
TheNUMAchineMultiprocessor:
 Design and Analysis

Robin Grindle y

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy

Graduate Department of Electrical and Computer Engineering
Computer Engineering Group

University of Toronto

© 1999 Robin Grindley

ii

Abstract

This dissertation considers the design and analysis of NUMAchine: a distributed, shared-

memory multiprocessor. The architecture and design process leading to a working 48-proces-

sor prototype are described in detail. Analysis of the system is based on a cycle-accurate, exe-

cution-driven simulator developed as part of the thesis. An exploration of the design space is

also undertaken to provide some intuition as to possible future enhancements to the architec-

ture.

Shared-memory multiprocessors and parallel processing are becoming increasingly com-

mon not only in the scientific domain, but also as a replacement for mainframes in the field of

large-scale enterprise computing. The shared-memory programming paradigm provides an

intuitive view of memory as a globally shared resource among all processors. This is more

familiar to programmers of uniprocessors than the alternative, message-passing. The distribu-

tion of memory across the system leads to Non-Uniform Memory Access times (NUMA),

since processors have fast access to local memory and slower access to remote memories

across the system network.The architecture contains features which attempt to hide or reduce

the effects of this non-uniformity.

NUMAchine provides cache coherence in hardware, making it an instance of the general

class of multiprocessor architectures called CC-NUMA (for cache-coherent NUMA). The

system network in NUMAchine consists of a hierarchy of rings. We show how certain proper-

ties of rings allow for an efficient cache coherence scheme with reduced overheads in compar-

ison to other CC-NUMA architectures. We use the simulator, which we developed as part of

this project, to explore the NUMAchine design space in an attempt to discover how changes in

various aspects of the architecture affect overall performance.

iii

Acknowledgments

First and foremost, I would like to thank Zvonko Vranesic and Michael
Stumm for their guidance and support, without which this thesis would cer-
tainly never have come to fruition. And of course I also have to thank Zvonko
for teaching me some of the finer points of squash, even if he did take an
inordinate amount of pleasure in thrashing me. To Michael, thanks for the
proof that sleep is not actually a biological necessity.

To the Punks, well, what can I say? It’s been a long, strange trip, and you
guys were along for the whole ride. But now I guess it is time to get off the
roller coaster, stagger around a bit and fall down.

Without a close group of friends to provide emotional support, I would
have run out of steam long ago. To Dan, Gus, Kate, Andy and Stef, my
thanks. And feel free to call the debt whenever you want.

Penultimately, a toast to the NUMAchine team. Who ever thought that by
simply banging your head against a piece of hardware for years on end you
could get it to work? Don’t tell anybody.

And finally I would like to thank my parents. To my mother, whose
patience with a son who seemed destined to be in school forever bordered on
the beatific, my love and thanks. And to my father, who could not stick
around for the end of the party, the best I can do is to promise that I will
honour the memory.

iv

CONTENTS

CHAPTER 1 Introduction 1

Goals of the NUMAchine Project3
Thesis Contributions 4
Thesis Overview 5

CHAPTER 2 Background 6

An Overview of Parallelism 6
Early History 6
Low-level Parallelism 8
Higher-level Parallelism 9
A Parallel Taxonomy 9
Limits to Parallelism 10

Architectural Aspects of Parallel Systems 13
The PRAM model 13
Message Passing vs. Shared Memory 16
Cache Coherence 17
Memory Consistency Models24
Memory Subsystems28

Multiprocessor Networks 31
Full Crossbars 33
Multistage Interconnection Networks 33
Hypercubes 33
k-ary n-cubes 35
Fat trees 35
Busses and Rings35
Network Summary 36

System Area Networks 36
SCI (Scalable Coherent Interface) 38
Myrinet 39
Memory Channel II 39
Synfinity 40

Sample Multiprocessors41
Stanford DASH and FLASH 41
Illinois I-ACOMA 42
Teracomputer 43

v

SUN E10000 43
SGI Origin 45
Beowulf 46

Conclusion 46

CHAPTER 3 NUMAchine Architecture, Implementation &
Simulator 47

Architecture and Implementation48
Station: Bus, Processors, Memory and I/O 52
Station: Network Interface Card and Network Cache 55
Rings 57
Flow Control and Deadlock Avoidance 59
Hardware Cache Coherence 62
Retry Mechanism and Negative Acknowledgments 68
Memory Consistency69
Architectural Summary 72

The NUMAchine Simulator 72
Simulator Implementation 76
Simulator Correctness 78

Conclusion 78

CHAPTER 4 Prototype Performance & Analysis 80

Simulation Environment 80
Station Bus 80
Queue Modelling 81
Memory Card 82
Processor Card 82
Paging Policy 83
Instruction Fetches and Sequential Code83

Prototype Analysis 85
Comparison of the Simulator and the Prototype 86
Fmask Performance 88
Ring Performance 89
Network Cache Performance 97
Request and Backoff Latency 101
Flow Control 103

Conclusion 105

vi

CHAPTER 5 Simulation Studies 107

Fixed Simulation Parameters 107
Algorithmic Speedup of the Test Programs 112
Baseline Performance and Page Placement114
Comparative Studies 117

Coherence Overhead 117
A Relaxed Consistency Model120
Central Ring Speed 121

Network Cache Performance123
Network Cache Size 123
Network Cache Associativity 127

Conclusion 129

CHAPTER 6 Conclusion 131

Summary 131
Architectural Simulator 133
Architectural Results 133

Future Work 135

APPENDIX A Notes on the Simulator139

MINT Modifications 139
Notes on the NUMAchine Simulator (Mintsim)141

References 146

 vii

LIST OF FIGURES

FIGURE 2.1: Von Neuman and PRAM memory models.14

FIGURE 2.2: A hierarchical cache coherence directory. 23

FIGURE 2.3: Memory consistency models. 25

FIGURE 2.4: Relaxed consistency. 27

FIGURE 2.5: Various classes of memory subsystems.28

FIGURE 2.6: Scalable interconnection networks. 34

FIGURE 2.7: DASH and FLASH architectures.42

FIGURE 2.8: Teracomputer architecture.44

FIGURE 2.9: SUN E10000 architecture. 44

FIGURE 2.10:Layout of the SGI Origin 2000. 45

FIGURE 3.1: A high-level view of the NUMAchine architecture. 49

FIGURE 3.2: Cards on the station bus. 53

FIGURE 3.3: The NUMAchine Network Interface Card (NIC). 56

FIGURE 3.4: The Inter-Ring Interface (IRI). 58

FIGURE 3.5: The NUMAchine filtermask. 63

FIGURE 3.6: Coherence actions at the home memory. 66

FIGURE 3.7: Sequential consistency in NUMAchine. 71

FIGURE 3.8: The NUMAchine simulator structure. 74

FIGURE 4.1: Modelling of sequential code and instruction fetches.84

FIGURE 4.2: Simulated prototype speedups for the Splash2 programs.85

FIGURE 4.3: Parallel versus algorithmic speedups.87

FIGURE 4.4: Simulator versus hardware prototype speedups.89

FIGURE 4.5: Overinvalidation rates. 90

FIGURE 4.6: Central Ring utilizations. 91

FIGURE 4.7: Local Ring utilizations. 92

FIGURE 4.8: Central Ring queue utilizations.93

FIGURE 4.9: Local Ring queue utilizations.94

FIGURE 4.10:Use of the just-freed slot. 96

FIGURE 4.11:Network Cache hit rates. 98

FIGURE 4.12:Local Rings locks caused by the IRI.104

FIGURE 4.13:Average bus utilization. 104

viii

FIGURE 5.1: Direct-mapped versus 4-way associative processor caches.111

FIGURE 5.2: Algorithmic parallel speedups for the experimental system. 114

FIGURE 5.3: Parallel speedups of the baseline system with a round-robin and first-hit page-placement
policies. 115

FIGURE 5.4: Processor utilisation graphs corresponding to the first-hit speedup curves in Figure5.3.
116

FIGURE 5.5: Turning off cache coherence. 119

FIGURE 5.6: Bandwidth requirements of the Central Ring.122

FIGURE 5.7: Effects of increasing Central Ring speed.123

FIGURE 5.8: Effects of Network Cache size on performance.126

FIGURE 5.9: Effects of adding associativity to the Network Cache. 128

FIGURE 6.1: NUMAchine with 24 processors. 136

ix

LIST OF TABLES

TABLE 2.1: Summary of network characteristics. 37

TABLE 4.1: Splash2 program parameters for the prototype analysis.81

TABLE 4.2: Uniprocessor simulated versus hardware execution times. 88

TABLE 4.3: Base contention-free latency for a local read. 101

TABLE 4.4: Congested latencies for a 64-processor Ocean simulation.103

TABLE 5.1: Problem Sizes for Splash2 Kernels 112

TABLE 5.2: Problem Sizes for Splash2 Applications113

1

CHAPTER 1 Introduction

There will never be such a thing as too much computing power. As new levels of computing

power become available, either applications grow in size and complexity, or new problems

become feasible. The most cost-effective means of increasing computing power over the last

30 years has been to ride the technological wave. Increased density of integrated circuits,

lower voltages and increased clock speeds have reduced the pressure on computer designers to

apply novel architectural solutions to the performance problem. Keeping pace with Moore’s

Law [Moore 1975] has been an astounding technical feat for the semiconductor industry. But

the basic architecture of a computer system has remained relatively unchanged: a single pro-

cessor with one or more levels of cache, and a dedicated volatile memory.

The power behind Moore’s Law is exponential growth. In the long term, this is also one

of its shortcomings. The faster a finite system grows, the faster it will reach its natural limits.

In the case of silicon technology, the hard upper limit is imposed by the speed of light. We can

get a feel for this limit by supposing that with line sizes less than 0.1 micron, it will be possi-

ble to partition a large design into smaller clock domains each occupying at most 1mm2. Light

propagation time over a distance of 1mm is approximately 3 ps, so after accounting for noise

and timing margins, a conservative upper bound is about 100 GHz. Although electronics still

has a fair bit of headroom, unless some revolution in device physics comes along, even

entirely new technologies such as all-optical switches will be unable to break through this bar-

rier. Given that the current state-of-the-art for processors in 1999 is around 1 GHz, a doubling

in speed every 1.5 years would mean that the single processor will have hit its speed limit in

about 12 years, and so we can fairly conservatively predict the tailing off of Moore’s law by

2010 or 2020.

2Intr oduction

The Semiconductor Technology Association has a roadmap [Semiconductor 1997] which

lays out major technological hurdles and indicates how the industry plans to overcome them.

The end of the road for the 1997 version of the plan is at 2012, where they are predicting a

0.05 micron line size, 0.5 V power supplies and speeds of 3 GHz. However, they acknowledge

that to achieve these goals a paradigm shift in lithography techniques will be necessary, which

implies a large leap in production costs. In addition to this, system integration will become

much more complex. The roadmap shows processors using 175 W, and at speeds over 1 GHz

traces on a printed-circuit board start behaving like transmission lines, which requires a whole

new level of design expertise. All of these factors point to a diminishing rate of return on per-

formance from the lowest architectural levels. Not only will it become technologically infeasi-

ble to expect silicon (or whatever other materials win out) to provide future performance

gains, but economically it will become more cost-effective to search for higher-level architec-

tural solutions. Taking advantage of parallelism available at various different levels offers a

solution. At the lowest levels, microprocessors use parallelism to execute multiple instructions

in a single clock cycle. At the system level, parallel processing allows large tasks to be sped up

by splitting them into a number of smaller tasks. It is this system-level parallelism which will

be the focus of this dissertation.

Parallel processing systems have evolved significantly from the original mainframe,

which offered a very rough form of parallelism through batch processing. The search for

much higher levels of performance led to supercomputers, which although powerful were also

extremely expensive. Parallel computing is just now entering its commoditization phase, fol-

lowing much the same trend as PC technology in the seventies; from an expensive technology

available only to the few, it is now becoming a commonplace approach that will be not only

available to, but usable by, the multitudes. In broadening its appeal, the field is also expanding

into new areas. Until recently, parallel systems were almost exclusively the domain of large

scientific applications. Nowadays parallel processing ‘servers’ are becoming increasingly

popular for tasks such as database and on-line transaction processing. While commercial ver-

sions of these machines do exist, they tend to be much more expensive on a per-processor

basis than comparable workstation technology and are more difficult to use. The challenge of

making these systems cost-effective, efficient and usable still has to be met.

Intr oduction 3

1.1 Goals of the NUMAchine Project

The primary goal of the NUMAchine project—at least from the hardware perspective— is to

show that it is possible to develop a low-cost, scalable shared-memory multiprocessor that has

good performance. Cost must be kept low because we feel that multiprocessors need to move

into a commoditization phase. As PC technology has shown, commoditization leads to wide-

spread adoption and also innovation, in a kind of feedback loop.

When we speak of scalability, we donot consider the goal to be a machine that can scale

to a very large number of processors. Multiprocessors with four processors are now becoming

commodity parts. In the next decade we expect to see this number move up to a few tens of

processors. We thus set our scalability goal at about 100 processors. We consider our goal

achieved if the performance and cost of the machine scale well up to this limit, and leave the

problem of higher levels of scalability to future architects.

The trade-off between cost and performance is also important. Traditionally, multiproces-

sor research has focussed on performance as the main goal: much effort has been expended in

trying to squeeze out a few more percentage points of parallel efficiency. If there is a lesson to

be learned from the last decade’s ascendancy of the PC over the workstation, it is that com-

puter users do not care whether a machine is efficient or not. All they care about is whether the

computer can do the job they want it to do, and do so cheaply. Thus, our performance goal is

really subsidiary to our cost goal. We want to reduce system cost as much as possible without

seriously degrading performance. As long as increasing the number of processors produces

some gain, the user can decide whether the gain is worth the cost.

NUMAchine is also designed to be used as a platform for research into parallel operating

systems, compilers and applications. NUMAchine provides low-level hardware monitoring

functionality that can be used by software to analyse system performance. While monitoring

is available in commercial machines, it is limited and its functionality is fixed. NUMAchine’s

monitoring, in contrast, is dynamically configurable. Also, since we designed the hardware,

we have a better idea of what to look for (and where to look) when performance does not meet

expectations.

To support both software and hardware research it is important that NUMAchine remain

flexible. We provide this flexibility in the hardware by use offield-programmable devices

(FPDs). The logic inside these devices is reconfigurable, making it possible to add or change

4Intr oduction

functionality at the hardware level, while the chip is still soldered to the board. This also

greatly simplifies the debugging process.

These FPDs and the use ofcommercial off-the-shelf(COTS) parts also contribute to

NUMAchine’s ability to keep costs low.

1.2 Thesis Contributions

NUMAchine is a large, multi-year project. From initial high-level architectural discussions to

the current working 48-processor prototype took about five years. The author was one of the

principal designers on the project for the entire period. Most of the architectural choices were

hashed out in lengthy team design sessions, and so benefited from many viewpoints. The

author was solely responsible for creation of the architectural simulator, and the use thereof to

validate these design choices. To varying degrees, the author was also involved with all other

aspects of the design, including:

• Design specification and schematic capture.

• Design of five of the 36 FPD controllers.

• Design verification of all the individual boards, as well as the general system-level func-
tionality. This also included design and validation of the hardware cache coherence
scheme.

• Post-fabrication debugging (the author headed the debugging effort).

• C and Assembler hardware test development. This included the development of proces-
sor boot code and low-level device drivers.

• Forward-looking architectural studies, for which the author had sole responsibility. In
this area, the set-replacement algorithm for adding associativity to the NC was contrib-
uted by the author.

Thus, in part or in whole, the author can lay claim to the following overall contributions

from the NUMAchine project:

• A 48-processor working prototype of a distributed, shared-memory multiprocessor with
integrated hardware cache coherence. We present evidence that this proof-of-concept
machine displays good performance and scalability, while maintaining a very simple
and low-cost architecture. The prototype is capable of running a parallel operating sys-
tem and applications.

Intr oduction 5

• Evidence to support the claim that a hierarchical ring network can be used to implement
a multiprocessor with the features of scalability in both performance and cost.

• A remote-access cache, called a Network Cache, which improves the performance of
programs in a machine with a NUMA memory system.

• Presentation of a hardware cache coherence scheme which makes use of the ring’s order-
ing properties to achieve good performance. The coherence scheme is also tightly inte-
grated with the Network Cache, and uses a novel lazy approach to directory
maintenance which is shown to improve performance.

• Design and implementation of a cycle-accurate event-driven simulator, used for both
architectural studies and prototype performance analysis.

1.3 Thesis Overview

This dissertation begins by giving a review of parallel processing architecture and systems in

Chapter 2. As a particular instance of this class of machines, Chapter 3 describes the design of

the NUMAchine multiprocessor. The chapter also contains a description of the NUMAchine

architectural simulator, which is the main tool used for both the initial prototyping and explor-

atory studies. Chapter 4 makes use of the simulator to analyse NUMAchine’s overall perfor-

mance, in addition to analysing various aspects of the architecture described in Chapter 3.

These results are compared to results obtained from the actual hardware. Chapter 5 undertakes

an investigation of NUMAchine’s design space, with the goal of determining the most effec-

tive areas of the architecture to tune in order to increase performance. Finally, Chapter 6 sum-

marizes and presents the major conclusions, along with a description of possible future work

and trends in the field.

6

CHAPTER 2 Background

There have been many approaches to parallel computing over the years. This chapter begins

with a brief history and description of parallelism in general, then moves on to descriptions of

certain key concepts in parallel systems architecture which are necessary to understand the

chapters that follow. It concludes with brief reviews of a number of existing commercial and

experimental parallel systems, in order to give a feel for the state of the art.

The field of parallel computing is extremely broad, covering many different aspects of

computer architecture, from the lowest levels of a processor’s internal architecture to network-

ing and memory system design. The material presented here is only a brief synopsis. In partic-

ular, a firm knowledge of uniprocessor architectures will be assumed. (The standard reference

in this area is [Patterson 1998]). A good compendium of current knowledge on parallel com-

puter architecture is [Culler 1999], which goes into much greater detail. A list of appropriate

references is given in each subsection. (If no reference is given for a term or concept, then it

can be found in Culler.)

2.1 An Overview of Parallelism

2.1.1 Early History

The early days of computing actually used a simple version of parallelism by default, as

embodied in themainframe systems of the day. These were large batch-processing systems,

where many users gained access to multiple processors by submitting their jobs to be pro-

cessed by whichever processor first became available. The number of jobs was large and the

number of processors small, so there was no point in splitting individual jobs into subtasks

Backgr ound 7

and moving away from very coarse-grained parallelism. In addition there was no experience

with parallel data structures or algorithms, so there was no support available for the program-

mer even if such a feature were available in the hardware. The focus in mainframes was on

throughput andreliability. Throughput in this context meant completing as many jobs per unit

time as possible. Reliability meant providing enough fault tolerance that the machine would

not crash, losing long-running jobs. Mainframes spared no expense to achieve these goals,

making them affordable only by large organizations.

As individual processors became faster and cheaper, the advent of the PC became possi-

ble. Users of batch-processing systems found it frustrating to have so little deterministic con-

trol of their jobs, not knowing how many hours or days later they could expect completion and

nobody liked sharing computing resources with others, but the machines were too expensive

to support any other model. The mainframes were also very weak at anything involving user

interaction with the computer. In the era of the punchcard, the programmer would write and

debug code by hand, making completely certain that the program would run as expected

before going to the trouble of submitting the job to the actual computer. Processor cycles were

too expensive to be wasted on such actions as debugging a program or editing a document.

The PC made it economically feasible to have processing power dedicated to one user, not

only for running jobs which would have a much more predictable execution time, but also for

providing a dedicated single-user interface directly to the machine.

Since programming became an art no longer of the specialist but of the masses using PC

technology, it is not surprising that the programming paradigm of one program for one proces-

sor became the ‘normal’ way to write code. In addition, since the power of the chips was

growing exponentially, there was little need for the average programmer to look further. The

advent of Fortran and its eager adoption by the scientific and engineering communities

changed this scenario by creating a new class of users and a new class of applications. Scien-

tists found that computers could be used to find approximate numerical solutions to large

problems such as systems of partial differential equations which had no tractable analytical

solution. The size of the problem was limited solely by the amount of computing available;

problem size could be scaled up by increasing the numerical accuracy or the size of the system

under investigation.

Parallel computing had by this point found a specialized niche. The machines were typi-

cally custom-designed using very exotic architectures and technologies, hence they were

8Backgr ound

extremely expensive. This limited their use to large research labs and the military. These

supercomputers used parallelism at a low level through means of vector operations, where a

single instruction could perform the same operation simultaneously on arrays of numbers,

which is a common feature of scientific programs. Dedicated maintenance staff and program-

mers were the norm, making the entire field very specialized.

The next wave in parallel research,massively parallel processing (MPP), focussed on

achieving supercomputer performance with less exotic technologies by means of high-level

parallelism. Researchers looked at designing machines with thousands of processors, hoping

for performance through shear quantity. It turned out to be a very difficult problem to design

good architectures that would work for any arbitrary number of processors. At the same time,

the PC market was driving single-processor performance ahead at an exponential rate, often

through commoditization of supercomputer architectural techniques. The upshot for MPP

research was that it became feasible to achieve supercomputer performance with only a few

hundreds of processors. In addition, it was realized that there would always be a handful of

users needing supercomputers, but that these users were a special group that could afford to

pay a hefty premium. The push to move parallel processing into the mainstream has shifted

attention tomultiprocessor systems containing tens to hundreds of commodity processors.

2.1.2 Low-level Parallelism

Parallelism allows higher levels of performance for a given clock rate, so it is complementary

to raw circuit speed. Modern processors internally take advantage of fine-grain parallelism in

two ways. The first ispipelining which works by breaking a task (in this case a single

machine-level instruction) into sub-tasks (or stages), each of which can execute concurrently

as long as they do not depend on each other. A typical processor pipeline would include

instruction decode, operand fetch, instruction execute and result storage stages1. The stages

can be completed more quickly since they are smaller and simpler, requiring less complex

logic to implement. The second type, termedsuperscalar, utilizes multiple pipelines operating

in parallel. Here the ‘task’ is viewed more as groups of individual instructions, and the sub-

tasks are the individual instructions which can be launched into different pipelines indepen-

dently. If there are dependencies, then hardware must provide interlocks, which is a form of

1. Intel’s 486DX processor has 5 stages. Newer processors use deeper pipelines (calledsuperpipelines). Intel’s
PentiumPro, for example, uses 14 stages. See [Burd 1999] for other examples.

Backgr ound 9

synchronization allowing the stages or pipelines to stall until the conditions causing the inter-

lock are clear. Note that VLIW (Very Long Instruction Word) processors are really just a vari-

ant on the superscalar design, where the choice of which instructions can be executed in

parallel is made statically by the compiler instead of being done on-the-fly in hardware.

2.1.3 Higher-level Parallelism

While previously discussed uses of parallelism have been effective, they have a high cost in

terms of hardware design time and complexity. In addition they rely on trying to exploit paral-

lelism dynamically at the lowest level, which means that they have a very myopic view of the

task at hand, and can only do a very simple local analysis of the available parallelism. (VLIW

compilers can afford to broaden their view somewhat, but the available parallelism is still very

fine grain.) Finally, the low level of these solutions means that they can only make use of

generic types of parallelism which are common to all programs.

Most computational tasks contain parallelism at various different levels. At the lowest

level we have instructional level parallelism, which was discussed above. This is particularly

suitable for a processor which uses a reduced instruction set (RISC). The instructions are

small and simple with few, if any, side-effects, which makes it feasible for a scheduler to make

decisions in hardware at the internal speed of the processor. At a higher level there is thread-

level parallelism, in which a large computation is split into smaller computational threads,

each of which can run concurrently, either by time-multiplexing on a single processor or using

a number of independent processors.

Our work focuses on the use of this higher level of parallelism in a multiprocessing envi-

ronment. The modern commodity processors used in NUMAchine take advantage of the

forms of lower-level parallelism described in the previous section. In most cases the two levels

are independent, but occasionally lower-level design choices can have an impact on the high-

level design. Such issues will be touched on in Chapters 4 and 5.

2.1.4 A Parallel Taxonomy

One of the first attempts to present a taxonomy for the different classes of parallel architec-

tures was provided by Flynn [Flynn 1972]. This describes the relation between the instruction

stream and the data stream and whether or not each of these take advantage of parallelism.

10Backgr ound

With both instructions and data nonparallel, we have the traditional uniprocessor mode,

termed Single-Instruction/Single-Data or SISD.

When a single instruction stream works on multiple data streams it is called SIMD (Sin-

gle-Instruction/Multiple-Data). An example of this type of machine could involve a single

controller coordinating the activity of numerous data-processing engines, which all do the

same operation in lock-step but on different data items. (This type of SIMD machine is also

called asystolic array, drawing upon the analogy of the human heart which pumps blood

through the arteries at each step.) The advantage to this approach is that the data engines can

be extremely simple and cheap, making large levels of parallelism feasible. In addition,

because of the lockstep operation there is no need for synchronization. Other SIMD architec-

tures include vector processors such as CRAY-1 [Russell 1978] and the recent trend to add

‘multimedia’ instructions to modern processors, an example being SUN’s UltraSparc VIS

[SUN 1997], which stands for Visual Instruction Set. In image processing, each pixel of the

image can generally be processed independently. Since pixels are usually stored as four indi-

vidual bytes of colour and other information, a single 32-bit load can bring in an entire pixel

and a single operation can be performed on all four bytes in parallel.

The final category is Multiple-Instruction/Multiple-Data (MIMD) which applies to shared

memory processors. (A MISD architecture does not make physical sense.) In MIMD, proces-

sors each fetch their own instruction and data streams independently. In the case that all the

instruction streams correspond to the same program, the term Single-Program/Multiple-Data

(SPMD) is also used. MIMD machines naturally support thread-level parallelism. The stan-

dard approach is to associate one thread with each processor and divide the data set for the

program amongst the threads. Note that MIMD and SIMD are not mutually exclusive. A pro-

cessor in a MIMD system can still take advantage of opportunities for SIMD parallelism in its

local portion of the data.

2.1.5 Limits to Parallelism

No system is ever perfect, and parallel computers suffer from various different impediments to

efficiency. The most fundamental notion in parallel systems work is that ofconcurrency. Two

or more operations are concurrent if they execute simultaneously. If two operations depend on

each other in such a way that one must execute before the other then they can not run concur-

rently, and the available concurrency is reduced. For example, when summing up a list of

Backgr ound 11

numbers, the list can be divided arbitrarily into sublists, and the summation of these sublists

can be carried out at the same time. The available concurrency in this case is equal to the num-

ber of sublists. The initial division of the list into pieces may allow concurrency if care is

taken. Each of the subtasks which calculates a partial sum would need access to the global list.

If the same algorithm is used by all the subtasks,and it can be proven that the algorithm can

never result in two subtasks choosing the same item, then these subtasks can also run concur-

rently. The alternative would be to have one designated ‘master’ subtask responsible for the

division of the list, and only after the partitioning allow the other subtasks to start summation.

In this case, all of the ‘slave’ subtasks must wait for the master to finish the partitioning,

allowing no concurrency at all during the partitioning phase.

The first job in approaching the parallelization of a given problem is to determine what

concurrency is theoretically available, which puts an upper limit on the amount of parallelism

which can be achieved. For the case of summation given above, for a list containingN num-

bers the concurrency is if we consider addition to be a binary operation that requires

at least two operands. (The use of the greatest lower bound is due to the case whereN is odd,

and one subtask gets three operands instead of two.) If we have enough computing elements

available, we can assign one partial sum to each, with each element requiring at most one (or

two for N odd) operations to do the sum. In this case we have enough parallelism at our dis-

posal to efficiently use all of the concurrency, and the running time of the partial summation is

O(1).

While calculation of the partial sums has been sped up as much as possible, our parallel

algorithm now must accumulate all of these partial sums into the global sum. Having a single

subtask add up all the partial sums would takeO(N) time, and thus would be no better than the

single processor case. A more parallel approach is to form the partial sums into a binary tree,

and designate a processor at each level of the tree to add the partial sums of the children,

which would result in anO(logN) running time. At each level in the tree, processors must wait

for their children’s sums to be ready, requiring synchronization. Thus, not only is the parallel

algorithm different from the sequential one, but there is overhead associated with the process

of parallelization. This overhead can come either from synchronization or extra code needed

in the parallel algorithm. Note that for this reason the best sequential algorithm and the best

parallel algorithm running on one processor are not the same.

When measuring the performance improvement when running onN processors, the stan-

N 2⁄

12Backgr ound

dard metric used is thespeedup, which is loosely defined as the total program execution time

on a single processor divided by the time forN processors. From the foregoing discussion, it is

clear that we also have to specify whether the single-processor execution time is for the

sequential or parallel version of the program. Both measures have their uses. Comparing to the

best sequential algorithm indicates whether parallelization is useful at all. If a parallel algo-

rithm adds substantial overhead and has poor speedup, then the parallel program may never be

able to outdo the sequential version by a large enough margin to justify parallelization. Nor-

mally though, it is the case that the overhead involved is not significant, and it is usually clear

from the outset whether or not there is enough concurrency to justify parallelization. Thus,

given that the user knows she will be running the parallel algorithm, she is more interested in

how much improvement she can get. The version of speedup using the parallel algorithm to

measure both the single-processor andN-processor execution times is the more common, and

is the one that will be used from here on.

The next question to ask is what fundamental limits exist on the speedup which can be

achieved. The basic result here is Amdahl’s Law [Amdahl 1967] which states that total

speedup achievable by any parallelization of an algorithm is limited by the parts of that algo-

rithm which are inherently sequential. That this is true is obvious by considering a program

with execution timeT1 on a uniprocessor, which can be partitioned into two sections: code

that is inherently sequential, taking timeT1S, and the rest of the program (assumed to be fully

concurrent) with execution timeT1P. ThusT1 = T1S + T1P. In the best case, we assume that the

parallelizable section can make perfect use of the concurrency onN processors, so the total

execution time for a givenN is:

(EQ 2.1)

Thus the limit asN gets large isT1S. This means that no amount of parallelism can speed up a

given application beyond a certain point, which would seem to indicate that there is a limited

usefulness for parallelism, as every program will have some sequential portion. For a while,

researchers regarded this conclusion to be true, but we can write the equation for thespeedup

(T(1) / T(N)) as:

(EQ 2.2)

T N() T1S

T1P

N

 +=

Speedup
T1S T1P⁄() 1+

T1S T1P⁄() 1
N
----+

-----------------------------------=

Backgr ound 13

What this equation shows is that the knee of the speedup curve is reached once the value of

1/N becomes comparable toT1S / T1P. Thus if we assume that the ratio of sequential to parallel

code is some non-infinitesimal number, then we cannot reach large speedups. But for many

realistic problems, this ratio can actually be made arbitrarily small by increasing the amount

of work done in the parallel section. This will usually increase the work in the sequential sec-

tion as well, but this is not a problem as long as the time complexity (as a function of the

amount of work) for the sequential section is lower than that of the parallel section. (For

example, if we define some arbitrary parameter, W say, as a measure of the amount of work,

then ifT1S is O(W) andT1P is O(W2) we can make the ratio arbitrarily small by choosingW

large enough.) If these conditions hold true, then it is possible to achieve large speedups.

2.2 Architectural Aspects of Parallel Systems

2.2.1 The PRAM model

When reasoning about computer architecture, it is important to have in mind a model to act as

a framework on which to test out ideas. For uniprocessors, the basic model is from von Neu-

man, and imagines a processor attached to a memory module, from which it fetches both code

and data. The parallel analog to this is called the PRAM (Parallel-RAM) model [Cormen

1989]. As shown in Figure2.1, the PRAM model assumes some number of processors which

share access to the same memory, with each read or write taking one cycle. The basic model

allows simultaneous accesses by multiple processors to the same memory location for either

reading or writing. It is assumed that concurrent writes store the same value to a given loca-

tion, or if they do not then at least some mechanism is in place to deterministically choose

which value is ultimately visible to future reads. The advantage to such a simplistic model is

that it is mathematically tractable. Enhancements to the model disallow concurrent accesses

for reads, writes or both to model slightly more realistic systems, with the drawback that these

models quickly lose their tractability. None of the PRAM models assign any cost to interpro-

cessor communication, however it is assumed that processors have some method of synchro-

nizing their operations, albeit with zero overhead. The typical methods of synchronization

include mutual-exclusion locks, which guarantee that at most one processor can own the lock

14Backgr ound

at any time, and barriers, which guarantee that all processors have reached a certain point in

their computation before allowing any processor to proceed.

While simple, the PRAM model can still make predictions about parallel performance.

The program executed on the processors will contain the overhead due to parallelization, as

well as any overhead due to synchronization (e.g. when two processors need to acquire a lock

at the same time, the second will be delayed until the first releases it.). If the amount of work

is not divided equally between the processors, then some processors may have to wait for oth-

ers at barrier points, which is termed aload imbalance, and contributes to the loss of parallel

efficiency. The speedup as measured under the PRAM model is thus the best that any real sys-

tem could achieve, and is called thealgorithmic speedup.

Other models which take into account communication costs such as latency, bandwidth

and overhead have been proposed. Models such as bulk-synchronous parallel (BSP) [Valiant

1990] or LogP [Culler 1993] extend the PRAM model in an attempt to make it more realistic.

While interesting theoretically, these models take no account of real network topologies and

assume fixed constant delays.

In real parallel systems, the details of the network have a significant influence on overall

system performance. A simple model of communication includes three parameters: latency,

Processor

Memory

Processor

Memory

von Neuman model PRAM model

1 cycle

Processor Processor Processor

FIGURE 2.1: Von Neuman and PRAM memor y models. Both the von Neuman and
PRAM models assume zero latency to access memory for either reads or writes. Implicit
in the PRAM model is synchronization, which is necessary for program correctness. Both
models assume infinitely fast memory and communication, with no contention.

Backgr ound 15

bandwidth and overhead. Latency is the total time between initiating a request and receiving a

response. In a uniprocessor, for example, the latency to load a variable consists of the time

between the processor executing the instruction, and the result becoming available in the pro-

cessor’s register. For a cache hit typical latencies in a modern 500 MHz microprocessor are on

the order of 10 ns, while a cache miss and the resulting read from a local memory might take

200-300 ns. Bandwidth refers to the maximum number of bytes per second that a communica-

tion channel can move between a source and a destination. (Note that the source and destina-

tion can consist of groups of senders and receivers, in which case the bandwidth is the sum of

the bandwidths over all channels which can carry data simultaneously). In a chain of point-to-

point connections, bandwidth is usually taken to mean the bandwidth of the slowest link.

Overhead represents any fixed delays inherent in communication, and contributes directly to

latency. As an example, data may require compression before being transmitted over a chan-

nel, which increases overhead (and latency) in direct proportion to the compression time.

The relationships between these parameters is subtle, meaning that simple network mod-

els are not very accurate. Latency, for example, usually decreases as bandwidth is increased.

If, however, the bandwidth is increased in one link of a communication chain such that some

other link becomes the slowest in the chain, overall latency will not decrease as much as

expected. Increasing bandwidth could also cause overhead to increase. Take a protocol pro-

cessing engine which is fed by a communication channel. If channel bandwidth is increased

too much, then the processor may reach a point where it cannot handle the incoming packets

fast enough, at which point the channel will back up and the network will become congested,

leading to an overall increase in latency. Bursty traffic patterns are another major source of

congestion2. Due to its highly nonlinear behaviour congestion is not only difficult to model,

but can also have significant effects on performance even if the time-averaged level of conges-

tion is low.

In this thesis we avoid these communication modelling issues by using a detailed cycle-

accurate model of the entire system in our simulation environment, including not only latency,

bandwidth and overhead, but also network congestion. We will make use of the basic PRAM

model to measure the algorithmic speedup for the purpose of comparison with experiments.

2. Note that a system could be designed to handle worst-case bursts, but this would be an overdesign. Bursts are
by definition infrequent, so resources designed with bursts in mind would be unused most of the time.

16Backgr ound

2.2.2 Message Passing vs. Shared Memory

There are two fundamentally different approaches to providing inter-processor communica-

tion in a parallel environment. In message-passing, each processor is associated with a local

memory which can be used by only that processor. The only way for processors to communi-

cate is by sending messages back and forth, typically using calls such asSend() and

Receive(). Under this paradigm, the programmer must code all communication explic-

itly, and is responsible for coordinating the senders and receivers.Send() andReceive()

are usually implemented as blocking calls3. This means thatSend() will not return until it

can be guaranteed that the message has been consumed by the intended recipient calling

Receive(), and vice versa. If the programmer makes a mistake, then the program will

hang. (This makes programming trickier, but simplifies debugging.)

While message-passing is a technically clean solution to writing parallel programs, it has

certain drawbacks. Firstly, experience has shown that message-passing programs are fairly

difficult to write. The problem is that the whole notion of communicating processes is unfa-

miliar to a programmer used to writing sequential code. The most obvious sequential algo-

rithm may have to be changed substantially before it can be implemented efficiently using

message-passing. Secondly, since the basic communication mechanism is provided to the pro-

grammer by means of the operating system, there is a large overhead for sending a message.

This means that sending small messages is very expensive, and the programmer must try to

amortize the cost by coalescing as much data as possible into a single message. This approach

is not natural to a programmer new to message-passing, and the learning-curve is steep.

Shared memory, in contrast, tries to make the programmer’s view of the system look as

much like a standard uniprocessor as possible. This paradigm provides the programmer with a

single global memory space, which is shared and accessible by any processor. Communica-

tion in this case is implicit; in the simplest case one processor writes to a variable that is read

by another processor, and the system is responsible for ensuring that modifications are propa-

gated accordingly. In contrast to message-passing, synchronization in the shared memory

model must be explicit. An extra complication under shared memory arises if processors are

allowed to cache shared variables. In this case a cache coherence scheme (described in the

next section) is necessary.

3. Non-blocking, orasynchronous, calls can also be used to increase concurrency, although they make the pro-
grammer’s job more difficult since they require separate synchronization.

Backgr ound 17

Another programming paradigm should be mentioned here, although it operates at a

higher level than message-passing or shared memory, and can be implemented on top of

either. In data-parallel programming, code is written as if it were sequential, with annotations

added to indicate where data can be processed in parallel. The standard example here is High

Performance Fortran, which looks much like regular Fortran but with extra compiler direc-

tives, embedded in comments, which control data partitioning. The goal is to have the com-

piler and run-time system handle the details of the actual data distribution. Such an

environment can run on top of a system that supports either message-passing or shared mem-

ory, since the programmer is not supposed to be aware of the lower levels.

There is currently no consensus on which of the message-passing or shared-memory par-

adigms is better, although the focus in the research and commercial communities has shifted

to shared memory. The feeling seems to be that the extra complexity of providing cache

coherence is sufficiently offset by the reduced cost of application development (though there

is really little hard evidence to back this up). That being said, there are successful commercial

message-passing systems, such as IBM’s SP2. Indeed, as we will see in section 2.5, there are

new approaches to multiprocessor networking that support both schemes, allowing the system

and programmer to independently choose whichever is more appropriate.

2.2.3 Cache Coherence

In a shared memory multiprocessor, it is possible for one or more processors to have local

copies of a given cache line4. (Remember that in a message-passing machine, all memory is

private, so this cannot happen.) When all accesses to the cache line are read-only, then there is

no problem allowing all processors to use the line concurrently. A processor cannot just sim-

ply write to such a shared line if it needs to modify the line contents, however, since this

would cause its local in-cache copy to be inconsistent with other copies scattered throughout

the system. The purpose of a cache coherence scheme is to provide a mechanism to allow

sharing of cache lines in an orderly manner. This is critical from the point of view of both pro-

grammers and compilers to insure the correctness of a program.

4. A cache line even in a uniprocessor cache is really a copy of some master block of data which resides at a
fixed location in a memory module. Thus the novel feature here is that there can be many such copies.

18Backgr ound

There are numerous different approaches to providing cache coherence, with the most

general classification being into hardware- and software-oriented schemes. The aim of hard-

ware coherence is to push the responsibility for coherence down to the lowest architectural

level, making it ‘invisible’ to all levels above. While this is convenient from the point of view

of the program- and OS- writer, it greatly increases the complexity and cost of the hardware.

Software schemes, on the other hand, leave responsibility for coherence in the programmer’s

hands. This makes the hardware simpler, but adds complexity and overhead to the software.

Thus, there are advantages and drawbacks to both methods, and it is not clear that any one par-

ticular scheme is superior in all cases. One of the advantages of a hardware coherent machine

is that software coherence can always be implemented over top, allowing the use of the best

scheme for a given situation, whereas if hardware support is not present from the outset, it

cannot be designed in after the fact. Indeed, one of the goals of the NUMAchine project is to

investigate trade-offs between hardware and software coherence.

The basic idea behind software coherence is that the programmer is responsible for man-

aging writes to shared memory explicitly. This makes shareable memory qualitatively differ-

ent from private memory and puts more of the burden of correct program execution on the

programmer. In work such as Shared Regions [Sandhu 1993], the programmer associates an

arbitrarily sized region of shared memory, which could have multiple writers, with a mutual

exclusion lock. The programmer is responsible for making sure that any writable shared data

is properly associated with a Shared Region, and if not the system makes no guarantees. This

approach works well if the regions are large, because the overhead of providing the Shared

Region is amortized over a large amount of data. This method can also benefit from block

transfers, which can be more efficient than transferring a single cache line at a time.

Hardware coherence, while hiding the details of the protocol from the programmer, costs

much more in terms of design time and hardware5. In addition, certain design choices such as

the size of the basic unit of coherence must be fixed, because supporting flexibility in hard-

ware is too costly. (It should be noted that with modern programmable logic, this could

change.) On the other hand, the time overhead of providing coherence in hardware is greatly

reduced compared to software. This is not only beneficial but necessary, since hardware

coherence usually uses cache lines as the unit of coherence, which typically have sizes of 64

5. Synchronization such as locking must still be provided in a hardware cache coherent system. While concur-
rent writes to a single cache line are not possible, coherence does not enforce any ordering on writes to multi-
ple cache lines.

Backgr ound 19

or 128 bytes. This fine a granularity requires that the overhead be low for the scheme to

remain efficient.

When a cache contains a line in the shared state and wants to modify it, there are two

basic choices: update- or invalidation-based schemes. An attempt by a processor to write to a

shared line in an invalidate protocol causes a request to be sent to the coherence engine to gain

write ownership of the line. Such a request may or may not succeed depending on the cache

line’s current state. (Another processor may already have requested write access, for exam-

ple.) When successful, the request causesinvalidations to be broadcast to all processors shar-

ing the copy. The invalidation command unconditionally kills a specific line if the tags

indicate that it is present in the cache. Typically, the coherence engine must wait for acknowl-

edgments (ACKs) to the invalidations to guarantee that all shared copies have been elimi-

nated. At this point an exclusive ownership acknowledgment can be sent back to the original

requester, which can proceed with the write. (In MIPS terminology [Heinrich 1994 and MIPS

1996], the original request for exclusive access is called anupgrade. They also use the invali-

date to serve dual purpose as the upgrade acknowledgment.) Note that if a processor wishes to

write to a cache line it does not have in its cache (i.e. the cache misses), then this line could

still have shared copies elsewhere. In this case the processor sends aread exclusive request.

The same invalidation process occurs, but instead of sending an ownership acknowledgment

the coherence engine sends back a read exclusive response that includes data.A line that has

been modified and written to is said to be in adirty state, meaning that it contains a different

value than main memory. If a dirty line must be ejected from the cache, the processor issues a

writeback of the line to memory, and memory is then considered to be the line’s owner.

Another option is to have writes always propagate through to memory immediately, so mem-

ory is never out of date and is always the owner of data. This is called awritethrough scheme.

While it simplifies the notion of ownership, it also generates unnecessary traffic for cache

lines that are written multiple times by a single processor.

In an update protocol, the processor sends out a request to modify the given line, and

includes the new data for the specific target word in the line. If this update request succeeds,

the new data is broadcast and merged into all shared copies, and an ACK is sent to the

requester, which can then proceed to change its copy. The state of the cache line is then called

dirty shared, indicating that it is out-of-date with respect to memory, but that there may also

be other copies in the system.

20Backgr ound

There are a number of trade-offs in choosing between an update and writeback-invalidate

scheme. If a cache line is used in a producer-consumer fashion, where one processor modifies

the line and many processors read it, then an update protocol performs better. An invalidate

protocol causes the producer to invalidate the line, then forces all of the consumers to re-read

the line on a subsequent load miss. If a line is shared only because many processors needed it

in the past, but they will not need it in the future, then an update protocol will update lines

which are not needed any more, causing a large amount of unnecessary traffic. In an invalidate

protocol, after the invalidation phase, processors that have a real need for the line are forced to

fetch it, which keeps the sharing list current. An invalidation protocol also performs better if

there are a number of writes to a line before access by another processor, because a write to a

dirty line causes no traffic (the processor already has exclusive write permission). On average,

studies have shown that most traffic in a shared-memory multiprocessor is better suited to an

invalidate protocol [Weber 1989, Culler 1999 and Srbljic 1997].

The most common writeback-invalidate protocol used in bus-based SMP systems is the

MESI protocol (the name comes from the possible cache line states Modified/Exclu-

sive/Shared/Invalid), also known as the Illinois protocol from its originators [Papamarcos

1984]. Each possible copy of a line in the processor caches and memory has one of the four

states associated with it. The Shared state indicates that one or more caches and memory con-

tain a copy of the line. The Invalid state is functionally equivalent to the cache line not being

present in the cache. (An invalidation to a Shared state usually changes the state to Invalid but

does not overwrite the cache tags; the Invalid state indicates that the line is not available for

use by the processor even if the tag happens to match.) The Modified state is the same as the

dirty state above. The protocol ensures that only a single processor cache can have a line in the

Modified state, with other caches and memory guaranteed to be Invalid. The Exclusive state

indicates that only one processor cache contains a copy, but that the line has not been modified

and memory is still up-to-date. An ejected Exclusive line does not require a writeback, since it

is not in the Modified state, but writes can proceed immediately since ownership has already

been obtained. This state is useful for data that is used only by one processor, also known as

private data.

A multiprocessor can be used to run multiple sequential programs simultaneously, which

is referred to asmultiprogramming. Here every program’s data is private. Without the Exclu-

sive state such private data would generate a read then an invalidate on a write, but the invali-

date in this case just represents wasted bandwidth if it is known a priori that no other

Backgr ound 21

processor will be accessing the line.

One of the first hardware cache coherence protocols was called bus-snooping. Early mul-

tiprocessors usually consisted of a small number of processors (8 or less) connected by a bus.

Busses were a natural choice as they were simple to design and in common usage. For multi-

processing, they also had the advantage of providing a naturalatomic broadcast mechanism.

The one-to-all broadcast is useful for sending updates on cache line information to all proces-

sors simultaneously, and being atomic makes it easier to verify the correctness of the protocol

since numerous race conditions are avoided. A processor trying to read a line that is dirty in

some other processor’s cache broadcasts anintervention request to all other processors. The

bus is held until a data response is provided to the intervention.

One of the problems with snoopy protocols is that the processor caches involved in the

snoop also have to handle processor requests. This can cause the snoop to have a high latency

while waiting for the cache to finish dealing with its processor, and since the bus is held for

the duration of the snoop, this may create or increase bus contention problems6. One solution

to avoid contention for the critical caching resource is to provide a duplicate set of tags dedi-

cated solely for snooping. This is effective, but the performance must be traded off against the

extra cost of the SRAMs needed to provided the second set of tags.

Busses are not a viable solution for connecting more than about 16 processors due to bus

saturation. Increasing the bandwidth of the bus by making it wider and faster is possible, but

only up to a point. Driving a wide bus (e.g. up to 512 bits) at high speeds with numerous loads

requires special (i.e. expensive) drivers. The alternative to busses is to use some other network

with better scaling properties. (These scaling properties will be described later in this chapter.)

The basic snooping mechanism does not work in the absence of atomic broadcasts, so other

schemes are necessary.

A standard approach is to usedirectory-based coherence protocols which keep the state

and current location for each cache line in the system in some globally accessible table. The

amount of information so stored and the handling of inexact information differentiates direc-

tory protocols. A simple directory could store just the fact that more than one processor has a

6. Most busses nowadays use asplit-transaction protocol, where the bus is released between the request and
response, allowing other transactions to use the bus. This helps to alleviate the problem, but makes protocol
verification much more difficult because bus transactions are no longer atomic.

22Backgr ound

copy. A write by any processor would then require a broadcast of invalidation requests to all

processors in the system. However, a broadcast invalidate costs not only network resources,

but also time in each processor’s cache to check if the line is present and kill it. A better

scheme is to use some kind of list, specifying exactly which processors have a copy, called a

full directory. But in this case, the cost of the directory does not scale well with system size.

Typically, the total amount of memory in a system scales with the number of processors,N,

because a fixed number of processors usually share a memory module. The number of cache

lines is thus alsoO(N). A full directory scheme requires for each cache line a bit-mask con-

taining one bit for each processor in the system, for a total ofO(N2) bits. Since the directory is

usually implemented using SRAM, the cost of the system becomes unreasonable for largeN.

Two approaches to improving directory scalability arelimited andsparse directories.

With limited directories, each cache line entry contains only enough storage for a fixed num-

ber of sharers. If this number overflows, then either a broadcast is used or previous sharers

must be removed from the list. The efficiency of this approach depends on the amount of shar-

ing being low in the common case, so the overflow handling occurs rarely. A sparse directory

makes use of the fact that at any given point in time only some fraction of all the cache lines in

the system will be in use, so there is no reason to allocate permanent directory entries for

unused lines. The directory is thus created and managed dynamically on an as-needed basis.

While this is the most efficient scheme in terms of storage, it also has the largest overhead for

processing directory entries. (For a hybrid approach which uses the best features of both mod-

els, see the description of the LimitLESS directory in [Chaiken 1991].)

One final consideration for directory-based protocols is their physical distribution. The

simplest model is to have the directories collocated with the home memory. For access to a

remote memory, this means that the request may travel the entire span of the network before

finding that a specific line is contained in some other node which is fairly close to the

requester. A solution to this problem is to replicate directory information throughout the sys-

tem in a bid to reduce the latency for accessing the coherence state. This replication increases

the storage requirements for the directory and introduces a new problem of keeping the repli-

cated directory entries coherent, but the limited and sparse directory techniques in the previ-

ous paragraph may be used, and the increase in coherence performance may outweigh the

cost. Figure2.2 shows a tree-based network, where the leaves contain the processing elements

and memory, with each node above the leaves maintaining directory information for all of the

cache lines below, both local and remote. If a cache line has already migrated to a local node,

Backgr ound 23

then a request can be satisfied in the local directory without having to go the root of the tree

(which contains the sum total of all directory information). To maintain the superset property,

changes to cache states lower in the tree must be propagated upwards.

There is another approach to coherence calledpage-based shared virtual memory (SVM)

[Li 1989]. which is software-based but makes some use of hardware in an attempt to reduce

the programming complexity. (Unfortunately it also goes by the name virtual shared memory,

or VSM.) SVM supports shared memory by making use of the virtual memory page-mapping

mechanism available in all modern microprocessors. In a virtual memory system, a page table

is used to map the processor’s internal virtual addresses to real physical addresses that corre-

spond to a location in some memory. SVM reduces the cost of hardware by implementing the

coherence scheme in the page-fault handlers. The basic unit of coherence is a page, which is

typically on the order of 4 KB in size. Because the coherence is done in software, the protocol

can be much more complex with little extra cost. On the other hand, being in software means

that the overhead for providing coherence is large. For SVM to work well, it must amortize

Node
 A

Node
 B

Node
 C

Node
 D

Dir A+B Dir C+D

Dir A+B+C+D

FIGURE 2.2: A hierar chical cac he coherence director y. In a tree-based hierarchical
network with processing nodes (containing processors and memory) at the leaves,
coherence directory information at a given node of the tree is a superset of the information
contained in all the node’s children. A miss from Node D to a line whose home memory is
Node A, but for which a dirty copy is contained in Node C can avoid traversing the entire
tree.

default path with

dirty line

no replication

24Backgr ound

this cost by achieving a very high hit rate (i.e. a large amount of data re-use).

The first access to a shared page in SVM causes the handler to allocate a page in local

memory. The handler must then send a query to the page’s home location to ascertain whether

the page is clean or dirty. The appropriate remote page is then copied into the local page, at

which point all further accesses to this shared page will hit to the replica contained in the local

memory. Coherence must still be maintained between the various copies of the page, which

poses a problem because of the large block size. A writeback-invalidate scheme would cause

the entire page to be invalidated and re-fetched on a write toany word on the page, which

would generate a huge amount of traffic. If two writes by different processors occur to the

same word on the page, then the word really is being shared and the associated coherence

overhead is attributed totrue sharing. On the other hand it is possible that the two processors

are writing to entirely different memory ranges which happen to reside on the same page. The

coherence overhead in this case is not really necessary, but is solely an artifact of the large

coherence grain; such unnecessary overhead is referred to asfalsesharing. Great care must be

taken in SVM by the programmer and compiler to lay out data to avoid false sharing. (True

sharing is inherent in the algorithm, and is unavoidable.) However, heavy padding of data to

adhere to page boundaries can cause memory usage to become very inefficient if the amount

of padding is comparable to the amount of data. This will also have the effect of increasing the

capacity miss rate in the caches. For these reasons vanilla SVM implementations achieve only

mediocre performance.

One way of improving SVM performance would be to somehow allow writes to a page to

avoid coherence traffic. One way of doing this is to associate shared data regions with locks

(much like Shared Regions) and then observe that while a lock is held, writes to a shared page

need not be made visible to other processors. Only when some other processor acquires the

lock will it need the data. The idea of relaxing the memory model while making sharing more

explicit to the programmer is calledlazy release consistency[Cox 1992]. This is one instance

of what are called relaxed memory consistency models, which is the topic of the next section.

2.2.4 Memory Consistency Models

Another issue that is of concern in the parallel computing domain is memory consistency7. As

we have seen in the preceding section, cache coherence guarantees that if two or more proces-

sors write to a specific address, then some ordering is enforced such that all processors agree

Backgr ound 25

on the current value. What coherence doesnot specify is the order in which reads and writes to

different locations by different processors are observed. In Figure2.3 the possibility of differ-

ent observed write orderings is shown. If the variablesX andYhappen to be in the same cache

line, then coherence will guarantee that the processors see the same order. If P1 gains exclu-

sive access toX before P2, then P1 will change the value and the line will be dirty. For P2 to

gain either read or write access it must first fetch the line from P1, which means it will see the

modification toX before it changesY, which is the same order that P1 sees.

When the variables are in different cache lines, ordering constraints must be imposed out-

side of the coherence protocol. One of the most intuitive consistency models from the point of

view of a programmer issequential consistency[Lamport 1979] which is defined as follows:

A multiprocessor is sequentially consistent if the result of any execution is the same as if the operations of
all the processors were executed in some sequential order, and the operations of each individual processor
occur in this sequence in the order specified by its program.

7. The nomenclature here is not well standardized, and the terms ‘coherence’ and ‘consistency’ are often used
interchangeably. We take ‘coherence’ to mean a mechanism for presenting a coherent view of asingle cache
line to the system. We use ‘consistency’ to refer to the relationshipbetween different cache lines.

P1 P2

Xold <- Read X

Write Xnew -> X

Ynew <- Read Y

Yold <- Read Y

Write Ynew -> Y

Xnew <- Read X

P1 sees X->Xnew before Y->Ynew P2 sees Y->Ynew before X->Xnew

FIGURE 2.3: Memor y consistenc y models. The observed interleaving of reads and
writes by different processors defines a memory consistency model. In the figure two
shared variables, X and Y, are read and written by different processors, P1 and P2
respectively. In the absence of any consistency, the two processors can disagree on the
order in which the writes occurred.

Time

26Backgr ound

In this model, for each processor we make an ordered list of all reads and writes in program

order. We then form a global list by arbitrarily selecting an entry from each processor’s list. If

this global ordering is the same seen by all processors then we have sequential consistency.

(The particular choice of ordering does not matter, only the fact that all processors see the

same ordering.) This is convenient for the programmer because it is the same ordering that

would be obtained if the parallel program were actually running as multiple threads on a uni-

processor. Note also that sequential consistency does not obviate the need for synchronization

such as mutual exclusion and barriers.

While good for the programmer, sequential consistency imposes constraints on the hard-

ware. A naive implementation would enforce a global order by means of a single sequencing

point for all memory accesses, much like a ticket-system in a bakery. This sequencer repre-

sents a bottleneck, and would destroy much of the performance advantage of using a parallel

system. A more sophisticated implementation can reduce the impact of sequential consis-

tency, although never to zero. (In section 3.1.7 we describe NUMAchine’s implementation of

sequential consistency, and show that the added overhead is minimal.)

To improve performance, various proposals have been made for weaker consistency mod-

els. In many cases sequential consistency is an overly strict regime to impose on the hardware,

and is not always necessary from the programmer’s point of view. Figure2.4 shows how cer-

tain orderings may not be critical for a program to be semantically correct. The writes toA and

B by P1, for example, can be re-ordered by the processor or the network, as long as they are

both visible before the assignment toflag .

The weakest possible ordering is no ordering at all, except for the write ordering provided

by the coherence mechanism; reads and writes even from the same processor can have their

orders swapped. As described in [Goodman 1991], such a system is unusable without an oper-

ation such as afence, which guarantees that all accesses before the fence are complete (visi-

ble) before any access after the fence8. Some other models that lie between the two extremes

includeprocessor consistency (PC) (also in [Goodman 1991]) which allows reads to bypass

writes,partial-store ordering (PSO) [SUN 1997a] which allows writes to bypass each other,

andrelaxed memory ordering (RMO) [SUN 1997a] which allows reads and writes to bypass

previous reads. Note that when we talk of bypassing, we really mean completion of the access

8. Note that a fence is a more primitive construct than a barrier. Fences enforce ordering on reads and writes
from a single processor, whereas barriers provide synchronization between processors.

Backgr ound 27

(i.e. the cache is updated and the processor can make the results visible in the register file).

Modern processors use techniques such as nonbinding prefetch and speculative execution to

increase performance. The memory consistency model has implications for the ability of the

processor to retire loads and stores in these instances.

 There are numerous other issues pertaining to memory consistency, but they are not per-

tinent to the work that follows. It turns out, that for certain architectural reasons discussed in

Chapter 3, NUMAchine provides fairly natural support for the sequential consistency model.

In addition, recent results have indicated that modern processors can make sequential consis-

tency perform almost as well as the relaxed consistency models [Hill 1998 and Gniady 1999].

A brief look at relaxing the memory model will be given in Chapter 4. A very thorough treat-

ment of consistency issues can be found in [Adve 1996].

P1 P2

A = 1

B = 1

flag = 1

while(fla g==0)

 u = A

 v = B

Sequential Consistency

P1 P2

A = 1

B = 1

flag = 1

. . . = flag

u = A

v = B

. . . = flag

Necessary for correct program semantics

FIGURE 2.4: Relaxed consistenc y. Arrows indicate the relation ‘must occur before’.
Sequential consistency maintains the order of every access, but only certain orderings are
crucial to the programmer. Accesses to the flag variable are the only ones that need to
be ordered for synchronization correctness. (Figure taken from [Culler 1999]).

28Backgr ound

2.2.5 Memory Subsystems

There are numerous different options for the layout of memory in a shared-memory multipro-

cessor. One of the most popular configurations among today’s commercial machines is called

thesymmetric multiprocessor (SMP) (see Figure2.5). This consists of some relatively small

number of processors (e.g. 8 or less) along with a memory module sharing a bus. Such an

architecture is classified as having uniform memory access (UMA), because each processor

sees the same latency to memory. With a more general network, there is the notion of accesses

 P P P

M

Bus

SMP

 P P P

M

Network

MM

Dancehall

 PM PM

 PM PM

Network

NUMA

 PC PC

 PC PC

Network

COMA

FIGURE 2.5: Various c lasses of memor y subsystems. The three broad categories
are UMA, NUMA and COMA. In uniform memory access (UMA) architectures such as the
dancehall and SMP, all accesses have the same latency. Non-uniform memory access
(NUMA) machines allow for both local and remote memories. In a cache-only memory
architecture (COMA), the memories are replaced with large caches called attraction
memories. (The processors can contain caches in any of these categories.)

Backgr ound 29

being remote or local, depending on whether they must traverse the network to be serviced or

not, respectively. This leads tonon-uniform access times (NUMA). It is possible to make all

memories remote, obviating the need for a processor-memory connection. This is called a

dancehall architecture [Culler 1999], and is typically also UMA since all memory accesses

incur the same remote access penalty.

Any of these systems can support message-passing, software or hardware cache coher-

ence. If a NUMA system uses the shared-memory paradigm, it is calleddistributed shared

memory (DSM), and if cache coherence is provided in hardware, then the term CC-NUMA is

used.

An entirely different type of memory system is thecache-only memory architecture

(COMA). To understand the rationale behind this architecture, consider a CC-NUMA system

where each processor contains a large dedicated cache to enhance locality. These caches use

copies of data from main memory; a cache line not contained in any cache has either never

been used, or was used but had all copies ejected. In the best case, all data needed by the pro-

cessors should be stored in the caches. However, real caches suffer misses. In a cache-coher-

ent multiprocessor, caches can miss for one of four reasons:

• Cold or Compulsory Miss - The very first access to a given line will miss. This is clearly
unavoidable, but can be alleviated by prefetching. Since large line sizes tend to have a
prefetching effect, they can help to reduce this miss rate.

• Capacity Miss - This is caused by the cache being too small to contain all of the data that
is needed. This can only be fixed by increasing the cache size. A cache of infinite size
would show no capacity misses. A very small cache with a large line size could increase
the capacity miss rate, because large lines have the potential to increase the pollution of
the cache with unnecessary data.

• Conflict Miss - This occurs when two different cache lines map to the same entry in the
cache, forcing the current occupant to be ejected. This effect can be reduced by increas-
ing the set-associativity or the size of the cache. A fully associative cache would have no
conflict misses. A very large line size can also exacerbate the conflict miss rate.

• Coherence Miss - In a cache-coherent machine, lines may need to be invalidated to
maintain coherence. This has nothing to do with the cache organization. These misses
could possibly be reduced by changing the coherence scheme or reducing the line size

30Backgr ound

so less data is thrown out for each invalidation, and also by reducing the amount of false
sharing.

COMA architectures aim at reducing capacity misses by greatly increasing the size of the

caches (to the same size as main memory), and eliminating main memory entirely, since it acts

only as secondary storage and a place for coherence to take place. These large memories, used

as caches, are calledattraction memories. They take over the central role in the coherence pro-

tocol, and are backed directly by paging to the disk. While COMA architectures do reduce the

capacity miss rate, the absence of main memory means that address mapping is not fixed.

Given an address that misses in the attraction memory, there is no way of figuring out just

from the address itself where to go to fetch the line. (In a CC-NUMA machine the upper

address bits typically select a particular memory module in the system.) Thus, the original

COMA design requires a global search of the attraction memories’ tags until a line is either

found, or if not found then paged in. For this reason, COMA machines often use a hierarchical

directory scheme to reduce the coherence latency. Also, because the attraction memories are

caches, there is a problem when only one attraction memory in the system contains a cache

line: if ejected, this line must be saved to disk or moved to another attraction memory, because

it is the only existing copy. These are the main reasons why COMA has proven to be

extremely expensive both in terms of latency and logic complexity. The trade-off between

decreasing capacity misses and increasing coherence miss overhead favours COMA architec-

tures only for those applications that work on very large data sets, and have correspondingly

high capacity misses. For an analysis of the relative performance of CC-NUMA and COMA

systems see [Stenstrom 1992].
In aflat COMA scheme (also described in [Stenstrom 1992]), a dedicated home location

is provided for addresses. The home stores only coherence directory information, with data

being maintained by the attraction memories as before. While it simplifies directory lookup,

flat COMA has difficulties when dealing with the last copy replacement problem. In a normal

COMA system with a hierarchical directory, an ejected last copy can move up the tree until it

finds a directory which contains a line which can be ejected—either because the line is invalid

or because it is shared and there is at least one other copy elsewhere in the system—and can

take that line’s place. Flat COMA, in contrast, must keep extra information as to which lines

are available for ejection, and if no local space is available must start searching through other

attraction memories until a suitable destination is found.

Backgr ound 31

While COMA and CC-NUMA schemes both have their pluses and minuses, CC-NUMA

seems to be the architecture of choice for large-scale modern commercial multiprocessors.

Not only does CC-NUMA’s relative simplicity lead to lower overall system costs, but COMA

only outperforms CC-NUMA on a small group of applications, and the performance improve-

ment is not enormous. For those cases where COMA’s data replication and migration are

advantageous, it is possible to achieve a similar effect by performing the same operations at

the page level by means of the operating system. (See [Laudon 1997] for a description of the

CC-NUMA SGI Origin2000, which uses this approach.)

2.3 Multiprocessor Networks

The most critical design choice in a multiprocessor is the network. It affects performance

through its latency, bandwidth and contention-handling characteristics. It also has a major

impact on the design complexity of the cache coherence protocol and memory consistency

model since, as we have seen in preceding sections, both of these depend heavily on the order-

ing of transactions, which in turn is impacted by network topology.

One of the most fundamental requirements of a multiprocessor network isscalability.

This means that certain critical network parameters should increase no worse than linearly as

the system size (usually measured by the number of processors,N) is increased. Ideally, we

would like a network to be scalable in the following three areas:

• Cost - This should scale linearly withN, so that the marginal cost of adding another pro-
cessor is constant. It is also desirable for the initial cost (for just a few processors) to be
low, so small configurations are feasible;

• Latency - This should be constant, but since logic fan-in cannot be infinite the best that
can be expected isO(logN);

• Bandwidth - This should scale withN.

For bandwidth, it is really thebisection bandwidth that should scale linearly. The bisection

bandwidth is defined as follows:

32Backgr ound

Consider an equipartition of a system of communicating nodes, and calculate the aggre-
gate bandwidth between the two partitions. The bisection bandwidth is the lower bound
of this aggregate bandwidth over all possible equipartitions.

The linear scaling requirement is necessary if we assume that on average all processors com-

municate equally with all other processors. (Note that this is not the worst case scenario,

which would haveN-1 processors all accessing the last processor.)

The scalability of a network is determined by its topology. The overall performance of a

network is affected by other characteristics such as:

• Direct or Indirect. Direct networks put a switch at each node, meaning that some nodes
are closer (in a latency sense) than others. This allows for efficient nearest-neighbour
communication. Indirect networks put all nodes on the periphery of the network, making
access times uniform between nodes.

• Packet- or circuit-switched. Circuit-switched networks set up a fixed dedicated connec-
tion between two nodes. This connection is fast because it is not shared, but there is an
overhead cost for the setup and breakdown of the circuit. Once the circuit is set up the
routing is fixed, so message routing overhead is low. Packet-switched networks break
the communication stream into packets, each of which is routed independently. There is
no setup overhead, but routing overhead is increased, because typically more than one
routing decision must be made. Packet-switching allows the network resources to be
used in parallel for many different streams, which makes it the choice for multiproces-
sors where many nodes communicate simultaneously.

• Store-and-forward or cut-through routing. Store-and-forward waits for an entire packet
to be received at a switching element before routing it to the next. This works well if all
packets are of fixed size, but requires buffers large enough to contain some maximal
number of full packets. Cut-through (also called wormhole) routing determines the next
switch based on the packet header, then passes the rest of the packet through as it comes
in. This adds complexity to the flow-control and congestion-handling logic, but uses less
buffer space and reduces the latency. Virtual cut-through is a hybrid of these two: it
works like wormhole routing, but stores the entire packet if the outgoing channel is
blocked.

• Static or dynamic routing. Static routing uses fixed routing tables that do not change in
time. Dynamic (or adaptive) routing can change routes to avoid congested areas. It also
provides fault-tolerance because a broken channel can be bypassed. Dynamic routing is
more complex, and allows for the possibility of different paths between two fixed nodes.

Backgr ound 33

• Error checking, higher level flow-control protocols, and other fault-tolerant features.

In the following sections we will look at some generic multiprocessor interconnects.

2.3.1 Full Crossbars

In a PxQ crossbar, P input ports are fully connected toQ output ports through a single switch-

ing layer (Figure2.6 (a)). In most cases,P andQ are the same. Normally, we consider each

input to be paired with an output, providing fully bidirectional links. (A unidirectional cross-

bar is usually a part of some larger network.) Crossbars provide linear bisection bandwidth

scaling, and a constant latency since there is only a single switch. The cost, however, scales as

N2, so the number of ports is typically some small number, say less than 10. Note, however,

that crossbars can be hooked together to form other network topologies.

2.3.2 Multistage Interconnection Networks

Multistage Interconnection Networks (MINs) represent a class of networks, some examples of

which are the Omega (Figure2.6 (b)), Banyan and Butterfly networks. Each switch within the

MIN is apxp crossbar, so the number of switch levels (and hence the latency) scale as logpN.

The cost of the network scales as (N logpN). All nodes are equally ‘remote’ and suffer maxi-

mal latency, which does not allow for local-communication optimizations. The size of a MIN

can be grown by adding more layers of switches.

2.3.3 Hypercubes

An n-dimensional binary hypercube connects 2n nodes. A 4-D example is shown in Figure2.6

(c). If we consider the nodes to reside at the corner of a unit cube inn-dimensional space, then

each node connects to itsn nearest neighbours along each dimension. If we label the node

position by itsn-space coordinates (e.g. 0010, 1110), then connections exist between any

nodes that differ by one bit. As with MINs, hypercubes offer linear bisection bandwidth

growth, and latency that grows as log2N. The cost similarly grows as (N log2N). One problem

with hypercubes is that the degree (number of connections) at each node increases as the sys-

tem size grows. In practice, this means that the maximum degree of a node (and hence the

34Backgr ound

maximum system size) must be decided upon before implementation. Hypercubes allow for

local communication.

(a) 4 X 4 crossbar

(b) 4 X 4 Omega netw ork

(c) 4-D hyper cube (d) 4-ary 2-cube

I/O to node

Input or output
to node

Switch

(e) 16-node fat tree with fan-out of 4

FIGURE 2.6: Scalab le inter connection netw orks. (From [Lenoski 1992])

Backgr ound 35

2.3.4 k-ary n-cubes

Thek-aryn-cube is a more general form of the hypercube, with the binary base 2 replaced by

an arbitrary basek. A 4-ary 2-cube is shown in Figure2.6 (d). Most systems use a dimension-

ality of 2 or 3, and grow the system size by increasingk. The 2-D and 3-D incarnations are

also calledmeshes. Having k > 2 means that node symmetry is lost for a mesh; nodes on the

boundary of the mesh have lower degrees than nodes in the interior. This is a problem from the

hardware standpoint, since either switches with varying port numbers must be produced, or

some of the ports must go unused. The symmetry can be regained by adding links between the

peripheral nodes along each dimension. (In topological terms this is equivalent to wrapping

the edges around and connecting them.) In this case, the network is referred to as atorus, and

the average latency between nodes is reduced by a factor of two. Routing in a torus is more

difficult, as is wiring. For a given dimension, the cost grows linearly. The drawback is that

bisection bandwidth only grows asN(n-1)/n, and latency increases asN1/n.

2.3.5 Fat trees

An N-node fat tree with fanoutf is constructed by superposingN individual fanout-f trees in

such a way that each level of the fat tree has a constant number of links between switches.

This provides for linear scaling of bisection bandwidth and logN latency increase, while pro-

viding multiple root nodes to ensure the root is not a bottleneck. Fat trees are like MINs in that

their cost scales as (N log N) and they can be grown by adding layers of switches. They are

different from MINs in their ability to provide low-latency shortcut paths by routing only up

to the lowest level in the tree necessary to reach the destination.

2.3.6 Busses and Rings

As mentioned before, the most common interconnect topology is the bus due to its simplicity.

While the latency and cost are constant, the bandwidth is also constant, which means that a

given bus is not scalable beyond a certain point. This saturation point can be moved up by

increasing the width and speed of the bus. The drawback is that the cost and complexity

increase, because more exotic signalling technologies are required.

Rings also have a fixed bandwidth. However, the latency increases linearly as nodes are

36Backgr ound

added, as does the cost. One advantage to rings is that they use point-to-point connections, as

opposed to busses which have multiple loads on a single wire. Electrically this makes the

ring’s signalling environment much cleaner, and allows rings to be run at much higher speeds

than busses, which can be used to trade off against the latency and bandwidth restrictions.

Busses and rings can both be organized hierarchically to increase the upper limit on their

scalability. The higher levels of the hierarchy can be made wider or faster to increase the

bisection bandwidth. The hierarchical organization maintains the ordering and broadcast

capabilities of busses and rings, which can be used to advantage for cache coherence proto-

cols, as will be seen in Chapter 3.

2.3.7 Network Summary

Table2.1 summarizes the important network characteristics. The latency is determined on an

uncontended network with uniform loads. Switch and wire costs indicate the number of

switching elements and interconnections needed, respectively. In a hierarchy, the number of

switches or bus/ring interfaces is the same as the number of internal nodes in anN-leaf tree

with fanoutf. With , we can approximate the sum as

(EQ 2.3)

None of the networks is ideal in all respects. Performance has generally been considered more

important than cost, which has favoured low-latency networks with good bisection bandwidth,

such as tori and meshes. (See, for example, the SGI/Cray T3E and Hewlett-Packard V-Class

machines.) However, for small- to medium-sized networks, say less than a few hundred nodes,

performance can be increased by the use of custom-designed routers, and scalability is argu-

ably not as critical an issue as cost. This has affected the approach to multiprocessor intercon-

nects, as will be seen in the next section.

2.4 System Area Networks

Up until a few years ago, multiprocessor networks used either LAN-class technology or com-

pletely custom-designed solutions. Research in recent years has indicated that multiprocessor

n Nflog=

Swi tch N() N f i–

i 0=

n

∑

N–
f N 1–()

f 1–
----------------------≈ ≈

Backgr ound 37

networks have very specific requirements which differ from those in other networking envi-

ronments. Latency and bandwidth are particularly critical in the tightly-coupled multiproces-

sor environment. However just as important is low error rate. In an unreliable network such as

a LAN, higher-level protocols (e.g. TCP/IP) provide reliable communications at the cost of

much higher protocol overheads. In a latency-sensitive domain, such as multiprocessors, such

overheads are unacceptable. System Area Networks (SANs) usually contain fast low-level

error-detecting and correcting protocols directly in hardware. In order to avoid contention,

they also contain quick flow-control mechanisms. While all of these features would be benefi-

TABLE 2.1: Summar y of netw ork c haracteristics. A system is assumed to contain N
nodes. For the MIN and fat tree each switch is an fxf crossbar. For the hierarchical bus and
ring there are f nodes at each lowest level bus/ring. Indirect networks do not allow fast
local communication, direct do, except for a bidirectional ring, which does. (Table from
[Lenoski 1992].)

Topology Type Switch Cost Wir e Cost
Average
Latency

Bisec.
Band.

Crossbar Indirect N2 N const. N

MIN Indirect (N/f) logfN N logfN logfN N

Hypercube Direct N log2N (N/2)log2N (1/2)log2(N/2) N/2

2-D Torus Direct N 2N N1/2/2 2N1/2

3-D Torus Direct N 3N 3N1/3/4 2N2/3

Fat tree Indirect N logfN fN logfN 2(logfN-1) <

L < 2 logfN

fN

Bus Direct N const. const. const.

Ring Direct N N N/2 2 const.

Hierarchical
Bus

Indirect Switch(N) Switch(N)/N 2(logfN-1) <

L < 2 logfN

const.

Hierarchical

Ring

Indirect Switch(N) Switch(N) 2N(logfN-1) <

L < 2N logfN

2 const.

38Backgr ound

cial in a LAN domain, the added cost is not justifiable, since software protocols provide ade-

quate performance.

The driving force behind SANs was message-passing. Sending a message using standard

network interfaces typically involves going through the following steps:

1. Put the message into a buffer in local program memory.

2. Trap into the operating system, which then copies the entire message into a buffer in
kernel memory.

3. Send this buffer to the network interface, which normally involves copying it into a
buffer local to the interface.

4. Transfer the data across the network, then go through all of these steps in reverse order
at the other end.

Clearly the copying done in steps two and three is not absolutely necessary. The goal of SANs

is to provide applications with more direct access to the network interface. In fact, it is even

possible to do away with the copying of the local program buffer into the network interface by

mapping the region of local memory as uncached and making the physical address select the

network interface directly. By also providing a direct virtual memory map for the control reg-

isters in the network interface, it is possible to have the program initiate the message sending

without any operating system involvement whatsoever. Suchzero-copy schemes have allowed

message-passing overheads to come down from tens of microseconds to less than one micro-

second, which is particularly beneficial for supporting the small messages that are often nec-

essary in a multiprocessing environment.

The following sections will give brief descriptions of some commercial SANs.

2.4.1 SCI (Scalable Coherent Interface)

SCI [Scott 1992] is an attempt to combine standards for both a physical networking layer and

a cache coherence scheme to provide an ‘off-the-shelf’ solution for implementers of CC-

NUMA machines. The physical layer specification aims at high-speed bus-like performance,

but does not enforce any particular topology. In small configurations, SCI typically uses single

or dual rings, for which commercial chipsets are available

The cache coherence protocol is invalidation-based, and relies on a distributed directory

using linked lists. Each network interface stores its locally active sharing list entries, which

distributes the directory storage across the machine, and also keeps it near the network to

Backgr ound 39

allow quick access. One of the drawbacks to the linked list structure is that invalidations to

highly shared blocks must traverse the entire list, which may be scattered across the machine,

potentially increasing coherence overhead substantially. For applications where the degree of

sharing is low, SCI performs fairly well.

SCI is used in Sequent’s NUMA-Q, DataGeneral’s AViiON and HP’s V-class servers.

Unfortunately SCI suffers from early- and over-standardization. Both the physical layer and

the linked-list coherence are fairly out-of-date already. SCI is a good example of trying to

standardize too much at too low a level while technology is still rapidly changing.

2.4.2 Myrinet

In contrast to SCI, which was targeted specifically at parallel processing networks, Myrinet

[Boden 1995] was born from an attempt to increase LAN performance. One of its goals was to

allow clusters of workstations to be connected to form a virtual multiprocessor. This attempt

to leverage the preponderance of relatively cheap workstations was made popular by Berke-

ley’s NOW (Network of Workstations) project [Anderson 1995].

Myrinet puts an embedded protocol processor, a large amount of SRAM and DMA

engines onto its network interface cards to allow most of the network and protocol processing

to take place on-board. The Myrinet network consists of an 8-port wormhole-routed full cross-

bar. While the performance is fairly good, it is not clear whether making a faster LAN inter-

connect is more fruitful than trying to approach the problem from the other direction and take

a custom-designed dedicated multiprocessor network architecture and commoditize it.

2.4.3 Memory Channel II

The Memory Channel II architecture [Fillo 1997] was developed by Digital Equipment Corp.

(now owned by Compaq) for use in its Alphaserver product line. (The original Memory Chan-

nel had the same basic architecture, but with lower performance.) It uses virtual memory-

mapped pages to directly access the network interface, and provides a form ofreflective mem-

ory. Writes to a page are made visible on all other readable pages in the system shared by

other nodes. Only one node can map a page for writing, so two-way communication is

achieved by pairs of pages. In order to ease integration into SMP nodes, the network interface

cards in Memory Channel are implemented on PCI cards, which can simply be plugged into

40Backgr ound

the ubiquitous PCI I/O bus. Although this increases their latency (because they have to cross

the memory-to-PCI bridge) it lowers the cost and implementation complexity considerably.

The network is based on an 8x8 full crossbar.

The basic communication mechanism provided is message-passing. Reads to a page only

show data that has been written; updates to a page cannot be pulled across, only pushed by the

originator. This one-way communication has associated cost penalties for inherent two-way

communication patterns such as synchronization. This renders Memory Channel mediocre at

best for very fine-grain communication patterns.

2.4.4 Synfinity

The Synfinity interconnect [Weber 1997]9 is specifically designed to support a tightly-coupled

multiprocessor. Synfinity utilizes a basic crossbar switching element (in this case 6x6), many

of which can be connected in any desired topology. The design aims to provide very high per-

formance, but also very high reliability which is critical for systems in the commercial world.

To attain these goals they split the functionality into three layers. The lowest level is the

fast frame mover (FFM), which is responsible for the basic data transport. This layer uses

source-routed cut-through to provide very low latency (on the order of 40 ns for a single level

of switching). The FFM focuses solely on speed, making the logic as simple and fast as possi-

ble. The next level up is thereliable packet mover (RPM) which uses error-checking and -cor-

recting codes to provide reliable communication. If corrupted packets can not be fixed, then

the RPM uses the FFM to re-request the packet. Theinterconnect services manager (ISM) sits

at the top of the chain. It is the only part of Synfinity that is dependent on the actual details of

the node to which it connects. The two basic services provided by the ISM are a directory-

based cache coherence protocol, and a message-passing protocol. Any different or extra func-

tionality only requires a redesign of the ISM. Fujitsu System Technologies has versions of the

card for connection either to a PCI bus or directly into the backplane of an Intel SMP. While

this is the highest-performing and most integrated SAN of the four presented here, it is not yet

shipping in any commercial systems, so it is difficult to judge its overall impact.

9. Note that the paper refers to the Mercury Interconnect. The rights to the technology were bought by Fujitsu,
and the name changed to Synfinity for trademark reasons. A modified version of the paper can be obtained
from the Fujitsu System Technologies website, http://www.fjst.com.

Backgr ound 41

2.5 Sample Multiprocessors

This section looks at some existing multiprocessors, both commercial and experimental. As

evidenced by the varied architectures, there is no one best approach to building these

machines. Clustered systems are a common approach, partly because they leverage commod-

ity SMP nodes, and partly for their RAS characteristics. RAS stands for Reliability/Availabil-

ity/Serviceability, and is turning out to be one of the more important features in commercial

acceptance of multiprocessor systems. (Note that in the commercial world, the marketing term

for this class of machines is‘enterprise server’.) A system is reliable if the user can count on

jobs being completed in a deterministic and timely fashion, even in the face of heavy loads or

system malfunctions. This includes the areas of fault-tolerance and efficient load manage-

ment. Availability means avoiding downtime due to crashes or maintenance. The standard

here is set by mainframes, which can achieve five-9 (99.999%) uptime, or less than 5 minutes

of downtime per year. And finally, serviceability indicates a system’s ability to gracefully han-

dle the inevitable failures of processors, memory, disks and networking components. Since

multiprocessors, by their nature, have a large number of such components, statistically speak-

ing they will suffer high failure rates. Features for serviceability include redundant power sup-

plies and hot-swappability.

2.5.1 Stanford DASH and FLASH

The DASH [Lenoski 1992a & 1992b] and follow-on FLASH [Kuskin 1994] projects at Stan-

ford are both directory-based CC-NUMA machines using 2-D mesh networks. As shown in

Figure2.7, DASH uses an SMP node consisting of four MIPS R3000 processors sharing a bus

with memory and a network controller, which also contains the coherence directory mainte-

nance hardware. The network controller also contains aremote access cache (RAC) to reduce

the latency of remote accesses for cache lines that are subsequently fetched by another proces-

sor in the node, or re-fetched by a processor which has ejected the line. This RAC can also be

viewed as a small attraction memory for remote addresses, which offers some of the migration

and replication benefits of COMA.

The FLASH design does away with the bus-based SMP and the RAC. Their conclusions

from DASH were that the localization of remote references afforded by the SMP/RAC combi-

42Backgr ound

nation were not very effective and cost too much in terms of logic. The MAGIC chip performs

the functions of a network and memory manager, as well as implementing a microcoded

coherence protocol processing engine which enables fast and flexible shared-memory and

message-passing. Some of the same benefits of the RAC are obtained by implementing page-

based migration and replication policies in software.

2.5.2 Illinois I-ACOMA

Illinois’s I-ACOMA [Torellas 1996] uses both a flat COMA coherence protocol and a tech-

nique calledsimultaneous multithreading (SMT) [Eggers 1997]. The goal of the COMA

research is to investigate techniques for reducing COMA’s coherence overhead. An example is

the invalidation cache, which keeps track of recently invalidated lines (that would miss in the

attraction memory) and forwards them directly to the appropriate remote directory. The SMT

research is independent and complementary to the COMA work. Realizing that there are limi-

tations to the amount of instruction-level parallelism (ILP) available for superscalar proces-

sors, the SMT approach seeks to make use of multiple threads as well as ILP inside a single

chip. The compiler is responsible for scheduling multiple threads, each of which feeds a sepa-

rate superscalar engine inside the processor. The idea is to apply VLIW techniques at the level

of threads rather than instructions. Internally the processor can hide latency by choosing other

threads to execute when some thread is blocked due to a high-latency access. Since the threads

Proc+
Cache

Proc+
Cache

Magic

Mem
Proc+

Net I/OBus

Directory
+ Net

Net

Mem

CacheProc+
Cache

DASH Node FLASH Node

FIGURE 2.7: DASH and FLASH ar chitectures.

Backgr ound 43

can be associated with different programs, this approach also supports multiprogrammed

workloads. Hardware does not yet exist for the I-ACOMA.

2.5.3 Teracomputer

The Teracomputer [Bokhari 1998] represents a radically different approach to multiprocess-

ing. The memory system uses a basic dancehall architecture, as shown in Figure2.8. How-

ever, instead of trying to reduce or avoid latency, the Tera approach is to look for other work to

keep the processor busy while waiting for a high-latency operation to complete. Tera uses a

custom-designed heavily multithreaded processor with a very low context-switch overhead to

achieve this goal10. The current implementation of the Tera processor can support up to 128

instructionstreams, each of which behaves as a virtual processor with its own registers and

context. There are no caches in the Tera architecture, and all memory is equidistant from all

processors. On every clock cycle the processor switches unconditionally to the next stream in

a 21-deep stream pipeline. Thus each stream can utilize at most 1/21 of a processor’s cycles.

Since even with optimizations for speed Tera’s memory takes about 50 cycles to return a 64-

bit word, at least 50 streams must be active in the processor at any one time for it to be fully

utilized. While certain applications do display this amount of concurrency, Tera has not pre-

sented convincing evidence that their approach is more generally applicable.

2.5.4 SUN E10000

Originally codenamed Starfire, this is SUN’s biggest machine in the enterprise server market.

This 64-processors SMP is unique in that it uses a globally snooped interconnect in a UMA

configuration. As shown in Figure2.9, nodes consist of up to four UltraSPARC processors,

each with memory. A processor cannot access its ‘local’ memory directly, though. All

accesses must go through one of the four globally shared and snooped address busses. (The

low 2 bits of the addresses select which address bus is used. The address busses are replicated

only for performance reasons.) Data responses use a separate 16x16 crossbar. SUN’s approach

of throwing hardware at an old design is expensive, and ultimately unscalable. By sticking to

10.This is similar to the SMT concept from the previous section, however the Tera multithreading concept pre-
dates SMT by a number of years. The SMT idea really descends from the Tera work.

44Backgr ound

incremental design improvements, they have managed to keep their costs low enough to com-

pete with other vendors, and the E10000 is still one of the highest performance machines on

the market.

Mem Mem Mem

Inter connect

Vir tual
Processor s

FIGURE 2.8: Teracomputer ar chitecture .

16x16 data cr ossbar

4-way
node

4-way
node

4-way
node

4 globall y snooped ad dress b usses

FIGURE 2.9: SUN E10000 architecture . Each node contains 4 UltraSPARC processors
and memory. All accesses, local or remote, go across one of the global address busses.
Data is transferred separately on the data crossbar.

Backgr ound 45

2.5.5 SGI Origin

The SGI Origin 2000 is loosely based on Stanford’s DASH and FLASH projects. As shown in

Figure2.10, each node contains up to two MIPS R10000 processors sharing a connection to a

full crossbar (the Hub chip) and there can be up to 512 nodes (1024 processors). The two pro-

cessors share a bus into the Hub to save pins, but do not snoop on each other. The node is thus

not really an SMP, and there is no clustering. This makes the basic node cheaper than an SMP

box, which also provides for better incremental upgrade costs. By eliminating the SMP bus

and snooping, the Origin also reduces the latency to remote memory. Pairs of nodes share

access to an I/O crossbar, which supports direct memory-to-memory DMA between any two

memory modules, and also cache coherent I/O.

The interconnect uses a 6x6 crossbar called a Spider chip (similar in performance and

architecture to the Synfinity) to implement a fat hypercube topology. The Origin does not pro-

vide any kind of cache for remote accesses, instead relying on page replication and migration.

The overall goal of the Origin is to be highly modular and cost efficient, while still providing

good performance.

Scalab le Inter connect Netw ork

Node
 1

Node
 511Mem

 +
CC Dir

I/O xbar

R10K
 1

R10K
 2

Hub
Chip

Node 0

I/O Contr oller s

FIGURE 2.10: Layout of the SGI Origin 2000. (Figure from [Laudon 1997].)

46Backgr ound

2.5.6 Beowulf

Beowulf [Becker 1995] is not really a parallel machine per se, but an attempt to allow anyone

to build their own supercomputer (in their parlance,parallel workstation) using COTS (com-

mercial off-the-shelf) parts. Following in the footsteps of projects like NOW and Princeton’s

SHRIMP [Blumrich 1998], its most common incarnation is as a group of PCs connected

together by one or more 100 Mb/s Fast Ethernet networks, and running the Linux operating

system with modified network drivers to reduce network overhead. On applications that do not

require very fine-grain sharing the performance can be quite good, and the cost is at least an

order of magnitude less than any other commercial system. Since it does not address RAS at

all, it is unlikely to find favour outside of the research community.

2.6 Conclusion

This chapter has briefly covered some of the major issues involved in design and analysis of

parallel computing systems. Given this background and some examples of current multipro-

cessors, the next chapter will describe details of the NUMAchine architecture, as one particu-

lar instance of a CC-NUMA machine.

47

CHAPTER 3 NUMAchine Architecture,
Implementation & Simulator

This chapter will describe the architecture and implementation of the NUMAchine prototype,

as well as the architectural simulator, which was used as a design, validation and research tool.

NUMAchine is a distributed shared-memory multiprocessor with hardware cache coher-

ence, which puts it in the CC-NUMA class of machines. This has become a popular architec-

tural choice for commercial multiprocessors (e.g. SGI’s Origin 2000, Compaq’s Alphaserver

and HP’s V-class servers). The main reason for this is that it is comparatively simple to imple-

ment such a machine by connecting together a number of bus-based SMP nodes using either a

LAN or SAN network. The ability to efficiently leverage the years of industry experience in

SMPs is causing prices to drop and quality to rise, to the extent that CC-NUMA machines are

becoming the de facto standard in ‘enterprise computing’. (This term usually implies not only

high performance, but RAS features as well. Multiprocessors are encroaching on both the

supercomputer and mainframe domains.)

The goal of the NUMAchine project is to develop a simple, low-cost and scalable archi-

tecture for distributed shared-memory multiprocessors (DSMs) with up to a few hundred pro-

cessors. The purpose of building the prototype was to verify the feasibility of the architecture

in practical terms, and to provide a hardware platform that can serve as a base for operating

system (OS) and compiler research. The simplicity is crucial since NUMAchine must be

highly cost-efficient1. To achieve our cost goal we used COTS parts, and field-programmable

devices (FPDs, in particular FPGAs and CPLDs) for control logic instead of ASICs2. Design

simulations were used to ensure that the choice of parameters such as datapath widths and

speeds for the prototype reached the desired level of scalability. Flexibility was crucial to pro-

1. The funding for NUMAchine was provided by an NSERC grant of around CAN$1.3 million. This money paid
for both hardware and designers.

48NUMAchine Ar chitecture , Implementation & Sim ulator

viding support for research. The reprogrammability of FPDs facilitated rapid debugging of the

prototype, allowing us to avoid rigorous formal verification. At the same time it permitted us

to leave space for future enhancements as results from research are obtained. We also

designed NUMAchine to provide plenty of low-level monitoring in hardware, allowing soft-

ware designers to determine the ultimate cause of performance degradation in the system.

(The monitoring functionality will not be described in this dissertation. See [Lemieux 1996]

for more information.)

The first section of this chapter describes details of NUMAchine’s architecture and imple-

mentation. The second section will describe the NUMAchine simulator, which is used for sys-

tem analysis and validation.

3.1 Architecture and Implementation

NUMAchine consists of a number ofstations, connected together by a two-level network of

hierarchical rings, as shown in Figure3.1. Each station is basically a bus-based SMP node,

composed of four processors, a memory module and a network interface card (NIC). Archi-

tecturally speaking, there is nothing special about the choice of a 4-way SMP node. The two

main reasons for choosing the number four came from both bus saturation and physical imple-

mentation considerations. These factors will be discussed in the next subsection.

A major factor in choosing rings for NUMAchine’s interconnect has to do with their

inherent ordering properties. As described in Chapter 2, hardware cache coherence and mem-

ory consistency models must be aware of possible re-orderings of requests and responses in

the network. The normal method for guaranteeing ordering is to use a handshaking protocol

where all requests require acknowledgments before they can be considered complete. NUMA-

chine’s cache coherence protocol avoids acknowledgments by taking advantage of the order-

ing and natural broadcast capabilities of rings. This makes the coherence protocol both

simpler to implement, and more efficient. The implementation will be described in section

3.1.5, and the performance will be analysed in Chapters 4 and 5.

2. FPGA and CPLD stand for Field-Programmable Gate Array and Complex Programmable Logic Device
respectively. Roughly speaking, they both provide arrays oflogic blocks, with each block configurable to pro-
vide simple logic functions. A complex circuit is decomposed into these smaller functions, and thenmapped
into the device. Application-Specific ICs (ASICs), in contrast, use customized logic specific to the particular
circuit, and are not reprogrammable.

NUMAchine Ar chitecture , Implementation & Sim ulator 49

The lower level ring in the hierarchy is called aLocal Ring, and multiple Local Rings can

be connected together by aCentral Ring. The reason for using a two-level hierarchy instead of

a single level has to do with latency and bandwidth considerations. In a single ring, the latency

is proportional to the number of nodes in the ring, which does not scale well. In a hierarchical

ring, the latency scales asO(N1/L) for N processors andL levels of hierarchy, with little

increase in the system’s cost or complexity since both levels of ring can make use of the same

technology. From the bandwidth perspective, a single ring requiresO(N) increases in band-

width to accommodate more processors without degrading performance. Depending on traffic

patterns, in the hierarchical case some fraction of requests remain on the Local Ring and do

Inter-Ring Interface (IRI)
Central Ring

Local Rings

Stations

P P P P

NIC
I/OM

Ring
In

Ring
Out

P = Processor
M = Memory
NIC = Network Interface Card
I/O = SCSI,Ethernet,etc. Station

Bus

FIGURE 3.1: A high-le vel vie w of the NUMAc hine ar chitecture . Each Local Ring is
shown with two stations, but can contain up to four. With four processors per station, this
gives a maximum of 64 processors.

50NUMAchine Ar chitecture , Implementation & Sim ulator

not need to make use of the Central Ring. In the best case, all traffic would use the Local Ring,

resulting in a bandwidth scaling requirement ofO(N1/L) for the Local Rings (and no scaling

requirement for the Central Ring since it carries no traffic). In the worst case of no local traf-

fic, the Local Rings would have no scaling requirement and the Central Ring would require

O(N) increases. The actual scaling requirements for real applications lie somewhere between

these two limits, but are still an improvement over the single level case.

The use of SMP nodes makes NUMAchine a cluster-based design, meaning that commu-

nication is faster if it can take place within a cluster, which also helps with scalability as dis-

cussed in the preceding paragraph. Actually, because of the two levels of rings there are three

degrees of locality. Accesses are calledLocal if they can be satisfied by memory on the same

station as the requester. The latency of a remote (off-station) access depends on whether the

Central Ring must be traversed or not. Transactions that use the Central Ring we termFar

Remote, and those that stay on the Local Ring we callNear Remote. The request/response

paths on a ring always involve traversing the entire ring (the request uses some of the ring seg-

ments, and the response traverses the rest). Thus the Near Remote latency is the same no mat-

ter where the requester and responder are situated on the ring. The same is true for Far Remote

latencies regardless of which two Local Rings are involved. The difference between the laten-

cies represents the degree of non-uniformity of accesses, or in other words the level of

NUMAness of the architecture. A high ratio indicates that the penalty for fetching remote data

is high, which makes it worthwhile to spend more effort on trying to reduce the number and

latency of remote references. Typical values of the remote-to-local ratio for other CC-NUMA

systems are in the range 10:1 to 20:1. As we shall see in the next chapter, NUMAchine’s ratio

is about 2:1 for near remote, and 4:1 for far remote accesses.

There are numerous techniques for reducing remote access latencies, two such being

clustering and caching. We will not consider clustering in this thesis, since it is typically pro-

vided at the operating-system level and is complementary to low-level hardware techniques3.

NUMAchine’s hardware supports remote latency reduction by means of the Network Cache

(NC). The NC is an integral part of the NIC, and provides on-station storage for remote cache

lines which have been fetched across the network. Re-use of the line by other on-station pro-

cessors incurs only a low local request latency of the same magnitude as a local memory refer-

3. See [Gamsa 1999] for a description of clustering support in NUMAchine.

NUMAchine Ar chitecture , Implementation & Sim ulator 51

ence. The design of the NC is described in more detail in section 3.1.2. Its performance is

explored in Chapters 4 and 5.

Another factor that affects remote latency is the placement of memory pages amongst the

distributed memory modules. Thepage-placement policydirectly determines whether mem-

ory references are seen as local or remote from a given processor. Techniques such as page

migration and replication can help reduce remote latencies [Culler 1999], and are used by sys-

tems, such as the SGI Origin 2000, which do not make use of a remote-access cache such as

the NC. Since these approaches fall more into the domain of the operating system, we will not

consider them in this dissertation. However, wewill look at different types of page-placement

in Chapters 4 and 5 since the placement policy directly impacts the performance of the NC. (It

will also be shown that, for simulation purposes, some of the benefits of page migration and

replication can be mimicked by an appropriate choice of the paging policy.)

At the architectural level, the final aspect of NUMAchine is the I/O subsystem. Multipro-

cessors are often used to run very large programs that require substantial I/O bandwidth.

NUMAchine provides support for aparallel file system which takes advantage of large num-

bers of smaller disks to increase overall bandwidth and throughput. The implementation of the

I/O card will be described in the next subsection, but the details of the parallel I/O support in

the operating system will not be covered. The interested reader can refer to [Krieger 1997].

With the architecture more or less fixed, we then moved on to the implementation stage,

which consisted of four basic steps:

1. Simulation studies to determine system parameters, such as queue depths and bus widths.

2. Partitioning of controller and datapath logic into COTS chips and/or FPDs.

3. CAD schematic entry and writing of FPD code, using a Hardware Description Language
(HDL).

4. Board-level simulations using the Cadence Logic Workbench digital simulation tool to
verify functionality.

NUMAchine made use of FPDs exclusively from the Altera family of devices, in order to

minimize the number of tools required. While the Altera devices themselves were only mar-

ginally better than the nearest competitor, Xilinx, Altera’s development environment was eas-

ily the best-of-class at the time. Given the complexity of designing such a large and intricate

system, good tools turned out to be the most critical aspect of our design effort. We estimate

52NUMAchine Ar chitecture , Implementation & Sim ulator

that the Cadence toolset required on average six months of daily usage before a designer

achieved proficiency. Part of this was due to a long list of interoperability problems and bugs

in the tools, which is not surprising given the complexity of the tools themselves. However,

once mastered, our board-level simulations turned up many design problems that would have

taken months to find and fix after the cards had been manufactured.

The next three sections will describe the implementation of the various system compo-

nents.

3.1.1 Station: Bus, Processors, Memory and I/O

The prototype version of NUMAchine’s processor card uses a MIPS R4400 processor operat-

ing at 150 MHz with a dedicated 1 MB secondary (L2) direct-mapped unified instruction/data

cache implemented using off-the-shelf SRAMs. The MIPS family was chosen because it pro-

vided solid support for 64-bit and multiprocessor operations, and already had a number of

years of commercial exposure. We also designed NUMAchine to support the next generation

of the MIPS family, the R10000, which provides newer architectural features such as a super-

scalar execution unit and prefetching. However, we have not implemented this design, because

the price of the R10000 was over US$5000 per chip.

The processors also have 16 KB separate primary (L1) instruction and data caches on-

chip. The R4400 contains cache-control circuitry to manage both the L1 and L2 caches using

a MESI protocol4. This control logic is responsible for maintaining both inclusion and coher-

ence between the two cache levels5, as well as dealing with external coherence requests such

as interventions. (An intervention is a request to read a dirty cache line from a processor’s L2

cache, and there are two types, shared and exclusive. A shared intervention allows the line to

stay in the owning processor’s cache, but changes its state to shared. An exclusive intervention

forces the owning processor to invalidate its copy after returning the data.) The MIPS R4400

can have at most one outstanding load/store at any given time.

4. See [Heinrich 1994] for a description of the R4400 protocol details, and [Culler 1999] for a general descrip-
tion of MESI and other protocols.

5. Inclusion means that a cache line in L1must be contained in L2. In practice this means that a line ejected from
L2 must also be ejected from L1 to maintain the subset property. Lines ejected from L1 need only be flushed
back to L2 if they contain modified data.

NUMAchine Ar chitecture , Implementation & Sim ulator 53

All datapaths in NUMAchine (busses and rings) are 64 bits wide and are clocked at 50

MHz, providing peak bandwidth of 400 MB/s. This choice of width for the datapaths matches

the width of the external memory interface of the MIPS processors, and makes the design of

the datapaths simpler. During pre-prototype simulations we found that the bus came close to

saturating for certain applications, so we looked at changing the width of the bus to 128 bits in

the simulator. While this did help, the improvement was only on the order of 5% for overall

execution time. The extra cost of bus drivers and complexity in the datapath was not justified

given our low-cost target and the minimal performance enhancement.

Figure3.2 shows the internal layout of the datapaths for the I/O, memory and processor

cards. The External Agent on the processor card is a 3-CPLD controller which is responsible

64
-d

ee
p64-deep

DRAMBridge

4650
µP

PCI bus

S
C

S
I2

S
C

S
I2

S
C

S
I2

S
C

S
I2

A
ux

(Video,
Ethernet)

I/O

64
-d

ee
p64-deep 64

-d
ee

p256-deep
Processor Memory

External
Agent

LBI

R4400
µP

1MB
L2 Cache

Lo
ca

l B
us

256 MB

DRAM

DRAM
Ctrl

Directory
Controller

FIGURE 3.2: Cards on the station b us. The I/O card contains a bridge controller,
which interfaces between a MIPS 4650 embedded processor, DRAM for I/O staging
buffers and a PCI bus. The PCI bus can contain up to four SCSI-2 controllers, and one
auxiliary connector for a commodity PCI card (e.g. Ethernet or video). The I/O card also
contains the bus arbiter (not shown). The processor card has the MIPS R4400, plus a
Local Bus Interface (LBI). The Local Bus provides a DUART, boot EPROM and an off-
board debugging connection. On the memory card, the directory controller maintains
cache coherence, and interfaces to the DRAM controller, which manages the flow of data
into and out of the 256 MB of 4-way interleaved DRAM.

NUMAchine Station Bus

54NUMAchine Ar chitecture , Implementation & Sim ulator

for converting the R4400’s system interface bus requests into NUMAchine commands, and

also doing some simple encoding/decoding of the NUMAchine address space. The LBI is a

low-speed auxiliary bus on which resides a DUART, EPROM containing bootstrap code for

the processor, and an off-board connection to allow initial debugging and network access in

the absence of an I/O board.

As mentioned above, the station bus uses a Futurebus+ backplane as the physical bus

medium. The Futurebus+ specification also includes a full bus protocol, but we decided that

this was overly complicated for our needs, so we designed a custom split-transaction protocol.

Splitting the transactions means that requests and their associated responses use separate bus

transactions. While this allows for more concurrency, it also makes the coherence protocol

more complicated.

Addresses and data on the bus are multiplexed onto the same lines. For each valid cycle

on the address/data (A/D) bus, a parallel set of 16 lines provide command and control infor-

mation. Another 8 lines provide data integrity and error detection on the A/D bus. The R4400

can be configured at boot time to use either parity-checking or a more robust error-correcting

code (ECC) scheme calledsingle-error-correcting/double-error-detecting (SECDED). (See

[Heinrich 1994] for details on the ECC.) Parity can detect single-bit errors but cannot fix

them. While much weaker than ECC, parity has the advantage that it is much simpler, and

most commodity components such as FIFOs and buffers come in versions that include parity-

checking circuitry. This allows data integrity to be checked at various points along the datap-

ath, aiding in diagnostics.

The memory card contains up to 256 MB of 4-way interleaved DRAM. The interleaving

provides enough pipelining to allow the DRAM to feed the outgoing queue at its maximum

rate of one doubleword (8 bytes) every clock cycle. The directory and DRAM controller are

also pipelined to allow input request processing to begin while the DRAM is still processing

the previous request.

The directory controller maintains the hardware cache coherence state tables. The con-

troller is implemented in 3 CPLDs, which take care of predecoding commands, directory

lookup and state transition generation. Placing the entire coherence engine in FPDs was

invaluable during the debugging stage. A handful of bugs which managed to slip past the sim-

ulation validation runs required only a 30-second reprogramming of the controllers to fix. In

fact, at one point we realized that the diagnostic unit on the memory card did not generate par-

ity, which caused the processor to take a parity exception. We added a new command bit

NUMAchine Ar chitecture , Implementation & Sim ulator 55

instructing the processor to ignore parity for data only in the specific command. The entire fix

to both memory and processor logic took us under half a day.

Not shown in the figure for the memory card is an independent controller called the Spe-

cial Functions (SF) unit. The SF provides diagnostic information on the memory card, and

also provides a block-transfer engine which is tightly integrated with the coherence controller.

The SF is basically a coherence-aware DMA engine. The SF is capable of gathering up all

cache lines for an arbitrarily large block of memory. Since these cache lines may have dirty

data elsewhere in the system, the SF first fetches them and cleans up the directory state, then

ships the block out to either an I/O card (for paging) or another memory card (for page repli-

cation and migration). At the time of writing, the SF functionality has not been fully inte-

grated into the OS, and so no performance results for the SF will be presented.

And, finally, the I/O card provides disk access, and optionally the ability to plug in a stan-

dard PCI Ethernet or video card (for fast frame buffer graphics). The goal of NUMAchine’s

I/O subsystem is to provide large amounts of parallelism to the file system. The four SCSI-2

controllers can each support numerous disks, although realistically the maximum is around

four per controller. As with the SF unit, no performance results will be presented for the I/O

card.

3.1.2 Station: Network Interface Card and Network Cache

The NIC provides the connection between the on-station bus and the Local Ring. As shown in

Figure3.3, the NIC consists of two datapaths from the bus to the ring and vice versa. Both

datapaths share access to the on-board Network Cache (NC) on a first-come/first-served basis.

Since NUMAchine uses a slotted-ring instead of token-ring protocol, cache lines (of size

64 or 128 bytes) are fragmented into packets for transmission and can be interleaved with

incoming packets from other transactions. This necessitates re-assembly of multi-packet

transfers back into blocks on the receiving end. The packet re-assembly area shown in the fig-

ure consists of 350 KB of SRAM and a CPLD controller. The memory-mapping scheme for

the re-assembly area makes use of the fact that each processor can have at most one outstand-

ing request and up to four writebacks active in the system at any one time. Using the sending

station’s ID in the re-assembly address guarantees that no two data packets can conflict. The

56NUMAchine Ar chitecture , Implementation & Sim ulator

Sinkable and Nonsinkable FIFOs in the diagram are used to implement separate virtual

request/reply networks, and will be described in more detail in section 3.1.4.

The synchronizing FIFOs allow the ring to be run at a different clock rate than the sta-

tions. Firstly, this allows us to speed up the ring in the case that it proves to be a bottleneck. (It

turns out that the Central Ring can saturate and cause problems for certain applications. The

Central Ring is designed to handle higher clock speeds as discussed in the next section.) Sec-

ondly, clocking in such a large system is difficult to do with low skew. Our clock distribution

scheme uses an independent source on each station which generates all on-station clocks.

Thus there is no guaranteed phase relationship between stations. The synchronizing FIFOs are

FIGURE 3.3: The NUMAc hine Netw ork Interface Car d (NIC). This figure gives a
simplified overview of the NIC datapaths (no control logic is shown). The synchronizing
FIFOs allow the clocks for the ring and the rest of the card to run at different speeds.
Cache lines are broken into slot-sized packets on the ring, and so require re-assembly at
the receiving end. The Network Cache is time-shared between the incoming and outgoing
data paths. The Sinkable and Nonsinkable FIFOs have to do with flow control, as
explained in section 3.1.4.

Ring
In

Ring
Out

Pass-through
Buffer

Packet
Re-assembly

Network
Cache

Directory

Station Bus

Sinkable
FIFO

Non-Sinkable
FIFO

DRAM

Synchronizing
FIFOs

64
-d

ee
p64-deep

25
6-

de
ep

25
6-

de
ep

NUMAchine Ar chitecture , Implementation & Sim ulator 57

designed to handle different input and output clocks, with internal circuitry to avoid metasta-

bility6.

The NC is implemented using four CPLDs for control, 512 KB of SRAM for directory

information, and 8 MB of Synchronous DRAM for cache line storage. Our initial simulation

results indicated that the knee of the performance curve for the NC lay at about 4 MB for the

prototype. However, the only SDRAM chip geometries available at the time meant that our

NC had to be either 2 MB or 8 MB, so we chose the latter.

3.1.3 Rings

The architectural reasons for choosing rings were discussed above. From an implementation

standpoint rings are also convenient. Firstly, rings are simple to design and implement as they

use only point-to-point connections. Secondly, routing on a ring is simple and fast. In NUMA-

chine, a structure called afiltermask (described in more detail below) is used for routing. At

each hop in the ring a single bit in the filtermask indicates whether the packet in the current

slot has reached its destination or not. The filtermask also provides support for multicasting at

no extra cost. As we shall see in Chapter 5, multicasting is put to good use by the coherence

protocol.

The rings are unidirectional and utilize a slotted-ring protocol. This means that for a four-

segment ring there are four slots that move one hop forward in each 20 ns clock cycle. A given

slot can be either full or empty. If empty, then a NIC with data waiting to be sent out can fill

the slot as it goes by. If full, the slot’s data is either consumed by the NIC or passed along7. On

a given clock tick, if a packet is consumed by the NIC then the slot is freed up. NUMachine

has an option in the hardware (configurable by the OS) to use the newly freed slot for outgo-

ing packets from the same NIC. In a lightly loaded ring this has the advantage of reducing the

average latency for ring access by slightly more than one clock tick. (The alternative is to wait

for the next slot to come by. Under light loading this next slot has some small probability of

6. Metastability can occur when the data input to a flipflop does not meet the flipflop’s setup- and hold-time
requirements. The output of the flipflop hovers at some indeterminate voltage, which is neither a valid logic
‘0’ or ‘1’, for a random period of time.

7. For a multicast/broadcast packet, it is possible to do both. The effect is to split off a copy of the packet for the
local NIC while also allowing the original to continue around the ring.

58NUMAchine Ar chitecture , Implementation & Sim ulator

being occupied, thus the savings on average are slightly greater than one.) The use of the just-

freed slot also allows insertion into the ring even in the case of a constant flow of upstream

packets that are consumed by the NIC, which would otherwise lead to starvation due to the

lack of free slots from upstream. On the other hand, the just-freed slot option can cause starva-

tion problems for the downstream NIC if the network is heavily loaded, since in this case each

NIC greedily uses any free slots that become available. Simulation results in the next chapter

will show that use of the just-freed slot is on average slightly beneficial.

The Inter-Ring interface (IRI), as the name implies, joins the Local to the Central ring,

and is shown in Figure3.4. The architecture is simple, with an up and a down queue, and

some control logic (not shown) to perform the ring functions and flow control. (Flow control

is discussed in section 3.1.4.) As mentioned above, the Central Ring was designed to allow

higher speed operation. To achieve this, the four IRIs necessary to implement the Central Ring

for the 64-processor prototype were combined into a single printed-circuit board (PCB). Thus

in the figure, the Central Ring connections are actually traces on the PCB, while the Local

Ring connection is made using cables (which connect to NIC cards on either side). Our CAD

simulations indicate that the Central ring should be able to run at around 75 MHz.

Central
Ring In

Central
Ring Out

Pass-through
Buffer

Synchronizing
FIFOs

51
2-

de
ep

51
2-

de
ep

Local
Ring Out

Local
Ring In

Pass-through
Buffer

FIGURE 3.4: The Inter -Ring Interface (IRI). This interface does simple buffering and
flow control on both the Local and Central Rings. The synchronizing FIFOs allow the
upper and lower level rings to run on different clocks.

NUMAchine Ar chitecture , Implementation & Sim ulator 59

Much more detailed information on the NIC and ring implementations is available in

[Loveless 1996].

3.1.4 Flow Control and Deadlock Avoidance

NUMAchine uses flow control as a means of buffer management to ensure that packets are not

lost due to overflow. Deadlock can occur if there is a circular dependence amongst resources

stalled by flow control. Consider the example of a memory’s input queue, which is stalled due

to a large number of incoming requests. Some of these requests require interventions to a local

processor, each intervention requiring space in the output queue. The processor, however, is

also stalled due to a large number of previous interventions. In the processor’s case the stall

occurs because the output queue is stuck waiting for memory to become free to accept the

intervention response data. Neither the processor nor the memory can make any forward

progress in this case. NUMAchine avoids deadlock through use of a throttling mechanism for

flow control. In addition, the NIC’s sinkable and nonsinkable queues present separate request

and response paths, allowing responses to bypass requests in certain cases that would other-

wise lead to deadlock. (In all other parts of the system requests and responses use the same

paths. This is described in more detail below.)

Even if there is a theoretical upper bound on the number of requests and responses exis-

tent in a system at one time, it is not practical to provide enough buffering to accommodate the

worst case8. There are thus two basic mechanisms for ensuring that data is not lost due to

buffer overflows. In the first scheme, send buffers remain allocated (keeping copies of sent

data) until an acknowledgment has been received. If one has not been received after some

time-out period, the buffer is re-sent. The time-out must be large enough to accommodate the

largest possible time for an acknowledgment, so this scheme pays a high performance penalty

for buffer overruns, but works well if the probability of such overruns is small. It also allows

the buffers to run near capacity. This approach also requires some extra complexity to ensure

that livelock does not occur.

8. Each R4400 processor can have at most one outstanding load or store. It is possible, though, for each proces-
sor to flush back dirty cache regions, causing a large number of writebacks to flood the system.

60NUMAchine Ar chitecture , Implementation & Sim ulator

A second approach is to use back-pressure or throttling. A receive buffer that is nearing

capacity sends a signal to all possible transmitters to stop issuing packets. No timers are

needed using this scheme because buffers are never allowed to reach the overflow point. The

drawback is that the buffer must leave enough room to handle all possible in-flight packets

that might be issued before the throttling can take effect. This can lead to very inefficient aver-

age use of buffer space unless the throttling time is fast. Another shortcoming is that all send-

ers are stopped, even if they are not targeting the specific receiver.

NUMAchine utilizes the throttling method because the lack of acknowledgments and

timers makes it simpler to implement, and also because commodity buffers are cheap, mean-

ing that inefficient buffer utilization does not carry a heavy premium in dollar terms. Each

level in NUMAchine’s hierarchy uses flow control with its immediate connections. Before

discussing the details of the flow control scheme, we must discuss deadlock avoidance.

A standard approach to handling deadlock in multiprocessor systems is to use separate

request and reply networks. To actually physically run two networks in parallel is not practi-

cal, so what is usually done is to use separate virtual channels. The same physical data links

are used by both, but they have separate buffering and flow control. This is the approach taken

in NUMAchine.

Instead of separating the request and response paths, NUMAchine usesnonsinkable and

sinkable transactions, which correspond roughly to requests and responses respectively. A

sinkable transaction is one which is known not to generate any kind of further traffic after hav-

ing been received by a communications endpoint (i.e. a processor, memory or I/O). Write-

backs and data responses fall into this category. The key characteristic of sinkable transactions

is that their receipt in an input queue will not require any space in an output queue. Nonsink-

able transactions such as reads and interventions will usually (unless they are negatively

acknowledged) require some means of ensuring that enough space is available in the output

queue to handle a cache line’s worth of data before they can be accepted.

NUMAchine uses separate flow control mechanisms for sinkable and nonsinkable trans-

actions. Sinkable transactions are stalled only when input queues are nearly full9. Since sink-

able transactions are guaranteed to be consumed, their processing can continue independent of

any output buffering stalls, which means that forward progress is guaranteed even if every

9. The commercial FIFOs used have programmable flags which indicate when more than some specified number
of entries in the FIFO have been used.

NUMAchine Ar chitecture , Implementation & Sim ulator 61

other part of the system is stopped. In general there are two approaches, both of which are

used at various points in the system. The first is to use separate queues for the sinkable and

nonsinkable paths. Duplicating the queues is rather expensive, though, so it is only used on the

NIC card (as shown in Figure3.3). This allows sinkable transactions to bypass nonsinkable

ones if the latter are stalled. This bypassing feature on the NIC is necessary because it is not a

datapath endpoint. For the processor and memory cards, whichare datapath endpoints, the

method used is to have a single queue for both types, but to count the number of nonsinkable

transactions that have arrived, and only allow in as many as could possibly cause the output

queue to nearly fill up in the worst case.

The processor card uses 64-entry, 8-byte wide queues for both input and output in the

prototype. The default system cache line size of 128 bytes uses 17 entries in a queue (16 data

+ 1 command). The nonsinkable busy counters for processor are thus set to 2, leaving a mar-

gin of error of one nonsinkable request in case the bus arbiter gives a grant before the busy

signal is recognized. On the processor, having a maximum of two pending interventions is

fairly reasonable, since it is unlikely that a single processor is likely to be the target of more

than two requests during the time required for a processor to service an intervention. (Note

however that the intervention latency is variable, from 8-28 processor cycles. This is due to

the fact that the L2 cache controller needed to process the intervention may be busy with inter-

nal processor activity.) The memory, since it is likely to be the target of many more simulta-

neous requests, uses 256-entry queues on the output, and the same 64-entry queues as the

processor on the input. The memory’s nonsinkable counter is thus set to 8, which will be

shown to be more than adequate.

On each ring (both Local and Central) there is a single Stop_Ring signal that is asserted

should the queues fill past the 3/4 mark, disallowing insertion of new packets into the ring. No

differentiation is made between sinkable and nonsinkable packets, because on the rings we are

dealing with single packets, not entire cache blocks. Also, there is enough buffering in the

nonsinkable queue on the NIC card, so the only likely cause of a Stop_Ring condition is a

flood-of-writes coming through the system. The NIC’s ring queues are 256 deep in both the

incoming and outgoing directions, while the IRI uses 512-deep queues. This corresponds to 8

and 16 cache lines in the respective queues before ring flow control is triggered. Even under

bursty conditions we will show in the next chapter that the ring flow control is only infre-

quently activated.

62NUMAchine Ar chitecture , Implementation & Sim ulator

3.1.5 Hardware Cache Coherence

This section will give a brief synopsis of NUMAchine’s hardware cache coherence scheme. A

complete description can be found in [Grbic 1996]. The cache coherence scheme is descended

from NUMAchine’s predecessor project, Hector, as described in [Farkas 1992].

NUMAchine’s cache coherence uses a writeback-invalidate protocol and a full directory

which is broken into two levels: home memories and the NCs. The home memory stores the

coherence state (described later) and two bitmasks. The first, called theprocessor mask or

Pmask, indicates which of the four on-station processors potentially has a copy of a cache

line. The Pmask may be conservatively inaccurate, because there is no notification of shared

cache line ejections, so a processor marked as a sharer may not currently have a copy. This can

lead to a case where processors receive unnecessary invalidations, but since the invalidation is

sent out in a single atomic multicast on the bus there is no extra bus traffic generated10. In

addition, invalidations are very low-overhead operations in the L2 caches, so sending too

many does not incur much of a penalty as long as it does not happen too frequently.

The second bitmask is called thefiltermask or Fmask, and it stores the same type of infor-

mation as the Pmask but for remote copies. This is an inexact coarse-grained indication of

which rings and stations (not processors) in the system contain copies. From Chapter 2 we

know that storing a full bit-vector causes the number of directory bits to scale as O(N) for an

N-processor system. To reduce this cost, we split the Fmask into two pieces, which we refer to

as thering portion andstation portion, corresponding to the two levels of hierarchy as indi-

cated in Figure3.5. To understand the working of the Fmask, first consider each of the Local

Rings to be a single object, ignoring that it is actually composed of stations. If Local RingR

(R=0,1,2,3) containsat least one copy of a given cache line, then we set bitR in the ring por-

tion of the Fmask. For the station portion, we set bitS if stationS on any of the Local Rings

contains a copy. As shown in Figure3.5, imprecision arises when two or more rings have dif-

ferent sets of sharing stations. Any pattern of sharing constrained to a single Local Ring is pre-

cise, as is any sharing on multiple Local Rings if the set of sharing stations is identical for

each ring. All other patterns will include some imprecision. (Note that a dirty copy has a sin-

gle owning station, so it is always precise.)

10.This is a multicast, not a broadcast, because only those processors with bits set in the Pmask are targeted. If no
bits are set (all shared copies are remote), then no invalidation is sent out.

NUMAchine Ar chitecture , Implementation & Sim ulator 63

The advantage of this scheme is that it reduces the scaling of the directory storage to

O(N1/L), whereL represents the number of levels of hierarchy. The drawback is that imprecise

masks can cause unnecessary invalidations. The worst possible case is where a single different

FIGURE 3.5: The NUMAc hine filtermask. Colours are used to show the bit
correspondences. A bit in the ring half of the Fmask is set if one (or more) stations on the
Local Ring of the same colour contains a copy. The station half is similar, with a set bit
corresponding to one (or more) of the same-coloured stations The filtermask shown at the
top of the figure is precise, since each set station bit corresponds to a true copy of the line.
(True copies are shown shaded, false copies are hatched). The filtermask at the bottom is
imprecise, since it includes stations which do not actually have copies.

1 0 0 0 0 0 1 1

STN 1

STN 2 STN 0

STN 3

Local
Ring 3 STN 1

STN 2 STN 0

STN 3

Local
Ring 2

STN 1

STN 2 STN 0

STN 3Local
Ring 1

STN 1

STN 2 STN 0

STN 3 Local
Ring 0

Ring Station

0 0 1 1 1 0 0 1
Ring Station

Cache Line B

Cache Line A

64NUMAchine Ar chitecture , Implementation & Sim ulator

station on each Local Ring contains a copy. This leads to a full Fmask with all bits set, select-

ing all 16 stations instead of the four that really have copies. There are two reasons why this is

not as problematic as it might seem. Firstly, we have already mentioned that invalidations are

not very costly. Secondly, typical sharing patterns involve one, two or all processors, and only

rarely numbers in between [Culler 1999]. Thus, the frequency with which we send unneeded

invalidations to a station is low. The main advantage to the filtermask from an implementation

standpoint is that it allows very simple and fast routing and multicasting on the rings. In the

following chapter we will look at just how often the filtermask overspecifies stations.

The NC forms the second level of the coherence directory. While the filtermask described

above determines which stations in the system have copies, the NC on a station keeps track of

all local copyholders using its own Pmask. Because the NC is organized as a cache, it is possi-

ble that a line, including the directory contents, may have to be ejected11. There are two gen-

eral approaches to handling this situation: strict and lazy. In the strict approach we must

correctly update the home memory directory to reflect the loss of NC information. For a line

which shows up as shared in the NC, we would first invalidate all local copies, and then send a

message to the home memory requesting that it remove the station from the sharing list. For a

dirty copy on-station, the NC would have to make sure that the line was flushed back to mem-

ory. In contrast, the lazy scheme simply allows the directory information to be thrown out

without informing the home memory12. In certain cases, extra states are added to the coher-

ence protocol to handle the situation where directory information for a requested cache line

has been discarded. For invalidations to shared lines the extra processing is minimal: the inval-

idation is simply broadcast to all processors on the station. For dirty lines, the NC must send

out intervention requests to all on-station L2 caches and wait for the responses before it can

take action, which is costly. However the overall cost may not be excessive if this situation

occurs rarely, and the trade-off is that we avoid operations that, while less costly, take place on

every ejection, and thus occur frequently. NUMAchine uses the lazy scheme, and simulation

results in Chapter 4 will show that this choice is a good one.

The coherence state maintained for each line is different in the memory and the NC. The

memory state requires two bits for the state, plus eight bits for the Fmask. One bit of the state

11.Note that lines in the NC are ejected only on capacity or conflict misses. Coherence misses only affect the
state of the line.

12.If the NC (and not a local processor) is the owner of a dirty line, it must first issue a writeback to the home
memory.

NUMAchine Ar chitecture , Implementation & Sim ulator 65

information indicates whether the line islocked or not. Locking of the line occurs at the begin-

ning of a coherence action that requires multiple stages, and ensures that no other access to the

line can take place until the previous transaction completes. The second bit indicates whether

the current state of the line is shared or dirty, or in NUMAchine terms Valid or Invalid, respec-

tively. (Valid or invalid here refers to the state of the memory’s or NC’s data, not the proces-

sor’s. Thus, Invalid means that the memory or NC does not have valid data, and that the

modified data resides in some local processor’s cache.) There is a third implicit state bit

derived from the Fmask. If the Fmask contains bits set for any stations/rings other than those

of the home memory, then there are possibly remote copies, and the line is said to be Global;

otherwise the only possible copies are on the station, and the line is called Local. Ignoring the

Locked bit which is set independently, there are then four states for a line in home memory:

• Global Valid (GV) - One or more remote stations requested a shared copy of this line at
some point in the past. Write access to the line can only be gained by first invalidating
all of these potential copies.

• Global Invalid (GI) - A dirty copy of this line is owned by some remote station. Read or
write accesses must be redirected to the remote owner.

• Local Valid (LV) - The only potential shared copies of the line are in (home memory)
local processors. Write access (local or remote) can be gained by first multicasting an
invalidate on the station bus only, since there are no remote copies.

• Local Invalid (LI) - A local processor (as recorded in the memory Pmask) has a dirty
copy and ownership of the line. Read or write accesses can be satisfied by means of local
bus intervention operations.

Any one of these states can also be locked, which we signify by prepending an ‘L_’, so for

example L_GV is Locked Global Valid. Figure3.6 shows a simplified sequence of transac-

tions taking place for one particular cache line. In most coherence protocols, invalidates

require acknowledgments from all the remote targets because of the possibility of requests

bypassing each other in the network. This ensures that all remote nodes are guaranteed to have

seen an invalidate before more coherence traffic can target a line. In NUMAchine, however,

we can take advantage of the fact that in a hierarchical ring topology there exists only one sin-

gle path between any source and destination. This means that there is no way for two requests

66NUMAchine Ar chitecture , Implementation & Sim ulator

from a specific source to arrive in a different order, no matter what the destination. This, in

turn, means that an invalidation which has gone around the ring (or rings) and returned to the

home location guarantees the ordering, as seen byany processor, for future coherence actions

to the line. These future accesses must wait for the returning invalidate to unlock the line, and

it is not possible for such accesses to generate a request that overtakes a previous invalidate.

This ordering property greatly simplifies the design and implementation of the coherence pro-

tocol.

State information contained in the NC complements that in the home memory. The set of

states is similar to those for main memory, with the following additions and modifications:

FIGURE 3.6: Coherence actions at the home memor y. The memory starts off in state
LV, with no copies in the system. (a) A local processor misses and does a shared read
(Rd_S) which returns shared data (Dat_S). The state stays LV. (b) The processor writes to
the shared line, issuing an upgrade (Upg). Memory responds immediately with an
invalidate (Inv). The memory state switches to LI, and the processor’s copy becomes dirty.
(c) Some remote node does a shared read. Memory locks the line and sends out a shared
intervention (Intv_S) to the processor, which responds with shared data and changes its
state. Memory forwards the data to the remote node and changes its state to GV. (d) The
remote node now writes to the line. The upgrade causes memory to lock the line, and send
out one invalidate to the local processor, and another invalidate which traverses the rings,
acknowledging the remote node and ultimately returning to memory and switching the line
to GI.

Memory

LV

Local Processor

miss

LV

shr

R
d_

S

Memory

LV

Local Processor

shr

LI

dirty

U
pg

D
at_S

Inv

Memory

LI

Local Processor

dirty

L_LI

shr

Memory

GV

Local Processor

shr

L_GV

invalid

Inv

GV

Intv_S

R
d_S

Remote

D
at

_S
D

at
_S

U
pg

Remote

In
v

Inv

GI

TIME

(a) (b) (c) (d)

NUMAchine Ar chitecture , Implementation & Sim ulator 67

• Notin Tag (NT) - This is not a true state, but arises when the request’s address does not
match the address tag of the current occupant of the line in the NC (i.e. we have a cache
miss). This miss can occur either because the request is the first reference to the line
(cold miss) or because the information was previously ejected (capacity or conflict
miss).

• Notin State (NS) - This state indicates that the NC contains no useful information on the
line, although the tag does match. This state is needed only in a rare corner case, where a
miss in the NC results in a remote request which eventually gets a negative acknowledg-
ment (NACK). While the tag matches, nothing else is known about the line.

• Local Valid (LV) - This is the same as the main memory state, except that in this case the
NC is the owner of the most up-to-date data (stored in the NC DRAM). Remote inter-
ventions can be satisfied by the NC directly, without querying the processors. Upon
ejection, a line in the LV state must be written back to memory.

When the NC processes a response, there are two locations that require an acknowledg-

ment: the home memory, so that the line can be unlocked, and the original requester. If the

original requester happens to also be in the home memory station, then a single response can

be multicast on the home memory’s bus to satisfy both requirements. Otherwise, there are two

approaches. One is to send the response back to the home memory, and let it forward a copy to

the requester. This is often referred to as a 3-hop scheme, because the network gets used once

for the original request, and twice more for the two stages of the response. NUMAchine uses

an optimized 2-hop protocol, whereby the NC is responsible for sending responses to both. It

does this by inserting the response into the output queue to the ring twice13. In order for

coherence to be maintained, it is important that the response to the home memory be the first

into the queue. If this were not the case, it would be possible for the requester to see its

response while the other response is stuck in the network. The requester could then send

another request that could possibly arrive at the home memory before the first response.

13.Note that we cannot use a multicast, because depending on the home memory’s and requester’s Fmasks,
ORing the two may result in an imprecise Fmask, which would erroneously target two extra stations.

68NUMAchine Ar chitecture , Implementation & Sim ulator

3.1.6 Retry Mechanism and Negative Acknowledgments

Since cache lines can be locked by the coherence scheme, a mechanism is needed to handle

requests that hit to a locked line in either the memory or NC. The best approach would be to

queue up all such requests and service each one in order when the line eventually becomes

unlocked. This would guarantee both fairness and correctness properties, but requires more

resources and logic in order to implement the pending queues.

Instead, NUMAchine uses a binary exponential backoff, similar to that used for media

access control by Ethernet. Such a scheme is known to be stable for low levels of congestion

[Goodman 1988].14 In the NUMAchine version, any request to a locked line is immediately

sent a NACK. Upon receipt of the NACK, a processor waits for some period of time before

retransmitting the request, giving the line a chance to become unlocked. With each successive

NACK, the waiting period is doubled. After some maximum number of retries is reached (64

in the prototype), the request is deemed to have failed, and a bus error is signalled to the pro-

cessor. The backoff mechanism does not guarantee fairness, because there is no priority given

to requests that have been forced to retry a number of times. (This would in any case require

breaking the lock on a cache line to allow preemption, making the cache coherence protocol

much more complicated.) In the extreme case, lack of fairness can lead to starvation, which in

our case is fatal, because the bus error will cause the associated process to be killed even

though no fault has occurred in the system.

Early simulation studies and debugging on the prototype showed that the binary exponen-

tial backoff approach did indeed suffer from starvation problems. Our initial attempt at a fix

involved changing the backoff so that it reached a saturation point, or plateau. After some

fixed percentage of the maximum number of retries had been issued, the backoff interval was

held constant, giving all processors that had already retried a number of times an equal proba-

bility of accessing the line. This did not solve the problem, though, because new requesters

could still starve out an old requester. Our solution was to change the plateau value from being

the latest (longest) interval to being the initial (shortest) interval. After 32 retries using the

binary backoff, the processor then issues the rest of the retries in quick succession to increase

the probability of grabbing access to the line as soon as it becomes unlocked. This effectively

gives requests with high retry counts a higher priority. One other feature is the use of different

14.Stability in this context means that the number of retries is bounded, i.e. the request will eventually get
through.

NUMAchine Ar chitecture , Implementation & Sim ulator 69

values for the longest backoff interval for local and remote requests. Remote requests have

longer latency for both data and coherence actions, and may require longer retry times. Under

our original plateau scheme we allowed the maximum backoff interval to be two or four times

as long for remote requests. With our modified scheme, we use the same maximum for both,

in order to make the control logic simpler.

While this modified backoff mechanism still does not guarantee fairness or starvation-

avoidance, in practice both simulations and programs running on the prototype indicate that

the technique works, although the lack of fairness still causes performance degradation. The

backoff performance will be investigated in the next chapter.

One possible enhancement to the backoff mechanism is to use a form of request combin-

ing, whereby multiple requests to the same address can be merged, and the responses deliv-

ered simultaneously. In NUMAchine, combining could take place in the memory and NC for

certain types of locked lines. For example, a shared request to the NC that finds the line locked

due to a previous, as-yet-unanswered shared request for the same line can be combined. The

response (or NACK) can go to both. (Note that combining only works for shared requests.)

This guarantees the promptest possible response for the second request, while saving bus

bandwidth by reducing the number of retry NACKs. Only small changes are required to the

directory maintenance logic to store any subsequent requesters in the Pmask. Combining on

the home memory station is somewhat trickier. If the memory module generates the response,

then the same approach as the NC will work. However, in the case where the response comes

from a remote intervention, the NIC card sends the response directly to the requesting proces-

sor and memory. When the second request comes into the memory, there is no way for it to

notify the NIC that when the response finally arrives, it must add another target. In this case

we could modify the memory coherence controller so that the intervention response both

unlocks the line and also forwards the response to the second requester. The only problem

with this approach is that a sinkable transaction (the intervention response) could generate a

response, which would require modifications to the flow control scheme. We will measure the

possible benefits of adding combining in the next chapter.

3.1.7 Memory Consistency

As mentioned in Chapter 2, NUMAchine supports the sequential consistency model, which is

70NUMAchine Ar chitecture , Implementation & Sim ulator

the most intuitive model for writing shared-memory programs. The main reason for choosing

this model is that NUMAchine’s architecture inherently provides simple and efficient support

for sequential consistency, as explained below. Another reason is that the MIPS R4400 pro-

cessor is not designed to support more aggressive consistency schemes such as release consis-

tency. The R4400 is a non-superscalar microprocessor with blocking caches15. (As mentioned

before, the original design targeted the MIPS R10000 whichcan support more aggressive

schemes, but this newer chip was beyond our budget.) The R4400does have a write buffer, but

it is only used for uncached writes, and it is only one word deep. Thus all accesses from a

given processor will issue in order. This means that the weakest form of consistency naturally

supported by the hardware is processor consistency. (Weaker forms of consistency are possi-

ble if the coherence scheme and programming model are changed to allow writes to proceed

optimistically, and then providing some means of merging conflicts. This would have led us

too far astray from our basic principle to keep the system as simple as possible.)

In analysing the impact of processor versus sequential consistency, we found only mini-

mal differences. The natural sequencing and broadcast capability of the ring are the reasons

that the two consistency schemes do not differ greatly. Figure3.7 shows a case where two

variablesX andY which are in different cache lines are being written by two different proces-

sors on different stations (only two of which are shown for clarity). Both stations start off with

the same shared values ofX andY. At the same point in time each station writes to the variable

whose home memory location is the other station. This causes upgrades to be sent to the home

stations, and in (b) the invalidates are shown already having traversed half the ring and having

acknowledged the writes, so the shaded variables contain modified (new) data. If the stations

read the other (non-written) variable before the invalidates arrive in (c), it is possible for STN0

to see [oldX, newY] and STN1 to see [newX, oldY] which violates sequential consistency16.

In order to provide for sequential consistency, NUMAchine makes use ofsequencing

points on both the Local and Central Rings. (In the figure the sequencing point is shown in the

middle of a ring hop for clarity, but in reality the sequencing point is either a pre-assigned sta-

tion or an inter-ring interface if present. Also note that the figure shows only one ring level,

15.A blocking cache stalls on a miss, disallowing any further loads or stores until the blocking access is finished.

16.Note: we assume here that the invalidates kill the old shared copiesat the end of their trip around the ring. If,
on the other hand, we assume that the invalidates kill all local copies before being injected into the ring, the
scenario shown in the figure does not violate sequential consistency. Even with local pre-invalidations it is
possible to violate sequential consistency in much the same fashion, but the diagram requires four stations and
so is not shown.

NUMAchine Ar chitecture , Implementation & Sim ulator 71

but both the Global and Local rings contain sequencing points.) The basic idea is that any

X Y

STN0

Home X

UpgY

X Y

STN1

UpgX

Home Y

X Y

STN0

Home X

InvX

X Y

STN1

InvY

Home Y

FIGURE 3.7: Sequential consistenc y in NUMAc hine . Only two (of four) stations and
one level of ring are shown for clarity. Initially, both stations have shared copies of two
variables, X and Y, which reside in different cache lines. In (a), STN0 writes to Y, whose
home location is on STN1. STN1 does the same but with X. In (b) and (c) shaded boxes
indicate modified data, hatched indicate invalid data. In (d), (e) and (f) invalidates are
inactive until they pass the sequencer.

(a) (b)

X Y

STN0

Home X

X Y

STN1

Home Y

(c)

InvX

InvY

X Y

STN0

Home X

X Y

STN1

InvY

Home Y

(d)

InvX

X Y

STN0

Home X

X Y

STN1

InvX

Home Y

(e)

InvY

X Y

STN0

Home X

X Y

STN1

Home Y

(f)

InvX

With Sequencer

Without Sequencer

72NUMAchine Ar chitecture , Implementation & Sim ulator

broadcast packet is initially inactive, meaning that it is simply passed along without any desti-

nation checking. A broadcast becomes active only when it passes the sequencing point on the

highest level of ring it must traverse to reach its broadcast targets. This imposes an ordering

between any two broadcast packets on a given level of ring, as shown in parts (d), (e) and (f)

of the figure. The sole negative impact of providing sequential consistency is to add on aver-

age half a ring traversal—two to three hops at 20 ns per hop, or about 50 ns—to the path of

broadcast packets.

3.1.8 Architectural Summary

While the use of rings in a multiprocessor is not new, NUMAchine’s use of the ordering prop-

erties inherent in rings to simplify the design and implementation of the cache coherence pro-

tocol, and also to provide sequential consistency, are novel. In the next two chapters we will

show that these features of NUMAchine are efficient.

The simplicity of the implementation and the use of COTS parts and FPDs allows

NUMAchine to reach its goal of being low cost. In addition, the marginal cost to increase the

size of the system stays fairly linear. The cost of moving from anN-station to anN+1-station

system is the cost of the station itself, plus one set of ring cables (which cost about $200).

There is a jump in cost as the system size crosses 16 processors, since this requires the addi-

tion of the Central Ring. However, since the Central Ring is a single card with simple and reg-

ular datapaths and FIFOs, it is feasible that the entire card could be integrated into a small

number of ASICs (possibly even one). This would allow the cost to scale nearly linearly right

up to the maximum system size of 64 processors.

3.2 The NUMAchine Simulator

In modelling a system as complex as a multiprocessor the trade-off between model accuracy

and complexity is particularly significant. Simple models cannot possibly capture the details

of such a nonlinear network of interacting processes. (By nonlinear we are referring to the fact

that a small change in the reference stream could potentially cause a large change in the per-

formance. Features such as caches and congested networks make such systems impossible to

model analytically.) On the other hand, the most accurate model would involve describing the

system at the gate level, using a Hardware Description Language (HDL) such as VHDL or

NUMAchine Ar chitecture , Implementation & Sim ulator 73

Verilog. Not only would such a model take as much time to build as the machine itself, but

such a low level of abstraction makes it extremely time-consuming to change architectural

features and do forward-looking studies. The approach taken for the NUMAchine simulator is

to model at a low enough level to accurately capture the salient details, but no lower. Thus, for

example, all queues in the system are modelled accurately, since the average and largest depth

of queued entries are good indicators of occupancy and congestion, respectively. For the

memory modules, the detailed DRAM and coherence directory interactions are not modelled.

Instead, we represent the coherence directory lookup time and DRAM access times as single

numbers. For the directory lookup this is a fairly accurate approximation. For the DRAM, fea-

tures such as refreshing, which can cause an extra delay, are ignored because they happen

infrequently or do not have a large impact.

The NUMAchine simulator isexecution-driven and based on MINT [Veenstra 1993].

Being execution-driven means that the simulator uses a real parallel executable binary as input

and runs the program using an interpreter and a virtual model of the processor, in this case the

MIPS R300017. MINT forms the front-end of the simulator, and we provide the back-end that

models NUMAchine’s memory system. The two halves are linked together into a single exe-

cutable called Mintsim. As a front-end, MINT is responsible for creating as many virtual

R3000s as there are parallel threads. (It creates a virtual processor each time a new thread is

spawned.) MINT executes the instruction stream until it encounters a load, store, or synchro-

nization operation, at which point the virtual processor blocks (stalls) and sends a request to

the NUMAchine architecture back-end (see Figure3.8). The back-end takes the request and

passes it through caches, busses, rings, etc., generating appropriate delays at each step. Even-

tually a response is scheduled to go back to the appropriate processor, at which point the pro-

cessor unblocks and continues executing as before until the next load, store or synchronization

event occurs. In this way the stream of references maintains correct temporal ordering, due to

the feedback path between the back- and front-ends. This temporal ordering is particularly

important for modelling the caches and cache coherence. This technique yields more accurate

results thantrace-driven simulation, which uses a pre-generated static listing of event/time

17.The R3000 does not support the MIPS IV Instruction Set Architecture (ISA), in particular it only supports 32-
bit words, not 64-bit. This is definitely a drawback considering that all microprocessors are moving towards
64-bit operation, but it would have required too much effort to modify MINT.

74NUMAchine Ar chitecture , Implementation & Sim ulator

pairs. (In an execution-driven simulation, the delays are generated by the component models,

which is more accurate and flexible than using static timings.) Another benefit of execution-

driven simulations is that large trace files (typically many hundreds of megabytes in size) need

not be either generated or stored.

When MINT encounters an OS call, it either runs the call natively on the host machine

(for file operations) or mimics the behaviour of the function internally. In either case the call

takes zero time as seen from the virtual processor. While modelling operating system activity

would provide a more accurate picture of real-world performance, it is not possible to do

given our use of MINT. Even if it were possible, there are good reasons to stick with the sim-

pler model. Operating system code has very different behaviour patterns than regular pro-

grams. Modelling the two together, while more realistic, makes analysis more difficult since

the two reference patterns are intertwined, and may even affect each other in ways that are dif-

ficult to predict, particularly when caching is included. A much more intricate toolset is

required for this type of simulation. Newer simulation environments such as SimOS [Rosen-

R3000
Executab le

NUMAchine Sim ulator

MINT
Front-end

Vir tual
R3000

NUMAchine
Architectural

Response@T+ ∆

Request@T

Back- end
(load/store/sync h)

Rings+ b usses+
memor y+contention

-> delay ∆

FIGURE 3.8: The NUMAc hine sim ulator structure . The diagram shows a single
thread running on one virtual R3000 processor. WIth N threads, there are N independent
virtual R3000s, each communicating with the back-end in parallel.

NUMAchine Ar chitecture , Implementation & Sim ulator 75

blum 1997] do allow this level of complexity, but are not designed to support user-written

back-ends, thus they do not allow the modelling of specific architectures.

Another important factor in system-level modelling is page management. We chose not to

model page fault overhead in Mintsim. As with OS activity, modelling this behaviour would

be more realistic but would also make the analysis much more difficult. Mintsimdoeshave the

ability to model round-robin, first-hit and fixed page mapping schemes, but in all cases the ini-

tial fault takes zero time. We also chose not to add features such as page migration and repli-

cation, again for complexity reasons. (We chose to use the first-hit policy. Chapters 4 and 5

will shed more light on this choice.)

Mintsim also has the ability to accurately model the full NUMAchine memory hierarchy

behaviour for either the whole program, or for just the parallel section. We define the start of

the parallel section by inserting a special dummy routine into the Splash2 source code just

before thread creation. The end of the parallel section uses a similar dummy routine call after

the main thread has successfully waited for all children to finish18. Mintsim’s default behav-

iour is to model only the parallel section.

When skipping over the sequential code, Mintsim correctly executes all instructions with

the correct opcode timings, but allows all loads and stores to succeed immediately, without

checking the cache and, even more importantly, without doing any page mapping. This has

two effects. The first is to underestimate the time spent in the sequential section. The second is

to leave the cache in a cold state when the parallel section starts. Underestimating the sequen-

tial time makes the performance (as measured by speedup curves) look better, because the

same amount is subtracted from both numerator and denominator in the speedup equation.

Cold cache effects in the parallel section increase its execution time, which tends to reduce

measured speedup, countering the first effect. The net effect is negligible, as will be shown in

the next chapter.

We used the simulator as both a validation and design tool. On the validation side, we

took great pains to ensure that the cache coherence and ring network models were accurate.

We then used the simulator to check for correct operation of the coherence scheme and rings.

In one case the simulator found a very rare corner case that exposed a bug in the coherence

18.The dummy routine,generate_event() , is a null routine in the source code, but is recognized by MINT
and translated into a call to thesim_user() routine in the back-end, which takes the appropriate action.

76NUMAchine Ar chitecture , Implementation & Sim ulator

protocol. As an aid to validation we found it useful to includecoverage tables for the protocol.

These tables keep track of how many times each state transition in the protocol is activated.

Some transitions never occurred in even the longest and most complicated simulation runs,

necessitating either synthetic programs designed specifically to activate the transition, or as a

last resort careful verification by hand. The coverage tool also proved useful in providing

feedback on the frequency of state transition usage, allowing for possible future optimizations

for the most commonly taken transitions.

It should be noted that while the simulator proved extremely useful as a validation tool, it

did not provide formal verification. Formal verification of the cache coherence protocol, for

example, can be achieved by formulating the protocol as a (large) theorem in temporal logic

which can be shown by the rules of logic to be true or false. While work in the area of formal

verification has been under way for some time (e.g. see [Hailpern 1980]), tools such as Murφ
[Park 1996] lacked the power and to handle problems of this complexity.

As a design tool, the simulator allowed us to answer many ‘what-if ’ questions quickly.

For example, we originally designed the station bus to be 128 bits wide instead of 64 bits. As

we started designing the control logic, we discovered that implementing a 64-to-128 multi-

plexer in the datapath of the processor card was more complicated and costly than we had

anticipated. A week of simulation indicated the performance improvement was only on the

order of 10%, and so was not worth the effort.

3.2.1 Simulator Implementation

The simulator back-end consists of about 20,000 lines of C++ code, representing over one

man-year of programming. The use of object-oriented design proved to have both benefits and

drawbacks. Given the size and complexity of the simulator, abstracting away details into

classes helped keep the code manageable. Class inheritance was useful in forcing us to first

codify the common features of an entity such as a cache into a base class, then later differenti-

ating into specific instantiations such as direct-mapped or set-associative.

On the down side, linking the back-end into MINT proved problematic because the latter

is written in C. The original version of the simulator had both the front- and back-ends using

separate event-scheduling engines. This turned out to be quite slow, and it was decided to

rework the back-end to use MINT’s highly tuned scheduler. This required some advanced

C++ techniques, which will be described shortly.

NUMAchine Ar chitecture , Implementation & Sim ulator 77

The basic architecture of the back-end is a set of independent concurrent processes com-

municating by passingmessages throughports. The messages are of fixed format, and contain

all information pertaining to a single event in the back-end. Examples of events are load or

store references from a processor, a request for bus access, or a packet on the ring. Ports are

meant to be generic connection points for simulator entities. For example a Processor object

has a Memory port, which could be connected to a Cache, Bus, or Memory object, depending

on the architecture. Ports are bidirectional, and contain two methods,Send(Message*)

andReceive(Message*) . Once a connection is made between two ports, calling a port’s

Send() with a message will activate theReceive() method at the other end of the connec-

tion. (Note that a given simulator object can have multiple ports. For example a processor

could have ports to memory, a cache and a monitoring object.) TheSend() method sends a

message in zero time, which is useful for maintaining status information, but not for general

modelling. Another method,SendAtTime(Time t, Message*) sends the message at

a timet units in the future.

The basic operation of the simulator is thus to invokeReceive() methods at scheduled

times. TheseReceive()’s process their messages and by means ofSend()’s cause

otherReceive()’s to be scheduled at later times. Ultimately a processor’s Receive()

(from the memory port) will be activated, which will cause a call to MINT which causes the

appropriate thread to unblock.

As mentioned above, using the MINT scheduler causes some difficulties when interfacing

to the C++ back-end. MINT is designed to schedule its own internal events, which basically

contain pointers to function calls in the MINT code. To use this framework for the C++ meth-

ods, some means of encapsulating a method call to an object is required. One way of doing

this is to use an object called afunctor [Coplien 1993]. This is an object which behaves as a

function. By suitably encapsulating these functors, it is possible to have the MINT scheduler

call the appropriate object’s method at the correct time.

We found the performance of the simulator to be quite good. For example a typical appli-

cation19 run on an SGI Challenge machine with 150 MHz R4400 processors took 17 seconds

to execute natively, and 1570 seconds in the simulator (running on a Sun Ultra 4 with 296

19.The application was the Splash2 kernel Cholesky, using the tk18.O input. The Splash2 benchmark suite will
be described in the next chapter.

78NUMAchine Ar chitecture , Implementation & Sim ulator

MHz UltraSparc-II processors), giving a slowdown on the order of 1000 times. This allows

programs with running times of a few tens of minutes to be simulated in under a day, which

allows for rapid feedback and experimentation.

Additional information on the simulator can be found in Appendix A.

3.2.2 Simulator Correctness

The most important consideration in using a simulator to model a complex system such as

NUMAchine is the level of belief in the simulator’s modelling accuracy, and whether the sim-

ulator is itself functionally correct.

Our approach to validating the simulator consisted of two stages. For initial validation,

we used some small hand-designed synthetic benchmarks, for which we could predict the

results. One example of such a benchmark is Single-Reader (SR). In SR, each processor allo-

cates an array, then simply reads through it. (Note that compiler optimizations typically have

to be turned off for these benchmarks, to keep the optimizers from throwing away all code; the

results of reads in SR are never used.) The number of iterations is specified as an input param-

eter. The array size can be chosen to fit into or overflow any given level of cache. In either case

the number of cache hits and misses, and the overall latency can be calculated and compared

against simulator output. Another useful feature of SR is a parameterizablearray stride. On

each iteration the processor-to-array correspondence can be changed by using some fixed

stride length to walk through the different arrays. An array stride of zero is the default, and a

stride of four causes processors to use arrays from different stations on each iteration, thus

testing the Network Cache. Other synthetic benchmarks included Single-Reader/Single-

Writer (SRSW), used to verify write coherence actions, and Multiple-Reader/Single-Writer,

which helped test out broadcast invalidates.

The second stage of validation occurs after the hardware prototype has been built, and

involves redoing measurements on the hardware and comparing the results against the simula-

tor. Results of this validation will be presented in Chapter 4.

3.3 Conclusion

This chapter presented the architecture and implementation of the NUMAchine multiproces-

sor and NUMAchine’s architectural simulator, Mintsim. We showed how NUMAchine’s use

NUMAchine Ar chitecture , Implementation & Sim ulator 79

of a two-level ring hierarchy allows for a system that scales well up to 64 processors both in

terms of latency, and cost. We considered ordering properties of rings which enabled simple

and efficient implementations of a novel hardware cache coherence scheme and the provision

of a sequentially consistent programming model.

NUMAchine makes use of cache in the Network Interface Card, with the goal of reducing

the latency penalty for remote versus local accesses. This Network Cache (NC) helps to

reduce the level of NUMAness of the machine. The coherence directory scheme, of which the

NC is an integral part, uses a novel, lazy approach to the maintenance of coherence directory

information. This lazy approach does not bother trying to maintain inclusion between cache

levels.

We outlined the general procedure used for implementation of the prototype, and stressed

the importance of system-level simulations using high-powered CAD tools to verify design

functionality.

The design and implementation of the NUMAchine simulator was discussed, as was its

use during the prototype design to choose appropriate system parameters and validate system

functionality. Mintsim’s flexibility also allows it to be used as a research tool, which will be its

role in the next two chapters. These chapters will analyse the overall performance of the pro-

totype, as well as providing justification for the design choices, such as the lazy directory pro-

tocol, sequential consistency, ring hierarchy and backoff mechanism.

80

CHAPTER 4 Prototype Performance
& Analysis

This chapter investigates the performance of the NUMAchine architecture using Mintsim. We

first consider the overall performance, then look in more detail at the Network Cache, rings,

backoff mechanism and coherence protocol.

4.1 Simulation Envir onment

To analyse the performance of NUMAchine we use Mintsim and a subset of the programs

from the Splash2 benchmark suite [Woo 1995]. The Raytrace application from the Splash2

suite had a problem linking with libraries, so we could not get it to run. Volrend, Radiosity and

FMM all had execution times greater than half a day for a single datapoint, so we decided not

to use them. The other programs had execution times ranging from about 5 minutes for FFT,

up to over 2 hours for Barnes.

Throughout this chapter, Splash2 programs all use the parameters specified in the Splash2

characterization paper as the defaults for up-to-64 processor configurations. For completeness,

the applications used and their parameters are shown in Table4.1.

The parameters for the simulated hardware are the same as the NUMAchine prototype

described in Chapter 3. The rest of this section discusses details of the model of the prototype

used in Mintsim.

4.1.1 Station Bus

The station bus is modelled using the hardware’s default round-robin scheduling scheme. If

the bus is idle, a request succeeds immediately. Transaction duration on the bus includes any

cycles required for data, as well as one idle cycle at the end of a bus transaction, which is nec-

Prototype P erformance & Anal ysis 81

essary for turnaround of the bus drivers. If any transaction targets are busy (due to the flow

control scheme outlined in Chapter 3), then the transaction is skipped for the current round of

arbitration. (Note that for multicasts there can be multiple bus targets. If any one of them is

busy, the whole multicast must wait.)

4.1.2 Queue Modelling

All queues in the simulator model depths correctly; that is, a cache line written into a queue

uses up the full 17 entries (16 data doublewords1 + 1 command)2, in order to accurately gauge

average and maximal queue usages. During the design stage, this allowed us to determine

optimal queue sizes. For analysis purposes, these numbers provide a measure of burstiness

and contention; queues that handle large bursts have maximum queue usage values that differ

significantly from the average.

In most cases, the queues are modelled with zero pass-through latency. That is, a write

into the queue is immediately available at the output. Typically the queue is one element of a

chain in a datapath, and the queue latency is simply lumped in with other overheads to speed

up the simulation3. One case where queue latency is modelled directly is for the FIFOs that

1. We use the MIPS definition of a ‘word’ as containing 32 bits, and a ‘doubleword’ 64 bits.

2. Logically the simulator treats a cache line as a single message (not 17 separate messages) for simulation effi-
ciency.

TABLE 4.1: Splash2 pr ogram parameter s for the pr ototype anal ysis.

Splash2 Program Parameters/Description

FFT -m16 -l7 -n512: 64K complex doubles, 128-byte cache line size, 512
cache lines (64KB cache)

Cholesky tk18.O: medium-sized sparse matrix

Barnes 16K particles

LU -n512: 512x512 matrix, 16x16 blocks

Ocean -n256: 258x258 ocean grid

Radix -r1024 -n1048576 -m2097152: 1M keys, 2M maxkey, radix 1K

Water 512 molecules

82Prototype P erformance & Anal ysis

inject packets onto the rings (both Local and Central). We use a 30 ns delay in this case, which

is a typical number for an IDT72205-15 SyncFIFO running on a 20 ns clock [Integrated

1994].

4.1.3 Memory Card

The memory card uses the lump-sum model since it consists of a single datapath. The default

is to have an 80 ns delay for the coherence directory lookup, which takes into account the time

to look up the state information, as well as the time to generate a single (non-data) command

packet. If a DRAM access is necessary, then a further 200 ns are added to model a cache line

access. This is the time for the DRAM controller to get the first doubleword of data into the

output queue and ready to go onto the bus. Note that since the DRAM operation is pipelined,

the time isnot 320 ns (16 doublewords x 20 ns clock cycle). This model is somewhat oversim-

plified, because in reality the directory lookup and DRAM accesses are partially overlapped.

This is an oversight which could be fixed in future simulation studies. Since the net effect is to

underestimate the performance, we decided to leave this as is. We will ignore the line size

issue throughout the remainder of this thesis, and will stick with a fixed 128-byte line.

4.1.4 Processor Card

Accurate modelling of the processor card is crucial for good simulation results, because this is

where the critical L2 cache resource resides. With the MIPS R4400, the L2 cache cannot be

simultaneously accessed for both internal processor activity and external coherence requests

such as interventions. We model this by locking out the L2 cache on a first-come/first-served

basis. All cache access latencies are modelled using numbers from [Heinrich 1994]4. The L1

instruction and data caches have zero latency, while L2 accesses require either 3 or 4 cycles

for a read, and up to 32 cycles for an L2 cache line refill.

3. Whenever a sequence of dependent events happen with deterministic timing, they are lumped together in this
fashion. The speed of the simulator is directly related to the number of events that need to be scheduled.

4. The intervention response latency given in the manual is 8-28 cycles, with the variability coming from the
non-deterministic time to gain access to the L2 cache. Since we model this feature independently, the number
we use is the minimum, 8 cycles.

Prototype P erformance & Anal ysis 83

4.1.5 Paging Policy

Mintsim supports three page placement policies: round-robin, first-hit, and a fixed scheme

where a file containing page mappings is provided as input to the simulator. The fixed scheme

requires a preprocessing pass on the program to determine page usage statistics, and is

intended for future work. Of the two others, round-robin is the most common for this type of

study. A problem with the round-robin policy is that a page which is used by only one proces-

sor can be placed on a remote node. This not only increases average latency, but also need-

lessly increases capacity pressure on the NC cache lines. A first-hit policy (also called first-

touch) does not suffer from this problem, since private pages will always be located in local

memory5. When more than one processor shares a page, first-hit will place the page so that it

is local to at least one of the processors. One of the major drawbacks to using first-hit is that

sequential startup code (e.g. initialization of all shared data structures) can touch pages that

ultimately will be used exclusively or mostly by other processors. In the worst case, all pages

could be located in the master thread’s local memory.

An OS that provides page replication and migration can achieve the best of both

approaches. An initial round-robin placement can use page-sharing statistics along with page

migration and replication to evolve over time to an allocation that is close to what would have

resulted from first-hit. Although it is possible to do the same thing in the simulator, it would be

quite complicated. Because we are not modelling page fault overhead, it would be difficult to

justify modelling migration and replication overhead, although they clearly have a significant

effect on performance. For simulation simplicity, we instead use a first-hit policy for memory

references during the parallel section of the program. (As mentioned in section 3.2, generating

references only for the parallel section is Mintsim’s default mode of operation.)

4.1.6 Instruction Fetches and Sequential Code

Mintsim has the capability to model instruction fetches. With this feature turned on, the back-

end instantiates an L1 instruction cache, and also an L2 instruction cache if necessary. (The

5. If a program has large phases, where the groups of processors sharing a page change between phases, then
first-hit will not mimic an effective migration and copying scheme. The page allocation for the Splash2 pro-
grams used are static, and do not suffer from this problem.

84Prototype P erformance & Anal ysis

default is to use a unified L2 cache, in which case instructions compete with data for L2 cache

space.) Simulation time is roughly doubled by turning on instruction fetches. Instruction

streams for these types of scientific applications are highly regular and have small footprints,

and even a small L1 instruction cache is sufficient to achieve very high hit rates. With 1 MB of

L2 cache in our prototype, conflict problems between instructions and data are insignificant.

We expect modelling of instruction fetches to have little impact, and present results below

indicating that this is the case.

In Figure4.1 we show the result of running the programs FFT and Cholesky in the default

(parallel-only) mode, full-application mode, and full-application plus instruction fetches.

Cholesky has the highest ratio of sequential-to-parallel code in our group of applications. All

simulation runs used a round-robin page placement, because as mentioned above using first-

hit when modelling sequential initialization code can lead to all pages being allocated in one

memory. There are two important conclusions to be drawn from the figure. The first is that

modelling instruction fetches has almost no overall effect on either full-application or parallel-

1 2 4 8 16
0

0.5

1

Processors

R
el

at
iv

e
E

xe
cu

tio
n

T
im

e

FFT

1 2 4 8 16
0

0.5

1

Processors

R
el

at
iv

e
E

xe
cu

tio
n

T
im

e

Cholesky

PS
TA
PS+I
TA+I

FIGURE 4.1: Modelling of sequential code and instruction f etches. The first two
bars show the increase in execution time for the Parallel Section (PS) and the Total
Application (TA) when the sequential startup code is modelled accurately. The second two
bars show the increase when instruction fetching is turned on (in both the parallel and
sequential sections). All execution times are normalized to the respective times for a
simulation run without sequential code or instruction fetching. All simulations (including the
normalization runs) use round-robin page placement, since first-hit would tend to allocate
all pages on the home memory of the processor responsible for the sequential initialization
code.Numbers for 32 and 64 processors are not shown because the round-robin scheme
caused programs to take bus errors due to NACK time-outs, due to some heavily
contended pages being placed remotely from all sharing processors.

Prototype P erformance & Anal ysis 85

section execution times, as can be seen by comparing each ‘+I’ bar against its non-’+I’ coun-

terpart. This result matches our prediction from the preceding paragraph. The second conclu-

sion is that while accurate modelling of the sequential code definitely has an impact on the

application’s total execution time (and thus the speedup), it has practically no effect on the

execution time of the parallel section. Thus, cache warm-up and page-mapping effects of the

sequential startup code have little impact on the performance of the parallel code section,

which justifies our choice for Mintsim’s default mode of operation. The key point is that we

are not so much interested in the performance of the sequential code as in the efficiency of the

parallel section.

4.2 Prototype Analysis

To begin our examination of the prototype performance, we show in Figure4.2 the speedup

curves for the Splash2 programs. (Note that all of these curves were generated using the

default fast mode for the sequential section, meaning that the curves overestimate the perfor-

mance.)

0 20 40 60 80
0

10

20

30

40

50

60

70

Processors

S
pe

ed
up

Ideal
Radix
LU−Non
LU
Cholesky
FFT

0 20 40 60 80
0

10

20

30

40

50

60

70

Processors
S

pe
ed

up

Ideal
Barnes
Ocean
Ocean−Non
Water−Sp
Water−Nsq

FIGURE 4.2: Simulated pr ototype speedups f or the Splash2 pr ograms. The graph
on the left is for the Splash2 kernels, that on the right for the applications.

86Prototype P erformance & Anal ysis

We define NUMAchine’s performance to be good if increasing the number of processors

always results in some gain (i.e. there is never a slowdown compared to some smaller number

of processors), and the maximal speedup at 64 processors is roughly over 20. (These criteria

may not be acceptable for very high performance machines, but we consider them appropriate

for our implementation, which is targeted towards low cost.) These simple speedup curves

indicate that the performance of the NUMAchine prototype is good for most of the Splash2

applications except Water-Nsquared and Ocean-Noncontiguous. This is not problematic since

both of these are older versions of the programs, and the newer versions do meet our criteria.

For the Splash2 kernels the only program that exhibits good performance is Radix. What we

are really interested in measuring in this study, though, is not whether the Splash2 programs

parallelize well (which some of them such as FFT do not, particularly for the small default

problem sizes), but whether our architecture can support efficient parallelism.

If we plot the same graphs but ignore the sequential execution time and focus on the ratio

of execution times of the parallel sections of code, which we call theparallel speedup, then

we get a better picture of NUMAchine’s parallel efficiency. In Figure4.3 we see a large

improvement in the poorly performing kernels, with only LU and Cholesky still exhibiting

poor performance. (The figure also shows the algorithmic speedups from the Splash2 paper

for comparison. Note that Cholesky has a poor algorithmic speedup, indicating that it will

never be able to run well in parallel.) The main reason for the difference in true versus parallel

speedups lies in the choice of problem sizes. Programs that show a large difference between

the two have small ratios of parallel to sequential code, and thus cannot achieve good overall

speedups due to Amdahl’s Law. While choosing larger problem sizes would alleviate this

problem, it would also lead to longer simulation times. More importantly, it makes the results

difficult to compare against other studies. In this and in the next chapter we will use parallel

speedup as our metric for the efficiency of the architecture.

 In the rest of this chapter we will explore various aspects of the design and see how they

impact on performance. In the next chapter, we will investigate ways of modifying the archi-

tecture and tuning system parameters to achieve better performance.

4.2.1 Comparison of the Simulator and the Prototype

As a check on the simulator, we ported the Splash2 programs to NUMAchine in order to com-

pare results from the real hardware against those from the simulated hardware. The port was

Prototype P erformance & Anal ysis 87

only partially completed as of writing, so the only applications working well enough to gener-

ate results were Cholesky and Barnes.

FIGURE 4.3: Parallel ver sus algorithmic speedups. The significant improvement for
certain programs indicates that the problem size is too small in these cases. There is not
enough work in the parallel section to allow for large speedups. For comparison purposes,
the bottom two graphs show the algorithmic speedups from Figure 1 in [Woo 1995].

0 20 40 60 80
0

10

20

30

40

50

60

70

80

Processors

P
ar

al
le

l S
pe

ed
up

Ideal
Radix
LU−Non
LU
Cholesky
FFT

0 20 40 60 80
0

10

20

30

40

50

60

70

80

Processors

P
ar

al
le

l S
pe

ed
up

Ideal
Barnes
Ocean
Ocean−Non
Water−Sp
Water−Nsq

0 20 40 60 80
0

10

20

30

40

50

60

70

80

Processors

A
lg

or
ith

m
ic

 S
pe

ed
up

Ideal
Radix
LU
Cholesky
FFT

0 20 40 60 80
0

10

20

30

40

50

60

70

80

Processors

A
lg

or
ith

m
ic

 S
pe

ed
up

Ideal
Barnes
Ocean
Water−Sp
Water−Nsq

88Prototype P erformance & Anal ysis

The first comparison is between uniprocessor execution times in the simulator and the

prototype. This gives an idea of whether the overall (i.e. absolute) timescale of the simulator is

accurate. The hardware consisted of a single Local Ring with 16 processors, running at 40

MHz. We ran the two programs under Mintsim at the reduced speed using a single processor,

with sequential code included. We expect the simulator numbers to be lower, given that the

simulator does not model OS activity or page faults. The results are shown in Table4.2. The

numbers are low by a factor of two to three, which is quite good. (Comparisons of simulation

versus real hardware measurements are not typically reported in the literature. Note that the

values of the numbers presented in the table are not too significant, only the fact that the ratios

between them are within an order of magnitude.).

Next we compare the speedups (i.e. relative timing) in hardware versus those presented in

Figure4.2. For the hardware and simulator we measure speedups relative to their respective

uniprocessor times. The result is shown in Figure4.4. For a program such as Barnes, which

has a fairly long runtime, and can thus amortize the overhead due to paging (which is not

modelled), the agreement is very good. Cholesky’s short runtime cannot amortize this over-

head, and the agreement is not as good, although there is a correlation between the simulated

performance and that of the hardware.

4.2.2 Fmask Performance

As the number of stations in the system increases, the probability of the Fmask overspecifying

stations increases. We can measure this imprecision in the Fmask by keeping track of the

exact number of sharers in the memory coherence directory. When an invalidation is sent out,

we divide the actual number of stations targeted by the real number of sharers to end up with

theoverinvalidation rate. For the simple case of two sharers, the overinvalidation rate can be

TABLE 4.2: Unipr ocessor sim ulated ver sus
hardware execution times.

Program

Simulated
ExecutionTime
(seconds)

Hardware
Execution Time
(seconds)

Barnes 72.5 216

Cholesky 9.9 30

Prototype P erformance & Anal ysis 89

as high as two if the sharers are on different rings and stations. (Note that if the sharers are on

the same stationor the same Local Ring then the overinvalidation rate is one, i.e. there is no

overinvalidation and the Fmask is precise.) We expect the rate to be around two if the number

of sharers on average is two, because we did not tune the Splash2 programs to take advantage

of locality. Figure4.5 shows the overinvalidation rate averaged over all invalidations. The

rates reach roughly 2.5 for some of the programs at 64 processors, indicating that there are

sharing patterns involving three or more processors. However, invalidations incur little over-

head in the processors, so the important point is that multicast invalidations do not on average

become broadcast invalidations to all stations. Avoiding heavy broadcast traffic is important in

maintaining system scalability, as shown in [Farkas 1992].

4.2.3 Ring Performance

The first aspect of the rings we will look at is average utilization. In a single ring clock cycle a

ring slot can be used for one of three reasons:

• Send Packet - Inject a packet into an empty slot.

0 5 10 15 20
0

5

10

15

20

Processors

S
pe

ed
up

Cholesky

Ideal
Cholesky−Sim
Cholesky−HW

0 5 10 15 20
0

5

10

15

20

Processors
S

pe
ed

up

Barnes

Ideal
Barnes−Sim
Barnes−HW

FIGURE 4.4: Simulator ver sus har dware pr ototype speedups. Speedups in both
cases are total speedups, not parallel speedups. Cholesky has a short run time, thus in
the real hardware it cannot amortize the error due to paging overhead, which accounts
for the discrepancy in the results.

90Prototype P erformance & Anal ysis

• Forward Packet - Pass along an upstream packet that has only downstream targets. This
includes broadcast packets that do not select the ring interface.

• Split Packet - Write a copy of the packet into the receive queue, and also forward it to the
next ring interface. This is for broadcasts thatdo target the receiving ring interface.

Note that we donot consider the receipt of a terminal packet6 to have used the slot. This is

because the slot becomes free on the current clock tick; whether we choose to use the just-

freed slot or not is independent of the slot’s availability for carrying new traffic. We can now

define the ring utilization (from the point of view of a single ring interface as):

(EQ 4.1)

6. A terminal packet is one which is consumed by the ring interface, creating an empty slot. This could be a
point-to-point packet, or the final receiver of a multicast.

0 20 40 60 80

1

1.5

2

2.5

3

3.5

Processors

O
ve

rin
va

lid
at

io
n

R
at

e

Radix
LU−Non
LU
Cholesky
FFT

0 20 40 60 80

1

1.5

2

2.5

3

3.5

Processors
O

ve
rin

va
lid

at
io

n
R

at
e

Barnes
Ocean
Ocean−Non
Water−Sp
Water−Nsq

FIGURE 4.5: Overin validation rates. This is the ratio of stations that are actually
targeted by an invalidate to the number that need to receive the invalidate. Rates greater
than one indicate imprecision in the Fmask. Note that there can only be imprecision if
there is more than one station, so the number of processors starts at 8.

RingUti l i zation
PackSent PackForwarded PackSpl i t+ +

TotalRingSlots
---=

Prototype P erformance & Anal ysis 91

Note that the total number of ring slots consists of the number of slots in a given amount of

execution time.We use the parallel execution time to calculate this number. Using the total

application time would unfairly deflate the utilization numbers, since by default we do not

model any ring traffic outside of the parallel section. (In addition, we do not expect as much

remote traffic during the sequential section, and the nature of the traffic patterns would be dif-

ferent in any case. By keeping statistics only for the parallel section we avoid adding this

noise to our measurements.) To arrive at the overall average utilization, we average over all

the ring interfaces. For the Local Rings, this means the ring interfaces in the NICs, plus the

Local Ring side of the inter-ring interfaces (IRIs). For the Central Ring utilization we just

average over the Central Ring portions of the IRIs.

We show the results for the Central Ring in Figure4.6, and the Local Ring in

32 64
0

10

20

30

40

50

C
en

tr
al

 R
in

g
U

til
. (

%
)

FFT

32 64
0

10

20

30

40

50
Radix

32 64
0

10

20

30

40

50
Ocean

32 64
0

10

20

30

40

50
Ocean−Non

32 64
0

10

20

30

40

50
Cholesky

32 64
0

5

10

Processors

C
en

tr
al

 R
in

g
U

til
. (

%
)

LU−Non

32 64
0

5

10

Processors

Water−Sp

32 64
0

5

10

Processors

Water−Nsq

32 64
0

5

10

Processors

LU

32 64
0

5

10

Processors

Barnes

Send
Split
Forw

FIGURE 4.6: Central Ring utilizations. The Central Ring only exists in 32- and 64-
processor configurations. Note that the top and bottom rows have different vertical
scales.

92Prototype P erformance & Anal ysis

Figure4.7.The large utilizations for Ocean, FFT and Radix arise from the high communica-

tion-to-computation ratio for these programs, as described in the Splash2 paper [Woo 1995].

As expected, the Central Ring utilization is higher than that of the Local Ring, except for the

case of 32 processors7. This high average utilization indicates that the Central Ring becomes

7. For 32 processors the Central Ring consists of only two hops, which makes it almost equivalent to a full-
duplex point-to-point connection. With the exception of invalidations, all traffic produced by one node is con-
sumed by the other; there is no bypass traffic.

8 16 32 64
0

10

20

30

Lo
ca

l R
in

g
U

til
. (

%
)

FFT

8 16 32 64
0

10

20

30
Radix

8 16 32 64
0

10

20

30
Ocean

8 16 32 64
0

10

20

30
Ocean−Non

8 16 32 64
0

1

2

3

4

Lo
ca

l R
in

g
U

til
. (

%
)

LU

8 16 32 64
0

1

2

3

4
LU−Non

8 16 32 64
0

1

2

3

4
Water−Sp

8 16 32 64
0

1

2

3

4
Water−Nsq

8 16 32 64
0

5

10

Processors

Lo
ca

l R
in

g
U

til
. (

%
)

Cholesky

8 16 32 64
0

5

10

Processors

Barnes

Send
Split
Forw

FIGURE 4.7: Local Ring utilizations. No rings exist for configurations of four or fewer
processors. Also note that each row has a different vertical scale.

Prototype P erformance & Anal ysis 93

congested, which is the reason for designing the Central Ring to allow for higher clock

speeds. Increasing the Central Ring speed will be considered in Chapter 5.

 As a measure of congestion, we consider the maximum and average depths of the queues

in the network interfaces. A large difference between the maximum and average values indi-

cates bursty traffic and long ring access latencies. Results are shown in Figures4.8 and 4.9,

showing clear evidence of heavy congestion. Programs such as Barnes show large maximum

32 64
0

100

200

Q
ue

ue
 d

ep
th

s

FFT

32 64
0

100

200

Radix

32 64
0

100

200

Ocean

32 64
0

100

200

Q
ue

ue
 D

ep
th

s

Ocean−Non

32 64
0

100

200

LU

Inject−Q Max
Inject−Q Avg
Extract−Q Max
Extract−Q Avg

32 64
0

100

200

LU−Non

32 64
0

100

200

Q
ue

ue
 D

ep
th

s

Water−Sp

32 64
0

100

200

Water−Nsq

32 64
0

100

200

Cholesky

32 64
0

100

200

Processors

Q
ue

ue
 D

ep
th

s

Barnes

FIGURE 4.8: Central Ring queue utilizations. The numbers shown are the maximum
and average depths for the queues that inject into and extract from the Central Ring.

94Prototype P erformance & Anal ysis

queue depths, but have low overall utilizations, indicating that the bursts are few and short-

lived. FFT, on the other hand, has large average utilization but low maximal queue depths,

8 16 32 64
0

50

100

150

200

Q
ue

ue
 d

ep
th

s

FFT

8 16 32 64
0

50

100

150

200
Radix

8 16 32 64
0

50

100

150

200
Ocean

8 16 32 64
0

50

100

150

200

Q
ue

ue
 D

ep
th

s

Ocean−Non

8 16 32 64
0

50

100

150

200
LU

Inject−Q Max
Inject−Q Avg
Extract−Q Max
Extract−Q Avg

8 16 32 64
0

50

100

150

200
LU−Non

8 16 32 64
0

50

100

150

200

Q
ue

ue
 D

ep
th

s

Water−Sp

8 16 32 64
0

50

100

150

200
Water−Nsq

8 16 32 64
0

50

100

150

200
Cholesky

8 16 32 64
0

50

100

150

200

Processors

Q
ue

ue
 D

ep
th

s

Barnes

FIGURE 4.9: Local Ring queue utilizations.

Prototype P erformance & Anal ysis 95

leading to the conclusion that its traffic is more evenly distributed in time.

In general, congestion is worse in the Central Ring, except for the two LU programs,

which show about equal—and comparatively low— levels of congestion in the Local and

Central Rings. Maximum depths in the Central Ring also seem to be fairly symmetric between

the injecting and extracting queues. This is not true for the Local Rings, where the most con-

gested programs such as Barnes show a marked asymmetry, with the injection side being

worse. This effect has to do with the NC. To see the reason behind this, consider that a queue

only fills up if average input and output rates differ. The ring-injection queue on the NIC card

has only one output, onto the ring. On the input side, it is fed both from the bus and the NC.

Thus we expect one or both of these sources to show unusually high levels of activity. Indeed,

if we look in the simulation output files, it turns out that Barnes has one of the highest NC hit

rates (53% for 64 processors), with hits generating data (i.e. cache line) responses. Since a

good fraction of responses are expected to involve forwarding, the NC has the potential to sig-

nificantly increase pressure on the ring-injection queue, although this does save bus band-

width. One possible method for increasing the ring-injection rate is to make use of the just-

freed slot, which we consider next.

The measurement involves turning on the switch to use the just-freed slot and re-running

the simulations. We show the results for FFT in Figure4.10. The graphs show the relative

improvement by making use of the just-freed slot. For the utilization curves we have split out

the separate components of the utilization, so the total increase in utilization is the sum of the

three. We see improvements up to about 30%, mostly for the 64-processor configuration. For

the queue depths, the ratios are inverted, so that a ratio greater than one represents adecrease

in the depth. For the Local Ring, we see the most improvement in the maximum depth of the

ring-injection queue, which is to be expected. The improvement on the Central Ring is more

drastic, and also much more variable. The ring-injection queue’s maximum is improved by a

factor of 7 (from 70 down to 10), and the average usages also go down in the 32-processor

case.

The large change in queue depths has to do with the fact that for 32 processors the Central

Ring has only two hops. In this case all data packets injected onto the Central Ring are imme-

diately consumed after one hop, since there is only one possible destination. Each consumed

data packet generates a just-freed slot. If the system does not allow the use of these just-freed

slots, a steady stream of such incoming packets will prevent the packet consumer from inject-

96Prototype P erformance & Anal ysis

ing any of its own packets onto the ring, effectively stalling it. Note that it is possible for such

a scenario to occur with a ring of more than two hops, but due to the larger number of pairs of

communicating nodes the probability of all packets being consumed by one node is less likely.

(And even if one nodeis stalled, this does not stop other downstream nodes from communicat-

ing, nor does it stop broadcast traffic.).

For 64 processors there is actually anincrease in the value of the maximum for the ring-

injection queue, from 196 to 275. The rest of the queue values show improvements. The net

effect on performance was to reduce the parallel execution time by 4% at 32 processors, and

15% at 64 processors. The conclusion is that use of the just-freed slot does improve perfor-

mance, and with only minimal changes to the ring control logic. There are cases where use of

8 16 32 64
0

0.5

1

1.5

2

R
el

at
iv

e
U

til
iz

at
io

n

FFT−Local Ring

Send
Split
Forw

32 64
0

0.5

1

1.5

2

R
el

at
iv

e
U

til
iz

at
io

n

FFT−Central Ring

Send
Split
Forw

8 16 32 64
0

1

2

3

R
el

at
iv

e
Q

ue
ue

 D
ep

th

FFT−Local Ring

Inj−Q Max
Inj−Q Avg
Ext−Q Max
Ext−Q Avg

32 64

1
2

5
R

el
at

iv
e

Q
ue

ue
 D

ep
th

FFT−Central Ring

Inj−Q Max
Inj−Q Avg
Ext−Q Max
Ext−Q Avg

FIGURE 4.10: Use of the just-freed slot. The graphs show the effect of switching to
the use of the just-freed slot. In the utilization graphs, a number greater than one
represents the relative increase in utilization over the default. In the queue depth graphs,
a number greater than one corresponds to a decrease (i.e. improvement) in the
respective queue depth. (The large improvements in queue depth for the Central Ring at
32 processors are due to the fact that in this configuration data bursts can cause one of
the nodes to stall. See the text for an explanation.)

Prototype P erformance & Anal ysis 97

the just-freed slot can cause starvation of a downstream node. For example, if two stations

stream data to each other, using up all slots, a third station will not be allowed to inject pack-

ets. However, a similar starvation scenario would also be possible in a system that didnot

make use of the just-freed slot.

4.2.4 Network Cache Performance

The most basic metric for Network Cache performance is the hit rate. We consider a request

for a remote cache line to be a hit in the NC if it does not end up generating any network traf-

fic. The simplest case is when data fetched for a shared read from one processor can be

returned to a subsequent shared read from another processor. It is also possible that the second

read could come from the same processor if the line was ejected from the processor’s cache.

We count this as a hit as well, since the NC is helping to alleviate the processor cache’s capac-

ity misses. A more complicated scenario consists of a processor doing an exclusive read for a

line that is dirty in another processor’s cache. The NC sends out an intervention, with the

response going to both the requester and the NC. While more involved, remote accesses are

still avoided. There are five possible types of NC hit:

• SHR_LV: A shared read with the NC the owner of the line (Local Valid state). The NC
responds with data.

• SHR_GV: A shared read with the line globally shared (Global Valid state). Again the
NC can respond with data.

• SHR_LI: A shared read for which the NC mediates the intervention to obtain the dirty
copy (Local Invalid state) in a local processor. The line ends up in the LV state.

• EXC_LV: An exclusive read (or upgrade) to an NC-owned line. The NC responds with
data or an invalidate, and changes the line’s state to LI.

• EXC_LI: An exclusive read (or upgrade), with the NC mediating the exclusive interven-
tion.

Figure4.11 indicates that while the hit rates can be quite good, there is considerable vari-

ability in the behaviour. FFT rarely hits, because its access pattern consists largely of migra-

tory data which has little spatial or temporal locality. Radix has an all-to-all communication

phase which is heavily write-dependent. Since Radix’s writing pattern is fairly random, the

98Prototype P erformance & Anal ysis

probability that a line will be shared on the same station goes down as the number of stations

goes up, which accounts for the declining hit rate. (This trend is generally applicable, as can

be seen from the figure.) The most prevalent source of hits is from accesses to globally shared

read-only data.

8 16 32 64
0

50

100

N
C

 H
it

R
at

e
(%

)

FFT

8 16 32 64
0

50

100
Radix

8 16 32 64
0

50

100
Ocean

8 16 32 64
0

50

100
Ocean−Non

8 16 32 64
0

50

100

N
C

 H
it

R
at

e
(%

)

LU

8 16 32 64
0

50

100
LU−Non

8 16 32 64
0

50

100
Water−Sp

8 16 32 64
0

50

100
Water−Nsq

8 16 32 64
0

50

100

Processors

N
C

 H
it

R
at

e
(%

)

Cholesky

8 16 32 64
0

50

100

Processors

Barnes

Shr−LV
Shr−GV
Shr−LI
Exc−LV
Exc−LI

FIGURE 4.11: Network Cac he hit rates . The classification of the various types of hit
are given in the text. The total number of incoming requests to the NC in most cases is
greater than 30,000. The exceptions are FFT (around 3,000) and LU-Non with 32
processors (around 5,000).

Prototype P erformance & Anal ysis 99

It is not possible to draw any specific conclusions about the overall effect of the NC on

performance from the hit-rate graphs. While the NC certainly does provide a caching effect

(sometimes substantial), the trade-off is increased latency due to the directory lookup for

misses that eventually have to go remote. We defer further discussion of net NC performance

benefits until the next chapter, where we present results on the effect of NC size, including a

system without an NC.

As mentioned in Chapter 3, NUMAchine’s NC has a number of architectural features

which are novel amongst remote-access caches. The feature with the most potential for delete-

rious side-effects is the laissez-faire attitude that the NC takes towards directory information.

Remember that the NC can in most cases silently throw out old information to make room for

new, without notifying local processors or the home memory. The following list enumerates

the repercussions of throwing out cache lines with the given NC states:

• LV - This line must be written back to the home memory, which thus gets notification of
the event. All local shared copies remain in the processors, but any new accesses must
go remote. To get into the LV state, this line had to first exist in the NC in the LI state,
then become shared by another processor. This history of local sharing means the line
has a high probability of accesses in the near future.

• GV - There is no notification of this ejection. Local shared copies remain. Future
accesses have to go remote.

• GI - No information is lost. The meaning of this state is that the NC knows only that
there are no copies of the line on the station.

• LI - There is no notification, and this ejection represents the greatest amount of informa-
tion loss, because this state specifies exactly where the dirty copy is on the station. The
dirty copy remains undisturbed. Any remote interventions looking for this line must
broadcast the intervention to all processors, and wait for all responses, which is costly.
Since there is no place to store this line in the NC, a writeback from the processor is for-
warded on to the home memory.

Not all cases of information loss are detrimental. For example, if a line is no longer being

actively used, then the loss of information is inconsequential. To gauge how much useful

information is actually lost under this scheme, we look at two different statistics. In the first

case, we would like to know how many times a remote request (from the home memory)

comes into the NC expecting to find information, but does not. The most costly scenario is the

one described above where an intervention must be broadcast. A second, less costly, case

100Prototype P erformance & Anal ysis

occurs when a broadcast invalidate comes in and needs to invalidate any local copies. In the

absence of a GV hit (where the Pmask would specify the processors to invalidate), the NC

must broadcast the invalidate to all processors. This does not involve much of a performance

penalty because invalidates are relatively cheap.

For intervention broadcasts, the result is simple: there are almost none. The majority of

the programs showed no broadcast interventions, shared or exclusive, while the number of

specific interventions (i.e. those that found directory information) ranged from 20 up to

60,000. Only Cholesky, Barnes and Ocean-Non showed any significant numbers of broadcast

interventions. The greatest number was for Ocean-Non, with 122 broadcast interventions ver-

sus 56,000 of the specific type (for a 32-processor configuration). The conclusion is that shar-

ing accesses to dirty lines occur with high temporal locality. Information ejected for these

lines is usually stale.

The case for invalidates turns out to be much the same. For 8- and 16-processor machines

the numbers are identical to those for the interventions: almost all invalidates are specific. For

the 32 and 64 processors, the number of broadcast invalidates suddenly jumps up, almost

approaching the number of specific invalidates. The reason for this becomes clear if we recall

the fact that overinvalidation due to Fmask imprecision occurs only for 32- and 64-processor

systems. The broadcast invalidations thus arise not from the fact that directory information

was thrown out, but because there was never any information to begin with; stations without

any copies are being incorrectly targeted with invalidations. The number of broadcast invali-

dations recorded in the NC matches the overinvalidation rates from Figure4.5. Thus we can

conclude that GV lines generally get invalidated before their directory information has time to

be ejected.

The preceding analysis has only considered the effect of directory information loss on

incomingremote requests. Local requests can suffer from information loss in two ways.

Shared requests to lines that would have stayed in the NC if it had more capacity pay a remote

access penalty. We will defer this question until the next chapter, where we use an infinite-

sized NC cache to determine the effect of capacity problems. The second case is where dirty

directory information is lost. A local request must go to the home memory, which still thinks

that the NC has the most up-to-date information on the line. The memory sends the request

back to the originating NC, at which point the NC realizes that the line must be locally dirty,

but the directory information was lost. The NC must then broadcast the intervention and keep

track of responses, even though it will not end up keeping the information. (The space in the

Prototype P erformance & Anal ysis 101

directory is already used by some other line which may be needed by local processors, thus

we do not want to eject the current occupant because of a remote request.) In the simulator,

these requests are flagged asfalse interventions. Analysis of the output files shows that the

story here is the same. In the large majority of cases there are zero false interventions. Barnes

at 16 processors shows around 50 false interventions, and Ocean-Non shows around 100 at 16

and 32 processors.

The final conclusion is that the lazy coherence directory scheme used by NUMAchine is a

definite win. It avoids sending directory update information wherever possible, and pays

almost no price for the lost information.

4.2.5 Request and Backoff Latency

We have seen in some detail in the previous sections how the rings and coherence scheme can

affect memory accesses. In this section we will take a step back and look at request latencies.

Whatever the ultimate cause, long latencies (for requests or synchronization) are what cause

performance loss in a multiprocessor. Though we know that the system does suffer from con-

gestion, the high-level effect on performance is primarily through increases in latency. In this

section, we measure the contention-free latency and then compare it to latency measurements

for a simulation run that had high levels of congestion.

TABLE 4.3: Base contention-free latenc y for a local read.

Transaction Step Latency (in 20 ns clock cycles)

L1 cache miss 0

L2 cache miss 1.33 (4 processor cycles@150 MHz)

External Agent 1.5 (30ns FIFO delay)

Bus (request) 5 (4-cycle arbitration delay + 1-cycle transfer)

Memory 14 (80ns directory lookup + 200 ns DRAM access)

Bus (response) 21 (4-cycle arbitration + 17-cycle transfer)

External Agent 12 (30ns FIFO delay + 16 data cycles@75 MHz EA speed)

Total 55 (1100 ns)

102Prototype P erformance & Anal ysis

The basic latency for read requests in an idle system can be calculated by adding up the

latencies for each step along the transaction’s path. We show the calculation for a read request

to local memory in Table4.3. For comparison, measurement using a logic analyzer connected

to the processor card and the bus shows a measured latency to the first word of 1120 ns8. The

same measurement for a near remote access gave the result 4100 ns. For a far remote, the

latency was 4900 ns.

For remote accesses in the simulator, we can do the same type of calculation. A near

remote access takes an additional 1160 ns compared to the on-station request. A far remote

access adds only 300 ns more since the path is almost the same as for the near remote, with the

addition of four IRI FIFO delays and one round-trip traversal of the Central Ring. We thus

have the ratios 1100:2260:2560, or 1:2:2.3. The discrepancy between the simulator and hard-

ware for remote latencies is due to overly optimistic assumptions for controller overheads

when modelling the hardware. While field-programmable devices are very flexible, their

speed is not very high. In order to achieve our 50 MHz clock rate, we had to add many syn-

chronizing flip-flops on inputs (e.g. for FIFO empty flags) to maintain setup times, and break

complex decoding logic into multiple stages. The prototype uses nearly a dozen controllers in

the NIC’s datapath, each contributing 3-4 cycles of latency. This overhead is incurred on both

the local and remote stations, and accounts for roughly 2200 ns of extra delay. The balance of

the difference, around 700 ns, was found to come from late changes during debugging to the

operation of the ring controller, to force an isolated read response to use only every other ring

slot. Unfortunately, we discovered these discrepancies too late to re-run the simulations. This

causes our performance numbers to be optimistic, particularly for programs with low NC hit

rates.

The contention-free numbers will increase in the face of network congestion, and also

because of backoffs. In Table4.4 we show latency measurements for one example of a highly

congested system: Ocean with 64 processors. The local and remote memory latencies increase

by about 25% and 60% respectively. The next two numbers show the effect of backoff on the

latency. The simulator output does not show the average number of retries required, only the

average latency. Although the latency increases are very large —380% and 330% for local and

8. To perform this measurement, we looked at an R4400 signal pin called ValidOut*, which indicates that a
request is ready to come out of the processor. We measured up until another R4400 signal, ValidIn*, was
asserted, meaning that thefirst doubleword of data had been returned. By measuring to the first doubleword
instead of the last, we are assuming a critical-word-first arrangement of the cache line.

Prototype P erformance & Anal ysis 103

remote, respectively—the frequency with which they occur is low. The number of retries is

generally low for all the programs. One exception is Cholesky, where over 25% of requests to

the NC ended up having to retry, with average latencies of around 9000 ns instead of the typi-

cal time for an NC hit of around 1100 ns.

The heavy latency penalty and lack of fairness in the retry mechanism make it one of the

weaker points of NUMAchine’s architecture. How weak can only really be answered by mod-

ifying the simulator to model an ideal system with pending request queues. This is left for

future work.

4.2.6 Flow Control

The flow control mechanism can result in ring-stoppage occurring on either the upper or lower

level rings, or busy-waiting on the bus. The simulation results show that for the applications

we tested the Central Ring never locks up. (The Central Ring locks if the queue in the IRI

going from the Central Ring down to the Local Ring fills up.) On the Local Ring, no ring

locks are generated by the NIC cards. The only case where locking occurs on the Local Ring

is from the IRI. (In this case it is the upward queue from the Local to Central Ring in the IRI

that fills up.) Figure4.12 shows that most programs do not cause the ring to lock, but for those

that do, such as Radix, locking occurs frequently. For Radix the all-to-all communication pat-

tern causes the Central Ring to become a bottleneck. The IRIs cannot inject packets onto the

Central Ring fast enough, and the resulting buffer overruns cause the Local Ring side to lock

up. This could be fixed with a faster Central Ring. Faster rings will be explored in Chapter 5.

On the bus, busy waiting happens if the sinkable- or nonsinkable-busy flags are set for the

target(s) of a transaction. The arbiter does allow other non-blocked transactions to proceed,

TABLE 4.4: Cong ested latencies f or a 64-pr ocessor Ocean sim ulation.

Access Type
Number of
Requests Average Latency

Local Mem 2000 1380 ns

Remote Mem 5000 6420 ns

Local Memory - Retry 48 4220

Remote Memory - Retry 106 13500 ns

104Prototype P erformance & Anal ysis

though, so the performance penalty is not as severe as for ring locks. For most programs, the

bus utilization is less than 20%. From Figure4.13 we see that the busywait fractions are

minuscule. Only the flow control on the ring plays any role in NUMAchine’s performance.

0

1

2

3

4

5

6
x 10

4

IR
I−

Lo
ca

l R
in

g
Lo

ck
s

Radix

FFT
LU LU−Non

Cholesky

Ocean

Barnes

W
ater−SP

Ocean−Non

W
ater−Nsq

FIGURE 4.12: Local
Rings loc ks caused b y
the IRI.

1 2 4 8 16 32 64
0

10

20

30

40

50

Processors

B
us

 U
til

iz
at

io
n

(%
)

FFT

In−use
Busywait

1 2 4 8 16 32 64
0

10

20

30

40

50

Processors

Ocean

1 2 4 8 16 32 64
0

10

20

30

40

50

Processors

Ocean−Non

FIGURE 4.13: Average bus utilization. Only the three heaviest bus users are shown.
The rest of the programs have utilizations less than 20%. The busywait fractions are
negligible in all cases (< 0.1%).

Prototype P erformance & Anal ysis 105

4.3 Conclusion

We began by defining ‘good’ performance in the context of a simple, low-cost multiprocessor.

Consistent speedup growth with increasing system size, as well as a lower bound on the

speedup of roughly 20 at 64 processors represent our basic criteria. We showed that in terms

of parallel speedup, which is speedup with sequential code time set to zero, NUMAchine

exhibits good performance. We then went on to analyse certain architectural aspects discussed

in Chapter 3.

We found that the rings perform fairly well, although they do suffer from congestion

problems. Allowing a ring-injection buffer to use a ring slot that has just been freed up in gen-

eral helps lessen the buffer’s congestion, has a small overall positive effect on performance,

and requires no extra logic.

NUMAchine’s filtermask structure and lazy coherence directory maintenance were

shown to be efficient. The overinvalidation rate from the use of the filtermask reached highs of

around 2.5 (i.e. on average 2.5 as many stations were sent invalidations as actually needed

them). This was acceptable since superfluous invalidates to a processor’s cache incur very lit-

tle overhead. This result also indicates that the filtermask works to reduce invalidation traffic

compared to a scheme where all invalidations cause broadcasts to all stations. This filtering of

invalidation traffic was shown to be important for system performance in NUMAchine’s pre-

decessor, Hector [Farkas 1992].

Interventions, on the other hand, are much more expensive. The Network Cache, because

of its lazy approach to maintaining directory information, can reach a state where it must

broadcast interventions to all processors. We showed that this state almost never occurs, indi-

cating that the NC has a high probability of holding onto coherence directory information that

is needed in the future. Hit rates in the NC generally ranged from 50% down to 20%, with the

lower rates occurring for higher numbers of processors. The overall magnitude of the perfor-

mance enhancement from using the NC is investigated in the next chapter.

We took a brief look at request latencies and the effect thereon of the binary-backoff

NACK-and-retry mechanism. For requests that did not require a backoff, average latencies for

local requests increased by only 20% over the base local latency in a contention-free system.

Remote requests showed larger latency increases of around 300% on average due to conges-

tion in the network. For requests that did require backoffs, the increases in local and remote

106Prototype P erformance & Anal ysis

latencies were much higher: 400% and 600% respectively. This result shows that the backoff

mechanism has the potential to be a serious source of performance degradation. An alternative

scheme that queues requests and services them in FIFO order was proposed, but comparison

of the two was left to future studies.

Finally, we showed that the flow control scheme rarely comes into play, except for injec-

tion onto the Central Ring, and even then only for some programs. The queueing provided in

the system is sufficient to avoid flow control, even in the face of high average bus utilizations.

In the next chapter we will tune and modify certain aspects of the system to try and gain

some insight in to ways of increasing NUMAchine’s performance.

107

CHAPTER 5 Simulation Studies

In this chapter we use Mintsim to explore the parallel processor design space. The goal is to

determine what changes could be made in the design to most effectively increase overall sys-

tem performance. Changes will be considered to the Network Cache, rings, coherence proto-

col and consistency scheme. The general metrics used to measure system performance

continue to be parallel execution time and the associated parallel speedup.

The design space we are considering is huge. A parallel processing system contains hun-

dreds of different independent system parameters, making a systematic exploration of the

entire space impossible. In selecting certain aspects of the system for modification, it is just as

important to determine which others are to be held fixed, and why. Major architectural fea-

tures that remain unchanged are described in the following section, with justifications for

each.

5.1 Fixed Simulation Parameters

The most important ingredient in any multiprocessor system is the network. For the purposes

of this work, the basic network topology will stay ring-based. One major reason for doing this

is practical and has to do with the simulator. The design and verification of the simulator’s ring

components were very time-consuming. In addition, the single-path nature of the ring is an

essential ingredient in the cache coherence protocol. Switching to a mesh or some other multi-

ply-connected topology would necessitate not only new network component code, but also a

completely redesigned (and verified) coherence protocol. Besides this practical limitation,

there are other good design reasons for limiting the scope to rings. Previous work has indi-

cated that rings compare favourably to meshes [Ravindran 1997]. Also, as mentioned previ-

108Simulation Studies

ously, one of the goals of this work is to show that respectable parallel system performance

can be achieved without resorting to complicated or expensive hardware. We will show how

the ring performance from the last chapter can be improved upon with minimal added com-

plexity.

Our basic approach is to useproblem-constrained (PC) scaling [Culler 1999]. Basically,

we carefully choose a fixed problem size as described in the rest of this section, and then run

this problem on a varying number of processors. The alternatives aretime-constrained (TC) or

memory-constrained (MC) scaling. In TC scaling, the problem size is increased with the num-

ber of processorsN, such that the total execution time (wall clock time) is kept fixed. In the

real world, users are often limited by the amount of time that can be spent on a given problem.

(Users typically would like a job that runs overnight, and will scale down the job to fit into this

timeframe.) In this case it is the total amount of work done which scales withN. In TC the

dataset size for each cache generally does not decrease, or does so slowly, thus it avoids jumps

in performance as data sets start fitting entirely into caches (which can happen in PC). How-

ever, because our simulator actually runs serially, TC scaling would cause our simulation

times to scale withN as well, which would lead to week-long simulation runs for each

datapoint for programs like Barnes. The last type of scaling ismemory-constrained, where the

total amount of memory used by each processor is kept fixed. This method is useful when

memory is limited, because overflowing the memory can lead to severe thrashing. The draw-

back is that it is difficult to determine speedups for MC, because it is hard to determine the

actual amount of work done forN processors for all but the simplest applications. We argue

below that by taking care with the choice of problem size, the PC model can avoid any anom-

alies, and provide good results.

We will not change the basic unit of one processor with some fixed amount of dedicated

cache. (We will, however, change the associativity of the cache, as discussed below.) Since the

simulator uses MINT as a front-end, it is not feasible to model a different instruction set archi-

tecture (ISA) or a superscalar design1. Outside of the occasional custom-designed chip (e.g.

the Tera [Bokhari 1998]), the most common processors used in parallel systems are RISC-

based, thus we would in any case expect very little difference in the memory reference stream

by switching to a different ISA.

1. We also avoid newer architectures such as simultaneous multithreading or single-chip multiprocessors.

Simulation Studies 109

Because processor speed is increasing faster than memory speed, we increase the speed

of the processor in the simulator to model systems that will exist over the next few years. This

is done by setting a parameter in the input file to indicate the speed of the processor, as well as

loading in a different set of opcode timings. In the NUMAchine prototype, the processors run

at 150 MHz, but for the purposes of these experimental studies we increase the speed to 1000

MHz.

We model system sizes of up to 64 processors, since, as we have argued previously, this is

the upper limit on expected real systems for the next few years. We want to estimate the per-

formance of running ‘large’ problems on such a system. In this context ‘large’ means that we

do not want an application’s entire dataset to be able to fit into the cache, for any number of

processors. The latter point is subtle but important. If we are not careful, then it is possible to

choose a problem size which does not fit in the cache for small numbers of processors, but

does start fitting into the cache before the system size reaches our maximum. In such cases the

performance will show an abrupt jump in performance, causingsuperlinear speedup. Clearly

this is an artifactual result, due to the crossing of some architectural boundary and should be

avoided. If we were to use the default NUMAchine 1-MB L2 cache, then on a 64-processor

machine we would need problems with data sets much larger than 64 MB. Such large prob-

lems would take on the order of a few hours to run in hardware, which means weeks of simu-

lation time for each datapoint. The standard solution in this case is to scale down both the

system cache sizes and the problem sizes. Scaling down is complicated by the fact that com-

plex systems such as a multiprocessor are highly nonlinear, meaning that it is not possible to

just reduce all parameters by some constant factor.

In scaling down we have to pay careful attention to thedata set andworking set sizes for

a specific application. The data set size is the amount of memory required when running on a

uniprocessor. Note that this is not the same as the problem size, which depends not only on the

data set size, but also on other program parameters (e.g. the number of iterations to converge

on a solution). The working set is more nebulously defined as the ‘current’ data being pro-

cessed at a given point in the program, and as such an application can have numerous working

sets over time. It is common for working sets to fit entirely into caches, even small primary

caches. (In fact, a well-coded program should try to fit inner loops into the cache, for example

by splitting a large inner loop into multiple smaller loops, in order to take better advantage of

spatial and temporal locality.) For this reason, working sets tend to scale fairly slowly with

110Simulation Studies

increased problem size. Thus, in scaling down, we would like to have caches that are large

enough to accommodate typical working sets, because it is reasonable to expect that this situ-

ation would also hold for large problems running on a real machine. But we would like the

caches small enough that the full per-processor data set doesnot fit into the cache.

Besides cache size considerations, we also have to be careful when selecting the other

cache organization parameters: line size and associativity. Both of these have a direct impact

on miss rates. Of particular importance in scaling down are capacity and conflict misses.

Increasing the capacity misses is actually our goal, since we want to mimic data sets that are

too big for our caches. Cold misses are not considered, other than to ensure that our simulation

runs are long enough statistically speaking to make cold-cache effects negligible. Conflict

misses represent a hazard. The default NUMAchine configuration uses direct-mapped caches

for both primary and secondary caches, this functionality being fixed by the choice of the

R4400 processor. However, with a 1 MB secondary cache, the probability of conflict misses is

low. As the processor cache size is reduced, the conflict miss rate increases. We can compen-

sate by increasing associativity, but the question is how much is reasonable? Modern RISC

processors such as the MIPS R10000 and Alpha 21264 use 2-way associativity, while others

such as the PowerPC 604 are already 4-way associative [Burd 1999]. Another consideration is

that the shared memory model under which the Splash2 programs are compiled uses four dis-

tinct memory regions: shared, stack, heap and data/bss2. The natural choice is thus 4-way

associativity. (Actually, initial simulation studies were performed with direct-mapped caches,

so that the results showed severe anomalies. Extensive checking using simulator debug traces

showed that the anomalies were due to conflict misses.) Figure5.1 shows the performance

improvement for 4-way associativity over direct-mapping for one particular pathological case

where the Barnes application with 64 processors had a severe conflict miss problem. (It turned

out that in one specific inner loop, just one of the 64 processors happened to have a stack area

that conflicted with the data/bss region, which was enough to kill the performance.) We also

tried using 2-way associativity, which showed some improvement but still suffered from

excessive conflict misses.)

Having settled on 4-way associativity, our solution for selecting an appropriate cache size

was to first pick appropriate application sizes given simulation time constraints, and then set

the size of the processor cache small enough to steer clear of problems.

2. See Appendix A for a description of these regions.

Simulation Studies 111

Using the curves of cache usage in the Splash2 paper [Woo 1995], an L2 cache size of 64

KB was chosen. For N=64 this results in 4 MB of total cache in the system. To be conserva-

tive, application parameters were chosen such that the total memory allocated to shared

regions was > 16 MB. (These shared regions are where MINT stores the globally shared data

structures which are divided amongst the processors.) Since the shared area does not include

local (private) data such as the stack and the heap which also use up cache space, this choice

should be quite safe. Numerous test runs of each application were conducted with varying

problem sizes, using the MINT ‘-s’ switch to specify the maximum allowable size of the

shared memory region. The applications were run through the simulator with the switch set to

16 MB with ever increasing problem sizes until MINT died with an error message indicating

that the amount of shared memory requested by the application was more than the maximum.

This set of parameters was then used as the default for the studies that follow. A complete list

of the Splash2 application and kernel problem sizes is given in Tables5.1 and 5.2.

Another consideration when choosing the problem size is run length. Simulation runs

should last long enough that they are statistically significant. The choices above all result in

1 2 4 8 16 32 64
0

1

2

3

4

5

Processors

R
el

at
iv

e
P

er
fo

rm
an

ce

FIGURE 5.1: Direct-mapped ver sus 4-wa y associative pr ocessor cac hes. The
performance increase shown is the ratio of execution times of the parallel sections of the
program for the direct-mapped version over the 4-way associative version for a particular
run of the Barnes application.Analysis of simulator debug traces showed that the large
anomaly at 64 processors was due to cache conflicts.

112Simulation Studies

simulated run times on the order of a few seconds, which for the basic simulator timescale of

1 ns means over one billion cycles. Even with cache miss rates less than 1% this guarantees

many millions of memory references into the hierarchy, and should render any cold-cache

effects negligible.

With two levels of cache in the processor, it is still possible to have a minor cross-over

problem when local data structures fit into one level of cache but not the other. To avoid any

such anomalies in the results, only one level of cache is used. (The dual-level cache is actually

hardwired into the simulator code, so what was done was to make both the L1 and L2 caches

have the same size and line size, thus effectively behaving like a single level of cache.)

5.2 Algorithmic Speedup of the Test Programs

Before using these applications to probe our design space we need to verify that they are the

correct tools. As we saw in Figure4.3, certain combinations of programs and problem sizes

do not parallelize efficiently even under the PRAM model. We want to ensure that we use only

programs that do parallelize well, in order to avoid drawing false negative conclusions.

TABLE 5.1: Problem Siz es for Splash2 K ernels

Application

Our
Parameters
(If differ ent)

Splash2
Default
Parameters Data Set Description

CHOLESKY chol_tk29.O

-C65536

chol_tk18.O

-C16384

-B32

Large sparse matrix blocked to 64KB
cache. Splash2 default uses the medium
matrix, with 16KB blocking.

RADIX -n4194304

-m8388608

-n262144

-m524288

-r1024

4M integer keys with maximum value 8M.
Default is 1M keys with 2M maximum.

LU -n512 -n128

-b16

512x512 matrix. Default is 128x128 matrix.

FFT -m20

-n512

-l7

-m10

-n65536

-l4

1M complex doubles, 512 cache lines of
size 128B. Default is 1K points, 64K lines
of size 16B.

Simulation Studies 113

Mintsim can model a perfect memory system, and thus measure algorithmic speedups.

This feature is turned on by setting a parameter in the input file, after which the processor

module considers every access to the L2 cache to be a hit, no matter what the cache line state.

The results for our subset of the Splash2 programs are shown in Figure5.2. These differ

from the curves in Figure4.3 because we have changed the problem sizes. From the curves it

is clear that LU, Cholesky, Water and FMM are not good choices for out test programs. The

main reasons for the non-ideal algorithmic speedups are code overhead due to parallelization

for Cholesky, and sub-optimal workload partitioning for the rest. (We determined this by

examining the processor utilization statistics from the simulation output. Mintsim keeps track

of what percentage of time is spent by processors running or waiting for memory accesses and

barriers. A large fraction of time spent waiting for barriers in the PRAM model indicates a

workload partitioning problem.)

We thus choose FFT, Radix, Ocean and Barnes with which to do our testing. As described

in the Splash2 paper [Woo 1995], FFT and Radix have high communication-to-computation

ratios, and work well as stress tests. In addition, the nature of the communication for the two is

different. FFT shuffles data using a butterfly pattern, thus the sharing is migratory, while

Radix has an all-to-all data reshuffling phase which generates heavy coherence traffic. Ocean

and Barnes are good examples of typical scientific applications, complementing the two ker-

nels.

TABLE 5.2: Problem Siz es for Splash2 Applications

Application

Our
Parameters
(If differ ent)

Splash2 Default
Parameters Data Set Description

OCEAN

(same as
default)

 -n258 -e1e-07

-r20000

-t28800

258x258 grid

BARNES 8K 16K 8K particles, instead of the default
16K

WATER

729 molecules

3 timesteps

512 molecules

interaction of 512 water molecules

FMM (same as
default)

16K particles interaction of 16K gravitating parti-
cles

114Simulation Studies

5.3 Baseline Performance and Page Placement

With our upper bound defined, we now move to the baseline case, which considers the model

above to be running with the real NUMAchine memory and network. Most of the non-fixed

simulation parameters are the same as for the simulations presented in Chapter 4, with one

exception. Due to the faster processor and smaller cache there will be much more traffic in the

system, which necessitates an increase in the queue sizes throughout the model. We make

them large enough that they will never overflow, meaning that they are effectively of infinite

depth. This is actually beneficial, because queue overflows would cause the NUMAchine flow

control mechanism to trigger, which would cloud the results. For these design-space studies

wedo want to model queueing delays caused by contention in the interconnect, but we donot

want to worry about the effect of finite queues, since this is really an implementation issue and

only indirectly related to the architectural questions we wish to study3. A good architecture

3. Since the number of requests and writebacks is limited, there are theoretical maxima. With four writebacks
from every station going to one memory, we would need space for 60 cache lines of 128 bytes, or 7680 bytes.

0 20 40 60 80
0

10

20

30

40

50

60

70

80

Processors

P
ar

al
le

l S
pe

ed
up

Ideal
Radix
FFT
LU
LU−Non
Cholesky

0 20 40 60 80
0

10

20

30

40

50

60

70

80

Processors

P
ar

al
le

l S
pe

ed
up

Ideal
Ocean−Non
Ocean
Barnes
FMM
Water−Sp
Water−Nsq

FIGURE 5.2: Algorithmic parallel speedups f or the e xperimental system. These
results differ from [Woo 1995] due to the choice of different problem sizes. The Radix and
FFT curves lie on top of each other.

Simulation Studies 115

should minimize the need for large queues, but ultimately one puts in the largest queues one

can afford, to reduce the frequency of activation of flow control mechanisms.

In Figure5.3 we see that the performance is poor for all four programs up until 32 proces-

sors using a round-robin paging policy and then becomes a slowdown for Barnes and Ocean.

With the faster processors the memory system is being pushed beyond its capacity. When we

use a first-hit policy, pages that were unnecessarily placed on remote stations are eliminated,

leading to reduced remote traffic and lower coherence overhead.

Though there may be practical implementation problems with a first-hit policy— as men-

tioned in the previous chapter—they are all at the level of the OS, and do not relate directly to

the hardware architecture. The use of a first-hit strategy allows us to more correctly attribute

any blame for performance degradation to the hardware. A first-hit policy is assumed for the

rest of the results in this chapter.

In Figure5.4 we break down the performance of the applications by examining the pro-

cessor utilisations, which show the time spent by the processors doing real work, waiting for

0 20 40 60 80
0

10

20

30

40

50

60

70

Processors

P
ar

al
le

l S
pe

ed
up

Round−Robin

Ideal
Radix
FFT
Barnes
Ocean

FIGURE 5.3: Parallel speedups of the baseline system with a r ound-r obin and fir st-
hit pa ge-placement policies. Parameters are the same as the NUMAchine defaults,
except as noted in the text. The first-hit policy reduces the amount of ‘false’ remote traffic
and coherence overhead.

0 20 40 60 80
0

10

20

30

40

50

60

70

Processors

P
ar

al
le

l S
pe

ed
up

First−Hit

Ideal
Radix
FFT
Barnes
Ocean

116Simulation Studies

local or remote memory references, or waiting for synchronization. The poor performance of

Ocean (and to a lesser extent Barnes) in Figure5.3 corresponds to the large fraction of time

spent waiting for synchronization in its utilisation graph. Since we know that all four pro-

grams have nearly ideal algorithmic speedups, this overhead is being caused by our architec-

ture. An examination of the simulation output files for Ocean reveals that the degradation is

due to the backoff mechanism. In the other three programs, the number of accesses that

required retries either stayed the same or decreased in moving from 32 to 64 processors, while

the average latency for retried requests stayed the same. For Ocean, however, the number of

requests requiring a retryincreased by 50% in the 64- versus the 32-processor case, and the

average retry latency for each different category of request doubled. Barnes did not show the

same jump in retry overhead, although its total number of retries was considerably larger than

Radix and FFT. In section5.4.1 we propose a more efficient backoff mechanism.

1 2 4 8 16 32 64
0

50

100

P
ro

c.
 U

til
iz

at
io

n
(%

) FFT

1 2 4 8 16 32 64
0

50

100

P
ro

c.
 U

til
iz

at
io

n
(%

) Radix

1 2 4 8 16 32 64
0

50

100

Processors

P
ro

c.
 U

til
iz

at
io

n
(%

) Ocean

Busy
Lock
Barrier
Local
Remote

1 2 4 8 16 32 64
0

50

100

Processors
P

ro
c.

 U
til

iz
at

io
n

(%
) Barnes

FIGURE 5.4: Processor utilisation graphs corresponding to the fir st-hit speedup
cur ves in Figure 5.3. Since the algorithmic speedups for all of these programs are nearly
ideal, the significant fraction of time spent in synchronization for Ocean and Barnes must
be due to overhead created by our architecture.

Simulation Studies 117

5.4 Comparative Studies

We now begin exploration of the design space, our goal being to improve performance. The

areas that we consider are the rings, the consistency model, the coherence protocol, the net-

work cache and the station bus. The NACK-based retry mechanism is closely related to the

coherence scheme, both of which are discussed in the next section.

5.4.1 Coherence Overhead

The main question with regards to cache coherence is how much overhead it imposes on the

system, and whether it is worth optimizing the protocol. NUMAchine’s cache coherence

scheme was designed to make use of the efficient ordering and multicasting properties of rings

to achieve low overhead.

An essential component of the overall coherence protocol is the NACK-and-retry backoff

mechanism, which we introduced to handle access to locked coherence directory lines. If one

assumes that contention is usually low, then this approach should work well, but the results of

the previous section show that this assumption is false. Our NACK-and-retry scheme suffers

from fairness and liveness problems. Because there is no notion of priorities between retries

and regular requests, there is no guarantee that a given request will get through promptly or

even at all. A much better procedure would be to enqueue and/or merge multiple requests at

the memory and Network Cache. This would either mean that every directory entry would

require space and logic allocated for a queue to hold the maximum theoretical number of

requests (complex and non-scalable) or that a generic queueing pool would need to be allo-

cated and managed to handle any overflows (scalable but still complex). The advantage to

using the NACK scheme is that it is very simple and cheap to implement.

To begin our analysis, we run the simulations with coherence ‘turned off ’ to find an upper

limit on the amount of performance improvement achievable. In practice this means the fol-

lowing three changes are made to the memory model:

• Stores to the processor cache that find the line present,no matter what the state (shared
or otherwise), are treated as hits. No coherence information is passed on to the memory
or NC. Of particular note, no upgrades are generated in this scheme, since stores to
shared lines are considered hits.

118Simulation Studies

• Read requests (shared or exclusive) to home memory return data unconditionally. The
directory is not checked, nor is it updated.

• For the Network Cache, if the line is present inany state, it is considered a hit and data is
returned. Note that cache misses still have to go remotely to fetch the line, although the
remote memory is guaranteed always to hit. Lines that are locked due to other remote
accesses in progress still generate NACKs as before. Note that this is theonly type of
NACK that can still occur.

By eliminating all NACKs, except for those to a line locked in the NC by some still-pending

remote access, we can also measure the temporal locality of requests for the same cache line

to the NC. If processors tend to all access shared lines at the same time, we should see a large

number of NACKs. If the accesses are more spread out in time, these NACKs will always be

converted to hits under the no-coherence model.

The results are shown in Figure5.5, and make sense in light of the discussion at the end

of the last section. For Ocean the improvement is drastic, indicating that the slowdown

between 32 and 64 processors was indeed due to coherence overhead. Barnes shows a slight

improvement, with Radix and FFT showing almost no improvement, corroborating the evi-

dence in the utilisation graphs.

The lack of improvement for FFT and Radix points to the conclusion that the coherence

overhead is low. The rationale for this statement is that in turning off coherence we eliminate

three types of overhead:

• All NACKs, except for local NACKs from the NC.

• Latency to obtain write ownership.

• Latency for remote interventions, because home memory always hits.

FFT and Radix do not have many NACKs, but their simulation output files do show large

numbers of write accesses. The negative result for these programs shows that the second two

types of overhead must be low. For Radix, the reason for the low overhead is that both with

and without coherence the NC hit rate is around 85%, meaning that the coherence protocol

requires mostly local transactions. For FFT, the NC hit rates are around 5%, but most of the

writes occur to lines which are shared locally on-station, which require only on-station invali-

dations.

It is not clear how representative these types of reference behaviour are of ‘real world’

applications. This is a generic problem with benchmarks suites, though, and is not specific to

our analysis. The strongest conclusion we can draw is that, other than the effects of the back-

Simulation Studies 119

off mechanism, our coherence protocol (including the effect of the NC) performs well for our

test programs.

Commercial multiprocessors are frequently being used nowadays for non-scientific appli-

cations such asonline transaction processing (OLTP) anddecision-support systems (DSS),

which make heavy use of parallel databases. This analysis needs to be extended to cover these

new application domains, particularly since their access patterns are quite different from those

of the Splash2 programs [Barrosso 1998]. The Transaction Processing Council (TPC) pro-

vides benchmark suites for both OLTP and DSS, called TPC-C and TPC-D respectively [TPC

1999]. However, both of these suites require a parallel database engine. Porting a database to

NUMAchine is a massive task, which is far beyond the scope of this dissertation, and is left to

future work.

1 2 4 8 16 32 64
0

1

2

3

4

Processors

R
el

at
iv

e
P

er
f.

FFT

1 2 4 8 16 32 64
0

1

2

3

4

Processors

R
el

at
iv

e
P

er
f.

Radix

1 2 4 8 16 32 64
0

1

2

3

4

Processors

R
el

at
iv

e
P

er
f.

Ocean

1 2 4 8 16 32 64
0

1

2

3

4

Processors

R
el

at
iv

e
P

er
f.

Barnes

FIGURE 5.5: Turning off cac he coherence . The relative performance with cache
coherence turned off are shown. The ratios are with respect to the baseline case.

120Simulation Studies

5.4.2 A Relaxed Consistency Model

As mentioned in Chapter 3, NUMAchine uses a sequential consistency model. Sequential

consistency is generally considered in the literature to impose severe restrictions on perfor-

mance. While this is true when using traditional multiprocessor networks such as meshes and

hypercubes, it is not clear that it is as significant for NUMAchine’s rings. As mentioned

before, the rings already provide a natural sequencing mechanism, so the actual overhead in

our case is not as severe. (It could be argued that the choice of rings to begin with is a bad

starting point, thus we should not expect much improvement. In our defense we point to other

studies that indicate rings and meshes can compare favourably [Ravindran 1996, Hamacher

1997]). The goal of this section is to get a rough estimate of this overhead.

The method presented here does not rigorously model true relaxed consistency. We make

no modifications to the applications, and the modifications in the simulator are a minimal set,

basically changing the ordering of certain coherence operations and loosening invalidation

constraints.

As mentioned in Chapter 3, NUMAchine’s rings have sequencing nodes to cause a global

ordering of broadcast invalidates. In this section we turn that sequencing off, and consider

invalidates to be immediately active on reaching the highest level of ring necessary to reach all

targets. We also add an Upgrade Response command. Since NUMAchine uses the Invalidate

command as both an ACK to the requester and a kill to other shared copies, the ACK can take

longer to arrive than if it were a separate point-to-point command. In this section we separate

the functionality of the two, and send the Upgrade Responsebefore sending out the Invalidate.

If the requester is on the home memory and there are globally shared copies that need invali-

dating, this can significantly decrease the latency for write permission.

We also make changes to the memory and network cache modules in the case where an

exclusive request needs a data response plus an invalidate. Normally in NUMAchine the inval-

idate must be sent out first, but here we switch the order. They are still sent out back-to-back,

so this effect should be fairly minor.

The result is that there is negligible change in performance. The changes are less than

1 %, so no graphs are shown. If we couple this result with recent work showing that modern

out-of-order microprocessors can reap many of the performance benefits of relaxed models,

while keeping the sequential model [Gniady 1999], there is not a strong case for pursuing

relaxed consistency within the NUMAchine framework.

Simulation Studies 121

5.4.3 Central Ring Speed

Clearly the raw speed of the network has a tremendous bearing on performance in any multi-

processor system. In a shared memory system with hardware cache coherence it is particularly

crucial, because the programmer has much less control over communication than in a mes-

sage-passing paradigm. The general goal in designing the network is to reduce latency. Con-

gestion in a real network is a highly nonlinear effect: a very small change in the speed of one

particular link can cause sudden and drastic performance changes as the contended resource

causes knock-on effects throughout the memory hierarchy. Bursty traffic is usually the worst

offender in these situations, although multiple processors generating streams of writebacks

could also saturate the network. The goal of this section is to investigate the effect of varying

the speed of the upper ring to find the point after which increasing the speed will lead to

diminishing returns.

The default speed for both levels of ring is 50 MHz. We keep the system size fixed at 64

processors, because this is the worst-case traffic scenario for the Central Ring. From the

results of Chapter 4 we know that the ring-injection queues into the top level ring can become

very full. Increasing the Central Ring speed should help clear out the queues, but on the other

hand will increase the rate of requests being injected into the lower levels of the hierarchy, and

could possibly cause the problem to move elsewhere. The key point is that the two levels of

hierarchy must be well-balanced. We would like to find this balance point.

If we consider a steady-state pattern of requests flowing throughout the system, with the

probability of any two processors communicating being equal, then we can work out theoreti-

cally where we think the balance point should be. Let us assume for simplicity that each pro-

cessor has a total required bandwidth,B, for requests that go to another station (i.e. we ignore

traffic on the station bus), whether that station is on a local or remote ring (see Figure5.6).

Assuming the access patterns are the same for the different processors, then some fraction of

B is needed for traffic to stations on the same local ring, and the remainder is used for remote

stations. Let us call these fractionsfLR andfRR respectively, with the condition that

fLR + fRR= 1. In the absence of contention we can simply add the required bandwidths to

arrive at a total. A local ring carries the traffic for both remote and local requests, thus with

four stations the necessary local ring bandwidth is 4B. A fractionBfRR goes up across the cen-

tral ring, and since each central ring link sees the traffic from all 16 stations, we have a total

122Simulation Studies

requirement of 16BfRR for the central ring. The ratio of central ring to local ring bandwidth is

then 4fRR. If an application is equally likely to access a station on a remote or local ring, then

fRR is 4/5 (there are 12 remote stations versus 3 local ones, or a fraction of 12/15), and we

would need just over three times as much bandwidth at the central ring level. We expect most

applications to exhibit somewhat better locality, meaning thatfRR would be lower. Our esti-

mate then is that central ring bandwidth should be two to three times that of the local ring.

Figure5.7 shows the results of increasing the central ring speeds in increments of 50

MHz, up to a maximum of 250 MHz. The performance increases by 11% at 100 MHz, and

then flattens out. The second graph in the figure shows what is limiting the performance. At 50

MHz the injection queues have large maximum and average depths. Increasing the Central

Ring speed reduces this problem, but puts more pressure on the extraction queues, where the

average queue depths increase by over a factor of two. To truly balance the system, an investi-

gation of the three-dimensional space formed by the speeds of the station bus, Central and

Local Rings is required, which is left for future work.

Central Ring

Local Ring

Stations

BfRRBfRR

BB

B(1-fRR)

FIGURE 5.6: Band width requirements of the Central Ring. Each station generates
traffic with bandwidth B. A fraction BfRR splits off and goes up to the top level ring. In a ring
topology, any traffic that returns to the sender must always use all of the links on any ring
it traverses: what goes up must come down.The asymmetric data sizes of requests and
responses is taken into account by the assumption that all stations behave the same: a
given station sends requests on its output link, and gets responses on its input link, but it
also gets requests from other stations on its input link, and sends responses out.

Simulation Studies 123

5.5 Network Cache Performance

As mentioned in Chapter 2, the benefits of network-level caches are not universally agreed

upon. The goal of this section is to investigate the performance of NUMAchine’s Network

Cache. We look at the effect of changing NC sizes, then the NC’s level of associativity.

5.5.1 Network Cache Size

The goal of the NC is to reduce remote miss latency. It does this by providing a backup repos-

itory for cache lines which are ejected due to conflict or capacity misses in the per-processor

caches. In NUMAchine the NC serves a dual role as the local portion of the distributed coher-

ence directory, thus it can also enhance locality for processor coherence misses. So, for exam-

ple, if a processor obtains write permission for a remote cache line, any further reads or writes

100 150 250
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Central Ring Frequency (MHz)

R
el

at
iv

e
P

er
fo

rm
an

ce

50 100 150 250
0

50

100

150

200

250

300

350

Central Ring Frequency (MHz)

Q
ue

ue
 D

ep
th

s

Inject−Q Max
Inject−Q Avg
Extract−Q Max
Extract−Q Avg

FIGURE 5.7: Effects of increasing Central Ring speed. The left graph shows the
relative performance (parallel execution time) compared to the default 50 MHz Central
Ring. The figure on the right shows the maximum and average queue depths for the
FIFOs that inject onto and extract from the Central Ring.

124Simulation Studies

by other processors on the station generate only local traffic. This is only true as long as the

line does not get ejected from the NC, and the line does not get accessed by some other pro-

cessor from another station. Note that it is possible for the compiler and operating system to

arrange data and threads to increase this locality. We havenot modified the Splash2 programs

in any way to take advantage of this, so the results presented in this section are conservative.

In order to do the size study, we would also like to have two boundary points for compar-

ison: a zero-sized and infinite-sized NC cache. The zero-sized NC cache is intended to repre-

sent a system that has only local bus-snooping4. The infinite size is used to study the effect of

removing all capacity and conflict misses, which also indicates where increased associativity

might be of help (with conflict misses). The implementation of the infinite NC is simple since

all that is necessary is for the cache tag lookup function in the NC to use all of the address bits

instead of masking off the upper bits. The zero-sized NC is more difficult. To truly model a

system with no network caching at all would involve modifying the coherence protocol,

because the NC plays an integral role. To avoid this, we find a minimal set of changes which

allows the NC to stay in the simulation, but lets it mimic the behaviour of a snooping-only

system in most cases. We decided to keep the feature in the NC whereby a remote read is neg-

atively acknowledged if a previous request for the same line is still waiting for a response (the

combining case). This functionality would not normally be available in a snooping system, but

the extra hardware required in the NIC to perform the same functionality is negligible—one

register for each of the four possible outstanding processor requests—and to change this in the

simulator would be difficult.

The second change necessary to model a zero-sized cache is to use an infinite directory.

This may seem counterintuitive, but we do this to keep a full history of all cache lines that

have been brought onto the station, so we can make decisions on whether the line may be

available for snooping or not. We must force all received writebacks to continue on to the

home memory, since there is no NC cache in which to store them. Another change has to do

with shared lines in a global valid (GV) state. Such lines may or may not be in any local pro-

cessor, since they can be ejected without notification to the NC. In an aggressive bus-snooping

scheme, shared read requests can be satisfied by localshared in-cache copies from some other

processor5. Thus we allow the read to a shared line to succeed if the line is GVand the line is

4. A system with only local snooping would probably use page replication and migration to enhance locality.
Our purpose in this section is only to do self-comparison, not to compare our system against any others.

Simulation Studies 125

present in at least one processor’s cache on the station. We determine the presence of the line

by using a function that physically snoops into the on-station processor caches, but does so in

zero time. If the line is not present, we send the request to the home memory and change the

state in the NC directory to the not-in state (NS). Lines in the local valid (LV) state should ide-

ally also be snoop hits under our aggressive policy, but this proves too complicated. A line can

only be in the LV state if a dirty copy is written back to the NC, or another processor on the

station does a shared intervention, so that in our normal coherence scheme both processors

and the NC would have shared copies, with the NC being the owner of the line. But the write-

back cannot be kept in the NC for the same reason as above.

For the local intervention case, the difficulty arises when deciding on ownership of the

line after the intervention has finished. The line must be owned by some object on the station,

since it is out-of-date with respect to the home memory, but there is no clear candidate. It turns

out that if we try naively to implement our cache-snoop test on the LV line to determine if

there is really a copy in one of the processors, then remote interventions can cause a race con-

dition that leads to a coherence error. Our solution is to allow the NC to hit to LV lines, regard-

less of whether this would be legal under the snooping scheme or not. This gives the no-NC

model a slight advantage, but after checking through the results we concluded that this was a

minor effect6.

The final change we made for the no-NC case is to change the directory lookup times to

one cycle, to model a zero-overhead bus-snoop. (The NC still sits across the bus from the pro-

cessors, so bus access time is modelled.)

The NC test sizes are chosen based on the total amount of processor cache which the NC

is backing up. In our case, four processors with 64 KB of L2 cache each means that 256 KB of

cache is necessary just to back up L2. It is still possible for a cache smaller than this size to

have some effect. Firstly, a significant proportion of the lines in the L2 caches are for local or

private memory, so the total amount of remote memory cached is less than 256 KB. Secondly,

5. This is normally not done because multiple processors may have a copy, so the bus needs some arbitration
method to find out which one gets to respond.

6. The greatest percentage of such hits to LV for the no-NC runs is for BARNES at 8 processors. Thetotal num-
ber of hits to LV lines (including legal and illegal) is just over 1% of the total requests to the NC. The number
of lines that managed to stay in the LV state was greatly reduced in the no-NC case by our policy of forward-
ing all writebacks to the home memory.

126Simulation Studies

shared lines will have copies in multiple L2 caches, thus the NC cache storage used is less

than the direct sum of the L2 set sizes. And finally, as long as the NC size is greater than 64

KB, a line may be kept in the NC which was ejected due to a capacity conflict at the L2 level.

We choose as our smallest size 128 KB, and work up in multiples of four until we reach

2048 KB. These, along with the zero-sized and infinite NC cache results, are normalized to

our baseline case of an NC with 8192 KB, which is the size of the NC in the prototype.

Results are shown in Figure5.8. For FFT and Ocean, the size of the NC cache does not matter,

but it does not make performance any better or worse than having no NC at all. For Radix and

Barnes there is a marked improvement as the NC size is increased beyond the minimum. For

Barnes a 512 KB cache is enough to provide nearly the same performance as if the cache were

infinite.This is due to capacity requirements, since the output files show that the total footprint

of data in the NC is around 700 KB. For Radix, the same footprint is 4.4 MB (per NC), which

8 16 32 64
0

0.2

0.4

0.6

0.8

1

Processors

R
el

at
iv

e
P

er
fo

rm
an

ce
FFT

8 16 32 64
0

0.2

0.4

0.6

0.8

1

Processors

R
el

at
iv

e
P

er
fo

rm
an

ce

Ocean

8 16 32 64
0

0.2

0.4

0.6

0.8

1

Processors

R
el

at
iv

e
P

er
fo

rm
an

ce

Barnes

8 16 32 64
0

0.2

0.4

0.6

0.8

1

Processors

R
el

at
iv

e
P

er
fo

rm
an

ce

Radix

No NC
128KB NC
512KB NC
2MB NC
Inf NC

FIGURE 5.8: Effects of Netw ork Cac he siz e on perf ormance . For a given number of
processors, the execution time is normalized to that of our baseline case with an 8192 KB
cache.

Simulation Studies 127

explains why it takes the full 8 MB default NC cache to obtain effective infinite-cache perfor-

mance.

The conclusion is that for certain programs the NC can definitely improve performance

by helping with L2 capacity problems. In the next section we examine whether there is a con-

flict-miss problem by increasing the NC associativity.

5.5.2 Network Cache Associativity

We will use Radix for this comparison, because we have seen in the previous section that

exhibits the largest response to changes in the NC size, and with such a large per-NC footprint

it also has the best chance of showing conflict problems.

Adding associativity to the NC is not straightforward. The problem is that normally a

least-recently used (LRU) way-selection algorithm is used for replacements in an associative

cache. The reason LRU works is that good temporal locality normally means that old cache

lines contain the least valuable information, so it is safe to eject them. In the case of the NC,

the ‘information’ contained in a cache line is not only the data, but the coherence directory

information as well. Since the NC is supposed to reduce both cache misses and coherence

overhead, we must broaden our definition of information content.

Our algorithm is to assign priorities to certain cache line states that contain the most

‘expensive’ information from a coherence standpoint. Our choices, from highest (we do not

want to eject) to lowest (we can afford to toss out) are:

• Locked Any-State - Actually we cannot throw these out. If all ways are locked, the algo-
rithm must NACK the request.

• Local Valid - As described in previous sections, this state is expensive to reach, and indi-
cates recent local sharing so we should keep it around.

• Local Invalid - Almost as useful as LV, but either there is no other processor that wants to
share the line, or there has not been enough time for the sharing to occur.

• Global Valid - A globally shared copy, so it should be kept around if no other dirty states
need the space.

• Notin State - A copy was requested in the near past, but NACKed. The only information
here is that some processor may retry a request soon.

128Simulation Studies

• Global Invalid - This contains almost no information at all, indicating only that no copies
exist locally or have been requested in the near past. This is the prime candidate for ejec-
tion.

This algorithm is simple to realize in the simulator, but would be very expensive in hard-

ware, so it must work very well to be justifiable. Supporting too many ways of associativity is

also costly in terms of hardware, since each way needs comparison logic to be able to run in

parallel. (The decoding could be done serially, but this destroys the performance benefit of

associativity.) For our experiment we use a 512 KB NC size, because from the last section we

know that this size does not tap all of the potential of the NC. We model 2-, 4- and 8-way asso-

ciative NCs. A 4-way associative NC provides room for separate requests from each of the

four local processors. More than 8-way associativity is unlikely to gain us much, and would be

overly expensive to implement.

In Figure5.9 we see the results for Radix on 8 processors. (We choose 8 because from

Chapter 4 we know that an 8-processor system has the highest hit rates.) The improvement in

2 4 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Associativity

R
el

at
iv

e
P

er
fo

rm
an

ce

1 2 4 8
0

20

40

60

80

100

Associativity
H

it
R

at
e

(%
)

FIGURE 5.9: Effects of ad ding associativity to the Netw ork Cac he. The graph on the
left shows the relative improvement in parallel execution time compared to the default 1-
way (direct-mapped) cache. The improvement does not go above 5%. The graph on the
right shows that there is some small improvement in the hit rate, but clearly not enough to
increase performance. WIth 8-way associativity the size of each way becomes small
enough that capacity misses start outweighing the benefits of associativity.

Simulation Studies 129

performance goes no higher than 5%, and the hit rates improve slightly up to 4-way associa-

tivity. This is not enough of a performance gain to justify adding the complexity of associativ-

ity to the NC.

5.6 Conclusion

In this chapter we have considered ways of increasing NUMAchine’s performance. As a pre-

cursor to these investigations we showed that a first-hit page placement policy provides better

performance than a round-robin policy. We then used this first-hit policy as the default for the

rest of the results.

We first considered the coherence protocol overhead. We modelled a system without

coherence overhead, where write accesses were allowed to succeed as long as the data was

available, irrespective of its coherence state. We found that the difference in performance

between this ideal version and our implemented protocol was minimal for all programs except

Ocean, which had 180% and 400% improvements at 32 and 64 processors, respectively. We

concluded from this that the coherence scheme is efficient and performs well in most cases,

and that the coherence operations with the highest overheads occurred infrequently. More

work needs to be done to determine whether Ocean’s behaviour is intrinsic, or is due to some

artifactual effects and could be fixed by tuning the code.

We considered briefly the relaxation of the sequential consistency model. We only looked

at changes to the hardware, and did not consider changing the programming model. Easing the

constraints placed upon the hardware implementation by sequential consistency had almost no

effect on performance.

In Chapter 4 we saw that the Central Ring caused congestion in the system. We investi-

gated the effect of speeding up the Central Ring. We found that the overall performance could

be increased by 11% with an increase of the Central Ring frequency to 100 MHz, after which

point the performance did not change. Investigation of the maximum and average queue

depths indicated that the reason for the plateau in performance was that the bottleneck had

moved from the Central Ring’s injection queues to its extraction queues. We proposed that

future studies are needed to investigate a full balancing of the station bus, Central and Local

Rings to find the ‘sweet-spot’ that maximizes performance.

130Simulation Studies

With regards to the Network Cache, we looked at the effects of its size and associativity

on system performance. We concluded that while some programs are insensitive to NC size,

others can show large performance improvements with an NC of even modest size. For an NC

supportingP processors with caches of sizeC, an NC size of around 2PC displayed perfor-

mance that approached the performance of a system with an NC of infinite size.

We also considered adding associativity to the NC. To do this we introduced a novel set-

replacement algorithm based on the notion of the ‘importance of information’ represented by

various coherence directory states. By reducing the likelihood of a cache conflict, increasing

the associativity reduced the probability of finding a line locked by some other access. Our

results showed that performance increased by at most 5%, which is not enough to justify the

extra cost of adding associativity.

131

CHAPTER 6 Conclusion

6.1 Summary

The goal of this work has been to describe the design, and analyse the performance, of

NUMAchine, a distributed shared memory (DSM) parallel processor. NUMAchine is

intended as a proof-of-concept machine, showing that a DSM can be implemented at low-cost,

while maintaining scalability up to a few hundred processors. It also serves a second role as a

research platform for investigations into all aspects of multiprocessing; from the high end of

the spectrum, encompassing compilers and operating systems, down to the lowest levels, such

as hardware cache coherence protocols and system-area networks.

The hardware component of the NUMAchine project has taken over five years from ini-

tial high-level design studies to the completed, functional 48-processor prototype. During this

time, the author was responsible for all aspects of the prototyping process, from architectural

design and simulation studies, to board manufacture and debugging. The Mintsim architec-

tural simulator, and the simulation studies which make use of it for pre- and post-prototype

analysis are both contributions solely of the author.

We gained a wealth of experience from designing and building our own multiprocessor.

Perhaps the most important lesson learned is that to be a good architect one needs to have

experience with implementing hardware. High level architectural studies are very useful, but

they are also a long way from real hardware. Ideas that seem simple at the top level can

become a nightmare when it comes to implementation. Our packet re-assembly scheme, for

example, was predicated on our choice of a slotted-ring protocol. One reason for choosing

slotted rings was to simplify injection of packets onto the ring, the trade-off being added com-

plexity on the receiving (extracting) end. It turned out there were numerous details that made

the packet re-assembly controllers the most complicated FPDs to design and hardest to debug.

132Conc lusion

This added many cycles of latency which we did not take into account in our initial simulation

studies, since we thought that this part of the system would be ‘easy’.

Our overall experience with design using FPDs was very positive. They allowed us to

reach our performance goals, but also greatly enhanced the ability to quickly debug the sys-

tem. We designed each FPD with debug pins which were pulled out to headers suitable for

connection to a logic analyzer. By reprogramming the devices in-system, while the machine’s

power was kept on, we could quickly re-run tests using different trace information for signals

internal to the FPD. This enabled us to zero in on bugs in a matter of hours instead of days.

Once the bug was found, we could have the fix installed in minutes. Without this facility, we

would have had to spin many more revisions of the cards, which would have been impossible

with our limited budget. (Our first card, the processor card, needed three spins, while all the

other cards needed only two.)

On the other hand, FPDs do have drawbacks, two of the most significant being speed and

logic density. Our targeted system-wide design speed of 50 MHz was extremely aggressive

given FPD performance in the 1996-1997 time frame in which the chips were purchased. By

necessity we developed a very high level of expertise in tuning FPGA and CPLD designs to

achieve the desired clock rate. As for logic density, we were not able to fit our most complex

controllers, such as the cache coherence directory controllers, into even the largest FPDs

available at the time. The extreme case was the controller for the Network Cache (NC) coher-

ence directory, which we managed to fit into four of the largest CPLDs after partitioning the

design. This added complexity to both the design and verification. Post-fabrication issues

arose when we needed to modify logic on FPDs with internal resource usage over 60%.

Because the chips were soldered to the boards, pin placements were fixed. We found that

changing logic with these fixed pins made it impossible in many cases for the fitting algo-

rithms in the FPD CAD tools to find a logic assignment that would meet our timing con-

straints. In these cases we had to either find another way of fixing the logic, or, in the worst

case, had to resort to hand-placement of internal logic resources.

Up until a few years ago, a project of this scale with a team this size would have been

impossible. Sophisticated CAD (computer-aided design) tools1 were crucial in allowing us to

design and verify our boards all within a unified framework. The verification stage involved

1. We used the Cadence Logic Workbench tool suite, made available to the University of Toronto by a special
university licensing agreement between Cadence and the Canadian Microelectronics Corporation (CMC).

Conc lusion 133

running full board-level simulations using hardware-description language (HDL) models. The

measure of success for this approach is that the first boards (processor cards) we received back

from fabrication were booting up and running code within a week.

6.1.1 Architectural Simulator

The main tool used for architectural validation and analysis, and a major contribution of the

thesis, is the Mintsim simulator. Mintsim allows detailed cycle-accurate system-level simula-

tion of NUMAchine’s architecture. Most simulators used for comparable architectural studies

model at a high level, or else they run slowly and can only use ‘toy’ applications or trace files,

which have unrealistic behaviours or timing. We also have the advantage that our simulated

architecture exists as real hardware, allowing us to verify the simulation model, lending cre-

dence to the results.

Mintsim is highly flexible, allowing almost any architectural parameter to be varied, and

the effect on performance to be easily measured. It is execution-driven, meaning that it uses

real parallel applications, presenting the abstraction of ‘virtual hardware’. This allows for very

accurate modelling of timing and ordering, which is particularly important in the analysis of

coherence protocols and networks. Although the simulator is very detailed, it is also fast. Typ-

ical slowdowns on the order of 1000 times allow programs with hardware run times of up to

one hour to be simulated in a day.

We also described a strategy for increasing confidence in the simulation results. During

initial simulator development, synthetic benchmarks with predictable results are used to check

simulator output. After the hardware is available, the same measurements performed with the

simulator can be duplicated in the hardware.

6.1.2 Architectural Results

We presented results in Chapter 4 which indicate that NUMAchine’s ring-based network pro-

vides good levels of performance in the role of a DSM system interconnect. The bisection

bandwidth of rings is not scalable, and our claims are only valid up to our chosen 64-processor

limit. However, we believe that it will be many years before there is much of a market for sys-

tems larger than 256 processors, which we consider to be the upper limit for the category of

134Conc lusion

medium-scale multiprocessors. Indeed, the current ‘sweet-spot’ for commercial multiprocess-

ing is dual- or quad-processor bus-based boxes, containing Intel or Alpha processors. These

are becoming commodity items which are available in a typical user’s desktop machine, or as

a small-scale server. The ability to scale up to huge numbers of processors is not an important

criterion for commercial multiprocessors. In this regard, NUMAchine’s hierarchy of rings,

with its simple point-to-point interconnection topology, allows for scalability with low incre-

mental cost. In addition, the simplicity of rings allows them to be run at very high speeds,

which both increases bandwidth and reduces latency.

One aspect of NUMAchine’s rings which we did not consider is reliability and fault toler-

ance. These are crucial given the current market trend towards raising the level of reliability of

multiprocessors to that of mainframes. While approaches such as dual rings can address these

issues, their cost and performance impact were not considered here.

A significant reason for NUMAchine’s good performance is a novel hardware cache

coherence protocol that makes use of the ring topology and its ordering properties to achieve

low levels of coherence overhead. This is critical in keeping performance levels high under the

shared-memory paradigm. The coherence protocol uses the writeback/invalidate scheme as its

basic structure, upon which it builds a dual-level coherence directory which matches the ring

hierarchy. No explicit acknowledgments are necessary for invalidations in the protocol, since

the rings maintain relative ordering of broadcasts. This ordering property also provides for a

natural implementation of a sequentially consistent memory model. Sequential consistency

provides the simplest and most intuitive model of memory from a programmer’s perspective,

which makes NUMAchine very programmer-friendly. In anticipation of the argument that

sequential consistency has inherently lower performance than weaker consistency models, we

point to recent results in the literature indicating that the combination of sequential consis-

tency and modern microprocessor architectures can achieve the same levels of performance as

weaker models [Gniady 1999].

In Chapter 5 results were presented which showed that a network-level cache can help

alleviate the high latency for remote requests in a NUMA architecture. For certain types of

programs the Network Cache was shown to contribute to a significant improvement in execu-

tion times, while for the remainder of the programs the NC was performance-neutral. The size

of the NC plays a role in its performance, and we found that a size about a factor of two larger

than the sum of the processors’ caches worked well. Sizes beyond this did not do much to

increase performance. In the same chapter we presented a novel set-replacement algorithm

Conc lusion 135

used to implement associativity in the Network Cache, based on a ranking of the information

content of various coherence states. We showed that increasing the associativity to 2-way or 4-

way increased performance by no more than 5%, and concluded that the added complexity of

supporting associativity was not justified.

We expect that the NUMAchine prototype’s performance still has considerable room for

improvement. As mentioned in Chapter 4, the backoff scheme can be improved upon. Other

enhancements to the NC and coherence protocol, such as dynamic protocol selection or the

use of multicasting to push data instead of our default pull model, are part of ongoing

research. Finally, all of the results presented herein use unmodified Splash2 programs.

NUMAchine is a clustered architecture due to its bus-based stations. Three obvious ways of

tuning the programs to increase performance would be:

• Allocate data structures and threads to take advantage of low-latency intra-cluster (on-
station) access times.

• Make the OS and compilers more NC-aware, in order to make more efficient and intelli-
gent use of the NC cache resource.

• Add support in the operating system for page migration and replication to provide a
complementary mechanism to reduce remote latency for access patterns which the NC
cannot handle.

NUMAchine is a working prototype. Figure6.1 shows a partially-assembled prototype

with 24 processors. With the addition of the final ring, the full 48-processor system will be

operational. We are able to boot up the operating system, and run parallel applications natively

on NUMAchine. Now that the hardware is finished, the next phase of research will focus on

the OS, support for parallel file systems, and architecture-aware, automatically parallelizing

compilers.

6.2 Future Work

The field of parallel systems and programming is roughly 30 years old, but is still in a fairly

immature state of development. In the following paragraphs we suggest some ways in which

the results of this dissertation could be extended, and possibilities for other related work.

136Conc lusion

In Chapter 4 we found that the exponential backoff approach to handling cache lines

locked by coherence actions suffered from liveness and fairness problems, and could lead to

very large latencies. A better scheme was proposed, but not analysed. It would be interesting

to find out whether the performance of the newer approach was enough to justify the extra cost

and complexity.

FIGURE 6.1: NUMAchine with 24 pr ocessor s. The two tall vertical racks contain six
stations with four processors in each. The bottom two stations in each rack are
connected together by the shiny ring cables to form a 16-processor Local Ring. Another
Local Ring sits at the top of the racks. (The two top stations have yet to be installed.) The
third Local Ring sits behind the two shown, and faces the other direction. The single-
station mini-NUMAchine shown on the right is used for debugging.

Conc lusion 137

Advances in FPD architecture present some intriguing possibilities for design of systems

such as NUMAchine. In the next few years programmable devices will be available with

mixed FPGA/CPLD structures on the same chip. These devices will contain hundreds of mil-

lions of gates, as well as megabits of embedded memory. With such resources it would be pos-

sible to build an entire coherence engine (including the SRAM directory) inside a single chip,

allowing for significant reductions in latency.

As mentioned in Chapter 5, benchmarks are a particularly weak point. Benchmark suites

such as Splash2 help to model the performance of scientific applications. However, the huge

boom in commercial use of shared-memory multiprocessors means that a majority of compute

cycles are now devoted to three major new classes of workloads:on-line transaction process-

ing (OLTP),decision-support systems (DSS) and Web servers. OLTP typically involves many

small read/write accesses to a large database. DSS workloads analyse databases in order to

detect business trends, which involves long complex queries accessing the entire database.

And Web servers are usually used either for presenting information or searching. All three

have very different characteristics, which are quite different from scientific applications. Only

recently have researchers started to analyse these workloads in multiprocessing environments

[Barroso 1998]. The results indicate that communication-to-computation ratios are much

higher for these applications, particularly for OLTP. Sharing patterns are dynamic and non-

repetitive, with a comparatively high rate of true sharing, leading to much more time spent

servicing coherence misses in the caches. Analyses such as the ones presented in this thesis

will need to be redone using more recent benchmark suites such as TPC (Transaction Process-

ing Council) [TPC 1999].

Another area which needs more work is the incorporation of mainframe-class Reliability/

Availability/Serviceability (RAS) features as a basic requirement in multiprocessor system

modelling. RAS is necessary for such machines to have broad commercial appeal, but it

affects both performance and cost. Computer architects must include these aspects in their

analyses right from the start; they cannot be treated as independent issues to be designed in

later or added on.

This work could benefit greatly from recent advances in the state of the art of simulation.

When we started, there existed no commonly accepted framework for doing multiprocessor

simulation. We estimate that just providing the infrastructure for our architectural simulator to

hook up with MINT took roughly six man-months of work. Tools such as SimOS [Rosenblum

138Conc lusion

1997], while powerful, are not flexible enough to allow for the kind of detailed back-end

architectural simulations discussed in this thesis. Were a simulation environment with the flex-

ibility of MINT and the power of SimOS available, we could have investigated the perfor-

mance of the architecture including the effects of the operating system and multiprogrammed

workloads, which was not feasible with the tools we developed. There are also performance

issues regarding cycle-accurate simulation of such large systems. A fitting approach is to par-

allelize the simulator itself. Research is ongoing in this area but results as yet are poor. (See

for example [Carothers 1999]).

And finally, future work on multiprocessing systems will benefit from research into for-

mal verification. Both the cache coherence protocol and the prototype hardware were verified

by simulation. While these proved sufficient for our needs, they were only just barely so. With

the increasing complexity of modern microprocessors and advanced optimized coherence pro-

tocols, formal verification will provide the only means of designing parallel systems in a rea-

sonable amount of time.

139

APPENDIX A Notes on the Simulator

The simulator, as described in Chapter 3, consists of the MINT front-end[Veenstra 1993], and
the NUMAchine simulator back-end. The version of MINT used was 2.6, with some minor
modifications, which for the sake of completeness will be described below. A brief description
of the NUMAchine simulator and its parameter files are also given.

A.1 MINT Modifications

The most fundamental change to MINT was switching the basic time variable from double-
precision floating-point variables (double) to signed 64-bit longs (long long) for both
the Sparc and SGI platforms. This allowed the same range of simulation times (since adou-
ble is stored internally as 64 bits on both machines) but made the simulator considerably
faster. Note that compilers which could handle thelong long type were not universally
available when version 2.6 was first distributed. We used the GCC 2.7.2 compiler to compile
both MINT and the NUMAchine simulator.

We also modified MINT to pass along to the back end more information as to the source
of a given memory reference. The MINT memory space consists of four sections:

• Stack - the standard program stack as used by local variables and for parameter passing,

• Heap - a private per-thread area used for memory obtainedthroughmalloc(),

• Share - a global memory section, accessible by all threads and allocated using the
us_malloc() call, containing the shared data structures (e.g. arrays and trees) that are
the targets for most of the work done by a parallel application,

• Data/BSS - the initialized (Data) and uninitialized (BSS) static data sections that are
allocated at program load time.

This allowed the back end to accumulate statistics for each category, which was useful as the
reference patterns were different for each type.

In order to do future studies on prefetching and updating, we added the capability to han-
dle both of these types of references at MINT’s lowest level. To get a program to generate
such references, the source code would have to be modified by hand to insert a dummy ‘sys-

140Notes on the Sim ulator

tem call’ with a virtual address, which MINT recognizes and passes along to the newly added
back-end routines:sim_update(), sim_prefetch_shr() and
sim_prefetch_exc().

A ‘feature’ of the original MINT 2.6 version was that the results obtained when running
the Sun and SGI versions of the code were very slightly different (less than 1%). While not
significant, the very fact that the same binary application code running through supposedly
identical virtual machines inside MINT on the two architectures did not match was worri-
some. After much debugging, it was found that the section of memory containing the environ-
ment variables passed to the simulator were of different sizes on the two platforms. This
caused the alignment of MINT’s internal virtual memory space for the parallel application to
differ. The resulting slight change in cache access and page fault patterns gave rise to the
anomaly. The MINT code was modified so that the starting point for its virtual memory space
was aligned to a large page size. After this change the results on the two platforms were iden-
tical.

There were also a few miscellaneous additions and fixes to the following files:

• exec.c - make thePUNMAP() macro the exact inverse ofPMAP() , which was prob-
ably a bug,

• icode.h - fixed a bug in the address space decoding logic which would incorrectly
flag addresses as ‘invalid’,

• subst.c - added the routinesmint_getenv(), mint_putenv() since as
mentioned above the default environment variable handling caused subtle anomalies on
different platforms. Also added were the previously unsupported operating system calls
shmemalign() andgetpagesize().

Some of these changes may also be present in later versions of MINT. However later ver-
sions did not add any functionality we found necessary for our work, so we stuck with version
2.6. All of the modified code for MINT is available by contacting the author.

By default, MINT’s time scale is arbitrary; there is no assumption of any kind of units for
MINT’ s internal clock. Moreover, unless told otherwise it assumes that every machine instruc-
tion takes one clock cycle to execute. While this is true for the majority of the RISC R4400
instructions, it is not true for all, and in particular arithmetic operations such as multiplication
and division take on the order of tens of cycles for both fixed- and floating-point versions. To
present a more realistic model MINT allows the number of cycles per instruction (also known
as CPI) for all the assembler opcodes to be specified in a text file using its ‘-c’ option. An
example of such anopcodes file is shown in ListingA.1. The number in the second column is
the number of clock cycles for the instruction. Since the fundamental time unit in the simula-
tor is 1 ns, the sample parameter file corresponds to a 1000 MHz processor. This file can be
scaled to a processor running at F MHz by multiplying each value by ROUNDUP(1000/F).
These timings were not supplied with MINT, but taken from the R4400 reference manual
[Heinrich 1994].

Notes on the Sim ulator 141

regimm 1 jal 1 beq 1 bne1 blez 1 bgtz 1
addi 1 addiu 1 slti 1 sltiu 1 andi 1 ori 1
xori 1 lui 1 cop0 1 cop1 1 cop2 1 cop3 1
beql 1 bnel 1 blezl 1 bgtzl 1 lb 1 lh 1
lwl 1 lw 1 lbu 1 lhu 1 lwr 1 sb 1
sh 1 swl 1 sw 1 swr 1 cache 1 ll 1
lwc1 1 lwc2 1 lwc3 1 ldc1 1 ldc2 1 ldc3 1
sc 1 swc1 1 swc2 1 swc3 1 sdc1 1 sdc2 1
sdc3 1 sll 1 srl 1 sra 1 sllv 1 srlv 1
srav 1 jr 1 jalr 1 syscall 1 break 1 sync 1
mfhi 1 mthi 1 mflo 1 mtlo 1 mult 7 multu 7
div 32 divu 32 add 1 addu 1 sub 1 subu 1
and 1 or 1 xor 1 nor 1 slt 1 sltu 1
tge 1 tgeu 1 tlt 1 tltu 1 teq 1 tne 1
bltz 1 bgez 1 bltzl 1 bgezl 1 tgei 1 tgeiu 1
tlti 1 tltiu 1 teqi 1 tnei 1 bltzal 1 bgezal 1
bltzall 1 bgezall 1 add.s 4 sub.s 4 mul.s 7 div.s 23
sqrt.s 54 abs.s 2 mov.s 1 neg.s 2 round.w.s 4
trunc.w.s 4 ceil.w.s 4 floor.w.s 4
cvt.d.s 2 cvt.w.s 4 c.f.s 1 c.un.s 1 c.eq.s 1 c.ueq.s 1
c.olt.s 1 c.ult.s 1 c.ole.s 1
c.ule.s 1 c.sf.s 1 c.ngle.s 1
c.seq.s 1 c.ngl.s 1 c.lt.s 1
c.nge.s 1 c.le.s 1 c.ngt.s 1
add.d 4 sub.d 4 mul.d 8 div.d 36 sqrt.d 112 abs.d 2
mov.d 1 neg.d 2 round.w.d 4 trunc.w.d 4
ceil.w.d 4 floor.w.d 4 cvt.s.d 4
cvt.w.d 4 c.f.d 1 c.un.d 1 c.eq.d 1 c.ueq.d 1
c.olt.d 1 c.ult.d 1 c.ole.d 1 c.ule.d 1 c.sf.d 1
c.ngle.d 1 c.seq.d 1 c.ngl.d 1 c.lt.d 1
c.nge.d 1 c.le.d 1 c.ngt.d 1 cvt.s.w 6 cvt.d.w 5 mfc0 1
mfc1 3 mfc2 1 mfc3 1 mtc0 1 mtc1 3 mtc2 1
mtc3 1 cfc0 1 cfc1 2 cfc2 1 cfc3 1 ctc0 1
ctc1 3 ctc2 1 ctc3 1 bc0f 1 bc0t 1 bc0fl 1
bc0tl 1 bc1f 1 bc1t 1 bc1fl 1 bc1tl 1 bc2f 1
bc2t 1 bc2fl 1 bc2tl 1 bc3f 1 bc3t 1 bc3fl 1
bc3tl 1 cop_reserved 1 cop_invalid 1
terminate 1 b 1 li 1 move 1 nop 1

LISTING A.1: Mint opcodes file for a 1000 MHz processor.

A.2 Notes on the NUMAchine Simulator (Mintsim)

Mintsim is described in Chapter 3. Here we provide an example of the simulator command
file, to give an idea as to Mintsim’s flexibility .

While the basic CPU model is fixed by the use of MINT, and features such as the ring-
based network and its associated cache coherence protocol are fixed due to software develop-
ment time constraints, just about any other parameter in the model is variable. A simulation
run is controlled by a text parameter file, an example of which is shown in ListingA.2. The

142Notes on the Sim ulator

values shown are the defaults for a 32-processor implementation of the NUMAchine proto-
type hardware.

#
NUMAchine simulator command file
================================
#
NOTE: Where options are commented out, the value
indicates the default
#
General Simulator

Geometry is: Ring0s/Ring1:Stations/Ring0:CPUs/Station,
so product is the number of cpus in the system

set sim geometry 2:4:4 # 32-CPU system
set sim barrier_type ideal
Types are: “ideal”, “simple”/”tree” (Hardware)
“soft”/”softtree” (Software)
set sim lock_type spin
Types are: “spin”, “ideal”
set sim coherence 1 # Use cache coherence or not
set sim global_line_size 0
If Mem and NC use different line size to L2
set sim use_nc numa
Whether NC is used or not, and what type
Others: none, inni (part of Network Int)
set sim relaxedconsistency 0
Default is sequential consistency
set sim page_type roundrobin
Others: firsthit, fixed
set sim pagemap_file ??
For fixed page_type, gives page mappings
set sim snoop 1
If no NC, then use snooping
set sim perf_pref 1
Turn on perfect prefetching

#
Network Cache

set netcache enhanced 0 # Turn on NC enhancements
set netcache size 8192 # In KB
set netcache assoc 1 # N-way associative
set netcache read_time 200 # in ns
set netcache write_time 200 # in ns
set netcache tag_time 80 # in ns
set netcache fifo_delay 30 # in ns
set netcache fifo_width 8 # in bytes
set netcache inq_size 256
set netcache outq_size 256
set netcache inq_ovfl 0.75
set netcache outq_ovfl 0.75

#
Ring Interface

Notes on the Sim ulator 143

set ringint freq 50e6 # In Hz
set ringint width 8 # In bytes
set ringint parallel_rings 1
For counter-rotating rings choose 2
set ringint use_freed 0
Use a slot just freed by removal?
set ringint inq_size 256
set ringint inq_ovfl 0.75
set ringint outq_size 256
set ringint outq_ovfl 0.75
set ringint sinkq_size 256
set ringint sinkq_ovfl 0.75
set ringint nsinkq_size 256
set ringint nsinkq_ovfl 0.75
set ringint max_wb_cnt 256
set ringint ttl_tickets 256
How many outstanding requests in SRAM?
set ringint fifo_wdelay 30

#
Ring Ring Interface see Ringint for descriptions

set ringring freq 50e6
set ringring use_freed 0
set ringring upq_size 256
set ringring upq_ovfl 0.75
set ringring downq_size 256
set ringring downq_ovfl 0.75

#
Memory

set memory read_time 200 # in ns
set memory write_time 200 # in ns
set memory tag_time 80 # in ns
set memory fifo_delay 30 # in ns
set memory fifo_width 8 # in bytes
set memory inq_size 64 # depth, width given above
set memory outq_size 64
set memory inq_ovfl 0.75
set memory outq_ovfl 0.75

#
Processor

set proc freq 150e6 # in Hz
set proc splitL2 0 # use split/unified L2 cache (1/0)
set proc L1_Icache_size 16 # in Kbytes
set proc L1_Icache_linesize 32 # in bytes
set proc L1_Icache_assoc 1
set proc L1_Dcache_size 16
set proc L1_Dcache_linesize 32
set proc L1_Dcache_assoc 1

144Notes on the Sim ulator

set proc L2_Icache_size 1024
set proc L2_Icache_linesize 64
set proc L2_Icache_assoc 1
set proc L2_Dcache_size 1024
set proc L2_Dcache_linesize 128
set proc L2_Dcache_assoc 1

#
External Agent

set extagent si_freq 75e6
set extagent max_retry 64
How many retries per request before error?
set extagent fifo_width 8
set extagent fifo_delay 30
set extagent inq_size 64
set extagent outq_size 64
set extagent inq_ovfl 0.75
set extagent outq_ovfl 0.75

#
Bus

set bus freq 50e6
set bus width 8 # in bytes
set bus arb_latency 4 # in bus clocks (default 0)

Debugging

#
On=1/Off=0. Can set individually by class, or for class
‘sim’, which turns on all classes. (Beware, the latter
is A LOT of trace info.)
#
set memory trace 1
set bus trace 1
set netcache trace 1
set ringint trace 1
set ringring trace 1
set cache trace 1
set extagent trace 1
set proc trace 1
set sim trace 1 # This is equivalent to the -t flag
#
This is the most useful debugging feature. Trace all
usage across the
simulator to a particular cache block. Address will be
rounded to cache block size

set sim trace_addr 0x12345678

#
Running the simulator

#
Build instantiates objects and connects them. Run

Notes on the Sim ulator 145

starts the simulation. Set the type of reporting before
doing run.

report # Do “fullreport” for a per-instance report.
 # The default “report” is a summary, giving
 # averages and standard deviations
build
run

LISTING A.2: Default simulator parameter file for a 32-processor system.

The output from Mintsim is also a text file, containing reports from each of the simulator
objects (e.g. busses, caches, etc.) indicating usage, latencies, statistics, etc. The output can be
generated in either a detailed per-object form, or a summary form. The summary report shows
averages over all of the particular objects in a class. The simulator output file is too large to be
shown here.

146

References

Abandah, G. A. and E. S. Davidson.1998. “Characterizing Distributed Shared Memory Performance:
A Case Study of the Convex SPP1000”.IEEE Trans. on Parallel and Distributed Systems Vol. 9
No.2, February. Pages 206-216.

Adve, S. V., V.S. Adve, M.D. Hill and M.K. Vernon.1991. “Comparison of Hardware and Software
Coherence Schemes”.Proc. 18th Annual Int’l Symp. on Computer Architecture (ISCA’91).
Pages 298-308.

Adve, S. V., and K. Gharachorloo.1996. “Shared Memory Consistency Models: A Tutorial”. IEEE
ComputerVol. 29, No. 12, December. Pages 66-76.

Agarwal, A., R. Simoni, J. Hennessy and M. Horowitz. 1988. “An Evaluation of Directory Schemes
for Cache Coherence”.Proc. 15th Annual Int’l Symp. on Computer Architecture (ISCA’88).
Pages 353-362.

Agerwala, T., J. L. Martin, J. H. Mirza, D. C. Sadler, D. M. Dias and M. Snir. 1995. “SP2 System
Architecture”.IBM Systems Journal Vol. 34, No. 2. Pages 152-162.

Aichinger, B. P. 1992. “Futurebus+ as an I/O Bus: Profile B”.Proc. 19th Annual Int’l Symp. on Com-
puter Architecture (ISCA’92). Pages 300-307.

Amdahl, G. M. 1967. “Validity of the Single Processor Approach to Achieving Large Scale Comput-
ing Capabilities”.AFIPS 1967 Spring Joint Computer Conference. Vol. 40. Pages 483-485.

Anderson, T. E., D. E. Culler and D. A. Patterson.1995. “A Case for NOW (Network of Worksta-
tions)”. IEEE Micro Vol. 15, No. 1, February. Pages 54-64.

Ar chibald, J., and J-L. Baer. 1986. “Cache Coherence Protocols: Evaluation Using a Multiprocessor
Simulation”.ACM Trans. Comput. Syst. Vol. 4, No. 4, November. Pages 273-298.

Ar chibald, J.1988. “A Cache Coherence Approach for Large Multiprocessor Systems”.Proc. of the
Int’l Conference on Supercomputing. Pages 337-345.

Baldwin, R.1993. “A Cache Coherence Scheme Suitable for Massively Parallel Processors”.Proc. of
the Int’l Conference on Supercomputing ‘93. Pages 730-739.

Barr oso, L. A., K. Gharachorloo and E. Bugnion.1998. “Memory System Characterization of Com-
mercial Workloads”.Proc. 25th Int’l Symp. on Computer Architecture (ISCA’98).

References 147

Becker, D. J., T. Sterling, D. Savaraese, J. E. Dorband, U. A Ranawak and C. V. Packer. 1995.
“Beowulf: A Parallel Workstation for Scientific Computation”.Proc. Int’l Conference on Paral-
lel Processing (ICPP’95).

Bilardi , G., K.T. Herley, A. Pietracaprina, G. Pucci and P. Spirakis.1996. “BSP vs LogP”.Proc. 8th
Annual ACM Symp. on Parallel Algorithms and Arch. Pages 25-32.

Blumrich , M. A., R. D. Alpert, Y. Chen, D. W. Clark, S. N. Damianakis, C. Dubnicki, E. W. Felten, L.
Iftode, K. Li, M. Martonosi and R. A. Shillner. 1998. “Design Choices in the SHRIMP System:
An Empirical Study”.Proc. 25th Annual Int’l Symp. on Computer Architecture (ISCA’98).

Boden, N. J., D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, J. N. Seizovic and W.-K. Su.
1995. “Myrinet: A Gigabit-per-Second Local Area Network”. IEEE Micro Vol. 15, No. 1, Feb-
ruary. Pages 29-36.

Bokhari , S. H., and D. J. Mavriplis. 1998. The Tera Multithreaded Architecture and Unstructured
Meshes. NASA/CR-1998-208953, December.

Brown, S., N. Manjikian, Z. Vranesic, S. Caranci, R. Grindley, M. Gusat, G. Lemieux, K. Loveless, Z.
Zilic and S. Srbljic.1996. “Experience in Designing a Large-scale Multiprocessor using Field-
Programmable Devices and Advanced CAD Tools”. Proc. of the 33rd IEEE Design Automation
Conference (DAC’96). Pages 427-432.

Burd , T. 1999. General Microprocessor Info. http://infopad.eecs.berkeley.edu/CIC/summary/local.

Carothers, C. D., K. S. Perumalla and R. S. Fujimoto.1999. “Efficient Optimistic Parallel Simula-
tions using Reverse Computation”.Proc. 13th Workshop on Parallel and Distributed Simula-
tion.

Cox, A. L., and W. Zwaenepoel.1992. “Lazy Release Consistency for Software Distributed Shared
Memory”. Proc. 19th Int’l Ann’l Symp. on Computer Architecture (ISCA’92). Pages 13-21.

Chaiken, D., J. Kubiatowicz and A. Agarwal. 1991. “LimitLESS Directories: A Scalable Cache
Coherence Scheme”.Proc. 4th Int’l Conf. on Arch. Support for Prog. Languages and Operating
Systems (ASPLOS-IV). Pages 224-234.

Charlesworth , A. 1998. “Starfire: Extending the SMP Envelope”.IEEE Micro Vol. 18, No. 1, Janu-
ary/February.

Choi, L., and P-C. Yew. 1996. “Compiler and Hardware Support for Cache Coherence in Large-scale
Multiprocessors: Design Considerations and Performance Study”.Proc. 23rd Annual Int’l
Symp. on Computer Architecture (ISCA’96). Pages 283-294.

Coplien, J. O.1993. Advanced C++ Programming Styles and Idioms. Addison-Wesley, Reading, MA.

Cormen, T. H., C.E. Leiserson and R.L. Rivest.1989. Introduction to Algorithms. McGraw-Hill, New
York, NY.

Culler, D.E., R. Karp, D. Patterson, A. Sahay, K.E. Schauser, E. Santos, R. Subramonian and T. von
Eicken.1993. “LogP: Towards a Realistic Model of Parallel Computation”. Proc. of the 4th
ACM SIGPLAN Symp. on Principles and Practice of Parallel Programming. Pages 1-12.

148References

Culler, D. E., J. P. Singh and A. Gupta.1999. Parallel Computer Architecture: A Hardware/Software
Approach. Morgan Kaufman, San Francisco, CA.

Davis, H., S. R. Goldschmidt and J. Hennessy. 1990. Tango: A Multiprocessor Simulation and Tracing
System. Tech. report #CSL-TR-90-439, Stanford University.

Eggers, S., J. Emer, H. Levy, J. Lo, R. Stamm and D. Tullsen.1997. “Simultaneous Multithreading: A
Platform for Next-generation Processors”.IEEE Micro Vol. 17, No. 5, September/October.
Pages 12-19.

Erlichson, A., B.A. Nayfeh, J.P. Singh and Olukotun.1994. The Benefits of Clustering in Shared
Address Space Multiprocessors: An Applications-Driven Investigation. Tech. report #CSL-TR-
94-632, Stanford University.

Falsafi, B. and D.A. Wood.1997. “Reactive NUMA: A Design for Unifying S-COMA and CC-
NUMA”. Proc. 24th Int’l Symp. on Computer Architecture (ISCA’97). Pages 229-240.

Farkas, K., Z. Vranesic and M. Stumm.1992. “Cache Consistency in Hierarchical Ring-Based Mul-
tiprocessors”.Proc. Supercomputing ‘92, November. Pages 348-357.

Fillo , M., and R. B. Gillett.1997. “Architecture and Implementation of MEMORY CHANNEL2”.
Digital Technical Journal Vol. 9, No. 1. Pages 27-41.

Flynn, M. J. 1972. “Some Computer Organizations and Their Effectiveness”.IEEE Transactions on
Computing, Vol. C, No. 21, September. Pages 948-960.

Gamsa, B., O. Krieger, J. Appavoo and M. Stumm.1999. “Tornado: Maximizing Locality and Con-
currency in a Shared Memory Multiprocessor Operating System”.Proc. 3rd Symp. on Operat-
ing Systems Design and Implementation (OSDI’99). Pages 87-100.

Geist, A., A. Beguelin, J. Dongarra, W. Jiang, R. Manchek and V. Sunderam.1994. PVM: Parallel Vir-
tual Machine, A User’s Guide and Tutorial for Networked Parallel Computing. MIT Press,
Cambridge, MA.

Gharachorloo, K. 1995. Memory Consistency Models for Shared-Memory Multiprocessors. PhD the-
sis, also available as tech. report #CSL-TR-95-685, Stanford University.

Gniady, C., B. Falsafi and T. N. Vijaykumar. 1999. “Is SC+ILP=RC?”Proc. 26th Int’l Symp. on Com-
puter Architecture (ISCA’99). Pages 162-171.

Goodman, J., A. G. Greenberg, N. Madras and P. March.1988. “Stability of Binary Exponential
Backoff”. Journal of the ACM Vol. 35, No. 3. Pages 579-602.

Goodman,J.1991. Cache Consistency and Sequential Consistency. Tech. report #CS-TR-91-1006,
University of Wisconsin-Madison, Comp. Science Dept, February.

Grbic , A. 1996. Hierarchical Directory Controllers in the NUMAchine Multiprocessor. M.A.Sc The-
sis, University of Toronto.http://www.eecg.toronto.edu/parallel/theses/grbic.pdf.

Grbic , A., S. Brown, S. Caranci, R. Grindley, M. Gusat, G. Lemieux, K. Loveless, N. Manjikian, S.
Srbljic, M. Stumm, Z. Vranesic and Z. Zilic.1998. “Design and Implementation of the NUMA-
chine Multiprocessor”.Proc. of the 35th IEEE Design Automation Conference (DAC’98), June.
Pages 66-69.

Gropp, W., E. Lusk and A. Skjellum.1994. Using MPI. MIT Press, Cambridge, MA.

References 149

Gupta, A., and W.-D. Weber. 1992. “Cache Invalidation Patterns in Shared-Memory Multiproces-
sors”.IEEE Transactions on Computers Vol. 41, No. 7. Pages 794-810.

Hailpern, B.T., and S. S. Owicki.1980. Verifying Network Procotols Using Temporal Logic. Tech.
report #CSL-TR-80-192, Stanford University.

Hamacher, V. C., and H. Jiang.1997. “Performance and Configuration of Hierarchical Ring Networks
for Multiprocessors”.Proc. Int’l Conference on Parallel Processing (ICPP’97). Pages 257-265.

Hamacher, V. C., Z. G. Vranesic and S. G. Zaky. 1996. Computer Organization. Fourth edition.
McGraw-Hill, New York, NY.

Heinlein, J., K. Gharachorloo, S. Dresser and A. Gupta.1994. “Integration of Message Passing and
Shared Memory in the Stanford FLASH Multiprocessor”.Proc. 6th Int’l Conf. on Arch. Sup-
port for Programming Languages and Operating Systems (ASPLOS’94). Pages 38-50.

Heinrich , J.1994. MIPS R4000 Microprocessor User’s Manual. Second edition. MIPS Technologies,
Mountain View, CA.

Hill , M. D. 1998. “Multiprocessors Should Support Simple Memory Consistency Models”.IEEE
Computer Vol. 31, No. 8, August. Pages 28-34.

Integrated Device Technologies.1994. Specialized Memories & Modules Data Book. IDT, Santa
Clara, CA.

Krieger, O. and M. Stumm.1997. “HFS: A Performance-Oriented Flexible File System Based on
Building-Block Compositions”.ACM Trans. on Computers. Vol. 15, No. 3, August. Pages 286-
321.

Kuskin, J., D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K.Gharachorloo, J. Chapin, D. Nakahira, J.
Baxter, M. Horowitz, A. Gupta, M. Rosenblum and J. Hennessy. 1994. “The Stanford FLASH
multiprocessor”.Proc. of the 21st Int’l Symp. on Computer Architecture (ISCA’94). Pages 302-
313.

Lamport , L. 1979. “How to Make a Multiprocessor Computer That Correctly Executes Multiprocess
Programs”.IEEE Trans. on Computers. Vol. C-28, No. 9, September. Pages 690-691

Laudon, J., and D. Lenoski.1997. “The SGI Origin: A ccNUMA Highly Scalable Server”. Proc. 24th
Int’l Symp. on Computer Architecture (ISCA’97). Pages 241-251.

Lemieux, G.1996. Hardware Performance Monitoring in Multiprocessors. M.A.Sc. Thesis, Univer-
sity of Toronto. http://www.eecg.toronto.edu/parallel/theses/lemieux.pdf.

Lenoski, D. E.1992a. The Design and Analysis of DASH: A Scalable Directory-Based Multiproces-
sor. Ph.D. Thesis, Stanford University.

Lenoski, D. E., J. Laudon, T. Joe, D. Nakahira, L Stevens, A. Gupta and J. Hennessy. 1992b. “The
DASH Prototype: Implementation and Performance”.Proc. 19th Int’l Symp. on Computer
Architecture (ISCA’92). Pages 92-103.

Lenoski, D. E., and W.-D. Weber. 1995. Scalable Shared-Memory Multiprocessing. Morgan Kaufman,
San Mateo, CA..

150References

Li , K., and P. Hudak.1989. “Memory Coherence in Shared Virtual Memory Systems”.ACM Trans. on
Computer Systems Vol. 7, No. 4. Pages 321-359.

Loveless, K. 1996. The Implementation of Flexible Interconnect in the NUMAchine Multiprocessor.
M.A.Sc. Thesis, University of Toronto. http://www.eecg.toronto.edu/parallel/theses/love-
less.pdf.

MIPS Technologies.1996. MIPS R10000 Microprocessor User’s Manual. Version 2.0. MIPS Technol-
ogies, Mountain View, CA.

Moga, A., and M. Dubois.1998. “The Effectiveness of SRAM Network Caches in Clustered DSMs”.
Proc. 4th Int’l Symp. on High-Performance Comp. Arch. (HPCA’98).

Moore, G. E.1975. “Progress in Digital Integrated Electronics”.Proc. IEEE Digital Integrated Elec-
tronic Device Meeting. Page 11.

Papamarcos, M., and J. Patel.1984. “A Low Overhead Coherence Solution for Multiprocessors with
Private Cache Memories”.Proc. 11th Annual Int’l Symposium on Computer Architecture
(ISCA’84). Pages 348-354.

Park , S.1996. Computer Assisited Analysis of Multiprocessor Memory Systems. Tech. report #CSL-
TR-96-696, Stanford University.

Patterson, D.A., and J.L Hennessy. 1998. Computer Organization and Design: The Hardware/Soft-
ware Interface. Second edition. Morgan Kaufman, San Mateo, CA.

Przybylski, S. A.1990. Cache and Memory Hierarchy Design: A Performance-Directed Approach.
Morgan Kaufman, San Mateo, CA.

Ranganathan, P., V. S. Pai and S. V. Adve.1997. “Using Speculative Retirement and Larger Instruc-
tion Windows to Narrow the Performance Gap Bewteen Memory Consistency Models”.Proc.
9th Annual ACM Symp on Parallel Algorithms and Arch. Pages 199-210.

Ravindran , G., and M. Stumm.1997. “A Performance Comparison of Ring- and Mesh-connected
Multiprocessor Networks”. Proc. 3rd Int’l Symp on High Performance Computer Architecture
(HPCA’97).

Rosenblum, M., E. Bugnion, S. Devine and S. A. Herrod.1997. “Using the SimOS Machine Simula-
tor to Study Complex Computer Systems”.ACM Trans. on Modeling and Computer Simulation
Vol. 7, No. 1, January. Pages 78-103.

Russel, R. M.1978. “The CRAY-1 Computer System”.Comm. of the ACM Vol. 21, No. 1. Pages 63-
72.

Sandhu, H.S., B. Gamsa and S. Zhou.1993. “The Shared Regions Approach to Software” Cache
Coherence on Multiprocessors.Proc. 4th ACM SIGPLAN Symp. on Principles & Practice of
Parallel Programming. Pages 229-238.

Scott, S. L., J. R. Goodman and M. K. Vernon.1992. “Performance of the SCI Ring”.Proc. 19th Ann’l
Int’l Symp. on Computer Architecture (ISCA’92). Pages 403-414.

Semiconductor Industry Association.1997. The National Technology Roadmap for Semiconductors:
Technology Needs. Third edition, SEMATECH.http://notes.sematech.org/ntrs/Rdmpmem.nsf.

References 151

Simoni, R., and M. Horowitz. 1991. “Modeling the Performance of Limited Pointers Directories for
Cache Coherence”.Proc. 18th Annual Int’l Symp. on Computer Architecture (ISCA’91). Pages
309-319.

Singh, J. P., W.-D. Weber, and A. Gupta.1992. “SPLASH: The Stanford ParalleL Applications for
SHared Memory”.Computer Architecture NewsVol. 20, No. 1. Pages 5-44.

Srbljic , S., Z. G. Vranesic, M. Stumm and L. Budin.1997. “Analytical Prediction of Performance for
Cache Coherence Protocols”.IEEE Trans. on Computers Vol. 46, No. 11, November. Pages 55-
73.

Stenstrom, P., T. Joe and A. Gupta.1992. “Comparative Performance Evaluation of Cache-coherent
NUMA and COMA Architectures”.Proc. 19th Annual Int’l Symp. on Computer Architecture
(ISCA’92). Pages 80-91.

Stroustrup, B. 1986. The C++ Programming Language. First edition. Addison-Wesley, Reading,
MA.

Stunkel, C. B., D. G. Shea, B. Abali, M. G. Atkins, C. A. Bender, D. G. Price, P. Hochschild, D. J.
Joseph, B. J. Nathanson, R. A. Swetz, R. F. Stucke, M. Tsao and P.R. Varker. 1995. “The SP2
High-Performance Switch”.IBM Systems Journal Vol. 34, No. 2. Pages 185-204.

SUN Microsystems.1997a. UltraSPARCTM-IIi User’s Manual. Part #806-0087-01. SUN Microelec-
tronics, Palo Alto, CA.

SUN Microsystems.1997b. VISTM Instruction Set User’s Manual. Part #805-1394-01, July. SUN
Microsystems, Mountain View, CA.

Sundaram, C. R. M., and D. Eager. 1995. “Future Applicability of Bus-based Shared Memory Multi-
processors”.Proc. 7th Annual Symp. on Parallel Algorithms and Arch. (SPAA’95). Pages 203-
212.

Szymanski, T., and H.S. Hinton.1995. “Design of a Terabit Free-Space Photonic Backplane for Paral-
lel Computing”.Proc. 2nd Int’l Conf. on Massively Parallel Processing Using Optical Intercon-
nections (MPPOI’95).

Torellas, J. and D. Padua.1996. “The Illinois Aggressive COMA Multiprocessor Project (I-
ACOMA)”. Proc. 6th Symp. on the Frontiers of Massively Parallel Computing.

TPC. 1999. Transaction Processing Performance Council.http://www.tpc.org.

Valiant, L.G. 1990. “A Bridging Model for Parallel Computation”.Communications of the ACM
Vol. 33, No. 8. Pages 103-111.

Veenstra, J.E., and R. Fowler. 1993. Mint Tutorial and User Manual. Tech. report #452, Comp. Sci-
ence Dept., U. Rochester.

Vranesic, Z. G., S. Brown, M. Stumm, S. Caranci, A. Grbic, R. Grindley, M. Gusat, O. Krieger, G.
Lemieux, K. Loveless, N. Manjikian, Z. Zilic, T. Abdelrahman, B. Gamsa, P. Pereira, K. Sevcik,
A. Elkateeb and S. Srbljic.1995. The NUMAchine Multiprocessor. Tech. report #CSRI-324,
Dept. of Comp. Science, University of Toronto.

152References

Weber, W-.D. and A. Gupta.1989. “Analysis of Cache Invalidation Patterns in Multiprocessors”.
Proc. 3rd Int’l Conference on Architectural Support for Programming Languagnes and Operat-
ing Systems (ASPLOS’89). Pages 243-256.

Weber, W.-D., S. Gold, P. Helland, T. Shimizu, T. Wicki and W. Wilcke.1997. “The Mercury Inter-
connect Architecture: A Cost-effective Infrastructure for High-performance Servers”.Proc.
24th Int’l Symp. on Computer Architecture (ISCA’97). Pages 98-107.

Woo, S. C., J. P. Singh and J. L. Hennessy. 1993. The Performance Advantages of Integrating Message
Passing in Cache-Coherent Multiprocessors. Tech. report #CSL-TR-93-593, Stanford Univer-
sity.

Woo, S. C., M. Ohara, E. Torrie, J.P. Singh and A. Gupta.1995. “The SPLASH-2 Programs: Charac-
terization and Methodological Considerations”.Proc. 22nd Int’l Symp. on Computer Architec-
ture (ISCA-22). Pages 24-36.

Yeager, K. C.1996. “The MIPS R10000 Superscalar Microprocessor”.IEEE Micro Vol. 16, No. 2,
April.

Zhang, Z. and J. Torrellas.1995. “Reducing Remote Conflict Misses: NUMA with Remote Cache ver-
sus COMA”.Proc. 3rd Int’l Symp. on High-Performance Computer Architecture (HPCA’97).

