the lock word (with the lock bits masked off) on a lock acquire, and allow the
user to provide the updated value of the word on lock release. This ensures that all manipulations
of the lock word are under the control of the locking facility and are properly synchronized.8

NUMA effects

For the most part, NUMA effects are not a major concern in the locking subsystem, since locks are
normally contained within the objects they are meant to lock and the clustered object system already
provides an environment for enhancing locality between the objects and the processes accessing
them. The only place where it is an issue is with the hash table used for the bit-based blocking
locks described above. For this case, we use a clustered-object-based hash table that is distributed
across the set of processors with the address of the lock used to determine the appropriate hash table
to use. Since the memory allocation facility (described below) partitions the address space to gain
locality, the memory from which the lock was allocated can be determined and hence the hash table
representative closest to the lock can be identified.

Lock debugging

Another important part of the locking facility is the debugging support that it provides. Two imple-
mentations of each type of lock are provided: a debugging version and a non-debugging version.
The version chosen is controlled by standard compile-time debugging flags and can be overridden
by explicitly choosing the type of lock-debugging desired on a lock-by-lock basis. The debugging
locks keep track of information such as which processes are currently holding which locks, who is
waiting for which locks, and the location in the program where each process acquired or is waiting

8Other solutions are clearly possible and may be preferable under some circumstances.

A

N D
O

T

OR

CHAPTER 6. SUPPORT INFRASTRUCTURE 100

Operation Instructions Cycles R10000
Uncontended simplest lock 10 12 10
Uncontended spin-only bit 20 31 10
Uncontended spin-block bit 25 36 11
Contended block-only word 3014 14236 —
Contended block-only bit 3100 17346 —

Table 6.1: Time in instructions and cycles for NUMAchine, and cycles for an SGI MIPS R10000
machine, for a lock/unlock pair for a minimal (simplest) uncontended lock, for a bit-based spin-only
uncontended lock, for a bit-based spin-then-block uncontended lock, for a two-processor contended
full-word block-only lock, and for a two-processor contended, bit-based block-only lock.

for the lock. This type of information is invaluable for detecting deadlocks and tracing lock depen-
dencies. The infrastructure is also designed to support the collection of various statistics concerning
contention and lock-holding time. No changes to the client code are necessary to switch between
the two lock types except a recompile with the appropriate debugging flags.

6.1.3 Performance evaluation

Table 6.1 shows the number of instructions and NUMAchine cycles required for several basic lock-
ing operations, as well as the cycles required on an SGI Origin 200 using a more recent version of
the same processor, the MIPS R10000. As was suggested earlier, a number of different approaches
can be used for dealing with high contention. We primarily use spin-then-block locks with expo-
nential backoff, but queue-based spin-only locks and other options are also available. Because it is
relatively straightforward to adapt our two-phase locks to use any of the other alternatives for the
second phase, we focus our attention in this section on the uncontended performance of the locks
and the cost of the two-phase and bit-based aspects of those locks.

The uncontended tests in Table 6.1 measure the time to lock and unlock a free lock by a sin-
gle process. The first entry in the table, simplest, is for a simple test-and-set lock with no backoff.
The spin-only bit lock is a bit-based version of the simplest lock, and is used in Tornado in situ-
ations where the process cannot block. The spin-block bit lock is a bit-based two-phase lock. If
we compare the two bit-based locks, we see that the two-phase lock pays a 5 cycle penalty even
though there is no contention in these tests. This is due to the need to test for blocked processes
when the lock is released. However, even the faster spin-only bit lock is over two-and-a-half times
slower than the simplest lock (31 cycles vs. 12 cycles). This would seem to indicate that the bit-
based locks should only be used where space is the primary concern. However, if we consider the
same tests run on the R10000 processor, which is a super-scalar out-of-order version of the same
processor used on NUMAchine, the differences all but disappear. This is because most of the extra

AN
DO

T

O R

CHAPTER 6. SUPPORT INFRASTRUCTURE 101

work that these locks perform can be done in parallel with the basic function of the lock, and hence
are not in the critical path. We conclude that the cost for a more flexible and space-efficient lock is
minimal on the current generation processors, and not unreasonable even on the older processors
of NUMAchine.

The contended results show the cost for two processes running on two different processors to
handoff to one another through a blocking lock. In this test, one process tries to acquire the lock
already held by the second process and hence blocks. The second process delays for a bit and then
releases the lock, giving ownership to the first process and waking it up. The second process then
immediately tries to re-acquire the lock. Since the lock is now held by the first process, the sec-
ond process blocks, and the cycle repeats. The time to acquire and the time to release the lock are
measured separately and added together to give the total time reported in the table.

The two versions shown are a bit- and word-based implementation of a blocking lock (i.e., the
process blocks immediately if the lock is busy). This is necessary since we do not want to include
the spin time in our measurements of the overhead of the lock. The bit-based version is the one
previously described, in which only two bits in a word are used to indicate the state of the lock,
and a queue of waiting processes is maintained separately in a hash table. The full-word version
embeds the list directly in the lock, removing the hash table overheads.

Compared to the uncontended case, the cost of these blocking locks is high, as it includes block-
ing, remote wakeup, shared queue manipulations, and, in the case of the bit-based lock, shared hash
table operations. The cost of the hash table operations adds little to the overall cost, since it is only
paid if there is contention. Hence, with the addition of an appropriate spinning phase, the two-phase
bit-based spin-then-block locks are reasonably space and time efficient.

6.1.4 Open Issues

The primary open issue still to be addressed in the Tornado locking facility is whether the spin-then-
block locks provide adequate scalability as the system is scaled to a larger numbers of processors.
Although Tornado is designed to avoid high-contention, it is still important that it gracefully han-
dle contention when it does arise. However, with the framework described, it is relatively straight-
forward to use other adaptive locking techniques [Lim and Agarwal, 1994] without changing the
performance of the underlying non-contended case. A three-phase lock is one approach, in which
processes first spin on the lock bit, then enqueue themselves and spin on a flag in their queued struc-
ture, and then finally go to sleep. The middle phase avoids the cost of the sleep and wakeup calls as
well as the negative memory effects of spinning on a central lock word. Another possibility to deal
with cache-line traffic caused by excessive spinning is to use hardware event counters commonly
available in current microprocessors to detect when spinning is causing cache misses, and reduce

AN
DO

T

O R

CHAPTER 6. SUPPORT INFRASTRUCTURE 102

the rate at which the state of the lock is checked under those circumstances. Alternatively, cycle
counters could be used to ensure that the spin phase is limited to a certain amount of time, rather
than a certain number of loop iterations.

6.1.5 Related Work

Two of the most important issues with locking are correctness (avoiding race conditions and dead-
lock) and performance (reducing the cost of waiting for and acquiring a lock). Recent work on
correctness has dealt primarily with either detecting races [Savage et al., 1997] or avoiding dead-
lock [Paciorek et al., 1991]. In the area of performance, there have been efforts at determining the
best spin time for two-phase locks [Anderson, 1990, Karlin et al., 1991], making locks adapt to
contention [Lim and Agarwal, 1994], and dealing with multiprogramming issues [Kontothanassis
et al., 1997]. There have also been numerous proposals to replace the shared spin lock with a queued
spin lock [Mellor-Crummey and Scott, 1991, Magnussen et al., 1994].

There have been many papers written concerning experiences with locking in multiprocessor
operating system [Campbell et al., 1991b, Balan, 1992, Campbell et al., 1991a, Saxena et al., 1993,
Peacock et al., 1992, Presotto, 1990, Pike et al., 1991, Ruane, 1990, LoVerso et al., 1991], primarily
detailing issues with retrofitting locking into existing Unix-like system.

Two interesting papers detailing experiences with novel operating systems discuss the use of an
exclusively lock-free approach to operating system concurrency control [Massalin and Pu, 1991,
Greenwald and Cheriton, 1996]. However, both used older processors that support hardware fea-
tures not found in existing systems, and fail to provide a general framework in which arbitrary con-
currency control requirements could be re-cast in a lock-free manner. Other work that has attempted
to extend lock-free techniques to more general data structures has generally been either too expen-
sive or required additional hardware support [Herlihy, 1993, Valois, 1995a]

One other locking paper that is of interest is our own previous experiences with locking in Hurri-
cane [Unrau et al., 1994] on the Hector multiprocessor [Vranesic et al., 1991]. That paper argued for
a hybrid approach to locking with coarse-grained locks protecting bits used for fine-grained locks.
However, with changes both in the system software design between Tornado (fine-grained object-
oriented concurrency control) and Hurricane (coarse-grained non-object-oriented structure), and in
the underlying hardware between Hector (slow, in-memory, fixed atomic instructions) and NUMA-
chine (in-cache, flexible load-linked/store-conditional instructions) those previous techniques are
no longer applicable.

The key to Tornado’s locking strategy is the synergy between the different components, such as
() the object-oriented design which contains contention to within individual objects, () the clus-
tered object system which further contains contention to within individual reps, () the garbage

AN
DO

T

O R

CHAPTER 6. SUPPORT INFRASTRUCTURE 103

collection system, which eliminates many of the locks and simplifies the concurrency control pro-
tocol by removing many of the potential race conditions, and () the low time and space overhead
locks along with the judicious use of lock-free techniques that match the fine-grain locking structure
of the clustered object design.

6.2 Memory allocation subsystem

Memory allocation has a long history of study (well surveyed by Wilson [Wilson et al., 1995]), but
few studies have considered the particular issues faced by operating system software [Bonwick,
1994, McKusick and Karels, 1988, Sciver, 1990], and fewer still have considered the additional
requirements of multiprocessor system software [McKenney and Slingwine, 1993]. In this section
we examine the specific issues faced by the Tornado memory allocation facility and the design that
arose to address these issues.

6.2.1 Multiprocessor allocator issues

Many issues must be considered when designing a memory allocation facility, both in terms of the
internal design of the allocator and how it will be used. Some of the factors to consider include:

Multiprocessor locality: limit sharing to those cases where it is absolutely necessary.

False sharing: avoid placing data with different sharing patterns in the same cache line or
page.

Cache reuse: maximize reuse of data that is likely to be already in the cache.

Concurrency control: maximize concurrency so as to (at least) match the scale of system.

Exception level support: account for the need to allocate and free memory at exception level.

NUMA awareness: maximize locality with respect to memory module access times.

Internal/external fragmentation: minimize memory wastage due to fragmentation.

Execution time: minimize time to perform allocations/deallocations.

Return unused memory: maximize ability to return memory for general use.

We examine each of these issues in detail.

AN DTOR O

CHAPTER 6. SUPPORT INFRASTRUCTURE 104

Multiprocessor locality

The key to multiprocessor locality is to use per-processor data structures wherever possible. In the
case of memory allocation, using per-processor lists of free blocks improves multiprocessor local-
ity both in the free-block management structures and in the memory being allocated itself. The
latter point is particularly important with current systems’ large secondary caches (up to 8 MB on
some systems), since it increases the chance that memory that was recently accessed and freed on
a particular processor will be reallocated on the same processor. Failure to account for this effect
can result in memory blocks being reallocated on different processors for every allocation, causing
excessive cache coherence traffic.

However, the danger with using per-processor freelists is that memory is wasted if it is left on
free lists for processors that have no need for the memory. Hence, it is important to return the mem-
ory to a more central pool periodically to allow other processors to use the memory if their free lists
run low.9

False sharing

Even if one manages to achieve a high degree of multiprocessor locality, false sharing can quickly
erase any potential gains. False sharing occurs when two pieces of data that are accessed indepen-
dently by different processors happen to reside on the same cache line. With large cache lines (as is
common on today’s multiprocessors) and many small objects (common in object oriented systems)
this can be a serious problem.

False sharing can occur in two primary ways in a memory allocator. First, it can occur when
multiple small chunks of memory within a single cache line end up allocated to objects that are
accessed on different processors. This can happen even with per-processor free lists if the sub-
cache-line objects are allocated from one processor and accessed on another. Second, false sharing
can occur in the data structures used by the memory allocator itself.

One solution to reduce false sharing is to make the minimum allocation unit the same size as the
cacheline. However, with cachelines of 64 or 128 bytes this can result in unacceptably high internal
fragmentation. Another approach is to assign each cacheline-sized block of memory a home pro-
cessor, similar to the home node of memory in a NUMA multiprocessor, and always return memory
to the home processor as soon as it is freed. Unfortunately, this would require a high overhead for
small blocks, something we would like to avoid. A final approach is to provide separate free lists for
allocating and freeing memory that is known to be accessed strictly locally. This requires the client

9This is similar to the need to coalesce free memory blocks in regular memory allocators to allow the memory to
be reused as different sized blocks.

AN DTOR O

CHAPTER 6. SUPPORT INFRASTRUCTURE 105

to know which list to allocate and free from, but provides the possibility of improved performance
when the situation is identifiable.

Cache reuse

Although the memory allocation subsystem must, for good performance, take into account the mul-
tiprocessor caching issues described above, it is also important that it maximize cache reuse on a
per-processor basis (again, because of the high cost of cache misses and the large secondary caches).
The most effective way to maximize temporal locality is to reuse free blocks soon after they are
freed, when they are likely still in the cache. To increase spatial locality, if possible, the allocator
should allocate small memory chunks from the same cache line in quick succession on the assump-
tion that the memory is likely to be used close in time, maximizing the use of the large cache lines.

Concurrency control

Maximizing concurrency in a multiprocessor is probably the second most important component of
a high performance allocator, after cache efficiency. As was discussed in Chapter 2, per-processor
data structures help increase not only locality, but concurrency as well. As with most data structures
under Tornado, we are primarily concerned with designing for the expected common case of low
contention.

Memory allocation would be an ideal facility in which to apply lock-free approaches to concur-
rency control. Unfortunately, the primitives provided on most current architectures are not suffi-
ciently powerful to apply most of the techniques that have been developed. For example, most pro-
cessors disallow any loads or stores between a load-linked and store-conditional instruction, which
makes it exceedingly difficult to implement even the most basic linked-list in a lock-free manner
(see previous section on locking).

Exception level support

Because the allocator needs to work in a kernel environment, it must be capable of dealing with
exception-level synchronization issues. The allocator must ensure that deadlocks cannot occur
when exception-level operations make use of the memory allocation facility. Three approaches are
generally used to achieve this: () disabling interrupts (in addition to locking) at key points in the
allocator; () restricting the types of memory allocation operations exception-level code is allowed
to invoke; and () using lock-free synchronization structures whenever possible. We have already
ruled out the third option (above), leaving disabling interrupts and adding restrictions to exception-
level memory allocation code. Since disabling interrupts for long durations is generally inadvisable,

AN DTOR O

CHAPTER 6. SUPPORT INFRASTRUCTURE 106

and since memory allocation at exception-level can always fail for other reasons (such as the need
to do page out to reclaim physical memory), the approach we are left with is adding restrictions to
the exception level code. Our approach is to provide a best-effort interface that may fail to allocate
memory if the necessary locks are not currently available.

NUMA awareness

Because our target architecture is a large-scale NUMA multiprocessor, the allocator must have some
awareness of the differing costs of memory and attempt to ensure that memory allocated from a
given processor is located on the nearest available memory module. This also means that when
freeing memory the system must attempt to return it to the home free list. (These issues are similar
to those that concern maximizing cache locality).

There are various tradeoffs in terms of when and how the system should check for the home
node of freed memory. For instance, checking on every free operation will ensure that memory is
always returned to the right place, but adds extra overhead to each free operation. In addition, the
memory might be in the processor’s cache, meaning that future allocations of the block might best
be made from the processor that just freed it, despite the home node being remote. On the other
hand, delaying the check could mean loss of locality and increased traffic due to excessive remote
accesses.

Internal/external fragmentation

Efficient use of memory remains an important issue for memory allocators. Even with large amounts
of physical memory, wasted memory can cause excessive cache misses and paging (depending on
the distribution of the unused chunks). Wastage in memory allocators generally arises from four
main sources: () internal fragmentation caused by allocating a block larger than requested; ()
external fragmentation caused by ignoring free blocks because they are not of the right size; ()
free-list fragmentation caused by ignoring free blocks because they are on the “wrong” free list;
and () overhead, caused by the use of boundary tags that extend the size of the requested block.
These issues have been well covered in the literature [Wilson et al., 1995], with the conclusion that
most memory allocation strategies can achieve low wastage, but at the potential cost of high-latency
and low-locality. It is therefore a question of determining the desired tradeoff, once the particular
allocation strategy has been chosen. The issues will become more clear when we examine memory
allocation implementations in more detail.

TORN DOA

CHAPTER 6. SUPPORT INFRASTRUCTURE 107

Execution time

Execution time can usually be minimized by using free lists of different sizes (to speed up the time to
find a block of a particular size) and deferring free-block coalescing to allow rapid reuse of common
block sizes and hopefully avoiding the cost of coalescing altogether.

Return unused memory

Finally, because the kernel and servers run continuously, it is important that they be able to return
memory that was allocated during peak demands back to the general system pool, so that it can be
reused by other programs. Many of the current user-level schemes do not support returning memory
back to the system, but instead retain all free memory in the allocator’s private pool. Those that do
return memory to the pool often restrict the memory that can be freed to blocks that are at the very
end of the heap. However, we require an allocator that has the ability to return arbitrary free pages
back to the general system pool, both for the kernel and user-level servers, because otherwise there
is a tendency for total memory requirements to continually grow over time.

Conflicting goals

Unfortunately, several of the goals listed above conflict with one another. For example, many of
the techniques for improving performance in multiprocessors require the use of per-processor free
lists. This can increase memory wastage and inhibit the ability of the allocator to return unused
memory, due to the fragmentation of memory across the various lists. Similar wastage also occurs
with the use of per-block-size free lists. As discussed above, NUMA support generally requires
extra checks for the remote-memory case, increasing the base execution time, and can conflict with
cache reuse when recently accessed remote memory is freed locally. Choosing the right tradeoffs
therefore requires careful attention to the requirements of the particular target environment.

6.2.2 Tornado allocation facility

Background

As a starting point, we decided to base the Tornado allocation facility on the allocator by McKenney
and Slingwine [McKenney and Slingwine, 1993] as it provides features closest to what we require.
It was designed for shared-memory multiprocessor kernels, and expends significant effort to maxi-
mize multiprocessor locality, reuse, and concurrency. Although close to meeting our requirements,
the McKenney and Slingwine allocator still requires a number of extensions and modifications in

TORN DOA

CHAPTER 6. SUPPORT INFRASTRUCTURE 108

order to fit our system. Their hardware platform was a Sequent 2000 with relatively slow i486 pro-
cessors running at 25MHz. This is a bus based multiprocessor, and hence only cache locality con-
siderations are necessary (i.e., all memory is equally distant from the processors’ point of view).
Reducing lock overhead was a major factor in their design, necessitated by the fact that each syn-
chronization operation required a shared-bus transaction. Also, their relatively small cache lines
(32 bytes) did not require special attention to false sharing.

The primary issues that need to be addressed are therefore: () dealing effectively with large
caches and large cache lines, () adding support for user-level system servers, () including
support for NUMAness, and () adapting the design to use the now-pervasive load-linked/store-
conditional synchronization primitives.

Overview

The basic design presented by McKenney and Slingwine consists of four layers, with the common
cases handled by the lower layers that are designed to be fast and highly concurrent, and the less
common cases that require more cooperation and less speed handled by the upper layers. The four
layers are:

1. a per-processor layer that keeps independent free lists of memory blocks on each processor,
for high locality, cache hit rate, and concurrency;

2. a global-layer, that allows blocks freed on one processor to be eventually re-allocated by an-
other processor;

3. a coalesce-to-page layer, that manages pages of memory and keeps track of outstanding mem-
ory blocks for each page allocated to the lower layers; and

4. a virtual memory layer, that keeps track of free regions in the virtual address space, for map-
ping new pages when they are required by the coalesce-to-page layer.

For Tornado, we keep the basic four layer design. However, in order to provide NUMA local-
ity, we replicate all but the per-processor layer (which is already replicated), with one instance per
cluster of processors. This increases locality at the cost of some increased complexity. The details
of how this affects the design will be discussed in the context of each individual layer.

Per-processor layer

The per-processor layer is based on an array of free-lists (see Figure 6.1), one for each fixed block
size supported by the system. In the original design, power-of-two sized blocks were used, from

TORN DOA

CHAPTER 6. SUPPORT INFRASTRUCTURE 109

16 bytes
32 bytes
48 bytes
64 bytes
96 bytes
128 bytes
192 bytes
256 bytes
384 bytes
512 bytes
768 bytes

...

Figure 6.1: Array of free lists, one for each supported block-size.

some minimum size, say 16 bytes, up to some maximum size, say 4096 bytes. Larger requests use
the virtual memory layer directly. A request for a given block size is satisfied by rounding the size
up to the next power-of-two size, finding the appropriate free list, and removing the first element.
This may waste a significant amount of space (up to 50%), but is very fast. Because of the space
waste, the Tornado implementation supports arbitrary (double-word aligned) sized blocks, while
still supporting fast common-case allocation.

When allocating a block, if the size is known at compile time, the head of the free list can be
computed at compile time, making allocation particularly fast. If the size is not known at compile
time, but is guaranteed to be less than the maximum size supported by the free lists, the size is used
to index into an array of pointers to the free lists. If nothing is known about the size at compile
time, a check is made at run time to determine whether the allocation should use the free lists or
go directly to the virtual memory layer. It is up to the user of the system to choose the appropriate
allocation interface based on the above conditions.

Freeing a block requires determining which free list the block came from. Again, if the size
is known at compile time, this is trivial. Otherwise, the system uses the coalesce-to-page layer to
determine the size of the block and hence indirectly find the free list.

In order to prevent the free lists from becoming too long and wasting memory, several options
are available:

Have a scavenging daemon scan all the lists and steal back excess memory periodically;

If an allocation on one processor fails to find a free block, have it scan its neighbours;

Keep a count of the number of elements in each free list and have the processor return memory
to the higher layers itself when it pushes past the limit.

TORNADO

CHAPTER 6. SUPPORT INFRASTRUCTURE 110

FreeList Auxiliary Target (=3) MyAddr

Figure 6.2: This figure shows the per-processor free list header structure, with a target free list size
of 3 elements (the auxiliary list will always be either empty or have Target number of elements).

The original McKenney and Slingwine design chose the last option, and we do the same. This
design uses an additional auxiliary list associated with each free list (see Figure 6.2). When the
free list length reaches the target length, the entire free list is moved to the auxiliary list, before the
newly freed element is put on the free list. If the auxiliary list is already full, it is first moved up to
the next layer. Similarly, if during allocation the free list is found to be empty, the auxiliary list is
consulted, and if not empty is moved to the free list. Otherwise the free list is replenished from the
next higher layer. This design limits the amount of memory held in the lowest layer and prevents
the free list from continually bouncing between the layers.

The use of per-processor freelists gives each processor a private set of freelists from which to
allocate and deallocate memory (see Figure 6.3). Since they are private, they experience no con-
tention from the other processors, and since most operations can be satisfied by the per-processor
free lists, high locality and good concurrency should be achievable. The one drawback to this ap-
proach is that memory on one processor’s free list is not available to the other processors, and hence
the total memory requirement of the system may grow.

In the original design, the free lists were protected by disabling interrupts since locks were ex-
pensive on their architecture and the allocator was only intended for the kernel. Ideally we would
use a lock-free implementation for the free lists, but as was discussed earlier, this is complicated by
the limitations of the atomic primitives.

We chose instead to use a more traditional locking approach, but customized for the particu-
lar requirements of the allocator. This choice, however, constrains exception level allocation and
deallocation in that the software must deal with the possibility that allocations can fail if the free
list is empty or locked (similarly for deallocations). Although this might impose greater limitations
on allocations and deallocations at exception level compared with other approaches, the other ap-
proaches must also be prepared to handle allocation failure at exception level, since paging may be

TORNADO

CHAPTER 6. SUPPORT INFRASTRUCTURE 111

CPU CPU CPU CPU

32 bytes

16 bytes

48 bytes

64bytes

96 bytes

128 bytes

192 bytes

256 bytes
...

32 bytes

16 bytes

48 bytes

64bytes

96 bytes

128 bytes

192 bytes

256 bytes
...

32 bytes

16 bytes

48 bytes

64bytes

96 bytes

128 bytes

192 bytes

256 bytes
...

32 bytes

16 bytes

48 bytes

64bytes

96 bytes

128 bytes

192 bytes

256 bytes
...

Figure 6.3: Free list per processor arrangement.

16

64 bits

Counter
47 1

Lock bit

FreeList head

Figure 6.4: This figure illustrates how the head pointer for the free list combines a counter, a lock,
and free list pointer in a single 64 bit word.

needed to free up enough space.
To avoid the traditional overhead of locking, we take advantage of the load-linked/store-

conditional instructions to build a specialized support routine for the allocator. Because of the lim-
itations of these instructions, it was necessary to combine a number of key fields into a single 64
bit word. This includes the head of the list, the count of the number of elements in the list, and a
lock bit (see 6.4).

On allocation, we use the load-linked instruction to load the combined word, then check the
lock bit and the freelist head field to see if it is safe to allocate. If it is, a store-conditional is used to
lock the free list. If the store-conditional fails or if the above check failed, we call a more general
purpose routine that handles exceptional cases. If the store succeeds, we remove the top element
from the list and store the pointer to the next element back in the head. This pointer already has the
counter field set to the size of the remaining free list and has the lock bit clear. Because the lock bit
is clear, storing the new head effectively unlocks the list.

TORNADO

CHAPTER 6. SUPPORT INFRASTRUCTURE 112

On deallocation, we check whether the memory is local, attempt to lock the list, and check the
length of the list against the maximum length, again passing the call on to a more general purpose
routine if any of these checks fail. Assuming they all succeed, the previous head is stored in the
new element, the list length is incremented and combined with the pointer to the new element and
stored as the new head, effectively releasing the lock.

If the memory is from a remote cluster, a number of options are available. One option would
be to treat it like local memory (and eliminate the check above). Not only would this simplify the
common case, but reallocating the memory to the current processor might make sense since it is
likely in the current processor’s cache. However, in the long run, it may be costly, as all NUMA
locality could be lost. It would also make optimizations that depend on receiving local memory
from the allocator more difficult.

A second option would be to free the memory to the home node. This would ensure that all local
allocations always return local memory, but it could be costly because of all the remote accesses
incurred for every remote block that is freed.

We chose a third option, as a compromise between the two alternatives above. Instead of freeing
remote blocks back to the home cluster, we instead put them on a local list for remote blocks from
the target cluster. When the list reaches the target length, the whole list is moved to the Global layer
of the home cluster. With this approach, when the list is being built, the memory being touched
is likely already in the cache, and when the list is moved back to the home node, the cost of the
remote access is amortized over the entire length of the list. However, there is a tradeoff in the
use of more free lists: more memory is fragmented among these lists, and the number of lists per
processor grows with the size of system. Some of the problems can be alleviated by combining lists
for more distant remote processors, and using a daemon that periodically scans the lists and returns
free memory to ensure it doesn’t remain on these lists indefinitely. However, more experimentation
is required to determine if such measures are warranted.

In order to ensure the check for remote frees on deallocation is efficient, we divide the virtual
address space dedicated to the allocator into separate chunks dedicated to each cluster and store the
identifying upper bits of the local cluster in the local freelist header. This allows a simple mask and
compare to determine if the memory is local or not.

Global layer

The global layer’s sole purpose is to redistribute free blocks from heavy deallocators back to heavy
allocators. The structure used at the global layer is similar to the per-processor structure in that it
has an array of headers for each block size. The global layer, however, maintains for each block
size a list of lists, where each sublist matches the size of the per-processor Target list size (see Fig-

TORNADO

CHAPTER 6. SUPPORT INFRASTRUCTURE 113

FreeList OddList Target (=3) GlobalTarget (=8)

Figure 6.5: This shows the global layer free list structure. Each of the sublists hanging off of FreeL-
ist are Target number of elements long. OddList holds left-over elements. There can be a maximum
of double GlobalTarget number of sublists before GlobalTarget of the sublists must be moved to the
next layer above.

ure 6.5). Like the per-processor layer, the global layer has a target value for the number of sublists
it wants to keep. When twice that value has been reached, half the lists are moved up to the next
layer for coalescing back into pages. When there are no more sublists and an allocation request
comes from the per-processor layer, the global layer fills its lists from the layer above. As with the
per-processor layer, this organization is intended to reduce the frequency with which lists need to
be moved between layers.

Since all the sublists must be the same length, namely the same as the target length of the per-
processor lists, any left-over elements are put on a separate odd list. (These left-over elements
sometimes come from the layer above, when a request can not be satisfied exactly.) When this list
reaches the required size it is added as a sublist to the list of sublists.

Unlike in the original design, which was targeting a bus-based multiprocessor, our allocator
has one global layer for each cluster of processors (i.e., for each neighbourhood of processors and
memory modules), rather than one for the entire system. This facilitates sharing within the cluster
(where we expect most interactions to occur) while improving NUMA locality and concurrency
within the global layer.

Coalesce-to-page layer

The coalesce-to-page layer has a number of purposes, centered around the pages of memory from
which blocks have been allocated. It acts as a source and sink of memory blocks from the global
layer. Its purpose is to coalesce blocks into pages until complete pages can be freed, and to request
whole pages from the layer above to be partitioned and given to the lower layers when needed.

TORNADO

CHAPTER 6. SUPPORT INFRASTRUCTURE 114

Page Descriptor

BlockSize

FreeList

Oustanding

Figure 6.6: Memory allocator page descriptor.

In the kernel, the pages are physical pages allocated from the global pool of free memory, but in
system servers, the pages are virtual memory pages. In both cases, the pages are treated the same:
they are allocated when more memory is needed, and the memory (backing them) is released when
all blocks of memory on the page have been freed and coalesced. Also, in both cases, there is one
instance of this layer for each cluster (i.e., there is a one-to-one relationship between global layer
instances and coalesce-to-page layer instances).

Each page in the coalesce-to-page layer contains only blocks of the same fixed size. If there are
no pages with free blocks of the given size, a new page is requested from the virtual memory layer,
and split up into a list of blocks of the requested size.

The coalesce-to-page layer is also responsible for keeping track of the status of each page that
has been allocated to it. The information includes the size of the blocks in the page, how many
blocks have been handed down to lower levels (so that it knows when the page can be given back
to the virtual layer), and a list of all the blocks in the page that are available for future requests from
the lower layers. The information is maintained in a descriptor which can be efficiently located
given the page’s address.10 The descriptors are also used directly by the lower layers to determine
the size of the block given only its address.

Virtual layer

This layer is responsible for managing the virtual address space for user-level servers, and for inter-
facing with the system page allocator in the case of the kernel. It handles requests for more pages
from the coalesce-to-page layer as well as large size (multi-page) memory block requests from any

10The mapping is done using a simple array of descriptors that precedes each chunk of virtual memory in use, for
the user-level system server case, and with a hash table for the kernel. The reason for using different approaches for
the servers and kernel is that since the kernel uses physical memory directly, it can’t ensure that all allocated memory
will be nicely compacted into contiguous regions. This would require that an array of descriptors be large enough to
cover all of memory, which would be prohibitive.

TORNADO

CHAPTER 6. SUPPORT INFRASTRUCTURE 115

of the layers below (these requests bypass the layers in between, since the purpose of the lower
layers is only to deal with small size blocks that need to be coalesced and managed as lists).

As with the previous two layers, there is one virtual layer per cluster of processors.

Reducing false sharing

One key issue we have not yet addressed is how to reduce false sharing. The approach we take is
to effectively provide a separate set of the first three layers for allocations of memory where it is
known a priori that the allocated memory will only be used on the local processor. (Actually, we
only need to provide separate layers for block sizes smaller than a cacheline). This segregates small
blocks that are accessed locally from all other blocks, ensuring that they can’t end up on a cacheline
that is shared across processors, but it requires the clients to use the proper interface if they wish to
optimize for locality.

6.2.3 Performance evaluation

Unfortunately, some of the NUMA aspects of the Tornado memory allocator are still incomplete,
so we present results with a single shared global layer, coalesce-to-page layer, and virtual layer. As
a result, scalability beyond requests to the lowest layer is limited.

Table 6.2 shows the allocation and deallocation costs for two different cases. In the first case,
best-case results are obtained by measuring the time to allocate and then deallocate a single block
in a tight loop. This ensures that all allocation and deallocation requests are handled by the lowest
layer. For this case, allocation requires 16 instructions and deallocation 21. Included in this cost are
the various checks and computations required to keep track of the length of the freelist and to de-
termine if it is over-full, which cost four instructions in the case of allocation and eight instructions
in the case of deallocation. Checking whether remote data is being deallocated cost an additional
three instructions to the deallocation cost (also included in the numbers presented in Table 6.2).11

Although these extra costs appear significant, most of this work can be performed concurrently with
the critical path work. As a result, the costs on the R10000 processor of a minimal allocator with
none of the checks and the Tornado allocator are roughly the same.12

The second case considers a scenario with close to worst-case behaviour, where a stream of
allocations is followed by a stream of deallocations. The test involved a stream of 32768 allocations
and deallocations of 256 byte blocks, enough to stress all levels of the allocator. About 80 percent of

11These results include the NUMA check even though only a single upper layer is used.
12The results actually show the Tornado allocator doing better. This is most likely due to different alignments of

instructions. Repeating the experiment with different code layouts changed the times by a few cycles, but the relative
ranking always remained the same.

AN D OT OR

CHAPTER 6. SUPPORT INFRASTRUCTURE 116

Operation Instructions Cycles
alloc (best-case) 16 (total)
dealloc (best-case) 21 (49)
alloc (stream-case) 75 668
dealloc (stream-case) 156 690

Operation R10000
minimal 10
Tornado 7

Table 6.2: The table on the left includes time in instructions and cycles for NUMAchine, for best-
case allocations and deallocation when they can be satisfied from the lowest layer, and for the case
when multiple requests are issued in succession, first for allocation and then for deallocation, caus-
ingworst case behaviour. For the alloc/dealloc best-case test, it was not possible to accuratelymea-
sure the individual costs on NUMAchine, so only the total is presented for those two. The table on
the right compares the number of cycles on an R10000-based SGI system for a minimal allocation
system and for Tornado’s allocator.

1 2 4 8 12 16
Processors

0

20

40

60

80

100

C
yc

le
s

a) Concurrent best-case allocation

1 2 4 8 12 16
Processors

0

5000

10000

15000

20000
C

yc
le

s

b) Concurrent not-so-best-case allocation

Figure 6.7: Concurrent test for the best-case and not-so-best-case allocation tests.

the time for allocation is spent in the coalesce-to-page layer, while about 50 percent for deallocation
is spent mapping the block address to the memory descriptor, which is only required for the kernel
version due to special constraints in the kernel. These are two areas that have not received as much
attention in optimizing the code, and it shows. However, this also suggests that performance can
likely be improved significantly for such stressful situations with more tuning.

Finally, Figure 6.7 shows concurrent versions of the tests above. As expected, the best-case
concurrent test scales perfectly, with no slowdown effects as more processes are added. For the case
with a stream of requests, performance degrades rapidly. However, for up to 4 processors (the size
of a NUMAchine station), performance degrades more slowly, suggesting that the NUMA design
would likely be effective in supporting scalability even under significant stress.

AN D OT OR

CHAPTER 6. SUPPORT INFRASTRUCTURE 117

6.2.4 Open issues

As with most components of Tornado, there are still many issues that remain to be addressed:

Freeing remote data: as indicated earlier, there are many options for how to handle freeing
remote data, each with performance advantages under different usage patterns. Determining
whether our selected approach is sufficiently efficient and robust will require a more extensive
study of actual dynamic allocation usage.

Memory wastage: there is a danger of significant wastage of memory, both within the mem-
ory blocks due to the small number of block sizes supported, and in the various lists due to the
dispersion of free blocks to a large number of free lists within and across processors; a proper
study of the real amount of wasted memory in a running multiprocessor system is needed.

Closer integration with C++: the allocator is most efficient if the size of the object being al-
located is known at compile-time; this is sometimes awkward to program in C++ and could
easily be automated since the compiler knows at each new location the size of the object being
created.

Proper evaluation: given the issues above and the complexities of a full running system,
proper evaluation considering the kernel and servers on a large number of processors run-
ning a real workload would be highly beneficial in evaluating just how effective the design
is in limiting contention, increasing locality, and minimizing memory wastage.

6.3 Related Work

Our dynamic memory allocation design borrows heavily from the work of McKenney and Sling-
wine [McKenney and Slingwine, 1993], which is one of the few published works on multiproces-
sor memory allocation, in particular for kernel environments. A survey paper by Wilson [Wilson
et al., 1995] covers many of the other schemes, but does not address multiprocessor or caching is-
sues. Grunwald et al examined cache performance of allocation schemes [Grunwald et al., 1993]
and suggest a number of techniques they felt would be most effective in dealing with locality issues.
Most of these techniques can be found in the McKenney and Slingwine memory allocator (with a
few additions in our own adaptation).

There have been a number of allocators designed specifically for operating system software.
A good overview can be found in [Vahalia, 1996]. Most share a similar desire to reduce allocation
and deallocation to simple list manipulations, and to provide an efficient way to coalesce free blocks
back into free pages that can be returned to the general free-memory pool. However, apart from the

AN D OT OR

CHAPTER 6. SUPPORT INFRASTRUCTURE 118

work of McKenney and Slingwine, none of the allocators described deal with multiprocessor issues,
and none, including McKenney and Slingwine’s allocator, consider the unique problems faced in a
NUMA multiprocessor, nor do they consider such issues as false sharing or user-level support.

6.4 Summary

In this chapter, we looked at the key design and implementation issues of two of the most impor-
tant base components of a multiprocessor operating system: the locking facility and the dynamic
memory allocation facility.

In Tornado, the prime concern of the locking facility is efficiency in the uncontended case, both
in terms of time and space. Focusing on the uncontended case makes sense because the clustered
object system should help keep contention for any one clustered object representative relatively low.
It is, of course, still important to degrade as gracefully as possible under heavy load, but beyond that,
there is little that can be done under such circumstances.

The dynamic memory allocator faces a number of demands. It must be efficient in time and
space, maximize cache reuse and NUMA locality, coalesce free memory promptly, and be highly
concurrent. The Tornado allocator attempts to address all of these issues, with varying degrees of
success. The use of per-processor structures and separate freelists for strictly local allocations ad-
dresses many of the issues, with further divisions along cluster lines helping to address the NUMA
issues. However, further analysis is required before one can conclude whether the right tradeoffs
have been made.

AN D OTOR

Chapter 7

Overall System Performance

To evaluate the effectiveness of the Tornado design at a level above the individual components, we
ran a few multiprocessor operating system stress tests. The micro-benchmarks are composed of
three separate tests: thread creation, in-core page faults, and file stat, each with worker threads
performing the operation being tested concurrently. For comparison purposes, we ran the same tests
on a number of Unix systems.

Thread Creation Each worker successively creates and then joins with a child thread (the child
does nothing but exit). Pthreads are used for the Unix systems; regular Tornado processes
are used for Tornado.

Page Fault Each worker thread accesses a set of in-core unmapped pages in independent (separate
mmap) memory regions.

File Stat Each worker thread repeatedly fstats an independent file.

Each test was run in two different ways; multi-threaded and multi-programmed. In the multi-
threaded case, the test was run as described above. In the multi-programmedtests, instances of the
test were started with one worker thread per instance. In all cases, the tests were run multiple times
in succession and the results were collect after a steady state was reached. Although there was still
a high variability from run to run and between the different threads within a run, the overall trend
was consistent.

Figure 7.1(a) shows normalized results for the different tests on NUMAchine. Because all re-
sults are normalized against the uniprocessor tests, an ideal result would be a set of perfectly flat
lines at 1. Overall, the results demonstrate good performance, since the slowdown is usually less
than 50 percent with up to 16 processors. However, there is high variability in the results, which
accounts for the apparent randomness in the graphs.

119 AN D OTOR

CHAPTER 7. OVERALL SYSTEM PERFORMANCE 120

1 2 4 8 12 16
Processors

3

1

Sl
ow

 D
ow

n

a)

stat mt
pagefault mt
thread mt
stat mp
pagefault mp
thread mp

1 2 4 8 12 16
Processors

0

20

40

60

M
ic

ro
se

co
nd

s

b)

numa stat mtsimos stat mtnuma pagefault mtsimos pagefault mtnuma thread mtsimos thread mt

1 2 4 8 12 16
Processors

3

1

Sl
ow

 D
ow

n

c)

stat mt
pagefault mt
thread mt

Figure 7.1: Micro-benchmarks: Cost of thread creation/destruction (thread), in-core page fault
handling (pagefault), and file stat (stat) with worker threads running either in one process (mt)
or in processes with one thread per process (mp). The left figure (a) shows slowdown relative
to the uniprocessor case. The middle figure (b) shows the raw times in microseconds for the mul-
tithreaded tests on NUMAchine and SimOS, and the right figure (c) shows the slowdown on a log
scale of the multithreaded tests run on SimOS configured with 4-way set associative caches.

System OS # Cpus Legend
UofT NUMAchine Tornado 16 numa

SimOS NUMAchine Tornado 16 simos
SimOS 4way NUMAchinea Tornado 16 simos4way

SUN 450 UltraSparc II Solaris 2.5.1 4 sun
IBM 7012-G30 PowerPC 604 AIX 4.2.0.0 4 ibm

SGI Origin 2000 IRIX 6.4 40b sgi
Convex SPP-1600 SPP-UX 4.2 32c convex

asimulated 4way set associative
bMaximum used in experiments is 16
cMaximum used in experiments is 8

Table 7.1: Platforms on which the micro-benchmarks where run.

Similar results are obtained under SimOS. Figure 7.1(b) shows the raw times in microseconds
for the multi-threaded tests run under NUMAchine and SimOS. As we saw in earlier tests, setting
SimOS to simulate 4-way associative caches smoothes out the results considerably, as shown in
Figure 7.1(c).1

To see how this compares to the performance of existing systems, we ran the same tests on a
number of systems available to us (see Tables 7.1 and 7.2 and Figure 7.2). The results demonstrate a
number of things. First, many of the systems do quite well on the multiprogrammed tests, reflecting
the effort that has gone into improving multi-user throughput over the last 10-15 years. However,
the results are quite mixed for the multithreaded tests, being at times over a factor of 100 slower

1There is still an anomaly involving a single thread taking longer than the others that we have yet to track down.
This pulls up the average at two processors, but has less effect on the average when there are more threads running.

AN D OTOR

CHAPTER 7. OVERALL SYSTEM PERFORMANCE 121

Operation Thread Creation Page Fault File Stat
NUMAchine 15 46 5
Sun 178 19 3
IBM 691 43 3
SGI 11 21 2
Convex 84 56 5

Table 7.2: Base costs, in microseconds, for thread creation, page fault handling, and file stating,
with a single processor.

with 16 processors. In particular, although SGI does extremely well on the multiprogrammed tests,
it does quite poorly on the multithreaded tests. This is particularly interesting when compared to
results on an older bus-based system (a 6-processor SGI Challenge running IRIX 6.2, results not
shown), where the multiprogrammed results are slightly worse and the multi-threaded results are
quite a bit better. This appears to reflect the strength and direction of the new NUMA SGI systems.
Overall, Sun performs quite well with good multithreaded results and respectable multiprogrammed
results; however, we had only a four processor system available, so it is hard to extrapolate the
results to larger systems. Surprisingly, IBM does quite poorly across all of the multithreaded tests
and a couple of the multiprogrammed ones, while Convex does poorly for the thread creation and
page fault test in both multi-programmed and multi-threaded mode.

Overall, the results of Tornado compared with the other systems demonstrate the strength of the
Tornado approach, but also point to the need for greater attention to cache conflict issues (although
more recent processors with their associative caches tend to address this problem), which can be
particularly difficult to address in dynamic object-oriented systems like Tornado.

However, it is important to keep in mind that these results can reflect many things about a system
beyond the level of concurrency supported or the maturity of the multiprocessor implementation.
For example, the use of a single shared ready queue limits scalability and locality, but supports
finer-grained load balancing. In Tornado, we have primarily focussed our early development on
concurrency and locality, at the expense of load balancing. As a result, it performs well for such
well balanced tests as those above. This tradeoff between locality and resource sharing, both in
the implementation and the policies supported, is an important issue, but beyond the scope of this
dissertation.

AN
DOT

OR

CHAPTER 7. OVERALL SYSTEM PERFORMANCE 122

1 2 4 8 12 16
Processors

1

10

Sl
ow

 D
ow

n

a) Multithreaded page fault

sgi
convex
ibm
sun
numa

1 2 4 8 12 16
Processors

1

10

Sl
ow

 D
ow

n

b) Multithreaded file stat

1 2 4 8 12 16
Processors

1

10

Sl
ow

 D
ow

n

c) Multithreaded thread creation

1 2 4 8 12 16
Processors

5

1

Sl
ow

 D
ow

n

d) Multiprogrammed page fault

1 2 4 8 12 16
Processors

5

1

Sl
ow

 D
ow

n

e) Multiprogrammed file stat

1 2 4 8 12 16
Processors

5

1

Sl
ow

 D
ow

n

f) Multiprogrammed thread creation

Figure 7.2: Micro-benchmarks across all tests and systems. The systems on which the tests were run
are: SGI Origin 2000 running IRIX 6.4, Convex SPP-1600 running SPP-UX 4.2, IBM 7012-G30
PowerPC 604 running AIX 4.2.0.0, Sun 450 UltraSparc II running Solaris 2.5.1, and NUMAchine
running Tornado.

AN
DOT

OR

Chapter 8

Overall Summary

In this dissertation we have presented a number of contributions that are the result of our research.
Although the implementation is only partially complete and open issues remain to be addressed, we
believe the basic premise of the work and the conclusions drawn from it are valid. In this chapter,
we consider the main contributions of our work and the impact the open issues may potentially have
on them.

8.1 Object-Oriented Structure

The object-oriented structure of Tornado encourages all virtual and physical resources to be repre-
sented by independent objects, providing a framework for locality, concurrency, and flexibility.

Benefits.

Because each resource is managed by an independent object, contention for locks or other
resources is limited to those components that are truly shared by more than one program,
significantly reducing contention. For example, the cache memory for separate files is man-
aged by independent FCMs ensuring that accesses to the two files never contend for FCM
page cache locks.

The independent objects can be located near the clients accessing it, promoting increased lo-
cality.

The object-oriented structure allows different implementations of the same component to be
supported, allowing the system to more closely match the implementation and policy require-
ments of the applications. For example, different implementations of the Program object, one
for sequential programs and one for parallel programs, can be provided.

123 AN
DOT

OR

CHAPTER 8. OVERALL SUMMARY 124

Applications can choose at run time the particular implementation of any component they
desire, allowing them more control over how their resources are managed. This allows, for
example, an application to choose a particular cache management strategy for a particular
file.

Open Issues.

Space inefficiencies may result from localizing data structures within objects. For example,
the overheads of complex data structures are higher when they manage smaller amounts of
data.

In most cases this can be addressed by using alternate data structures, such as dynamically
sized hash tables instead of static ones. In addition, there can be significant time savings,
since most data structures are more efficient to access when they hold fewer elements.

Partitioned management of resources makes it more difficult to implement global policies.
For example, providing a global least-recently-used page replacement policy is more chal-
lenging when the pages are managed by multiple independent page caches.

Although implementing such global policies requires more careful consideration of the in-
formation sharing interfaces of the objects, in most cases it can be done [Wilk, 1997]. As a
general trend, most systems are moving toward more localized resource management policies
in order to provide differentiated services, which our structure actually facilitates.

8.2 Clustered Objects

Clustered Objects provides a framework for distributing the state of an object to improve locality
and concurrency in a manner transparent to its client objects.

Benefits.

Clustered objects enhances locality and concurrency by distributing object state, supporting
migration, replication, and object partitioning. For example, replicating a read-only object
provides local copies for all client objects and eliminates the bottleneck a single copy would
have.

Overhead to access the appropriate object rep is kept low by using per-processor object trans-
lation tables that are located at the same virtual address on every processor. This allows a
single extra pointer indirection to suffice for accessing a local rep.

AN
D
OTO

R

CHAPTER 8. OVERALL SUMMARY 125

Because the clustered object translation entry for a given object is located at the same address
on all processors, a common pointer (to the translation entry) can be used as the reference to
the clustered object on any processor in the system. This ensures that the distribution of object
state can remain transparent to the client.

Open Issues.

Page replacement for the physical memory backing the object translation table has not yet
been implemented. It is therefore unclear how effective such a strategy can be, or whether
the use of a compression table might be necessary.

Paging the translation table could be inefficient if reps are migrated frequently or there is lit-
tle locality between the processors creating the clustered objects and the processors access-
ing them. This would cause references to be scattered throughout the table, and threaten the
viability of a single linear clustered object translation table. Alternate data structures are pos-
sible, but would add to the common case cost of a translation table hit. However, we expect
there to be a fair degree of locality in the object reference pattern for the majority of the ob-
jects, based on a mix of large-scale parallel and sequential workloads.

A complete strategy for supporting the migration of clustered object reps has not yet been
developed. Migration is complicated by the need to destructively copy an object while it is
being accessed. The problem is similar to that faced by copying garbage collectors in object-
oriented language systems, but without the language support these systems depend on.

Although strategies based on the same approach currently used for clustered object garbage
collection are being considered, many details remain to be worked out. As a compromise,
migration can be simulated by migrating the state but leaving the actual rep data structure
intact. As long as large structures are allocated separately from the main rep and can therefore
be freed when the rep has “migrated”, the cost should be minimal.

The complexity of managing distributed state, even within a single object, can be high. There
are additional places where deadlocks and races conditions can occur that do not appear with
a single shared object.

Experience with Tornado, and its predecessor Hurricane [Unrau et al., 1995], suggests that
a few key design patterns [Gamma et al., 1995] are sufficient to capture the common uses
of distributed data structures. Clearly more work is necessary to capture these patterns in
reusable classes to make them more accessible to systems programmers in general.

AN
D
OTO

R

CHAPTER 8. OVERALL SUMMARY 126

8.3 Clustered Object Garbage Collection

Tornado provides a semi-automatic garbage collection scheme for clustered objects that allows clus-
tered object references to be safely used at any time without fear of the object being destroyed while
being used.

Benefits.

Because the object state is guaranteed to persist as long as references to the object exist, many
of the locking issues that relate to races with the object’s destruction are eliminated.

Since it is always safe to use clustered object references independent of which locks are cur-
rently held, all object locking can be hidden from its clients and encapsulated within the ob-
ject, thereby increasing modularity in the overall design.

By eliminating the need for a lock to protect against destruction, locking read-only objects is
no longer necessary. Similarly, lock-free approaches are safe to use.

Open Issues.

Because garbage collection relies on the count of active processes in the kernel (or server) to
return to zero periodically, it is possible for the garbage collection system to be shut out for
unbounded periods of time.

In practice there is almost always some lull in requests to the kernel (or server) on a given
processor, allowing garbage collection to proceed (remember that the count only has to go to
zero at some point in time, no matter how short that period is). However, there are other ap-
proaches being investigated that should eliminate this concern entirely with minimal impact
on performance in the common case (see Section 4.2.4).

The garbage collection system uses a circulating token to determine when a clustered object
is no longer referenced on any processor in the system. The time for the token to circulate
is longer for larger systems, and may delay garbage collection for an unreasonable length of
time.

Because the only effect the delay can have is on the time to recover the memory of clustered
objects, the impact is likely to be minimal, even for large systems. This is particularly true
since we expect the object creation and destruction rate to be relatively low (perhaps hundreds
per processor per second) compared to the rate of general-purpose memory allocation (up to
tens of thousands per processor per second). In addition, with some degree of clustered object

AN
D
OTO

R

CHAPTER 8. OVERALL SUMMARY 127

locality, the problem can be addressed through the use of multiple circulating tokens, covering
different ranges of processors.

8.4 Protected Procedure Calls

The protected procedure call facility provides a highly efficiency and concurrent interprocess com-
munication facility necessary to support servers running on multiprocessors.

Benefits.

By localizing all data structures and eliminating locks, the PPC facility provides both low la-
tency (competitive with the best uniprocessor IPC systems) and high concurrency (essentially
unbounded).

By ensuring client requests are always directed to the server on the local processor, it allows
servers to enhance locality by allocating client-specific state local to the client.

The PPC system provides a sufficiently general platform to also support asynchronous re-
quests, interrupt dispatching, upcalls, and cross-processor calls, without much added com-
plexity or performance overhead.

Open Issues.

Because, by default, a single pool of stacks is used for all programs and the stacks are not
zeroed before being assigned, there is the potential security risk of leaked information.

There are many ways to address this problem, including the current method of simply turning
off stack sharing for those programs that are concerned about potential security violations (the
other obvious option for such programs is to clear their stack before returning). The most
likely alternative would use a separate pool of stacks for different classes of servers. This
would only add an extra word to the port entry to point to the appropriate pool and would not
increase the cycle count for a PPC call.

To keep dynamic stack allocation fast, efficient, and simple, stacks are limited to 8KB in size.
This may be too small for some servers.

So far, the stack size limit has posed no problem for the servers we have implemented. How-
ever, we expect there will be some cases where a larger stack is needed, for which a number
of options were presented previously (see Section 5.3.4).

A
N

DO
TOR

CHAPTER 8. OVERALL SUMMARY 128

The space required for the port table may become a problem in larger systems. This is because
the total space required for all port tables (assuming a simple linear table) grows as the number
of processors multiplied by the total number of programs that can be run simultaneously.

In order to support larger systems, we expect we will need to switch from the single linear
table to a partitioned system where widely accessed servers that span the entire system are
placed in a smaller linear table and the regular user programs are placed in a hash table. This
should have minimal impact on performance for system servers, as it only requires the addi-
tion of a simple range check on the port, and acceptable performance for calls to regular user
programs that require a hash table lookup.

The infrastructure to handle outstanding PPC calls to migrating processes has not yet been
implemented.

Although migration adds complications to the implementation, it requires no changes to the
basic underlying design or architecture, and hence we feel confident it can be added with
minimal impact on performance or overall design complexity.

8.5 Locks

The Tornado locking subsystem provides both time and space efficient locks in conjunction with
an infrastructure that supports a variety of lock debugging functions.

Benefits.

Tornado locks require only one or two bits of permanent state, depending on whether the lock
is a spin-only or spin-then-block lock.

On modern super-scalar processors, the Tornado locks are as efficient as standard test-and-set
locks.

Open Issues.

As Tornado is scaled up to larger systems, it may become necessary to include spinning queue-
based locks to assist with scalability.

As discussed earlier in Section 6.1.4, a number of strategies based on three-phase locks should
be able to address this issue without hurting the common case time or space costs.

A
N

DO
TOR

CHAPTER 8. OVERALL SUMMARY 129

As with all spin-then-block locks, choosing the spin time can be difficult. This is further com-
plicated by false sharing cache miss effects.

This is a general open issue, but one which can likely be addressed with the use of cache-
miss counters and cycle counters commonly available on current microprocessors. Further
research into this direction would appear warranted.

8.6 Memory Allocation

The Tornado memory allocator addresses within a single framework the issues of speed, locality,
and concurrency, as well as false sharing and NUMAness.

Benefits.

By once again using per-processor data structures, the common cases for the allocator provide
high locality and concurrency.

As a result of the previous point, allocation and deallocation are fast; comparable to unipro-
cessor times.

The design extends previous work by addressing issues of NUMA locality and false sharing,
through the use of additional specialized free lists.

Open Issues.

The NUMA and false-sharing aspects of the memory allocator are designed but not yet im-
plemented.

The design is complete and appears to introduce no excessive complexity to the overall archi-
tecture. We therefore have confidence that it can be implemented and provide the expected
advantages described.

The cost of multiple checks for overfull free lists and remote data may best be paid at higher
levels in the memory allocator instead of at free time, reducing the frequency of such checks.

Postponing these checks could result in a loss of locality and highly unbalanced free lists. In
addition, initial results on more modern superscalar processors indicates that the current costs
are completely hidden.

A
N

DO
TOR

CHAPTER 8. OVERALL SUMMARY 130

There is a danger that excessive memory will become unavailable due to the number of free
lists, particularly those added for NUMA support. Memory on free lists that is never allocated
is essentially unavailable to other free lists.

By choosing the size of the free lists appropriately, such lost memory can be kept to reason-
able levels. In addition, periodic scans could be used to reclaim such memory if necessary. To
address the problem of large number of free lists for NUMA support, it may be necessary to
combine lists to more remote processors so that the total number of lists remains constant as
the system grows. Despite these potential problems, the lack of existing research into mul-
tiprocessor memory allocation suggests that simply raising these issues is a necessary first
step.

8.7 Overall Open Issues

The experimental system is limited to 16 processors.

We expect the benefits to be even more pronounced on larger systems, although it may also
highlight new bottlenecks that will need to be addressed (as is to be expected for a prototype).

Only micro-benchmarks were used, instead of real applications. Time limitations did not al-
low performance testing with real workloads. As a result, the true overall value of the tech-
niques presented in this dissertation cannot be fully evaluated. Given this limitation, this
work can only be treated as preliminary (as well as a motivator for future work along similar
lines).

However, given the scalability problems of commercial systems, it seems clear that the issues
discussed are of critical importance to the field. Whether we have presented the right trade-
off between locality and concurrency versus sharing and global policies will require a more
complete implementation and workload than that possible within the scope of this work.

A

N DO
TOR

Chapter 9

Lessons Learned

Tornado was built on our experience with the Hurricane operating system [Unrau et al., 1995].
Hurricane was designed with scalability and NUMA multiprocessors in mind. It was built from
scratch by loosely coupling smaller tightly coupled operating systems (called clusters) to form a
large-scale single-system image with the performance characteristics of small-scale systems for
tightly-coupled interactions, and the scalability of distributed systems.

Hurricane was a success from the perspective of achieving its goals on the hardware it was de-
signed for. However, we found a number of problems with this architecture that drove us towards
the much more radical one employed by Tornado. Since many of these problems apply to other op-
erating systems, it is instructive to discuss a few of them, and how they are addressed in Tornado:

1. The tightly coupled Hurricane cluster has little locality, and is hence inappropriate for current
systems with large caches and high cache miss latency. The object-oriented nature of Tornado
and the use of clustered objects allows available per-processor locality to be exploited.

2. The high overhead of memory-based synchronization drove the Hurricane design towards
complex locking protocols with relatively large-granularity locks [Unrau et al., 1994]. With
the low-overhead in-cache locking primitives of modern processors, the fine-grained (in ob-
ject) locking strategy of Tornado has reduced complexity as well as lowered overheads and
improved concurrency.

3. When a resource is widely shared, the fixed sized clusters of Hurricane resulted in high over-
head due to message passing between the clusters. With clustered-objects, a single represen-
tative can be shared by any number of processors, if advantageous to do so.

4. For correctness, all components of Hurricane had to be clustered, making the implementation
of every component complex. With Tornado, a new service can be centralized initially and
only later distributed (without affecting the clients of the service).

131

A

N DO
TOR

CHAPTER 9. LESSONS LEARNED 132

5. The traditional structure of Hurricane made it difficult to explore wildly new resource man-
agement policies and implementations. With the object-oriented structure employed by Tor-
nado, only the interfaces between objects are well defined, and it is much easier to explore
policy and implementation alternatives.

The Tornado object-oriented strategy does not come without cost. Overheads include: () vir-
tual function invocation, () the indirection through the translation table, () the space ineffi-
ciencies described in Section 3.3.5, and () the intrinsic cost of modularity, where optimizations
possible by having one component of the system know about the details of another are not allowed.
Our experiences to-date suggest that these costs are low compared to the performance advantages
of locality, and will over time grow less significant with the increasing discrepancy between pro-
cessor speed and memory latency. However, we do not believe that we yet have enough experience
to make strong claims.

As the adage goes “any problem in computer science can be solved by an extra level of indi-
rection.”1 The clustered object translation table provides this level of indirection in our operating
system, and we have found it useful to solve a number of problems, including:

locking protocol: The on-demand insertion of representatives into the clustered object translation
table lets us track which processors have temporary references to an object, enabling the
garbage-collection based locking protocol.

dynamic flexibility: Since we can () keep track of temporary references to an object and ()
block out new references until all current references have completed, we have a framework
for changing the class of an object without having to negotiate with all the clients of that ob-
ject.

security: The translation table is used to maintain security information, making it possible for ob-
ject references to be passed between address spaces. This allows Tornado clients to use a
unified object-oriented methodology to requests services, whether the client is in the same
address space as the service provider or not.

supplants other global tables: The translation table supplants the need for many other global ta-
bles. For example, a client accessing a file uses the reference to an object in the file server,
rather than an identifier that the file system has to translate to an object reference.

Our primary goal in developing Tornado was to design a system that would achieve high per-
formance on shared-memory multiprocessors. We believe that the performance numbers presented

1In a private communication, Roger Needham attributes this to David Wheeler.

A

N DO
TOR

CHAPTER 9. LESSONS LEARNED 133

in this paper illustrate that we have been successful in achieving this goal. A result that is just as
important that we did not originally target was ease of development. Less experience is necessary
for developers of Tornado, than, for example, Hurricane. The object-oriented strategy coupled with
clustered objects makes it easier to get a correct implementation of a new service and then incre-
mentally optimize its performance later. Also, the locking protocol has made it much easier for
inexperienced programmers to develop code, both because fewer locks have to be acquired, and
because objects will not disappear even if locks on them are released. This translates many dead-
lock and wild write failures into explicit error conditions that are easier to track down and solve.

A

N D
O

T

OR

Chapter 10

Concluding remarks

In this dissertation we examined the issues surrounding the design and implementation of an operat-
ing system for shared-memory multiprocessors. The primary issues considered were ones of local-
ity and concurrency. By using an object-oriented structure, with each virtual and physical resource
represented by an independent object, we eliminated most shared global objects from Tornado, thus
reducing contention and increasing locality. To improve performance for contended components,
we introduced a new structuring technique called Clustered Objects that allows an object to be par-
titioned and distributed across the machine in a manner transparent to the outside consumers of the
object. As part of the clustered object system, we presented a novel semi-automatic garbage col-
lection scheme that significantly simplifies the locking issues faced by the programmer. We also
presented a novel interprocess communication facility, called the Protected Procedure Call facility,
that provides the locality and concurrency required to allow microkernels such as Tornado to scale
effectively on multiprocessors. Finally, efficient locking and memory allocation designs were pre-
sented that meet the dual requirements of an object-oriented system and a scalable shared-memory
multiprocessor.

Validation of the design was realized by way of a prototype implementation of Tornado for
both the NUMAchine multiprocessor and the SimOS complete machine simulator. The prototype
demonstrated both the feasibility of the design as well as its performance benefits.

The contributions of this work (at the risk of repeating myself) include the following primary
innovations:

An overall system architecture that uses object-oriented design techniques to increase locality
and concurrency by fully encapsulating all resources within independent objects.

A methodology and underlying implementation that supports the distribution of object state
across the processors and memory of a multiprocessor, transparently increasing locality and

134

A

N D
O

T

OR

CHAPTER 10. CONCLUDING REMARKS 135

concurrency for the consumers of the object.

A semi-automatic multiprocessor garbage collection system that simplifies many of the lock-
ing issues, increases modularity, and increases performance by way of reduced synchroniza-
tion requirements.

A highly efficient and concurrent interprocess communication system that achieves perfor-
mance comparable to the best uniprocessor IPC system for arbitrary degrees of concurrency.

This dissertation also includes of a number of secondary innovations:

Software locks that require only one or two bits of permanent state, and that are potentially
as efficient as standard test-and-set locks.

A dynamic memory allocation facility that addresses the issues of concurrency, NUMA lo-
cality, false sharing, and base efficiency.

A hardware address translation system that provides new levels of flexibility through region-
specific TLB miss handling, while maintaining reasonable performance through the use of
run-time code specialization.

Despite the functionality present in the current incarnation of Tornado, there still remains much
work to be done. Full NUMA support in the locking and memory allocation facility is required, and
more components of the kernel and system servers need to be converted to take full advantage of
the clustered object system. More importantly, however, is the need for a more complete evaluation
of the system using more realistic workloads, in order to determine the full range of benefits and
liabilities that a design such as Tornado can provide.

Work continues on all these fronts. Tornado has now been licensed to IBM so that they may
continue the research within an industrial setting and with industrial resources. Concurrent devel-
opment of Tornado and the successor to Tornado, Kitchawan, at IBM’s T.J. Watson research center,
will hopefully permit these open issues to be addressed.

A

N D
O

T

OR

Bibliography

[Abdelrahman et al., 1998]
T. Abdelrahman, N. Manjikian, G. Liu, and S. Tandri. Locality enhancement for large-scale
shared memory multiprocessors. Proc. of 4thWorkshop on Languages, Compilers, andRun-time
Systems for Scalable Computers (LCR98), volume 1511 of Lecture Notes in Computer Science,
pages 335–342. Springer-Verlag, Pittsburgh, PA, 1998.

[Accetta et al., 1986]
M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, and M. Young. Mach: A
new kernel foundation for Unix development. Proc. 1986 Summer USENIX Conference, pages
93–112, July 1986.

[Adve and Gharachorloo, 1995]
S.V. Adve and K. Gharachorloo. Shared memory consistency models: A tutorial. Technical
Report ECE Technical Report 9512, Rice University, September 1995. Also as Digital Western
Research Laboratory Research Report 95/7.

[Anderson et al., 1997]
J. M. Anderson, L. M. Berc, J. Dean, S. Ghemawat, M. R. Henzinger, S.-T. A. Leung, R. L.
Sites, M. T. Vandervoorde, C. A. Waldspurger, and W. E. Weihl. Continuous profiling: Where
have all the cycles gone? Proceedings of the 16th Symposium on Operating Systems Principles
(SOSP-97), volume 31,5 of Operating Systems Review, pages 1–14, New York, October 1997.
ACM Press.

[Anderson, 1990]
T. Anderson. The performance of spin lock alternatives for shared-memory multiprocessors.
IEEE Transactions on Parallel and Distributed Systems, 1(1):6–16, January 1990.

[Appavoo, 1998]
J. Appavoo. Clustered Objects: Initial design, implementation and evaluation. Master’s thesis,
University of Toronto, 1998.

136
AN
DO

T

O R

BIBLIOGRAPHY 137

[Auslander et al., 1997]
M. Auslander, H. Franke, O. Krieger, B. Gamsa, and M. Stumm. Customization-lite. 6th Work-
shop on Hot Topics in Operating Systems (HotOS-VI), pages 43–48, 1997.

[Balan, 1992]
R. Balan. A scalable implementation of virtual memory HAT layer for shared memory multipro-
cessor machines. USENIX Conference Proceedings, pages 107–116, San Antonio, TX, Summer
1992. USENIX.

[Bennett, 1987]
J. K. Bennett. The design and implementation of Distributed Smalltalk. Proc. ACM Conf.
on Object-Oriented Programming Systems, Languages and Applications (OOPSLA), page 318,
1987.

[Bershad et al., 1990]
B. N. Bershad, T. E. Anderson, E. D. Lazowska, and H. M. Levy. Lightweight remote procedure
call. ACM Trans. Computer Systems, 8(1):37–55, February 1990.

[Bershad, 1992]
B. Bershad. The increasing irrelevance of IPC performance for microkernel-based operating
systems. USENIX Workshop on Micro-Kernels and Other Kernel Architectures, pages 205–212,
Seattle, WA, April 27-28 1992. USENIX.

[Black et al., 1991]
D. L. Black, A. Tevanian Jr. , D. B. Golub, and M. W. Young. Locking and reference counting
in the mach kernel. Proc. 1991 ICPP, volume II, Software, pages II–167–II–173, August 1991.

[Black, 1990]
D. L. Black. Scheduling support for concurrency and parallelism in the Mach operating system.
IEEE Computer, 23(5):35–43, 1990.

[Bonwick, 1994]
J. Bonwick. The slab allocator: An object-caching kernel memory allocator. In USENIX Asso-
ciation, editor, Proceedings of the Summer 1994 USENIX Conference, pages 87–98, Berkeley,
CA, USA, Summer 1994. USENIX.

[Bugnion et al., 1997]
E. Bugnion, S. Devine, K. Govil, and M. Rosenblum. Disco: running commodity operating sys-
tems on scalable multiprocessors. ACM Trans. onComputer Systems, 15(4):412–447, November
1997.

AN
DO

T

O R

BIBLIOGRAPHY 138

[Campbell et al., 1991a]
M. Campbell, R. Barton, J. Browning, D. Cervenka, B. Curry, T. Davis, T. Edmonds, R. Holt,
J. Slice, T. Smith, and R. Wescott. The parallelization of UNIX system V release 4.0. USENIX
Conference Proceedings, pages 307–324, Dallas, TX, January 21-25 1991. USENIX.

[Campbell et al., 1991b]
M. Campbell, R. Holt, and J. Slice. Lock granularity tuning mechanisms in SVR4/MP. Sympo-
sium on Experiences with Distributed andMultiprocessor Systems (SEDMS II.), pages 221–228,
March 1991.

[Chang and Rosenburg, 1992]
H.H.Y. Chang and B. Rosenburg. Experience porting Mach to the RP3 large-scale shared-
memory multiprocessor. Future Generation Computer Systems, 7(2–3):259–267, April 1992.

[Chapin et al., 1995a]
J. Chapin, S. A. Herrod, M. Rosenblum, and A. Gupta. Memory system performance of UNIX on
CC-NUMA multiprocessors. Proceedings of the 1995 ACM SIGMETRICS Joint International
Conferentce on Measurement and Modelling of Computer Systems, May 1995.

[Chapin et al., 1995b]
J. Chapin, M. Rosenblum, S. Devine, T. Lahiri, D. Teodosio, and A. Gupta. Hive: Fault con-
tainment for shared-memory multiprocessors. Proceedings of the Fifteenth ACM Symposium on
Operating Systems Principles, pages 12–25, 1995.

[Chen and Bershad, 1993]
J. B. Chen and B. N. Bershad. The impact of operating system structure on memory system
performance. Proc. 14th ACM SOSP, pages 120–133, 1993.

[Cheriton, 1984]
D. R. Cheriton. An experiment using registers for fast message-based interprocess communica-
tion. Operating System Review, (4):12–20, 1984.

[Cheriton, 1988]
D. Cheriton. The V distributed system. Communications of the ACM, 31(3):314–333, March
1988.

[Custer, 1993]
H. Custer. Inside Windows NT. Microsoft Press, 1993.

AN
DO

T

O R

BIBLIOGRAPHY 139

[Engler et al., 1995]
D. R. Engler, M. F. Kaashoek, and J. O’Toole Jr. Exokernel: an operating system architecture
for application-level resource management. Proc. 15th ACM Symp. on Operating Systems Prin-
ciples, pages 251–266, 1995.

[Eykholt et al., 1992]
J. R. Eykholt, S. R. Kleiman, S. Barton, R. Faulkner, D. Stein, M. Smith, A. Shivalingiah, J. Voll,
M. Weeks, and D. Williams. Beyond multiprocessing: Multithreading the System V Release 4
kernel. USENIX Conference Proceedings, pages 11–18, Summer 1992.

[Fenwick et al., 1995]
D. M. Fenwick, D. J. Foley, W. B. Gist, S. R. VanDoren, and D. Wissell. The AlphaServer 8000
series: High-end server platform development. Digital Technical Journal, 7(1):43–65, 1995.

[Fessant et al., 1998]
F. Le Fessant, I. Piumarta, and M. Shapiro. An implementation of complete, asynchronous, dis-
tributed garbage collection. Proceedings of the ACM SIGPLAN ’98 conference on Programming
language design and implementation (PLDI ’98), pages 152–161, 1998.

[Ford and Lepreau, 1994]
B. Ford and J. Lepreau. Evolving Mach 3.0 to a migrating thread model. Proc. USENIX Tech-
nical Conference, pages 97–114, 1994.

[Gamma et al., 1995]
Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns. Addison
Wesley, Reading, MA, 1995.

[Gamsa et al., 1994]
B. Gamsa, O. Krieger, and M. Stumm. Optimizing IPC performance for shared-memory multi-
processors. Proceedings of the 1994 International Parallel Processing Symposium, pages 208–
211, Boca Raton, FL, August 1994.

[Gharachorloo et al., 1990]
K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. L. Henessy. Memory
consistency and event ordering in scalable shared-memory multiprocessors. Proc. 17th Annual
Int’l Symp. on Computer Architecture, ACM SIGARCH Computer Architecture News, page 15,
June 1990.

AN DTOR O

BIBLIOGRAPHY 140

[Greenwald and Cheriton, 1996]
M. Greenwald and D.R. Cheriton. The synergy between non-blocking synchronization and oper-
ating system structure. Symp. on Operating System Design and Implementation, pages 123–136,
1996.

[Grunwald et al., 1993]
D. Grunwald, B. G. Zorn, and R. Henderson. Improving the cache locality of memory allocation.
Proc. Conf. on Programming Language Design and Implementation (PLDI), pages 177–186,
1993.

[Gupta et al., 1991]
A. Gupta, A. Tucker, and S. Urushibara. The impact of operating system scheduling policies and
synchronization methods on the performance of parallel application. Proceedings of the ACM
SIGMETRICSConference onMeasurement andModeling of Computer Systems, pages 120–132,
1991.

[Hamilton and Kougiouris, 1993]
G. Hamilton and P. Kougiouris. The Spring nucleus: A microkernel for objects. Proc. of the
1993 Summer Usenix Conference, 1993.

[Herlihy and Moss, 1991]
M. Herlihy and J. Moss. Lock-free garbage collection for multiprocessors. Proceedings of the
Third Symposium on Parallel Algorithms and Architectures, pages 229–236, July 1991.

[Herlihy, 1993]
M. Herlihy. A methodology for implementing highly concurrent data objects. ACM Trans. on
Programming Languages and Systems, 15(5):745–770, November 1993.

[Hill and Larus, 1990]
M. D. Hill and J. R. Larus. Cache considerations for multiprocessor programmers. CACM,
33(8):97–102, August 1990.

[Hjalmtysson and Gray, 1998]
G. Hjalmtysson and R. Gray. Dynamic C++ classes: A lightweight mechanism to update code
in a running program. USENIX 1998 Annual Technical Conference. USENIX, 1998.

[Homburg et al., 1995]
P. Homburg, L. van Doorn, M. van Steen, A. S. Tanenbaum, and Wi. de Jonge. An object model
for flexible distributed systems. Proc. of the 1st Annual ASCI Conference, pages 69–78, 1995.

AN DTOR O

BIBLIOGRAPHY 141

[Hutchinson and Peterson, 1991]
N. C. Hutchinson and L. L. Peterson. The x-Kernel: An architecture for implementing network
protocols. IEEE Transactions on Software Engineering, 17(1):64–76, January 1991.

[Jacob and Mudge, 1998]
B. L. Jacob and T. N. Mudge. A look at several memory management units, TLB-refill mech-
anisms, and page table organizations. Proc. Eighth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-8), 1998.

[Jeremiassen and Eggers, 1995]
T. E. Jeremiassen and S. J. Eggers. Reducing false sharing on shared memory multiprocessors
through compile time data transformations. Proc. 5th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP’95, pages 179–188, July 1995.

[Kagi et al., 1995]
A. Kagi, N. Aboulenein, D. C. Burger, and J. R. Goodman. An analysis of the interactions of
overhead-redudincg techniques for shared-memory multiprocessors. Proc. International Con-
ference on Supercomputing, pages 11–20, July 1995.

[Karlin et al., 1991]
A. R. Karlin, K. Li, M. S. Manasse, and S. Owicki. Empirical studies of competitive spinning for
a shared-memory multiprocessor. Proceedings of 13th ACM Symposium on Operating Systems
Principles, pages 41–55, October 1991.

[Kontothanassis et al., 1997]
L. I. Kontothanassis, R. W. Wisniewski, and M. L. Scott. Scheduler-conscious synchronization.
ACM Transactions on Computer Systems, 15(1):3–40, February 1997.

[Krieger et al., 1994]
O. Krieger, M. Stumm, and R. Unrau. The Alloc Stream Facility: A redesign of application-level
stream I/O. IEEE Computer, 27(3):75–82, March 1994.

[Krieger, 1994]
O. Krieger. HFS: A flexible file system for shared memory multiprocessors. PhD thesis, Depart-
ment of Electrical and Computer Engineering, University of Toronto, Toronto, Canada, 1994.

[Liedtke et al., 1997]
J. Liedtke, K. Elphinstone, S. Schonberg, H. Hartig, G. Heiser, N. Islam, and T. Jaeger. Achieved
IPC performance. The 6th Workshop on Hot Topics in Operating Systems (HotOS-VI), 1997.

AN DTOR O

BIBLIOGRAPHY 142

[Liedtke, 1993]
J. Liedtke. Improving IPC by kernel design. Proceedings of the Fourteenth ACM Symposium
on Operating System Principles, pages 175–188, North Carolina, December 1993.

[Lim and Agarwal, 1994]
B.-H. Lim and A. Agarwal. Reactive synchronization algorithms for multiprocessors. Proceed-
ings of the Sixth InternationalConference onArchitectural Support for Programming Languages
and Operating Systems (ASPLOS VI),, pages 25–35, October 1994.

[LoVerso et al., 1991]
S. LoVerso, N. Paciorek, A. Langerman, and G. Feinberg. The OSF/1 UNIX filesystem (UFS).
USENIX Conference Proceedings, pages 207–218, Dallas, TX, January 21-25 1991. USENIX.

[Magnussen et al., 1994]
P. Magnussen, A. L., and Erik Hagersten. Queue locks on cache coherent multiprocessors. 8th
IPPS, pages 26–29, 1994.

[Makpangou et al., 1994]
M. Makpangou, Y. Gourhant, J.P. Le Narzul, and M. Shapiro. Fragmented objects for distributed
abstractions. In T. L. Casavant and M. Singhal, editors, Readings in Distributed Computing
Systems, pages 170–186. IEEE Computer Society Press, July 1994.

[Massalin and Pu, 1991]
H. Massalin and C. Pu. A lock-free multiprocessor OS kernel. Technical Report CUCS-005-91,
University of Columbia, 1991.

[McCrocklin, 1995]
Drew McCrocklin. Scaling Solaris for enterprise computing. Spring 1995 Cray Users Group
Meeting, 1995.

[McKenney and Slingwine, 1993]
P. E. McKenney and J. Slingwine. Efficient kernel memory allocation on shared-memory multi-
processor. USENIX Technical Conference Proceedings, pages 295–305, San Diego, CA, Winter
1993. USENIX.

[McKusick and Karels, 1988]
M. K. McKusick and M. J. Karels. Design of a general purpose memory allocator for the 4.3BSD
UNIX kernel. USENIX Conference Proceedings, pages 295–303, San Francisco, Summer 1988.
USENIX.

TORN DOA

BIBLIOGRAPHY 143

[Mellor-Crummey and Scott, 1991]
J. M. Mellor-Crummey and M. L. Scott. Algorithms for scalable synchronization on shared-
memory multiprocessors. ACM Transactions on Computer Systems, 9(1):21–65, February 1991.

[Mitchell et al., 1994]
J. Mitchell, J. Gibbons, G. Hamilton, P. Kessler, Y. Khalidi, P.Kougiouris, P. Madany, M. Nelson,
M. Powell, and S. Radia. An overview of the Spring system. Proceedings of Compcon Spring
1994, February 1994.

[Ousterhout et al., 1988]
J. K. Ousterhout, A. R. Cherenson, F. Douglis, M. N. Nelson, and B. B. Welch. The Sprite net-
work operating system. IEEE Computer, 21(2):23, February 1988.

[Paciorek et al., 1991]
N. Paciorek, S. Lo Verso, and A. Langerman. Debugging multiprocessor operating system ker-
nels. Symposium on Experiences with Distributed and Multiprocessor Systems (SEDMS II),
pages 185–202. USENIX, Atlanta GA, March 21 - 22 1991.

[Peacock et al., 1992]
J. K. Peacock, S. Saxena, D. Thomas, F. Yang, and W. Yu. Experiences from multithreading
System V Release 4. Symposium on Experiences with Distributed and Multiprocessor Systems
(SEDMS), pages 77–92, March 1992.

[Pike et al., 1991]
R. Pike, D. Presotto, K. Thompson, and G. Holzmann. Process sleep and wakeup on a shared-
memory multiprocessor. Proc. Spring EurOpen Conf., pages 161–166, 1991.

[Popek and Walker, 1985]
G. Popek and B. Walker. The LOCUS Distributed System Architecture. The MIT Press, Cam-
bridge, Mass, 1985.

[Presotto, 1990]
D. L. Presotto. Multiprocessor streams for Plan 9. Proc. Summer UKUUG Conf., pages 11–19,
London, July 1990.

[Ritchie and Thompson, 1974]
D. M. Ritchie and K. Thompson. The UNIX time-sharing system. CACM, 17(7):365–375, July
1974.

TORN DOA

BIBLIOGRAPHY 144

[Rosenblum et al., 1995]
M. Rosenblum, E. Bugnion, S. A. Herrod, E. Witchel, and A. Gupta. The impact of architec-
tural trends on operating system performance. The 15th ACM Symposium on Operating Systems
Principles, December 1995.

[Rosenblum et al., 1997]
M. Rosenblum, E. Bugnion, S. Devine, and S. A. Herrod. Using the SimOS machine simulator to
study complex computer systems. ACM Trans. onModeling and Computer Simulation, 7(1):78–
103, Jan. 1997.

[Ruane, 1990]
L. M. Ruane. Process synchronization in the UTS kernel. Computing Systems, volume 3,3, pages
387–422. USENIX, Summer 1990.

[Savage et al., 1997]
S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: A dynamic data
race detector for multi-threaded programs. Proceedings of the 16th Symposium on Operating
Systems Principles (SOSP-97), volume 31,5 of Operating Systems Review, pages 27–37, New
York, October 1997. ACM Press.

[Saxena et al., 1993]
S. Saxena, J. K. Peacock, F. Yang, V. Verma, and M. Krishnan. Pitfalls in multithreading SVR4
STREAMS and other weightless processes. USENIX Technical Conference Proceedings, pages
85–96, San Diego, CA, Winter 1993. USENIX.

[Scales et al., 1996]
D. J. Scales, K. Gharachorloo, and C. A. Thekkath. Shasta: A low overhead, software-only
approach for supporting fine-grain shared memory. Proc. of the 7th Symp. on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOSVII), pages 174–185, Octo-
ber 1996.

[Sciver, 1990]
J. Van Sciver. Zone garbage collection. In USENIX Association, editor, Workshop proceedings:
Mach, October 4–5, 1990, Burlington, Vermont, pages 1–16, Berkeley, CA, USA, October 1990.
USENIX.

[Talbot, 1995]
Jacques Talbot. Turning the AIX operating system into an MP-capable OS. USENIX 1995 Tech-
nical Conference Proceedings, January 1995.

TORN DOA

BIBLIOGRAPHY 145

[Thacker and Stewart, 1987]
C. P. Thacker and L. C. Stewart. Firefly: a multiprocessor workstation. Proc. 2nd Intl. Conf. on
Architectural Support for Programming Languages and Operating Systems (ASPLOS), pages
164–172, 1987.

[Torrellas et al., 1992]
J. Torrellas, A. Gupta, and J. Hennessy. Characterizing the caching and synchronization perfor-
mance of a multiprocessor operating system. Proceedings of the 5th International Conference
on Architectural Support for Programming Languages and Operating System (ASPLOS), pages
162–174, September 1992.

[Torrellas et al., 1994]
J. Torrellas, M. S. Lam, and J. L. Hennessy. False sharing and spatial locality in multiprocessor
caches. Transactions on Computers, 43(6), June 1994.

[Unrau et al., 1994]
R. C. Unrau, O. Krieger, B. Gamsa, and M. Stumm. Experiences with locking in a NUMA mul-
tiprocessor operating system kernel. Proc. 1st Symp. on Operating Systems Design and Imple-
mentation (OSDI), November 1994.

[Unrau et al., 1995]
R. C. Unrau, O. Krieger, B. Gamsa, and M. Stumm. Hierarchical clustering: A structure for
scalable multiprocessor operating system design. Journal of Supercomputing, 9(1/2):105–134,
1995.

[Vahalia, 1996]
U. Vahalia. UNIX Internals. Prentice-Hall, Englewood Cliffs, NJ 07632, USA, 1996.

[Valois, 1995a]
J. D. Valois. Lock-Free Data Structures. PhD thesis, Rensselaer Polytechnic Institute, Depart-
ment of Computer Science, 1995.

[Valois, 1995b]
J. D. Valois. Lock-free linked lists using compare-and-swap. Proceedings of the Fourteenth
Annual ACM Symposium on Principles of Distributed Computing, pages 214–222, Ottawa, On-
tario, Canada, 2–23 1995.

[Vranesic et al., 1991]
Z. G. Vranesic, M. Stumm, R. White, and D. Lewis. The Hector multiprocessor. IEEEComputer,
24(1), January 1991.

TORNADO

BIBLIOGRAPHY 146

[Vranesic et al., 1995]
Z. Vranesic, S. Brown, M. Stumm, S. Caranci, A. Grbic, R. Grindley, M. Gusat, O. Krieger,
G. Lemieux, K. Loveless, N. Manjikian, Z. Zilic, T. Abdelrahman, B. Gamsa, P. Pereira, K. Sev-
cik, A. Elkateeb, and S. Srbljic. The NUMAchine multiprocessor. Technical Report 324, Uni-
versity of Toronto, April 1995.

[Wilk, 1997]
D. Wilk. Hierarchical application-oriented physical memory management. Master’s thesis, Uni-
versity of Toronto, 1997.

[Wilson et al., 1995]
P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles. Dynamic storage allocation: A survey
and critical review. In Henry Baker, editor, Proceedings of International Workshop on Memory
Management, volume 986 of Lecture Notes in Computer Science, Kinross, Scotland, September
1995. Springer-Verlag.

[Wilson, 1992]
P. R. Wilson. Uniprocessor garbage collection techniques. Intl. Workshop on Memory Manage-
ment. Springer-Verlag, 1992.

[Xia and Torrellas, 1996]
C. Xia and J. Torrellas. Improving the data cache performance of multiprocessor operating sys-
tems. HPCA-2, 1996.

[Zajcew et al., 1993]
R. Zajcew, P. Roy, D. Black, C. Peak, P. Guedes, B. Kemp, J. LoVerso, M. Leibensperger,
M. Barnett, F. Rabii, and D. Netterwala. An OSF/1 UNIX for massively parallel multicomput-
ers. USENIX Technical Conference Proceedings, pages 449–468, San Diego, CA, Winter 1993.
USENIX.

TORNADO

