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2000

Recent research efforts have investigated customizable operating systems, where the
implementation of operating system services can be chosen to meet an application’s per-
formance or functionality requirements. This dissertation investigates the potential bene-
fits of allowing the customization to be changed, on-the-fly, while the service is in use. By
using a prototype implementation of the dynamic object switching layer in the K42 oper-
ating system, we explore the costs and benefits associated with dynamic customization.
As an example, we showed how K42 can switch a (per-file) page cache from a centralized
implementation to one distributed across the processors of a multiprocessor in order to
adapt to changing access patterns. The ability to customize on-the-fly allows the imple-
mentation of a service to match the instantaneous demands on the service, avoiding the
need to comprise a complex, catch-all implementation. It also facilitates live-swapping

of system components in mission-critical systems where downtime is undesirable.
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Chapter 1

Introduction

There has been much recent research on customizable operating systems. In a customiz-
able operating system, virtual resources, such as files and virtual memory regions, can be
tailored to optimize for a specific usage pattern on a per-application basis. For example,
an application that can benefit from sequential file pre-fetching can inform the operating
system of this and the system can then provide the application with a file object with such
a pre-fetching policy. Examples of customizable operating systems with such a capability
include Cache Kernel, Choices, Exokernel, SPIN, and VINO. In these systems, however,
the customization is generally done statically at resource creation time, and the resource
implementation created will stay unchanged for the lifetime of the resource. While more
flexible than traditional operating systems (where there is only a single generic imple-
mentation of a resource for all varieties of applications), these systems lack the ability
to dynamically adapt to changes in program phases where the access patterns of the
resource change dramatically. Also, for mission-critical systems that require constant
up-time, the ability to change the implementation of a system resource (for reasons such
as feature upgrades and bug-fixes), without having to halt the system or application, can
be invaluable. This dissertation explores the possibility of performing dynamic, on-the-fly

switching of operating system resource implementations, even if the resource has already
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been created and is being used actively and concurrently in a multiprocessor system.

1.1 The K42 Operating System

K42! is a new customizable operating system we are developing jointly with IBM research

for 64-bit shared-memory multiprocessors. Three important goals of the system are

Scalability: to scale up to support very large systems (hundreds of processors) and
to support applications that utilize the entire system, while also scaling down to
support efficiently 1) the small-scale multiprocessors we expect to be ubiquitous
in the near future, and 2) sequential and small-scale parallel applications on a

large-scale multiprocessor;

Maintainability, extensibility, and portability: so as to 1) avoid the high mainte-
nance costs of existing operating systems, 2) enable the system to be extended
easily to support new types of applications and integrate new research ideas; 3) al-
low the system to be easily ported to new hardware platforms, and 4) optimize

performance by exploiting hardware specific features;

Application-specified customizability: to allow subsystems (e.g., data bases, web
servers, JVMs) and scientific applications to customize the operating system man-

agement of the resources they use.

To achieve these goals, K42 is implemented using an object-oriented structuring technique
called building-block composition [2,16]. Each virtual resource (i.e. virtual memory region,
network connection, file, process, etc.) is implemented by a different composition (or set)
of objects, allowing resource management policies and implementations to be controlled
on a per virtual resource (and thus per application) basis. This allows, for example, every

open file to have a different pre-fetching policy, every memory region to have a different

K42 was originally named Kitchawan.
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page size, and every process to have a different exception handling policy. We refer to
the overall implementation of a virtual resource as a building-block composition, and to

the individual objects in the composition as building blocks.

Building-block composition is a natural way to structure code for multiprocessors.
Since each resource is implemented using a different instance of building blocks, indepen-
dent requests to different resources can be serviced in parallel. In K42 there are no global

data structures that need to be traversed and no global locks that need to be acquired.?

Some building blocks, such as those used for a shared file or the Process building
block used for a parallel program, may be widely shared across a large multiprocessor.
To implement these widely shared building blocks efficiently, the concept of clustered
objects [1, 12, 29] has been developed. A clustered object building block is one that can
be partitioned into representative (rep) objects, where independent requests on different
processors are (in the common case) handled by different representatives of the object.
A clustered object is like any other building block as far as its clients are concerned, and
the implementation can be chosen at instantiation while maintaining the same interface.
Clustered objects provide the additional flexibility to modify the level of distribution. For
example, a Process building block for a parallel program is implemented in the K42 kernel
using a rep for each processor on which the application runs — many common operations
(e.g., in-core page faults) are then handled by the single, local rep of the Process without
requiring any communication with the other reps. The clustered object infrastructure
allows the parallel Process object to export the same interface as the Process object
designed to run on a uniprocessor, and the distribution and locations of the reps are

transparent to the clients of the clustered object.

Customizability is achieved in K42 by letting an application specify which building
blocks the operating system should use to implement access to the resources used by the

application. Moreover, with the infrastructure described in this dissertation, the building

?No other operating system we are aware of has this characteristic.
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blocks used to implement a resource can be changed, on the fly, even if the resource is
actively being accessed. For example, an application can direct the operating system
to change the Process building block from a centralized implementation (with a single

shared rep) to a distributed one (with a rep per processor).

1.2 Dynamic Customization in K42

Building blocks provide tremendous flexibility in allowing K42 to be customized for an
application. As other work in customizable systems demonstrates [3, 4, 6, 8, 9, 26], this
flexibility can translate into significant performance gains. Often times though, when a
resource is first accessed, it is not clear, especially from the operating system’s perspec-
tive, what its request pattern will be. Also, an application’s use of operating system
resources may change over time as the application goes through different phases. While
customization via building blocks increases performance, there are common scenarios
where additional performance gains can be obtained if the customization can be dy-
namic. For the different kinds of applications an operating system needs to support, a
single implementation of building blocks will not perform as well as when the operating
system can dynamically switch the building blocks implementing a given resource when
the behavior changes. This is because the system does not know a priori the access
patterns for an resource, or because the access pattern changes significantly over time.
The ability to customize on the fly allows K42 to optimize the building blocks used
to meet the instantaneous demands on a resource. We can have many simple implemen-
tations of building blocks, each specialized to meet particular needs, avoiding the need
to develop complex compromise building blocks that meet a variety of different needs.

This has important implications for achieving the goals of K42 as described above:

e simple (non-scalable) building blocks that pay no performance overhead for scal-

ability can be used for sequential applications, allowing sequential applications to
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run more efficiently on a large multiprocessor,

e we can avoid the need to compile a separate version of the system for uniprocessors,
since the dynamic customization captures the optimizations that a separate build

captures statically (this avoids cluttering up the code with #ifdef statements),

e we can avoid the performance overhead of conditional branches needed in general-

purpose implementations,

o there are fewer complex code paths making the system more maintainable,

e building blocks can be upgraded, updated, or replaced on the fly without needing

to bring down long-running applications or the operating system, and

o researchers can easily introduce new special purpose building blocks without affect-

ing other applications.

Allowing building-block compositions to be modified on the fly introduces a number
of challenging problems. For example, we need to ensure that requests being serviced by
the object during the switch are handled properly, producing the correct result. Also,
we want the facility to be generally applicable to all building blocks, so it has to work
generically over all interfaces. Further, while being a general infrastructure, we do not
want to impose any overhead on building blocks that are not currently using the facil-
ity. The infrastructure we developed and describe in this dissertation addresses these
problems, making it possible to add dynamic customizability to new resources with little
programming effort, and acceptable overhead.

Having building blocks dynamically switch implementations could either be initiated
pro-actively in response to a request from the application, or reactively based on con-
tinual performance monitoring done by the operating system. The dynamic switching

mechanism we implemented in K42 replaces one building block instance with another,
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thereby allowing switches in internal data representation and distribution. The switch-
ing of objects may occur while the original object is processing requests. The switching

mechanism correctly handles in-flight requests to the objects involved in the switch.

1.3 Dissertation Outline

This dissertation focuses on the implementation of the dynamic switching mechanism
within the K42 operating system environment, not on the policy associated with switch
initiation. The rest of the dissertation is organized as follows. Chapter 2 describes other
customizable operating system work. Chapter 3 gives an overview of the K42 operating
system and its approach to customizability. It also describes the building block and clus-
tered object infrastructures. Chapter 4 describes the implementation of K42’s dynamic
switching mechanism and the tradeoffs we faced in designing this mechanism. Chapter 5
shows the performance advantages of dynamic switching over static customizability, both
on a sample object as well as on K42 memory management objects. It also analyzes
the programming and performance overhead of applying dynamic switching. Chapter 6
provides a summary of what we learned during the implementation, summarizes our

mechanism and results, and describes possible future work.
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Related Work

A number of research operating system projects have explored customizability. Re-
cent research in extensible and customizable operating systems includes SPIN [3, 22],
VINO [26, 27], Exokernel [§], Fluke [9], L4 [18], Cache Kernel [6], Choices [4], Neme-
sis [17], Scout [20], and K42 [2].

Many of the above operating systems achieve customizability by extensibility. The
Exokernel, Fluke, L4, and Cache Kernel allow for customizability by having the kernel
redirect hardware events to external address spaces where they can be serviced in a

customized way on a per-application basis.

Fluke and Cache Kernel employ a virtual machine model, where each application can
have a different operating system running in a virtualized version of the hardware. Fluke
proposes a recursive virtual machine model, in which layers of virtualized hardware, or
virtual machines, stack up to offer customizability and extensibility. An application can
run on any one of such virtual machine layers, and the application itself can be another
layer of virtual machine for applications that require further-customized operating system
services. Cache Kernel treats the operating system kernel as a set of cacheable objects;
there can be multiple instances of different kernels coexisting in the system. The proper

kernel component is faulted in and cached in memory when used by a particular appli-
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cation. To one degree or another, these approaches suffer from the overhead required to
cross address space boundaries and they make the sharing of resources between appli-
cations desiring different extensions difficult. For example, Fluke interposes a layer of
virtual machine implementing a new policy, say to customize the physical memory page
replacement policy, and applications requiring the new policy will need to be run on
top of this new layer of virtual machine, inducing extra cross-address-space invocations.
In Cache Kernel, extra context switches need to be performed to fault in the appropri-
ate customized kernel component. Also, if two customized versions of the file cache are
caching the same file, it is more difficult to use the same memory to cache the file if they

are implemented in two different address spaces.

SPIN and VINO achieve customizability by allowing user code, compiled from a
safe language, to be downloaded into the kernel. SPIN employs an event mechanism
to dispatch downloaded extensions [22]. Predicate functions, or guards, are evaluated
in the dispatch path to decide which extension to execute. VINO allows extensions,
or grafts, to be installed in system graft points. Both systems, while customizable,
suffer from performance overheads resulting from predicate evaluation associated with
the extensions. The larger the number of applications that require customization, the

higher the overhead [26].

The systems described above all achieve customizability through extensibility, i.e.,
customized code is loaded into the system. In contrast, K42’s building-block composi-
tion separates customizability and extensibility. Customizability is achieved by allowing
applications to compose building blocks from a set of existing components to manage
a resource. There is no performance degradation due to downloading or verification of
the components. Also, since each application independently chooses a building-block
composition appropriate for its requests to a resource (e.g., process object), the system
provides customizability without affecting other applications building-block composition

for their view of the resource. For example, one application can use a single, shared
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representation of a process object while another application can use a distributed repre-
sentation. Extensibility is achieved by allowing trusted parties to write new objects that
extend the functionality of the system. The separation leads to lower overhead [2]. As
with other composable object-oriented systems [4, 20, 6], K42 has the benefit of better

maintainability.

K42’s solution to customizability can be considered to be much more conservative
than the techniques chosen by other research groups. In many ways, building-block
composition is not much different from other object-oriented techniques [10] and can be
viewed as a specific realization of the Framework approach from the Choices operating
system [4, 14]. These object-oriented techniques have already successfully been applied
in commercial operating systems, for example with the Unix Vnode interface [30] and
Streams facility [28]. We build on this previous work, taking advantage of its strengths
with respect to maintainability, extending it to all components of the operating system,
and, for customizability, providing a powerful mechanism for applications to control
the objects used. Overall, we believe that building-block composition is simpler to use
than the other more radical techniques, and that it results in better maintainability
and performance because it does not require the system designer to deal with many of
the complexity and security problems the other approaches must face. While similar
challenges may still exist in our model, they are not the concern of the wusers of the

building blocks, but the building-block tmplementors.

The ability to dynamically optimize data structures and policies used by the system,
in conjunction with a customizable system, can improve performance of an application
considerably. VINO leverages its extension mechanism to install performance monitor-
ing grafts to collect performance data for both online and off-line processing [27]. The
grafting infrastructure is also used to facilitate the development of possible system adap-
tations, but it does not provide a generic way to handle on-the-fly switching of object

implementations at the interface level. The Synthesis operating system [24] features dy-
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namic code optimization using an on-line kernel code generator to reduce the latency of
common kernel functions. While effective when applied, this optimization requires hand-
coded optimizations written in low-level machine language, which limits its applicability.
Both of these techniques could be applied to K42 code, but the thrust of K42’s dynamic
customization is wider.

Dynamic linking introduces the ability to allow new code modules to be added to a
running system, improving the customizability of a program. While useful, it can only
be applied at the granularity of modules, lacking native support for the C++ language.
Microsoft’s component object model (COM) [21] allows coexistence of different compo-
nent objects implementing the same interface, and uses dynamic linking to load in new
modules when an instance of a new component implementation is created. On the Java
front, the class loader system can be extended to support dynamically loadable classes
also. A more lightweight dynamic C++4 object system has been proposed, implementing
dynamically loadable C4++ objects that support versioning [13]. These facilities solve the
problem of updating future object instances, but they are incapable of allowing already
instantiated, long-running system objects to change their implementations dynamically,
hence limiting their ability to perform live-swapping of such objects.

The Synthetix work [25] is closest in spirit to our own, supporting on-the-fly cus-
tomization of the system in response to changing access patterns. However, they assume
the code to be switched can only be called by a single thread at a time, that only a single
function is to be switched, and that no data translation or object switching is required.
In contrast to the method we propose here, they also pay overhead on every function
call, even when no switching is occurring.

To the best of our knowledge, none of these projects investigates on-the-fly customiza-
tion when a change in internal data organization is needed, and while there may be

requests in-flight.
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K42 Operating System

K42 is an operating system designed from the ground up and targeted at multiprocessor
shared-memory machines. The project is being conducted at IBM Watson Research
with collaboration from University of Toronto and other universities. K42 was heavily

influenced by Tornado [1, 2, 11, 12, 29], developed at the University of Toronto.

Achieving good performance for shared-memory multiprocessor programs has received
considerable attention [5, 12, 15, 19, 29]. K42’s overall structure, algorithms, and data
structures have been designed with the purpose of achieving good multiprocessor per-
formance, yet without sacrificing uniprocessor performance. K42 uses an object-oriented
approach, where every virtual and physical resource in the system is represented by an
independent object, ensuring natural locality and independence for all resources. As a
matter of principle, all locks are internal to the objects they are protecting, and no global
locks are used. Customizability allows us to choose different implementations when we
are running an application in uniprocessor versus multiprocessor modes thus maintaining
good overall performance. Parallel applications have many specialized needs, from spe-
cific memory layout to particular communication and scheduling demands. Here, K42’s
customizability provides the ability to tailor the operating system to the demands of any

specific application.

11
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In addition to the challenges of multiprocessors there are other difficulties faced in
operating system design. The requirement of supporting the system across different ar-
chitectures (PowerPC, MIPS, etc), and having to support a wide range of applications
with differing and conflicting resource demands, all contribute to difficulties in achieving
good operating system performance. In varying degrees, these challenges cause both pro-
grammability and performance problems in operating systems. Programmability issues
arise when code for various architectures appear #ifdef’ed, making it difficult to under-
stand the code or to modify it. Performance issues arise if code contains conditional code
for different hardware platforms, or has to perform in a generic way to meet all possible
application demands.

K42 has been designed to alleviate these difficulties by supporting customization in a
first-class way. A running K42 operating system is customized for the hardware platform
it is running on, and it is customized to present to applications resources that can be
tailored to their requirements. This way, K42 achieves the benefits associated with other
customizable operating systems that can tune for application behavior. K42’s approach to
customization also yields significant benefits in terms of structuring and programmability
of the operating system and the ability to port it easily and with high performance.

The system, however, is a research operating system in its infancy. We currently have
basic Linux libraries running on the system and are working towards being able to run
applications compiled for Linux on K42. K42 is expected to be self hosting by fall of

2000, and is available as open source.

3.1 K42 Object Infrastructure

In this section we provide the background on building blocks and clustered objects in
order to better understand the dynamic switching mechanisms we describe later. More

details of clustered objects can be found in the descriptions of Tornado and clustered
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objects [1, 12], while a more in depth discussion of building blocks can be found in the

HFS paper [16] and an early K42 position paper [2].

3.2 Building-Block Composition

In building-block composition, each virtual resource instance (e.g., a particular file, open
file instance, memory region) is implemented by combining a set of objects (e.g., C++
objects) we call building blocks. Fach building block implements a particular abstraction
or particular policy and might 1) manage some part of the virtual resource, 2) manage
some of the physical resources backing the virtual resource, or 3) manage the flow of
control through the building blocks. We refer to the overall implementation of a virtual
resource as a building-block composition.

Customizability is achieved by letting the application specify the particular set (or
composition) of building blocks to be used for implementing a virtual resource created on
behalf of the application, and by letting the application dynamically change the composi-
tions at any time. This allows, for example, every open file to have a different pre-fetching
policy, every memory region to have a different page size, and every process to have a
different internal data distribution.

A building block exports an interface that specifies the operations that can be invoked
by other building blocks. It may also import (one or more) interfaces that are exported
by other building blocks. Two building blocks are said to be connected if one of them
might invoke operations of the other, and the object is then also said to reference the
other. Two building blocks may be connected only if the exported interface of the one is
imported by the other.

The particular composition of building blocks (i.e., the set of objects and the way
they are connected) that implement a virtual resource determines the behavior and per-

formance of the resource. As a simple example, Figure 3.1 shows four building blocks
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Figure 3.1: Building blocks implementing a virtual resource such as a file. C and D may
each store data on a single disk, B might be a distribution building block that distributes
the file data to C and D, and A might be a compression/decompression building block

that decompresses data read from B and compresses data being written to B.

that might implement some part of a file. B contains references to (' and D, and in turn
is referenced by A. €' and D might each store data on a different disk, B might be a
distribution building block that distributes the file data to ' and D, and A might be
a compression/decompression building block that decompresses data read from B and
compresses data being written to B. The imported and exported interfaces are indicated
by the pattern at the top and bottom of each object. If two building blocks are connected,
then the corresponding imported and exported interfaces must match.

As a concrete example of building blocks, Figure 3.2 shows, in a slightly simplified
form, the key building blocks used for memory management in K42. The building blocks

depicted in the figure are:

e Process: provides clients with entry points that manage all resources associated

with a process,
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HAT

Region —» FCM

Process < " PM
Region | FCM

— NFR]

Figure 3.2: Memory management building blocks in K/2. Arrow represents interface

import relationship.

e Region: maintains the mapping of a virtual memory region to the part of the file

backing the memory,

o FCM: maintains a memory cache of file pages,

FR: implements a file object,

e PM: manages physical memory of the system, and

e HAT: performs low-level hardware address translation.

The arrows in the figure represent the interface import relationship. For instance, the
Region building block imports the interface exported by the FCM building block.

As an example of these building blocks in action, in a page-fault, the exception is
delivered to the Process building block for the thread that faulted. The Process maintains
the list of mapped memory regions in the process’s address space, which it searches to
identify the responsible Region to forward the request to. The Region translates the fault
address into a file offset, and forwards the request to the File Cache Manager (FCM)
for the file backing that portion of the address space. The FCM checks if the file data
is currently cached in memory. If it is, then the address of the corresponding physical
page frame is returned to the Region, which makes a call to the Hardware Address

Translation (HAT) to map the page, and then returns. Otherwise, the FCM requests
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a new physical page frame from the physical memory manager (PM) and then asks the
File Representative (FR) to fill the page from a file. The FR then makes a call to the
corresponding file server to read in the file block. The thread is re-started when the file

server returns with the required data.

In this example, the composition of these building blocks together manage two virtual
memory regions backed by different files. Since there are multiple implementations of
each of these building blocks (e.g., there are uniprocessor- and multiprocessor-optimized
building block implementations for the Region interface, and there are FCM’s optimized
for small files and big files), together they form a highly customizable collection of virtual-

memory-mapped file implementations for different resource usage patterns.

It is important to note that each virtual resource instance is composed of different
building-block instances. For example, in Figure 3.2, each region and each FCM has
a different object instance implementing it and therefore each could be a different im-
plementation. One region and FCM could be optimized for small file and uniprocessor
accesses, while the other pair may be optimized for large file and multiprocessor accesses.

Here, customizability is achieved by choosing different building blocks.

Further customization can be achieved by modifying the topology of the composition.
The topology defines in the abstract which type of building block connects to which
other type of building block. As an example of modifying the topology, in K42 we have a
building block specialized for copy-on-write (COW) behavior. In Figure 3.2 it would be
added between the region and the FCM. To do so, the COW accepts as input what the
region outputs, and the COW outputs what a standard FCM accepts as input. Building
blocks can also present a different interface to applications. For example, in creating a

region, one could have an additional parameter stating a maximum size.

After an application instantiates a building block to manage a resource and before
using it, the system verifies the building-block composition for type safety to ensure the

correct interfaces have been implemented (i.e., the corresponding imported and exported
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interfaces match).

K42’s building-block composition separates mechanisms for customizability and ex-
tensibility. Informally, a system is extended when new functionality (i.e., new code) is
added, and customized when an application specifies the functionality to be invoked on
its behalf. As described in Chapter 2, previous approaches have achieved customizability
through extensibility, i.e., customized code is loaded into the system. In K42, customiz-
ability is achieved by allowing applications to compose building blocks from a set of
existing components to manage a resource. There is no performance degradation due
to downloading or verification of the components. Also, since each application indepen-
dently chooses a building-block composition appropriate for its requests to a resource,
the system provides customizability without affecting other applications building-block
composition for their view of the resource. For example, one application can use a shared
representation of a process object while another application can use a distributed rep-
resentation. Extensibility is achieved by allowing trusted parties to write new objects
that extend the functionality of the system. The separation leads to lower overhead.
And as with other composable object-oriented systems, K42 has the benefit of better

maintainability and improved multiprocessor performance.

The goal of customizability is to match the implementation of a given building-block
composition to the needs of the application using it. A static choice of building blocks
can be sub-optimal for several reasons. The operating system does not generally know «a
priori the expected usage pattern of a resource by an application. This is true for most
mixes of applications run by an operating system. The system therefore can only guess
the object best suited for an application. Even in the case where an application provides
hints on how it will use a resource, its requirements may change over time. These reasons

motivate the ability to dynamically change building blocks when they are in use.

Building-block compositions provide a powerful method for customization, useful for

multiple purposes. The ability to change a building block on the fly adds to its usefulness.
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In the next section we describe the clustered object infrastructure needed to support on-

the-fly customization.

3.3 Clustered Objects

Optimizing performance across the multiple and potentially competing operating system
services is complex. To reduce the complexity of this problem, K42 takes the building-
block approach (as described in the previous section) to system design by breaking the
management of resources into logical pieces or objects. However, this alone does not nec-
essarily achieve good multiprocessor performance, since some applications stress concur-
rency when going for high throughput. Also, locality of reference needs to be maximized
to avoid slower remote memory accesses and reduce cache-coherence traffic. Clustered
objects extend the object-oriented design of building blocks by providing the additional
ability of managing the level of distribution of data and locality of execution. Based
on Tornado, K42’s clustered object infrastructure provides a framework for controlling

concurrency and locality of reference in objects [1, 12, 29].

3.3.1 Overview

From a client’s perspective, clustered objects appear similar to C4++ objects, i.e., their
interfaces are the same. A clustered object is logically a single object, but internally it
is composed of one or more component objects called representatives, or reps. Each rep
handles calls from a specified subset of the processors (see Figure 3.3). A clustered object
is accessed via a clustered object identifier. The method invocations on clustered objects
are done using this identifier. Each call is automatically directed to the appropriate rep
based on the processor from which the call was made and on the degree of clustering. The
degree of clustering determines how many reps there are in the system. There might be

one rep for the entire system, one rep per processor, or any other appropriate mapping
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Figure 3.3: An abstract depiction of a clustered object.

such as one rep per NUMA node in a NUMA system. Fach representative provides its
clients with the full functionality of the clustered object, and if necessary, the reps of the

clustered object communicate with each other to maintain consistency.

The internal data representation and algorithms of the clustered object is transparent
to the client. If the shared object data is read-mostly, replication may be adopted, with
each processor’s local rep maintaining its own replicated copy of the data. Some objects
are best partitioned so that the data most accessed by a processor will stay in the rep
local to that processor. With appropriate internal implementation, an object can be
optimized for locality and concurrency depending on an assumed access pattern. With
an implementation involving multiple reps, it is necessary to keep them consistent. While
the internal implementation and data distribution of a clustered object can be modified
and fine-tuned to suit its locality requirement, the interface that it exposes to its clients
remains the same. While the internal data may be replicated, migrated, or partitioned,
the clients can make method invocations to the object without knowledge of its actual

implementation.

The clustered object infrastructure in K42 has a number of benefits. It provides
a framework to optimize objects for locality and concurrency using commonly applied
techniques such as replication or partitioning. These techniques can be applied both
to data structures and locks. The interface exposed by the clustered object isolates

the internal organization of the reps from the clients. Also, clustered objects facilitate
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incremental optimization and experimentation for each system object. A system object
can be implemented initially as a single-rep clustered object, whose implementation would
be almost identical to that of a common non-clustered object. If the object becomes a
bottleneck, a multi-rep clustered object could be implemented and used instead. Since
the interface remains constant, implementations with different degrees of clustering and
consistency protocols can be experimented with, without modifying the rest of the system.
The interface provides the flexibility to allow different implementations of a clustered
object to exist, optimized for different usage requirements. As discussed in Section 3.2,
in K42, this flexibility of allowing different customized implementations of the same object

is referred to as building-block composition.

3.3.2 Implementation

In this section, we present the implementation of the clustered object system in K42. We
describe how clustered objects are referenced and what system-level data structures are

used. We then explain how reps are created within a clustered object.

Object translation table

Clients access a clustered object by means of a clustered object identifier. In the K42
implementation, the identifier is a pointer to an entry in a per-processor table called the
object translation table (OTT) (see Figure 3.4). The entry in the OTT points to the
rep associated with the clustered object (once it has been used). Because the OTT is
defined on a per-processor basis, for each clustered object identifier, there is one object
translation entry per processor. The entry on each processor for a particular object could
point to the same rep, or to different reps, depending on the degree of clustering. Using
the extra level of indirection introduced by the object translation table, the distribution
of internal object data can be optimized independently of the interface.

To allow clustered object invocations on each processor with the same identifier
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(pointer), we exploit K42’s aliased virtual memory capability, which allows the same
virtual memory address to be mapped to different physical addresses on different proces-
sors. Per-processor aliased virtual memory regions are used within the address space to
give each processor its own unique copy of the object translation table, located at the
same virtual address. Since many objects are only accessed on the processor on which
they are created, we partition the ownerships of the table into disjoint subranges, one per
processor. This way, allocation of entries in the table does not require synchronization

aCross processors.

Miss handling

Representatives are lazily created. This is done for a couple of reasons. Requests to a
particular clustered object are not necessarily made from all processors; for some clustered
objects only a small subset of processors make requests. Further, lazy creation spreads
out the creation time to first use.

Lazy creation is accomplished by initially installing a reference to a generic object
handler (instead of to a rep) in all the object translation entries. An object table entry
is modified to point to a particular rep on demand when the processor’s first method
invocation on the clustered object is made. This way, processors that do not access a
particular object will not need to perform unnecessary set up. The process of setting the
translation entry to point to a rep is called miss-handling. The processor that incurs the
miss is said to be faulting.

Different clustered object implementations may have different ways of handling misses.
In particular, in a multi-rep clustered object with one rep per processor, we manage the
set of reps, and create a new rep if the rep corresponding to the faulting processor is
not already in the set. In our clustered object system, the object that manages the set
of reps is called the root object, or just root. The root is responsible for object-specific

miss-handling, and is instantiated when the clustered object is instantiated. The pointer
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Figure 3.4: Clustered object implementation. Clustered object 1 has been accessed on PO

and P1, where reps have been installed; P2 has not yet accessed object 1.

to the root is installed in an auxiliary table called the root table, indexed the same way as
the object translation table. Besides being responsible for rep creation and initialization,
the root is also responsible for maintaining shared resources used by all the reps in a

clustered object.

Entries in the object translation table are initialized to point to a generic handler
object called the default object. The default object redirects calls to the corresponding
root object and invokes its object-specific miss-handling code. The result of invoking this
miss-handling code is a pointer to the rep responsible for handling the call. The default
object forwards the original invocation to the rep, and this forwarding is transparent to
both the rep and the client that faulted. If the root installed a pointer to a rep in the
object translation table during miss-handling, then subsequent method invocations to
the clustered object will be handled by the rep directly (see Figure 3.4). This mechanism
allows clients to invoke methods of the clustered object, without knowing that a miss-

handling operation may take place.

The default object leverages the C++ virtual function mechanism to perform miss-
handling transparently. We allocate and assign to the default object a virtual function

table with enough generic virtual functions to support expected objects. However, if
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necessary, the size of the vtable can grow dynamically.! Since the default object knows
nothing about the invocation context, each virtual function of the default object saves all
the registers of the original caller before performing the miss-handling work. Once the
miss-handling is done and a rep is obtained, it restores all the register content, replaces
the this pointer argument with the pointer to the rep that handles the call, and forwards
the call to the corresponding method of the rep by looking up the rep’s virtual function
table. While the operation has non-negligible overhead, it is performed only once for

establishing the translation entry and infrequently thereafter.

A consequence of using the vtable for miss-handling and call redirection is that all
clustered object methods will need to be virtual. This is acceptable since the object

polymorphism is used in many system designs anyway.

Paging support

The translation tables are likely to be sparsely populated, because there can be a large
number of clustered objects, and because clustered object identifiers are allocated from
the subrange assigned to the processor they are created on. As a result, we choose to
make the translation table memory pageable. Further, since the translation tables are
sparse and represent a cache (i.e., entries can be regenerated by the root objects which
maintain the reps at any time), a victim page can just be discarded rather than paged out.
Future accesses to the clustered objects in this range will cause the default object to re-
handle the misses, which restores the entries. If necessary, a dense compression table can
be used as a second-level cache of translation entries to reduce the extra miss-handling

caused by discarded pages.

LA special virtual memory region can be used to back this table. When a page fault on this memory
region occurs, a memory page is supplied with the new virtual function pointers, which point to newly
initialized generic functions. Currently, K42 provides a vtable that has many more entries than exist in
the system’s largest clustered object.
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Cross-address-space invocation

Cross-address-space object method invocation is supported by instantiating a local proxy
object, which communicates with the remote interface object associated with the server
object. Parameter marshaling and caller authentication are performed by this local proxy

object.

3.3.3 Generation Count

Another portion of the infrastructure used by the dynamic object switching infrastruc-
ture is K42’s generation count. This is used by the clustered object facility for garbage
collection [12]. The facility for remote procedure call in K42 is called Protected Procedure
Call (PPC). In the PPC model, a request to a server (including the kernel) gets executed
by a (logically) new thread that is created on the server side for handling a PPC request,
and ends when the request is satisfied. In K42, all requests to server objects made by
external clients are accomplished via the PPC facility.

A reference count tracks the number of active requests (threads) executing in an
address space on a per processor basis. When a thread is created, it is assigned a thread
generation. An epoch is the time period that starts when the first thread in a generation
is created and ends when there are no longer any threads that were started in previous
epochs. The generation count (or epoch number) is advanced when the epoch is over,
and this count is used in thread generation assignment. To efficiently determine if the
generation count can be advanced, we need at least two reference counts, one that counts
the number of threads with the current generation and one with the previous generation.
If the system only maintains the reference count for the current generation, then the
generation count may not be advanced. This is because the reference count may never

reach zero, and so the system cannot determine that the epoch is over.

K42 maintains reference counts for two generations — the current generation and
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Figure 3.5: Thread lifetime diagram illustrating the generation-count updates.

the previous generation. When a new thread is created, the system increments the
reference count for the current generation, and the thread is assigned with that thread
generation. When the thread terminates, the corresponding generation’s reference count
is then decremented. This way, the generation count is guaranteed to advance since
once the current generation is started, the previous generation’s reference count will only
decrease. The generation count can advance when the previous generation’s reference
count reaches zero. Under this model, we can determine that there are no more running
threads started prior to any particular time, by recording the current generation count
at that time and waiting for the generation count to increase by at least two, since this
implies that all the threads from both the current and the previous generations have
terminated.

Figure 3.5 illustrates how the generation count relates to the reference counters as

described above. When the previous generation’s reference count (prev in the figure) is
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zero then the generation count can be advanced, and the reference counts are updated

accordingly.

3.4 Summary

Building blocks allow flexible customization of operating system resources, while clus-
tered objects provide system-level support for building blocks optimized for concurrency
and locality in multiprocessors. Building blocks provide for better programmability and
maintainability as well as allow for easier porting with better performance, compared to

the other more radical approaches of customizability through extensibility (described in
Chapter 2).

Since K42 is designed for multiprocessors, most building blocks are implemented as
clustered objects. A clustered object is one whose implementation is potentially dis-
tributed across a multiprocessor for concurrency and locality. A clustered object is log-
ically (i.e., externally viewed as) a single object, but it is internally composed of one or
more component objects called representatives. Each representative handles calls from a
specified subset of the processors.

The clustered object model is a partitioned object model which allows for express-
ing locality and concurrency optimizations in a consistent manner. It is designed to
provide the benefits of an object-oriented paradigm, such as clear separation between
interface and implementation, better maintainability with modularized code, and im-
proved programmability via the inheritance hierarchy. The clustered object translation
table provides the flexibility necessary for clients to access the object through a local
representative object transparently, and thus allows the degree of data distribution to be
changed without affecting the interface.

While it is impossible to completely remove interactions between processors and elim-

inate remote memory access, the clustered object mechanism allows fine-tuning at the
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object level so that such interactions are done only when necessary, thus achieving max-
imum concurrency and locality of reference.

Clustered objects allow us to explore and implement locality and concurrency op-
timizations while presenting the same interface to applications. The building-block ar-
chitecture provides a practical framework for system design; most kernel objects and
system servers in the K42 operating system are built using building blocks implemented
by clustered objects. In the next chapter, we describe how these building blocks can be
exchanged for new ones with the same interface on the fly at run time, transparent to

the clients that are using them.



Chapter 4

Dynamic Object Switching

As described in Section 3.2, building blocks allow custom composition of system objects,
providing the flexibility to tune performance on a per-application and per-use basis. In
K42, an application programmer can request system resources from building blocks that
are customized to the needs of that application. However, if an application’s resource
request pattern changes over time — for example, when the application enters another
execution phase — then the originally chosen object may no longer be optimal. Similarly,
in many cases, the programmer does not know, or cannot specify a priori how an object
will be used, thus requiring the operating system to use a default choice or attempt to
infer how the object will be used. In this common scenario, the operating system can
improve application performance if it chooses an initial building block for the object,
and then dynamically switches to another implementation of that building block when
the application’s request pattern to the resource provided by the object changes. The
implementation switch may be initiated by a system performance facility which monitors
the request patterns to the object, or by the program using the object if the change in

usage pattern is known at compile time.

The ability to perform dynamic, post-creation switching of system objects can be an

important aspect to achieving good performance in customizable operating systems, as

28
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we will show in Chapter 5. Dynamic switching complements the flexibility offered by the
static, creation-time customization via building blocks. It allows appropriate customiza-
tion across a wider range of applications by being adaptive to changing requirements
of applications. In this chapter, we describe the design and implementation of the K42

dynamic clustered object switching facility.

4.1 Background

There are different reasons why the operating system may want to dynamically switch
an object. In increasing degrees of complexity, it may wish to switch to an object that
provides a different policy or algorithm while using the same internal data structures,
or switch to an object with a different implementation, having a different internal data

representation.

Most often, a change in policy implies a change in the associated internal data struc-
tures. This is common in K42, since the clustered object system abstracts away the
internal data distribution, providing an additional degree of flexibility frequently taken
advantage of by programmers, and hence adding a dimension in which the internal data
organization can be tuned to the access behavior. When a change in the underlying data
structures is needed during a switch, the switching operation can become quite involved,
especially if the object is highly concurrent and event-driven. Multiple threads are likely
to be servicing requests to the object at any instance. We call requests that are being
serviced by threads executing in the object when a switch is initiated in-flight requests.
In-flight requests complicate switching because unless the change in data can be propa-
gated to the new object coherently, the switch cannot occur until all the in-flight requests
are serviced by the original object.

When the internal data representation remains unchanged, there are obvious opti-

mizations to the dynamic switching mechanism to simplify the problem. As an example
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of such an optimization, consider switching between two objects implementing different
page replacement policies, when the new object changes the victim page selection policy
while continuing to use the same internal data structure. As long as the new implemen-
tation coherently accesses the same internal data members as the old one, we can have
concurrent requests being serviced by both the old and the new objects. For these situ-
ations, no explicit data coherency needs to be maintained, and the internal data being
used are not duplicated or relocated. Therefore, the new object implementing the new
policy can replace the old one without concern for active requests being serviced in the
object. In such cases, it is sufficient to direct new requests to the new object, which is
accomplished by pointer manipulation in K42’s clustered object translation tables. This
is easily accomplished in K42 due to the extra level of indirection introduced by the
object table. Without the object translation table, even this level of dynamic switching
could prove challenging.

This dissertation focuses on solving the common and complex situation where the

interface exported by the object is the only thing guaranteed to remain unchanged.

4.1.1 Hybrid object

There are a couple approaches to dynamic switching one might take. The simplest would
be to design a custom hybrid object (see Figure 4.1). A custom hybrid object is a self-
switchable object containing two or more implementations internally, all coordinated by
the switching wrapper, which implements the switching logic as well as the object inter-
face to external clients. There are deficiencies with this model, however. To understand
them, we present a brief overview of what this approach might entail, and then describe
its disadvantages before presenting the approach we took in K42. As described in the
previous section, we cannot perform a switch if coherent data transfer is needed until
all the in-flight requests are serviced by the original object. Without external system

support, a custom hybrid object would need to maintain a count, tracking the number
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Figure 4.1: A custom hybrid object with multiple implementations.

of requests the object is servicing at all times. After switch initiation, it would have to
block new requests while in-flight calls are allowed to finish processing. The reason for
blocking new calls is to ensure that the call count will eventually drop to zero. When
all in-flight calls have returned (i.e., the call count reaches zero), the state of the original
object can be safely transfered to the new one. After the state transfer, all the blocked
calls can now be resumed and forwarded to call the new implementation. The complexity
increases when the object is re-entrant. Blocking a re-entrant call causes deadlock since
the in-flight call count would then never reach zero. To solve this problem, the switching
wrapper would have to remember the threads that are currently in-flight. When a new
call enters the wrapper it checks whether the calling thread is already in-flight. If so, the

call to the object is re-entrant and hence should not be blocked.

The main disadvantage of this approach is the added overhead to the normal call path,
even when the object is not trying to switch implementations. This overhead includes
keeping track of the in-flight call counter and thread identifiers at all times. Also, the
switching wrapper has to be custom built to track all calls into the object and forward
calls to the corresponding method of the appropriate object. This wrapping object, when
tightly coupled with the objects to be switched between, can significantly increase the
complexity (and decrease the maintainability) of the original objects. Another disad-

vantage is that this would have to be custom implemented for each object desiring the
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capability to switch. Because of these disadvantages, we have designed a more generic

facility that incurs no overhead when not switching objects.

4.1.2 K42’s dynamic switching design goals

K42’s approach to dynamically switching objects has the following design goals:
e zero impact on performance when an object is not switching,

e minimal code impact on the objects to enable switching between different existing

object implementations,
e zero impact to other system objects unrelated to the switching operation,

e good performance and scalability; that is, the switching operation itself should

incur low overhead and scale well on multiprocessor systems, and

e switch transparency; that is, clients using the building block being switched need

not be aware that the implementation behind the interface is being switched.

4.2 K42’s approach to dynamic switching

K42 takes an approach similar in concept to the hybrid object, but it adds no cost to
the object when not switching and the implementation is generically used by all objects
wishing to support dynamic switching. In addition, K42’s dynamic clustered object
switching facility provides a common switching interface and implementation that can
be used by any clustered object desiring to perform a dynamic switch.

We use two aspects of the clustered object infrastructure for dynamic switching that
were described in Section 3.3: the Object Translation Table (OTT) and the generation
count. The OTT provides a level of indirection that allows us to intercept method invo-

cations. The generation count allows us to track in-flight requests, helping us determine
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when all requests made prior to switch initiation have finished. To start a switch in K42,
the object translation table for the switching object is modified to point to an interposing
clustered object called the mediator (see Figure 4.2). This mediator object is a generic
object capable of handling the switching of any clustered object. This object mediates
calls from the time the switch has been initiated, to when the switch has completed. It
intercepts clustered object method invocations made to the original object and transpar-
ently counts and tracks new requests. When it determines that all in-flight requests are
accounted for (so all the re-entrant calls can be identified), it blocks all new incoming
calls and waits until the tracked in-flight calls have completed. Once this condition is
met, i.e., there are no more in-flight calls using the original object, the mediator initiates
the data transfer between the old and the new objects via a callback and then redirects

the blocked calls to the new object.

Compared to the hybrid object implementation described above, this approach sep-
arates the complexity of switch-time in-flight call tracking and deadlock avoidance from
the implementation of the object itself. Call interception and mediation are simplified by
the clustered object system infrastructure. Besides the data transfer callback, the rest
of the switching process is automated by the K42 mechanism, allowing for easy addition
of objects that wish to take advantage of dynamic switching into the system. Details of

the implementation are presented in the next section.

4.3 Implementation overview

Figure 4.2 illustrates the states of the objects involved in switching between the clustered
object identified by ¢ from implementations A to B. Initially, implementation A is used
when clustered object identifier ¢ is called (Figure 4.2a). It is assumed that both objects A
and B are already instantiated. When the switch is initiated, a mediator object is created,

and a reference to it is installed in the OTT in slot :. Subsequent object invocations
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Figure 4.2: A switch from implementations A to B of clustered object 1.

for ¢ then invoke the mediator object instead of the original object (Figure 4.2b). The
mediator object has references to both implementations, and it is responsible for tracking
new incoming clustered object method invocations to i. The mediator, depending on the
state of the switching operation, will either forward the call immediately to A, block the
thread associated with the incoming call, or forward the call to implementation B. There
are three phases associated with the switching operation: Forward, Block, and Completed.
They are described in the following paragraphs. When we reach the Completed switch
phase, the mediator modifies the OTT to remove itself from the i-th slot and have the
slot refer to B instead (Figure 4.2¢) so that all future calls to ¢ are handled by B directly.

During the Forward phase, the mediator tracks new incoming calls by their thread
identifiers and increments an in-flight call counter. It decrements the counter when these
invocations return. The mediator stores the thread identifiers in a hash table so that

re-entrant clustered object method invocations by the same thread can be identified and
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allowed to continue even during the Block phase. This is required to prevent deadlock,

which would occur if we blocked a re-entrant thread; i.e., since the thread has been

“
previously counted, if it is not given a chance to finish, the in-flight counter would never
reach zero, and we would never make forward progress. The hash table is also used to
save register values used for transparent call forwarding and call returning. The Forward
phase continues until we have gained knowledge of all in-flight calls to the object; that is,
there are no more in-flight requests that were started prior to the switch initiation. We
know there are no more such requests when the generation count described in Section 3.3
has advanced. If we start blocking incoming threads too soon without being aware of

all requests, we may cause deadlock because a thread we did not know about may have

been re-entrant.

The Block phase starts when the mediator determines there are no more in-flight
calls that were started prior to the switch initiation, i.e., all in-flight calls are accounted
for in the hash table established during the Forward phase. The mediator determines
this when the generation count advances, guaranteeing all requests made prior to switch
initiation have finished. During the Block phase, new incoming calls are first checked
to see if they belong to one of the in-flight threads tracked by the hash table. If so,
it is a re-entrant clustered object method invocation and is forwarded to the original
implementation A. Otherwise, the thread is a new incoming thread, which the mediator
blocks until the switch has completed, at which point it is unblocked and forwarded to
the new implementation B. There are more complex issues related to indirect recursion,
but they can be adequately handled.! Blocking new invocations will stop the in-flight
call count from increasing. Once the call count reaches zero, there are no more threads
executing within the object A and the mediator initiates a data transfer, which transfers
the state of the original object to the new object so that subsequent requests to the new

object are serviced coherently to the state of the original object. While this phase sounds

Details of the such issues will be described in Section 4.4.2.
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Figure 4.3: State of the clustered object space before the switch. Clustered object 1 is using
implementation A and reps are installed in the OTT’s of PO and P1. Pn has not yet

accessed clustered object 1.

complicated, it is reasonably straight-forward and occurs very quickly after the forward

phase in practice.

In the final phase, called the Completed phase, the mediator removes its interception
to the clustered object ¢ and installs implementation B to handle future calls. All the
threads that were blocked during the Block phase are unblocked and these calls are
forwarded to implementation B. Calls that enter the mediator object after the Block
phase is completed, but before the pointers have been changed to point to the new

object are forwarded to the new object implementation B.

To better understand how the clustered object system is leveraged by the switching
mechanism, Figures 4.3—4.6 illustrate the states of the clustered object ¢ of the process
during a switch. Figure 4.3 shows the state of the system before switch initiation. Pro-
cessors P0 and P1 have reps of implementation A installed in the OTT entries. When

the object switch to implementation B is initiated, the mediator root is installed in the
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Figure 4.4: Initiated a switching to implementation B for clustered object 1. OTT entries

are flushed and the mediator root has taken over the root table entry for 1.
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Figure 4.5: Call mediation is in progress. On clustered object access, OTT entries are

set to point to the mediator reps which perform call mediation. PO has a mediator rep

installed.
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Figure 4.6: Switching to implementation B completed. OTT entries are flushed and will

set to point to the reps of B when clustered object 1 is invoked.

root table and the OTT entries for slot ¢ for processors PO and P1 are “flushed” in that
they are made to refer to the default object. The subsequent state is shown in Figure 4.4.
When new invocations are made to the clustered object, the invocation faults (since the
i-th slot in the OTT refers to the default object) and a mediator rep is installed using
the standard mechanism described in Section 3.3. The mediator reps then mediate all
accesses to implementation A from processor P0 as described. Figure 4.5 shows the state
after processor PO made an invocation on clustered object ¢ after switch initiation. At
this time, slot ¢ in P0’s OTT refers to the mediator rep, which was installed by the
mediator root as part of the standard miss-handling procedure. When the Completed
phase started, the data transfer is done from A to B and root B is installed in the root
table. The OTT entries are flushed again so that new accesses will be handled by the

root and reps of B directly. The state is shown in Figure 4.6.

Figure 4.7 illustrates the different phases of switching within the timeline of a process,

along with the lifetimes of the threads that could be executing within the process. At



CHAPTER 4. DyYNAMIC OBJECT SWITCHING 39

| | |
| J |
| | |
| | |
| | |
| | |
| | ~<~————————— l
I | |
| | |
| | |
| | |
| | S ————————— |
| | |
| | |
| | |
| ! |
| | |
| | |
| l |
| | |
| | —
| | ~TT
! Forward phase ! Block phase ! Completed phase
t's tg tg
- — —Blﬁkid— - —%Thread lifetime

Figure 4.7: Timeline showing different phases and their assoctation with the lifetimes of

the threads in the process.

time t,, a dynamic switch is initiated, and the mediator takes control over the clustered
object to be switched. It marks the start of a thread generation epoch, and the Forward
switch phase starts. Threads started prior to ¢, are not tracked by the mediator, and the
generation count mechanism is used to ensure that these threads have terminated before
the Block phase commences. At time ¢,, when a new epoch starts, the mediation enters
the Block phase. Threads started prior to the Block phase (but after ¢;) will continue
running until completion. Note that these threads are created during the Forward phase
and are therefore fully tracked by the mediator. New threads that are started during
the Block phase (i.e., after time t¢,) are blocked. This way, the Block phase will finish
when all the threads started during the Forward phase have completed execution. This is
determined by the mediator’s in-flight call counter. At time t;, the last in-flight call has

terminated and so there are no more threads executing within the object to be switched.
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At this point the data transfer is started to transfer the object’s relevant state to the new
object, and the blocked threads are then allowed to run, using the new object. Subsequent
threads invoking the clustered object will be serviced by the new implementation.
K42’s generic switching mechanism allows any object to be switched with any other
object that implements the same interface. The generic mechanism is more difficult to
implement than the custom object, because the generic mechanism has no association
with the object it is switching; hence: 1) it cannot store anything on the stack because
it has to invisibly interpose itself between the caller and callee, 2) it does not have an
obvious place to track transition data associated with the specific object it is switching,
i.e., an in-flight count and a thread id hash table, 3) it needs to transparently intercept
the return call to decrement the reference counter and delete the thread id from hash
table, and 4) it needs to keep track of who to return to after the request is completed.

How this is achieved is described in the next section.

4.4 Implementation details

In this section, we provide some details of the K42 implementation of the dynamic clus-
tered object switching mechanism. We describe the implementation of the mediator
clustered object such as when the mediator is installed, how it intercepts new calls, and
how it determines when there are no more in-flight calls to the original object. We also
discuss multiprocessor issues regarding the mediator design. Deadlock avoidance is a
major part of the dynamic switching solution and is discussed in detail here. Issues and

options regarding data transfer are also covered.

4.4.1 The Mediator

Clustered object method invocations are made through the clustered object identifier

i, a pointer in the clustered object translation table (OTT). Upon switch initiation we
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instantiate the mediator clustered object. For the duration of the switch, the mediator
intercepts calls to ¢. This is accomplished by swinging the pointer in the root table to
point to the root of the mediator and performing a flush. The flush resets the pointers
in the object translation table that were pointing to the reps of the clustered object to
point back to the default object (as described in Section 3.3). From that point on, new
invocations result in object table translation misses and are handled by the root of the
mediator in a standard way. As a result, mediator reps are in control, performing call

mediation for the original clustered object.

At switch initiation, worker threads are created on the processors whose object trans-
lation entries are pointing at the reps of the running clustered object. The worker threads
perform the flush of those entries. These threads are needed to perform the flushes since
the translation entries are located on processor-specific regions of memory and can only
be accessed locally. These threads are also responsible for performing thread generation
checks to determine when there are no more in-flight requests that started prior to media-
tion. Currently this is accomplished by polling the generation count. We plan to examine
the benefits of being notified proactively (i.e., the system invokes some notification call-
back registered by the switching layer when the generation has elapsed), although this

would require an additional check on every thread completion.

The mediator object is designed to handle call mediation for any clustered object
interface transparently. The generic call mediation code consists of the mediator rep
vtable, the common mediation routine, the mediation prolog, and the mediation epilog.
The mediator representative’s virtual function table contains pointers to methods that
act as trampolines? to the common mediation routine (see Figure 4.8). The prolog and
epilog of the mediator perform pre- and post-processing associated with call mediation,

respectively. The main purpose of the prolog is to examine the current switch phase

?These methods simply record the virtual function table index and jump to a common routine. Such
simple methods are commonly referred to as trampolines in operating systems.
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Figure 4.8: Implementation of the mediator representative object.

and decide what to do with each calling thread: i.e., i) forward it to the original object,
increment the in-flight call counter and record the thread identifier in a hash table,
i) block it until the switch is complete, or i) directly forward it to the new object.
The prolog is called by the common mediation routine, before forwarding the call to the
actual method of the target representative. The epilog code is called if the forwarded
call returns to the common mediation routine. It is invoked only when the prolog has
forwarded the call to the original object. The epilog decrements the in-flight call counter
and removes the thread identifier from the hash table, The common mediation routine
acts as the assembly glue to save and restore registers, invoke the prolog, the actual

method of the forward target, and the epilog when needed.

This mechanism of forwarding calls generically is similar to that of the default object
call redirection described in Section 3.3. However, our call mediation has the added
complexity of needing to catch the call returns on the way out to first run the epilog
code. Since the prolog determines whether epilog processing is necessary, it returns
a flag to the common mediation routine so that the mediation routine can determine

whether it should simply jump to the target method (i.e., the call will not return to the

mediator) or it should call the target method (i.e., jump-and-link, the call will return to
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the mediator for epilog processing).

To allow the epilog to be called, the prolog routine has to save the return address of
the original caller so that it can return back to the original caller after the call returns
to the mediator for epilog processing. During a normal method invocation, a new stack
frame is typically allocated for saving the address, but since we are performing generic
call mediation, a new stack frame cannot be allocated due to the fact that the generic
mechanism must remain invisible to the caller and callee. The mediator also may not
adjust the stack pointer because the callee may refer to arguments provided by the caller
relative to the stack pointer set by the caller. The common mediation routine also needs
to save the pointer to the mediator rep across the forwarded call invocation without using
the stack. In our implementation, a non-volatile register is used to store the pointer to
the mediator rep. Its original value of this register, along with the return address of the
caller, and the thread identifier of the caller, are saved in a hash table by the mediation
prolog, before the call is forwarded. The mediation prolog checks the current switch
phase, and decides whether it should ) track the call in the hash table, i) block the call,
or i11) forward it to the rep corresponding to the new object. The first code path requires
epilog processing for accounting purposes, while the remaining paths can skip the epilog.

When the object reaches the point where there are no in-flight calls, data transfer
is initiated to provide the new object with the state required for continued consistent
operation. Once the transfer completes, the new implementation is ready to accept
requests. The mediator swings the pointer at the root table to point to the new root, and
flushes the affected object translation entries. The pending requests are then unblocked

and the mediation routine forwards the calls to the reps of the new implementation.

Walk-through of a mediated clustered object invocation

To demonstrate more concretely the algorithms described above, we present the pseudo-

code walk-through for a typical call mediation with the mediator representative already
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installed in the OTT entry.

The client invokes the method foo of a clustered object referenced by the identifier 1
(i.e., DREF(i)->foo (), where foo is method number k in the clustered object’s vtable).
During the switching period, the mediator representative handles this call. This call
made to the mediator representative ends up calling mediatorMethodk, a trampoline
method that records the vtable offset and jumps to the common mediation routine,

mediatorMethodCommon, which:

e first saves the argument registers® and the return address on stack;

e prepares the arguments for calling the mediation prolog. The arguments include the
this pointer that refers to the actual representative to service the request (output
parameter), the method number (input parameter), the return address ra and the
non-volatile register nvreg (input parameters — these registers are used by the

mediation code);
e saves the mediator pointer in nvreg;
e invokes the mediation prolog (see next paragraph for details); which

— performs the phase-dependent prolog;

— writes the pointer to the actual rep object (the one that will be used to service

the request) to the this pointer;
— sets a flag indicating whether epilog is necessary;
— returns the real virtual function address of the representative object that is

used to service the call;

o based on the flag returned by the prolog, decides whether the forwarded call should

return to this assembly routine (which is the case only if we are forwarding to the

3This, combined with maintaining the state of the stack at the point of forwarding the call to the
real method, allow the common mediation routine to work generically over all method signatures.
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original object);
o if so, it

— resets the stack and registers (to the values before invoking the prolog) and
then jump-and-link to the real virtual function (the return address is then set

to get back here);
e if not, it

— resets the stack and registers, restores the original return address, and jump
to the real virtual function (call is forwarded transparently and will return

directly to caller);

e prepares for the epilog (for the calls that do return) by saving the result registers

on the stack;
e call the mediation epilog (see next paragraph for details), which:

— obtains the pointer to the mediator from the nvreg and executes the phase-

dependent epilog code;

e restores the registers (including the nvreg) and the return address and return to

caller (jump to the ra).

Mediator prolog/epilog pseudo-code

Here we provide the pseudo-code for the mediation prolog and epilog routines. They are

called by the common mediation assembly routine, mediatorMethodCommon.

Mediation prolog

e Phaselock.acquire();
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e if (in Forward phase)
— /*increment before releasing lock to ensure we don’t reach Completed phase
prematurely */

— increment call counter;

— PhaseLock.release();

therep is assigned to point to the representative from the original clustered

object;
e else if (in Block phase)

— /% insert into list before releasing lock to ensure that: 1) we don’t forget to

unblock it due to race, 2) we can execute hash table lookup outside the lock */

insert TID (Thread ID) in blocked list;

PhaseLock.release();

— look up TID from hash table;

if (TID in hash table)
« /% re-entrant call; do not block it */
* remove TID from blocked 1ist;
* increment call counter;

* therep is assigned to point to the representative from the original clus-

tered object;

* /% note that the above count will be positive before the increment, due to

re-entrancy — do not need to worry about races that will cause a phase

change */
— else

* block thread;
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« /% this thread will be unblocked upon exiting Block phase */
* indicate to mediatorMethodCommon that we do not want to execute epilog;
* therep is assigned to point to the representative from the new clustered

object;

e else if (in Completed Phase)

PhaseLock.release()

— /* this call came in after the last mediated in-flight call exited and all blocked

calls were unblocked already — just need to get the new rep pointer */
— indicate to mediatorMethodCommon that we do not want to execute epilog;

— therep stores the representative from the new clustered object;
e modify the output parameter for the this pointer from therep;
e compute and return the function pointer of the real method for call forwarding.
Mediation epilog
o decrement call counter;
e if (in Block phase)
— if (call counter is 0) then execute switch completion code;

e pop off the thread data from the hash table: ra, nvreg.

4.4.2 Deadlock Avoidance

One of the main challenges of implementing a generic mechanism for switching clustered
object on the fly is deadlock avoidance. Specifically, we need to ensure that the threads
blocked by the switching layer will eventually be unblocked when there are no more

in-flight calls within the object that could potentially affect the state of the object. In



CHAPTER 4. DyYNAMIC OBJECT SWITCHING 48

particular, re-entrant calls into the object must not be blocked. As stated earlier, if these
calls are blocked, the in-flight call count will stay positive and the unblocking will never
happen, hence causing deadlock. Most of the re-entrant calls can be detected by the
switching layer’s thread identifier hash table, which keeps track of the in-flight calling
thread identifiers. Calls with the thread identifier found in the table are not blocked and
are forwarded to the original object so that the threads may eventually finish executing

the methods within the object and terminate.

Using the hash table to keep track of in-flight calls is not sufficient alone, however,
since the re-entrancy may be indirect. A thread executing a method of a clustered
object may create another thread that invokes methods of the clustered object again. If
the original thread waits for the created thread to terminate before continuing, and the
created thread is blocked by the switching layer, deadlock will result. Since the newly
created thread has a new thread identifier, it will not be detected by the lookup table.
Since this situation does arise in programming distributed implementations of a clustered

object?, the switching layer should not block threads of such nature.

We address this case in the following way: in K42, every thread can be checked
whether the thread was created explicitly (using the multiprocessor-messaging library or
the Scheduler: :ScheduleFunction() method) or created implicitly by the protected
procedure call (PPC) facility in response to a cross-address-space external object method
invocation. Indirect re-entrancy only occurs when threads are created explicitly. Hence,
to protect from the aforementioned deadlock situation caused by indirect re-entrancy,
during the Block phase, if the calling thread is determined to be an explicitly created
thread, then it is not blocked, but instead forwarded as if it is a re-entrant thread. If

the thread is created implicitly to handle an external PPC request, it will be blocked in

4While this is not the most common case, it is conceivable that a multi-rep clustered object may
administer the reps by means of creating one worker thread for each representative and determine the
threads’ completion by using a barrier. If those threads invoke the clustered object recursively, and if
the switching layer blocks these threads, deadlock will occur.
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the way we described above. This scheme can successfully prevent deadlock caused by a
chain of program-spawned threads that indirectly creates re-entrancy, since those threads
are never blocked by the switching layer. In other words, it avoids the deadlock problem
by detecting that a calling thread could cause indirect re-entrancy and not blocking it,
just to be safe.

A consequence of letting explicitly created threads be forwarded instead of blocked is
that it may take longer for the in-flight call count to reach zero. Also, it is possible to
construct an infinite sequence of thread creations and clustered object invocations in such
a way that it will keep the in-flight call count from ever reaching zero, hence disabling
the switching layer from switching the clustered object. However, this should not pose a
problem in practical clustered object implementations.

To minimize the possibility of “live-locking” the switching progress, implicitly created
threads (external PPC threads that are not re-entrant) are blocked during the Block
phase. One might question the appropriateness of blocking these calls in face of the
indirect recursion problem: it is possible also to have a chain of external PPC method
invocations that leads to a call cycle, and blocking such call after a cycle will then cause
deadlock. While it may still be possible to encounter deadlock if the indirect recursion
happens through an external PPC chain, we decided to leave it as the responsibility
of the system object programmer to prevent cyclic external PPC call chains since such
programming practice is not recommended in any case, as it may lead to other more
fundamental problems such as re-acquiring of per-object shared locks. In general, the
system object programmer should bear in mind that when an external PPC is made to

another server object, that call may be blocked, or even fail.

4.4.3 Multiprocessor implementation issues

We now describe some of the multi-rep mediator implementation issues that arise in

more detail. Since the phase variable associated with the switch operation is checked by
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all mediated calls, and a lock is needed to coordinate the accesses, we implemented the
mediator as a fully distributed clustered object with one rep per processor to achieve good
scalability. Fach rep maintains its own local data, such as the pointer to the original rep
that it should forward the calls to, the mediated call count, the hash table, a local switch
phase variable, and the phase variable access lock. The root maintains a phase variable
also, but it is accessed less frequently and used only to perform proper phase-dependent
miss-handling. This way, the common path of call mediation will not need to acquire
and release a global lock. Only the per-representative lock is held and only the local
switch phase is examined when a call enters the mediator to be forwarded or blocked in

the common case.

Switch phase variable The local phase variable determines the kind of mediation
necessary to provide forward progress. The Forward phase implies that there may still
be in-flight calls on that processor that are not yet recorded by the mediator. The
worker thread that performs the generation check changes the local phase to Block when
it determines that all the threads that could potentially be making in-flight calls to the
rep running on the one processor have completed. For the most part, the phase variable
can be maintained locally on a per-representative basis. However, in order to determine
when to transfer state from the original to the new object, we must ensure that there
are no in-flight calls for the object across all the processors of the system. That is, all
the local phases are in Block state and that the in-flight call counters are globally zero.
To determine if all the mediator reps are in the Block phase, we maintain a counter at
the mediator root to keep track of the number of mediator reps are still in the Forward
phase. Once that count reaches zero, we can change the global switch phase to Block.
This global switch phase, along with the in-flight call counter (described next), are used

to determine if we can carry out data transfer and change the phase to Completed.
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In-flight call counters FEach mediator representative has a local counter value that
is updated whenever a mediated call is being forwarded to the original object (as a
tracked in-flight call). It thus maintains the number of in-flight calls made via the local
representative. The counter is only checked for zero across all processors after all the
mediator reps have entered the Block phase. So, prior to the block phase, the local
counters are updated completely independently. A shared value is maintained by the
mediator root to count the number of mediator representatives that have in-flight calls.
The value is lazily updated; the value is only maintained by a rep when its local phase
changes to Block. This value does not need to be accurate until all the mediators have
entered the Block phase, at which point the value is zero implies that there are no more

in-flight calls.

Hash tables The per-mediator-rep hash table stores call forwarding data (return ad-
dress, etc.) using the caller’s thread identifier as the lookup key. The purpose of the
hash table is to provide a location for storing forwarding information (that cannot be
stored on the stack) and to provide a means to detect calls that are directly re-entrant.
To detect direct re-entrancy, a local, per-representative hash table is sufficient, since K42
threads are not migratable.® Data with the same thread identifier key may be inserted
multiple times into the hash table (in the case where the calling thread is re-entrant),
so the item insertion and removal has to be in the last-in-first-out (stack) order. Also,

per-hash-bucket list locks are used to further reduce potential shared-lock contention.

Lazy mediator-rep creation The installation of a mediator follows the clustered
object rep creation paradigm, where the mediator root is created but its reps are created
on first use. While this avoids unnecessary rep creation, it also has complications. The

main issue is that even though no new calls are made on the processor, the mediator

When threads become migratable in future versions of K42, some work will be needed to move the
associated items in the hash table to the remote location.
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worker thread will still need to run to perform generation checks and phase changes if
the processor has had a rep installed prior to switch. As a result, the phase variable and
the mediator call counter may exist for the processor while a mediator rep is not yet
created on that processor. Therefore, these data items are maintained directly by the
mediator root, in a cache-friendly manner (i.e., data for different processors are located

on different cache lines).

4.4.4 Data Transfer

The data transfer method must be provided by the object designer as a callback method
for the mediator. It is called by the mediator when the switching layer determines that
there are no more in-flight calls in the original object (and hence the objects can be
safely switched). The transfer is handled individually by the object involved in the
switch. Currently, to obtain maximum throughput, the data transfer method has full

access to both objects’” internal data structures.®

In the current implementation, data transfer is performed in a somewhat ad hoc
manner. As a result, each of n building blocks may have to be able to transfer data

2 _ n distinct instances of

to any one of the n — 1 other building blocks, resulting in n
data transfer methods. While it is acceptable when the number of implementations of
a building block is small, it is desirable to have a more structured way of handling the
data transfer problem for the general case. Also, it may not always be possible for the
data transfer method to obtain full access to both objects’ internal implementations.
More generic and automated mechanisms for performing data transfer will therefore be
necessary.

The primary goal of the data transfer method should be to eliminate the requirement

of each building block implementation having to understand the internal data structure

5An example of such implementation is a transfer method that is declared to be a friend by both
objects.
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of the other building block implementation for data transfer. This can be achieved by
negotiating data transfers through a well-defined set of transfer interfaces. Minimally, a
standard class serialization interface can be provided. For each building-block interface
I, there is a canonical serialization interface T} that is common to all the building blocks
implementing /. Often this transfer function is based on the abstract data type that is
being exported. This approach avoids the need for one data transfer method per each
pair of building-block instance. However, this lowest-common-denominator canonical
serialization interface has the potential disadvantage of inducing unnecessary data trans-
formations that can be avoided given a more optimized form of data transfer interface

for the particular pair of building block implementations.

An additional set of more optimized data transfer interfaces {7}, 7%, T7,...} can
be developed. An interface-specific transfer method would then carry out negotiations
for the building blocks to be switched and determines the common transfer interface
supported by both building blocks to perform data transfer in the most efficient way
possible. For instance, suppose that building block B is being switched to By. B
provides data transfer interfaces {77, 77, , T} .} while By can use {T7,, 7] }. Then the
data transfer method for interface I should determine that 77 is the best available
data transfer interface to be used for this switch. Note that the requirements for the old
and new building blocks are different; B; needs to export the interface while By needs to
apply the interface to perform the transfer. Since a canonical serialization interface TIOB

is available, the two sets of supported interfaces is guaranteed to be non-disjoint.

For abstract data types that behave as a look-up table, the data transfer function can
be implemented as a simple chain-up of the old object to the new object. This way, a
more lazy transfer approach can be applied (i.e., lookup and migrate data on demand).
For requests to look up an item, the new object’s data structures are navigated first. If
the item is not in the new object, the old object is also queried. If it is found in the old

object, the item is then migrated to the new object for future look-ups. The old object
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FCM

FCMSharedTrivial FCMPartitionedTrivial

Figure 4.9: A subset of the FCM class hierarchy.

is deleted when all items have migrated away.”

Example: FCM

We use the File Cache Manager (FCM) interface to demonstrate the options available
for performing data transfer between different implementations. The FCM is used to
lookup page frames that are cached in memory given a file offset to identify the page
frame. A variety of FCM subclasses can be implemented to optimize for different usage
patterns. For example, we have a very lightweight version, FCMSharedTrivial, that uses
a single representative with a single shared lock and a shared linked list to maintain the
list of page frames. This shared implementation is best for the case where the number of
pages cached by the FCM is small and when the pages are accessed by a single thread
of execution. However, when there are concurrent accesses to the object, the shared
lock gets contended very quickly. Therefore, to optimize for concurrent accesses, imple-
mentations with multiple representatives and localized locks are available. One of them,
FCMPartitionedTrivial, partitions the range of page offsets among the representatives.
The simplified class hierarchy is illustrated in Figure 4.9. We will use FCMSharedTrivial
and FCMPartitionedTrivial to illustrate the data transfer mechanisms described above.

Both FCM implementations support the FCM building-block interface, so it is possi-

ble to apply the switching mechanism to change a running instance to the other on the fly.

"This is not guaranteed to happen eventually, however. A data-migration thread can be implemented
to either 1) discard these items if permitted by the semantics of the object, or 2) perform the migration
asynchronously when the system load is low.
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class FCMDataTransferCanonical {
public:
PageDesc *getFirstPageDesc() = 0;

PageDesc *getNextPageDesc(PageDesc *curr) = 0;

Figure 4.10: Canonical FCM data transfer interface.

Assuming that the application program opened a small file and did not specify its access
pattern, then the operating system would first create an instance of FCMSharedTrivial
to maintain the cached pages of the file. When the access pattern indicates that there
are concurrent accesses to partitioned regions of the file, the FCMPartitionedTrivial
implementation would then be instantiated to replace the original FCM instance, and a
switch would be initiated.

Let us consider the different approaches we can take to perform the data transfer
from FCMSharedTrivial to FCMPartitionedTrivial. Minimally, each FCM building
block supports the FCM canonical data transfer interface, FCMDataTransferCanonical
(Figure 4.10), which relies on the fact that abstractly, a page cache contains a set of
<file offset, physical page descriptor> pairs (PageDesc’s). FCMDataTransferCanonical
supports getting the first PageDesc out of the set using getFirstPageDesc(), and it-
erating through the rest using getNextPageDesc(). It is a natural lowest common de-
nominator for transferring data between FCM instances since each FCM conceptually

contains a list of page descriptors which can be walked through using a simple iterator

In addition to FCMDataTransferCanonical, FCMPartitionedTrivial supports an-
other data transfer interface, FCMDataTransferPartitioned (Figure 4.11), which per-
forms the transfer of page descriptors in a pre-partitioned manner, hence eliminating
partitioning re-calculation. This can be useful if we are transferring states between two

implementations, both of which are using the same data partitioning scheme.

However, since FCMSharedTrivial does not support FCMDataTransferPartitioned,
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class FCMDataTransferPartitioned {

public:
SysStatus getPartitionInfo(PartitionInfo &info) = O;
Partition *getFirstPartition() = O;
Partition *getNextPartition(Partition *curr) = O;
PageDesc *getFirstPageDesc(Partition *part) = O;

PageDesc *getNextPageDesc(PageDesc *curr) = 0;

};

Figure 4.11: Data transfer interface for Partitioned FCM implementations.

reference
FCMSharedTrivial (supported interfaces) FCMPartitionedTrivial (supported interfaces)
(orig object instance) (new object instance)
FCM ‘ FCM ‘
- DTFromCanonical() -
FCMDataTransferCanonical )— —————— =t (Dataxfer method) FCMDataTransferCanonical
transfer

FCMDataTransferPartitioned ‘

Figure 4.12: Data transfer from FCMSharedTrivial fto FCMPartitionedTrivial. After

negotiation the data transfer method DTFromCanonical () is used.

the data transfer interface used would be FCMDataTransferCanonical. Figure 4.12 il-
lustrates the data transfer between FCMSharedTrivial and FCMPartitionedTrivial.
As an optimization, in the particular case of FCM building blocks, a lazy trans-
fer protocol can be applied for the FCM building blocks. The transfer method would
simply cache the reference to the original FCMSharedTrivial instance when switching
over to the FCMPartitionedTrivial instance. Future lookups made via the FCM inter-
face will be sent to the FCMPartitionedTrivial object, which will query the original
FCMSharedTrivial object if the page is not found. If the page is found in the original

object, then the page descriptor will then be migrated over to the new object. Once the
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original object no longer caches any page frames, the linkage is then removed and the

original object freed.

4.4.5 Implementation Status

The mediator clustered object, including the transparent call forwarding mechanism, is
implemented and running on both the MIPS and PowerPC platforms. The dynamic
switching infrastructure is built on top of the existing K42 clustered object facility. It is
implemented using about 2200 lines of heavily commented C++ source code and about
400 lines of assembly. The current implementation for data transfer is crude; the more

generalized form using canonical transfer interfaces has not yet been implemented.

4.5 Summary

We described the design and implementation of the dynamic clustered object switching
infrastructure. This facility aims to provide dynamic customizability to K42’s building-
block composition. It leverages K42’s support for clustered objects and thread generation
counting mechanism. The clustered object system provides true separation of inter-
face and implementation (including internal data distribution), thus providing a flexible
framework for interposing and switching object implementation on the fly without af-
fecting the clients. The generation counting mechanism provides a simple and efficient
way for the system to determine if there are still threads alive within a process, and this
is used by the switching layer to determine if there are still in-flight requests executing
within an object. This knowledge allows the facility to switch object implementation even
when the object is alive and busy servicing requests via the clustered object interface.
The switch is accomplished by introducing a generic mediator clustered object which
accepts new requests in place of the original clustered object, regardless of the interface

exported. The take-over can be performed easily with the indirection available from the
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clustered object system. The mediator forward calls back to the original object until
the original object’s non-mediated in-flight requests are all finished, at which point new
calls are blocked and the mediator waits for the mediated forwarded calls to complete.
Subsequent to the completion of the mediated forwarded calls, relevant object state is
transferred to the new implementation and the new object then takes over, handling
the blocked and new incoming calls. The mediator clustered object is implemented as a
multi-rep clustered object to provide good performance and scalability in a multiprocessor

environment.



Chapter 5

Performance

In this chapter we examine the performance of dynamic switching in K42. First we give a
brief discussion of the experimental framework we used. Then, we explicitly identify the
costs associated with the dynamic switching mechanism. We also describe the runtime
costs of using this mechanism to perform on-the-fly customization. Lastly, we present a
set of experimental results showcasing the performance advantage one can achieve with

dynamic object switching.

5.1 Experimental Framework

K42 currently supports both IBM RS/6000 servers and the University of Toronto NU-
MAchine platform [31]. Our experiments were run on an IBM S70 enterprise server with
12 PowerPC RS64 processors clocked at 125.9 MHz and a 4MB unified 1.2 cache. The
machine’s bus speed is 83 MHz.

We also ran our experiments on a NUMAchine configuration with 16 MIPS R4400
processors clocked at 150 MHz, each with 16 KB direct mapped L1 data and instruction
caches and a 1MB unified L2 cache. The processors are organized in stations of four

processors with a memory module per-station and the stations are interconnected by a
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Figure 5.1: Costs of updating a single shared variable.

ring.! The results gathered on NUMAchine reflect the same trends as those of the S70,
however the larger ratio between processor to bus speed and NUMA effects result in
greater sensitivity to locality and better demonstrate K42’s scalability. But since the

results are similar, for simplicity we present the results from the IBM S70 platform.

To motivate and provide insight into the impact of sharing on the S70 hardware
platform, we present, in Figure 5.1, the results of two simple tests which update a single
integral variable. We ran the program multiple times varying the number of processors
on which it spawned threads. The interval bars on each point indicate the range of results
from all the test threads, and the main point is the average.? Each thread performs 100000
successive updates of the shared variable. The variable was updated with an atomic load-
linked store-conditional (LLSC) instruction. In one experiment, we followed this with
a memory synchronizing instruction (sync), and, in the other, we used just the LLSC.

On processors such as the PowerPC with a weakly consistent memory model, a memory

!There are actually two levels of rings, local and global. However, since the experiments are restricted
to 12 processors, the global ring is not used.

ZAll the graphs in this chapter have these vertical interval bars; some bars are so close to the main
points they are unnoticeable.
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Fixed Per-switch Costs

[tem Instructions
Miss-handling cost 344
Mediator rep instantiation 838

Fixed Mediation Costs

operation Instructions
Rep method invocation (inc) 32
Forwarding to old obj via mediator 633

Table 5.1: Costs assoctated with call mediation.

synchronizing instruction is needed to ensure that at critical points the consistency of
memory is maintained. Locks intended for a multiprocessor must also use the sync
operation. The results of Figure 5.1 demonstrate that in the worst case on 12 processors,
the simple updating of a shared variable can cost two orders of magnitude® more than
the base uniprocessor cost even without a memory synchronizing instruction.* Including

memory synchronizing instructions doubles the costs of updating the contended variable.

5.2 Dynamic Switching Costs

The costs associated with switching can be separated into two components: a set of fixed

costs inherent to the mediation process, and a workload dependent component.
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5.2.1 Fixed costs

Table 5.1 reports the cost associated with call mediation during the interval between
switch initiation and completion. The mediation overhead associated with forwarding
an object method invocation to the original object prior to state transfer is about 633
instructions. This involves 1) the register saves and restores (once for the prolog and
once for the epilog), 2) the mediator prolog (phase check and hash table insert), and 3)
the mediator epilog (the hash table retrieve and delete). While this overhead is non-
negligible, the cost is incurred only for those method invocations that take place during
the Forward phase. After the Block phase, the invocations that are redirected to the new
object do not perform hash table operations nor do they execute epilog code.

The cost of the first mediated call after a switch initiation is about 1815 instructions.
This includes 344 instructions for the clustered object miss-handling invocation, 633
instructions for the call forwarding (described above), with the remainder (838) attributed
to the instantiation of the mediator representative.

In our multiprocessor implementation of the mediator clustered object, a thread is
spawned on each processor with a valid OTT entry for the object to be switched. This
thread resets the OTT entry and maintains a local switch phase variable used by the
mediator. The thread is also responsible for polling the thread generation count period-
ically to see if the old threads have completed. The cost of executing the worker thread

is about 2786 instructions (assuming only one pass through the polling code).

5.2.2 Variable costs

In addition to the mediation costs, there is an object-dependent cost of performing the

data transfer which the implementor of the object being switched is required to provide.

3The uniprocessor case takes 24 cycles while the 12-processor case takes an average of 1846 cycles.
*The dip at the high end of the graph may be explained by a convoy sitnation created due to the
simplicity of the fetch and adds.
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For the switch to complete, the switching code needs to determine when there are no
more in-flight calls within the object. This is done by thread generation checking. During
the Forward phase (i.e., before the generation in the local processor is elapsed), calls are
forwarded to the old object. Once the generation is elapsed new calls are blocked until
all the tracked in-flight calls are completed (the Block phase). Only when all the worker
threads have passed the Block phase can data transfer occur and switching complete.

The time that it takes for the phases to change from Forwardto Complete is dependent
on the workload of the system. In a very active system, with large numbers of in-flight
requests, the switch may take longer. Another factor that limits the switching time is
how long it takes to process the requests already in flight, which is generally short in K42

kernel objects.

5.3 Experimental Results

In this section we present experimental results for an isolated counter as well as Region

and FCM objects that are used in K42’s memory management code.

5.3.1 Description of the Counter Objects

In order to gain insight into the performance of dynamic switching, we implemented two
versions of counter object, one optimized for concurrent reads (to obtain the value of the
counter), and the other optimized for concurrent updates (to increment or decrement the
counter).

As we saw in Figure 5.1 a simple shared counter will not perform well when it is
frequently updated on a multiprocessor. Therefore, a more scalable implementation is
needed for the counter optimized for updates. To do this, we implemented a partitioned
counter that ensures that only local accesses are required for updates. Each processor

has its own representative with a separate counter value. Locking and updating occur
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Enter barrier

Record start time

Loop for 100000 times
Update counter

Yield thread

Record the end time

Figure 5.2: Pseudo-code for counter test threads.

independently on each processor and do not require global synchronization. However, in
order to ensure that we maintain the semantics implied by the simple shared counter,
we need to lock all the individual counters to sum the values. For the counter optimized
for reads, a shared implementation is sufficient and has the advantage that an atomic

primitive can be used for updating, avoiding the need for a lock.

5.3.2 Counter Experiment

We ran three simple multi-threaded programs that used these counters. The update
experiment tests a counter with a series of updates by spawning off between 1 and 12
threads that execute the code in Figure 5.2.°

The read experiment is identical except that the update is replaced with a read of the
counter’s value in the loop. The two-phase experiment essentially combines the update
and read experiments; it goes through an update and then a read phase with a barrier
between them. For this last experiment, we start the test counter optimized for the
update access pattern and then switch it to the implementation optimized for the read
access pattern. The switch was invoked after the threads start the second phase (the
read phase). The switch is initiated by calling a switch-initiation method of the original

object. The method instantiates the new implementation and uses the dynamic switching

When we ran these experiments, K42’s preemption support was not complete, requiring us to ex-
plicitly yield the processor to other threads (in our case to mediator worker threads).
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Figure 5.3: Counter update performance comparison

layer to switch to this new implementation, backing the counter clustered object reference

being tested.

5.3.3 Results of Counter Experiments

Figure 5.3 illustrates the results of testing both versions of the counter with the update
access pattern. As expected, we see that the counter implemented with a shared variable
has similar performance as the experiment of Figure 5.1 and has poor scalability. It is
interesting to note that the slight delay introduced by the thread yield in the counter test
program is enough to break the convoy effects see in Figure 5.1 resulting in a smoother
curve with consistent worsening performance up to 12 processors. On the other hand, the
partitioned counter is able to achieve the same performance from 1 to 12 processors as
the work done per-update is independent and constant. The partitioned implementation

is the better choice for the update access pattern.

Conversely, in Figure 5.4, we see that the shared counter performs better. It is easy to

understand that in the case of reads the shared counter’s value will remain in the cache
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Figure 5.4: Counter read performance comparison

of all the processors which access it and hence will require a constant and independent
cost for each access. On the other hand, the partitioned counter requires considerably
more work. In order to obtain the global value each individual lock must be locked and
then all values summed.

To understand why the values are worse than experienced with the shared counter
under the update access pattern, we must probe deeper into the implementation. Un-
like the shared counter, each local counter value of the partitioned counter must use
an explicit lock and cannot rely on the use of an atomic primitive due to the need to
synchronize across all the local counter values. We used blocking locks which, when
uncontended, do not exhibit increased costs. However, when contended, blocking locks
exhibit considerably more overhead than simple atomic primitives (which essentially im-
plement a spin). At 12 processors, accessing data in a shared location via a contended
lock is more expensive than using atomic primitives to update that data. Further, the
extended period of time the locks are held in the partitioned counter further exacerbate
the contention.

As expected and shown in Figure 5.5, in the two-phase test we see that neither the
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Figure 5.5: Performance of different counter object implementations

shared nor the distributed implementations are able to meet the requirements of both
access patterns. However, if we dynamically switch counters between the two phases, the
individual advantages of the different counters are exploited for the appropriate phase,

achieving better overall performance.

5.3.4 Description of the K42 Objects

As described in Section 3.2, a number of building blocks are used to provide memory
management services in K42. We focus on two objects: the Region object and the FCM
object. Each building block has a simple shared implementation and more complex dis-

tributed implementations intended for use on large files accessed across many processors.

The attribute of the Region objects that is relevant to this experiment is a counter that
tracks requests to the Region. The shared and distributed implementations of the counter
maintained by the Region objects are identical to the shared and distributed counter
describe the the prior experiments. The region updates the counter frequently but only

needs coordinated on its value at destruction time. The shared FCM implementation
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Loop for 10000 times
Enter barrier
Record start page fault time
Touch pages within the file but local to the thread
Record end page fault time
Yield processor

Unmap pages

Figure 5.6: Pseudo-code for page fault test threads.

uses a single locked list to maintain the cached page descriptors. While not scalable, it
works well under uncontended, uniprocessor access and has a small memory footprint.
The distributed implementation uses a hash table per-rep with fixed sized buckets of
page descriptors, a lock per bucket, and a busy bit for each page descriptor within a
bucket. The distributed FCM ensures that separate portions of the file are cached by
separate reps thus partitioning the page across the reps. The distributed version provides

scalability but at increased uniprocessor costs compared to the shared version for small

files.

5.3.5 Page Fault Experiment

The page fault experiment is a simple user-level program that maps a file either with
the shared FCM and Region or with the distributed FCM and Region® implementation.
The program then spawns threads that execute the code in Figure 5.6. The program
induces a partitioned access of the file with each processor touching it own pages. A
second version of the program which allows a switch between the shared and distributed
implementations was used to explore the performance of dynamic switching. Since the

uniprocessor implementation starts performing poorly whenever there is any multipro-

5To eliminate I/O costs all the pages were initially faulted on to ensure that they were in-core.
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cessor interaction, we explicitly initiate the switch when at the end of the first iteration

if there are multiple number of test threads.”

5.3.6 Results of Page Fault Experiment

In Figure 5.7, the distributed objects are better when the accesses occur on more than
one processor since they avoid the contention that exists with the shared implementation.
However, Figure 5.8, which zooms in on Figure 5.7, shows the higher cost of using the dis-
tributed implementation on a uniprocessor. Examining both figures we see that dynamic
switching allows us to adapt on the fly between the uniprocessor and multiprocessor

workloads achieving better overall performance.

5.4 Cost-Benefit Tradeoffs in Dynamic Switching

The switching infrastructure is intended to support switching of objects that are ex-
pected to change between long phases of access patterns that can benefit from different
policies/implementations, and to facilitate live-swapping of objects for on-the-fly version
upgrades. However, it is interesting to discuss the limits on when the dynamic switching
can be worthwhile.

If the objective is to carry out live update of a long-running object (for bug-fix or
upgrade), then the switch is worthwhile regardless of the time and cost it takes to com-
plete the switch. On the other hand, if the intent is to adapt to changes in user behavior
patterns, the dynamic switch may not be worthwhile if the pattern changes are too quick
— at some point the overhead for dynamically switching among strategies will overwhelm
the benefits of doing so.

To make a switch worthwhile, the cycles used in performing the switch must be

"For the purpose of demonstration this is sufficient. However, in practice, a contention-sensitive lock
can be used to detect contention and initiate a switch.
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less than the cycles saved by using the new implementation for the duration of the
new program phase that benefits from the new implementation. From the earlier cost
analyses, the mediation incurs approximately 1200 4+ 633 F" cycles, where F' is the number
of mediated calls to the original object. The value of F'is dependent on the workload of
the system, but is generally small. Early experiments indicate that F' is generally less
than 5. Additionally, there are overheads from the creation and execution of the mediator
worker threads, and overhead due to cache disturbances from running the switching code.
It is estimated that, in general, the combined cost would be within the order of 10000
cycles. It can be as little as 4000 cycles if the switch is not complicated by in-flight calls
and system load. While the cost is non-negligible, generally the benefit obtained from

switching to the new implementation far outweighs the cost.

5.5 Summary

We have presented the experimental setup, explained the costs associated with the switch-
ing mechanism, and demonstrated the performance potential of applying dynamic cus-
tomization to adapt to changing access patterns and resource requirements.

The costs associated with dynamic switching include mediator instantiation, miss-
handling, rep creation, per-call redirection overhead, and the execution of mediator
worker threads. The time it takes to complete a switch depends on the workload of
the system, as well as the number of in-flight requests in the original object. Since it
uses the generation counting mechanism to advance the switch phase, the more active
threads the system has at one time, the longer the switch may take.

The counter experiments demonstrate that programs with different usage phases can
benefit from the ability to switch implementation during execution to obtain improved
performance. The page fault experiment shows how dynamic switching can improve the

performance of different classes of programs, using memory-mapped files under differ-
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ent resource usage requirements. While simple light-weight implementations of memory
management building blocks may perform better for small files in a uniprocessor pro-
gram, the performance quickly deteriorates when used in a multiprocessor program. If
the system does not have prior knowledge of whether the program uses the file concur-
rently, by using dynamic customization, it can use the simple implementations in the
beginning, and switch to using more complex building block implementations when the

file accesses become concurrent.
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Concluding Remarks

K42’s achieves customizability through its building-block design. We have developed a
generic mechanism that allows on-the-fly customization by dynamically switching objects.

The mechanism works even while there are in-flight requests to the object being switched.

The primary goal of dynamic customization is to complement the static, creation-time
customization provided by building blocks. Dynamic clustered object switching allows
long-running system servers to change object implementations on the fly without rejecting
incoming requests and without needing to restart the servers. This facility can be used to
customize long-running services with phases of execution that have different object access
properties. It can also be used to upgrade and replace older versions of object imple-
mentations in systems where maintaining an operational status is a requirement. When
the original (legacy) object implementor provided the canonical data transfer method, it
can in theory be switched to any future object (with the same interface) that implements
any arbitrary policy.!

The dynamic switching facility is built as a generic software layer that can be applied

by all K42 building blocks. The layer is built on top of K42’s object infrastructure, lever-

!The cost of the data transfer may be a concern. However, if the objects are relatively fine-grained,
the benefit should easily overcome the cost. This is the case especially when the object is long-lived, or
when the object 1s required to stay online.

73
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aging the technologies of clustered objects, protected procedure call (PPC), and thread
generation model. Clustered objects further extend the object-oriented paradigm to pro-
vide the abstraction of internal data distribution in a shared memory multiprocessor for
better locality and concurrency. The PPC model implies that external requests to system
objects are serviced by new logical threads. The thread generation model associates a
generational timestamp with each thread that is created to handle server requests. The
switching layer takes advantage of the level of indirection provided by clustered objects
to mediate requests to a running clustered object. It uses PPC and the thread generation
model to provide an effective way to determine the existence of in-flight requests that
are made to a server process, and decide when it is safe to allow the new object instance

to take over.

In the results, we demonstrated that this dynamic customizability is beneficial for
multiprocessor performance. In a simple counter example, where we considered the
isolated effect on an individual object, we showed that mismatching the choice of data
structure and object request pattern can result in significant performance degradation.
On 12 processors, the shared implementation performed 300 times better for a read access
pattern, while the distributed implementation performed 30 times better on a update
access pattern. Dynamically customizing the counter object allowed us to achieve the
optimal performance for both cases. On a combined access pattern, dynamic switching
achieved an order of magnitude better performance than the shared object, and two

orders of magnitude better performance than the distributed object.

We also examined how dynamic customization could impact the performance of mem-
ory management objects being used in K42. We showed that dynamically customizing
the region and FCM objects allowed us to capture substantial advantages for the overall
cost of a page fault. For the uniprocessor case we showed a 25 percent improvement over
the object optimized for the distributed case. For the multiprocessor case, the distributed

object had a large performance improvement over the centralized implementation. We
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were able to take advantage of both of these objects by dynamically switching as the
request pattern changed.

We are at an early stage of exploring dynamic customizability in K42. We have
concentrated on the multiprocessor performance advantages but expect to see advan-
tages beyond that. Our early experience indicates there are significant programmability

advantages as well as maintainability advantages.

6.1 Future Work

Now that we have a working implementation of the dynamic switching infrastructure,
we can experiment more with the properties of different building block implementations
under different usage patterns, and evaluate the potential benefits of performing dynamic
switching between different implementations. As the operating system matures, there will
be more system components available for experimentation.

We have not yet fully explored the issues involved in data transfer between the switch-
ing objects, and this may need more packaging to make it viable. In this dissertation,
we have concentrated on the mechanism, not on the policies. We expect in the future
to investigate the operating system automatically monitoring the system and detecting
when to initiate a dynamic switch, for example, when a file grows too large, when the
contention for a shared lock increases, or when its reference pattern changes. There
has been other work in this area [7, 27] and we would like to be able to leverage it to
help K42 self adapt. We believe that dynamic on-the-fly customization will again result
in the radical performance advantages that researchers demonstrated with customizable

operating systems.



Bibliography

[1]

Jonathan Appavoo. Clustered Objects: Initial Design, Implementation and Evaluation.

M.Sc. thesis, Dept. of Computer Science, University of Toronto, 1998.

M. Auslander, H. Franke, B. Gamsa, O. Krieger, and M. Stumm Customization Lite. In

Proc. 6th Workshop on Hot Topics in Operating Systems, 1997.

B. Bershad, S. Savage, P. Pardyak, E.G. Sirer, D. Becker, M. Fiuczynski, C. Chambers,
and S. Eggers. Extensibility, safety and performance in the SPIN operating system. In

Proc. 15th Symp. on Operating Systems Principles, pages 267-284, 1995.

R. Campbell, N. Islam, D. Raila, and P. Madany. Designing and implementing Choices:

an object-oriented system in C++. Communications of the ACM, 36(9):117-126, 1993

J. Chapin, M. Rosenblum, S. Devine, T. Lahiri, D. Teodosiu, and A. Gupta. Hive: Fault
containment for shared-memory multiprocessors. Proc. 15th Symp. on Operating Systems

Principles, pages 12-25, 1995.

K.J. Duda and D.R. Cheriton. A caching model of operating system kernel functionality. In

Proc. 1st Symp. on Operating Systems Design and Implementation, pages 179-193, 1994.

Y. Endo, Z. Wang, J. Chen, M. Seltzer. Using latency to evaluate interactive system
performance. In Proc. 2nd Symp. on Operating Systems Design and Implementation,

Seattle WA, October 1996.

76



BIBLIOGRAPHY 77

[8]

[12]

[13]

[14]

[16]

[17]

D.R. Engler, F. Kaashoek, and J. O’Toole Jr. Exokernel: An operating system architecture
for application-level resource management. In Proc. 15th Symp. on Operating Systems

Principles, pages 251-267, 1995.

B. Ford, M. Hibler, J. Lepreau, P. Tullman, G. Back, and S. Clawson. Microkernels
meet recursive virtual machines. In Proc. 2nd Symp. on Operating Systems Design and

Implementation, pages 137-152, 1996.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison Wesley,

1995.

Ben Gamsa. Tornado: Maximizing Locality and Concurrency in a Shared Memory Mul-
tiprocessor Operating System. PhD thesis, Dept. of Computer Science, University of

Toronto, 1999.

B. Gamsa, O. Krieger, J. Appavoo, and M. Stumm. Tornado: Maximizing Locality and
Concurrency in a Shared Memory Multiprocessor Operating System. In Symp. on Oper-

ating Systems Design and Implementation, pages 87-100, 1999.

G. Hjalmtysson and R. Gray Dynamic C++ Classes: A lightweight mechanism to update

code in a running program. In Proc. USENIX Annual Technical Conference, 1998

N. Islam. Distributed Objects: Methodologies for Customizing Systems Software. IEEE-CS

Press, 1996.

O. Krieger, M. Stumm, R. Unrau, and J. Hanna. A fair fast scalable reader-writer lock.

In Proc. 1993 International Conference on Parallel Processing, 1993, pages 11-201-11-204.

O. Krieger and M. Stumm HFS: A performance-oriented flexible file system based on
building block composition. ACM Trans. on Computer Systems, August 15(3), 1997,

pages 286-321.

I. Leslie, D. McAuley, R. Balc, T. Roscoe, P. Barham, D. Evers, R. Fairbairns, and E. Hy-

den. The Design and Implementation of an Operating System to Support Distributed



BIBLIOGRAPHY 78

[19]

[22]

[24]

[25]

Multimedia Applications. [EEE Journal on Selected Areas in Communications, 14(7):

1280-1297, 1996.

J. Liedtke. On micro-kernel construction. In Proc. 15th ACM Symp. on Operating System

Principles, pages 237-250, 1995.

P. McKenney and J. Slingwine. Efficient kernel memory allocation on shared-memory
multiprocessor. In Proc. Winter 1993 USENIX Conference: January 25-29, 1993, San
Diego, California, USA, pages 295-305, Berkeley, CA, USA, Winter 1993. USENIX.

A. Montz, D. Mosberger, S. Ol\’/[alley7 L. Peterson, T. Proebsting, and J. Hartman. Scout:

A communications-oriented operating system. Technical Report 94-20, 1994

The component object model (COM): A technical overview Microsoft White Paper,

Microsoft Inc., 1996

P. Pardyak and B. Bershad. Dynamic binding for an extensible system. In Proc. 2nd

Symp. on Operating Systems Design and Implementation, pages 201-212, 1996.

E. Parsons, B. Gamsa, O. Krieger, and M. Stumm. (De-)clustering objects for multipro-
cessor system software. In Proc. 4th Intl. Workshop on Object Orientation in Operating

Systems 95 (IWO0O0S’95), pages 72-81, 1995.

C. Pu and J. Walpole. A study of dynamic optimization techniques: Lessons and directions

in kernel design. Technical Report OGI-CFE-93-007, 1993

C. Pu, T. Autrey, A. Black, C. Consel, C. Cowan, J. Inouye, L. Kethana, J. Walpole, and
K. Zhang. Optimistic Incremental Specialization: Streamlining a Commercial Operating

System. Proceedings of the 15th ACM Symposium on Operating Systems Principles (SOSP
1995)

M. Seltzer, Y. Endo, C. Small, and K. Smith. Dealing with disaster: Surviving misbehaved
kernel extensions. In Proc. 2nd Symp. on Operating Systems Design and Implementation,

pages 213228, 1996.



BIBLIOGRAPHY 79

[27]

[28]

[29]

M. Seltzer, Y. Endo, C. Small, and K. Smith. Self-monitoring and Self-adapting Operating

Systems. In Proc. 6th Workshop on Hot Topics in Operating Systems, 1997.

D. Ritchie. A stream input-output system. ATET Bell Laboratories Technical Journal,

63(8):1897-1910, 1984.

R.C. Unrau, O. Krieger, B. Gamsa, and M. Stumm. Hierarchical clustering: A structure for
scalable multiprocessor operating system design. Journal of Supercomputing, 9(1/2):105~

134, 1995.

S.R. Kleiman. Vnodes: An architecture for multiple file system types in Sun UNIX. In

Proc. USENIX Conference, pages 238247, 1986.

7. Vranesic, S. Brown, M. Stumm, S. Caranci, A. Grbic, R. Grindley, M. Gusat, O. Krieger,
G. Lemieux, K. Loveless, N. Manjikian, Z. Zilic, T. Abdelrahman, B. Gamsa, P. Pereira,
K. Sevcik, A. Elkateeb, and S. Srbljic. The NUMAchine multiprocessor. Technical Report

324, University of Toronto, April 1995.


https://www.researchgate.net/publication/2416358



