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Abstract

This dissertation considers the design and analysis of NUMAchine: austtjlshared-
memory multiprocessoi he architecture and design process leading torkimg 48-proces-
sor prototype are described in detail. Analysis of the system is basegda-aaurate, -
cution-driven simulator desloped as part of the thesis. Axpkoration of the design space is
also undertadn to preide some intuition as to possible future enhancements to the architec-
ture.

Shared-memory multiprocessors and parallel processing are becoming increasingly com-
mon not only in the scientific domainytalso as a replacement for mainframes in the field of
large-scale enterprise computing. The shared-memory programming paradiggie $em
intuitive viewv of memory as a globally shared resource among all processors. This is more
familiar to programmers of uniprocessors than the altematiessage-passing. The disirib
tion of memory across the system leads to Non-Uniform Memory Access times (NUMA),
since processors Yafast access to local memory andisdo access to remote memories
across the system neivk.The architecture contains features which attempt to hide or reduce
the efects of this non-uniformity

NUMACchine provides cache coherence in haede, making it an instance of the general
class of multiprocessor architectures called CC-NUMA (for cache-coherent NUMA). The
system netwrk in NUMAchine consists of a hierarclf rings. VW shav how certain proper-
ties of rings allav for an eficient cache coherence scheme with redusedheads in compar-
ison to other CC-NUMA architectures.eMse the simulatowhich we deeloped as part of
this project, to gplore the NUMAchine design space in an attempt to slescoav changes in

various aspects of the architecturieef overall performance.
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CHAPTER 1 Introduction

There will never be such a thing as too much computinggroAs nev levels of computing
power become\ailable, either applications groin size and compiaty, or nav problems
become feasible. The most codeefive means of increasing computingyss over the last
30 years has been to ride the technologi@kwincreased density of impeated circuits,
lower wltages and increased clock speed&hmaduced the pressure on computer designers to
apply noel architectural solutions to the performance probleeegfng pace with Moorg’
Law [Moore 1975] has been an astounding technical feat for the semiconductor ir8lutstry
the basic architecture of a computer system has remainedeallatnchanged: a single pro-
cessor with one or moreviels of cache, and a dedicateslatile memory

The paver behind Moores Law is exponential gravth. In the long term, this is also one
of its shortcomings. Thaster a finite system gus, the &ster it will reach its natural limits.
In the case of silicon technolgghe hard upper limit is imposed by the speed of liglet.céh
get a feel for this limit by supposing that with line sizes less than 0.1 micron, it will be possi-

ble to partition a laye design into smaller clock domains each ogirigpat most 1mrh Light
propagtion time @er a distance of 1mm is approximately 3 ps, so after accounting for noise
and timing magins, a conseative upper bound is about 100 GHz. Although electronics still
has a &ir bit of headroom, unless somealkition in device plysics comes alongyen

entirely nev technologies such as all-optical switches will be unable to break through this bar-
rier. Given that the current state-of-the-art for processors in 1999 is around 1 GHz, a doubling
in speed eery 1.5 years wuld mean that the single processor wildit its speed limit in

about 12 years, and so we cairly conseratively predict the tailing dfof Moore’s lav by

2010 or 2020.
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The Semiconductoréchnology Association has a roadmap [Semiconductor 1997] which
lays out major technological hurdles and indicates tihe industry plans tovercome them.
The end of the road for the 199&rsion of the plan is at 2012, whereytlage predicting a
0.05 micron line size, 0.5 V peer supplies and speeds of 3 GHzwdeer, they acknavledge
that to achiee these goals a paradigm shift in lithognapgchniques will be necessawhich
implies a lage leap in production costs. In addition to this, systengiat®n will become
much more comple The roadmap shes processors using 175 ¥hd at speedser 1 GHz
traces on a printed-circuit board start hehg like transmission lines, which requires a whole
new level of design epertise. All of thesedctors point to a diminishing rate of return on per-
formance from the lwest architectural ieels. Not only will it become technologically infeasi-
ble to expect silicon (or whateer other materials win out) to pride future performance
gains, lut economically it will become more cosfegftive to search for highdevel architec-
tural solutions. @king adantage of parallelisnvailable at arious diferent levels ofers a
solution. At the lavest levels, microprocessors use parallelismxecaite multiple instructions
in a single clockycle. At the system \el, parallel processing alies laige tasks to be sped up
by splitting them into a number of smaller tasks. It is this systeal{arallelism which will
be the focus of this dissertation.

Parallel processing systemsvieaarolved significantly from the original mainframe,
which offered a ery rough form of parallelism through batch processing. The search for
much higher leels of performance led to supercomputers, which althouglenial were also
extremely &pensve. Rarallel computing is just moentering its commoditization phase, fol-
lowing much the same trend as PC technology in thensies; from anx@ensve technology
available only to the fe, it is nov becoming a commonplace approach that will be not only
available to, It usable bythe multitudes. In broadening its appeal, the field is aisareling
into nav areas. Until recentjyparallel systems were almostckisively the domain of laye
scientific applications. Nwadays parallel processing ‘serg’ are becoming increasingly
popular for tasks such as database and on-line transaction processing. While comemercial v
sions of these machines dast, they tend to be much morejgensve on a peprocessor
basis than comparableovkstation technology and are mordfidiilt to use. The challenge of
making these systems costeetive, eficient and usable still has to be met.
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1.1 Goals of the NUMAchine Pject

The primary goal of the NUMAchine project—at least from the hardwperspeote— is to
shaw that it is possible to delop a lav-cost, scalable shared-memory multiprocessor that has
good performance. Cost must kepklov because we feel that multiprocessors need teemo
into a commoditization phase. As PC technology hasishcommoditization leads to wide-
spread adoption and also imation, in a kind of feedback loop.

When we speak of scalabilitywe donot consider the goal to be a machine that can scale
to a \ery lage number of processors. Multiprocessors with four processorsvat@eeigoming
commodity parts. In the redecade wexpect to see this number reup to a fev tens of
processors. Wthus set our scalability goal at about 100 process@sowsider our goal
achieved if the performance and cost of the machine scale well up to this limit, @adhea
problem of higher kels of scalability to future architects.

The trade-dfbetween cost and performance is also importaatifionally, multiproces-
sor research has focussed on performance as the main goal: foudhmesfbeenxg@ended in
trying to squeeze out afemore percentage points of paralldl@éncy. If there is a lesson to
be learned from the last decaglascendarycof the PC wer the vorkstation, it is that com-
puter users do not care whether a machindiegft or not. All thg care about is whether the
computer can do the job thevant it to do, and do so cheaphhus, our performance goal is
really subsidiary to our cost goal@Mant to reduce system cost as much as possible without
seriously dgrading performance. As long as increasing the number of processors produces
some @in, the user can decide whether thengs worth the cost.

NUMAchine is also designed to be used as a platform for research into parallel operating
systems, compilers and applications. NUMAchinevtes lav-level hardvare monitoring
functionality that can be used by soding to analyse system performance. While monitoring
is available in commercial machines, it is limited and its functionality edfiNUMAchines
monitoring, in contrast, is dynamically configurable. Also, since we designed theanardw
we have a better idea of what to look for (and where to look) when performance does not meet
expectations.

To support both softare and hardare research it is important that NUMAchine remain
flexible. We provide this flibility in the hardvare by use dfield-programmable deces
(FPDs). The logic inside theseuitees is reconfigurable, making it possible to add or change
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functionality at the hardare level, while the chip is still soldered to the board. This also
greatly simplifies the delgyging process.

These FPDs and the usecoinmecial off-the-shel{ COTS) parts also contrilte to
NUMACchine’s ability to leep costs .

1.2 Thesis Contributions

NUMACchine is a lage, multi-year project. From initial highsel architectural discussions to

the current wrking 48-processor prototype took abouefjears. The authoras one of the
principal designers on the project for the entire period. Most of the architectural choices were
hashed out in lengghteam design sessions, and so benefited frony mewpoints. The

author vas solely responsible for creation of the architectural simukatdrthe use thereof to
validate these design choices. Varying dgrees, the authoras also ixolved with all other
aspects of the design, including:

 Design specification and schematic capture.
« Design of five of the 36 FPD controllers.

« Design \erification of all the indiidual boards, as well as the general systeratteinc-
tionality. This also included design andiidation of the hardare cache coherence
scheme.

« Post-fbrication debgging (the author headed the dgging efort).

« C and Assembler harcre test deelopment. This included theddopment of proces-
sor boot code andwslevel device driers.

« Forward-looking architectural studies, for which the author had sole responsihility
this area, the set-replacement algorithm for adding assaityiati the NC vas contrib-
uted by the author

Thus, in part or in whole, the author can lay claim to theviatig overall contritutions
from the NUMACchine project:

« A 48-processor wking prototype of a distrilied, shared-memory multiprocessor with
integrated hardare cache coherenceeWWresent\edence that this proof-of-concept
machine displays good performance and scalabilityfie maintaining aery simple
and lav-cost architecture. The prototype is capable of running a parallel operating sys-
tem and applications.
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« Evidence to support the claim that a hierarchical ring oetwan be used to implement
a multiprocessor with the features of scalability in both performance and cost.

« A remote-access cache, called a NetwCache, which imprees the performance of
programs in a machine with a NUMA memory system.

« Presentation of a haréne cache coherence scheme whichesalse of the ring’order-
ing properties to achve good performance. The coherence scheme is also tightly inte-
grated with the Netark Cache, and uses aveblazy approach to directory
maintenance which is siva to improve performance.

« Design and implementation of gate-accurate\ent-driven simulatarused for both
architectural studies and prototype performance analysis.

1.3 Thesis Owerview

This dissertation lggns by gving a review of parallel processing architecture and systems in
Chapter 2. As a particular instance of this class of machines, Chapter 3 describes the design of
the NUMAchine multiprocessomhe chapter also contains a description of the NUMAchine
architectural simulatpmwhich is the main tool used for both the initial prototyping aqudos-
atory studies. Chapter 4 mexkuse of the simulator to analyse NUMAchsna’erall perfor-
mance, in addition to analysingnous aspects of the architecture described in Chapter 3.
These results are compared to results obtained from the actuadhar@apter 5 undertag

an irvestication of NUMAchines design space, with the goal of determining the méest-ef
tive areas of the architecture to tune in order to increase performance, Eihajiyer 6 sum-
marizes and presents the major conclusions, along with a description of possible dukure w
and trends in the field.




CHAPTER 2 Badkground

There hae been manapproaches to parallel computingeothe years. This chapterdoes
with a brief history and description of parallelism in general, thevesion to descriptions of
certain key concepts in parallel systems architecture which are necessary to understand the
chapters that foll. It concludes with brief k@ews of a number obeésting commercial and
experimental parallel systems, in order teega feel for the state of the art.

The field of parallel computing isceemely broad, cgering mawy different aspects of
computer architecture, from thenlest levels of a processainternal architecture to netwk-
ing and memory system design. The material presented here is only a brief synopsis. In partic-
ular, a firm knavledge of uniprocessor architectures will be assumed. (The standard reference
in this area is [Btterson 1998]). A good compendium of currentideolge on parallel com-
puter architecture is [Culler 1999], which goes into much greater detail. A list of appropriate
references is gen in each subsection. (If no reference v&gifor a term or concept, then it
can be found in Culler

2.1 An Oerview of Parallelism

2.1.1 Early History

The early days of computing actually used a simplsion of parallelism by detlt, as
embodied in thenainframesystems of the dajfhese were Ilge batch-processing systems,
where may users gined access to multiple processors by submitting their jobs to be pro-
cessed by whiclwver processor first becameadlable. The number of jobsas lage and the
number of processors small, so thesswo point in splitting inglidual jobs into subtasks
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and maeing avay from \ery coarse-grained parallelism. In addition thegs wo gperience
with parallel data structures or algorithms, so theais mo supportvailable for the program-
mer even if such a feature wergailable in the hardare. The focus in mainframesgon
throughputandreliability. Throughput in this conk meant completing as mgajobs per unit
time as possible. Reliability meant piding enough dult tolerance that the machinewd
not crash, losing long-running jobs. Mainframes sparedperese to achie these goals,
making them dbrdable only by lage oganizations.

As individual processors becamester and cheapehe adent of the PC became possi-
ble. Users of batch-processing systems found it frustratingveodualittle deterministic con-
trol of their jobs, not knwing hov mary hours or days later tiieould expect completion and
nobody liked sharing computing resources with otheus tlhe machines were togpensve
to support ay other model. The mainframes were alsoywveak at aything involving user
interaction with the computein the era of the punchcard, the programmaulad write and
delug code by hand, making completely certain that the programdwun as xpected
before going to the trouble of submitting the job to the actual computaressorycles were
too expensve to be vasted on such actions as dg@ing a program or editing a document.
The PC made it economically feasible tod@rocessing peer dedicated to one useot
only for running jobs which auld have a much more predictablgezution time, bt also for
providing a dedicated single-user in&cé directly to the machine.

Since programming became an art no longer of the speciaiist the masses using PC
technologyit is not surprising that the programming paradigm of one program for one proces-
sor became the ‘normal’ay to write code. In addition, since thens of the chips as
growing exponentially there vas little need for thevarage programmer to look furthd&ihe
adwent of Fortran and its eager adoption by the scientific and engineering communities
changed this scenario by creating &/ rdass of users and amelass of applications. Scien-
tists found that computers could be used to find approximate numerical solutioggto lar
problems such as systems of partialedéntial equations which had no tractable analytical
solution. The size of the problemaw/limited solely by the amount of computingitable;
problem size could be scaled up by increasing the numerical agcoutthe size of the system
under ivestigation.

Parallel computing had by this point found a specialized niche. The machines were typi-
cally custom-designed usingny exotic architectures and technologies, hencg there
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extremely &xpensve. This limited their use to lge research labs and the militafyrese
supecomputes used parallelism at avolevel through means ofector operations, where a
single instruction could perform the same operation simultaneously on arrays of numbers,
which is a common feature of scientific programs. Dedicated maintenari@nstarogram-
mers were the norm, making the entire fiedtyvspecialized.

The net wave in parallel researcmassively pallel processingMPP), focussed on
achiezing supercomputer performance with legste technologies by means of highwé
parallelism. Researchers |laakat designing machines with thousands of processors, hoping
for performance through shear quantityturned out to be aevy difficult problem to design
good architectures thatould work for ary arbitrary number of processors. At the same time,
the PC markt was drving single-processor performance ahead aixporeential rate, often
through commoditization of supercomputer architectural techniques. The upshot for MPP
research as that it became feasible to asleisupercomputer performance with onlya fe
hundreds of processors. In addition, #swealized that thereowld alvays be a handful of
users needing supercomputens that these users were a special group that coloidi b
pay a hefty premium. The push to vegarallel processing into the mainstream has shifted
attention tamultiprocessorsystems containing tens to hundreds of commodity processors.

2.1.2 Lav-level Parallelism

Parallelism allevs higher lgels of performance for av@n clock rate, so it is complementary
to raw circuit speed. Modern processors internallyetakantage of fine-grain parallelism in
two ways. The first ipipeliningwhich works by breaking a task (in this case a single
machine-lgel instruction) into sub-tasks (or stages), each of whichx@euge concurrently
as long as thedo not depend on each oth&rtypical processor pipelineauld include
instruction decode, operand fetch, instructigeceite and result storage stagdhe stages
can be completed more quickly sinceytlaee smaller and simpleequiring less compke
logic to implement. The second type, terrsagescalar, utilizes multiple pipelines operating
in parallel. Here the ‘task’ is vieed more as groups of indlilual instructions, and the sub-
tasks are the indidual instructions which can be launched intdetént pipelines indepen-
dently If there are dependencies, then ham®must praide interlocks, which is a form of

1. Intel's 486DX processor has 5 stageswhlieprocessors use deeper pipelines (callgrpipelinep Intel's
PentiumPro, forxample, uses 14 stages. See [Burd 1999] for ottenples.
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synchronization alling the stages or pipelines to stall until the conditions causing the inter-
lock are clearNote that VLIW (\éry Long Instruction \WWrd) processors are really justariv

ant on the superscalar design, where the choice of which instructions catbiee in

parallel is made statically by the compiler instead of being done on-the-fly indrardw

2.1.3 Highetlevel Parallelism

While previously discussed uses of parallelisnvénédeen déctive, the have a high cost in
terms of hardware design time and comgity. In addition thg rely on trying to gploit paral-
lelism dynamically at the lpest level, which means that tiidare a \ery myopic viav of the
task at hand, and can only doeaysimple local analysis of thealable parallelism. (VLIW
compilers can &brd to broaden their we someavhat, lut the aailable parallelism is stillery
fine grain.) Finallythe lav level of these solutions means thatytltan only mag use of
generic types of parallelism which are common to all programs.

Most computational tasks contain parallelismaious diferent levels. At the lovest
level we hae instructional eel parallelism, which as discussed abe. This is particularly
suitable for a processor which uses a reduced instruction set (RISC). The instructions are
small and simple with fe, if any, side-efects, which maés it feasible for a scheduler to nreak
decisions in hardare at the internal speed of the proces&ba higher lgel there is thread-
level parallelism, in which a Ilge computation is split into smaller computational threads,
each of which can run concurrentiyther by time-multipkeing on a single processor or using
a number of independent processors.

Our work focuses on the use of this higheseleof parallelism in a multiprocessingven
ronment. The modern commodity processors used in NUMAchieea@kgntage of the
forms of laver-level parallelism described in the preus section. In most cases theteavels
are independentulb occasionally lever-level design choices canV&an impact on the high-
level design. Such issues will be touched on in Chapters 4 and 5.

2.1.4 A Rrallel Taxonomy

One of the first attempts to present a taxonomy for tlerdift classes of parallel architec-
tures vas praided by Flynn [Flynn 1972]. This describes the relation between the instruction
stream and the data stream and whether or not each of theselwktage of parallelism.
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With both instructions and data nonparallel, weehidne traditional uniprocessor mode,
termed Single-Instruction/Single-Data or SISD.

When a single instruction streanomks on multiple data streams it is called SIMD (Sin-
gle-Instruction/Multiple-Data). Anxample of this type of machine could/atve a single
controller coordinating the agtty of numerous data-processing engines, which all do the
same operation in lock-steptton diferent data items. (This type of SIMD machine is also
called asystolic aray, draving upon the analogy of the human heart which pumps blood
through the arteries at each step.) Theaathge to this approach is that the data engines can
be extremely simple and cheap, makingdarerels of parallelism feasible. In addition,
because of the lockstep operation there is no need for synchronization. Other SIMD architec-
tures include gctor processors such as CRA [Russell 1978] and the recent trend to add
‘multimedia’ instructions to modern processors, raneple being SUN UltraSparc VIS
[SUN 1997], which stands foriSual Instruction Set. In image processing, eachlgkthe
image can generally be processed independeitige piels are usually stored as four indi-
vidual bytes of colour and other information, a single 32-bit load can bring in an engire pix
and a single operation can be performed on all four bytes in parallel.

The final catgory is Multiple-Instruction/Multiple-Data (MIMD) which applies to shared
memory processors. (A MISD architecture does notendiksical sense.) In MIMD, proces-
sors each fetch theimm instruction and data streams independeftlyhe case that all the
instruction streams correspond to the same program, the term Single-Program/Multiple-Data
(SPMD) is also used. MIMD machines naturally support threael-fgarallelism. The stan-
dard approach is to associate one thread with each processovidadtd data set for the
program amongst the threads. Note that MIMD and SIMD are not mutallysee. A pro-
cessor in a MIMD system can still @kdwantage of opportunities for SIMD parallelism in its
local portion of the data.

2.1.5 Limits to Rrallelism

No system iswer perfect, and parallel computersfeufrom various diferent impediments to
efficiengy. The most fundamental notion in parallel systerogkvis that ofconcurency Two
or more operations are concurrent ifitls@ecute simultaneouslif two operations depend on
each other in such aay that one mustxecute before the other thenyhman not run concur-
rently, and the @ailable concurrencis reduced. & example, when summing up a list of
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numbers, the list can bevetled arbitrarily into sublists, and the summation of these sublists

can be carried out at the same time. Walable concurrencin this case is equal to the num-

ber of sublists. The initial dision of the list into pieces may allocconcurreng if care is

taken. Each of the subtasks which calculates a partial surtdweed access to the global list.

If the same algorithm is used by all the subtaahs,it can be preen that the algorithm can

never result in two subtasks choosing the same item, then these subtasks can also run concur-
rently. The alternatie would be to hee one designated ‘master’ subtask responsible for the
division of the list, and only after the partitioning &allthe other subtasks to start summation.

In this case, all of the ‘sla@’ subtasks mustait for the master to finish the partitioning,

allowing no concurrencat all during the partitioning phase.

The first job in approaching the parallelization of\aegiproblem is to determine what
concurreny is theoretically gailable, which puts an upper limit on the amount of parallelism
which can be achued. For the case of summatiorvgn abee, for a list containingy num-
bers the concurregds | N/ 2| if we consider addition to be a binary operation that requires
at least tw operands. (The use of the greateselobound is due to the case whiris odd,
and one subtask gets three operands insteaddfifwve hae enough computing elements
available, we can assign one partial sum to each, with each element requiring at most one (or
two for N odd) operations to do the sum. In this case we kaough parallelism at our dis-
posal to diciently use all of the concurrepaand the running time of the partial summation is
0(2).

While calculation of the partial sums has been sped up as much as possible, our parallel
algorithm nev must accumulate all of these partial sums into the global suwindia single
subtask add up all the partial sumsuld tale O(N) time, and thus wuld be no better than the
single processor case. A more parallel approach is to form the partial sums into a binary tree,
and designate a processor at eacéllef the tree to add the partial sums of the children,
which would result in a©(logN) running time. At each @l in the tree, processors mustitv
for their childrens sums to be readsequiring synchronization. Thus, not only is the parallel
algorithm diferent from the sequential onejtlihere is verhead associated with the process
of parallelization. Thiswerhead can come either from synchronizationxtiaecode needed
in the parallel algorithm. Note that for this reason the best sequential algorithm and the best
parallel algorithm running on one processor are not the same.

When measuring the performance imgment when running od processors, the stan-
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dard metric used is trepeedupwhich is loosely defined as the total prograsecaition time

on a single processonitiled by the time foN processors. From the fgang discussion, it is
clear that we also ka to specify whether the single-processaocation time is for the
sequential or parallelersion of the program. Both measuregdideir uses. Comparing to the
best sequential algorithm indicates whether parallelization is useful at all. If a parallel algo-
rithm adds substantialerhead and has poor speedup, then the parallel program weayae
able to outdo the sequentiargion by a laye enough main to justify parallelization. Nor-
mally though, it is the case that theechead imolved is not significant, and it is usually clear
from the outset whether or not there is enough concwritenjastify parallelization. Thus,

given that the user kme she will be running the parallel algorithm, she is more interested in
how much impreement she can get. Thergion of speedup using the parallel algorithm to
measure both the single-processor Barocessorxecution times is the more common, and
is the one that will be used from here on.

The net question to ask is what fundamental limitsseon the speedup which can be
achieved. The basic result here is Amdahlav [Amdahl 1967] which states that total
speedup achvable by ag parallelization of an algorithm is limited by the parts of that algo-
rithm which are inherently sequential. That this is true 18cals by considering a program
with execution timeT; on a uniprocesspwhich can be partitioned into énsections: code

that is inherently sequential, taking tiffigs, and the rest of the program (assumed to be fully
concurrent) with gecution timeT,p ThusT, =T;5+ T1p In the best case, we assume that the

parallelizable section can nakerfect use of the concurrgran N processors, so the total
execution time for a genN is:

T
T(N) = Tys+ Eﬁ% (EQ 2.1)

Thus the limit adN gets lage isT,g This means that no amount of parallelism can speed up a

given application beond a certain point, whichauld seem to indicate that there is a limited
usefulness for parallelism, agegy program will hae some sequential portionof=a while,
researchers garded this conclusion to be trueitlbve can write the equation for tepeedup
(T(1) /T(N) ) as:

oo (/T 41

Speedu 1
(Tls/TlP) + N

(EQ2.2)
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What this equation sk is that the knee of the speedup eus/reached once thalue of
1/N becomes comparableT@g/ T1p Thus if we assume that the ratio of sequential to parallel

code is some non-infinitesimal numpiren we cannot reach ¢gr speedups. But for man
realistic problems, this ratio can actually be made arbitrarily small by increasing the amount
of work done in the parallel section. This will usually increase thwk\m the sequential sec-
tion as well, ot this is not a problem as long as the time corifyi€as a function of the

amount of work) for the sequential section isMer than that of the parallel sectiono(F

example, if we define some arbitrary paramafésay as a measure of the amount @irky

then if T;gis O(W) andTypis O(W?) we can maé the ratio arbitrarily small by choosilg
large enough.) If these conditions hold true, then it is possible tovadaige speedups.

2.2  Architectural Aspects of Rrallel Systems

2.2.1 The PRAM model

When reasoning about computer architecture, it is importanvihanind a model to act as

a frameavork on which to test out ideasoiFuniprocessors, the basic model is fraon Weu-

man, and imagines a processor attached to a memory module, from which it fetches both code
and data. The parallel analog to this is called the PRAdR(IRI-RAM) model [Cormen

1989]. As shwn in Figure2.1, the PRAM model assumes some number of processors which
share access to the same memaiih each read or write taking ongcte. The basic model

allows simultaneous accesses by multiple processors to the same memory location for either
reading or writing. It is assumed that concurrent writes store the sdugeto a gien loca-

tion, or if they do not then at least some mechanism is in place to deterministically choose
which value is ultimately visible to future reads. The aubtage to such a simplistic model is

that it is mathematically tractable. Enhancements to the model disadlucurrent accesses

for reads, writes or both to model slightly more realistic systems, with thwback that these
models quickly lose their tractabilitilone of the PRAM models assigrnyatost to interpro-
cessor communication, twever itis assumed that processory&igdome method of synchro-
nizing their operations, albeit with zereeshead. The typical methods of synchronization
include mutual-gclusion locks, which guarantee that at most one processoncatine lock
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von Neuman model PRAM model

Processor Processor | | Processor| | Processor Processor

<—lcycle—>¢ # # #
O e D

FIGURE 2.1: Von Neuman and PRAM memor y models. Both the von Neuman and
PRAM models assume zero latency to access memory for either reads or writes. Implicit
in the PRAM model is synchronization, which is necessary for program correctness. Both
models assume infinitely fast memory and communication, with no contention.

at ary time, and barriers, which guarantee that all processwesrkached a certain point in
their computation before alldng ary processor to proceed.

While simple, the PRAM model can still maredictions about parallel performance.
The program>ecuted on the processors will contain therbead due to parallelization, as
well as ay overhead due to synchronization (e.g. whea processors need to acquire a lock
at the same time, the second will be delayed until the first releases it.). If the amoark of w
is not dvided equally between the processors, then some processorsvedy hait for oth-
ers at barrier points, which is termetbad imbalanceand contrilotes to the loss of parallel
efficiengy. The speedup as measured under the PRAM model is thus the best tieat aps-
tem could achie, and is called thalgorithmic speedup

Other models which takinto account communication costs such as Igtdrandwidth
and werhead hee been proposed. Models such akisynchronous parallel (BSP) gWant
1990] or LogP [Culler 1993]end the PRAM model in an attempt to raakmore realistic.
While interesting theoreticallghese models takno account of real netnk topologies and
assume figd constant delays.

In real parallel systems, the details of the mekahave a significant influence orverall
system performance. A simple model of communication includes three parametery; latenc
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bandwidth andwerhead. Latencis the total time between initiating a request and vetga
response. In a uniprocesstmr example, the latencto load a ariable consists of the time
between the processotezuting the instruction, and the result becomiaglable in the pro-
cessors rajister For a cache hit typical latencies in a modern 500 MHz microprocessor are on
the order of 10 ns, while a cache miss and the resulting read from a local memory reight tak
200-300 ns. Bandwidth refers to the maximum number of bytes per second that a communica-
tion channel can nwve between a source and a destination. (Note that the source and destina-
tion can consist of groups of senders and vecsj in which case the bandwidth is the sum of
the bandwidths\eer all channels which can carry data simultaneously). In a chain of point-to-
point connections, bandwidth is usuallygalkto mean the bandwidth of thewgé&st link.

Overhead representsyafixed delays inherent in communication, and contab directly to

lateng. As an &@ample, data may require compression before being transmiée@d ahan-

nel, which increasesverhead (and lategin direct proportion to the compression time.

The relationships between these parameters is subtle, meaning that simpt& netd-
els are not @ry accurate. Lategcfor ekample, usually decreases as bandwidth is increased.
If, however, the bandwidth is increased in one link of a communication chain such that some
other link becomes the siest in the chain,werall lateng will not decrease as much as
expected. Increasing bandwidth could also cawsehead to increaseale a protocol pro-
cessing engine which is fed by a communication channel. If channel bandwidth is increased
too much, then the processor may reach a point where it cannot handle the inconetsy pack
fast enough, at which point the channel will back up and theorletmill become congested,
leading to anwerallincreasein lateng. Bursty trafic patterns are another major source of
congestioA. Due to its highly nonlinear beviaur congestion is not only di€ult to model,
but can also hze significant g&cts on performanceven if the time-aeraged leel of conges-
tion is low.

In this thesis wewid these communication modelling issues by using a detajitde-c
accurate model of the entire system in our simulatieir@mment, including not only latepc
bandwidth and werhead, bt also netwrk congestion. \& will make use of the basic PRAM
model to measure the algorithmic speedup for the purpose of comparisorpeitiments.

2. Note that a system could be designed to handbstvzcase tbrsts, lnt this would be an werdesign. Bursts are
by definition infrequent, so resources designed witistls in mind wuld be unused most of the time.
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2.2.2 Messageddsing vs. Shaazd Memory

There are tw fundamentally dferent approaches to piding interprocessor communica-
tion in a parallel evironment. In message-passing, each processor is associated with a local
memory which can be used by only that proces&ue only vay for processors to communi-
cate is by sending messages back and forth, typically using calls sbehd{} and
Receive(). Under this paradigm, the programmer must code all communicaqbic-e
itly, and is responsible for coordinating the senders andregssSend() andReceive()
are usually implemented as blocking callBhis means tha&end() will not return until it
can be guaranteed that the message has been consumed by the intended recipient calling
Receive(), and vice ersa. If the programmer mek a mistak, then the program will
hang. (This ma#s programming trickiebut simplifies debgging.)

While message-passing is a technically clean solution to writing parallel programs, it has
certain dravbacks. Firstlyexperience has skm that message-passing programs airgyf
difficult to write. The problem is that the whole notion of communicating processesis unf
miliar to a programmer used to writing sequential code. The mesiusbsequential algo-
rithm may hae to be changed substantially before it can be implemerftei@=tly using
message-passing. Secondiynce the basic communication mechanism isigedl to the pro-
grammer by means of the operating system, there iga ¢eerhead for sending a message.
This means that sending small messagesrig &pensve, and the programmer must try to
amortize the cost by coalescing as much data as possible into a single message. This approach
is not natural to a programmenmné message-passing, and the learningeis\steep.

Shared memoryn contrast, tries to makthe programmes’vien of the system look as
much like a standard uniprocessor as possible. This paradigml@sdhe programmer with a
single global memory space, which is shared and accessiblg Ipyc@ssorCommunica-
tion in this case is implicit; in the simplest case one processor writesat@hble that is read
by another processand the system is responsible for ensuring that modifications are propa-
gated accordinglyin contrast to message-passing, synchronization in the shared memory
model must bexplicit. An extra complication under shared memory arises if processors are
allowed to cache share@wables. In this case a cache coherence scheme (described in the
next section) is necessary

3. Non-blocking, orasyn&ironous calls can also be used to increase concwrafibough the male the pro-
grammers job more dfficult since thg require separate synchronization.
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Another programming paradigm should be mentioned here, although it operates at a
higher level than message-passing or shared menamiy can be implemented on top of
either In data-paallel programming code is written as if it were sequential, with annotations
added to indicate where data can be processed in parallel. The staadaptedhere is High
Performance értran, which looks much likregular Fortran lut with extra compiler direc-
tives, embedded in comments, which control data partitioning. The goal igetthieacom-
piler and run-time system handle the details of the actual data whistnibSuch an
environment can run on top of a system that supports either message-passing or shared mem-
ory, since the programmer is not supposed todmaof the laver levels.

There is currently no consensus on which of the message-passing or shared-memory par-
adigms is bettemlthough the focus in the research and commercial communities has shifted
to shared memoryrhe feeling seems to be that thx¢r@ compleity of providing cache
coherence is sfi€iently offset by the reduced cost of applicationvelepment (though there
is really little hard eidence to back this up). That being said, there are successful commercial
message-passing systems, such as $8BP2. Indeed, as we will see in section 2.5, there are
new approaches to multiprocessor netiing that support both schemes, ailag the system
and programmer to independently choose whiehe more appropriate.

2.2.3 Cache Cohence

In a shared memory multiprocessibiis possible for one or more processors tweHacal

copies of a gien cache lifé (Remember that in a message-passing machine, all memory is
private, so this cannot happen.) When all accesses to the cache line are rgad+otiigre is

no problem allwing all processors to use the line concurremtlprocessor cannot just sim-
ply write to such a shared line if it needs to modify the line contentsaveq since this

would cause its local in-cache gof be inconsistent with other copies scattered throughout
the system. The purpose of a cache coherence scheme igitie @ronechanism to allo

sharing of cache lines in an orderly manfidis is critical from the point of we of both pro-
grammers and compilers to insure the correctness of a program.

4. A cache line gen in a uniprocessor cache is really aycopsome master block of data which resides at a
fixed location in a memory module. Thus theeldeature here is that there can be ymsurch copies.
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There are numerous tifent approaches to piding cache coherence, with the most
general classification being into ha@w- and softare-oriented schemes. The aim of hard-
ware coherence is to push the responsibility for coheremvee tiothe lovest architectural
level, making it ‘irvisible’ to all levels ab@e. While this is covenient from the point of vie
of the program- and OS- writat greatly increases the comxity and cost of the hardave.
Software schemes, on the other handvde@sponsibility for coherence in the programmer’
hands. This mads the hardare simplerbut adds compbdty and wverhead to the sofiave.
Thus, there are adutages and dndbacks to both methods, and it is not clear thgtosre par-
ticular scheme is superior in all cases. One of thargtdges of a hardwe coherent machine
is that softvare coherence carvays be implementedver top, alleving the use of the best
scheme for a gen situation, whereas if hardve support is not present from the outset, it
cannot be designed in after tlaet Indeed, one of the goals of the NUMAchine project is to
investicate trade-dé between hardare and softare coherence.

The basic idea behind sofive coherence is that the programmer is responsible for man-
aging writes to shared memorypdicitly. This males shareable memory qualitaty differ-
ent from prvate memory and puts more of theden of correct progranxecution on the
programmerin work such as Shared ens [Sandhu 1993], the programmer associates an
arbitrarily sized rgion of shared memorwhich could hae multiple writers, with a mutual
exclusion lock. The programmer is responsible for making sure thav@iable shared data
is properly associated with a SharedjiRa, and if not the system me&kno guarantees. This
approach wrks well if the rgions are lage, because theverhead of praiding the Shared
Region is amortized wer a lage amount of data. This method can also benefit from block
transfers, which can be mordieent than transferring a single cache line at a time.

Hardware coherence, while hiding the details of the protocol from the programcwses
much more in terms of design time and haad In addition, certain design choices such as
the size of the basic unit of coherence must lsglfikecause supportingxikility in hard-
ware is too costly(Ilt should be noted that with modern programmable logic, this could
change.) On the other hand, the timerbead of praiding coherence in hardwe is greatly
reduced compared to sofive. This is not only beneficialibnecessarysince hardare
coherence usually uses cache lines as the unit of coherence, which typisakyziea of 64

5. Synchronization such as locking must still bevited in a hardare cache coherent system. While concur-
rent writes to a single cache line are not possible, coherence does not enfanacieeng on writes to multi-
ple cache lines.
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or 128 bytes. This fine a granularity requires that tleglead be lo for the scheme to
remain eficient.

When a cache contains a line in the shared state anis %o modify it, there are tw
basic choices: update- owvalidation-based schemes. An attempt by a processor to write to a
shared line in an walidate protocol causes a request to be sent to the coherence engine to g
write ovnership of the line. Such a request may or may not succeed depending on the cache
line’s current state. (Another processor may alreadg hequested write access, faam-
ple.) When successful, the request causedidationsto be broadcast to all processors shar-
ing the cop. The irvalidation command unconditionally kills a specific line if the tags
indicate that it is present in the cachgpi€ally, the coherence engine musitwfor acknavl-
edgments (£KSs) to the inalidations to guarantee that all shared copies baen elimi-
nated. At this point anxelusive avnership ackneledgment can be sent back to the original
requesterwhich can proceed with the write. (In MIPS terminology [Heinrich 1994 and MIPS
1996], the original request for@usive access is called apgrade They also use the wali-
date to sery dual purpose as the upgrade agkedgment.) Note that if a processor wishes to
write to a cache line it does notvean its cache (i.e. the cache misses), then this line could
still have shared copies elshere. In this case the processor sendsd eclusiverequest.
The same walidation process occursjtinstead of sending anvaership ackmeledgment
the coherence engine sends back a reeldsve response that includes dadine that has
been modified and written to is said to be olirty state, meaning that it contains deliént
value than main memarif a dirty line must be ejected from the cache, the processor issues a
writebad of the line to memoryand memory is then considered to be thedioeher.
Another option is to ha writes alvays propagte through to memory immediateo mem-
ory is ne&er out of date and isvahys the wner of data. This is calledveritethroughscheme.
While it simplifies the notion ofwnership, it also generates unnecessarfidriafr cache
lines that are written multiple times by a single processor

In an update protocol, the processor sends out a request to modifyethdirgg, and
includes the n& data for the specific tget word in the line. If this update request succeeds,
the nev data is broadcast and rged into all shared copies, and aGKis sent to the
requesterwhich can then proceed to change itsycdje state of the cache line is then called
dirty shaed indicating that it is out-of-date with respect to membuy that there may also
be other copies in the system.
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There are a number of tradesoiin choosing between an update and writebacalinhate
scheme. If a cache line is used in a prodgosisumerdshion, where one processor modifies
the line and manprocessors read it, then an update protocol performs.b&tt@walidate
protocol causes the producer teahdate the line, then forces all of the consumers to re-read
the line on a subsequent load miss. If a line is shared only becaugpnoegssors needed it
in the past, bt they will not need it in the future, then an update protocol will update lines
which are not neededymore, causing a lge amount of unnecessary frafin an irvalidate
protocol, after the walidation phase, processors thatéha real need for the line are forced to
fetch it, which leeps the sharing list current. Aivatidation protocol also performs better if
there are a number of writes to a line before access by another prolbesaase a write to a
dirty line causes no tri€ (the processor already haskisive write permission). Orvarage,
studies hee shavn that most trdic in a shared-memory multiprocessor is better suited to an
invalidate protocol [Wber 1989, Culler 1999 and Srbljic 1997].

The most common writebackwvalidate protocol used irus-based SMP systems is the
MESI protocol (the name comes from the possible cache line states Modified/Exclu-
sive/Shared/Ivalid), also knan as the lllinois protocol from its originatorsgffamarcos
1984]. Each possible cgpf a line in the processor caches and memory has one of the four
states associated with it. The Shared state indicates that one or more caches and memory con-
tain a cop of the line. The Ivalid state is functionally equalent to the cache line not being
present in the cache. (Anvadidation to a Shared state usually changes the statealallbut
does not werwrite the cache tags; thevatid state indicates that the line is naaidable for
use by the processovem if the tag happens to match.) The Modified state is the same as the
dirty state abee. The protocol ensures that only a single processor cachevesa vz in the
Modified state, with other caches and memory guaranteed todl& ImMhe Exclusie state
indicates that only one processor cache containsya lagghat the line has not been modified
and memory is still up-to-date. An ejected Exaladine does not require a writeback, since it
is not in the Modified stateubwrites can proceed immediately singenership has already
been obtained. This state is useful for data that is used only by one proalsssknavn as
private data

A multiprocessor can be used to run multiple sequential programs simultanadushy
is referred to amultiprogramming Here @ery prograns data is puiate. Wthout the Exclu-
sive state such prate data wuld generate a read then availlidate on a write, Ut the irvali-
date in this case just representsted bandwidth if it is kiwven a priori that no other
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processor will be accessing the line.

One of the first hardare cache coherence protocolsvealled bs-snooping. Early mul-
tiprocessors usually consisted of a small number of processors (8 or less) connectesl by a b
Busses were a natural choice agytivere simple to design and in common usage nkulti-
processing, thealso had the a@wtage of prading a naturahtomic bbadcastmechanism.

The one-to-all broadcast is useful for sending updates on cache line information to all proces-
sors simultaneouslynd being atomic mak it easier toerify the correctness of the protocol
since numerous race conditions aveided. A processor trying to read a line that is dirty in
some other processsrtache broadcasts emerventionrequest to all other processors. The

bus is held until a data response isvinied to the intergntion.

One of the problems with snopprotocols is that the processor cacheslired in the
snoop also hee to handle processor requests. This can cause the snoop tligh latenc
while waiting for the cache to finish dealing with its procesand since theus is held for
the duration of the snoop, this may create or increasedntention problerﬁSOne solution
to avoid contention for the critical caching resource is tovjpl® a duplicate set of tags dedi-
cated solely for snooping. This idexftive, kut the performance must be tradetiagginst the
extra cost of the SRAMs needed to yided the second set of tags.

Busses are not a viable solution for connecting more than about 16 processorsugue to b
saturation. Increasing the bandwidth of tiis by making it wider andéter is possible ub
only up to a point. Dviing a wide lois (e.g. up to 512 bits) at high speeds with numerous loads
requires special (i.expensve) drivers. The alternate to husses is to use some other rakw
with better scaling properties. (These scaling properties will be described later in this chapter
The basic snooping mechanism does natkvin the absence of atomic broadcasts, so other
schemes are necessary

A standard approach is to usieectory-baseaoherence protocols whicledp the state
and current location for each cache line in the system in some globally accessible table. The
amount of information so stored and the handling ofantinformation diferentiates direc-
tory protocols. A simple directory could store just thet that more than one processor has a

6. Most husses nwadays use split-transactionprotocol, where theus is released between the request and
response, allwing other transactions to use thesbThis helps to aNéate the problem,ut males protocol
verification much more ditult becauseus transactions are no longer atomic.




Background 22

copy. A write by aly processor wuld then require a broadcast ofatidation requests to all
processors in the system.Wever, a broadcast validate costs not only nebtrk resources,

but also time in each processcache to check if the line is present and kill it. A better
scheme is to use some kind of list, specifyirgo#ly which processors /@ a cop, called a

full directory But in this case, the cost of the directory does not scale well with system size.
Typically, the total amount of memory in a system scales with the number of procdksors,
because a fed number of processors usually share a memory module. The number of cache
lines is thus als®(N). A full directory scheme requires for each cache line a bit-mask con-

taining one bit for each processor in the system, for a to@(\A) bits. Since the directory is
usually implemented using SRAM, the cost of the system becomes unreasonabdgefdr lar

Two approaches to impving directory scalability arkmited andsparsedirectories.

With limited directories, each cache line entry contains only enough storage fd adix-

ber of sharers. If this numbeverflows, then either a broadcast is used ovipres sharers

must be remeed from the list. The &€iencgy of this approach depends on the amount of shar-
ing being lav in the common case, so theedlow handling occurs rarehA sparse directory

makes use of thealct that at angiven point in time only some fraction of all the cache lines in

the system will be in use, so there is no reason to allocate permanent directory entries for
unused lines. The directory is thus created and managed dynamically on an as-needed basis.
While this is the most &€ient scheme in terms of storage, it also has tigesawerhead for
processing directory entries.diFa tybrid approach which uses the best features of both mod-
els, see the description of the LimitLESS directory in [Céaik991].)

One final consideration for directory-based protocols is thgsipal distrilution. The
simplest model is to e the directories collocated with the home membBoy access to a
remote memorythis means that the request mayetdhe entire span of the neivk before
finding that a specific line is contained in some other node whielrlg ¢lose to the
requesterA solution to this problem is to replicate directory information throughout the sys-
tem in a bid to reduce the latgnfor accessing the coherence state. This replication increases
the storage requirements for the directory and introduces anablem of leeping the repli-
cated directory entries coherenty bhe limited and sparse directory techniques in thé-pre
ous paragraph may be used, and the increase in coherence performance may outweigh the
cost. Figure2.2 shavs a tree-based netwk, where the leges contain the processing elements
and memorywith each node abe the leses maintaining directory information for all of the
cache lines belg, both local and remote. If a cache line has already migrated to a local node,
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FIGURE 2.2: A hierar chical cac he coherence director y. In a tree-based hierarchical
network with processing nodes (containing processors and memory) at the leaves,
coherence directory information at a given node of the tree is a superset of the information
contained in all the node’s children. A miss from Node D to a line whose home memory is
Node A, but for which a dirty copy is contained in Node C can avoid traversing the entire
tree.

dirty line

then a request can be satisfied in the local directory witheutidto go the root of the tree
(which contains the sum total of all directory informatiorg.mfaintain the superset property
changes to cache statewér in the tree must be proggd upvards.

There is another approach to coherence caligd-based shad virtual memorySVM)
[Li 1989]. which is softvare-baseddt males some use of hardwe in an attempt to reduce
the programming comptéy. (Unfortunately it also goes by the name virtual shared memory
or VSM.) SVM supports shared memory by making use of the virtual memory page-mapping
mechanism\ailable in all modern microprocessors. In a virtual memory system, a page table
is used to map the processariternal virtual addresses to reaypical addresses that corre-
spond to a location in some memaoB¥M reduces the cost of hardwe by implementing the
coherence scheme in the pagelf handlers. The basic unit of coherence is a page, which is
typically on the order of 4 KB in size. Because the coherence is done imasgftiae protocol
can be much more complevith little extra cost. On the other hand, being in safevmeans
that the @erhead for praiding coherence is lge. For SVM to work well, it must amortize
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this cost by achigng a \ery high hit rate (i.e. a lge amount of data re-use).

The first access to a shared page in SVM causes the handler to allocate a page in local
memory The handler must then send a query to the pdgehe location to ascertain whether
the page is clean or dirtfhe appropriate remote page is then copied into the local page, at
which point all further accesses to this shared page will hit to the replica contained in the local
memory Coherence must still be maintained between #n@ws copies of the page, which
poses a problem because of thgdablock size. A writeback-walidate scheme ould cause
the entire page to beuvalidated and re-fetched on a writestoy word on the page, which
would generate a huge amount officafif two writes by diferent processors occur to the
same wrd on the page, then thewl really is being shared and the associated coherence
overhead is attriied totrue sharing On the other hand it is possible that the fwocessors
are writing to entirely dferent memory ranges which happen to reside on the same page. The
coherencewerhead in this case is not really necesdaryis solely an artéct of the lage
coherence grain; such unnecessa®grioead is referred to &ssesharing Great care must be
taken in SVM by the programmer and compiler to lay out datadadalse sharing. (fDie
sharing is inherent in the algorithm, and iswmdable.) Havever, heay padding of data to
adhere to page boundaries can cause memory usage to becgnmeficient if the amount
of padding is comparable to the amount of data. This will alge the efiect of increasing the
capacity miss rate in the cachesr these reasonswilla SVM implementations achie only
mediocre performance.

One vay of impraving SVM performance auld be to somehlwoallow writes to a page to
avoid coherence tr&€. One vay of doing this is to associate shared dajaores with locks
(much like Shared Rgons) and then obsexthat while a lock is held, writes to a shared page
need not be made visible to other processors. Only when some other processor acquires the
lock will it need the data. The idea of relaxing the memory model while making sharing more
explicit to the programmer is callddzy release consisten¢ox 1992]. This is one instance
of what are called relad memory consistepanodels, which is the topic of thextesection.

2.2.4 Memory Consistency Models

Another issue that is of concern in the parallel computing domain is memory congistenc
we have seen in the preceding section, cache coherence guarantees that iftare proces-
sors write to a specific address, then some ordering is enforced such that all processors agree
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Time
P1 P2
Xolg <- Read X Yoig <- Read Y
Write Xpew -=> X Write Ypew => Y
Ynew <- Read Y v Xnew <- Read X
P1 sees X->X,e\ before Y->Y P2 sees Y->Y |, before X->Xq\

FIGURE 2.3: Memory consistenc y models. The observed interleaving of reads and
writes by different processors defines a memory consistency model. In the figure two
shared variables, X and Y, are read and written by different processors, P1 and P2
respectively. In the absence of any consistency, the two processors can disagree on the
order in which the writes occurred.

on the currentalue. What coherence daast specify is the order in which reads and writes to
different locations by di¢érent processors are obseuv In Figure2.3 the possibility of dfér-
ent obsergd write orderings is shon. If the \ariablesX andY happen to be in the same cache
line, then coherence will guarantee that the processors see the sami¢ Bidgrins eclu-
sive access tX before P2, then P1 will change tredue and the line will be dirtyor P2 to
gain either read or write access it must first fetch the line from P1, which means it will see the
modification toX before it changey which is the same order that P1 sees.

When the wriables are in diérent cache lines, ordering constraints must be imposed out-
side of the coherence protocol. One of the most imtugonsistencmodels from the point of
view of a programmer isequential consistenglyamport 1979] which is defined as fols:

A multiprocessor is sequentially consistent if the result gfesacution is the same as if the operations of
all the processors wergexuted in some sequential ordamd the operations of each widual processor
occur in this sequence in the order specified by its program.

7. The nomenclature here is not well standardized, and the terms ‘coherence’ and ‘cgnsisesften used
interchangeably\e tale ‘coherence’ to mean a mechanism for presenting a coherenvfviesinglecache
line to the system. ¥use ‘consistentto refer to the relationshipetween dferentcache lines.
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In this model, for each processor we mak ordered list of all reads and writes in program
order We then form a global list by arbitrarily selecting an entry from each procesisorlf

this global ordering is the same seen by all processors thervevsdgguential consistenc

(The particular choice of ordering does not matiaty the &ct that all processors see the

same ordering.) This is ceanient for the programmer because it is the same ordering that
would be obtained if the parallel program were actually running as multiple threads on a uni-
processarNote also that sequential consistedoes not olate the need for synchronization
such as mutualxelusion and barriers.

While good for the programmesequential consistepamposes constraints on the hard-
ware. A nare implementation wuld enforce a global order by means of a single sequencing
point for all memory accesses, muclelik ticlet-system in a baky. This sequencer repre-
sents a bottleneck, andwld destryg much of the performance avage of using a parallel
system. A more sophisticated implementation can reduce the impact of sequential consis-
tengy, although neer to zero. (In section 3.1.7 we describe NUMAclsneiplementation of
sequential consistepcand shar that the addedverhead is minimal.)

To improve performance,arious proposals kra been made for weakconsistencmod-
els. In mag cases sequential consistgigcan oerly strict rgime to impose on the hardve,
and is not alays necessary from the programmaguoint of viev. Figure2.4 shevs hav cer-
tain orderings may not be critical for a program to be semantically correct. The wAtasdo
B by P1, for @ample, can be re-ordered by the processor or theorigtas long as tlyeare
both visible before the assignmentleg

The wealest possible ordering is no ordering at alept for the write ordering pvaled
by the coherence mechanism; reads and wntes gom the same processor camehtheir
orders swapped. As described in [Goodman 1991], such a system is unusable without an oper-
ation such as fence which guarantees that all accesses before the fence are complete (visi-
ble) before ay access after the ferfteSome other models that lie between the éxtremes
includeprocessor consistengi?C) (also in [Goodman 1991]) which alle reads to bypass
writes, partial-store odering (PSO) [SUN 1997a] which alles writes to bypass each other
andrelaxed memory dering (RMO) [SUN 1997a] which alles reads and writes to bypass
previous reads. Note that when we talk of bypassing, we really mean completion of the access

8. Note that a fence is a more priméiconstruct than a barrié¢fences enforce ordering on reads and writes
from a single processowhereas barriers prile synchronization between processors.
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P1 P2 P1 P2
A=1 while(fla g==0) A=1 ...=flag
B£1 Q u£A (3=1 ...=flag
flagl: 1 v£ B flagi: 1 u £ A
v i B
Sequential Consistency Necessary for correct program semantics

FIGURE 2.4: Relaxed consistenc y. Arrows indicate the relation ‘must occur before’.
Sequential consistency maintains the order of every access, but only certain orderings are
crucial to the programmer. Accesses to the flag variable are the only ones that need to
be ordered for synchronization correctness. (Figure taken from [Culler 1999]).

(i.e. the cache is updated and the processor cae thakesults visible in thegister file).
Modern processors use techniques such as nonbinding prefetch and seeelatition to
increase performance. The memory consigtenodel has implications for the ability of the
processor to retire loads and stores in these instances.

There are numerous other issues pertaining to memory congisiginihey are not per-

tinent to the wark that follavs. It turns out, that for certain architectural reasons discussed in
Chapter 3, NUMAchine prades firly natural support for the sequential consisgemodel.
In addition, recent results Yaindicated that modern processors canevsquential consis-
teng/ perform almost as well as the retaixconsistencmodels [Hill 1998 and Gniady 1999].
A brief look at relaxing the memory model will besgin in Chapter 4. Aery thorough treat-
ment of consistenycissues can be found in [A€\1996].
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FIGURE 2.5: Various c lasses of memor y subsystems. The three broad categories
are UMA, NUMA and COMA. In uniform memaory access (UMA) architectures such as the
dancehall and SMP, all accesses have the same latency. Non-uniform memory access
(NUMA) machines allow for both local and remote memories. In a cache-only memory
architecture (COMA), the memories are replaced with large caches called attraction
memories. (The processors can contain caches in any of these categories.)

2.2.5 Memory Subsystems

There are numerous thfent options for the layout of memory in a shared-memory multipro-
cessorOne of the most popular configurations among tadeymmercial machines is called
thesymmetric multippcesso(SMP) (see Figur@.5). This consists of some relagly small
number of processors (e.g. 8 or less) along with a memory module shansgSubh an
architecture is classified asvirag uniform memory acceg§/MA), because each processor
sees the same latgnto memoryWith a more general netwk, there is the notion of accesses




Background 29

being remote or local, depending on whethey thest traerse the netark to be serviced or
not, respectiely. This leads tmon-uniform accessmes (NUMA). It is possible to makall
memories remote, @fating the need for a processaemory connection. This is called a
dancehallarchitecture [Culler 1999], and is typically also UMA since all memory accesses
incur the same remote access penalty

Any of these systems can support message-passingasafitwhardware cache coher-
ence. If a NUMA system uses the shared-memory paradigm, it is dadtebuted shaed
memory(DSM), and if cache coherence isyded in hardware, then the term CC-NUMA is
used.

An entirely diferent type of memory system is ttede-only memory &hitectue
(COMA). To understand the rationale behind this architecture, consider a CC-NUMA system
where each processor contains geasledicated cache to enhance localityese caches use
copies of data from main memory; a cache line not containeq icamhe has either wer
been used, or as used ot had all copies ejected. In the best case, all data needed by the pro-
cessors should be stored in the cacheweder, real caches sigr misses. In a cache-coher-
ent multiprocessorcaches can miss for one of four reasons:

« Cold or Compulsory Miss - Theevwy first access to awgin line will miss. This is clearly
unavoidable, it can be allgated by prefetching. Since g line sizes tend to @ a
prefetching dect, they can help to reduce this miss rate.

« Capacity Miss - This is caused by the cache being too small to contain all of the data that
is needed. This can only bedtk by increasing the cache size. A cache of infinite size
would shav no capacity misses. Aewy small cache with a Ige line size could increase
the capacity miss rate, becausgdalines hae the potential to increase the pollution of
the cache with unnecessary data.

« Conflict Miss - This occurs when ondifferent cache lines map to the same entry in the
cache, forcing the current occupant to be ejected. Tiastefan be reduced by increas-
ing the set-associatty or the size of the cache. A fully assoaciatcache wuld have no
conflict misses. A ery lage line size can alsxacerbate the conflict miss rate.

« Coherence Miss - In a cache-coherent machine, lines may need walimated to
maintain coherence. This has nothing to do with the cagamiaation. These misses
could possibly be reduced by changing the coherence scheme or reducing the line size
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so less data is thnm out for each walidation, and also by reducing the amountadgé
sharing.

COMA architectures aim at reducing capacity misses by greatly increasing the size of the
caches (to the same size as main memory), and eliminating main memory,esiticelyt acts
only as secondary storage and a place for coherencestpléade. These Ige memories, used

as caches, are callattraction memoriesThey take over the central role in the coherence pro-
tocol, and are baekl directly by paging to the disk. While COMA architectures do reduce the
capacity miss rate, the absence of main memory means that address mappinged.not fix
Given an address that misses in the attraction merthamne is no &y of figuring out just

from the address itself where to go to fetch the line. (In a CC-NUMA machine the upper
address bits typically select a particular memory module in the system.) Thus, the original
COMA design requires a global search of the attraction memories’ tags until a line is either
found, or if not found then paged iroRhis reason, COMA machines often use a hierarchical
directory scheme to reduce the coherence lgtéxiso, because the attraction memories are
caches, there is a problem when only one attraction memory in the system contains a cache
line: if ejected, this line must bev&al to disk or meed to another attraction mempbgecause

it is the only eisting copy. These are the main reasonsMBOMA has preen to be

extremely &pensve both in terms of lategand logic compbety. The trade-dfbetween
decreasing capacity misses and increasing coherencevarbgad &vours COMA architec-
tures only for those applications thabnk on \ery laige data sets, andveacorrespondingly

high capacity missesoF an analysis of the relaé performance of CC-NUMA and COMA
systems see [Stenstrom 1992]

In aflat COMAscheme (also described in [Stenstrom 1992]), a dedicated home location
is provided for addresses. The home stores only coherence directory information, with data
being maintained by the attraction memories as before. While it simplifies directory lookup,
flat COMA has dificulties when dealing with the last gopeplacement problem. In a normal
COMA system with a hierarchical directpan ejected last cgran mee up the tree until it
finds a directory which contains a line which can be ejected—either because the liakds in
or because it is shared and there is at least one otheelsaphere in the system—and can
take that lines place. Flat COMA, in contrast, mustdp &tra information as to which lines
are ¥ailable for ejection, and if no local spacevsitable must start searching through other
attraction memories until a suitable destination is found.
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While COMA and CC-NUMA schemes bothveatheir pluses and minuses, CC-NUMA
seems to be the architecture of choice fagdescale modern commercial multiprocessors.
Not only does CC-NUMMA relatve simplicity lead to lwer overall system costsub COMA
only outperforms CC-NUMA on a small group of applications, and the performancevenpro
ment is not enormousoFthose cases where CONMAlata replication and migration are
adwantageous, it is possible to aclge similar €ect by performing the same operations at
the page feel by means of the operating system. (See [Laudon 1997] for a description of the
CC-NUMA SGI Origin2000, which uses this approach.)

2.3 Multiprocessor Netwrks

The most critical design choice in a multiprocessor is thearktwt afects performance
through its lateng bandwidth and contention-handling characteristics. It also has a major
impact on the design compilgy of the cache coherence protocol and memory consistenc
model since, as we @ seen in preceding sections, both of these depentdyh@athe order-
ing of transactions, which in turn is impacted by r@ttopology

One of the most fundamental requirements of a multiprocessoonketscalability,
This means that certain critical netk parameters should increase mrse than linearly as
the system size (usually measured by the number of procaSs@sncreased. Ideallyve
would like a netwrk to be scalable in the follang three areas:

« Cost - This should scale linearly with so that the mgmal cost of adding another pro-
cessor is constant. It is also desirable for the initial cost (for just priecessors) to be
low, so small configurations are feasible;

« Lateng - This should be constantytissince logic &n-in cannot be infinite the best that
can be gpected iO(logN);

« Bandwidth - This should scale wilh

For bandwidth, it is really theisection bandwidtlthat should scale linearlyhe bisection
bandwidth is defined as folis:
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Consider an equipartition of a system of communicating nodes, and calculate the aggre-
gate bandwidth between thedwartitions. The bisection bandwidth is thevés bound
of this aggrgate bandwidthwer all possible equipartitions.

The linear scaling requirement is necessary if we assume the¢i@ye all processors com-
municate equally with all other processors. (Note that this is notdhst wase scenario,
which would have N-1 processors all accessing the last procgssor

The scalability of a netark is determined by its topologyhe werall performance of a
network is afected by other characteristics such as:

 Direct or Indirect. Direct netarks put a switch at each node, meaning that some nodes
are closer (in a lategsense) than others. This al®for eficient nearest-neighbour
communication. Indirect netwks put all nodes on the periphery of the rekymaking
access times uniform between nodes.

« Packet- or circuit-switched. Circuit-switched neaivks set up a fixd dedicated connec-
tion between tw nodes. This connection iast because it is not sharedt there is an
overhead cost for the setup and breakdaof the circuit. Once the circuit is set up the
routing is fixed, so message routingeshead is lw. Packet-switched netarks break
the communication stream into patg, each of which is routed independerilyere is
no setup verhead, bt routing werhead is increased, because typically more than one
routing decision must be madeadRet-switching allavs the netwrk resources to be
used in parallel for mandifferent streams, which mes it the choice for multiproces-
sors where mgnnodes communicate simultaneously

« Store-and-fonard or cut-through routing. Store-and-fama waits for an entire paei
to be recaied at a switching element before routing it to theet.nehis works well if all
paclets are of fied size, bt requires bffers lage enough to contain some maximal
number of full packts. Cut-through (also callecownhole) routing determines thexte
switch based on the paatikheaderthen passes the rest of the gadkrough as it comes
in. This adds complety to the flav-control and congestion-handling logicitluses less
buffer space and reduces the latendrtual cut-through is aybrid of these tw: it
works like wormhole routing, bt stores the entire paekif the outgoing channel is
blocked.

« Static or dynamic routing. Static routing usegdixouting tables that do not change in
time. Dynamic (or adapte) routing can change routes @@ congested areas. It also
provides fwlt-tolerance because a beokchannel can be bypassed. Dynamic routing is
more complg, and allevs for the possibility of dierent paths between twixed nodes.
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 Error checking, higher el flow-control protocols, and otheaudlt-tolerant features.

In the following sections we will look at some generic multiprocessor interconnects.

2.3.1 Full Cossbars

In aPxQ crossbarP input ports are fully connected @output ports through a single switch-
ing layer (Figure2.6 (a)). In most caseB,andQ are the same. Normallwe consider each
input to be paired with an output, prding fully bidirectional links. (A unidirectional cross-
bar is usually a part of somedar netvork.) Crossbars prade linear bisection bandwidth
scaling, and a constant latgraince there is only a single switch. The cosiydver, scales as

N2, so the number of ports is typically some small nurndzer less than 10. Note wever,
that crossbars can be heoktogether to form other netvk topologies.

2.3.2 Multistage Inteconnection Netvorks

Multistage Interconnection Netwks (MINS) represent a class of netks, somexamples of
which are the Onga (Figure2.6 (b)), Bayan and Butterfly netarks. Each switch within the
MIN is apxp crossbarso the number of switchvels (and hence the latgicscale as IggN.

The cost of the netwk scales as\(logyN). All nodes are equally ‘remote’ and ferfmaxi-

mal lateng, which does not all@ for local-communication optimizations. The size of a MIN
can be gravn by adding more layers of switches.

2.3.3 Hypecubes

An n-dimensional binaryypercube connects'2odes. A 4-D xample is shan in Figure2.6
(c). If we consider the nodes to reside at the corner of a unit cabsinmensional space, then
each node connects to iisiearest neighbours along each dimension. If we label the node
position by itsn-space coordinates (e.g. 0010, 1110), then connectisidetween an
nodes that diér by one bit. As with MINs, ypercubes dér linear bisection bandwidth
growth, and latengthat gravs as logN. The cost similarly gnes as N log,N). One problem

with hypercubes is that the gieee (number of connections) at each node increases as the sys-
tem size gress. In practice, this means that the maximugree of a node (and hence the
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FIGURE 2.6: Scalable inter connection netw orks. (From [Lenoski 1992])

maximum system size) must be decided upon before implementation. Hyperculbderallo

local communication.
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2.3.4 k-ary n-cubes

Thek-ary n-cube is a more general form of thgkrcube, with the binary base 2 replaced by
an arbitrary bask. A 4-ary 2-cube is shn in Figure2.6 (d). Most systems use a dimension-
ality of 2 or 3, and gn the system size by increasikgrhe 2-D and 3-D incarnations are
also calledneshesHaving k > 2 means that node symmetry is lost for a mesh; nodes on the
boundary of the mesh ¥xalower degrees than nodes in the interidhis is a problem from the
hardware standpoint, since either switches wiming port numbers must be produced, or
some of the ports must go unused. The symmetry camgéaee by adding links between the
peripheral nodes along each dimension. (In topological terms this \@kupiito wrapping

the edges around and connecting them.) In this case, therkétweferred to astarus and

the average latencbetween nodes is reduced byaatbr of twp. Routing in a torus is more
difficult, as is wiring. Br a gven dimension, the cost gvs linearly The dravback is that

bisection bandwidth only gves asN(™ DM and lateng increases as/M.

2.3.5 At trees

An N-node &t tree with &noutf is constructed by superposiNgndividual fanoutf trees in
such a \ay that each ieel of the &t tree has a constant number of links between switches.
This provides for linear scaling of bisection bandwidth andNbigteng increase, while pro-
viding multiple root nodes to ensure the root is not a bottlenatkrdes are lé&k MINs in that
their cost scales abl{og N) and thg can be gravn by adding layers of switches. Khare
different from MINs in their ability to prade lown-lateng shortcut paths by routing only up
to the lavest level in the tree necessary to reach the destination.

2.3.6 Busses and Rings

As mentioned before, the most common interconnect topology isithaue to its simplicity
While the lateng and cost are constant, the bandwidth is also constant, which means that a
given hus is not scalable pend a certain point. This saturation point can beedaip by
increasing the width and speed of this.bThe drasback is that the cost and comytg
increase, because moveo#c signalling technologies are required.

Rings also hee a fixed bandwidth. Haever, the lateng increases linearly as nodes are
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added, as does the cost. Oneasdage to rings is that heise point-to-point connections, as
opposed to lisses which hee multiple loads on a single wire. Electrically this meskhe
ring’s signalling emronment much cleangand allovs rings to be run at much higher speeds
than lusses, which can be used to tradeaghinst the latencand bandwidth restrictions.
Busses and rings can both bgaoized hierarchically to increase the upper limit on their
scalability The higher leels of the hierarghcan be made wider cadter to increase the
bisection bandwidth. The hierarchicagyanization maintains the ordering and broadcast
capabilities of hsses and rings, which can be used t@athge for cache coherence proto-
cols, as will be seen in Chapter 3.

2.3.7 Netwrk Summary

Table2.1 summarizes the important netlk characteristics. The latgnis determined on an
uncontended netwvk with uniform loads. Switch and wire costs indicate the number of
switching elements and interconnections needed, regglgctn a hierarcl, the number of
switches or bs/ring inter&ces is the same as the number of internal nodesNAeaf tree

with fanoutf. With n = (Iog f N—| , We can approximate the sum as

f(N—1)

EQ 2.3
) (EQ2:3)

) 0" .0
Switch(N) = Ng f"O-N=
% O
None of the neterks is ideal in all respects. Performance has generally been considered more
important than cost, which haavbured lav-lateng networks with good bisection bandwidth,
such as tori and meshes. (See, f@maple, the SGI/Cray T3E and Wiett-Packard VYClass
machines.) Haever, for small- to medium-sized netnks, say less than adéundred nodes,
performance can be increased by the use of custom-designed routers, and scalability is ar
ably not as critical an issue as cost. This hieted the approach to multiprocessor intercon-
nects, as will be seen in thexhsection.

2.4  System Aea Networks

Up until a fev years ago, multiprocessor neiks used either LAN-class technology or com-
pletely custom-designed solutions. Research in recent years has indicated that multiprocessor
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TABLE 2.1: Summary of netw ork c haracteristics. A system is assumed to contain N
nodes. For the MIN and fat tree each switch is an fxf crossbar. For the hierarchical bus and
ring there are f nodes at each lowest level bus/ring. Indirect networks do not allow fast
local communication, direct do, except for a bidirectional ring, which does. (Table from
[Lenoski 1992].)

Average Bisec.
Topology Type Switch Cost | Wire Cost Latency Band.
Crossbar Indirect N2 N const. N
MIN Indirect (N/f) logiN N logiN logN N
Hypercube Direct N logoN (N/2)log,N (1/2)logp(N/2) | N/2
2-D Torus Direct N 2N N N2
3-D Torus Direct N 3N 3NL3i4 oN2/3
Fat tree Indirect N logiN fN logN 2(logN-1) < fN
L<2logN
Bus Direct N const. const. const
Ring Direct N N N/2 2 const.
Hierarchical Indirect Switch(N) Switch(N)/N 2(logN-1) < const.
Bus L <2 logN
Hierarchical Indirect Switch(N) Switch(N) 2N(logN-1) < | 2 const.
Ring L < 2N logN

networks hae \ery specific requirements which féif from those in other netwking emwi-
ronments. Latencand bandwidth are particularly critical in the tightly-coupled multiproces-
sor ewironment. Havever just as important iswwoerror rate. In an unreliable neivk such as

a LAN, higherlevel protocols (e.g. TCP/IP) prmle reliable communications at the cost of
much higher protocole@rheads. In a latepesensitve domain, such as multiprocessors, such
overheads are unacceptable. System Area dr&B\(SANS) usually contairast lav-level
errordetecting and correcting protocols directly in hamdsv In order to\aid contention,

they also contain quick fle-control mechanisms. While all of these featuresiiel be benefi-
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cial in a LAN domain, the added cost is not justifiable, since softywrotocols pmde ade-
guate performance.

The drving force behind SANs as message-passing. Sending a message using standard
network interfaces typically imolves going through the follang steps:

1. Put the message into affer in local program memory

2. Trap into the operating system, which then copies the entire messageuffer &b
kernel memory

3. Send this bffer to the netwrk interface, which normally wolves coping it into a
buffer local to the inteece.

4. Transfer the data across the nattiy then go through all of these steps werse order
at the other end.

Clearly the coping done in steps twand three is not absolutely necessahe goal of SANs
is to pravide applications with more direct access to the agtwnterface. In &ct, it is @en
possible to doway with the coging of the local programuifer into the netwrk interiace by
mapping the rgion of local memory as uncached and making thsiphl address select the
network interface directlyBy also preiding a direct virtual memory map for the contraj+e
isters in the netark interface, it is possible to kia the program initiate the message sending
without ary operating systemwolvement whatso@r. Suchzeno-copyschemes hee alloved
message-passingerheads to come dm from tens of microseconds to less than one micro-
second, which is particularly beneficial for supporting the small messages that are often nec-
essary in a multiprocessingwemmnment.

The following sections will gre brief descriptions of some commercial SANs.

2.4.1 SCI (Scalable Cohent Interface)

SCI [Scott 1992] is an attempt to combine standards for botlisacghnetvarking layer and
a cache coherence scheme tovjote an ‘of-the-shelf solution for implementers of CC-
NUMA machines. The pfsical layer specification aims at high-spead-hke performance,
but does not enforce wuparticular topologyln small configurations, SCI typically uses single
or dual rings, for which commercial chipsets arailable

The cache coherence protocol igalidation-based, and relies on a disitédal directory
using linked lists. Each netwrk interiace stores its locally agé sharing list entries, which
distributes the directory storage across the machine, andedgs K near the netnk to
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allow quick access. One of the diaacks to the lingd list structure is thatwalidations to
highly shared blocks must trerse the entire list, which may be scattered across the machine,
potentially increasing coherenceeshead substantiallffor applications where the gieee of
sharing is lav, SCI performsdirly well.

SCl is used in SequestNUMA-Q, DataGenera’ AVilON and HPS \‘class serers.
Unfortunately SCI sdiérs from early- andwer-standardization. Both the ypéical layer and
the linked-list coherence araifly out-of-date already5Cl is a goodxample of trying to
standardize too much at toa@ level while technology is still rapidly changing.

2.4.2 Myrinet

In contrast to SCI, which a&s tageted specifically at parallel processing rekg, Myrinet
[Boden 1995] vas born from an attempt to increase LAN performance. One of its gagaleow
allow clusters of wrkstations to be connected to form a virtual multiproce3dos attempt
to leverage the preponderance of refalty cheap wrkstations vas made popular by Berk
ley’s NOW (Network of Workstations) project [Anderson 1995].

Myrinet puts an embedded protocol procesadage amount of SRAM and DMA
engines onto its netwk interface cards to all® most of the netark and protocol processing
to tale place on-board. The Myrinet netxk consists of an 8-portamhole-routed full cross-
bar While the performance igifly good, it is not clear whether makingaster LAN inter-
connect is more fruitful than trying to approach the problem from the other direction and tak
a custom-designed dedicated multiprocessor oritarchitecture and commoditize it.

2.4.3 Memory Channel Il

The Memory Channel Il architecture [Fillo 1997asvdeeloped by Digital Equipment Corp.
(now owned by Compaq) for use in its Alphasaryproduct line. (The original Memory Chan-
nel had the same basic architecture, viaith lover performance.) It uses virtual memory-
mapped pages to directly access the agtwnteriace, and pnades a form ofeflective mem-

ory. Writes to a page are made visible on all other readable pages in the system shared by
other nodes. Only one node can map a page for writing,cs@v@y communication is

achieved by pairs of pages. In order to easegraton into SMP nodes, the netik interface

cards in Memory Channel are implemented on PCI cards, which can simply be plugged into
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the ubiquitous PCI I/Ous. Although this increases their latgrifbecause thehave to cross
the memory-to-PCI bridge) it\weers the cost and implementation compieconsiderably
The netvork is based on an 8x8 full crossbar

The basic communication mechanismyided is message-passing. Reads to a page only
shawv data that has been written; updates to a page cannot be pulled across, only pushed by the
originator This one-vay communication has associated cost penalties for inherenaw
communication patterns such as synchronization. This renders Memory Channel mediocre at
best for wery fine-grain communication patterns.

2.4.4 Synfinity

The Synfinity interconnect [@ber 1997 is specifically designed to support a tightly-coupled
multiprocessarSynfinity utilizes a basic crossbar switching element (in this case 6x6), man
of which can be connected inyadesired topologyThe design aims to pramle very high per-
formance, bt also ery high reliability which is critical for systems in the commerciafla

To attain these goals theplit the functionality into three layers. Theviest level is the
fast fame meer (FFM), which is responsible for the basic data transport. This layer uses
source-routed cut-through to pide very low latengy (on the order of 40 ns for a singledé
of switching). The FFM focuses solely on speed, making the logic as simplastiag possi-
ble. The ngt level up is theeliable paget maer (RPM) which uses errazhecking and -cor-
recting codes to puide reliable communication. If corrupted patkcan not be fed, then
the RPM uses the FFM to re-request the packheinterconnect services magar (ISM) sits
at the top of the chain. It is the only part of Synfinity that is dependent on the actual details of
the node to which it connects. TheotWasic services pvaled by the ISM are a directory-
based cache coherence protocol, and a message-passing protpabifehent or &tra func-
tionality only requires a redesign of the ISMujitsu System @chnologies hasavsions of the
card for connection either to a PQlIgbor directly into the backplane of an Intel SM#hile
this is the highest-performing and most greged SAN of the four presented here, it is not yet
shipping in ag commercial systems, so it isfitililt to judge its gerall impact.

9. Note that the paper refers to the Mercury Interconnect. The rights to the technology were bought by Fujitsu,
and the name changed to Synfinity for trademark reasons. A modifigdrv of the paper can be obtained
from the Fujitsu SystemeEhnologies website, http://wwijgt.com.
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2.5 Sample Multiplocessors

This section looks at someisting multiprocessors, both commercial amgexrimental. As
evidenced by thearied architectures, there is no one best approaallthiy these

machines. Clustered systems are a common approach, partly becypleethge commod-

ity SMP nodes, and partly for their RAS characteristics. RAS stands for Relialviithalbil-
ity/Serviceability and is turning out to be one of the more important features in commercial
acceptance of multiprocessor systems. (Note that in the commeodidJ the markting term

for this class of machines ‘isnterprise seer’.) A system is reliable if the user can count on
jobs being completed in a deterministic and timakhion, gen in the &ce of heay loads or
system malfunctions. This includes the areasoltftolerance and #¢ient load manage-

ment. Availability means @oiding davntime due to crashes or maintenance. The standard
here is set by mainframes, which can aghigve-9 (99.999%) uptime, or less than 5 minutes
of downtime per yearAnd finally, serviceability indicates a systesrability to gracefully han-
dle the ingitable failures of processors, mempdysks and netarking components. Since
multiprocessors, by their nature vieaa lage number of such components, statistically speak-
ing they will suffer high filure rates. Features for serviceability include redundamépsup-
plies and hot-sappability

251 Stardrd DASH and FLASH

The DASH [Lenoski 1992a & 1992b] and folleon FLASH [Kuskin 1994] projects at Stan-
ford are both directory-based CC-NUMA machines using 2-D meslorietwAs sharn in
Figure2.7, DASH uses an SMP node consisting of four MIPS R3000 processors shausg a b
with memory and a netwvk controller which also contains the coherence directory mainte-
nance hardare. The netark controller also containsramote access che (RAC) to reduce
the lateng of remote accesses for cache lines that are subsequently fetched by another proces-
sor in the node, or re-fetched by a processor which has ejected the line. TheaRAlso be
viewed as a small attraction memory for remote addresses, whech sdme of the migration
and replication benefits of COMA.

The FLASH design doesvay with the lis-based SMP and the RATheir conclusions
from DASH were that the localization of remote referencés@éd by the SMP/R& combi-




Background 42

I Net
_ Proc+
Proc+|c+lc+ Directory| Mem Cache
Cachecheche + Net -
Bus Net /¥ 1/O
| G Magic (=P
Mem
DASH Node FLASH Node

FIGURE 2.7: DASH and FLASH ar chitectures.

nation were notery efective and cost too much in terms of logic. The GI& chip performs
the functions of a netwrk and memory managexs well as implementing a microcoded
coherence protocol processing engine which enab$tsahd flgible shared-memory and
message-passing. Some of the same benefits of tBeaRAobtained by implementing page-
based migration and replication policies in saiite

25.2 lllinois I-ACOMA

lllinois’s I-ACOMA [Torellas 1996] uses both a flat COMA coherence protocol and a tech-
nique calledsimultaneous multitieading(SMT) [Eggers 1997]. The goal of the COMA
research is to wresticate techniques for reducing COMA oherenceverhead. Anxample is
theinvalidation catie which leeps track of recentlyvalidated lines (that muld miss in the
attraction memory) and foravds them directly to the appropriate remote direciing SMT
research is independent and complementary to the COMR Realizing that there are limi-
tations to the amount of instructionA# parallelism (ILP) gailable for superscalar proces-
sors, the SMT approach seeks to smake of multiple threads as well as ILP inside a single
chip. The compiler is responsible for scheduling multiple threads, each of which feeds a sepa-
rate superscalar engine inside the proce3s$m idea is to apply VLIW techniques at theele

of threads rather than instructions. Internally the processor can hideylayecitoosing other
threads toxecute when some thread is bledidue to a high-latep@ccess. Since the threads




Background 43

can be associated with fdifent programs, this approach also supports multiprogrammed
workloads. Hardware does not yeest for the I-ACOMA.

2.5.3 €racomputer

The Teracomputer [Bokhari 1998] represents a radicalkgidiht approach to multiprocess-
ing. The memory system uses a basic dancehall architectureasisteigure2.8. Hav-

ever, instead of trying to reduce orad lateng, the Tera approach is to look for otheowk to
keep the processouby while vaiting for a high-latencoperation to complete efa uses a
custom-designed heidy multithreaded processor with @ny low contet-switch overhead to
achieve this goaJIO. The current implementation of ther& processor can support up to 128
instructionstreams each of which belas as a virtual processor with itsroregisters and
contet. There are no caches in therd architecture, and all memory is equidistant from all
processors. Ornvery clock gcle the processor switches unconditionally to the sgeam in
a 21-deep stream pipeline. Thus each stream can utilize at most 1/21 of a poogdeer’
Since @en with optimizations for speectila’s memory taks about 50ycles to return a 64-
bit word, at least 50 streams must bewacin the processor atyaone time for it to be fully
utilized. While certain applications do display this amount of concuyydeca has not pre-
sented covincing evidence that their approach is more generally applicable.

254 SUN E10000

Originally codenamed Starfire, this is SWNiiggest machine in the enterprise semarlet.

This 64-processors SMP is unique in that it uses a globally snooped interconnect in a UMA
configuration. As shen in Figure2.9, nodes consist of up to four Ultra&#C processors,

each with memoryA processor cannot access its ‘local’ memory diretiiyugh. All

accesses must go through one of the four globally shared and snooped addess(bhe

low 2 bits of the addresses select which addresssused. The addresassses are replicated
only for performance reasons.) Data responses use a separate 16x16. Godsbapproach

of throwing hardvare at an old design ig@ensve, and ultimately unscalable. By sticking to

10.This is similar to the SMT concept from the yiotis section, hwever the Bra multithreading concept pre-
dates SMT by a number of years. The SMT idea really descends fromréhaoik.
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FIGURE 2.9: SUN E10000 architecture . Each node contains 4 UltraSPARC processors
and memory. All accesses, local or remote, go across one of the global address busses.
Data is transferred separately on the data crossbar.

incremental design impvements, thg have managed todep their costs W enough to com-

pete with other @ndors, and the E10000 is still one of the highest performance machines on

the marlet.
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FIGURE 2.10: Layout of the SGI Origin 2000. (Figure from [Laudon 1997].)

255 SGlI Origin

The SGI Origin 2000 is loosely based on StanfoBBRSH and FLASH projects. As shw in
Figure2.10, each node contains up t@tMIPS R10000 processors sharing a connection to a
full crossbar (the Hub chip) and there can be up to 512 nodes (1024 processorsd. fiiiwe tw
cessors share apinto the Hub to s& pins, it do not snoop on each oth&he node is thus
not really an SMPand there is no clustering. This reakhe basic node cheaper than an SMP
box, which also pnades for better incremental upgrade costs. By eliminating the S&P b
and snooping, the Origin also reduces the Igtémcemote memoryPairs of nodes share
access to an I/0O crossbhahich supports direct memory-to-memory DMA betweey taro
memory modules, and also cache coherent /0.

The interconnect uses a 6x6 crossbar called a Spider chip (similar in performance and
architecture to the Synfinity) to implementad fiypercube topologylhe Origin does not pro-
vide ary kind of cache for remote accesses, instead relying on page replication and migration.
The wverall goal of the Origin is to be highly modular and costieht, while still praviding
good performance.
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2.5.6 Beaulf

Beowulf [Becker 1995] is not really a parallel machine per s am attempt to all® aryone

to build their avn supercomputer (in their parlangarallel workstation using CO'S (com-
mercial of-the-shelf) parts. &llowing in the footsteps of projects dkNOWVN and Princetors
SHRIMP [Blumrich 1998], its most common incarnation is as a group of PCs connected
together by one or more 100 Mb/asE Ethernet netwks, and running the Linux operating
system with modified netwvk drivers to reduce netwk overhead. On applications that do not
require \ery fine-grain sharing the performance can be quite good, and the cost is at least an
order of magnitude less thanyasther commercial system. Since it does not address RAS at
all, it is unlikely to find fvour outside of the research community

2.6 Conclusion

This chapter has briefly eered some of the major issuegdlved in design and analysis of
parallel computing systems.\@&n this background and someamples of current multipro-
cessors, the mechapter will describe details of the NUMAchine architecture, as one particu-
lar instance of a CC-NUMA machine.




CHAPTER 3 NUMAIne Achitectue,
Implementation & Simulator

This chapter will describe the architecture and implementation of the NUMAchine prototype,
as well as the architectural simulatwhich was used as a desigmlidation and research tool.

NUMACchine is a distribited shared-memory multiprocessor with haaoewcache coher-
ence, which puts it in the CC-NUMA class of machines. This has become a popular architec-
tural choice for commercial multiprocessors (e.g. SGIigin 2000, Compas’Alphaserer
and HPS \class sersrs). The main reason for this is that it is compastisimple to imple-
ment such a machine by connecting together a numbesdfdsed SMP nodes using either a
LAN or SAN network. The ability to diciently leverage the years of industryperience in
SMPs is causing prices to drop and quality to rise, toxtemethat CC-NUMA machines are
becoming the deatto standard in ‘enterprise computing’. (This term usually implies not only
high performance,ui RAS features as well. Multiprocessors are encroaching on both the
supercomputer and mainframe domains.)

The goal of the NUMAchine project is towd#op a simple, lv-cost and scalable archi-
tecture for distribted shared-memory multiprocessors (DSMs) with up tevehtendred pro-
cessors. The purpose afilding the prototype as to \erify the feasibility of the architecture
in practical terms, and to priole a hardwre platform that can senas a base for operating
system (OS) and compiler research. The simplicity is crucial since NUMAchine must be
highly cost-eficient!. To achiee our cost goal we used TO parts, and field-programmable
devices (FPDs, in particular FPGAs and CPLDs) for control logic instead of ASD@sign
simulations were used to ensure that the choice of parameters such as datapath widths and
speeds for the prototype reached the desinel & scalability Flexibility was crucial to pro-

1. The funding for NUMAchine was preided by an NSERC grant of around CAN$1.3 million. This nyqread
for both hardwre and designers.

47
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viding support for research. The reprogrammability of FRig8ifated rapid delgging of the
prototype, alloving us to &oid rigorous formal grification. At the same time it permitted us
to leave space for future enhancements as results from research are obtaiadsb W
designed NUMAchine to pxide plenty of lev-level monitoring in hardware, allaving soft-
ware designers to determine the ultimate cause of performagi@daon in the system.
(The monitoring functionality will not be described in this dissertation. See [Lemieux 1996]
for more information.)

The first section of this chapter describes details of NUMAchiaeehitecture and imple-
mentation. The second section will describe the NUMAchine simulatoch is used for sys-
tem analysis andadidation.

3.1  Architecture and Implementation

NUMACchine consists of a number sffations connected together by advevel network of
hierarchical rings, as stv in Figure3.1. Each station is basically assbased SMP node,
composed of four processors, a memory module and areinterface card (NIC). Archi-
tecturally speaking, there is nothing special about the choice ofey &MP node. The v
main reasons for choosing the number four came from hustisdduration and ghical imple-
mentation considerations. Thesetbrs will be discussed in thextsubsection.

A major factor in choosing rings for NUMAchireinterconnect has to do with their
inherent ordering properties. As described in Chapter 2, lanedvache coherence and mem-
ory consisteng models must bewaare of possible re-orderings of requests and responses in
the netvork. The normal method for guaranteeing ordering is to use a handshaking protocol
where all requests require ackriedgments before tlgecan be considered complete. NUMA-
chine’s cache coherence protocubals acknaledgments by taking adwntage of the order-
ing and natural broadcast capabilities of rings. Thisesdke coherence protocol both
simpler to implement, and mordiefent. The implementation will be described in section
3.1.5, and the performance will be analysed in Chapters 4 and 5.

2. FPGA and CPLD stand for Field-Programmable Gate Array and CriRpbgrammable Logic Dvce
respectiely. Roughly speaking, tiyeboth pravide arrays ofogic bloks, with each block configurable to pro-
vide simple logic functions. A complesircuit is decomposed into these smaller functions, andniagped
into the deice. Application-Specific ICs (ASICs), in contrast, use customized logic specific to the particular
circuit, and are not reprogrammable.
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P = Processor
M = Memory

NIC = Network Interface Card
I/O = SCSI,Ethernet,etc.

Local Rings

Stations

Central Rin
Inter-Ring Interfice (IRI)

FIGURE 3.1: A high-le vel vie w of the NUMACc hine ar chitecture . Each Local Ring is
shown with two stations, but can contain up to four. With four processors per station, this
gives a maximum of 64 processors.

The lover level ring in the hierarchis called d_ocal Ring and multiple Local Rings can
be connected together byCantral Ring The reason for using adalevel hierarcly instead of
a single leel has to do with lateycaand bandwidth considerations. In a single ring, the lgtenc
is proportional to the number of nodes in the ring, which does not scale well. In a hierarchical

ring, the lateng scales aﬁ)(Nll'-) for N processors anid levels of hierarci, with little

increase in the systemtost or complaty since both leels of ring can makuse of the same
technology From the bandwidth perspaadj a single ring requirg3(N) increases in band-

width to accommodate more processors withogtatding performance. Depending onfiaf
patterns, in the hierarchical case some fraction of requests remain on the Local Ring and do
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not need to makuse of the Central Ring. In the best case, afidnabuld use the Local Ring,

resulting in a bandwidth scaling requiremenOﬁlNll'-) for the Local Rings (and no scaling
requirement for the Central Ring since it carries nditjain the worst case of no local traf-
fic, the Local Rings wuld hare no scaling requirement and the Central Riogld require
O(N) increases. The actual scaling requirements for real applications lievkeraebetween
these tw limits, kut are still an impreement @er the single el case.

The use of SMP nodes mekNUMAchine a clustebased design, meaning that commu-
nication is &ster if it can tad place within a clustewhich also helps with scalability as dis-
cussed in the preceding paragraph. Actyaiécause of the tevels of rings there are three
degrees of localityAccesses are calleéacal if they can be satisfied by memory on the same
station as the requestd@ihe lateng of a remote (dfstation) access depends on whether the
Central Ring must be tvarsed or not. fansactions that use the Central Ring we team
Remoteand those that stay on the Local Ring we [dakir RemoteThe request/response
paths on a ring alays irvolve traversing the entire ring (the request uses some of the Qg se
ments, and the responsevieses the rest). Thus the Near Remote |gtenthe same no mat-
ter where the requester and responder are situated on the ring. The same isarnfRedordte
latencies rgardless of which ter Local Rings are wolved. The diference between the laten-
cies represents theglee of non-uniformity of accesses, or in otherdg the leel of
NUMAnNess of the architecture. A high ratio indicates that the penalty for fetching remote data
is high, which mags it worthwhile to spend morefeft on trying to reduce the number and
latengy of remote referencesypical values of the remote-to-local ratio for other CC-NUMA
systems are in the range 10:1 to 20:1. As we shall see inxheha@ter NUMAchine’s ratio
is about 2:1 for near remote, and 4:1 farfemote accesses.

There are numerous techniques for reducing remote access laternziggclvbeing
clustering and caching. &vill not consider clustering in this thesis, since it is typically pro-
vided at the operating-systenvéd and is complementary towelevel hardvare techniqué"s
NUMACchine’s hardvare supports remote latgneduction by means of the Neivk Cache
(NC). The NC is an inggal part of the NIC, and pvales on-station storage for remote cache
lines which hae been fetched across the netiv Re-use of the line by other on-station pro-
cessors incurs only aiolocal request lategaof the same magnitude as a local memory refer-

3. See [Gamsa 1999] for a description of clustering support in NUMAchine.
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ence. The design of the NC is described in more detail in section 3.1.2. Its performance is
explored in Chapters 4 and 5.

Another fctor that dects remote lateryds the placement of memory pages amongst the
distributed memory modules. Thpage-placement policgirectly determines whether mem-
ory references are seen as local or remote fromea girocessoiechniques such as page
migration and replication can help reduce remote latencies [Culler 1999], and are used by sys-
tems, such as the SGI Origin 2000, which do noteneade of a remote-access cache such as
the NC. Since these approachamore into the domain of the operating system, we will not
consider them in this dissertation. Wever, wewill look at diferent types of page-placement
in Chapters 4 and 5 since the placement palicectly impacts the performance of the NC. (It
will also be shan that, for simulation purposes, some of the benefits of page migration and
replication can be mimiad by an appropriate choice of the paging pglic

At the architectural kel, the final aspect of NUMAchine is the I/O subsystem. Multipro-
cessors are often used to rerywlage programs that require substantial /0O bandwidth.
NUMACchine provides support for parallel file systenwhich tales adantage of lage num-
bers of smaller disks to increaseemll bandwidth and throughput. The implementation of the
I/O card will be described in the xtesubsection, lt the details of the parallel /0O support in
the operating system will not bevayed. The interested reader can refer to [@iel997].

With the architecture more or lessdik we then maed on to the implementation stage,
which consisted of four basic steps:

1. Simulation studies to determine system parameters, such as queue deptissvaidthb.
2. Partitioning of controller and datapath logic into T®chips and/or FPDs.
3. CAD schematic entry and writing of FPD code, using a HardwWdescription Language
(HDL).
4. Board-level simulations using the Cadence LogioMbench digital simulation tool to
verify functionality
NUMACchine made use of FPDg@usiely from the Alteradmily of devices, in order to
minimize the number of tools required. While the Alteraicks themseks were only mar-
ginally better than the nearest competiXitinx, Altera’s dezelopment emronment vas eas-
ily the best-of-class at the time.v@&n the compbety of designing such a lge and intricate
system, good tools turned out to be the most critical aspect of our ddeign\Véé estimate
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that the Cadence toolset required warage six months of daily usage before a designer
achieved proficienyg. Part of this vas due to a long list of interoperability problems angsb
in the tools, which is not surprisingvgn the compbaty of the tools themseés. Havever,
once mastered, our board« simulations turned up meesign problems thatould have
taken months to find and fix after the cards had been raenuéd.

The net three sections will describe the implementation of #réous system compo-
nents.

3.1.1 Station: Bus, Rycessors, Memory and I/O

The prototype grsion of NUMAchines processor card uses a MIPS R4400 processor operat-
ing at 150 MHz with a dedicated 1 MB secondary (L2) direct-mapped unified instruction/data
cache implemented usingfahe-shelf SRAMs. The MIPSmily was chosen because it pro-
vided solid support for 64-bit and multiprocessor operations, and already had a number of
years of commercialxposure. V& also designed NUMAchine to support th&trgeeneration

of the MIPS amily, the R10000, which puides never architectural features such as a super-
scalar &ecution unit and prefetching. Mever, we hae not implemented this design, because
the price of the R10000as aver US$5000 per chip.

The processors alsoveal6 KB separate primary (L1) instruction and data caches on-
chip. The R4400 contains cache-control circuitry to manage both the L1 and L2 caches using
a MESI protoccﬂ. This control logic is responsible for maintaining both inclusion and coher-
ence between the bacache leels, as well as dealing withkeernal coherence requests such
as interentions. (An intergntion is a request to read a dirty cache line from a proce$sor’
cache, and there aredwypes, shared anadausie. A shared inteention allavs the line to
stay in the wning processos cache, bt changes its state to shared. Aolesive intenention
forces the wning processor to validate its cop after returning the data.) The MIPS R4400
can hae at most one outstanding load/store gtgwen time.

4. See [Heinrich 1994] for a description of the R4400 protocol details, and [Culler 1999] for a general descrip-
tion of MESI and other protocals
5. Inclusion means that a cache line inrhlistbe contained in L2. In practice this means that a line ejected from

L2 must also be ejected from L1 to maintain the subset propérgs ejected from L1 need only be flushed
back to L2 if thg contain modified data.
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FIGURE 3.2: Cards on the station b us. The I/O card contains a bridge controller,
which interfaces between a MIPS 4650 embedded processor, DRAM for 1/O staging
buffers and a PCI bus. The PCI bus can contain up to four SCSI-2 controllers, and one
auxiliary connector for a commodity PCI card (e.g. Ethernet or video). The I/O card also
contains the bus arbiter (not shown). The processor card has the MIPS R4400, plus a
Local Bus Interface (LBI). The Local Bus provides a DUART, boot EPROM and an off-
board debugging connection. On the memory card, the directory controller maintains
cache coherence, and interfaces to the DRAM controller, which manages the flow of data

into and out of the 256 MB of 4-way interleaved DRAM.

All datapaths in NUMAchine (isses and rings) are 64 bits wide and are elbek 50
MHz, providing peak bandwidth of 400 MB/s. This choice of width for the datapaths matches
the width of the xternal memory intedice of the MIPS processors, and emthe design of
the datapaths simpleDuring pre-prototype simulations we found that the bame close to
saturating for certain applications, so we ledlat changing the width of thesto 128 bits in
the simulatarWhile this did help, the impvement vas only on the order of 5% foverall
execution time. Thexdra cost of bis drvers and comptaty in the datapath as not justified
given our lav-cost taget and the minimal performance enhancement.

Figure3.2 shavs the internal layout of the datapaths for the 1/0, memory and processor
cards. The External Agent on the processor card is a 3-CPLD controller which is responsible
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for corverting the R440@ system intedce lus requests into NUMAchine commands, and
also doing some simple encoding/decoding of the NUMAchine address space. The LBl is a
low-speed auxiliary s on which resides a INRT, EPROM containing bootstrap code for

the processpand an dfboard connection to aNwinitial delugging and netark access in

the absence of an I/O board.

As mentioned abee, the stationis uses a Futurab+ backplane as theydical kus
medium. The Futurels+ specification also includes a fulidyprotocol, bt we decided that
this was werly complicated for our needs, so we designed a custom split-transaction protocol.
Splitting the transactions means that requests and their associated responses useuseparate b
transactions. While this alles for more concurreggit also maks the coherence protocol
more complicated.

Addresses and data on thestare multipleed onto the same linesoiFeach walid cycle
on the address/data (A/D)$ a parallel set of 16 lines prde command and control infor-
mation. Another 8 lines pwide data intgrity and error detection on the A/s The R4400
can be configured at boot time to use either parity-checking or a moist eslorcorrecting
code (ECC) scheme callsthgle-eror-correcting/double-ewr-detecting(SECDED). (See
[Heinrich 1994] for details on the ECC.affity can detect single-bit erroraticannot fix
them. While much weadt than ECC, parity has the ahwage that it is much simpjend
most commodity components such as FIFOs aifiéts come in grsions that include parity-
checking circuitry This allavs data intgrity to be checkd at various points along the datap-
ath, aiding in diagnostics.

The memory card contains up to 256 MB of dywnterlezed DRAM. The interleang
provides enough pipelining to allothe DRAM to feed the outgoing queue at its maximum
rate of one doubleord (8 bytes) eery clock gcle. The directory and DRAM controller are
also pipelined to allw input request processing togoe while the DRAM is still processing
the preious request.

The directory controller maintains the haate cache coherence state tables. The con-
troller is implemented in 3 CPLDs, which takare of predecoding commands, directory
lookup and state transition generation. Placing the entire coherence engine indsPDs w
invaluable during the delgging stage. A handful oligs which managed to slip past the sim-
ulation \alidation runs required only a 30-second reprogramming of the controllers to fix. In
fact, at one point we realized that the diagnostic unit on the memory card did not generate par-
ity, which caused the processor toet@kparity gception. V¢ added a nme command bit
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instructing the processor to ignore parity for data only in the specific command. The entire fix
to both memory and processor logic took us under half .a day

Not shavn in the figure for the memory card is an independent controller called the Spe-
cial Functions (SF) unit. The SF pides diagnostic information on the memory card, and
also prwides a block-transfer engine which is tightly graeted with the coherence contraller
The SF is basically a coherencgaae DMA engine. The SF is capable atlgering up all
cache lines for an arbitrarily Ige block of memorySince these cache lines mayéadirty
data elsehere in the system, the SF first fetches them and cleans up the directory state, then
ships the block out to either an 1/0O card (for paging) or another memory card (for page repli-
cation and migration). At the time of writing, the SF functionality has not been fully inte-
grated into the OS, and so no performance results for the SF will be presented.

And, finally, the 1/0 card praides disk access, and optionally the ability to plug in a stan-
dard PCI Ethernet or video card (fast frame bffer graphics). The goal of NUMAchire’
I/O subsystem is to pvade lage amounts of parallelism to the file system. The four SCSI-2
controllers can each support numerous disks, although realistically the maximum is around
four per controllerAs with the SF unit, no performance results will be presented for the 1/0
card.

3.1.2 Station: Netwrk Interface Card and Network Cache

The NIC prwvides the connection between the on-statissmdnd the Local Ring. As skio in
Figure3.3, the NIC consists of mwdatapaths from theub to the ring and vicesvsa. Both
datapaths share access to the on-boarddikt@ache (NC) on a first-come/first-sedvbasis.
Since NUMAchine uses a slotted-ring instead o&teking protocol, cache lines (of size
64 or 128 bytes) are fragmented into pekor transmission and can be interkghwith
incoming packts from other transactions. This necessitates re-assembly of mubli-pack
transfers back into blocks on the reweg end. The paak re-assembly area sk in the fig-
ure consists of 350 KB of SRAM and a CPLD controlldgre memory-mapping scheme for
the re-assembly area neskuse of theatct that each processor cawvdat most one outstand-
ing request and up to four writebacks aein the system at grone time. Using the sending
stations ID in the re-assembly address guarantees thatonddta pacéts can conflict. The
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Sinkable and Nonsinkable FIFOs in the diagram are used to implement separate virtual
request/reply netarks, and will be described in more detail in section 3.1.4.

The synchronizing FIFOs allothe ring to be run at a fiirent clock rate than the sta-
tions. Firstly this allavs us to speed up the ring in the case that itger¢o be a bottleneck. (It
turns out that the Central Ring can saturate and cause problems for certain applications. The
Central Ring is designed to handle higher clock speeds as discussed it Sectien.) Sec-
ondly, clocking in such a lge system is diicult to do with lav skew. Our clock distrilition
scheme uses an independent source on each station which generates all on-station clocks.
Thus there is no guaranteed phase relationship between stations. The synchronizing FIFOs are
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FIGURE 3.3: The NUMACc hine Netw ork Interface Car d (NIC). This figure gives a
simplified overview of the NIC datapaths (no control logic is shown). The synchronizing
FIFOs allow the clocks for the ring and the rest of the card to run at different speeds.
Cache lines are broken into slot-sized packets on the ring, and so require re-assembly at
the receiving end. The Network Cache is time-shared between the incoming and outgoing
data paths. The Sinkable and Nonsinkable FIFOs have to do with flow control, as

explained in section 3.1.4.
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designed to handle @i#rent input and output clocks, with internal circuitry woid metasta-
bility ©.

The NC is implemented using four CPLDs for control, 512 KB of SRAM for directory
information, and 8 MB of Synchronous DRAM for cache line storage. Our initial simulation
results indicated that the knee of the performancesdianvthe NC lay at about 4 MB for the
prototype. Havever, the only SDRAM chip geometriesalable at the time meant that our
NC had to be either 2 MB or 8 MB, so we chose the latter

3.1.3 Rings

The architectural reasons for choosing rings were discussed.d&yom an implementation
standpoint rings are also a@mient. Firstlyrings are simple to design and implement ag the
use only point-to-point connections. Secondbyting on a ring is simple andst. In NUMA-
chine, a structure calledfitermask(described in more detail b&is used for routing. At
each hop in the ring a single bit in the filtermask indicates whether thetpatke current
slot has reached its destination or not. The filtermask als@psosupport for multicasting at
no etra cost. As we shall see in Chapter 5, multicasting is put to good use by the coherence
protocol.

The rings are unidirectional and utilize a slotted-ring protocol. This means that for a four
seggment ring there are four slots thatvamne hop forard in each 20 ns clockde. A gven
slot can be either full or emptlf empty then a NIC with data aiting to be sent out can fill
the slot as it goes bif full, the slots data is either consumed by the NIC or passed al@ry
a gien clock tick, if a paadt is consumed by the NIC then the slot is freed up. NUMachine
has an option in the hardwne (configurable by the OS) to use thevlgdreed slot for outgo-
ing paclets from the same NIC. In a lightly loaded ring this has thargdge of reducing the
average latencfor ring access by slightly more than one clock tick. (The altemggito vait
for the nat slot to come byUnder light loading this i slot has some small probability of

6. Metastability can occur when the data input to a flipflop does not meet the fligfédpp- and hold-time
requirements. The output of the flipflopMeos at some indeterminateltage, which is neither aalid logic
‘0’ or ‘1’, for a random period of time.

7. For a multicast/broadcast paatkit is possible to do both. Theeadt is to split ofa copy of the packt for the
local NIC while also allwing the original to continue around the ring.
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being occupied, thus thevsiags on &erage are slightly greater than one.) The use of the just-
freed slot also allws insertion into the ringven in the case of a constantflof upstream
paclets that are consumed by the NIC, whiahuld otherwise lead to station due to the
lack of free slots from upstream. On the other hand, the just-freed slot option can caase starv
tion problems for the denstream NIC if the netark is heaily loaded, since in this case each
NIC greedily uses anfree slots that becomeailable. Simulation results in thexiehapter
will show that use of the just-freed slot is areeage slightly beneficial.

The InterRing interbce (IRI), as the name implies, joins the Local to the Central ring,
and is shan in Figure3.4. The architecture is simple, with an up andwrdqueue, and
some control logic (not skm) to perform the ring functions andwiacontrol. (Flav control
is discussed in section 3.1.4.) As mentionedrapthe Central Ring &s designed to allo
higher speed operationo &chiee this, the four IRIs necessary to implement the Central Ring
for the 64-processor prototype were combined into a single printed-circuit board (PCB). Thus
in the figure, the Central Ring connections are actually traces on the PCB, while the Local
Ring connection is made using cables (which connect to NIC cards on either side). Our CAD
simulations indicate that the Central ring should be able to run at around 75 MHz.
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FIGURE 3.4: The Inter -Ring Interface (IRI). This interface does simple buffering and
flow control on both the Local and Central Rings. The synchronizing FIFOs allow the
upper and lower level rings to run on different clocks.
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Much more detailed information on the NIC and ring implementationsitahle in
[Loveless 1996].

3.14 Flav Control and Deadlock Aroidance

NUMACchine uses flov control as a means ofiffer management to ensure that peislare not
lost due to verflow. Deadlock can occur if there is a circular dependence amongst resources
stalled by flev control. Consider thexample of a memorg’input queue, which is stalled due
to a lage number of incoming requests. Some of these requests requirerititers to a local
processaqreach intergntion requiring space in the output queue. The procdsseever, is
also stalled due to a @ number of prgous interentions. In the processsrtase the stall
occurs because the output queue is stuagkivg for memory to become free to accept the
intervention response data. Neither the processor nor the memory carmamédrward
progress in this case. NUMAchinecdds deadlock through use of a throttling mechanism for
flow control. In addition, the NIG’sinkable and nonsinkable queues present separate request
and response paths, allimg responses to bypass requests in certain casesahlat ether-
wise lead to deadlock. (In all other parts of the system requests and responses use the same
paths. This is described in more detail bejo

Even if there is a theoretical upper bound on the number of requests and respignses e
tent in a system at one time, it is not practical tovid@enough bffering to accommodate the
worst cas& There are thus twbasic mechanisms for ensuring that data is not lost due to
buffer overflows. In the first scheme, sendfters remain allocated €leping copies of sent
data) until an ackraedgment has been reced. If one has not been reged after some
time-out period, theudfer is re-sent. The time-out must beglarenough to accommodate the
largest possible time for an ackmedgment, so this scheme pays a high performance penalty
for buffer overruns, it works well if the probability of suchverruns is small. It also alles
the uffers to run near capacityhis approach also requires somtracompleity to ensure
that livelock does not occur

8. Each R4400 processor carvbat most one outstanding load or store. It is possible, though, for each proces-
sor to flush back dirty cachegiens, causing a lge number of writebacks to flood the system.
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A second approach is to use back-pressure or throttling. Avecagfer that is nearing
capacity sends a signal to all possible transmitters to stop issuirgtgpddt timers are
needed using this scheme becaud&ls are neer alloved to reach theverflow point. The
dravback is that theudfer must lese enough room to handle all possible in-flight sk
that might be issued before the throttling caretefect. This can lead toevy ineficient aver-
age use of tiffer space unless the throttling timeastt Another shortcoming is that all send-
ers are stoppedyen if they are not tageting the specific recesr.

NUMACchine utilizes the throttling method because the lack of agledgments and
timers maks it simpler to implement, and also because commoditgrk are cheap, mean-
ing that ineficient kuffer utilization does not carry a hgapremium in dollar terms. Each
level in NUMAchines hierarcly uses flav control with its immediate connections. Before
discussing the details of thewilawontrol scheme, we must discuss deadlatkdance.

A standard approach to handling deadlock in multiprocessor systems is to use separate
request and reply nebsks. 1o actually pgsically run two networks in parallel is not practi-
cal, so what is usually done is to use separate virtual channels. The sainal glata links
are used by bothuibthey have separateuffering and flev control. This is the approach &k
in NUMAchine.

Instead of separating the request and response paths, NUMAchimonosedkableand
sinkabletransactions, which correspond roughly to requests and responsesvelgpécti
sinkable transaction is one which is wmonot to generate gukind of further trafic after ha-
ing been receed by a communications endpoint (i.e. a processemory or 1/0O). Write-
backs and data responsal into this catgory. The ley characteristic of sinkable transactions
is that their receipt in an input queue will not requirg space in an output queue. Nonsink-
able transactions such as reads and iatgions will usually (unless theare ngatively
acknavledged) require some means of ensuring that enough spaedable in the output
gueue to handle a cache lim&orth of data before tlyecan be accepted.

NUMAchine uses separateWacontrol mechanisms for sinkable and nonsinkable trans-
actions. Sinkable transactions are stalled only when input queues are near§irfat sink-
able transactions are guaranteed to be consumed, their processing can continue independent of
ary output luffering stalls, which means that faavd progress is guaranteacte if every

9. The commercial FIFOs usedvmaprogrammable flags which indicate when more than some specified number
of entries in the FIFO & been used.
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other part of the system is stopped. In general there aragproaches, both of which are

used at grious points in the system. The first is to use separate queues for the sinkable and
nonsinkable paths. Duplicating the queues is ratigresve, though, so it is only used on the

NIC card (as shen in Figure3.3). This allevs sinkable transactions to bypass nonsinkable

ones if the latter are stalled. This bypassing feature on the NIC is necessary because itis not a
datapath endpoint.df the processor and memory cards, wiaighdatapath endpoints, the

method used is to kia a single queue for both typest ko count the number of nonsinkable
transactions that ka arrved, and only all in as mag as could possibly cause the output

gueue to nearly fill up in theawst case.

The processor card uses 64-en&¥pyte wide queues for both input and output in the
prototype. The defult system cache line size of 128 bytes uses 17 entries in a queue (16 data
+ 1 command). The nonsinkabledy counters for processor are thus set to 2irlga mar-
gin of error of one nonsinkable request in case tisealbbiter gies a grant before theigy
signal is recognized. On the proces$aring a maximum of tw pending intergntions is
fairly reasonable, since it is urdily that a single processor isdilg to be the tayet of more
than two requests during the time required for a processor to service arentienv (Note
however that the interntion lateng is variable, from 8-28 processoydes. This is due to
the fact that the L2 cache controller needed to process theantemm may be sy with inter-
nal processor asfity.) The memorysince it is lilkely to be the tayet of mag more simulta-
neous requests, uses 256-entry queues on the output, and the same 64-entry queues as the
processor on the input. The memsrgonsinkable counter is thus set to 8, which will be
shavn to be more than adequate.

On each ring (both Local and Central) there is a single Stop_Ring signal that is asserted
should the queues fill past the 3/4 mark, disdhg insertion of n& paclets into the ring. No
differentiation is made between sinkable and nonsinkabletsdlecause on the rings we are
dealing with single paeks, not entire cache blocks. Also, there is enoudfieting in the
nonsinkable queue on the NIC card, so the ongljikause of a Stop_Ring condition is a
flood-of-writes coming through the system. The NI€Ghg queues are 256 deep in both the
incoming and outgoing directions, while the IRI uses 512-deep queues. This corresponds to 8
and 16 cache lines in the respeetijueues before ring flocontrol is triggered. Eean under
bursty conditions we will she in the nat chapter that the ring flocontrol is only infre-
guently actvated.
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3.15 Hardvare Cache Coheence

This section will gie a brief synopsis of NUMAchinehardvare cache coherence scheme. A
complete description can be found in [Grbic 1996]. The cache coherence scheme is descended
from NUMAchine’s predecessor project, Hectas described in fifkas 1992].

NUMACchine’s cache coherence uses a writebagklidate protocol and a full directory
which is brolen into two levels: home memories and the NCs. The home memory stores the
coherence state (described later) anal iwtmasks. The first, called tipgocessor maskr
Pmask indicates which of the four on-station processors potentially hasyab€apcache
line. The Pmask may be consatively inaccurate, because there is no notification of shared
cache line ejections, so a processor mdwks a sharer may not currentlyda cop. This can
lead to a case where processors vecennecessaryvalidations, It since the ivalidation is
sent out in a single atomic multicast on ths there is noxtra kus trafic generateb(’. In
addition, irvalidations are ery lov-overhead operations in the L2 caches, so sending too
mary does not incur much of a penalty as long as it does not happen too frequently

The second bitmask is called tleermaskor Fmask,and it stores the same type of infor-
mation as the Pmaskibfor remote copies. This is an xaet coarse-grained indication of
which rings and stations (not processors) in the system contain copies. From Chapter 2 we
know that storing a full bit-gctor causes the number of directory bits to scale i} fOx an
N-processor systemoTeduce this cost, we split the Fmask into pieces, which we refer to
as thering portion andstation portion corresponding to the twlevels of hierarci as indi-
cated in Figurg&.5. To understand theavking of the Fmask, first consider each of the Local
Rings to be a single object, ignoring that it is actually composed of stations. If Loc& Ring
(R=0,1,2,3) containat leastone cop of a gven cache line, then we set Ritn the ring por-
tion of the Fmask. &t the station portion, we set I§if stationSon ary of the Local Rings
contains a cop As shavn in Figure3.5, imprecision arises whendver more rings hae dif-
ferent sets of sharing stations.yApattern of sharing constrained to a single Local Ring is pre-
cise, as is ansharing on multiple Local Rings if the set of sharing stations is identical for
each ring. All other patterns will include some imprecision. (Note that a dirtyl@pa sin-
gle avning station, so it is alays precise.)

10.This is a multicast, not a broadcast, because only those processors with bits set in the Pmgestedréftao
bits are set (all shared copies are remote), thervabdation is sent out.
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The adwantage of this scheme is that it reduces the scaling of the directory storage to

O(Nll'-), wherel represents the number oféds of hierarcit. The dravback is that imprecise
masks can cause unnecessavglidations. The wrst possible case is where a singléedint
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FIGURE 3.5: The NUMACc hine filtermask. Colours are used to show the bit
correspondences. A bit in the ring half of the Fmask is set if one (or more) stations on the
Local Ring of the same colour contains a copy. The station half is similar, with a set bit
corresponding to one (or more) of the same-coloured stations The filtermask shown at the
top of the figure is precise, since each set station bit corresponds to a true copy of the line.
(True copies are shown shaded, false copies are hatched). The filtermask at the bottom is
imprecise, since it includes stations which do not actually have copies.
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station on each Local Ring contains aycofhis leads to a full Fmask with all bits set, select-
ing all 16 stations instead of the four that reallyeheopies. There are tweasons whthis is
not as problematic as it might seem. Firsthg hae already mentioned thatvalidations are
not very costly Secondlytypical sharing patternsvalve one, tw or all processors, and only
rarely numbers in between [Culler 1999]. Thus, the frequemih which we send unneeded
invalidations to a station iswo The main adantage to the filtermask from an implementation
standpoint is that it alles very simple anddst routing and multicasting on the rings. In the
following chapter we will look at just mooften the filtermaskwerspecifies stations.

The NC forms the secondvid of the coherence directomyhile the filtermask described
above determines which stations in the systenel@opies, the NC on a statioadps track of
all local cogyholders using itswan Pmask. Because the NC igamized as a cache, it is possi-
ble that a line, including the directory contents, masetta be ejectéd. There are te gen-
eral approaches to handling this situation: strict and lazpe strict approach we must
correctly update the home memory directory to reflect the loss of NC informatioa.life
which shavs up as shared in the NC, wewld first irvalidate all local copies, and then send a
message to the home memory requesting that itverhe station from the sharing lisbria
dirty copy on-station, the NC wuld have to male sure that the lineas flushed back to mem-
ory. In contrast, the lazy scheme simply afothe directory information to be thva out
without informing the home memo§ In certain casesxea states are added to the coher-
ence protocol to handle the situation where directory information for a requested cache line
has been discardedoHnvalidations to shared lines theta processing is minimal: thevial-
idation is simply broadcast to all processors on the statmrdiRy lines, the NC must send
out interention requests to all on-station L2 caches aaid for the responses before it can
take action, which is costlyHowever the @erall cost may not bexeessve if this situation
occurs rarelyand the trade-bfs that we &oid operations that, while less costigke place on
everyejection, and thus occur frequent§yUMAchine uses the lazy scheme, and simulation
results in Chapter 4 will smothat this choice is a good one.

The coherence state maintained for each line fierdiit in the memory and the NC. The
memory state requires owbits for the state, plus eight bits for the Fmask. One bit of the state

11Note that lines in the NC are ejected only on capacity or conflict misses. Coherence missésobtihe af
state of the line.

12If the NC (and not a local processor) is thener of a dirty line, it must first issue a writeback to the home
memory
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information indicates whether the lindagked or not. Locking of the line occurs at thegbe

ning of a coherence action that requires multiple stages, and ensures that no other access to the
line can tak place until the prg@ous transaction completes. The second bit indicates whether
the current state of the line is shared or dotyin NUMAchine terms &lid or Invalid, respec-

tively. (Valid or invalid here refers to the state of the men®or NC5 data, not the proces-

sor’s. Thus, Imalid means that the memory or NC does nethalid data, and that the

modified data resides in some local processmathe.) There is a third implicit state bit

derived from the Fmask. If the Fmask contains bits set fpistations/rings other than those

of the home memoryhen there are possibly remote copies, and the line is said to be Global;
otherwise the only possible copies are on the station, and the line is called Local. Ignoring the
Locked bit which is set independenttiiere are then four states for a line in home memory:

« Global \alid (GV) - One or more remote stations requested a shargdtdps line at
some point in the past. Write access to the line can onlgibedyby first imalidating
all of these potential copies.

« Global Invalid (GI) - A dirty copy of this line is avned by some remote station. Read or
write accesses must be redirected to the renvaten

« Local Valid (LV) - The only potential shared copies of the line are in (home memory)
local processors. Write access (local or remote) camibedby first multicasting an
invalidate on the statioruls only since there are no remote copies.

e Local Invalid (LI) - A local processor (as recorded in the memory Pmask) has a dirty
copy and evnership of the line. Read or write accesses can be satisfied by means of local
bus intenention operations.

Any one of these states can also be dalckvhich we signify by prepending an ‘L_’, so for
example L_GV is Lockd Global \élid. Figure3.6 shavs a simplified sequence of transac-
tions taking place for one particular cache line. In most coherence protocalsiates

require ackneledgments from all the remote gats because of the possibility of requests
bypassing each other in the netk. This ensures that all remote nodes are guaranteedso ha
seen an walidate before more coherence fia€an taget a line. In NUMAchine, heever,

we can tak adwantage of thedct that in a hierarchical ring topology theréses only one sin-
gle path between srsource and destination. This means that there isaydav two requests
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FIGURE 3.6: Coherence actions at the home memor y. The memory starts off in state
LV, with no copies in the system. (a) A local processor misses and does a shared read
(Rd_S) which returns shared data (Dat_S). The state stays LV. (b) The processor writes to
the shared line, issuing an upgrade (Upg). Memory responds immediately with an
invalidate (Inv). The memory state switches to LI, and the processor’s copy becomes dirty.
(c) Some remote node does a shared read. Memory locks the line and sends out a shared
intervention (Intv_S) to the processor, which responds with shared data and changes its
state. Memory forwards the data to the remote node and changes its state to GV. (d) The
remote node now writes to the line. The upgrade causes memory to lock the line, and send
out one invalidate to the local processor, and another invalidate which traverses the rings,
acknowledging the remote node and ultimately returning to memory and switching the line
to Gl.

from a specific source to arei in a diferent orderno matter what the destination. This, in
turn, means that anvalidation which has gone around the ring (or rings) and returned to the
home location guarantees the ordering, as seamygrocessqrfor future coherence actions
to the line. These future accesses must for the returning walidate to unlock the line, and
it is not possible for such accesses to generate a requestdtiates a preious invalidate.
This ordering property greatly simplifies the design and implementation of the coherence pro-
tocol.
State information contained in the NC complements that in the home mérherget of
states is similar to those for main memanmith the follaving additions and modifications:
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« Notin Tag (NT) - This is not a true statayttarises when the requestiddress does not
match the address tag of the current occupant of the line in the NC (i.evene ¢&che
miss). This miss can occur either because the request is the first reference to the line
(cold miss) or because the informatioasipreiously ejected (capacity or conflict
miss).

« Notin State (NS) - This state indicates that the NC contains no useful information on the
line, although the tag does match. This state is needed only in a rare corner case, where a
miss in the NC results in a remote request whigntially gets a rgative acknavledg-
ment (NMACK). While the tag matches, nothing else isswkn@bout the line.

« Local Valid (LV) - This is the same as the main memory st that in this case the
NC is the avner of the most up-to-date data (stored in the NC DRAM). Remote inter-
ventions can be satisfied by the NC direaththout querying the processors. Upon
ejection, a line in the\L state must be written back to memory

When the NC processes a response, there arbations that require an ackviedg-
ment: the home memargo that the line can be unl@tk and the original requestHrthe
original requester happens to also be in the home memory station, then a single response can
be multicast on the home memaryiis to satisfy both requirements. Otherwise, there are tw
approaches. One is to send the response back to the home peerddey it forvard a cop to
the requesteiThis is often referred to as a 3-hop scheme, because tharkglts used once
for the original request, and twice more for the stages of the response. NUMAchine uses
an optimized 2-hop protocol, whereby the NC is responsible for sending responses to both. It
does this by inserting the response into the output queue to the rindftwicarder for
coherence to be maintained, it is important that the response to the home memory be the first
into the queue. If this were not the case,auld be possible for the requester to see its
response while the other response is stuck in theonletWwhe requester could then send
another request that could possibly\arat the home memory before the first response.

13 Note that we cannot use a multicast, because depending on the home mamrgquesterFmasks,
ORing the tvo may result in an imprecise Fmask, whiabubd erroneously tget two extra stations.
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3.1.6 Retry Mechanism and Negat Acknowledgments

Since cache lines can be leckby the coherence scheme, a mechanism is needed to handle
requests that hit to a loe# line in either the memory or NC. The best approamlidibe to
gueue up all such requests and service each one in order when thernitvally becomes
unlocked. This vould guarantee botlaifness and correctness properties,rbquires more
resources and logic in order to implement the pending queues.

Instead, NUMAchine uses a binampenential bacéff, similar to that used for media
access control by Ethernet. Such a scheme ko be stable for i@ levels of congestion
[Goodman 1988}* In the NUMAchine ersion, ag request to a lo@d line is immediately
sent a PMACK. Upon receipt of the ACK, a processor arts for some period of time before
retransmitting the requestyvgig the line a chance to become unkedkWth each success
NACK, the waiting period is doubled. After some maximum number of retries is reached (64
in the prototype), the request is deemed teHailed, and a s error is signalled to the pro-
cessorThe bachkff mechanism does not guarantegrfess, because there is no priorityegi
to requests that ka been forced to retry a number of times. (ThosiM¥ in ary case require
breaking the lock on a cache line to allpreemption, making the cache coherence protocol
much more complicated.) In theteeme case, lack oirness can lead to station, which in
our case isdtal, because thaub error will cause the associated process to be kil e
though no &ult has occurred in the system.

Early simulation studies and dedging on the prototype siwed that the binaryx@onen-
tial bacloff approach did indeed daf from staration problems. Our initial attempt at a fix
involved changing the baok so that it reached a saturation point, or plateau. After some
fixed percentage of the maximum number of retries had been issued, thi inéekal was
held constant, ging all processors that had already retried a number of times an equal proba-
bility of accessing the line. This did not selthe problem, though, becausenmequesters
could still stare out an old requestédur solution vas to change the plateaalwe from being
the latest (longest) intea’to being the initial (shortest) intedv After 32 retries using the
binary bacbkff, the processor then issues the rest of the retries in quick succession to increase
the probability of grabbing access to the line as soon as it becomesaghldbls efectively
gives requests with high retry counts a higher prio@tye other feature is the use ofelént

14 Stability in this contet means that the number of retries is bounded, i.e. the requestenilelly get
through.
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values for the longest baaff interval for local and remote requests. Remote requests ha
longer lateng for both data and coherence actions, and may require longer retry times. Under
our original plateau scheme we aliled the maximum baoif interval to be tvo or four times
as long for remote requestsitiour modified scheme, we use the same maximum for both,
in order to mak the control logic simpler

While this modified baaf mechanism still does not guaranteeriess or staation-
avoidance, in practice both simulations and programs running on the prototype indicate that
the technique wrks, although the lack oéirness still causes performancgdelation. The
bacloff performance will be westigated in the nd chapter

One possible enhancement to the lodickiechanism is to use a form of request combin-
ing, whereby multiple requests to the same address can gednand the responses deli
ered simultaneouslyn NUMAchine, combining could t&kplace in the memory and NC for
certain types of loadd lines. Br example, a shared request to the NC that finds the linedock
due to a préous, as-yet-unanswered shared request for the same line can be combined. The
response (or NCK) can go to both. (Note that combining onlgnks for shared requests.)
This guarantees the promptest possible response for the second requestyinbilaisa
bandwidth by reducing the number of retrixGKs. Only small changes are required to the
directory maintenance logic to storeyaubsequent requesters in the Pmask. Combining on
the home memory station is sontet trickier If the memory module generates the response,
then the same approach as the NC wiltkv Hawvever, in the case where the response comes
from a remote inteention, the NIC card sends the response directly to the requesting proces-
sor and memoryWhen the second request comes into the mertiwse is no ay for it to
notify the NIC that when the response finally\as, it must add another ggt. In this case
we could modify the memory coherence controller so that the arteon response both
unlocks the line and also foands the response to the second requéelteronly problem
with this approach is that a sinkable transaction (the iat¢ian response) could generate a
response, which euld require modifications to the Wacontrol scheme. @/will measure the
possible benefits of adding combining in th&trehapter

3.1.7 Memory Consistency

As mentioned in Chapter 2, NUMAchine supports the sequential congisteie!, which is
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the most intuitre model for writing shared-memory programs. The main reason for choosing
this model is that NUMAchineg’architecture inherently prioes simple and &€ient support

for sequential consistepcas aplained bela.. Another reason is that the MIPS R4400 pro-
cessor is not designed to support more aggessinsistencschemes such as release consis-
teng. The R4400 is a non-superscalar microprocessor with blocking ¢acfesmentioned
before, the original design gted the MIPS R10000 whidan support more aggressi
schemes, lt this never chip vas bgond our lmdget.) The R440Qoeshave a write lffer, but

it is only used for uncached writes, and it is only onedaeep. Thus all accesses from a
given processor will issue in ord@iis means that the weadt form of consistegmaturally
supported by the harcwe is processor consistgnfWealer forms of consistecare possi-

ble if the coherence scheme and programming model are changeavtavattes to proceed
optimistically and then prnading some means of nggng conflicts. This wuld have led us

too far astray from our basic principle tedp the system as simple as possible.)

In analysing the impact of processarsus sequential consistgnae found only mini-
mal differences. The natural sequencing and broadcast capability of the ring are the reasons
that the tvo consisteng schemes do not @#r greatly Figure3.7 shavs a case where tw
variablesX andY which are in difierent cache lines are being written bytdifferent proces-
sors on diferent stations (only tavof which are shaen for clarity). Both stations startfokith
the same share@bles ofX andY. At the same point in time each station writes to tHreable
whose home memory location is the other station. This causes upgrades to be sent to the home
stations, and in (b) thevalidates are shen already haing traversed half the ring and Yiag
acknavledged the writes, so the shadediables contain modified (W data. If the stations
read the other (non-writtenaxiable before the walidates arsie in (c), it is possible for STNO
to see ¢ldX, nevY] and STN1 to seenpwX, oldY which violates sequential consistgﬁ%

In order to preide for sequential consistendNUMAchine males use ofequencing
pointson both the Local and Central Rings. (In the figure the sequencing poinvis ishibie
middle of a ring hop for clarifybut in reality the sequencing point is either a pre-assigned sta-
tion or an intetring interface if present. Also note that the figurevss@nly one ring beel,

15A blocking cache stalls on a miss, disaliog ary further loads or stores until the blocking access is finished.

16 Note: we assume here that thesailidates kill the old shared copiasthe endf their trip around the ring. If,
on the other hand, we assume that thialidates kill all local copies before being injected into the ring, the
scenario shon in the figure does not violate sequential consigtdiven with local pre-ivalidations it is
possible to violate sequential consisteirtmuch the sameshion, lat the diagram requires four stations and
S0 is not shan.
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but both the Global and Local rings contain sequencing points.) The basic idea iy that an

Home X Home X Home X
STNO STNO STNO
<
-9_/, T 4)LJ¢ %‘I’
Without Sequencer
< 7 /\
'OQJ, /)b‘f' OLF
STN1 STN1
Home Y Home Y
(a) (c)
Home X Home X
STNO STNO
%
Ly
With Sequencer )
4 - y
/)% ’)el_\
STN1 STN1
Home Y Home Y
(e) ()

FIGURE 3.7: Sequential consistenc y in NUMAc hine. Only two (of four) stations and
one level of ring are shown for clarity. Initially, both stations have shared copies of two
variables, X and Y, which reside in different cache lines. In (a), STNO writes to Y, whose
home location is on STN1. STN1 does the same but with X. In (b) and (c) shaded boxes
indicate modified data, hatched indicate invalid data. In (d), () and (f) invalidates are
inactive until they pass the sequencer.
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broadcast paek is initially inactve, meaning that it is simply passed along withoytdesti-
nation checking. A broadcast becomesvactinly when it passes the sequencing point on the
highest l@el of ring it must traerse to reach its broadcasigets. This imposes an ordering
between aytwo broadcast paeits on a gien level of ring, as shen in parts (d), (e) and (f)

of the figure. The sole gative impact of preiding sequential consistenes to add on\ger-

age half a ring tneersal—two to three hops at 20 ns per hop, or about 50 ns—to the path of
broadcast pa&ks.

3.1.8 Achitectural Summary

While the use of rings in a multiprocessor is nat,fgUMAchine’s use of the ordering prop-
erties inherent in rings to simplify the design and implementation of the cache coherence pro-
tocol, and also to pvide sequential consistenare neel. In the ng&t two chapters we will
shaw that these features of NUMAchine ar&aént.

The simplicity of the implementation and the use offG@arts and FPDs alis
NUMAchine to reach its goal of beingwocost. In addition, the mginal cost to increase the
size of the system stayaifly linear The cost of maing from anN-station to arN+1-station
system is the cost of the station itself, plus one set of ring cables (which cost about $200).
There is a jJump in cost as the system size crosses 16 processors, since this requires the addi-
tion of the Central Ring. Heever, since the Central Ring is a single card with simple agd re
ular datapaths and FIFOs, it is feasible that the entire card could ¢paiatkinto a small
number of ASICs (possiblyven one). This wuld allov the cost to scale nearly linearly right
up to the maximum system size of 64 processors.

3.2 The NUMAchine Simulator

In modelling a system as complas a multiprocessor the tradéJoétween model accunac

and compilgity is particularly significant. Simple models cannot possibly capture the details
of such a nonlinear netwk of interacting processes. (By nonlinear we are referring tatte f
that a small change in the reference stream could potentially cauge aHange in the per-
formance. Features such as caches and congestamtkemale such systems impossible to
model analytically On the other hand, the most accurate modelavinvolve describing the
system at theaje level, using a Hardare Description Language (HDL) such as VHDL or
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Verilog. Not only would such a model tekas much time touild as the machine itselfub
such a lav level of abstraction mads it etremely time-consuming to change architectural
features and do foravd-looking studies. The approachaakor the NUMAchine simulator is
to model at a v enough leel to accurately capture the salient details,io lover. Thus, for
example, all queues in the system are modelled accursiete the werage and lgest depth
of queued entries are good indicators of occupand congestion, respeatly. For the
memory modules, the detailed DRAM and coherence directory interactions are not modelled.
Instead, we represent the coherence directory lookup time and DRAM access times as single
numbers. Br the directory lookup this is aifly accurate approximationoFthe DRAM, fea-
tures such as refreshing, which can causecaia delay are ignored because yhieappen
infrequently or do not hee a lage impact.

The NUMAchine simulator isxecution-driverand based on MINT [génstra 1993].
Being eecution-drven means that the simulator uses a real parabelgable binary as input
and runs the program using an interpreter and a virtual model of the proptetsercase the
MIPS R3008’. MINT forms the front-end of the simulat@nd we preide the back-end that
models NUMAchines memory system. The dnhales are linkd together into a singlee
cutable called Mintsim. As a front-end, MINT is responsible for creating ag widnal
R3000s as there are parallel threads. (It creates a virtual processor each tinteraatkis
spavned.) MINT &ecutes the instruction stream until it encounters a load, store, or synchro-
nization operation, at which point the virtual processor blocks (stalls) and sends a request to
the NUMACchine architecture back-end (see Figdi). The back-end tek the request and
passes it through cachesisbes, rings, etc., generating appropriate delays at each stap. Ev
tually a response is scheduled to go back to the appropriate proe¢sdaich point the pro-
cessor unblocks and continuegeuting as before until the xtdoad, store or synchronization
event occurs. In this ay the stream of references maintains correct temporal ordering, due to
the feedback path between the back- and front-ends. This temporal ordering is particularly
important for modelling the caches and cache coherence. This technique yields more accurate
results thartrace-drivensimulation, which uses a pre-generated static listingeritéime

17.The R3000 does not support the MIPS IV Instruction Set Architecture (ISA), in particular it only supports 32-
bit words, not 64-bit. This is definitely a dvback considering that all microprocessors argingptovards
64-bit operation, bt it would hare required too much feirt to modify MINT.
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NUMAchine Sim ulator

MINT Request@T NUMACchine
Front-end (load/store/sync h) |  Architectural
Back- end

R3000 Virtual Rings+ b usses+
> < memor y+contention
Executab le R3000 Response@T+ A > delay &

FIGURE 3.8: The NUMAc hine sim ulator structure . The diagram shows a single
thread running on one virtual R3000 processor. WIith N threads, there are N independent
virtual R3000s, each communicating with the back-end in parallel.

pairs. (In an xecution-drven simulation, the delays are generated by the component models,
which is more accurate andXikle than using static timings.) Another benefit xé@ution-
driven simulations is that Ige trace files (typically mgrhundreds of ngabytes in size) need
not be either generated or stored.

When MINT encounters an OS call, it either runs the calelgton the host machine
(for file operations) or mimics the behaur of the function internallyin either case the call
takes zero time as seen from the virtual proced§bile modelling operating system afty
would provide a more accurate picture of readnid performance, it is not possible to do
given our use of MINTEwen if it were possible, there are good reasons to stick with the sim-
pler model. Operating system code has/\different behaiour patterns than geilar pro-
grams. Modelling the tavtogetherwhile more realistic, mas analysis more di€ult since
the two reference patterns are intertwined, and nvay efect each other in ays that are dif-
ficult to predict, particularly when caching is included. A much more intricate toolset is
required for this type of simulation. Wer simulation evironments such as SImOS [Rosen-
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blum 1997] do aller this level of compleity, but are not designed to support ugeitten
back-ends, thus tlyado not allev the modelling of specific architectures.

Another importantdctor in system-ieel modelling is page managemenie @hose not to
model pagedult overhead in Mintsim. As with OS aetiy, modelling this behaour would
be more realisticlt would also ma& the analysis much morefitilt. Mintsimdoeshave the
ability to model round-robin, first-hit and é" page mapping schemest In all cases the ini-
tial fault tales zero time. Walso chose not to add features such as page migration and repli-
cation, agin for compleity reasons. (W chose to use the first-hit pglicChapters 4 and 5
will shed more light on this choice.)

Mintsim also has the ability to accurately model the full NUMAchine memory higrarch
behaiour for either the whole program, or for just the parallel sectiand#fine the start of
the parallel section by inserting a special dummy routine into the Splash2 source code just
before thread creation. The end of the parallel section uses a similar dummy routine call after
the main thread has successfullgited for all children to finist¥. Mintsim’s defult beha-
iour is to model only the parallel section.

When skipping wer the sequential code, Mintsim correctkgeutes all instructions with
the correct opcode timingsytallons all loads and stores to succeed immediatathout
checking the cache andjem more importantjywithout doing ayp page mapping. This has
two effiects. The first is to underestimate the time spent in the sequential section. The second is
to leave the cache in a cold state when the parallel section starts. Underestimating the sequen-
tial time males the performance (as measured by speedups)uook betterbecause the
same amount is subtracted from both numerator and denominator in the speedup equation.
Cold cache décts in the parallel section increase ke@ition time, which tends to reduce
measured speedup, countering the fifgtoef The net déct is ngligible, as will be shan in
the net chapter

We used the simulator as bothaigation and design tool. On thaliation side, we
took great pains to ensure that the cache coherence and rimgknetedels were accurate.
We then used the simulator to check for correct operation of the coherence scheme and rings.
In one case the simulator foundexyrare corner case thagp®sed a bg in the coherence

18.The dummy routinegenerate_event() , iIs a null routine in the source codet ks recognized by MINT
and translated into a call to tein_user()  routine in the back-end, which &kthe appropriate action.
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protocol. As an aid toalidation we found it useful to includeverage tabledor the protocol.
These tablesdep track of w mary times each state transition in the protocol isvatid.
Some transitions wer occurred inen the longest and most complicated simulation runs,
necessitating either synthetic programs designed specifically tatadtie transition, or as a
last resort carefulerification by hand. The gerage tool also pxed useful in preiding
feedback on the frequenof state transition usage, allmg for possible future optimizations
for the most commonly ta&h transitions.

It should be noted that while the simulatoryeo extremely useful as aalidation tool, it
did not provide formal \erification. Formal \erification of the cache coherence protocol, for
example, can be achied by formulating the protocol as a {aj theorem in temporal logic
which can be shwn by the rules of logic to be true @ige. While work in the area of formal
verification has been undeawfor some time (e.g. see [Hailpern 1980]), tools such agMur
[Park 1996] lackd the pwer and to handle problems of this conxjtie

As a design tool, the simulator alled us to answer mgrwhat-if’ questions quickly
For example, we originally designed the statiarstio be 128 bits wide instead of 64 bits. As
we started designing the control logic, we disred that implementing a 64-to-128 multi-
plexer in the datapath of the processor caad wiore complicated and costly than we had
anticipated. A week of simulation indicated the performance ivepnent vas only on the
order of 10%, and soas not verth the effort.

3.2.1 Simulator Implementation

The simulator back-end consists of about 20,000 lines of C++ code, represeatiog®
man-year of programming. The use of object-oriented desigegto hae both benefits and
dravbacks. Gien the size and compigy of the simulatorabstractingway details into
classes helpecelep the code manageable. Class inheritamseuseful in forcing us to first
codify the common features of an entity such as a cache into a base class, thefelateti-dif
ating into specific instantiations such as direct-mapped or set-asanciati

On the davn side, linking the back-end into MINT pred problematic because the latter
is written in C. The originalersion of the simulator had both the front- and back-ends using
separatevent-scheduling engines. This turned out to be quite, slod it vas decided to
rework the back-end to use MINg highly tuned schedulefhis required some adrced
C++ techniques, which will be described shortly
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The basic architecture of the back-end is a set of independent concurrent processes com-
municating by passingessgesthroughports The messages are ofdtkformat, and contain
all information pertaining to a singleent in the back-end. Examples okats are load or
store references from a processorequest forus access, or a pakon the ring. Ports are
meant to be generic connection points for simulator entit@sad&mple a Processor object
has a Memory port, which could be connected to a Cache, Bus, or Memory object, depending
on the architecture. Ports are bidirectional, and contaaimtethodsSend(Message*)
andReceive(Message*) . Once a connection is made betweea parts, calling a pod’

Send() with a message will actite theReceive() method at the other end of the connec-
tion. (Note that a gen simulator object can Y\ multiple ports. Br example a processor
could hae ports to memorya cache and a monitoring object.) Bend() method sends a
message in zero time, which is useful for maintaining status informatibnpbfor general
modelling. Another metho&endAtTime(Time t, Message*) sends the message at
a timet units in the future.

The basic operation of the simulator is thus toke Receive() = methods at scheduled
times. Thes&eceive()'s process their messages and by measenl()’s cause
otherReceive()’s to be scheduled at later times. Ultimately a procesBacteive()

(from the memory port) will be astated, which will cause a call to MINT which causes the
appropriate thread to unblock.

As mentioned abee, using the MINT scheduler causes somicdities when intedcing
to the C++ back-end. MINT is designed to schedulewts internal gents, which basically
contain pointers to function calls in the MINT code.use this framgork for the C++ meth-
ods, some means of encapsulating a method call to an object is requirecayOnfedaing
this is to use an object calleduactor[Coplien 1993]. This is an object which bgha as a
function. By suitably encapsulating these functors, it is possiblevtothe MINT scheduler
call the appropriate objestmethod at the correct time.

We found the performance of the simulator to be quite gamdedample a typical appli-
cation® run on an SGI Challenge machine with 150 MHz R4400 processors took 17 seconds
to execute natiely, and 1570 seconds in the simulator (running on a Sun Ultra 4 with 296

19.The application s the Splash2eknel Cholesk using the tk18.0 input. The Splash2 benchmark suite will
be described in the reechapter
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MHz UltraSparc-Il processors)Mgng a slavdown on the order of 1000 times. This al®
programs with running times of aé¢ens of minutes to be simulated in under g ddoych
allows for rapid feedback anagerimentation.

Additional information on the simulator can be found in Appendix A.

3.2.2 Simulator Corectness

The most important consideration in using a simulator to model a cosydgem such as
NUMACchine is the lgel of belief in the simulatos’modelling accurag and whether the sim-
ulator is itself functionally correct.

Our approach toalidating the simulator consisted ofdwtages. & initial validation,
we used some small hand-designed synthetic benchmarks, for which we could predict the
results. Onexample of such a benchmark is Single-Reader (SR). In SR, each processor allo-
cates an arrayhen simply reads through it. (Note that compiler optimizations typically ha
to be turned dffor these benchmarks, te&p the optimizers from throng avay all code; the
results of reads in SR arevee used.) The number of iterations is specified as an input param-
eter The array size can be chosen to fit intovarfiow ary given level of cache. In either case
the number of cache hits and misses, andykeatl lateng can be calculated and compared
against simulator output. Another useful feature of SR is a parameteraasjestride On
each iteration the procesdorarray correspondence can be changed by using saede fix
stride length to wlk through the dferent arrays. An array stride of zero is theadéf and a
stride of four causes processors to use arrays frderafit stations on each iteration, thus
testing the Netark Cache. Other synthetic benchmarks included Single-Reader/Single-
Writer (SRSW), used toerify write coherence actions, and Multiple-Reader/Single-Writer
which helped test out broadcastafidates.

The second stage o&Ndation occurs after the hardve prototype has beenily, and
involves redoing measurements on the hardgvand comparing the resultsaagst the simula-
tor. Results of thisalidation will be presented in Chapter 4.

3.3 Conclusion

This chapter presented the architecture and implementation of the NUMAchine multiproces-
sor and NUMAchines architectural simulatpMintsim. We shaved hav NUMAchine’s use
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of a two-level ring hierarcly allows for a system that scales well up to 64 processors both in
terms of lateng and cost. W considered ordering properties of rings which enabled simple
and eficient implementations of a mel hardvare cache coherence scheme and thagon

of a sequentially consistent programming model.

NUMAchine males use of cache in the Netk Interface Card, with the goal of reducing
the lateng penalty for remotearsus local accesses. This NetkvCache (NC) helps to
reduce the el of NUMAnNess of the machine. The coherence directory scheme, of which the
NC is an intgral part, uses a rel, lazy approach to the maintenance of coherence directory
information. This lazy approach does not bother trying to maintain inclusion between cache
levels.

We outlined the general procedure used for implementation of the prototype, and stressed
the importance of systemwviel simulations using high-peered CAD tools to erify design
functionality.

The design and implementation of the NUMAchine simulatas discussed, asaw its
use during the prototype design to choose appropriate system parameteigdaiel system
functionality Mintsim’s flexibility also allows it to be used as a research tool, which will be its
role in the ngt two chapters. These chapters will analyse trezall performance of the pro-
totype, as well as pvading justification for the design choices, such as the lazy directory pro-
tocol, sequential consistgneing hierarcly and backff mechanism.




CHAPTER 4 Prototype Brformance
& Analysis

This chapter imesticates the performance of the NUMAchine architecture using Mintsien. W
first consider theeerall performance, then look in more detail at the MetwCache, rings,
bacloff mechanism and coherence protocol.

4.1 Simulation Ewir onment

To analyse the performance of NUMAchine we use Mintsim and a subset of the programs
from the Splash2 benchmark suiteq¥Vv1995]. The Raytrace application from the Splash2
suite had a problem linking with libraries, so we could not get it to rinen, Radiosity and
FMM all had eecution times greater than half a day for a single datapoint, so we decided not
to use them. The other programs haeogition times ranging from about 5 minutes for FFT
up to aver 2 hours for Barnes.

Throughout this chapteBplash2 programs all use the parameters specified in the Splash2
characterization paper as thealéts for up-to-64 processor configurations. Eompleteness,
the applications used and their parameters angrshroTable4.1.

The parameters for the simulated haadsvare the same as the NUMAchine prototype
described in Chapter 3. The rest of this section discusses details of the model of the prototype
used in Mintsim.

4.1.1 Station Bus

The station bs is modelled using the hardwe’s defult round-robin scheduling scheme. If
the hus is idle, a request succeeds immedia@nsaction duration on thei®includes an
cycles required for data, as well as one iglele at the end of aus transaction, which is nec-

80
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TABLE 4.1: Splash2 pr ogram parameter s for the pr ototype anal ysis.

Splash2 Pogram Parameters/Description

FFT -m16 -17 -n51264K compla doubles, 128-byte cache line size, 5.2
cache lines (64KB cache)

Cholesk tk18.Q medium-sized sparse matrix

Barnes 16K patrticles

LU -n512 512x512 matrix, 16x16 blocks

Ocean -n256: 258x258 ocean grid

Radix -r1024 -n1048576 -m2097152M keys, 2M maxley, radix 1K

Water 512 molecules

essary for turnaround of theddrvers. If aly transaction tayets are bsy (due to the flo

control scheme outlined in Chapter 3), then the transaction is skipped for the current round of
arbitration. (Note that for multicasts there can be multipiethgets. If ay one of them is

busy, the whole multicast mustait.)

4.1.2 Queue Modelling

All queues in the simulator model depths correctly; that is, a cache line written into a queue
uses up the full 17 entries (16 data dowblels" + 1 command7) in order to accuratelyagige
average and maximal queue usages. During the design stage, thedlali® to determine
optimal queue sizesoF analysis purposes, these numbersigesma measure ofupstiness
and contention; queues that handlgéaursts hae maximum queue usagalwes that dier
significantly from the eerage.

In most cases, the queues are modelled with zero pass-througk. [&teatds, a write
into the queue is immediatelyailable at the output.ypically the queue is one element of a
chain in a datapath, and the queue latessimply lumped in with othenverheads to speed
up the simulatioh One case where queue latercmodelled directly is for the FIFOs that

1. We use the MIPS definition of a 6rsd’ as containing 32 bits, and a ‘doubted’ 64 bits.

2. Logically the simulator treats a cache line as a single message (not 17 separate messages) for sfinulation ef
ciengy.
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inject paclets onto the rings (both Local and Centralg ¥8e a 30 ns delay in this case, which
is a typical number for an IDT72205-15 SyncFIFO running on a 20 ns clocirgted
1994].

4.1.3 Memory Card

The memory card uses the lump-sum model since it consists of a single datapathallbhe def
is to hare an 80 ns delay for the coherence directory lookup, whies iako account the time

to look up the state information, as well as the time to generate a single (non-data) command
paclet. If a DRAM access is necessaten a further 200 ns are added to model a cache line
access. This is the time for the DRAM controller to get the first dawloteof data into the
output queue and ready to go onto the.lNote that since the DRAM operation is pipelined,
the time isnot 320 ns (16 doubleords x 20 ns clockycle). This model is somdhat oversim-
plified, because in reality the directory lookup and DRAM accesses are panaigpped.

This is an gersight which could be fed in future simulation studies. Since the nigatfis to
underestimate the performance, we decided teldas as is. W will ignore the line size

issue throughout the remainder of this thesis, and will stick witred fi28-byte line.

4.1.4 Pocessor Card

Accurate modelling of the processor card is crucial for good simulation results, because this is
where the critical L2 cache resource resideish ttie MIPS R4400, the L2 cache cannot be
simultaneously accessed for both internal processaitgcind external coherence requests

such as interentions. V& model this by locking out the L2 cache on a first-come/firsederv
basis. All cache access latencies are modelled using numbers from [Heinrich T884]1
instruction and data caches/baero lateng while L2 accesses require either 3 oydles

for a read, and up to 33des for an L2 cache line refill.

3. Wheneer a sequence of dependevers happen with deterministic timing, yrere lumped together in this
fashion. The speed of the simulator is directly related to the numbegrisehat need to be scheduled.

4. The intenention response lateyngiven in the manual is 8-28&des, with the &riability coming from the
non-deterministic time toagn access to the L2 cache. Since we model this feature indepententiymber
we use is the minimum, §cles.
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4.1.5 Rging Rolicy

Mintsim supports three page placement policies: round-robin, first-hit, aretdastikeme
where a file containing page mappings isvted as input to the simulatdrhe fixed scheme
requires a preprocessing pass on the program to determine page usage statistics, and is
intended for future wrk. Of the two others, round-robin is the most common for this type of
study A problem with the round-robin poligs that a page which is used by only one proces-
sor can be placed on a remote node. This not only increasega lateng but also need-
lessly increases capacity pressure on the NC cache lines. A first-hjt (addic called first-
touch) does not stdr from this problem, since pate pages will alays be located in local
memory. When more than one processor shares a page, first-hit will place the page so that it
is local to at least one of the processors. One of the majwbacés to using first-hit is that
sequential startup code (e.g. initialization of all shared data structures) can touch pages that
ultimately will be used>elusively or mostly by other processors. In therst case, all pages
could be located in the master thresldcal memory

An OS that pruides page replication and migration can aghigne best of both
approaches. An initial round-robin placement can use page-sharing statistics along with page
migration and replication tovelve over time to an allocation that is close to whatnd have
resulted from first-hit. Although it is possible to do the same thing in the simulatould be
guite complicated. Because we are not modelling pagje dverhead, it wuld be dificult to
justify modelling migration and replicatiorverhead, although theclearly hae a significant
effect on performance.df simulation simplicitywe instead use a first-hit polilor memory
references during the parallel section of the program. (As mentioned in section 3.2, generating
references only for the parallel section is Mintsimiéfult mode of operation.)

4.1.6 Instruction Fetches and Sequential Code

Mintsim has the capability to model instruction fetcheghWwhis feature turned on, the back-
end instantiates an L1 instruction cache, and also an L2 instruction cache if ne¢€ksary

5. If a program has lge phases, where the groups of processors sharing a page change between phases, then
first-hit will not mimic an iective migration and cgpng scheme. The page allocation for the Splash2 pro-
grams used are static, and do nofesufom this problem.
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FIGURE 4.1: Modelling of sequential code and instruction f  etches. The first two
bars show the increase in execution time for the Parallel Section (PS) and the Total
Application (TA) when the sequential startup code is modelled accurately. The second two
bars show the increase when instruction fetching is turned on (in both the parallel and
sequential sections). All execution times are normalized to the respective times for a
simulation run without sequential code or instruction fetching. All simulations (including the
normalization runs) use round-robin page placement, since first-hit would tend to allocate
all pages on the home memory of the processor responsible for the sequential initialization
code.Numbers for 32 and 64 processors are not shown because the round-robin scheme
caused programs to take bus errors due to NACK time-outs, due to some heavily
contended pages being placed remotely from all sharing processors.

default is to use a unified L2 cache, in which case instructions compete with data for L2 cache
space.) Simulation time is roughly doubled by turning on instruction fetches. Instruction
streams for these types of scientific applications are higblyaeand hae small footprints,

and een a small L1 instruction cache isfatient to achige very high hit rates. \th 1 MB of

L2 cache in our prototype, conflict problems between instructions and data are insignificant.
We epect modelling of instruction fetches toviadittle impact, and present results lvelo
indicating that this is the case.

In Figure4.1 we shuw the result of running the programs FFT and Chgl@skhe deault
(parallel-only) mode, full-application mode, and full-application plus instruction fetches.
Cholesly has the highest ratio of sequential-to-parallel code in our group of applications. All
simulation runs used a round-robin page placement, because as mentiveealsaipfirst-
hit when modelling sequential initialization code can lead to all pages being allocated in one
memory There are t@w important conclusions to be dna from the figure. The first is that
modelling instruction fetches has almost nerall efect on either full-application or parallel-
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FIGURE 4.2: Simulated pr ototype speedups f or the Splash2 pr ograms. The graph
on the left is for the Splash2 kernels, that on the right for the applications.

section &ecution times, as can be seen by comparing each ‘+I’ bamsagts non-"+I’ coun-

terpart. This result matches our prediction from the preceding paragraph. The second conclu-
sion is that while accurate modelling of the sequential code definitely has an impact on the
applications total eecution time (and thus the speedup), it has practicallyfactefn the

execution time of the parallel section. Thus, cachemvup and page-mappindesfts of the
sequential startup codevealittle impact on the performance of the parallel code section,

which justifies our choice for Mintsim’defult mode of operation. Thekpoint is that we

are not so much interested in the performance of the sequential code asfiniémeyedf the

parallel section.

4.2  Pototype Analysis

To beagin our ekamination of the prototype performance, wevslio Figure4.2 the speedup
curves for the Splash2 programs. (Note that all of theseeswere generated using the
default fast mode for the sequential section, meaning that the<arerestimate the perfor-
mance.)
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We define NUMAchines performance to be good if increasing the number of processors
always results in someq (i.e. there is neer a slevdowvn compared to some smaller number
of processors), and the maximal speedup at 64 processors is roughApo(These criteria
may not be acceptable foeny high performance machinesitlve consider them appropriate
for our implementation, which is geted tavards lav cost.) These simple speedup @sv
indicate that the performance of the NUMAchine prototype is good for most of the Splash2
applications rcept WaterNsquared and Ocean-Noncontiguous. This is not problematic since
both of these are oldeesksions of the programs, and thevee ersions do meet our criteria.
For the Splash2denels the only program thathebits good performance is Radix. What we
are really interested in measuring in this studgugh, is not whether the Splash2 programs
parallelize well (which some of them such as FFT do not, particularly for the sneaalltdef
problem sizes), it whether our architecture can suppoficefnt parallelism.

If we plot the same graphsitignore the sequentiakecution time and focus on the ratio
of execution times of the parallel sections of code, which we cafldradlel speedupthen
we get a better picture of NUMAchirsgparallel diciengy. In Figure4.3 we see a lge
improvement in the poorly performingeknels, with only LU and Choleglstill exhibiting
poor performance. (The figure also sisahe algorithmic speedups from the Splash2 paper
for comparison. Note that Cholgskas a poor algorithmic speedup, indicating that it will
never be able to run well in parallel.) The main reason for therdiice in true ersus parallel
speedups lies in the choice of problem sizes. Programs thaislage diference between
the two have small ratios of parallel to sequential code, and thus cannovadaed werall
speedups due to AmdahLav. While choosing lager problem sizesould alleviate this
problem, it would also lead to longer simulation times. More importaittipales the results
difficult to compare agjnst other studies. In this and in thextnehapter we will use parallel
speedup as our metric for théi@engy of the architecture.

In the rest of this chapter we wik@ore \arious aspects of the design and see thay
impact on performance. In thextehapterwe will investicate ways of modifying the archi-
tecture and tuning system parameters to aehbetter performance.

4.2.1 Comparison of the Simulator and the Btotype

As a check on the simulatave ported the Splash2 programs to NUMAchine in order to com-
pare results from the real harake aginst those from the simulated haate. The port as
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only partially completed as of writing, so the only applicationsking well enough to gener-
ate results were Cholesknd Barnes.
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FIGURE 4.3: Parallel ver sus algorithmic speedups.  The significant improvement for

certain programs indicates that the problem size is too small in these cases. There is not

enough work in the parallel section to allow for large speedups. For comparison purposes,
the bottom two graphs show the algorithmic speedups from Figure 1 in [Woo 1995].
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The first comparison is between uniprocesgeceation times in the simulator and the
prototype. This gies an idea of whether theayall (i.e. absolute) timescale of the simulator is
accurate. The hardwe consisted of a single Local Ring with 16 processors, running at 40
MHz. We ran the tw programs under Mintsim at the reduced speed using a single processor
with sequential code included.e/¥pect the simulator numbers to bevl, given that the
simulator does not model OS afy or page &ults. The results are skio in Table4.2. The
numbers are 1@ by a fctor of two to three, which is quite good. (Comparisons of simulation
versus real hardsve measurements are not typically reported in the literature. Note that the
values of the numbers presented in the table are not too significant, omlgtitieaf the ratios
between them are within an order of magnitude.).

TABLE 4.2: Uniprocessor sim ulated ver sus
hardware execution times.

Simulated Hardware
ExecutionTime Execution Time
Program (seconds) (seconds)
Barnes 72.5 216
Cholesk 9.9 30

Next we compare the speedups (i.e. re@atiming) in hardwre \ersus those presented in
Figure4.2. For the hardware and simulator we measure speedupsveltitheir respeate
uniprocessor times. The result is wimoin Figure4.4. For a program such as Barnes, which
has a &irly long runtime, and can thus amortize therbead due to paging (which is not
modelled), the agreement isry good. CholesKs short runtime cannot amortize thiseo
head, and the agreement is not as good, although there is a correlation between the simulated
performance and that of the haahe.

4.2.2 Fmask erformance

As the number of stations in the system increases, the probability of the Rreesgiecifying
stations increases.&\tan measure this imprecision in the Fmaskd®plng track of the

exact number of sharers in the memory coherence diredtdrgn an imalidation is sent out,
we dvide the actual number of stationsgeeted by the real number of sharers to end up with
theoverinvalidation rate. For the simple case of wsharers, theverinvalidation rate can be
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FIGURE 4.4: Simulator ver sus har dware pr ototype speedups. Speedups in both
cases are total speedups, not parallel speedups. Cholesky has a short run time, thus in
the real hardware it cannot amortize the error due to paging overhead, which accounts
for the discrepancy in the results.

as high as tw if the sharers are on tifent rings and stations. (Note that if the sharers are on
the same statioor the same Local Ring then theesinvalidation rate is one, i.e. there is no
overinvalidation and the Fmask is precise ¢ ¥pect the rate to be aroundaw the number

of sharers onwerage is tw, because we did not tune the Splash2 programseaatb&ntage

of locality. Figure4.5 shavs the @erinvalidation rate weraged wer all invalidations. The

rates reach roughly 2.5 for some of the programs at 64 processors, indicating that there are
sharing patterns wolving three or more processors.wier, invalidations incur little ver-

head in the processors, so the important point is that multivatitistions do not onverage
become broadcastvalidations to all stations.\iding heay broadcast tréit is important in
maintaining system scalabiljtgs shwn in [Farkas 1992].

4.2.3 Ring Brformance

The first aspect of the rings we will look at \&eage utilization. In a single ring clockate a
ring slot can be used for one of three reasons:

« Send Rcket - Inject a paakt into an empty slot.
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FIGURE 4.5: Overinvalidation rates. This is the ratio of stations that are actually
targeted by an invalidate to the number that need to receive the invalidate. Rates greater
than one indicate imprecision in the Fmask. Note that there can only be imprecision if
there is more than one station, so the number of processors starts at 8.

« Forward Racket - Rass along an upstream patkhat has only denstream tagets. This
includes broadcast pagts that do not select the ring interé.

« Split Packet - Write a cop of the packt into the recee queue, and also foand it to the
next ring interface. This is for broadcasts thkttamget the receing ring interfice.

Note that we dmot consider the receipt of a terminal pafko hare used the slot. This is
because the slot becomes free on the current clock tick; whether we choose to use the just-
freed slot or not is independent of the sl@/ailability for carrying ne traffic. We can nw

define the ring utilization (from the point of weof a single ring intekce as):

PackSent + PackForwarded + PackSplit
TotalRingSlots

RingUtilization = (EQ4.1)

6. A terminal packt is one which is consumed by the ring irded, creating an empty slot. This could be a
point-to-point packt, or the final receer of a multicast.
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Note that the total number of ring slots consists of the number of slotsveraagnount of
execution time.V& use the parallekecution time to calculate this numb#ising the total
application time wuld untirly deflate the utilization numbers, since byaddf we do not
model an ring trafic outside of the parallel section. (In addition, we do npeet as much
remote trdfic during the sequential section, and the nature of thectpatterns wuld be dif-
ferent in ay case. By keping statistics only for the parallel section weid adding this
noise to our measurementso drrve at the verall average utilization, weerage wer all
the ring interfices. Br the Local Rings, this means the ring irdeds in the NICs, plus the
Local Ring side of the intaing interfaces (IRIs). Br the Central Ring utilization we just
average ger the Central Ring portions of the IRIs.

We shav the results for the Central Ring in Figyr®, and the Local Ring in
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FIGURE 4.6: Central Ring utilizations. The Central Ring only exists in 32- and 64-
processor configurations. Note that the top and bottom rows have different vertical
scales.
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FIGURE 4.7: Local Ring utilizations. No rings exist for configurations of four or fewer
processors. Also note that each row has a different vertical scale.

Figure4.7.The lage utilizations for Ocean, FFT and Radix arise from the high communica-
tion-to-computation ratio for these programs, as described in the Splash2 paperJ99].
As expected, the Central Ring utilization is higher than that of the Local Ringpefor the
case of 32 process@rs‘l’his high a&erage utilization indicates that the Central Ring becomes

7. For 32 processors the Central Ring consists of ontyhtaps, which mass it almost equalent to a full-
duplex point-to-point connection. ith the exception of ivalidations, all trafc produced by one node is con-
sumed by the other; there is no bypassitraf
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FIGURE 4.8: Central Ring queue utilizations.  The numbers shown are the maximum
and average depths for the queues that inject into and extract from the Central Ring.

congested, which is the reason for designing the Central Ringwfalidigher clock
speeds. Increasing the Central Ring speed will be considered in Chapter 5.

As a measure of congestion, we consider the maximumvanage depths of the queues
in the netvork interfaces. A lage diference between the maximum anvérage ®lues indi-
cates hrsty trafic and long ring access latencies. Results arersho Figures4.8 and 4.9,
shaving clear gidence of heay congestion. Programs such as Barnegvdame maximum
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gueue depthsub have low overall utilizations, indicating that theutsts are f& and short-
lived. FFT on the other hand, hasdaraerage utilization bt low maximal queue depths,
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leading to the conclusion that its fiafis more genly distriluted in time.

In general, congestion isonse in the Central Ringxeept for the tw LU programs,
which shaev about equal—and companatly lov— levels of congestion in the Local and
Central Rings. Maximum depths in the Central Ring also seem &irlyesiymmetric between
the injecting andxracting queues. This is not true for the Local Rings, where the most con-
gested programs such as Barneswsaanarled asymmetrywith the injection side being
worse. This déct has to do with the NCoTsee the reason behind this, consider that a queue
only fills up if average input and output ratesfeif The ring-injection queue on the NIC card
has only one output, onto the ring. On the input side, it is fed both fronushemnd the NC.

Thus we gpect one or both of these sources taasbinusually high leels of actvity. Indeed,

if we look in the simulation output files, it turns out that Barnes has one of the highest NC hit
rates (53% for 64 processors), with hits generating data (i.e. cache line) responses. Since a
good fraction of responses apgected to imolve forwarding, the NC has the potential to sig-
nificantly increase pressure on the ring-injection queue, although this dedsisé®and-

width. One possible method for increasing the ring-injection rate is te oskof the just-

freed slot, which we considerxte

The measurementualves turning on the switch to use the just-freed slot and re-running
the simulations. \& shav the results for FFT in Figure10. The graphs shothe relatve
improvement by making use of the just-freed slat: the utilization cures we hae split out
the separate components of the utilization, so the total increase in utilization is the sum of the
three. V¢ see impreements up to about 30%, mostly for the 64-processor configuration. F
the queue depths, the ratios anented, so that a ratio greater than one represeatgsease
in the depth. &r the Local Ring, we see the most imgment in the maximum depth of the
ring-injection queue, which is to b&pected. The imprement on the Central Ring is more
drastic, and also much moranable. The ring-injection quewsefnaximum is impreed by a
factor of 7 (from 70 dwon to 10), and thevaerage usages also gowdoin the 32-processor
case.

The lage change in queue depths has to do withabietfiat for 32 processors the Central
Ring has only tw hops. In this case all data patkinjected onto the Central Ring are imme-
diately consumed after one hop, since there is only one possible destination. Each consumed
data packt generates a just-freed slot. If the system does nut tilouse of these just-freed
slots, a steady stream of such incoming p&clill prevent the packt consumer from inject-
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FIGURE 4.10: Use of the just-freed slot. The graphs show the effect of switching to
the use of the just-freed slot. In the utilization graphs, a number greater than one
represents the relative increase in utilization over the default. In the queue depth graphs,
a number greater than one corresponds to a decrease (i.e. improvement) in the
respective queue depth. (The large improvements in queue depth for the Central Ring at
32 processors are due to the fact that in this configuration data bursts can cause one of
the nodes to stall. See the text for an explanation.)

ing ary of its ovn paclets onto the ring, &dctively stalling it. Note that it is possible for such
a scenario to occur with a ring of more thao tvops, bt due to the layer number of pairs of
communicating nodes the probability of all patkbeing consumed by one node is lesdylik
(And even if one nodés stalled, this does not stop othemahstream nodes from communicat-
ing, nor does it stop broadcast ti@).
For 64 processors there is actuallyimereasein the \alue of the maximum for the ring-
injection queue, from 196 to 275. The rest of the quailleeg shey improvements. The net
effect on performance @ to reduce the paralletexution time by 4% at 32 processors, and
15% at 64 processors. The conclusion is that use of the just-freed slot doe® ipgsfor-
mance, and with only minimal changes to the ring control logic. There are cases where use of
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the just-freed slot can cause stdion of a davnstream node.d¥ example, if two stations
stream data to each othasing up all slots, a third station will not be aléd to inject pack-
ets. Havever, a similar staration scenario wuld also be possible in a system thatrebél
make use of the just-freed slot.

4.2.4 Netwrk Cache Rerformance

The most basic metric for Nebrk Cache performance is the hit ratee ¥énsider a request
for a remote cache line to be a hit in the NC if it does not end up generatingtaork traf-

fic. The simplest case is when data fetched for a shared read from one processor can be
returned to a subsequent shared read from another prodesssalso possible that the second
read could come from the same processor if the leeejected from the processotache.

We count this as a hit as well, since the NC is helping teialéethe processor cache&apac-
ity misses. A more complicated scenario consists of a processor doixgjsve read for a
line that is dirty in another processocache. The NC sends out an inéetion, with the
response going to both the requester and the NC. While nwolgad, remote accesses are
still avoided. There are fevpossible types of NC hit:

« SHR_LV: A shared read with the NC thevoer of the line (Local &id state). The NC
responds with data.

« SHR_GV A shared read with the line globally shared (Glolkalid/state). Agin the
NC can respond with data.

« SHR_LI: A shared read for which the NC mediates the iet@ron to obtain the dirty
copy (Local Irvalid state) in a local processdihe line ends up in the/Lstate.

« EXC_LV: An exclusive read (or upgrade) to an N@xwed line. The NC responds with
data or an ivalidate, and changes the liaestate to LI.

« EXC_LI: An exclusive read (or upgrade), with the NC mediating thelesive intenen-
tion.

Figure4.11 indicates that while the hit rates can be quite good, there is considarable v
ability in the behaiour. FFT rarely hits, because its access pattern consigedylaf migra-
tory data which has little spatial or temporal localRadix has an all-to-all communication
phase which is hedy write-dependent. Since Radsxvriting pattern isdirly random, the
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FIGURE 4.11: Network Cac he hit rates . The classification of the various types of hit
are given in the text. The total number of incoming requests to the NC in most cases is
greater than 30,000. The exceptions are FFT (around 3,000) and LU-Non with 32
processors (around 5,000).

probability that a line will be shared on the same station goes ds the number of stations
goes up, which accounts for the declining hit rate. (This trend is generally applicable, as can
be seen from the figure.) The mostyalent source of hits is from accesses to globally shared
read-only data.
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It is not possible to dvaary specific conclusions about theevall efect of the NC on
performance from the hit-rate graphs. While the NC certainly dogglpra caching é&kct
(sometimes substantial), the tradéisfincreased lateyadue to the directory lookup for
misses thatventually hae to go remote. ¥ defer further discussion of net NC performance
benefits until the ne chapterwhere we present results on thieetf of NC size, including a
system without an NC.

As mentioned in Chapter 3, NUMAchiiseNC has a number of architectural features
which are ngel amongst remote-access caches. The feature with the most potential for delete-
rious side-dects is the laissezire attitude that the NC tak tavards directory information.
Remember that the NC can in most cases silentlwtbrd old information to makroom for
new, without notifying local processors or the home memohge folloving list enumerates
the repercussions of thwing out cache lines with thevgin NC states:

e LV - This line must be written back to the home memwatyich thus gets notification of
the event. All local shared copies remain in the processaoitsaty nev accesses must
go remote. @ get into the V state, this line had to firskist in the NC in the LI state,
then become shared by another proced3sus history of local sharing means the line
has a high probability of accesses in the near future.

« GV - There is no naotification of this ejection. Local shared copies remain. Future
accesses lva to go remote.

« GI - No information is lost. The meaning of this state is that the N@s«ooly that
there are no copies of the line on the station.

« LI - There is no notification, and this ejection represents the greatest amount of informa-
tion loss, because this state specifiectly where the dirty cgpis on the station. The
dirty copy remains undisturbed. Amemote interentions looking for this line must
broadcast the inteention to all processors, anéivfor all responses, which is costly
Since there is no place to store this line in the NC, a writeback from the processor is for-
warded on to the home memory

Not all cases of information loss are detrimentat.&ample, if a line is no longer being
actively used, then the loss of information is inconsequentafalige hav much useful
information is actually lost under this scheme, we look atdifferent statistics. In the first
case, we wuld like to knav howv mary times a remote request (from the home memory)
comes into the NCxpecting to find information,ut does not. The most costly scenario is the
one described ale where an inteention must be broadcast. A second, less casibe
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occurs when a broadcasvatidate comes in and needs twaldate agy local copies. In the
absence of a GV hit (where the Pmasiuld specify the processors tvatidate), the NC
must broadcast thevalidate to all processors. This does ngbine much of a performance
penalty becausevmlidates are relately cheap.

For intervention broadcasts, the result is simple: there are almost none. The majority of
the programs shweed no broadcast intezations, shared oxelusive, while the number of
specific interentions (i.e. those that found directory information) ranged from 20 up to
60,000. Only Cholesk Barnes and Ocean-Non sexd aty significant numbers of broadcast
interventions. The greatest numbeassifor Ocean-Non, with 122 broadcast inéstions er-
sus 56,000 of the specific type (for a 32-processor configuration). The conclusion is that shar-
ing accesses to dirty lines occur with high temporal locdtifprmation ejected for these
lines is usually stale.

The case for walidates turns out to be much the sanwe.8& and 16-processor machines
the numbers are identical to those for the ir@etions: almost all walidates are specificoF
the 32 and 64 processors, the number of broadaadidates suddenly jumps up, almost
approaching the number of specifigatidates. The reason for this becomes clear if we recall
the fact that @erinvalidation due to Fmask imprecision occurs only for 32- and 64-processor
systems. The broadcasvatidations thus arise not from thect that directory information
was throvn out, lut because thereas neer ary information to bgin with; stations without
ary copies are being incorrectly ¢gted with inalidations. The number of broadcastali-
dations recorded in the NC matches thermvalidation rates from Figuré.5. Thus we can
conclude that GV lines generally getafidated before their directory information has time to
be ejected.

The preceding analysis has only considered tteetedf directory information loss on
incomingremoterequests. Local requests carfsufrom information loss in tarways.

Shared requests to lines thaiwd have stayed in the NC if it had more capacity pay a remote
access penaltyVe will defer this question until the xtechapterwhere we use an infinite-

sized NC cache to determine théeef of capacity problems. The second case is where dirty
directory information is lost. A local request must go to the home membigh still thinks

that the NC has the most up-to-date information on the line. The memory sends the request
back to the originating NC, at which point the NC realizes that the line must be locally dirty
but the directory information &s lost. The NC must then broadcast the ietetien and kep

track of responsesyen though it will not end updeping the information. (The space in the
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directory is already used by some other line which may be needed by local processors, thus
we do not vant to eject the current occupant because of a remote request.) In the simulator
these requests are flaggedase interventionsAnalysis of the output files sivs that the
story here is the same. In thegamajority of cases there are zeatsé interentions. Barnes
at 16 processors she around 50dlse interentions, and Ocean-Non staround 100 at 16
and 32 processors.

The final conclusion is that the lazy coherence directory scheme used by NUMAchine is a
definite win. It &oids sending directory update information wiverepossible, and pays
almost no price for the lost information.

4.2.5 Request and Baokf Latency

We hare seen in some detall in the yimus sections he the rings and coherence scheme can
affect memory accesses. In this section we wikktalstep back and look at request latencies.
Whatever the ultimate cause, long latencies (for requests or synchronization) are what cause
performance loss in a multiprocessbinough we kner that the system does &iffrom con-
gestion, the high-ieel efect on performance is primarily through increases in lgtdnahis
section, we measure the contention-free latemd then compare it to latgnmeasurements

for a simulation run that had highvids of congestion.

TABLE 4.3: Base contention-free latenc y for a local read.

Transaction Step Latency (in 20 ns clock cycles)

L1 cade miss 0

L2 cade miss 1.33 (4 pocessor cycles@150 MHz)

External Agnt 1.5 (30ns FIFO delay)

Bus (equest) 5 (4-cycle arbitation delay + 1-cycle &nsfer)

Memory 14 (80ns diectory lookup + 200 ns DRAM access)

Bus (esponse) 21 (4-cycle arbitation + 17-cycle tansfer)

External Agnt 12 (30ns FIFO delay + 16 data cycles@75 MHz EA speed)
Total 55 (1100 ns)
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The basic latencfor read requests in an idle system can be calculated by adding up the
latencies for each step along the transactipath. V& shaov the calculation for a read request
to local memory in @ble4.3. For comparison, measurement using a logic analyzer connected
to the processor card and thestshevs a measured latento the first vord of 1120 n& The
same measurement for a near remote acewsstige result 4100 nsoFa far remote, the
lateny was 4900 ns.

For remote accesses in the simulateg can do the same type of calculation. A near
remote access tak an additional 1160 ns compared to the on-station requestrénfote
access adds only 300 ns more since the path is almost the same as for the near remote, with the
addition of four IRl FIFO delays and one round-tripvénasal of the Central Ring. &\thus
have the ratios 1100:2260:2560, or 1:2:2.3. The discrgpbetwveen the simulator and hard-
ware for remote latencies is due teedy optimistic assumptions for controlleverheads
when modelling the hardave. While field-programmable dees are ery flexible, their
speed is notery high. In order to achie our 50 MHz clock rate, we had to add mapn-
chronizing flip-flops on inputs (e.g. for FIFO empty flags) to maintain setup times, and break
comple decoding logic into multiple stages. The prototype uses nearly a dozen controllers in
the NIC’s datapath, each contuing 3-4 gcles of lateng. This orerhead is incurred on both
the local and remote stations, and accounts for roughly 2200 rgaflelay The balance of
the diference, around 700 nsaw/found to come from late changes duringudging to the
operation of the ring controllgto force an isolated read response to use melyyether ring
slot. Unfortunatelywe disceered these discrepancies too late to re-run the simulations. This
causes our performance numbers to be optimistic, particularly for programswiNCldnit
rates.

The contention-free numbers will increase in theefof netwrk congestion, and also
because of badiffs. In Table4.4 we shw lateny measurements for ongample of a highly
congested system: Ocean with 64 processors. The local and remote memory latencies increase
by about 25% and 60% respe&ely. The nat two numbers she the efect of backff on the
lateng. The simulator output does not shthe aerage number of retries required, only the
average latenc Although the latencincreases areevy lage —380% and 330% for local and

8. To perform this measurement, we ledkat an R4400 signal pin calledlMOut*, which indicates that a
request is ready to come out of the proced8brmeasured up until another R4400 signalidVh*, was
asserted, meaning that ttiest doublevord of data had been returned. By measuring to the first dearole
instead of the last, we are assuming a critioaldafirst arrangement of the cache line.
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TABLE 4.4: Congested latencies f or a 64-pr ocessor Ocean sim ulation.

Number of
Access Tpe Requests Average Latency
Local Mem 2000 1380 ns
Remote Mem 5000 6420 ns
Local Memory - Retry 48 4220
Remote Memory - Retry 106 13500 ns

remote, respectely—the frequeng with which thg occur is lov. The number of retries is
generally lov for all the programs. Oneeeption is Cholesk where @er 25% of requests to
the NC ended up king to retry with average latencies of around 9000 ns instead of the typi-
cal time for an NC hit of around 1100 ns.

The heay lateny penalty and lack ofdirness in the retry mechanism reakone of the
wealer points of NUMAchines architecture. He weak can only really be answered by mod-
ifying the simulator to model an ideal system with pending request queues. This is left for
future work.

4.2.6 Flav Control

The flawv control mechanism can result in ring-stoppage occurring on either the uppeewor lo
level rings, or lmsy-waiting on the bs. The simulation results shahat for the applications
we tested the Central Ringve locks up. (The Central Ring locks if the queue in the IRI
going from the Central Ring dm to the Local Ring fills up.) On the Local Ring, no ring
locks are generated by the NIC cards. The only case where locking occurs on the Local Ring
is from the IRI. (In this case it is the upmd queue from the Local to Central Ring in the IRI
that fills up.) Figuret.12 shavs that most programs do not cause the ring to lagkpob those
that do, such as Radix, locking occurs frequeily Radix the all-to-all communication pat-
tern causes the Central Ring to become a bottleneck. The IRIs cannot injets jpat the
Central Ring &st enough, and the resultingffier overruns cause the Local Ring side to lock
up. This could be fixd with a &ster Central Ring.dster rings will bexglored in Chapter 5.
On the lns, lusy waiting happens if the sinkable- or nonsinkalleybflags are set for the
target(s) of a transaction. The arbiter doesvalidher non-blockd transactions to proceed,
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FIGURE 4.13: Average bus utilization. Only the three heaviest bus users are shown.
The rest of the programs have utilizations less than 20%. The busywait fractions are
negligible in all cases (< 0.1%).

though, so the performance penalty is not asreeas for ring locks.df most programs, the
bus utilization is less than 20%. From Figdr&3 we see that theigywait fractions are
minuscule. Only the fls control on the ring plays smole in NUMAchines performance.
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4.3 Conclusion

We bagan by defining ‘good’ performance in the codtef a simple, lav-cost multiprocessor
Consistent speedup gvth with increasing system size, as well asveelobound on the

speedup of roughly 20 at 64 processors represent our basic critershoVéd that in terms

of parallel speedup, which is speedup with sequential code time set to zero, NUMAchine
exhibits good performance. \then went on to analyse certain architectural aspects discussed
in Chapter 3.

We found that the rings perforraifly well, although the do sufer from congestion
problems. Allaving a ring-injection bffer to use a ring slot that has just been freed up in gen-
eral helps lessen theiffer’'s congestion, has a smallevall positve efect on performance,
and requires nox¢ra logic.

NUMAchine’s filtermask structure and lazy coherence directory maintenance were
shawvn to be dicient. The @erinvalidation rate from the use of the filtermask reached highs of
around 2.5 (i.e. onvarage 2.5 as mgrstations were sentvalidations as actually needed
them). This vas acceptable since superfluoualitates to a processsrcache incurery lit-
tle overhead. This result also indicates that the filtermamksvo reduce walidation trafic
compared to a scheme where alalidations cause broadcasts to all stations. This filtering of
invalidation trafic was shan to be important for system performance in NUMAclsra'e-
decessqrHector [Farkas 1992].

Interventions, on the other hand, are much mapersve. The Netwrk Cache, because
of its lazy approach to maintaining directory information, can reach a state where it must
broadcast inteentions to all processors.&/¢haved that this state almostues occurs, indi-
cating that the NC has a high probability of holding onto coherence directory information that
is needed in the future. Hit rates in the NC generally ranged from 5@%td?®0%, with the
lower rates occurring for higher numbers of processors. Tébmagnitude of the perfor-
mance enhancement from using the NCvesticated in the ne chapter

We took a brief look at request latencies and tfexethereon of the binary-baafk
NACK-and-retry mechanismoF requests that did not require a baftkaverage latencies for
local requests increased by only 20%othe base local latepin a contention-free system.
Remote requests sived lager lateng increases of around 300% oreeage due to conges-
tion in the netwrk. For requests that did require baffk, the increases in local and remote




Prototype P erformance & Anal ysis 106

latencies were much higher: 400% and 600% res@dgtilhis result shwas that the baakf
mechanism has the potential to be a serious source of performgnagad®n. An alternate
scheme that queues requests and services them in FIFO aglproposed,ut comparison
of the two was left to future studies.

Finally, we shaved that the flow control scheme rarely comes into plexcept for injec-
tion onto the Central Ring, angen then only for some programs. The queueingiged in
the system is sfi€ient to aoid flow control, &en in the &ce of high @erage bis utilizations.

In the nat chapter we will tune and modify certain aspects of the system to tryaand g
some insight in to ays of increasing NUMAching’performance.




CHAPTER 5 Simulation Studies

In this chapter we use Mintsim ta@ore the parallel processor design space. The goal is to
determine what changes could be made in the design to rfexdivefy increase erall sys-
tem performance. Changes will be considered to the dtkt@ache, rings, coherence proto-
col and consisterycscheme. The general metrics used to measure system performance
continue to be parallekecution time and the associated parallel speedup.

The design space we are considering is huge. A parallel processing system contains hun-
dreds of diferent independent system parameters, making a systexlbcagion of the
entire space impossible. In selecting certain aspects of the system for modification, it is just as
important to determine which others are to be hektifiand wi. Major architectural fea-
tures that remain unchanged are described in thevialipsection, with justifications for
each.

5.1 Fixed Simulation Rrameters

The most important ingredient inyamultiprocessor system is the netk. For the purposes

of this work, the basic netark topology will stay ring-based. One major reason for doing this

is practical and has to do with the simulaiidre design andevification of the simulatos’'ring
components wereevy time-consuming. In addition, the single-path nature of the ring is an
essential ingredient in the cache coherence protocol. Switching to a mesh or some other multi-
ply-connected topology euld necessitate not onlywenetwork component codeubalso a
completely redesigned (anénfied) coherence protocol. Besides this practical limitation,

there are other good design reasons for limiting the scope to ringsudreork has indi-

cated that rings comparavburably to meshes [Randran 1997]. Also, as mentioned pire
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ously, one of the goals of thisork is to shav that respectable parallel system performance
can be achied without resorting to complicated oqpensve hardvare. W will shav how

the ring performance from the last chapter can be imggrapon with minimal added com-
plexity.

Our basic approach is to ugmblem-constined(PC) scaling [Culler 1999]. Basically
we carefully choose a &l problem size as described in the rest of this section, and then run
this problem on aarying number of processors. The altenegiarg¢ime-constained(TC) or
memory-consained(MC) scaling. In TC scaling, the problem size is increased with the num-
ber of processomd, such that the totakecution time (wall clock time) is lept fixed. In the
real world, users are often limited by the amount of time that can be spentvanggpblem.
(Users typically wauld like a job that runswernight, and will scale den the job to fit into this
timeframe.) In this case it is the total amount ofkvdone which scales witk. In TC the
dataset size for each cache generally does not decrease, or doetysthsis it &oids jumps
in performance as data sets start fitting entirely into caches (which can happen indirC). Ho
ever, because our simulator actually runs seridll@ scaling wuld cause our simulation
times to scale wittN as well, which wuld lead to week-long simulation runs for each
datapoint for programs l&Barnes. The last type of scalingriemory-constiined where the
total amount of memory used by each processaps fiked. This method is useful when
memory is limited, because@rfloving the memory can lead tovege thrashing. The dra
back is that it is dffcult to determine speedups for MC, because it is hard to determine the
actual amount of wrk done foN processors for allui the simplest applications.ahague
below that by taking care with the choice of problem size, the PC modelcmhaay anom-
alies, and prade good results.

We will not change the basic unit of one processor with sorad &rmount of dedicated
cache. (W& will, howvever, change the assochty of the cache, as discussed be)sSince the
simulator uses MINT as a front-end, it is not feasible to modefexelift instruction set archi-
tecture (ISA) or a superscalar desigbutside of the occasional custom-designed chip (e.g.
the Tera [Bokhari 1998]), the most common processors used in parallel systems are RISC-
based, thus weould in ary case gpect \ery little difference in the memory reference stream
by switching to a dferent ISA.

1. We also moid never architectures such as simultaneous multithreading or single-chip multiprocessors.
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Because processor speed is increasastgf than memory speed, we increase the speed
of the processor in the simulator to model systems thatxisli ever the ngt few years. This
is done by setting a parameter in the input file to indicate the speed of the prasessdras
loading in a diferent set of opcode timings. In the NUMAchine prototype, the processors run
at 150 MHz, lot for the purposes of thesgperimental studies we increase the speed to 1000
MHz.

We model system sizes of up to 64 processors, since, avevatnzed preiously, this is
the upper limit onpected real systems for thexhéew years. V& want to estimate the per-
formance of running ‘laye’ problems on such a system. In this cenfarge’ means that we
do not vant an applicatios’entire dataset to be able to fit into the cache, fpnamber of
processors. The latter point is subtlg important. If we are not careful, then it is possible to
choose a problem size which does not fit in the cache for small numbers of processors, b
does start fitting into the cache before the system size reaches our maximum. In such cases the
performance will sh@ an abrupt jump in performance, caussugerlinear speeduiClearly
this is an artéctual result, due to the crossing of some architectural boundary and should be
avoided. If we were to use the deft NUMAchine 1-MB L2 cache, then on a 64-processor
machine we wuld need problems with data sets mucbdathan 64 MB. Such Ige prob-
lems would tale on the order of a¥ehours to run in hardare, which means weeks of simu-
lation time for each datapoint. The standard solution in this case is to seal®alh the
system cache sizes and the problem sizes. Scalmg idacomplicated by theét that com-
plex systems such as a multiprocessor are highly nonjimezaning that it is not possible to
just reduce all parameters by some consttbf

In scaling davn we hae to pay careful attention to thata setandworking setsizes for
a specific application. The data set size is the amount of memory required when running on a
uniprocessomote that this is not the same as the problem size, which depends not only on the
data set size,ub also on other program parameters (e.g. the number of iterationsémeon
on a solution). The wrking set is more neiltously defined as the ‘current’ data being pro-
cessed at agen point in the program, and as such an application cenrtusmerous wrking
sets @er time. It is common for arking sets to fit entirely into cachesea small primary
caches. (Indct, a well-coded program should try to fit inner loops into the cachesdomde
by splitting a lage inner loop into multiple smaller loops, in order tcetaktter adantage of
spatial and temporal localijyFor this reason, arking sets tend to scalaifly slowly with
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increased problem size. Thus, in scaling/dowe would like to hae caches that are tg
enough to accommodate typicabrking sets, because it is reasonablexjzeet that this situ-
ation would also hold for lage problems running on a real machine. But weld like the
caches small enough that the full4peocessor data set daast fit into the cache.

Besides cache size considerations, we alge tabe careful when selecting the other
cache aganization parameters: line size and assadfgtiBoth of these hea a direct impact
on miss rates. Of particular importance in scalingrdare capacity and conflict misses.
Increasing the capacity misses is actually our goal, sinceaneter mimic data sets that are
too big for our caches. Cold misses are not considered, other than to ensure that our simulation
runs are long enough statistically speaking toemaid-cache &cts ngligible. Conflict
misses represent a hazard. TheadkfNUMAchine configuration uses direct-mapped caches
for both primary and secondary caches, this functionality beird fiy the choice of the
R4400 processoHowever, with a 1 MB secondary cache, the probability of conflict misses is
low. As the processor cache size is reduced, the conflict miss rate increasas t@mpen-
sate by increasing associatly, but the question is momuch is reasonable? Modern RISC
processors such as the MIPS R10000 and Alpha 21264 uag &saociatity, while others
such as the ReerPC 604 are already 4ay associate [Burd 1999]. Another consideration is
that the shared memory model under which the Splash2 programs are compiled uses four dis-
tinct memory rgions: shared, stack, heap and dat&/B&se natural choice is thus 4aw
associatiity. (Actually, initial simulation studies were performed with direct-mapped caches,
so that the results sived seere anomalies. Extens checking using simulator dejptraces
shaved that the anomalies were due to conflict misses.) Figlirehavs the performance
improvement for 4-vay associatity over direct-mapping for one particular pathological case
where the Barnes application with 64 processors hageaeseonflict miss problem. (It turned
out that in one specific inner loop, just one of the 64 processors happeneel doskeck area
that conflicted with the data/bsgien, which vas enough to kill the performance.g\&so
tried using 2-vay associatity, which shaved some imprneement loit still sufered from
excessve conflict misses.)

Having settled on 4-ay associatity, our solution for selecting an appropriate cache size
was to first pick appropriate application sizeggisimulation time constraints, and then set
the size of the processor cache small enough to steer clear of problems.

2. See Appendix A for a description of thesgioas.
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FIGURE 5.1: Direct-mapped ver sus 4-way associative pr ocessor cac hes. The
performance increase shown is the ratio of execution times of the parallel sections of the
program for the direct-mapped version over the 4-way associative version for a particular
run of the Barnes application.Analysis of simulator debug traces showed that the large
anomaly at 64 processors was due to cache conflicts.

Using the cures of cache usage in the Splash2 papeo[{095], an L2 cache size of 64
KB was chosen.dt N=64 this results in 4 MB of total cache in the systemb@& conseia-
tive, application parameters were chosen such that the total memory allocated to shared
regions was > 16 MB. (These sharedjrens are where MINT stores the globally shared data
structures which aredded amongst the processors.) Since the shared area does not include
local (private) data such as the stack and the heap which also use up cache space, this choice
should be quite safe. Numerous test runs of each application were conductet ity v
problem sizes, using the MINT ‘-s’ switch to specify the maximumnallide size of the
shared memory ggon. The applications were run through the simulator with the switch set to
16 MB with ever increasing problem sizes until MINT died with an error message indicating
that the amount of shared memory requested by the applica®muare than the maximum.
This set of parametersas then used as the delt for the studies that follo A complete list
of the Splash2 application andrkel problem sizes is\g@n in Tables5.1 and 5.2.

Another consideration when choosing the problem size is run length. Simulation runs
should last long enough that yhare statistically significant. The choices aball result in
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TABLE 5.1: Problem Siz es for Splash2 K ernels

Our Splash2
Parameters Default
Application (If differ ent) Parameters | Data Set Description
CHOLESKY chol_tk29.0 chol_tk18.0 | Large sparse matrix bloekl to 64KB
-C65536 -C16384 cache. Splash2 daiilt uses the medium
matrix, with 16KB blocking.
-B32
RADIX -n4194304 -n262144 4M integer keys with maximum alue 8M.
-m8388608 -m524288 Default is 1M lQIS with 2M maximum.
-r1024
LU -n512 -n128 512x512 matrix. Defult is 128x128 matrix
-b16
FFT -m20 -m10 1M comple doubles, 512 cache lines of
-n512 -N65536 size 128B. Ddult is 1K points, 64K lines
7 " of size 16B.

simulated run times on the order of & fgeconds, which for the basic simulator timescale of
1 ns meanswer one billion gcles. Een with cache miss rates less than 1% this guarantees
mary millions of memory references into the hiergradnd should render arcold-cache
effects ngligible.

With two levels of cache in the processibris still possible to ha a minor crossy@r
problem when local data structures fit into onelef cache bt not the otherTo avoid ary
such anomalies in the results, only onelef cache is used. (The dualkddécache is actually
hardwired into the simulator code, so whaisvdone \&s to mak both the L1 and L2 caches
have the same size and line size, thdsatively behaing like a single leel of cache.)

5.2  Algorithmic Speedup of the &st Programs

Before using these applications to probe our design space we negdytthat the are the
correct tools. As we sain Figure4.3, certain combinations of programs and problem sizes
do not parallelize &tiently even under the PRAM model.&Want to ensure that we use only
programs that do parallelize well, in order toid draving false ngative conclusions.
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TABLE 5.2: Problem Siz es for Splash2 Applications

Our
Parameters Splash2 Default

Application (If differ ent) Parameters Data Set Description

OCEAN -n258 -ele-07 | 258x258 grid
(same as -r20000
default) -t28800

BARNES 8K 16K 8K particles, instead of the deifit

16K

WATER 3 timesteps interaction of 512 \ater molecules
729 molecules | 512 molecules

FMM (same as 16K particles interaction of 16K gratating parti-
default) cles

Mintsim can model a perfect memory system, and thus measure algorithmic speedups.
This feature is turned on by setting a parameter in the input file, after which the processor
module considersvery access to the L2 cache to be a hit, no matter what the cache line state.

The results for our subset of the Splash2 programs anshd-igure5.2. These diér
from the cures in Figuret.3 because we ta changed the problem sizes. From the esiit/
is clear that LU, CholeskWater and FMM are not good choices for out test programs. The
main reasons for the non-ideal algorithmic speedups are gedsead due to parallelization
for Cholesly, and sub-optimal erkload partitioning for the rest. @tetermined this by
examining the processor utilization statistics from the simulation output. Minesasktrack
of what percentage of time is spent by processors runningitingvfor memory accesses and
barriers. A lage fraction of time spentaiting for barriers in the PRAM model indicates a
workload partitioning problem.)

We thus choose FERadix, Ocean and Barnes with which to do our testing. As described
in the Splash2 paper [M8 1995], FFT and Radix i@ high communication-to-computation
ratios, and wrk well as stress tests. In addition, the nature of the communication foiotiee tw
different. FFT shifes data using autterfly pattern, thus the sharing is migratamile
Radix has an all-to-all data resfimig phase which generates tig@oherence tréit. Ocean
and Barnes are goodamples of typical scientific applications, complementing tteekesy-
nels.
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FIGURE 5.2: Algorithmic parallel speedups f  or the e xperimental system. These
results differ from [Woo 1995] due to the choice of different problem sizes. The Radix and
FFT curves lie on top of each other.

5.3 Baseline erformance and Rage Placement

With our upper bound defined, wewmanove to the baseline case, which considers the model
above to be running with the real NUMAchine memory and oekwMost of the non-fied
simulation parameters are the same as for the simulations presented in Chapter 4, with one
exception. Due to theakter processor and smaller cache there will be much mdreitvahe
system, which necessitates an increase in the queue sizes throughout the mause W

them lage enough that tlyewill never overflon, meaning that theare efectively of infinite

depth. This is actually beneficial, because queedlows would cause the NUMAchine flo
control mechanism to triggewhich would cloud the results.df these design-space studies

we dowant to model queueing delays caused by contention in the intercornutegg donot

want to worry about the ééct of finite queues, since this is really an implementation issue and
only indirectly related to the architectural questions we wish to %tl@dgood architecture

3. Since the number of requests and writebacks is limited, there are theoretical maitinfaukWritebacks
from every station going to one memokye would need space for 60 cache lines of 128 bytes, or 7680 bytes.
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FIGURE 5.3: Parallel speedups of the baseline system withar  ound-r obin and fir st-
hit pa ge-placement policies. Parameters are the same as the NUMAchine defaults,
except as noted in the text. The first-hit policy reduces the amount of ‘false’ remote traffic
and coherence overhead.

should minimize the need for @& queues,ut ultimately one puts in the F@st queues one
can aford, to reduce the frequenof actvation of flov control mechanisms.

In Figure5.3 we see that the performance is poor for all four programs up until 32 proces-
sors using a round-robin paging pglend then becomes awsidown for Barnes and Ocean.
With the faster processors the memory system is being puseddés capacityWhen we
use a first-hit polig, pages that were unnecessarily placed on remote stations are eliminated,
leading to reduced remote tiilafand laver coherenceverhead.

Though there may be practical implementation problems with a first-hiypelas men-
tioned in the prdous chapter—theare all at the lel of the OS, and do not relate directly to
the hardvare architecture. The use of a first-hit sgygtallovs us to more correctly attribe
ary blame for performance deadation to the hardave. A first-hit polig is assumed for the
rest of the results in this chapter

In Figure5.4 we break den the performance of the applications kamining the pro-
cessor utilisations, which slahe time spent by the processors doing reakywaiting for
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FIGURE 5.4: Processor utilisation graphs corresponding to the fir st-hit speedup
curves in Figure 5.3. Since the algorithmic speedups for all of these programs are nearly
ideal, the significant fraction of time spent in synchronization for Ocean and Barnes must
be due to overhead created by our architecture.

local or remote memory references, @itmg for synchronization. The poor performance of
Ocean (and to a lessettent Barnes) in Figurg.3 corresponds to the ¢g fraction of time
spent vaiting for synchronization in its utilisation graph. Since wevktizat all four pro-
grams hae nearly ideal algorithmic speedups, thieriead is being caused by our architec-
ture. An amination of the simulation output files for Oceaveads that the dgadation is
due to the baakf mechanism. In the other three programs, the number of accesses that
required retries either stayed the same or decreasedsingritom 32 to 64 processors, while
the average latencfor retried requests stayed the sanw.Gcean, hwever, the number of
requests requiring a retmcreasedoy 50% in the 64-ersus the 32-processor case, and the
average retry laterycfor each diferent catgory of request doubled. Barnes did notvgltloe
same jump in retrywerhead, although its total number of retrieswonsiderably lger than
Radix and FFTIn sectiorb.4.1 we propose a mordiefent bacloff mechanism.
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5.4  Comparatve Studies

We nav begin exploration of the design space, our goal being to imgpperformance. The
areas that we consider are the rings, the consistendel, the coherence protocol, the net-
work cache and the stationd The MCK-based retry mechanism is closely related to the
coherence scheme, both of which are discussed in ttsewion.

54.1 Cohernce Owerhead

The main question with gards to cache coherence ishmuch awerhead it imposes on the
system, and whether it isonth optimizing the protocol. NUMAching'cache coherence
scheme as designed to maluse of the étient ordering and multicasting properties of rings
to achiee lov overhead.

An essential component of theevall coherence protocol is théABK-and-retry bacsff
mechanism, which we introduced to handle access tedocttherence directory lines. If one
assumes that contention is usually,lthen this approach shouldvk well, kut the results of
the preious section shm that this assumption ialse. Our MCK-and-retry scheme defs
from fairness and\ieness problems. Because there is no notion of priorities between retries
and rg@ular requests, there is no guarantee thatengequest will get through promptly or
even at all. A much better procedurewid be to enqueue and/or @emultiple requests at
the memory and Netwvk Cache. This wuld either mean thavery directory entry wuld
require space and logic allocated for a queue to hold the maximum theoretical number of
requests (compkeand non-scalable) or that a generic queueing poaldweed to be allo-
cated and managed to handlg averflons (scalable Wt still comple). The adantage to
using the MACK scheme is that it isevy simple and cheap to implement.

To begin our analysis, we run the simulations with coherence ‘turrfétbdfnd an upper
limit on the amount of performance impement achiable. In practice this means the fol-
lowing three changes are made to the memory model:

« Stores to the processor cache that find the line presentatter what the state (slear
or otherwise) are treated as hits. No coherence information is passed on to the memory
or NC. Of particular note, no upgrades are generated in this scheme, since stores to
shared lines are considered hits.
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« Read requests (shared ackisive) to home memory return data unconditionallye
directory is not chead, nor is it updated.

« For the Network Cache, if the line is presentany stateit is considered a hit and data is
returned. Note that cache misses stilldhto go remotely to fetch the line, although the
remote memory is guaranteeevays to hit. Lines that are loe#d due to other remote
accesses in progress still generafels as before. Note that this is ey type of
NACK that can still occur

By eliminating all MACKSs, except for those to a line loek in the NC by some still-pending
remote access, we can also measure the temporal locality of requests for the same cache line
to the NC. If processors tend to all access shared lines at the same time, we shouldeee a lar
number of MACKSs. If the accesses are more spread out in time, theS&&lwill always be
corverted to hits under the no-coherence model.

The results are shm in Figure5.5, and mad sense in light of the discussion at the end
of the last section.df Ocean the impr@ment is drastic, indicating that thevgtiown
between 32 and 64 processomsvindeed due to coherencedead. Barnes sis a slight
improvement, with Radix and FFT shimg almost no impreement, corroborating thevie
dence in the utilisation graphs.

The lack of impreement for FFT and Radix points to the conclusion that the coherence
overhead is lov. The rationale for this statement is that in turnifgcoherence we eliminate
three types ofwerhead:

« Al NACKs, except for local M\CKs from the NC.

« Lateng to obtain write wnership.
» Lateng for remote intergntions, because home memonyafs hits.

FFT and Radix do not kia maly NACKs, kut their simulation output files do skdarge
numbers of write accesses. Thgatee result for these programs sfwothat the second tw
types of werhead must bewo For Radix, the reason for thendaverhead is that both with
and without coherence the NC hit rate is around 85%, meaning that the coherence protocol
requires mostly local transactiongrf~FT, the NC hit rates are around 5% most of the
writes occur to lines which are shared locally on-station, which require only on-staabn in
dations.

It is not clear hw representate these types of reference bebar are of ‘real vorld’
applications. This is a generic problem with benchmarks suites, though, and is not specific to
our analysis. The strongest conclusion we caw @sdhat, other than thefetts of the back-
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FIGURE 5.5: Turning off cac he coherence . The relative performance with cache
coherence turned off are shown. The ratios are with respect to the baseline case.

off mechanism, our coherence protocol (including tifecebf the NC) performs well for our
test programs.

Commercial multiprocessors are frequently being usedays for non-scientific appli-
cations such asnline tansaction pocessinglOLTP) anddecision-support systeniBSS),
which male heay use of parallel databases. This analysis needs itdreded to ceer these
new application domains, particularly since their access patterns are gigterttifrom those
of the Splash2 programs [Barrosso 1998]. Tren3action Processing Council (TPC) pro-
vides benchmark suites for both @®and DSS, called TPC-C and TPC-D respebti[TPC
1999]. Havever, both of these suites require a parallel database engine. Porting a database to
NUMAchine is a masse task, which isdr begsond the scope of this dissertation, and is left to
future work.
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5.4.2 A Relaxed Consistency Model

As mentioned in Chapter 3, NUMAchine uses a sequential congisterael. Sequential
consisteng is generally considered in the literature to imposerserestrictions on perfor-
mance. While this is true when using traditional multiprocessorank$ssuch as meshes and
hypercubes, it is not clear that it is as significant for NUMAcIsimglgs. As mentioned
before, the rings already pide a natural sequencing mechanism, so the acteghead in

our case is not as\ae. (It could be gued that the choice of rings togoe with is a bad
starting point, thus we should nofpect much impreement. In our defense we point to other
studies that indicate rings and meshes can comaarerfibly [Raindran 1996, Hamacher
1997]). The goal of this section is to get a rough estimate ofwarhead.

The method presented here does not rigorously model truedetarsistenc We male
no modifications to the applications, and the modifications in the simulator are a minimal set,
basically changing the ordering of certain coherence operations and loosealitgiion
constraints.

As mentioned in Chapter 3, NUMAchis&aings hae sequencing nodes to cause a global
ordering of broadcastwalidates. In this section we turn that sequencifgaod consider
invalidates to be immediately aation reaching the highesvé of ring necessary to reach all
targets. V¢ also add an Upgrade Response command. Since NUMAchine useslicte
command as both anGK to the requester and a kill to other shared copies, @€ an talke
longer to arwe than if it were a separate point-to-point command. In this section we separate
the functionality of the tw, and send the Upgrade Respdmsi®ie sending out the iralidate.

If the requester is on the home memory and there are globally shared copies thatafieed in
dating, this can significantly decrease the latdocwrite permission.

We also ma& changes to the memory and natkvcache modules in the case where an
exclusive request needs a data response plussahdate. Normally in NUMAchine the val-
idate must be sent out firsytthere we switch the ordérhey are still sent out back-to-back,
so this effiect should bedirly minor.

The result is that there isgl@gible change in performance. The changes are less than
1 %, so no graphs are sho. If we couple this result with recenbvk shaving that modern
out-of-order microprocessors can reap ynahthe performance benefits of retaixmodels,
while keeping the sequential model [Gniady 1999], there is not a strong case for pursuing
relaxed consistencwithin the NUMAchine frameork.
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54.3 Central Ring Speed

Clearly the rav speed of the netwk has a tremendous bearing on performanceyimautti-
processor system. In a shared memory system with haeds@che coherence it is particularly
crucial, because the programmer has much less comgotommunication than in a mes-
sage-passing paradigm. The general goal in designing therkesano reduce lategcCon-
gestion in a real netwk is a highly nonlinear &fct: a \ery small change in the speed of one
particular link can cause sudden and drastic performance changes as the contended resource
causes knock-on fefcts throughout the memory hieraycBursty trafic is usually the wrst
offender in these situations, although multiple processors generating streams of writebacks
could also saturate the netik. The goal of this section is tovesticate the dect of varying
the speed of the upper ring to find the point after which increasing the speed will lead to
diminishing returns.

The deéault speed for both Vels of ring is 50 MHz. W keep the system size éa at 64
processors, because this is th@st-case trdilc scenario for the Central Ring. From the
results of Chapter 4 we kwahat the ring-injection queues into the togelering can become
very full. Increasing the Central Ring speed should help clear out the quatues the other
hand will increase the rate of requests being injected intovres levels of the hierargh and
could possibly cause the problem tova@lsehere. The &y point is that the te levels of
hierarcly must be well-balanced. &ould like to find this balance point.

If we consider a steady-state pattern of requestsritpthroughout the system, with the
probability of aly two processors communicating being equal, then we oak out theoreti-
cally where we think the balance point should be. Let us assume for simplicity that each pro-
cessor has a total required bandwi@hfor requests that go to another station (i.e. we ignore
traffic on the stationuds), whether that station is on a local or remote ring (see Faggire
Assuming the access patterns are the same for fieeedif processors, then some fraction of
B is needed for tréit to stations on the same local ring, and the remainder is used for remote
stations. Let us call these fractidpg andfrg respectrely, with the condition that

fLr+ frr=1. In the absence of contention we can simply add the required bandwidths to

arrive at a total. A local ring carries the frafor both remote and local requests, thus with
four stations the necessary local ring bandwidttBisMdfractionBfyg goes up across the cen-

tral ring, and since each central ring link sees th&drabm all 16 stations, we ka a total
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requirement of 1Bfgrfor the central ring. The ratio of central ring to local ring bandwidth is
then 4z If an application is equally lédy to access a station on a remote or local ring, then
frris 4/5 (there are 12 remote statioessus 3 local ones, or a fraction of 12/15), and we

would need justwer three times as much bandwidth at the central rired. e expect most
applications toxhibit somavhat better localitymeaning thatzg would be laver. Our esti-

mate then is that central ring bandwidth should lettwthree times that of the local ring.
Figure5.7 shavs the results of increasing the central ring speeds in increments of 50
MHz, up to a maximum of 250 MHz. The performance increases by 11% at 100 MHz, and
then flattens out. The second graph in the figuressiidhat is limiting the performance. At 50
MHz the injection queues ha lage maximum andverage depths. Increasing the Central
Ring speed reduces this problemt puts more pressure on thdraction queues, where the
average queue depths increase byeoa fictor of two. To truly balance the system, anésti-
gation of the three-dimensional space formed by the speeds of the statid@ebtral and
Local Rings is required, which is left for futurek.

Ventral Rlny

BfRR —-"‘l "-__ BfRR

y/\ B(1-frr)

——

Local Ring

Stations

FIGURE 5.6: Bandwidth requirements of the Central Ring.  Each station generates
traffic with bandwidth B. A fraction Bfgg splits off and goes up to the top level ring. In a ring

topology, any traffic that returns to the sender must always use all of the links on any ring
it traverses: what goes up must come down.The asymmetric data sizes of requests and
responses is taken into account by the assumption that all stations behave the same: a
given station sends requests on its output link, and gets responses on its input link, but it
also gets requests from other stations on its input link, and sends responses out.
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FIGURE 5.7: Effects of increasing Central Ring speed.  The left graph shows the
relative performance (parallel execution time) compared to the default 50 MHz Central
Ring. The figure on the right shows the maximum and average queue depths for the
FIFOs that inject onto and extract from the Central Ring.

55 Netvork Cache Rerformance

As mentioned in Chapter 2, the benefits of mekalevel caches are not warsally agreed
upon. The goal of this section is tovésticate the performance of NUMAchirseNetwork
Cache. W look at the déct of changing NC sizes, then the N@el of associatity.

55.1 Netwrk Cache Size

The goal of the NC is to reduce remote miss latelihcloes this by pnading a backup repos-
itory for cache lines which are ejected due to conflict or capacity misses in {h@pessor
caches. In NUMAchine the NC sewa dual role as the local portion of the disteld coher-
ence directorythus it can also enhance locality for processor coherence misses. Sapnfor e
ple, if a processor obtains write permission for a remote cache linkyrémer reads or writes
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by other processors on the station generate only loctt trelfiis is only true as long as the
line does not get ejected from the NC, and the line does not get accessed by some other pro-
cessor from another station. Note that it is possible for the compiler and operating system to
arrange data and threads to increase this loclégyhave not modified the Splash2 programs
in any way to tale adantage of this, so the results presented in this section are @iiveerv

In order to do the size studye would also lile to hae two boundary points for compar-
ison: a zero-sized and infinite-sized NC cache. The zero-sized NC cache is intended to repre-
sent a system that has only locastsnooping The infinite size is used to study théeef of
removing all capacity and conflict misses, which also indicates where increased associati
might be of help (with conflict misses). The implementation of the infinite NC is simple since
all that is necessary is for the cache tag lookup function in the NC to use all of the address bits
instead of masking bthe upper bits. The zero-sized NC is morédift. To truly model a
system with no netark caching at all wuld involve modifying the coherence protocol,
because the NC plays an igital role. D avoid this, we find a minimal set of changes which
allows the NC to stay in the simulatiorytbets it mimic the beh@our of a snooping-only
system in most cases.eWecided to &ep the feature in the NC whereby a remote readjis ne
atively acknavledged if a preious request for the same line is stifliting for a response (the
combining case). This functionalityowld not normally bewailable in a snooping systemytb
the tra hardvare required in the NIC to perform the same functionality gdigible—one
register for each of the four possible outstanding processor requests—and to change this in the
simulator would be dificult.

The second change necessary to model a zero-sized cache is to use an infinite directory
This may seem counterintwié, kut we do this to &ep a full history of all cache lines that
have been brought onto the station, so we canenda@cisions on whether the line may be
available for snooping or not. ®must force all receed writebacks to continue on to the
home memorysince there is no NC cache in which to store them. Another change has to do
with shared lines in a globahlid (GV) state. Such lines may or may not be iy lacal pro-
cessorsince thg can be ejected without notification to the NC. In an agye$ss-snooping
scheme, shared read requests can be satisfied bghaesd in-cache copies from some other
processat. Thus we allo the read to a shared line to succeed if the line is@\the line is

4. A system with only local snoopingowld probably use page replication and migration to enhance locality
Our purpose in this section is only to do self-comparison, not to compare our syabest ag others.
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present in at least one process@ache on the station.e/determine the presence of the line

by using a function that gkically snoops into the on-station processor cacheggides so in

zero time. If the line is not present, we send the request to the home memory and change the
state in the NC directory to the not-in state (NS). Lines in the ladidl (LV) state should ide-

ally also be snoop hits under our aggnessgiolicy, but this praves too complicated. A line can

only be in the V state if a dirty cop is written back to the NC, or another processor on the
station does a shared intention, so that in our normal coherence scheme both processors
and the NC wuld hare shared copies, with the NC being timner of the line. But the write-

back cannot bedpt in the NC for the same reason asvabo

For the local intergntion case, the ditulty arises when deciding onvaership of the
line after the intergntion has finished. The line must lvened by some object on the station,
since it is out-of-date with respect to the home mentoitythere is no clear candidate. It turns
out that if we try naiely to implement our cache-snoop test on tidihe to determine if
there is really a cgpin one of the processors, then remote irgetions can cause a race con-
dition that leads to a coherence erfour solution is to allw the NC to hit to V lines, reyard-
less of whether thiseuld be Igal under the snooping scheme or not. Thvegithe no-NC
model a slight adantage, bt after checking through the results we concluded that tmssaw
minor efect.

The final change we made for the no-NC case is to change the directory lookup times to
one gcle, to model a zeroverhead hs-snoop. (The NC still sits across thes ffrom the pro-
cessors, sous access time is modelled.)

The NC test sizes are chosen based on the total amount of processor cache which the NC
is backing up. In our case, four processors with 64 KB of L2 cache each means that 256 KB of
cache is necessary just to back up L2. It is still possible for a cache smaller than this size to
have some déct. Firstly a significant proportion of the lines in the L2 caches are for local or
private memoryso the total amount of remote memory cached is less than 256 KB. Secondly

5. This is normally not done because multiple processors megydhaop, so the bs needs some arbitration
method to find out which one gets to respond.

6. The greatest percentage of such hits\ddr the no-NC runs is for BRNES at 8 processors. Thaal num-
ber of hits to V lines (including lgal and illeal) is just @er 1% of the total requests to the NC. The number
of lines that managed to stay in thé state vas greatly reduced in the no-NC case by our palfdorward-
ing all writebacks to the home memory
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FIGURE 5.8: Effects of Netw ork Cac he siz e on perf ormance . For a given number of
processors, the execution time is hormalized to that of our baseline case with an 8192 KB
cache.

shared lines will hae copies in multiple L2 caches, thus the NC cache storage used is less
than the direct sum of the L2 set sizes. And finakylong as the NC size is greater than 64
KB, a line may be &pt in the NC which as ejected due to a capacity conflict at the k2lle

We choose as our smallest size 128 KB, aackwp in multiples of four until we reach
2048 KB. These, along with the zero-sized and infinite NC cache results, are normalized to
our baseline case of an NC with 8192 KB, which is the size of the NC in the prototype.
Results are shn in Figure5.8. For FFT and Ocean, the size of the NC cache does not matter
but it does not mak performance grbetter or varse than hang no NC at all. Br Radix and
Barnes there is a ma#l impravement as the NC size is increasegdog the minimum. &r
Barnes a 512 KB cache is enough tov/mde nearly the same performance as if the cache were
infinite. This is due to capacity requirements, since the output filesthlad the total footprint
of data in the NC is around 700 KBofRadix, the same footprint is 4.4 MB (per NC), which
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explains wty it takes the full 8 MB defult NC cache to obtainfettive infinite-cache perfor-
mance.

The conclusion is that for certain programs the NC can definitely vagrerformance
by helping with L2 capacity problems. In thexheection we xamine whether there is a con-
flict-miss problem by increasing the NC assovigti

55.2 Netwrk Cache Associatvity

We will use Radix for this comparison, because welsen in the pveous section that
exhibits the lagest response to changes in the NC size, and with sudeakaNC footprint
it also has the best chance ofwing conflict problems.

Adding associatity to the NC is not straightforavrd. The problem is that normally a
least-recently used (LR way-selection algorithm is used for replacements in an asseciati
cache. The reason ILRworks is that good temporal locality normally means that old cache
lines contain the leastiuable information, so it is safe to eject them. In the case of the NC,
the ‘information’ contained in a cache line is not only the datath®e coherence directory
information as well. Since the NC is supposed to reduce both cache misses and coherence
overhead, we must broaden our definition of information content.

Our algorithm is to assign priorities to certain cache line states that contain the most
‘expensve’ information from a coherence standpoint. Our choices, from highest (we do not
want to eject) to vest (we can &brd to toss out) are:

« Locked Ary-State - Actually we cannot thwothese out. If all ays are lockd, the algo-
rithm must MCK the request.

« Local \alid - As described in pvéous sections, this state igspensve to reach, and indi-
cates recent local sharing so we shoddkit around.

« Local Irnvalid - Almost as useful asi,_but either there is no other processor thamts to
share the line, or there has not been enough time for the sharing to occur

« Global \alid - A globally shared cgpso it should bedpt around if no other dirty states
need the space.

« Notin State - A copwas requested in the near past, FACKed. The only information
here is that some processor may retry a request soon.
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FIGURE 5.9: Effects of ad ding associativity to the Netw ork Cac he. The graph on the
left shows the relative improvement in parallel execution time compared to the default 1-
way (direct-mapped) cache. The improvement does not go above 5%. The graph on the
right shows that there is some small improvement in the hit rate, but clearly not enough to
increase performance. WIith 8-way associativity the size of each way becomes small
enough that capacity misses start outweighing the benefits of associativity.

« Global Invalid - This contains almost no information at all, indicating only that no copies
exist locally or hae been requested in the near past. This is the prime candidate for ejec-
tion.

This algorithm is simple to realize in the simulatmt would be ery expensve in hard-
ware, so it must wrk very well to be justifiable. Supporting too nyamays of associatity is
also costly in terms of hargwe, since eachay needs comparison logic to be able to run in
parallel. (The decoding could be done serjdili this destrgs the performance benefit of
associatiity.) For our experiment we use a 512 KB NC size, because from the last section we
know that this size does not tap all of the potential of the NEmWdel 2-, 4- and 8-ay asso-
ciative NCs. A 4-vay associatie NC pravides room for separate requests from each of the
four local processors. More than &associatity is unlikely to gain us much, andewuld be
overly expensve to implement.

In Figure5.9 we see the results for Radix on 8 processors.cfWwose 8 because from
Chapter 4 we knae that an 8-processor system has the highest hit rates.) Theveny@ot in
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performance goes no higher than 5%, and the hit ratesvmplightly up to 4-\ay associa-
tivity. This is not enough of a performanaergto justify adding the comptiy of associati-
ity to the NC.

5.6 Conclusion

In this chapter we v@ considered ays of increasing NUMAching’performance. As a pre-
cursor to these uestigations we sheed that a first-hit page placement pplprovides better
performance than a round-robin pglitVe then used this first-hit poji@as the defult for the
rest of the results.

We first considered the coherence protoesearbead. W& modelled a system without
coherencewerhead, where write accesses werenghbto succeed as long as the dats w
available, irrespecte of its coherence state eMibund that the dérence in performance
between this idealersion and our implemented protocasuminimal for all programsceept
Ocean, which had 180% and 400% im@ments at 32 and 64 processors, resggtiVe
concluded from this that the coherence schemdicsesit and performs well in most cases,
and that the coherence operations with the highesheads occurred infrequentiore
work needs to be done to determine whether Osdaafigiour is intrinsic, or is due to some
artifactual efects and could be fed by tuning the code.

We considered briefly the relaxation of the sequential consyjsteadel. & only looled
at changes to the hardve, and did not consider changing the programming model. Easing the
constraints placed upon the haede implementation by sequential consisyemad almost no
effect on performance.

In Chapter 4 we sathat the Central Ring caused congestion in the systenim\asti-
gated the déct of speeding up the Central RingeWdund that thewerall performance could
be increased by 11% with an increase of the Central Ring fregtee®®0 MHz, after which
point the performance did not changezdstication of the maximum andrarage queue
depths indicated that the reason for the plateau in performascthat the bottleneck had
moved from the Central Ring'injection queues to itxiaction queues. @proposed that
future studies are needed twasticate a full balancing of the stationdy Central and Local
Rings to find the ‘sweet-spot’ that maximizes performance.
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With regards to the Netark Cache, we load at the décts of its size and associdty
on system performance.eXoncluded that while some programs are insgagii NC size,
others can shw large performance impvements with an NC ofven modest size.df an NC
supportingP processors with caches of sizean NC size of aroundPZ displayed perfor-
mance that approached the performance of a system with an NC of infinite size.

We also considered adding assovigtito the NC. D do this we introduced a wel set-
replacement algorithm based on the notion of the ‘importance of information’ represented by
various coherence directory states. By reducing tlediidod of a cache conflict, increasing
the associatity reduced the probability of finding a line leakby some other access. Our
results shwed that performance increased by at most 5%, which is not enough to justify the
extra cost of adding assochaty.




CHAPTER 6 Conclusion

6.1 Summary

The goal of this wrk has been to describe the design, and analyse the performance, of
NUMACchine, a distrilnted shared memory (DSM) parallel procesBiiMAchine is
intended as a proof-of-concept machineyghg that a DSM can be implemented atloost,
while maintaining scalability up to avlehundred processors. It also s=\a second role as a
research platform for westigations into all aspects of multiprocessing; from the high end of
the spectrum, encompassing compilers and operating systemmstalthe lovest levels, such
as hardware cache coherence protocols and system-areankstw

The hardvare component of the NUMAchine project hastakver five years from ini-
tial high-level design studies to the completed, functional 48-processor prototype. During this
time, the author as responsible for all aspects of the prototyping process, from architectural
design and simulation studies, to board mactufre and delgging. The Mintsim architec-
tural simulatorand the simulation studies which reakse of it for pre- and post-prototype
analysis are both contubons solely of the author

We cpined a wealth ofxgerience from designing andilding our avn multiprocessor
Perhaps the most important lesson learned is that to be a good architect one needs to ha
experience with implementing hara@wne. High leel architectural studies areny useful, bt
they are also a long &y from real hardare. Ideas that seem simple at the topllean
become a nightmare when it comes to implementation. Ouepeslassembly scheme, for
example, vas predicated on our choice of a slotted-ring protocol. One reason for choosing
slotted rings \as to simplify injection of paaks onto the ring, the tradeftkeing added com-
plexity on the receiing (extracting) end. It turned out there were numerous details that made
the paclkt re-assembly controllers the most complicated FPDs to design and hardesgto deb
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This added mancycles of lateng which we did not tag& into account in our initial simulation
studies, since we thought that this part of the systeaidibe ‘easy’.

Our overall experience with design using FPDaswery positve. The allowed us to
reach our performance goalsitlalso greatly enhanced the ability to quickly wigkhe sys-
tem. e designed each FPD with dgpins which were pulled out to headers suitable for
connection to a logic analyzd8y reprogramming the dies in-system, while the machise’
power was lept on, we could quickly re-run tests usindadiént trace information for signals
internal to the FPD. This enabled us to zero inwgshn a matter of hours instead of days.
Once the bg was found, we could a the fix installed in minutes. ¥dout this fcility, we
would have had to spin manmore reisions of the cards, whichoumld hare been impossible
with our limited tudget. (Our first card, the processor card, needed three spins, while all the
other cards needed onlyawy

On the other hand, FPDs dovealravbacks, tvo of the most significant being speed and
logic density Our tageted system-wide design speed of 50 MH® wtremely aggresge
given FPD performance in the 1996-1997 time frame in which the chips were purchased. By
necessity we deloped a ery high level of expertise in tuning FPGA and CPLD designs to
achieve the desired clock rate. As for logic densitg were not able to fit our most comple
controllers, such as the cache coherence directory controllersyéamahe lagest FPDs
available at the time. Thexeeme case as the controller for the Nebsk Cache (NC) coher-
ence directorywhich we managed to fit into four of thedast CPLDs after partitioning the
design. This added compigy to both the design ancerification. Postdbrication issues
arose when we needed to modify logic on FPDs with internal resource wsa@®%.
Because the chips were soldered to the boards, pin placements aer&éxound that
changing logic with these &l pins made it impossible in macases for the fitting algo-
rithms in the FPD CAD tools to find a logic assignment thaild/meet our timing con-
straints. In these cases we had to either find anotiyeofvfixing the logic, qrin the worst
case, had to resort to hand-placement of internal logic resources.

Up until a fev years ago, a project of this scale with a team this stzédhave been
impossible. Sophisticated CAD (computeded design) toolswere crucial in alleving us to
design and erify our boards all within a unified framverk. The \erification stage wolved

1. We used the Cadence LogimWkbench tool suite, madeailable to the Uniersity of Toronto by a special
university licensing agreement between Cadence and the Canadian Microelectronics Corporation (CMC).
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running full board-lgel simulations using hardwe-description language (HDL) models. The
measure of success for this approach is that the first boards (processor cardsyaclracki
from fabrication were booting up and running code within a week.

6.1.1 Achitectural Simulator

The main tool used for architecturalnation and analysis, and a major conttiibn of the
thesis, is the Mintsim simulatdvlintsim allovs detailed gcle-accurate systemvel simula-
tion of NUMAchine’s architecture. Most simulators used for comparable architectural studies
model at a high keel, or else thgrun slavly and can only use ‘10 applications or trace files,
which have unrealistic behaours or timing. V& also hee the adantage that our simulated
architecture @sts as real hardave, allaving us to erify the simulation model, lending cre-
dence to the results.

Mintsim is highly flible, alloving almost ap architectural parameter to baried, and
the efect on performance to be easily measured. ikés@tion-drven, meaning that it uses
real parallel applications, presenting the abstraction of ‘virtual feedw his allovs for very
accurate modelling of timing and ordering, which is particularly important in the analysis of
coherence protocols and netks. Although the simulator isewy detailed, it is alsaabt. Typ-
ical slovdowns on the order of 1000 times al@rograms with hardare run times of up to
one hour to be simulated in a day

We also described a strgtefor increasing confidence in the simulation results. During
initial simulator dgelopment, synthetic benchmarks with predictable results are used to check
simulator output. After the harcwe is aailable, the same measurements performed with the
simulator can be duplicated in the hagater

6.1.2 Achitectural Results

We presented results in Chapter 4 which indicate that NUMAGhiimeg-based netwvk pro-
vides good leels of performance in the role of a DSM system interconnect. The bisection
bandwidth of rings is not scalable, and our claims are ailigt up to our chosen 64-processor
limit. However, we beliee that it will be mayp years before there is much of a nerfor sys-
tems lager than 256 processors, which we consider to be the upper limit for thergatié
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medium-scale multiprocessors. Indeed, the current ‘sweet-spot’ for commercial multiprocess-
ing is dual- or quad-processardibased baes, containing Intel or Alpha processors. These

are becoming commodity items which avaitable in a typical uses’desktop machine, or as

a small-scale seev. The ability to scale up to huge numbers of processors is not an important
criterion for commercial multiprocessors. In thigael, NUMAchine$ hierarcly of rings,

with its simple point-to-point interconnection topolpgllows for scalability with lav incre-

mental cost. In addition, the simplicity of rings althem to be run aevy high speeds,

which both increases bandwidth and reduces Ilgtenc

One aspect of NUMAching’rings which we did not consider is reliability aadlf toler-
ance. These are crucial/gn the current maek trend tavards raising the \e| of reliability of
multiprocessors to that of mainframes. While approaches such as dual rings can address these
issues, their cost and performance impact were not considered here.

A significant reason for NUMAching’good performance is aved hardvare cache
coherence protocol that mekuse of the ring topology and its ordering properties to\achie
low levels of coherenceverhead. This is critical indeping performancevels high under the
shared-memory paradigm. The coherence protocol uses the writebalal#it®e scheme as its
basic structure, upon which itiitds a dual-lgel coherence directory which matches the ring
hierarcly. No eplicit acknavledgments are necessary forahdations in the protocol, since
the rings maintain relat ordering of broadcasts. This ordering property alsaiges for a
natural implementation of a sequentially consistent memory model. Sequential copsistenc
provides the simplest and most intugimodel of memory from a programnseperspecte,
which males NUMAchine ery programmefriendly. In anticipation of the gument that
sequential consistentas inherently Mer performance than weakconsistencmodels, we
point to recent results in the literature indicating that the combination of sequential consis-
teng/ and modern microprocessor architectures can\akie same \els of performance as
wealer models [Gniady 1999].

In Chapter 5 results were presented whiclwatbthat a netark-level cache can help
alleviate the high laterycfor remote requests in a NUMA architecturer Eertain types of
programs the Netark Cache \as shan to contrilute to a significant impx@ment in gecu-
tion times, while for the remainder of the programs the N& performance-neutral. The size
of the NC plays a role in its performance, and we found that a size alaetadf two lager
than the sum of the processors’ cachesked well. Sizes bgnd this did not do much to
increase performance. In the same chapter we presented|a@ireplacement algorithm
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used to implement associaty in the Netvork Cache, based on a ranking of the information
content of @arious coherence statese\8heved that increasing the assoaidyi to 2-way or 4-
way increased performance by no more than 5%, and concluded that the addeglityoofiple
supporting associaity was not justified.

We epect that the NUMAchine prototyeperformance still has considerable room for
improvement. As mentioned in Chapter 4, the lodickcheme can be impred upon. Other
enhancements to the NC and coherence protocol, such as dynamic protocol selection or the
use of multicasting to push data instead of ouaulepull model, are part of ongoing
research. Finallyall of the results presented herein use unmodified Splash2 programs.
NUMACchine is a clustered architecture due to iis-based stations. Threevaius ways of
tuning the programs to increase performanoeald be:

« Allocate data structures and threads t@ta#f\antage of lw-latengy intra-cluster (on-
station) access times.

« Make the OS and compilers more N@aae, in order to makmore dicient and intelli-
gent use of the NC cache resource.

« Add support in the operating system for page migration and replicationvidgeo
complementary mechanism to reduce remote Igtéorcaccess patterns which the NC
cannot handle.

NUMACchine is a vorking prototype. Figuré.1 shavs a partially-assembled prototype
with 24 processors. it the addition of the final ring, the full 48-processor system will be
operational. W are able to boot up the operating system, and run parallel applicativak/nati
on NUMAchine. Nov that the hardare is finished, the Rephase of research will focus on
the OS, support for parallel file systems, and architecivegea automatically parallelizing
compilers.

6.2 Future Work

The field of parallel systems and programming is roughly 30 yearsutld, till in a &irly
immature state of delopment. In the follving paragraphs we suggest sonaysvin which
the results of this dissertation could bé¢eaded, and possibilities for other relatearkv
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FIGURE 6.1: NUMAchine with 24 pr ocessor s. The two tall vertical racks contain six
stations with four processors in each. The bottom two stations in each rack are
connected together by the shiny ring cables to form a 16-processor Local Ring. Another
Local Ring sits at the top of the racks. (The two top stations have yet to be installed.) The
third Local Ring sits behind the two shown, and faces the other direction. The single-
station mini-NUMAchine shown on the right is used for debugging.

In Chapter 4 we found that thepmnential bac&ff approach to handling cache lines
locked by coherence actions fared from lveness andairness problems, and could lead to
very lage latencies. A better schemasproposed,ut not analysed. It auld be interesting
to find out whether the performance of theveeapproach as enough to justify thextea cost
and complgity.
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Advances in FPD architecture present some intriguing possibilities for design of systems
such as NUMAchine. In the refew years programmable dees will be &ailable with
mixed FPGA/CPLD structures on the same chip. Thegeakewill contain hundreds of mil-
lions of cates, as well as rgabits of embedded memoiyith such resources itauld be pos-
sible to lild an entire coherence engine (including the SRAM directory) inside a single chip,
allowing for significant reductions in lateyc

As mentioned in Chapter 5, benchmarks are a particularly weak point. Benchmark suites
such as Splash2 help to model the performance of scientific applicatiomszdfjdhe huge
boom in commercial use of shared-memory multiprocessors means that a majority of compute
cycles are nav devoted to three major meclasses of wrkloads:on-line transaction pocess-
ing (OLTP),decision-support systeni8SS) and Wb serers. OOTP typically irvolves mag
small read/write accesses to gyladatabase. DSSovkloads analyse databases in order to
detect lisiness trends, whichvalves long compbe queries accessing the entire database.

And Web serers are usually used either for presenting information or searching. All three

have \ery different characteristics, which are quitdetiént from scientific applications. Only
recently hae researchers started to analyse thes&laads in multiprocessing @inonments
[Barroso 1998]. The results indicate that communication-to-computation ratios are much
higher for these applications, particularly forTH.Sharing patterns are dynamic and non-
repetitve, with a comparately high rate of true sharing, leading to much more time spent
servicing coherence misses in the caches. Analyses such as the ones presented in this thesis
will need to be redone using more recent benchmark suites such asraR€a€tion Process-

ing Council) [TPC 1999].

Another area which needs morenk is the incorporation of mainframe-class Reliability/
Availability/Serviceability (RAS) features as a basic requirement in multiprocessor system
modelling. RAS is necessary for such machines ve baoad commercial appealtht
affects both performance and cost. Computer architects must include these aspects in their
analyses right from the start; theannot be treated as independent issues to be designed in
later or added on.

This work could benefit greatly from recent aaies in the state of the art of simulation.
When we started, theraisted no commonly accepted fravark for doing multiprocessor
simulation. V& estimate that just primling the infrastructure for our architectural simulator to
hook up with MINT took roughly six man-months obik. Tools such as SImOS [Rosenblum
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1997], while paverful, are not fleible enough to alk for the kind of detailed back-end
architectural simulations discussed in this thesexé/ simulation efronment with the fle-
ibility of MINT and the paver of SImOS wailable, we could hee investigated the perfor-
mance of the architecture including théeets of the operating system and multiprogrammed
workloads, which w&s not feasible with the tools weveéoped. There are also performance
issues rgarding g/cle-accurate simulation of suchdarsystems. A fitting approach is to par-
allelize the simulator itself. Research is ongoing in this aneaeults as yet are pogBee
for example [Carothers 1999]).

And finally, future work on multiprocessing systems will benefit from research into for-
mal \erification. Both the cache coherence protocol and the prototypedrardwre erified
by simulation. While these pred suficient for our needs, tlyavere only just barely so. ki
the increasing comptéy of modern microprocessors and adeed optimized coherence pro-
tocols, formal erification will provide the only means of designing parallel systems in a rea-
sonable amount of time.




P Notes on the Simulator

The simulatoras described in Chapter 3, consists of the MINT front-esmlfstra 1993], and
the NUMAchine simulator back-end. Thergion of MINT used @as 2.6, with some minor
modifications, which for the salof completeness will be described bela brief description
of the NUMAchine simulator and its parameter files are alsengi

Al MINT Modifications

The most fundamental change to MIN&swwitching the basic timasable from double-
precision floating-pointariables double) to signed 64-bit longddng long ) for both
the Sparc and SGI platforms. This alld the same range of simulation times (sindew
ble is stored internally as 64 bits on both machines)ade the simulator considerably
faster Note that compilers which could handle tbeg long  type were not unersally
available when ersion 2.6 was first distribbted. W used the GCC 2.7.2 compiler to compile
both MINT and the NUMAchine simulator

We also modified MINT to pass along to the back end more information as to the source
of a gven memory reference. The MINT memory space consists of four sections:

« Stack - the standard program stack as used by lagables and for parameter passing,
« Heap - a puate peithread area used for memory obtainedthrouggiloc(),

« Share - a global memory section, accessible by all threads and allocated using the
us_malloc() call, containing the shared data structures (e.g. arrays and trees) that are
the tagets for most of the erk done by a parallel application,

- Data/BSS - the initialized (Data) and uninitialized (BSS) static data sections that are
allocated at program load time.

This alloved the back end to accumulate statistics for eacgaatevhich was useful as the
reference patterns were feifent for each type.

In order to do future studies on prefetching and updating, we added the capability to han-
dle both of these types of references at MENlGvest level. To get a program to generate
such references, the source codeild hare to be modified by hand to insert a dummy ‘sys-
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tem call’ with a virtual address, which MINT recognizes and passes along tomlyeadded
back-end routinesim_update(), sim_prefetch_shr() and
sim_prefetch_exc().

A ‘feature’ of the original MINT 2.6 &rsion vas that the results obtained when running
the Sun and SGlersions of the code wereny slightly diferent (less than 1%). While not
significant, the gry fact that the same binary application code running through supposedly
identical virtual machines inside MINT on theawarchitectures did not matchag/worri-
some. After much delgging, it was found that the section of memory containing thvirem-
ment \ariables passed to the simulator were ded#nt sizes on the twplatforms. This
caused the alignment of MINJ internal virtual memory space for the parallel application to
differ. The resulting slight change in cache access and paljeétterns ave rise to the
anomaly The MINT code vas modified so that the starting point for its virtual memory space
was aligned to a lge page size. After this change the results on tbhetatforms were iden-
tical.

There were also aviemiscellaneous additions anddsto the follwing files:

« exec.c - make thePUNMAP() macro the xact inverse ofPMAP(), which was prob-
ably a lug,

 icode.h - fixed a lg in the address space decoding logic whiohld/incorrectly
flag addresses as vialid’,

e subst.c - added the routinewint_getenv(), mint_putenv() since as
mentioned abee the dedult ervironment \ariable handling caused subtle anomalies on
different platforms. Also added were theypoesly unsupported operating system calls
shmemalign()  andgetpagesize().

Some of these changes may also be present in &tgons of MINT However later \er-
sions did not add grfunctionality we found necessary for ouonk, so we stuck withersion
2.6. All of the modified code for MINT isvailable by contacting the author

By default, MINT’s time scale is arbitrary; there is no assumption ykard of units for
MINT’ s internal clock. Moreger, unless told otherwise it assumes thairg machine instruc-
tion tales one clockyxle to execute. While this is true for the majority of the RISC R4400
instructions, it is not true for all, and in particular arithmetic operations such as multiplication
and dvision tale on the order of tens oydes for both fied- and floating-pointersions. ©
present a more realistic model MINT all® the number ofycles per instruction (also knm
as CPI) for all the assembler opcodes to be specified xt Bleeusing its ‘-c’ option. An
example of such aapcodedile is shavn in ListingA.1. The number in the second column is
the number of clockycles for the instruction. Since the fundamental time unit in the simula-
tor is 1 ns, the sample parameter file corresponds to a 1000 MHz protéssate can be
scaled to a processor running at F MHz by multiplying eatinevby ROUNDUP(1000/F).
These timings were not supplied with MINIt taken from the R4400 reference manual
[Heinrich 1994].
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trunc.w.s 4 ceilw.s 4 floor.w.s 4
cvt.ds2cvtws4cfsl cunsl ceq.sl cueqgsl
c.olts1 c.ults1 c.oles1

c.ules 1l csfsl c.nglesl

c.seq.sl c.ngls1l clts1

c.ngessl clesl c.ngtsl

add.d4 sub.d4 mul.d8 div.d 36 sqrt.d 112 abs.d 2
mov.d 1 neg.d2 round.w.d 4 trunc.w.d 4
ceilw.d 4 floor.w.d 4 cvt.s.d 4

cvtw.d4cfdl cundl ceqdl c.ueq.dl
c.olt.dlc.ult.dlc.oledlculedlc.sfdl

c.ngled1 cseqdlc.ngldlc.ltdl
c.nge.dlc.led1 c.ngtd1cvts.w6cvt.dw5mfcOl
mfc13 mfc21 mfc31 mtcO1 mtcl3 mtc21
mtc31 cfc01 cfcl2 cfc21 cfc31 ctcO1l
ctcl3 ctc21 ctc31 bcOfl bcOtl bcOfl 1
bcOtl1l bclfl bcltl bclfll bcltll bc2fl
bc2t1 bc2fl1 bc2tl1 be3fl be3dtl be3fll
bc3tl 1 cop reserved1l cop_invalid 1

terminate 1 b1l il movel nopl

LISTING A.1: Mint opcodes file br a 1000 MHz processor

A.2  Notes on the NUMAchine Simulator (Mintsim)

Mintsim is described in Chapter 3. Here wevide an @ample of the simulator command
file, to gve an idea as to MintsimTlexibility .

While the basic CPU model is @& by the use of MINTand features such as the ring-
based netark and its associated cache coherence protocol acdixe to softare deelop-
ment time constraints, just aboutyasther parameter in the model &riable. A simulation
run is controlled by a ¥ parameter file, arnxample of which is shen in ListingA.2. The
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values shavn are the defults for a 32-processor implementation of the NUMAchine proto-
type hardvare.

#

# NUMAchine simulator command file
#
#
# NOTE: Where options are commented out, the value
# indicates the default

#

# General Simulator

# Geometry is: Ring0s/Ring1l:Stations/Ring0:CPUs/Station,
# so product is the number of cpus in the system

set sim geometry 2:4:4 # 32-CPU system
# set sim barrier_type ideal

# Types are: “ideal”, “simple”/"tree” (Hardware)
# “soft"/"softtree” (Software)

# set sim lock_type spin

# Types are: “spin”, “ideal”

# set sim coherence 1 # Use cache coherence or not
# set sim global_line_size 0

# If Mem and NC use different line size to L2
# set sim use_nc numa

# Whether NC is used or not, and what type
# Others: none, inni (part of Network Int)

# set sim relaxedconsistency 0

# Default is sequential consistency

# set sim page_type roundrobin

# Others: firsthit, fixed

# set sim pagemap_file ??

# For fixed page_type, gives page mappings
# set sim snoop 1

# 1If no NC, then use snooping

# set sim perf_pref 1

# Turn on perfect prefetching

#

# Network Cache

=

# set netcache enhanced 0 # Turn on NC enhancements
set netcache size 8192 # In KB

# set netcache assoc 1 # N-way associative

set netcache read_time 200 #inns
set netcache write_time 200 #inns
set netcache tag_time 80 #inns
# set netcache fifo_delay 30 #inns
set netcache fifo_width 8 #in bytes
set netcache ing_size 256

set netcache outq_size 256

# set netcache inq_ovfl 0.75

# set netcache outq_ovfl 0.75

#
# Ring Interface
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S
# set ringint freq 50e6 #1In Hz
set ringint width 8 # In bytes

# set ringint parallel_rings 1

# For counter-rotating rings choose 2
# set ringint use_freed 0O

# Use a slot just freed by removal?

# set ringint ing_size 256

# set ringint ing_ovfl 0.75

# set ringint outq_size 256

# set ringint outq_ovfl 0.75

# set ringint sinkq_size 256

# set ringint sinkq_ovfl 0.75

# set ringint nsinkq_size 256

# set ringint nsinkq_ovfl 0.75

# set ringint max_wb_cnt 256

# set ringint ttl_tickets 256

# How many outstanding requests in SRAM?
# set ringint fifo_wdelay 30

#

# set ringring freq 50e6

# set ringring use_freed 0

# set ringring upg_size 256

# set ringring upg_ovfl 0.75

# set ringring downgq_size 256
# set ringring downq_ovfl 0.75

#
# Memory

set memory read_time 200 #inns

set memory write_time 200 #inns

set memory tag_time 80 #inns

# set memory fifo_delay 30  #inns

set memory fifo_width 8 #in bytes

# set memory ing_size 64 # depth, width given above
# set memory outq_size 64

# set memory ing_ovfl 0.75

# set memory outq_ovfl 0.75

#
# Processor

# set proc freq 150e6 # in Hz

# set proc splitL2 0 # use split/unified L2 cache (1/0)
# set proc L1 _Icache_size 16  # in Kbytes

# set proc L1_Icache_linesize 32 # in bytes

# set proc L1_lcache_assoc 1

# set proc L1_Dcache_size 16

# set proc L1_Dcache_linesize 32

# set proc L1_Dcache_assoc 1
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# set proc L2_lIcache_size 1024
# set proc L2_Icache_linesize 64
# set proc L2_Icache_assoc 1
set proc L2_Dcache_size 1024
set proc L2_Dcache_linesize 128
set proc L2_Dcache_assoc 1

#
# External Agent

# set extagent si_freq 75e6

# set extagent max_retry 64

# How many retries per request before error?
set extagent fifo_width 8

# set extagent fifo_delay 30

# set extagent ing_size 64

# set extagent outq_size 64

# set extagent inq_ovfl 0.75

# set extagent outg_ovfl 0.75

#

# Bus

H# -

# set bus freq 50e6

set bus width 8 # in bytes

set bus arb_latency 4 # in bus clocks (default 0)

# Debugging
#

#

# On=1/0ff=0. Can set individually by class, or for class
# ‘sim’, which turns on all classes. (Beware, the latter
#is A LOT of trace info.)

#

# set memory trace 1

# set bus trace 1

# set netcache trace 1

# set ringint trace 1

# set ringring trace 1

# set cache trace 1

# set extagent trace 1

# set proc trace 1

#setsimtrace 1 # This is equivalent to the -t flag

#

# This is the most useful debugging feature. Trace all
# usage across the

# simulator to a particular cache block. Address will be
# rounded to cache block size

# set sim trace_addr 0x12345678
#
# Running the simulator

# Build instantiates objects and connects them. Run
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# starts the simulation. Set the type of reporting before
# doing run.

# report  # Do “fullreport” for a per-instance report.
# The default “report” is a summary, giving
# averages and standard deviations

build

run

LISTING A.2: Default simulator parameter file for a 32-processor system.

The output from Mintsim is also axtfile, containing reports from each of the simulator
objects (e.g. bsses, caches, etc.) indicating usage, latencies, statistics, etc. The output can be
generated in either a detailedqodyject form, or a summary form. The summary reporvsho
averages ver all of the particular objects in a class. The simulator output file is g®tiabe
shavn here.
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