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AbstractDesign and Implementation of K42's Dynamic Clustered Object Switching MechanismKevin HuiMaster of ScienceGraduate Department of Computer ScienceUniversity of Toronto2000Recent research e�orts have investigated customizable operating systems, where theimplementation of operating system services can be chosen to meet an application's per-formance or functionality requirements. This dissertation investigates the potential bene-�ts of allowing the customization to be changed, on-the-
y, while the service is in use. Byusing a prototype implementation of the dynamic object switching layer in the K42 oper-ating system, we explore the costs and bene�ts associated with dynamic customization.As an example, we showed how K42 can switch a (per-�le) page cache from a centralizedimplementation to one distributed across the processors of a multiprocessor in order toadapt to changing access patterns. The ability to customize on-the-
y allows the imple-mentation of a service to match the instantaneous demands on the service, avoiding theneed to comprise a complex, catch-all implementation. It also facilitates live-swappingof system components in mission-critical systems where downtime is undesirable.
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Chapter 1IntroductionThere has been much recent research on customizable operating systems. In a customiz-able operating system, virtual resources, such as �les and virtual memory regions, can betailored to optimize for a speci�c usage pattern on a per-application basis. For example,an application that can bene�t from sequential �le pre-fetching can inform the operatingsystem of this and the system can then provide the application with a �le object with sucha pre-fetching policy. Examples of customizable operating systems with such a capabilityinclude Cache Kernel, Choices, Exokernel, SPIN, and VINO. In these systems, however,the customization is generally done statically at resource creation time, and the resourceimplementation created will stay unchanged for the lifetime of the resource. While more
exible than traditional operating systems (where there is only a single generic imple-mentation of a resource for all varieties of applications), these systems lack the abilityto dynamically adapt to changes in program phases where the access patterns of theresource change dramatically. Also, for mission-critical systems that require constantup-time, the ability to change the implementation of a system resource (for reasons suchas feature upgrades and bug-�xes), without having to halt the system or application, canbe invaluable. This dissertation explores the possibility of performing dynamic, on-the-
yswitching of operating system resource implementations, even if the resource has already1



Chapter 1. Introduction 2been created and is being used actively and concurrently in a multiprocessor system.1.1 The K42 Operating SystemK421 is a new customizable operating system we are developing jointly with IBM researchfor 64-bit shared-memory multiprocessors. Three important goals of the system areScalability: to scale up to support very large systems (hundreds of processors) andto support applications that utilize the entire system, while also scaling down tosupport e�ciently 1) the small-scale multiprocessors we expect to be ubiquitousin the near future, and 2) sequential and small-scale parallel applications on alarge-scale multiprocessor;Maintainability, extensibility, and portability: so as to 1) avoid the high mainte-nance costs of existing operating systems, 2) enable the system to be extendedeasily to support new types of applications and integrate new research ideas; 3) al-low the system to be easily ported to new hardware platforms, and 4) optimizeperformance by exploiting hardware speci�c features;Application-speci�ed customizability: to allow subsystems (e.g., data bases, webservers, JVMs) and scienti�c applications to customize the operating system man-agement of the resources they use.To achieve these goals, K42 is implemented using an object-oriented structuring techniquecalled building-block composition [2, 16]. Each virtual resource (i.e. virtual memory region,network connection, �le, process, etc.) is implemented by a di�erent composition (or set)of objects, allowing resource management policies and implementations to be controlledon a per virtual resource (and thus per application) basis. This allows, for example, everyopen �le to have a di�erent pre-fetching policy, every memory region to have a di�erent1K42 was originally named Kitchawan.



Chapter 1. Introduction 3page size, and every process to have a di�erent exception handling policy. We refer tothe overall implementation of a virtual resource as a building-block composition, and tothe individual objects in the composition as building blocks.Building-block composition is a natural way to structure code for multiprocessors.Since each resource is implemented using a di�erent instance of building blocks, indepen-dent requests to di�erent resources can be serviced in parallel. In K42 there are no globaldata structures that need to be traversed and no global locks that need to be acquired.2Some building blocks, such as those used for a shared �le or the Process buildingblock used for a parallel program, may be widely shared across a large multiprocessor.To implement these widely shared building blocks e�ciently, the concept of clusteredobjects [1, 12, 29] has been developed. A clustered object building block is one that canbe partitioned into representative (rep) objects, where independent requests on di�erentprocessors are (in the common case) handled by di�erent representatives of the object.A clustered object is like any other building block as far as its clients are concerned, andthe implementation can be chosen at instantiation while maintaining the same interface.Clustered objects provide the additional 
exibility to modify the level of distribution. Forexample, a Process building block for a parallel program is implemented in the K42 kernelusing a rep for each processor on which the application runs | many common operations(e.g., in-core page faults) are then handled by the single, local rep of the Process withoutrequiring any communication with the other reps. The clustered object infrastructureallows the parallel Process object to export the same interface as the Process objectdesigned to run on a uniprocessor, and the distribution and locations of the reps aretransparent to the clients of the clustered object.Customizability is achieved in K42 by letting an application specify which buildingblocks the operating system should use to implement access to the resources used by theapplication. Moreover, with the infrastructure described in this dissertation, the building2No other operating system we are aware of has this characteristic.



Chapter 1. Introduction 4blocks used to implement a resource can be changed, on the 
y, even if the resource isactively being accessed. For example, an application can direct the operating systemto change the Process building block from a centralized implementation (with a singleshared rep) to a distributed one (with a rep per processor).1.2 Dynamic Customization in K42Building blocks provide tremendous 
exibility in allowing K42 to be customized for anapplication. As other work in customizable systems demonstrates [3, 4, 6, 8, 9, 26], this
exibility can translate into signi�cant performance gains. Often times though, when aresource is �rst accessed, it is not clear, especially from the operating system's perspec-tive, what its request pattern will be. Also, an application's use of operating systemresources may change over time as the application goes through di�erent phases. Whilecustomization via building blocks increases performance, there are common scenarioswhere additional performance gains can be obtained if the customization can be dy-namic. For the di�erent kinds of applications an operating system needs to support, asingle implementation of building blocks will not perform as well as when the operatingsystem can dynamically switch the building blocks implementing a given resource whenthe behavior changes. This is because the system does not know a priori the accesspatterns for an resource, or because the access pattern changes signi�cantly over time.The ability to customize on the 
y allows K42 to optimize the building blocks usedto meet the instantaneous demands on a resource. We can have many simple implemen-tations of building blocks, each specialized to meet particular needs, avoiding the needto develop complex compromise building blocks that meet a variety of di�erent needs.This has important implications for achieving the goals of K42 as described above:� simple (non-scalable) building blocks that pay no performance overhead for scal-ability can be used for sequential applications, allowing sequential applications to



Chapter 1. Introduction 5run more e�ciently on a large multiprocessor,� we can avoid the need to compile a separate version of the system for uniprocessors,since the dynamic customization captures the optimizations that a separate buildcaptures statically (this avoids cluttering up the code with #ifdef statements),� we can avoid the performance overhead of conditional branches needed in general-purpose implementations,� there are fewer complex code paths making the system more maintainable,� building blocks can be upgraded, updated, or replaced on the 
y without needingto bring down long-running applications or the operating system, and� researchers can easily introduce new special purpose building blocks without a�ect-ing other applications.Allowing building-block compositions to be modi�ed on the 
y introduces a numberof challenging problems. For example, we need to ensure that requests being serviced bythe object during the switch are handled properly, producing the correct result. Also,we want the facility to be generally applicable to all building blocks, so it has to workgenerically over all interfaces. Further, while being a general infrastructure, we do notwant to impose any overhead on building blocks that are not currently using the facil-ity. The infrastructure we developed and describe in this dissertation addresses theseproblems, making it possible to add dynamic customizability to new resources with littleprogramming e�ort, and acceptable overhead.Having building blocks dynamically switch implementations could either be initiatedpro-actively in response to a request from the application, or reactively based on con-tinual performance monitoring done by the operating system. The dynamic switchingmechanism we implemented in K42 replaces one building block instance with another,



Chapter 1. Introduction 6thereby allowing switches in internal data representation and distribution. The switch-ing of objects may occur while the original object is processing requests. The switchingmechanism correctly handles in-
ight requests to the objects involved in the switch.1.3 Dissertation OutlineThis dissertation focuses on the implementation of the dynamic switching mechanismwithin the K42 operating system environment, not on the policy associated with switchinitiation. The rest of the dissertation is organized as follows. Chapter 2 describes othercustomizable operating system work. Chapter 3 gives an overview of the K42 operatingsystem and its approach to customizability. It also describes the building block and clus-tered object infrastructures. Chapter 4 describes the implementation of K42's dynamicswitching mechanism and the tradeo�s we faced in designing this mechanism. Chapter 5shows the performance advantages of dynamic switching over static customizability, bothon a sample object as well as on K42 memory management objects. It also analyzesthe programming and performance overhead of applying dynamic switching. Chapter 6provides a summary of what we learned during the implementation, summarizes ourmechanism and results, and describes possible future work.



Chapter 2Related WorkA number of research operating system projects have explored customizability. Re-cent research in extensible and customizable operating systems includes SPIN [3, 22],VINO [26, 27], Exokernel [8], Fluke [9], L4 [18], Cache Kernel [6], Choices [4], Neme-sis [17], Scout [20], and K42 [2].Many of the above operating systems achieve customizability by extensibility. TheExokernel, Fluke, L4, and Cache Kernel allow for customizability by having the kernelredirect hardware events to external address spaces where they can be serviced in acustomized way on a per-application basis.Fluke and Cache Kernel employ a virtual machine model, where each application canhave a di�erent operating system running in a virtualized version of the hardware. Flukeproposes a recursive virtual machine model, in which layers of virtualized hardware, orvirtual machines, stack up to o�er customizability and extensibility. An application canrun on any one of such virtual machine layers, and the application itself can be anotherlayer of virtual machine for applications that require further-customized operating systemservices. Cache Kernel treats the operating system kernel as a set of cacheable objects;there can be multiple instances of di�erent kernels coexisting in the system. The properkernel component is faulted in and cached in memory when used by a particular appli-7



Chapter 2. Related Work 8cation. To one degree or another, these approaches su�er from the overhead required tocross address space boundaries and they make the sharing of resources between appli-cations desiring di�erent extensions di�cult. For example, Fluke interposes a layer ofvirtual machine implementing a new policy, say to customize the physical memory pagereplacement policy, and applications requiring the new policy will need to be run ontop of this new layer of virtual machine, inducing extra cross-address-space invocations.In Cache Kernel, extra context switches need to be performed to fault in the appropri-ate customized kernel component. Also, if two customized versions of the �le cache arecaching the same �le, it is more di�cult to use the same memory to cache the �le if theyare implemented in two di�erent address spaces.SPIN and VINO achieve customizability by allowing user code, compiled from asafe language, to be downloaded into the kernel. SPIN employs an event mechanismto dispatch downloaded extensions [22]. Predicate functions, or guards, are evaluatedin the dispatch path to decide which extension to execute. VINO allows extensions,or grafts, to be installed in system graft points. Both systems, while customizable,su�er from performance overheads resulting from predicate evaluation associated withthe extensions. The larger the number of applications that require customization, thehigher the overhead [26].The systems described above all achieve customizability through extensibility, i.e.,customized code is loaded into the system. In contrast, K42's building-block composi-tion separates customizability and extensibility. Customizability is achieved by allowingapplications to compose building blocks from a set of existing components to managea resource. There is no performance degradation due to downloading or veri�cation ofthe components. Also, since each application independently chooses a building-blockcomposition appropriate for its requests to a resource (e.g., process object), the systemprovides customizability without a�ecting other applications building-block compositionfor their view of the resource. For example, one application can use a single, shared



Chapter 2. Related Work 9representation of a process object while another application can use a distributed repre-sentation. Extensibility is achieved by allowing trusted parties to write new objects thatextend the functionality of the system. The separation leads to lower overhead [2]. Aswith other composable object-oriented systems [4, 20, 6], K42 has the bene�t of bettermaintainability.K42's solution to customizability can be considered to be much more conservativethan the techniques chosen by other research groups. In many ways, building-blockcomposition is not much di�erent from other object-oriented techniques [10] and can beviewed as a speci�c realization of the Framework approach from the Choices operatingsystem [4, 14]. These object-oriented techniques have already successfully been appliedin commercial operating systems, for example with the Unix Vnode interface [30] andStreams facility [28]. We build on this previous work, taking advantage of its strengthswith respect to maintainability, extending it to all components of the operating system,and, for customizability, providing a powerful mechanism for applications to controlthe objects used. Overall, we believe that building-block composition is simpler to usethan the other more radical techniques, and that it results in better maintainabilityand performance because it does not require the system designer to deal with many ofthe complexity and security problems the other approaches must face. While similarchallenges may still exist in our model, they are not the concern of the users of thebuilding blocks, but the building-block implementors.The ability to dynamically optimize data structures and policies used by the system,in conjunction with a customizable system, can improve performance of an applicationconsiderably. VINO leverages its extension mechanism to install performance monitor-ing grafts to collect performance data for both online and o�-line processing [27]. Thegrafting infrastructure is also used to facilitate the development of possible system adap-tations, but it does not provide a generic way to handle on-the-
y switching of objectimplementations at the interface level. The Synthesis operating system [24] features dy-



Chapter 2. Related Work 10namic code optimization using an on-line kernel code generator to reduce the latency ofcommon kernel functions. While e�ective when applied, this optimization requires hand-coded optimizations written in low-level machine language, which limits its applicability.Both of these techniques could be applied to K42 code, but the thrust of K42's dynamiccustomization is wider.Dynamic linking introduces the ability to allow new code modules to be added to arunning system, improving the customizability of a program. While useful, it can onlybe applied at the granularity of modules, lacking native support for the C++ language.Microsoft's component object model (COM) [21] allows coexistence of di�erent compo-nent objects implementing the same interface, and uses dynamic linking to load in newmodules when an instance of a new component implementation is created. On the Javafront, the class loader system can be extended to support dynamically loadable classesalso. A more lightweight dynamic C++ object system has been proposed, implementingdynamically loadable C++ objects that support versioning [13]. These facilities solve theproblem of updating future object instances, but they are incapable of allowing alreadyinstantiated, long-running system objects to change their implementations dynamically,hence limiting their ability to perform live-swapping of such objects.The Synthetix work [25] is closest in spirit to our own, supporting on-the-
y cus-tomization of the system in response to changing access patterns. However, they assumethe code to be switched can only be called by a single thread at a time, that only a singlefunction is to be switched, and that no data translation or object switching is required.In contrast to the method we propose here, they also pay overhead on every functioncall, even when no switching is occurring.To the best of our knowledge, none of these projects investigates on-the-
y customiza-tion when a change in internal data organization is needed, and while there may berequests in-
ight.



Chapter 3K42 Operating SystemK42 is an operating system designed from the ground up and targeted at multiprocessorshared-memory machines. The project is being conducted at IBM Watson Researchwith collaboration from University of Toronto and other universities. K42 was heavilyin
uenced by Tornado [1, 2, 11, 12, 29], developed at the University of Toronto.Achieving good performance for shared-memorymultiprocessor programs has receivedconsiderable attention [5, 12, 15, 19, 29]. K42's overall structure, algorithms, and datastructures have been designed with the purpose of achieving good multiprocessor per-formance, yet without sacri�cing uniprocessor performance. K42 uses an object-orientedapproach, where every virtual and physical resource in the system is represented by anindependent object, ensuring natural locality and independence for all resources. As amatter of principle, all locks are internal to the objects they are protecting, and no globallocks are used. Customizability allows us to choose di�erent implementations when weare running an application in uniprocessor versus multiprocessor modes thus maintaininggood overall performance. Parallel applications have many specialized needs, from spe-ci�c memory layout to particular communication and scheduling demands. Here, K42'scustomizability provides the ability to tailor the operating system to the demands of anyspeci�c application. 11



Chapter 3. K42 Operating System 12In addition to the challenges of multiprocessors there are other di�culties faced inoperating system design. The requirement of supporting the system across di�erent ar-chitectures (PowerPC, MIPS, etc), and having to support a wide range of applicationswith di�ering and con
icting resource demands, all contribute to di�culties in achievinggood operating system performance. In varying degrees, these challenges cause both pro-grammability and performance problems in operating systems. Programmability issuesarise when code for various architectures appear #ifdef'ed, making it di�cult to under-stand the code or to modify it. Performance issues arise if code contains conditional codefor di�erent hardware platforms, or has to perform in a generic way to meet all possibleapplication demands.K42 has been designed to alleviate these di�culties by supporting customization in a�rst-class way. A running K42 operating system is customized for the hardware platformit is running on, and it is customized to present to applications resources that can betailored to their requirements. This way, K42 achieves the bene�ts associated with othercustomizable operating systems that can tune for application behavior. K42's approach tocustomization also yields signi�cant bene�ts in terms of structuring and programmabilityof the operating system and the ability to port it easily and with high performance.The system, however, is a research operating system in its infancy. We currently havebasic Linux libraries running on the system and are working towards being able to runapplications compiled for Linux on K42. K42 is expected to be self hosting by fall of2000, and is available as open source.3.1 K42 Object InfrastructureIn this section we provide the background on building blocks and clustered objects inorder to better understand the dynamic switching mechanisms we describe later. Moredetails of clustered objects can be found in the descriptions of Tornado and clustered



Chapter 3. K42 Operating System 13objects [1, 12], while a more in depth discussion of building blocks can be found in theHFS paper [16] and an early K42 position paper [2].3.2 Building-Block CompositionIn building-block composition, each virtual resource instance (e.g., a particular �le, open�le instance, memory region) is implemented by combining a set of objects (e.g., C++objects) we call building blocks. Each building block implements a particular abstractionor particular policy and might 1) manage some part of the virtual resource, 2) managesome of the physical resources backing the virtual resource, or 3) manage the 
ow ofcontrol through the building blocks. We refer to the overall implementation of a virtualresource as a building-block composition.Customizability is achieved by letting the application specify the particular set (orcomposition) of building blocks to be used for implementing a virtual resource created onbehalf of the application, and by letting the application dynamically change the composi-tions at any time. This allows, for example, every open �le to have a di�erent pre-fetchingpolicy, every memory region to have a di�erent page size, and every process to have adi�erent internal data distribution.A building block exports an interface that speci�es the operations that can be invokedby other building blocks. It may also import (one or more) interfaces that are exportedby other building blocks. Two building blocks are said to be connected if one of themmight invoke operations of the other, and the object is then also said to reference theother. Two building blocks may be connected only if the exported interface of the one isimported by the other.The particular composition of building blocks (i.e., the set of objects and the waythey are connected) that implement a virtual resource determines the behavior and per-formance of the resource. As a simple example, Figure 3.1 shows four building blocks
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A

B

C DFigure 3.1: Building blocks implementing a virtual resource such as a �le. C and D mayeach store data on a single disk, B might be a distribution building block that distributesthe �le data to C and D, and A might be a compression/decompression building blockthat decompresses data read from B and compresses data being written to B.that might implement some part of a �le. B contains references to C and D, and in turnis referenced by A. C and D might each store data on a di�erent disk, B might be adistribution building block that distributes the �le data to C and D, and A might bea compression/decompression building block that decompresses data read from B andcompresses data being written to B. The imported and exported interfaces are indicatedby the pattern at the top and bottom of each object. If two building blocks are connected,then the corresponding imported and exported interfaces must match.As a concrete example of building blocks, Figure 3.2 shows, in a slightly simpli�edform, the key building blocks used for memory management in K42. The building blocksdepicted in the �gure are:� Process: provides clients with entry points that manage all resources associatedwith a process,
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Process

HAT

Region FCM

Region FCM
PM

FR

FRFigure 3.2: Memory management building blocks in K42. Arrow represents interfaceimport relationship.� Region: maintains the mapping of a virtual memory region to the part of the �lebacking the memory,� FCM: maintains a memory cache of �le pages,� FR: implements a �le object,� PM: manages physical memory of the system, and� HAT: performs low-level hardware address translation.The arrows in the �gure represent the interface import relationship. For instance, theRegion building block imports the interface exported by the FCM building block.As an example of these building blocks in action, in a page-fault, the exception isdelivered to the Process building block for the thread that faulted. The Process maintainsthe list of mapped memory regions in the process's address space, which it searches toidentify the responsible Region to forward the request to. The Region translates the faultaddress into a �le o�set, and forwards the request to the File Cache Manager (FCM)for the �le backing that portion of the address space. The FCM checks if the �le datais currently cached in memory. If it is, then the address of the corresponding physicalpage frame is returned to the Region, which makes a call to the Hardware AddressTranslation (HAT) to map the page, and then returns. Otherwise, the FCM requests



Chapter 3. K42 Operating System 16a new physical page frame from the physical memory manager (PM) and then asks theFile Representative (FR) to �ll the page from a �le. The FR then makes a call to thecorresponding �le server to read in the �le block. The thread is re-started when the �leserver returns with the required data.In this example, the composition of these building blocks together manage two virtualmemory regions backed by di�erent �les. Since there are multiple implementations ofeach of these building blocks (e.g., there are uniprocessor- and multiprocessor-optimizedbuilding block implementations for the Region interface, and there are FCM's optimizedfor small �les and big �les), together they form a highly customizable collection of virtual-memory-mapped �le implementations for di�erent resource usage patterns.It is important to note that each virtual resource instance is composed of di�erentbuilding-block instances. For example, in Figure 3.2, each region and each FCM hasa di�erent object instance implementing it and therefore each could be a di�erent im-plementation. One region and FCM could be optimized for small �le and uniprocessoraccesses, while the other pair may be optimized for large �le and multiprocessor accesses.Here, customizability is achieved by choosing di�erent building blocks.Further customization can be achieved by modifying the topology of the composition.The topology de�nes in the abstract which type of building block connects to whichother type of building block. As an example of modifying the topology, in K42 we have abuilding block specialized for copy-on-write (COW) behavior. In Figure 3.2 it would beadded between the region and the FCM. To do so, the COW accepts as input what theregion outputs, and the COW outputs what a standard FCM accepts as input. Buildingblocks can also present a di�erent interface to applications. For example, in creating aregion, one could have an additional parameter stating a maximum size.After an application instantiates a building block to manage a resource and beforeusing it, the system veri�es the building-block composition for type safety to ensure thecorrect interfaces have been implemented (i.e., the corresponding imported and exported



Chapter 3. K42 Operating System 17interfaces match).K42's building-block composition separates mechanisms for customizability and ex-tensibility. Informally, a system is extended when new functionality (i.e., new code) isadded, and customized when an application speci�es the functionality to be invoked onits behalf. As described in Chapter 2, previous approaches have achieved customizabilitythrough extensibility, i.e., customized code is loaded into the system. In K42, customiz-ability is achieved by allowing applications to compose building blocks from a set ofexisting components to manage a resource. There is no performance degradation dueto downloading or veri�cation of the components. Also, since each application indepen-dently chooses a building-block composition appropriate for its requests to a resource,the system provides customizability without a�ecting other applications building-blockcomposition for their view of the resource. For example, one application can use a sharedrepresentation of a process object while another application can use a distributed rep-resentation. Extensibility is achieved by allowing trusted parties to write new objectsthat extend the functionality of the system. The separation leads to lower overhead.And as with other composable object-oriented systems, K42 has the bene�t of bettermaintainability and improved multiprocessor performance.The goal of customizability is to match the implementation of a given building-blockcomposition to the needs of the application using it. A static choice of building blockscan be sub-optimal for several reasons. The operating system does not generally know apriori the expected usage pattern of a resource by an application. This is true for mostmixes of applications run by an operating system. The system therefore can only guessthe object best suited for an application. Even in the case where an application provideshints on how it will use a resource, its requirements may change over time. These reasonsmotivate the ability to dynamically change building blocks when they are in use.Building-block compositions provide a powerful method for customization, useful formultiple purposes. The ability to change a building block on the 
y adds to its usefulness.



Chapter 3. K42 Operating System 18In the next section we describe the clustered object infrastructure needed to support on-the-
y customization.3.3 Clustered ObjectsOptimizing performance across the multiple and potentially competing operating systemservices is complex. To reduce the complexity of this problem, K42 takes the building-block approach (as described in the previous section) to system design by breaking themanagement of resources into logical pieces or objects. However, this alone does not nec-essarily achieve good multiprocessor performance, since some applications stress concur-rency when going for high throughput. Also, locality of reference needs to be maximizedto avoid slower remote memory accesses and reduce cache-coherence tra�c. Clusteredobjects extend the object-oriented design of building blocks by providing the additionalability of managing the level of distribution of data and locality of execution. Basedon Tornado, K42's clustered object infrastructure provides a framework for controllingconcurrency and locality of reference in objects [1, 12, 29].3.3.1 OverviewFrom a client's perspective, clustered objects appear similar to C++ objects, i.e., theirinterfaces are the same. A clustered object is logically a single object, but internally itis composed of one or more component objects called representatives, or reps. Each rephandles calls from a speci�ed subset of the processors (see Figure 3.3). A clustered objectis accessed via a clustered object identi�er. The method invocations on clustered objectsare done using this identi�er. Each call is automatically directed to the appropriate repbased on the processor from which the call was made and on the degree of clustering. Thedegree of clustering determines how many reps there are in the system. There might beone rep for the entire system, one rep per processor, or any other appropriate mapping
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clustering degree = 3clustering degree = 1Figure 3.3: An abstract depiction of a clustered object.such as one rep per NUMA node in a NUMA system. Each representative provides itsclients with the full functionality of the clustered object, and if necessary, the reps of theclustered object communicate with each other to maintain consistency.The internal data representation and algorithms of the clustered object is transparentto the client. If the shared object data is read-mostly, replication may be adopted, witheach processor's local rep maintaining its own replicated copy of the data. Some objectsare best partitioned so that the data most accessed by a processor will stay in the replocal to that processor. With appropriate internal implementation, an object can beoptimized for locality and concurrency depending on an assumed access pattern. Withan implementation involving multiple reps, it is necessary to keep them consistent. Whilethe internal implementation and data distribution of a clustered object can be modi�edand �ne-tuned to suit its locality requirement, the interface that it exposes to its clientsremains the same. While the internal data may be replicated, migrated, or partitioned,the clients can make method invocations to the object without knowledge of its actualimplementation.The clustered object infrastructure in K42 has a number of bene�ts. It providesa framework to optimize objects for locality and concurrency using commonly appliedtechniques such as replication or partitioning. These techniques can be applied bothto data structures and locks. The interface exposed by the clustered object isolatesthe internal organization of the reps from the clients. Also, clustered objects facilitate



Chapter 3. K42 Operating System 20incremental optimization and experimentation for each system object. A system objectcan be implemented initially as a single-rep clustered object, whose implementation wouldbe almost identical to that of a common non-clustered object. If the object becomes abottleneck, a multi-rep clustered object could be implemented and used instead. Sincethe interface remains constant, implementations with di�erent degrees of clustering andconsistency protocols can be experimentedwith, without modifying the rest of the system.The interface provides the 
exibility to allow di�erent implementations of a clusteredobject to exist, optimized for di�erent usage requirements. As discussed in Section 3.2,in K42, this 
exibility of allowing di�erent customized implementations of the same objectis referred to as building-block composition.3.3.2 ImplementationIn this section, we present the implementation of the clustered object system in K42. Wedescribe how clustered objects are referenced and what system-level data structures areused. We then explain how reps are created within a clustered object.Object translation tableClients access a clustered object by means of a clustered object identi�er. In the K42implementation, the identi�er is a pointer to an entry in a per-processor table called theobject translation table (OTT) (see Figure 3.4). The entry in the OTT points to therep associated with the clustered object (once it has been used). Because the OTT isde�ned on a per-processor basis, for each clustered object identi�er, there is one objecttranslation entry per processor. The entry on each processor for a particular object couldpoint to the same rep, or to di�erent reps, depending on the degree of clustering. Usingthe extra level of indirection introduced by the object translation table, the distributionof internal object data can be optimized independently of the interface.To allow clustered object invocations on each processor with the same identi�er



Chapter 3. K42 Operating System 21(pointer), we exploit K42's aliased virtual memory capability, which allows the samevirtual memory address to be mapped to di�erent physical addresses on di�erent proces-sors. Per-processor aliased virtual memory regions are used within the address space togive each processor its own unique copy of the object translation table, located at thesame virtual address. Since many objects are only accessed on the processor on whichthey are created, we partition the ownerships of the table into disjoint subranges, one perprocessor. This way, allocation of entries in the table does not require synchronizationacross processors.Miss handlingRepresentatives are lazily created. This is done for a couple of reasons. Requests to aparticular clustered object are not necessarily made from all processors; for some clusteredobjects only a small subset of processors make requests. Further, lazy creation spreadsout the creation time to �rst use.Lazy creation is accomplished by initially installing a reference to a generic objecthandler (instead of to a rep) in all the object translation entries. An object table entryis modi�ed to point to a particular rep on demand when the processor's �rst methodinvocation on the clustered object is made. This way, processors that do not access aparticular object will not need to perform unnecessary set up. The process of setting thetranslation entry to point to a rep is called miss-handling. The processor that incurs themiss is said to be faulting.Di�erent clustered object implementationsmay have di�erent ways of handling misses.In particular, in a multi-rep clustered object with one rep per processor, we manage theset of reps, and create a new rep if the rep corresponding to the faulting processor isnot already in the set. In our clustered object system, the object that manages the setof reps is called the root object, or just root. The root is responsible for object-speci�cmiss-handling, and is instantiated when the clustered object is instantiated. The pointer
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objectFigure 3.4: Clustered object implementation. Clustered object i has been accessed on P0and P1, where reps have been installed; P2 has not yet accessed object i.to the root is installed in an auxiliary table called the root table, indexed the same way asthe object translation table. Besides being responsible for rep creation and initialization,the root is also responsible for maintaining shared resources used by all the reps in aclustered object.Entries in the object translation table are initialized to point to a generic handlerobject called the default object. The default object redirects calls to the correspondingroot object and invokes its object-speci�c miss-handling code. The result of invoking thismiss-handling code is a pointer to the rep responsible for handling the call. The defaultobject forwards the original invocation to the rep, and this forwarding is transparent toboth the rep and the client that faulted. If the root installed a pointer to a rep in theobject translation table during miss-handling, then subsequent method invocations tothe clustered object will be handled by the rep directly (see Figure 3.4). This mechanismallows clients to invoke methods of the clustered object, without knowing that a miss-handling operation may take place.The default object leverages the C++ virtual function mechanism to perform miss-handling transparently. We allocate and assign to the default object a virtual functiontable with enough generic virtual functions to support expected objects. However, if



Chapter 3. K42 Operating System 23necessary, the size of the vtable can grow dynamically.1 Since the default object knowsnothing about the invocation context, each virtual function of the default object saves allthe registers of the original caller before performing the miss-handling work. Once themiss-handling is done and a rep is obtained, it restores all the register content, replacesthe this pointer argument with the pointer to the rep that handles the call, and forwardsthe call to the corresponding method of the rep by looking up the rep's virtual functiontable. While the operation has non-negligible overhead, it is performed only once forestablishing the translation entry and infrequently thereafter.A consequence of using the vtable for miss-handling and call redirection is that allclustered object methods will need to be virtual. This is acceptable since the objectpolymorphism is used in many system designs anyway.Paging supportThe translation tables are likely to be sparsely populated, because there can be a largenumber of clustered objects, and because clustered object identi�ers are allocated fromthe subrange assigned to the processor they are created on. As a result, we choose tomake the translation table memory pageable. Further, since the translation tables aresparse and represent a cache (i.e., entries can be regenerated by the root objects whichmaintain the reps at any time), a victim page can just be discarded rather than paged out.Future accesses to the clustered objects in this range will cause the default object to re-handle the misses, which restores the entries. If necessary, a dense compression table canbe used as a second-level cache of translation entries to reduce the extra miss-handlingcaused by discarded pages.1A special virtual memory region can be used to back this table. When a page fault on this memoryregion occurs, a memory page is supplied with the new virtual function pointers, which point to newlyinitialized generic functions. Currently, K42 provides a vtable that has many more entries than exist inthe system's largest clustered object.



Chapter 3. K42 Operating System 24Cross-address-space invocationCross-address-space object method invocation is supported by instantiating a local proxyobject, which communicates with the remote interface object associated with the serverobject. Parameter marshaling and caller authentication are performed by this local proxyobject.3.3.3 Generation CountAnother portion of the infrastructure used by the dynamic object switching infrastruc-ture is K42's generation count. This is used by the clustered object facility for garbagecollection [12]. The facility for remote procedure call in K42 is called Protected ProcedureCall (PPC). In the PPC model, a request to a server (including the kernel) gets executedby a (logically) new thread that is created on the server side for handling a PPC request,and ends when the request is satis�ed. In K42, all requests to server objects made byexternal clients are accomplished via the PPC facility.A reference count tracks the number of active requests (threads) executing in anaddress space on a per processor basis. When a thread is created, it is assigned a threadgeneration. An epoch is the time period that starts when the �rst thread in a generationis created and ends when there are no longer any threads that were started in previousepochs. The generation count (or epoch number) is advanced when the epoch is over,and this count is used in thread generation assignment. To e�ciently determine if thegeneration count can be advanced, we need at least two reference counts, one that countsthe number of threads with the current generation and one with the previous generation.If the system only maintains the reference count for the current generation, then thegeneration count may not be advanced. This is because the reference count may neverreach zero, and so the system cannot determine that the epoch is over.K42 maintains reference counts for two generations | the current generation and
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thread’s associated generation numberFigure 3.5: Thread lifetime diagram illustrating the generation-count updates.the previous generation. When a new thread is created, the system increments thereference count for the current generation, and the thread is assigned with that threadgeneration. When the thread terminates, the corresponding generation's reference countis then decremented. This way, the generation count is guaranteed to advance sinceonce the current generation is started, the previous generation's reference count will onlydecrease. The generation count can advance when the previous generation's referencecount reaches zero. Under this model, we can determine that there are no more runningthreads started prior to any particular time, by recording the current generation countat that time and waiting for the generation count to increase by at least two, since thisimplies that all the threads from both the current and the previous generations haveterminated.Figure 3.5 illustrates how the generation count relates to the reference counters asdescribed above. When the previous generation's reference count (prev in the �gure) is



Chapter 3. K42 Operating System 26zero then the generation count can be advanced, and the reference counts are updatedaccordingly.3.4 SummaryBuilding blocks allow 
exible customization of operating system resources, while clus-tered objects provide system-level support for building blocks optimized for concurrencyand locality in multiprocessors. Building blocks provide for better programmability andmaintainability as well as allow for easier porting with better performance, compared tothe other more radical approaches of customizability through extensibility (described inChapter 2).Since K42 is designed for multiprocessors, most building blocks are implemented asclustered objects. A clustered object is one whose implementation is potentially dis-tributed across a multiprocessor for concurrency and locality. A clustered object is log-ically (i.e., externally viewed as) a single object, but it is internally composed of one ormore component objects called representatives. Each representative handles calls from aspeci�ed subset of the processors.The clustered object model is a partitioned object model which allows for express-ing locality and concurrency optimizations in a consistent manner. It is designed toprovide the bene�ts of an object-oriented paradigm, such as clear separation betweeninterface and implementation, better maintainability with modularized code, and im-proved programmability via the inheritance hierarchy. The clustered object translationtable provides the 
exibility necessary for clients to access the object through a localrepresentative object transparently, and thus allows the degree of data distribution to bechanged without a�ecting the interface.While it is impossible to completely remove interactions between processors and elim-inate remote memory access, the clustered object mechanism allows �ne-tuning at the



Chapter 3. K42 Operating System 27object level so that such interactions are done only when necessary, thus achieving max-imum concurrency and locality of reference.Clustered objects allow us to explore and implement locality and concurrency op-timizations while presenting the same interface to applications. The building-block ar-chitecture provides a practical framework for system design; most kernel objects andsystem servers in the K42 operating system are built using building blocks implementedby clustered objects. In the next chapter, we describe how these building blocks can beexchanged for new ones with the same interface on the 
y at run time, transparent tothe clients that are using them.



Chapter 4Dynamic Object SwitchingAs described in Section 3.2, building blocks allow custom composition of system objects,providing the 
exibility to tune performance on a per-application and per-use basis. InK42, an application programmer can request system resources from building blocks thatare customized to the needs of that application. However, if an application's resourcerequest pattern changes over time | for example, when the application enters anotherexecution phase | then the originally chosen object may no longer be optimal. Similarly,in many cases, the programmer does not know, or cannot specify a priori how an objectwill be used, thus requiring the operating system to use a default choice or attempt toinfer how the object will be used. In this common scenario, the operating system canimprove application performance if it chooses an initial building block for the object,and then dynamically switches to another implementation of that building block whenthe application's request pattern to the resource provided by the object changes. Theimplementation switch may be initiated by a system performance facility which monitorsthe request patterns to the object, or by the program using the object if the change inusage pattern is known at compile time.The ability to perform dynamic, post-creation switching of system objects can be animportant aspect to achieving good performance in customizable operating systems, as28



Chapter 4. Dynamic Object Switching 29we will show in Chapter 5. Dynamic switching complements the 
exibility o�ered by thestatic, creation-time customization via building blocks. It allows appropriate customiza-tion across a wider range of applications by being adaptive to changing requirementsof applications. In this chapter, we describe the design and implementation of the K42dynamic clustered object switching facility.4.1 BackgroundThere are di�erent reasons why the operating system may want to dynamically switchan object. In increasing degrees of complexity, it may wish to switch to an object thatprovides a di�erent policy or algorithm while using the same internal data structures,or switch to an object with a di�erent implementation, having a di�erent internal datarepresentation.Most often, a change in policy implies a change in the associated internal data struc-tures. This is common in K42, since the clustered object system abstracts away theinternal data distribution, providing an additional degree of 
exibility frequently takenadvantage of by programmers, and hence adding a dimension in which the internal dataorganization can be tuned to the access behavior. When a change in the underlying datastructures is needed during a switch, the switching operation can become quite involved,especially if the object is highly concurrent and event-driven. Multiple threads are likelyto be servicing requests to the object at any instance. We call requests that are beingserviced by threads executing in the object when a switch is initiated in-
ight requests.In-
ight requests complicate switching because unless the change in data can be propa-gated to the new object coherently, the switch cannot occur until all the in-
ight requestsare serviced by the original object.When the internal data representation remains unchanged, there are obvious opti-mizations to the dynamic switching mechanism to simplify the problem. As an example



Chapter 4. Dynamic Object Switching 30of such an optimization, consider switching between two objects implementing di�erentpage replacement policies, when the new object changes the victim page selection policywhile continuing to use the same internal data structure. As long as the new implemen-tation coherently accesses the same internal data members as the old one, we can haveconcurrent requests being serviced by both the old and the new objects. For these situ-ations, no explicit data coherency needs to be maintained, and the internal data beingused are not duplicated or relocated. Therefore, the new object implementing the newpolicy can replace the old one without concern for active requests being serviced in theobject. In such cases, it is su�cient to direct new requests to the new object, which isaccomplished by pointer manipulation in K42's clustered object translation tables. Thisis easily accomplished in K42 due to the extra level of indirection introduced by theobject table. Without the object translation table, even this level of dynamic switchingcould prove challenging.This dissertation focuses on solving the common and complex situation where theinterface exported by the object is the only thing guaranteed to remain unchanged.4.1.1 Hybrid objectThere are a couple approaches to dynamic switching one might take. The simplest wouldbe to design a custom hybrid object (see Figure 4.1). A custom hybrid object is a self-switchable object containing two or more implementations internally, all coordinated bythe switching wrapper, which implements the switching logic as well as the object inter-face to external clients. There are de�ciencies with this model, however. To understandthem, we present a brief overview of what this approach might entail, and then describeits disadvantages before presenting the approach we took in K42. As described in theprevious section, we cannot perform a switch if coherent data transfer is needed untilall the in-
ight requests are serviced by the original object. Without external systemsupport, a custom hybrid object would need to maintain a count, tracking the number
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list of blocked calling threadsFigure 4.1: A custom hybrid object with multiple implementations.of requests the object is servicing at all times. After switch initiation, it would have toblock new requests while in-
ight calls are allowed to �nish processing. The reason forblocking new calls is to ensure that the call count will eventually drop to zero. Whenall in-
ight calls have returned (i.e., the call count reaches zero), the state of the originalobject can be safely transfered to the new one. After the state transfer, all the blockedcalls can now be resumed and forwarded to call the new implementation. The complexityincreases when the object is re-entrant. Blocking a re-entrant call causes deadlock sincethe in-
ight call count would then never reach zero. To solve this problem, the switchingwrapper would have to remember the threads that are currently in-
ight. When a newcall enters the wrapper it checks whether the calling thread is already in-
ight. If so, thecall to the object is re-entrant and hence should not be blocked.The main disadvantage of this approach is the added overhead to the normal call path,even when the object is not trying to switch implementations. This overhead includeskeeping track of the in-
ight call counter and thread identi�ers at all times. Also, theswitching wrapper has to be custom built to track all calls into the object and forwardcalls to the corresponding method of the appropriate object. This wrapping object, whentightly coupled with the objects to be switched between, can signi�cantly increase thecomplexity (and decrease the maintainability) of the original objects. Another disad-vantage is that this would have to be custom implemented for each object desiring the



Chapter 4. Dynamic Object Switching 32capability to switch. Because of these disadvantages, we have designed a more genericfacility that incurs no overhead when not switching objects.4.1.2 K42's dynamic switching design goalsK42's approach to dynamically switching objects has the following design goals:� zero impact on performance when an object is not switching,� minimal code impact on the objects to enable switching between di�erent existingobject implementations,� zero impact to other system objects unrelated to the switching operation,� good performance and scalability; that is, the switching operation itself shouldincur low overhead and scale well on multiprocessor systems, and� switch transparency; that is, clients using the building block being switched neednot be aware that the implementation behind the interface is being switched.4.2 K42's approach to dynamic switchingK42 takes an approach similar in concept to the hybrid object, but it adds no cost tothe object when not switching and the implementation is generically used by all objectswishing to support dynamic switching. In addition, K42's dynamic clustered objectswitching facility provides a common switching interface and implementation that canbe used by any clustered object desiring to perform a dynamic switch.We use two aspects of the clustered object infrastructure for dynamic switching thatwere described in Section 3.3: the Object Translation Table (OTT) and the generationcount. The OTT provides a level of indirection that allows us to intercept method invo-cations. The generation count allows us to track in-
ight requests, helping us determine



Chapter 4. Dynamic Object Switching 33when all requests made prior to switch initiation have �nished. To start a switch in K42,the object translation table for the switching object is modi�ed to point to an interposingclustered object called the mediator (see Figure 4.2). This mediator object is a genericobject capable of handling the switching of any clustered object. This object mediatescalls from the time the switch has been initiated, to when the switch has completed. Itintercepts clustered object method invocations made to the original object and transpar-ently counts and tracks new requests. When it determines that all in-
ight requests areaccounted for (so all the re-entrant calls can be identi�ed), it blocks all new incomingcalls and waits until the tracked in-
ight calls have completed. Once this condition ismet, i.e., there are no more in-
ight calls using the original object, the mediator initiatesthe data transfer between the old and the new objects via a callback and then redirectsthe blocked calls to the new object.Compared to the hybrid object implementation described above, this approach sep-arates the complexity of switch-time in-
ight call tracking and deadlock avoidance fromthe implementation of the object itself. Call interception and mediation are simpli�ed bythe clustered object system infrastructure. Besides the data transfer callback, the restof the switching process is automated by the K42 mechanism, allowing for easy additionof objects that wish to take advantage of dynamic switching into the system. Details ofthe implementation are presented in the next section.4.3 Implementation overviewFigure 4.2 illustrates the states of the objects involved in switching between the clusteredobject identi�ed by i from implementations A to B. Initially, implementation A is usedwhen clustered object identi�er i is called (Figure 4.2a). It is assumed that both objectsAand B are already instantiated. When the switch is initiated, amediator object is created,and a reference to it is installed in the OTT in slot i. Subsequent object invocations
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Figure 4.2: A switch from implementations A to B of clustered object i.for i then invoke the mediator object instead of the original object (Figure 4.2b). Themediator object has references to both implementations, and it is responsible for trackingnew incoming clustered object method invocations to i. The mediator, depending on thestate of the switching operation, will either forward the call immediately to A, block thethread associated with the incoming call, or forward the call to implementationB. Thereare three phases associated with the switching operation: Forward, Block, and Completed.They are described in the following paragraphs. When we reach the Completed switchphase, the mediator modi�es the OTT to remove itself from the i-th slot and have theslot refer to B instead (Figure 4.2c) so that all future calls to i are handled by B directly.During the Forward phase, the mediator tracks new incoming calls by their threadidenti�ers and increments an in-
ight call counter. It decrements the counter when theseinvocations return. The mediator stores the thread identi�ers in a hash table so thatre-entrant clustered object method invocations by the same thread can be identi�ed and



Chapter 4. Dynamic Object Switching 35allowed to continue even during the Block phase. This is required to prevent deadlock,which would occur if we blocked a re-entrant thread; i.e., since the thread has beenpreviously counted, if it is not given a chance to �nish, the in-
ight counter would neverreach zero, and we would never make forward progress. The hash table is also used tosave register values used for transparent call forwarding and call returning. The Forwardphase continues until we have gained knowledge of all in-
ight calls to the object; that is,there are no more in-
ight requests that were started prior to the switch initiation. Weknow there are no more such requests when the generation count described in Section 3.3has advanced. If we start blocking incoming threads too soon without being aware ofall requests, we may cause deadlock because a thread we did not know about may havebeen re-entrant.The Block phase starts when the mediator determines there are no more in-
ightcalls that were started prior to the switch initiation, i.e., all in-
ight calls are accountedfor in the hash table established during the Forward phase. The mediator determinesthis when the generation count advances, guaranteeing all requests made prior to switchinitiation have �nished. During the Block phase, new incoming calls are �rst checkedto see if they belong to one of the in-
ight threads tracked by the hash table. If so,it is a re-entrant clustered object method invocation and is forwarded to the originalimplementation A. Otherwise, the thread is a new incoming thread, which the mediatorblocks until the switch has completed, at which point it is unblocked and forwarded tothe new implementation B. There are more complex issues related to indirect recursion,but they can be adequately handled.1 Blocking new invocations will stop the in-
ightcall count from increasing. Once the call count reaches zero, there are no more threadsexecuting within the object A and the mediator initiates a data transfer, which transfersthe state of the original object to the new object so that subsequent requests to the newobject are serviced coherently to the state of the original object. While this phase sounds1Details of the such issues will be described in Section 4.4.2.
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ushed again so that new accesses will be handled by theroot and reps of B directly. The state is shown in Figure 4.6.Figure 4.7 illustrates the di�erent phases of switching within the timeline of a process,along with the lifetimes of the threads that could be executing within the process. At
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Thread lifetimeFigure 4.7: Timeline showing di�erent phases and their association with the lifetimes ofthe threads in the process.time ts, a dynamic switch is initiated, and the mediator takes control over the clusteredobject to be switched. It marks the start of a thread generation epoch, and the Forwardswitch phase starts. Threads started prior to ts are not tracked by the mediator, and thegeneration count mechanism is used to ensure that these threads have terminated beforethe Block phase commences. At time tg, when a new epoch starts, the mediation entersthe Block phase. Threads started prior to the Block phase (but after ts) will continuerunning until completion. Note that these threads are created during the Forward phaseand are therefore fully tracked by the mediator. New threads that are started duringthe Block phase (i.e., after time tg) are blocked. This way, the Block phase will �nishwhen all the threads started during the Forward phase have completed execution. This isdetermined by the mediator's in-
ight call counter. At time td, the last in-
ight call hasterminated and so there are no more threads executing within the object to be switched.



Chapter 4. Dynamic Object Switching 40At this point the data transfer is started to transfer the object's relevant state to the newobject, and the blocked threads are then allowed to run, using the new object. Subsequentthreads invoking the clustered object will be serviced by the new implementation.K42's generic switching mechanism allows any object to be switched with any otherobject that implements the same interface. The generic mechanism is more di�cult toimplement than the custom object, because the generic mechanism has no associationwith the object it is switching; hence: 1) it cannot store anything on the stack becauseit has to invisibly interpose itself between the caller and callee, 2) it does not have anobvious place to track transition data associated with the speci�c object it is switching,i.e., an in-
ight count and a thread id hash table, 3) it needs to transparently interceptthe return call to decrement the reference counter and delete the thread id from hashtable, and 4) it needs to keep track of who to return to after the request is completed.How this is achieved is described in the next section.4.4 Implementation detailsIn this section, we provide some details of the K42 implementation of the dynamic clus-tered object switching mechanism. We describe the implementation of the mediatorclustered object such as when the mediator is installed, how it intercepts new calls, andhow it determines when there are no more in-
ight calls to the original object. We alsodiscuss multiprocessor issues regarding the mediator design. Deadlock avoidance is amajor part of the dynamic switching solution and is discussed in detail here. Issues andoptions regarding data transfer are also covered.4.4.1 The MediatorClustered object method invocations are made through the clustered object identi�eri, a pointer in the clustered object translation table (OTT). Upon switch initiation we



Chapter 4. Dynamic Object Switching 41instantiate the mediator clustered object. For the duration of the switch, the mediatorintercepts calls to i. This is accomplished by swinging the pointer in the root table topoint to the root of the mediator and performing a 
ush. The 
ush resets the pointersin the object translation table that were pointing to the reps of the clustered object topoint back to the default object (as described in Section 3.3). From that point on, newinvocations result in object table translation misses and are handled by the root of themediator in a standard way. As a result, mediator reps are in control, performing callmediation for the original clustered object.At switch initiation, worker threads are created on the processors whose object trans-lation entries are pointing at the reps of the running clustered object. The worker threadsperform the 
ush of those entries. These threads are needed to perform the 
ushes sincethe translation entries are located on processor-speci�c regions of memory and can onlybe accessed locally. These threads are also responsible for performing thread generationchecks to determine when there are no more in-
ight requests that started prior to media-tion. Currently this is accomplished by polling the generation count. We plan to examinethe bene�ts of being noti�ed proactively (i.e., the system invokes some noti�cation call-back registered by the switching layer when the generation has elapsed), although thiswould require an additional check on every thread completion.The mediator object is designed to handle call mediation for any clustered objectinterface transparently. The generic call mediation code consists of the mediator repvtable, the common mediation routine, the mediation prolog, and the mediation epilog.The mediator representative's virtual function table contains pointers to methods thatact as trampolines2 to the common mediation routine (see Figure 4.8). The prolog andepilog of the mediator perform pre- and post-processing associated with call mediation,respectively. The main purpose of the prolog is to examine the current switch phase2These methods simply record the virtual function table index and jump to a common routine. Suchsimple methods are commonly referred to as trampolines in operating systems.
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codeFigure 4.8: Implementation of the mediator representative object.and decide what to do with each calling thread: i.e., i) forward it to the original object,increment the in-
ight call counter and record the thread identi�er in a hash table,ii) block it until the switch is complete, or iii) directly forward it to the new object.The prolog is called by the common mediation routine, before forwarding the call to theactual method of the target representative. The epilog code is called if the forwardedcall returns to the common mediation routine. It is invoked only when the prolog hasforwarded the call to the original object. The epilog decrements the in-
ight call counterand removes the thread identi�er from the hash table, The common mediation routineacts as the assembly glue to save and restore registers, invoke the prolog, the actualmethod of the forward target, and the epilog when needed.This mechanism of forwarding calls generically is similar to that of the default objectcall redirection described in Section 3.3. However, our call mediation has the addedcomplexity of needing to catch the call returns on the way out to �rst run the epilogcode. Since the prolog determines whether epilog processing is necessary, it returnsa 
ag to the common mediation routine so that the mediation routine can determinewhether it should simply jump to the target method (i.e., the call will not return to themediator) or it should call the target method (i.e., jump-and-link, the call will return to



Chapter 4. Dynamic Object Switching 43the mediator for epilog processing).To allow the epilog to be called, the prolog routine has to save the return address ofthe original caller so that it can return back to the original caller after the call returnsto the mediator for epilog processing. During a normal method invocation, a new stackframe is typically allocated for saving the address, but since we are performing genericcall mediation, a new stack frame cannot be allocated due to the fact that the genericmechanism must remain invisible to the caller and callee. The mediator also may notadjust the stack pointer because the callee may refer to arguments provided by the callerrelative to the stack pointer set by the caller. The common mediation routine also needsto save the pointer to the mediator rep across the forwarded call invocation without usingthe stack. In our implementation, a non-volatile register is used to store the pointer tothe mediator rep. Its original value of this register, along with the return address of thecaller, and the thread identi�er of the caller, are saved in a hash table by the mediationprolog, before the call is forwarded. The mediation prolog checks the current switchphase, and decides whether it should i) track the call in the hash table, ii) block the call,or iii) forward it to the rep corresponding to the new object. The �rst code path requiresepilog processing for accounting purposes, while the remaining paths can skip the epilog.When the object reaches the point where there are no in-
ight calls, data transferis initiated to provide the new object with the state required for continued consistentoperation. Once the transfer completes, the new implementation is ready to acceptrequests. The mediator swings the pointer at the root table to point to the new root, and
ushes the a�ected object translation entries. The pending requests are then unblockedand the mediation routine forwards the calls to the reps of the new implementation.Walk-through of a mediated clustered object invocationTo demonstrate more concretely the algorithms described above, we present the pseudo-code walk-through for a typical call mediation with the mediator representative already



Chapter 4. Dynamic Object Switching 44installed in the OTT entry.The client invokes the method foo of a clustered object referenced by the identi�er i(i.e., DREF(i)->foo(), where foo is method number k in the clustered object's vtable).During the switching period, the mediator representative handles this call. This callmade to the mediator representative ends up calling mediatorMethodk, a trampolinemethod that records the vtable o�set and jumps to the common mediation routine,mediatorMethodCommon, which:� �rst saves the argument registers3 and the return address on stack;� prepares the arguments for calling the mediation prolog. The arguments include thethis pointer that refers to the actual representative to service the request (outputparameter), the method number (input parameter), the return address ra and thenon-volatile register nvreg (input parameters | these registers are used by themediation code);� saves the mediator pointer in nvreg;� invokes the mediation prolog (see next paragraph for details); which{ performs the phase-dependent prolog;{ writes the pointer to the actual rep object (the one that will be used to servicethe request) to the this pointer;{ sets a 
ag indicating whether epilog is necessary;{ returns the real virtual function address of the representative object that isused to service the call;� based on the 
ag returned by the prolog, decides whether the forwarded call shouldreturn to this assembly routine (which is the case only if we are forwarding to the3This, combined with maintaining the state of the stack at the point of forwarding the call to thereal method, allow the common mediation routine to work generically over all method signatures.



Chapter 4. Dynamic Object Switching 45original object);� if so, it{ resets the stack and registers (to the values before invoking the prolog) andthen jump-and-link to the real virtual function (the return address is then setto get back here);� if not, it{ resets the stack and registers, restores the original return address, and jumpto the real virtual function (call is forwarded transparently and will returndirectly to caller);� prepares for the epilog (for the calls that do return) by saving the result registerson the stack;� call the mediation epilog (see next paragraph for details), which:{ obtains the pointer to the mediator from the nvreg and executes the phase-dependent epilog code;� restores the registers (including the nvreg) and the return address and return tocaller (jump to the ra).Mediator prolog/epilog pseudo-codeHere we provide the pseudo-code for the mediation prolog and epilog routines. They arecalled by the common mediation assembly routine, mediatorMethodCommon.Mediation prolog� PhaseLock.acquire();



Chapter 4. Dynamic Object Switching 46� if (in Forward phase){ /* increment before releasing lock to ensure we don't reach Completed phaseprematurely */{ increment call counter;{ PhaseLock.release();{ therep is assigned to point to the representative from the original clusteredobject;� else if (in Block phase){ /* insert into list before releasing lock to ensure that: 1) we don't forget tounblock it due to race, 2) we can execute hash table lookup outside the lock */{ insert TID (Thread ID) in blocked list;{ PhaseLock.release();{ look up TID from hash table;{ if (TID in hash table)� /* re-entrant call; do not block it */� remove TID from blocked list;� increment call counter;� therep is assigned to point to the representative from the original clus-tered object;� /* note that the above count will be positive before the increment, due tore-entrancy | do not need to worry about races that will cause a phasechange */{ else� block thread;



Chapter 4. Dynamic Object Switching 47� /* this thread will be unblocked upon exiting Block phase */� indicate to mediatorMethodCommon that we do not want to execute epilog;� therep is assigned to point to the representative from the new clusteredobject;� else if (in Completed Phase){ PhaseLock.release(){ /* this call came in after the last mediated in-
ight call exited and all blockedcalls were unblocked already | just need to get the new rep pointer */{ indicate to mediatorMethodCommon that we do not want to execute epilog;{ therep stores the representative from the new clustered object;� modify the output parameter for the this pointer from therep;� compute and return the function pointer of the real method for call forwarding.Mediation epilog� decrement call counter;� if (in Block phase){ if (call counter is 0) then execute switch completion code;� pop o� the thread data from the hash table: ra, nvreg.4.4.2 Deadlock AvoidanceOne of the main challenges of implementing a generic mechanism for switching clusteredobject on the 
y is deadlock avoidance. Speci�cally, we need to ensure that the threadsblocked by the switching layer will eventually be unblocked when there are no morein-
ight calls within the object that could potentially a�ect the state of the object. In



Chapter 4. Dynamic Object Switching 48particular, re-entrant calls into the object must not be blocked. As stated earlier, if thesecalls are blocked, the in-
ight call count will stay positive and the unblocking will neverhappen, hence causing deadlock. Most of the re-entrant calls can be detected by theswitching layer's thread identi�er hash table, which keeps track of the in-
ight callingthread identi�ers. Calls with the thread identi�er found in the table are not blocked andare forwarded to the original object so that the threads may eventually �nish executingthe methods within the object and terminate.Using the hash table to keep track of in-
ight calls is not su�cient alone, however,since the re-entrancy may be indirect. A thread executing a method of a clusteredobject may create another thread that invokes methods of the clustered object again. Ifthe original thread waits for the created thread to terminate before continuing, and thecreated thread is blocked by the switching layer, deadlock will result. Since the newlycreated thread has a new thread identi�er, it will not be detected by the lookup table.Since this situation does arise in programming distributed implementations of a clusteredobject4, the switching layer should not block threads of such nature.We address this case in the following way: in K42, every thread can be checkedwhether the thread was created explicitly (using the multiprocessor-messaging library orthe Scheduler::ScheduleFunction() method) or created implicitly by the protectedprocedure call (PPC) facility in response to a cross-address-space external object methodinvocation. Indirect re-entrancy only occurs when threads are created explicitly. Hence,to protect from the aforementioned deadlock situation caused by indirect re-entrancy,during the Block phase, if the calling thread is determined to be an explicitly createdthread, then it is not blocked, but instead forwarded as if it is a re-entrant thread. Ifthe thread is created implicitly to handle an external PPC request, it will be blocked in4While this is not the most common case, it is conceivable that a multi-rep clustered object mayadminister the reps by means of creating one worker thread for each representative and determine thethreads' completion by using a barrier. If those threads invoke the clustered object recursively, and ifthe switching layer blocks these threads, deadlock will occur.



Chapter 4. Dynamic Object Switching 49the way we described above. This scheme can successfully prevent deadlock caused by achain of program-spawned threads that indirectly creates re-entrancy, since those threadsare never blocked by the switching layer. In other words, it avoids the deadlock problemby detecting that a calling thread could cause indirect re-entrancy and not blocking it,just to be safe.A consequence of letting explicitly created threads be forwarded instead of blocked isthat it may take longer for the in-
ight call count to reach zero. Also, it is possible toconstruct an in�nite sequence of thread creations and clustered object invocations in sucha way that it will keep the in-
ight call count from ever reaching zero, hence disablingthe switching layer from switching the clustered object. However, this should not pose aproblem in practical clustered object implementations.To minimize the possibility of \live-locking" the switching progress, implicitly createdthreads (external PPC threads that are not re-entrant) are blocked during the Blockphase. One might question the appropriateness of blocking these calls in face of theindirect recursion problem: it is possible also to have a chain of external PPC methodinvocations that leads to a call cycle, and blocking such call after a cycle will then causedeadlock. While it may still be possible to encounter deadlock if the indirect recursionhappens through an external PPC chain, we decided to leave it as the responsibilityof the system object programmer to prevent cyclic external PPC call chains since suchprogramming practice is not recommended in any case, as it may lead to other morefundamental problems such as re-acquiring of per-object shared locks. In general, thesystem object programmer should bear in mind that when an external PPC is made toanother server object, that call may be blocked, or even fail.4.4.3 Multiprocessor implementation issuesWe now describe some of the multi-rep mediator implementation issues that arise inmore detail. Since the phase variable associated with the switch operation is checked by



Chapter 4. Dynamic Object Switching 50all mediated calls, and a lock is needed to coordinate the accesses, we implemented themediator as a fully distributed clustered object with one rep per processor to achieve goodscalability. Each rep maintains its own local data, such as the pointer to the original repthat it should forward the calls to, the mediated call count, the hash table, a local switchphase variable, and the phase variable access lock. The root maintains a phase variablealso, but it is accessed less frequently and used only to perform proper phase-dependentmiss-handling. This way, the common path of call mediation will not need to acquireand release a global lock. Only the per-representative lock is held and only the localswitch phase is examined when a call enters the mediator to be forwarded or blocked inthe common case.Switch phase variable The local phase variable determines the kind of mediationnecessary to provide forward progress. The Forward phase implies that there may stillbe in-
ight calls on that processor that are not yet recorded by the mediator. Theworker thread that performs the generation check changes the local phase to Block whenit determines that all the threads that could potentially be making in-
ight calls to therep running on the one processor have completed. For the most part, the phase variablecan be maintained locally on a per-representative basis. However, in order to determinewhen to transfer state from the original to the new object, we must ensure that thereare no in-
ight calls for the object across all the processors of the system. That is, allthe local phases are in Block state and that the in-
ight call counters are globally zero.To determine if all the mediator reps are in the Block phase, we maintain a counter atthe mediator root to keep track of the number of mediator reps are still in the Forwardphase. Once that count reaches zero, we can change the global switch phase to Block.This global switch phase, along with the in-
ight call counter (described next), are usedto determine if we can carry out data transfer and change the phase to Completed.



Chapter 4. Dynamic Object Switching 51In-
ight call counters Each mediator representative has a local counter value thatis updated whenever a mediated call is being forwarded to the original object (as atracked in-
ight call). It thus maintains the number of in-
ight calls made via the localrepresentative. The counter is only checked for zero across all processors after all themediator reps have entered the Block phase. So, prior to the block phase, the localcounters are updated completely independently. A shared value is maintained by themediator root to count the number of mediator representatives that have in-
ight calls.The value is lazily updated; the value is only maintained by a rep when its local phasechanges to Block. This value does not need to be accurate until all the mediators haveentered the Block phase, at which point the value is zero implies that there are no morein-
ight calls.Hash tables The per-mediator-rep hash table stores call forwarding data (return ad-dress, etc.) using the caller's thread identi�er as the lookup key. The purpose of thehash table is to provide a location for storing forwarding information (that cannot bestored on the stack) and to provide a means to detect calls that are directly re-entrant.To detect direct re-entrancy, a local, per-representative hash table is su�cient, since K42threads are not migratable.5 Data with the same thread identi�er key may be insertedmultiple times into the hash table (in the case where the calling thread is re-entrant),so the item insertion and removal has to be in the last-in-�rst-out (stack) order. Also,per-hash-bucket list locks are used to further reduce potential shared-lock contention.Lazy mediator-rep creation The installation of a mediator follows the clusteredobject rep creation paradigm, where the mediator root is created but its reps are createdon �rst use. While this avoids unnecessary rep creation, it also has complications. Themain issue is that even though no new calls are made on the processor, the mediator5When threads become migratable in future versions of K42, some work will be needed to move theassociated items in the hash table to the remote location.



Chapter 4. Dynamic Object Switching 52worker thread will still need to run to perform generation checks and phase changes ifthe processor has had a rep installed prior to switch. As a result, the phase variable andthe mediator call counter may exist for the processor while a mediator rep is not yetcreated on that processor. Therefore, these data items are maintained directly by themediator root, in a cache-friendly manner (i.e., data for di�erent processors are locatedon di�erent cache lines).4.4.4 Data TransferThe data transfer method must be provided by the object designer as a callback methodfor the mediator. It is called by the mediator when the switching layer determines thatthere are no more in-
ight calls in the original object (and hence the objects can besafely switched). The transfer is handled individually by the object involved in theswitch. Currently, to obtain maximum throughput, the data transfer method has fullaccess to both objects' internal data structures.6In the current implementation, data transfer is performed in a somewhat ad hocmanner. As a result, each of n building blocks may have to be able to transfer datato any one of the n � 1 other building blocks, resulting in n2 � n distinct instances ofdata transfer methods. While it is acceptable when the number of implementations ofa building block is small, it is desirable to have a more structured way of handling thedata transfer problem for the general case. Also, it may not always be possible for thedata transfer method to obtain full access to both objects' internal implementations.More generic and automated mechanisms for performing data transfer will therefore benecessary.The primary goal of the data transfer method should be to eliminate the requirementof each building block implementation having to understand the internal data structure6An example of such implementation is a transfer method that is declared to be a friend by bothobjects.



Chapter 4. Dynamic Object Switching 53of the other building block implementation for data transfer. This can be achieved bynegotiating data transfers through a well-de�ned set of transfer interfaces. Minimally, astandard class serialization interface can be provided. For each building-block interfaceI, there is a canonical serialization interface T 0I that is common to all the building blocksimplementing I. Often this transfer function is based on the abstract data type that isbeing exported. This approach avoids the need for one data transfer method per eachpair of building-block instance. However, this lowest-common-denominator canonicalserialization interface has the potential disadvantage of inducing unnecessary data trans-formations that can be avoided given a more optimized form of data transfer interfacefor the particular pair of building block implementations.An additional set of more optimized data transfer interfaces fT 1I ; T 2I ; T 3I ; : : :g canbe developed. An interface-speci�c transfer method would then carry out negotiationsfor the building blocks to be switched and determines the common transfer interfacesupported by both building blocks to perform data transfer in the most e�cient waypossible. For instance, suppose that building block B1 is being switched to B2. B1provides data transfer interfaces fT 0IB ; T 1IB ; T 2IBg while B2 can use fT 0IB ; T 1IBg. Then thedata transfer method for interface IB should determine that T 1IB is the best availabledata transfer interface to be used for this switch. Note that the requirements for the oldand new building blocks are di�erent; B1 needs to export the interface while B2 needs toapply the interface to perform the transfer. Since a canonical serialization interface T 0IBis available, the two sets of supported interfaces is guaranteed to be non-disjoint.For abstract data types that behave as a look-up table, the data transfer function canbe implemented as a simple chain-up of the old object to the new object. This way, amore lazy transfer approach can be applied (i.e., lookup and migrate data on demand).For requests to look up an item, the new object's data structures are navigated �rst. Ifthe item is not in the new object, the old object is also queried. If it is found in the oldobject, the item is then migrated to the new object for future look-ups. The old object
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FCM

FCMSharedTrivial FCMPartitionedTrivialFigure 4.9: A subset of the FCM class hierarchy.is deleted when all items have migrated away.7Example: FCMWe use the File Cache Manager (FCM) interface to demonstrate the options availablefor performing data transfer between di�erent implementations. The FCM is used tolookup page frames that are cached in memory given a �le o�set to identify the pageframe. A variety of FCM subclasses can be implemented to optimize for di�erent usagepatterns. For example, we have a very lightweight version, FCMSharedTrivial, that usesa single representative with a single shared lock and a shared linked list to maintain thelist of page frames. This shared implementation is best for the case where the number ofpages cached by the FCM is small and when the pages are accessed by a single threadof execution. However, when there are concurrent accesses to the object, the sharedlock gets contended very quickly. Therefore, to optimize for concurrent accesses, imple-mentations with multiple representatives and localized locks are available. One of them,FCMPartitionedTrivial, partitions the range of page o�sets among the representatives.The simpli�ed class hierarchy is illustrated in Figure 4.9. We will use FCMSharedTrivialand FCMPartitionedTrivial to illustrate the data transfer mechanisms described above.Both FCM implementations support the FCM building-block interface, so it is possi-ble to apply the switching mechanism to change a running instance to the other on the 
y.7This is not guaranteed to happen eventually, however. A data-migration thread can be implementedto either 1) discard these items if permitted by the semantics of the object, or 2) perform the migrationasynchronously when the system load is low.



Chapter 4. Dynamic Object Switching 55class FCMDataTransferCanonical {public:PageDesc *getFirstPageDesc() = 0;PageDesc *getNextPageDesc(PageDesc *curr) = 0;}; Figure 4.10: Canonical FCM data transfer interface.Assuming that the application program opened a small �le and did not specify its accesspattern, then the operating system would �rst create an instance of FCMSharedTrivialto maintain the cached pages of the �le. When the access pattern indicates that thereare concurrent accesses to partitioned regions of the �le, the FCMPartitionedTrivialimplementation would then be instantiated to replace the original FCM instance, and aswitch would be initiated.Let us consider the di�erent approaches we can take to perform the data transferfrom FCMSharedTrivial to FCMPartitionedTrivial. Minimally, each FCM buildingblock supports the FCM canonical data transfer interface, FCMDataTransferCanonical(Figure 4.10), which relies on the fact that abstractly, a page cache contains a set of<�le o�set, physical page descriptor> pairs (PageDesc's). FCMDataTransferCanonicalsupports getting the �rst PageDesc out of the set using getFirstPageDesc(), and it-erating through the rest using getNextPageDesc(). It is a natural lowest common de-nominator for transferring data between FCM instances since each FCM conceptuallycontains a list of page descriptors which can be walked through using a simple iterator.In addition to FCMDataTransferCanonical, FCMPartitionedTrivial supports an-other data transfer interface, FCMDataTransferPartitioned (Figure 4.11), which per-forms the transfer of page descriptors in a pre-partitioned manner, hence eliminatingpartitioning re-calculation. This can be useful if we are transferring states between twoimplementations, both of which are using the same data partitioning scheme.However, since FCMSharedTrivial does not support FCMDataTransferPartitioned,



Chapter 4. Dynamic Object Switching 56class FCMDataTransferPartitioned {public:SysStatus getPartitionInfo(PartitionInfo &info) = 0;Partition *getFirstPartition() = 0;Partition *getNextPartition(Partition *curr) = 0;PageDesc *getFirstPageDesc(Partition *part) = 0;PageDesc *getNextPageDesc(PageDesc *curr) = 0;};Figure 4.11: Data transfer interface for Partitioned FCM implementations.
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Figure 4.12: Data transfer from FCMSharedTrivial to FCMPartitionedTrivial. Afternegotiation the data transfer method DTFromCanonical() is used.the data transfer interface used would be FCMDataTransferCanonical. Figure 4.12 il-lustrates the data transfer between FCMSharedTrivial and FCMPartitionedTrivial.As an optimization, in the particular case of FCM building blocks, a lazy trans-fer protocol can be applied for the FCM building blocks. The transfer method wouldsimply cache the reference to the original FCMSharedTrivial instance when switchingover to the FCMPartitionedTrivial instance. Future lookups made via the FCM inter-face will be sent to the FCMPartitionedTrivial object, which will query the originalFCMSharedTrivial object if the page is not found. If the page is found in the originalobject, then the page descriptor will then be migrated over to the new object. Once the



Chapter 4. Dynamic Object Switching 57original object no longer caches any page frames, the linkage is then removed and theoriginal object freed.4.4.5 Implementation StatusThe mediator clustered object, including the transparent call forwarding mechanism, isimplemented and running on both the MIPS and PowerPC platforms. The dynamicswitching infrastructure is built on top of the existing K42 clustered object facility. It isimplemented using about 2200 lines of heavily commented C++ source code and about400 lines of assembly. The current implementation for data transfer is crude; the moregeneralized form using canonical transfer interfaces has not yet been implemented.4.5 SummaryWe described the design and implementation of the dynamic clustered object switchinginfrastructure. This facility aims to provide dynamic customizability to K42's building-block composition. It leverages K42's support for clustered objects and thread generationcounting mechanism. The clustered object system provides true separation of inter-face and implementation (including internal data distribution), thus providing a 
exibleframework for interposing and switching object implementation on the 
y without af-fecting the clients. The generation counting mechanism provides a simple and e�cientway for the system to determine if there are still threads alive within a process, and thisis used by the switching layer to determine if there are still in-
ight requests executingwithin an object. This knowledge allows the facility to switch object implementation evenwhen the object is alive and busy servicing requests via the clustered object interface.The switch is accomplished by introducing a generic mediator clustered object whichaccepts new requests in place of the original clustered object, regardless of the interfaceexported. The take-over can be performed easily with the indirection available from the



Chapter 4. Dynamic Object Switching 58clustered object system. The mediator forward calls back to the original object untilthe original object's non-mediated in-
ight requests are all �nished, at which point newcalls are blocked and the mediator waits for the mediated forwarded calls to complete.Subsequent to the completion of the mediated forwarded calls, relevant object state istransferred to the new implementation and the new object then takes over, handlingthe blocked and new incoming calls. The mediator clustered object is implemented as amulti-rep clustered object to provide good performance and scalability in a multiprocessorenvironment.



Chapter 5PerformanceIn this chapter we examine the performance of dynamic switching in K42. First we give abrief discussion of the experimental framework we used. Then, we explicitly identify thecosts associated with the dynamic switching mechanism. We also describe the runtimecosts of using this mechanism to perform on-the-
y customization. Lastly, we present aset of experimental results showcasing the performance advantage one can achieve withdynamic object switching.5.1 Experimental FrameworkK42 currently supports both IBM RS/6000 servers and the University of Toronto NU-MAchine platform [31]. Our experiments were run on an IBM S70 enterprise server with12 PowerPC RS64 processors clocked at 125.9 MHz and a 4MB uni�ed L2 cache. Themachine's bus speed is 83 MHz.We also ran our experiments on a NUMAchine con�guration with 16 MIPS R4400processors clocked at 150 MHz, each with 16KB direct mapped L1 data and instructioncaches and a 1MB uni�ed L2 cache. The processors are organized in stations of fourprocessors with a memory module per-station and the stations are interconnected by a59
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Figure 5.1: Costs of updating a single shared variable.ring.1 The results gathered on NUMAchine re
ect the same trends as those of the S70,however the larger ratio between processor to bus speed and NUMA e�ects result ingreater sensitivity to locality and better demonstrate K42's scalability. But since theresults are similar, for simplicity we present the results from the IBM S70 platform.To motivate and provide insight into the impact of sharing on the S70 hardwareplatform, we present, in Figure 5.1, the results of two simple tests which update a singleintegral variable. We ran the program multiple times varying the number of processorson which it spawned threads. The interval bars on each point indicate the range of resultsfrom all the test threads, and the main point is the average.2 Each thread performs 100000successive updates of the shared variable. The variable was updated with an atomic load-linked store-conditional (LLSC) instruction. In one experiment, we followed this witha memory synchronizing instruction (sync), and, in the other, we used just the LLSC.On processors such as the PowerPC with a weakly consistent memory model, a memory1There are actually two levels of rings, local and global. However, since the experiments are restrictedto 12 processors, the global ring is not used.2All the graphs in this chapter have these vertical interval bars; some bars are so close to the mainpoints they are unnoticeable.



Chapter 5. Performance 61Fixed Per-switch CostsItem InstructionsMiss-handling cost 344Mediator rep instantiation 838Fixed Mediation Costsoperation InstructionsRep method invocation (inc) 32Forwarding to old obj via mediator 633Table 5.1: Costs associated with call mediation.synchronizing instruction is needed to ensure that at critical points the consistency ofmemory is maintained. Locks intended for a multiprocessor must also use the syncoperation. The results of Figure 5.1 demonstrate that in the worst case on 12 processors,the simple updating of a shared variable can cost two orders of magnitude3 more thanthe base uniprocessor cost even without a memory synchronizing instruction.4 Includingmemory synchronizing instructions doubles the costs of updating the contended variable.
5.2 Dynamic Switching CostsThe costs associated with switching can be separated into two components: a set of �xedcosts inherent to the mediation process, and a workload dependent component.



Chapter 5. Performance 625.2.1 Fixed costsTable 5.1 reports the cost associated with call mediation during the interval betweenswitch initiation and completion. The mediation overhead associated with forwardingan object method invocation to the original object prior to state transfer is about 633instructions. This involves 1) the register saves and restores (once for the prolog andonce for the epilog), 2) the mediator prolog (phase check and hash table insert), and 3)the mediator epilog (the hash table retrieve and delete). While this overhead is non-negligible, the cost is incurred only for those method invocations that take place duringthe Forward phase. After the Block phase, the invocations that are redirected to the newobject do not perform hash table operations nor do they execute epilog code.The cost of the �rst mediated call after a switch initiation is about 1815 instructions.This includes 344 instructions for the clustered object miss-handling invocation, 633instructions for the call forwarding (described above), with the remainder (838) attributedto the instantiation of the mediator representative.In our multiprocessor implementation of the mediator clustered object, a thread isspawned on each processor with a valid OTT entry for the object to be switched. Thisthread resets the OTT entry and maintains a local switch phase variable used by themediator. The thread is also responsible for polling the thread generation count period-ically to see if the old threads have completed. The cost of executing the worker threadis about 2786 instructions (assuming only one pass through the polling code).5.2.2 Variable costsIn addition to the mediation costs, there is an object-dependent cost of performing thedata transfer which the implementor of the object being switched is required to provide.3The uniprocessor case takes 24 cycles while the 12-processor case takes an average of 1846 cycles.4The dip at the high end of the graph may be explained by a convoy situation created due to thesimplicity of the fetch and adds.



Chapter 5. Performance 63For the switch to complete, the switching code needs to determine when there are nomore in-
ight calls within the object. This is done by thread generation checking. Duringthe Forward phase (i.e., before the generation in the local processor is elapsed), calls areforwarded to the old object. Once the generation is elapsed new calls are blocked untilall the tracked in-
ight calls are completed (the Block phase). Only when all the workerthreads have passed the Block phase can data transfer occur and switching complete.The time that it takes for the phases to change from Forward to Complete is dependenton the workload of the system. In a very active system, with large numbers of in-
ightrequests, the switch may take longer. Another factor that limits the switching time ishow long it takes to process the requests already in 
ight, which is generally short in K42kernel objects.5.3 Experimental ResultsIn this section we present experimental results for an isolated counter as well as Regionand FCM objects that are used in K42's memory management code.5.3.1 Description of the Counter ObjectsIn order to gain insight into the performance of dynamic switching, we implemented twoversions of counter object, one optimized for concurrent reads (to obtain the value of thecounter), and the other optimized for concurrent updates (to increment or decrement thecounter).As we saw in Figure 5.1 a simple shared counter will not perform well when it isfrequently updated on a multiprocessor. Therefore, a more scalable implementation isneeded for the counter optimized for updates. To do this, we implemented a partitionedcounter that ensures that only local accesses are required for updates. Each processorhas its own representative with a separate counter value. Locking and updating occur



Chapter 5. Performance 64Enter barrierRecord start timeLoop for 100000 timesUpdate counterYield threadRecord the end timeFigure 5.2: Pseudo-code for counter test threads.independently on each processor and do not require global synchronization. However, inorder to ensure that we maintain the semantics implied by the simple shared counter,we need to lock all the individual counters to sum the values. For the counter optimizedfor reads, a shared implementation is su�cient and has the advantage that an atomicprimitive can be used for updating, avoiding the need for a lock.5.3.2 Counter ExperimentWe ran three simple multi-threaded programs that used these counters. The updateexperiment tests a counter with a series of updates by spawning o� between 1 and 12threads that execute the code in Figure 5.2.5The read experiment is identical except that the update is replaced with a read of thecounter's value in the loop. The two-phase experiment essentially combines the updateand read experiments; it goes through an update and then a read phase with a barrierbetween them. For this last experiment, we start the test counter optimized for theupdate access pattern and then switch it to the implementation optimized for the readaccess pattern. The switch was invoked after the threads start the second phase (theread phase). The switch is initiated by calling a switch-initiation method of the originalobject. The method instantiates the new implementation and uses the dynamic switching5When we ran these experiments, K42's preemption support was not complete, requiring us to ex-plicitly yield the processor to other threads (in our case to mediator worker threads).
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Figure 5.3: Counter update performance comparisonlayer to switch to this new implementation, backing the counter clustered object referencebeing tested.5.3.3 Results of Counter ExperimentsFigure 5.3 illustrates the results of testing both versions of the counter with the updateaccess pattern. As expected, we see that the counter implemented with a shared variablehas similar performance as the experiment of Figure 5.1 and has poor scalability. It isinteresting to note that the slight delay introduced by the thread yield in the counter testprogram is enough to break the convoy e�ects see in Figure 5.1 resulting in a smoothercurve with consistent worsening performance up to 12 processors. On the other hand, thepartitioned counter is able to achieve the same performance from 1 to 12 processors asthe work done per-update is independent and constant. The partitioned implementationis the better choice for the update access pattern.Conversely, in Figure 5.4, we see that the shared counter performs better. It is easy tounderstand that in the case of reads the shared counter's value will remain in the cache
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Figure 5.4: Counter read performance comparisonof all the processors which access it and hence will require a constant and independentcost for each access. On the other hand, the partitioned counter requires considerablymore work. In order to obtain the global value each individual lock must be locked andthen all values summed.To understand why the values are worse than experienced with the shared counterunder the update access pattern, we must probe deeper into the implementation. Un-like the shared counter, each local counter value of the partitioned counter must usean explicit lock and cannot rely on the use of an atomic primitive due to the need tosynchronize across all the local counter values. We used blocking locks which, whenuncontended, do not exhibit increased costs. However, when contended, blocking locksexhibit considerably more overhead than simple atomic primitives (which essentially im-plement a spin). At 12 processors, accessing data in a shared location via a contendedlock is more expensive than using atomic primitives to update that data. Further, theextended period of time the locks are held in the partitioned counter further exacerbatethe contention.As expected and shown in Figure 5.5, in the two-phase test we see that neither the
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Figure 5.5: Performance of di�erent counter object implementationsshared nor the distributed implementations are able to meet the requirements of bothaccess patterns. However, if we dynamically switch counters between the two phases, theindividual advantages of the di�erent counters are exploited for the appropriate phase,achieving better overall performance.5.3.4 Description of the K42 ObjectsAs described in Section 3.2, a number of building blocks are used to provide memorymanagement services in K42. We focus on two objects: the Region object and the FCMobject. Each building block has a simple shared implementation and more complex dis-tributed implementations intended for use on large �les accessed across many processors.The attribute of the Region objects that is relevant to this experiment is a counter thattracks requests to the Region. The shared and distributed implementations of the countermaintained by the Region objects are identical to the shared and distributed counterdescribe the the prior experiments. The region updates the counter frequently but onlyneeds coordinated on its value at destruction time. The shared FCM implementation



Chapter 5. Performance 68Loop for 10000 timesEnter barrierRecord start page fault timeTouch pages within the �le but local to the threadRecord end page fault timeYield processorUnmap pagesFigure 5.6: Pseudo-code for page fault test threads.uses a single locked list to maintain the cached page descriptors. While not scalable, itworks well under uncontended, uniprocessor access and has a small memory footprint.The distributed implementation uses a hash table per-rep with �xed sized buckets ofpage descriptors, a lock per bucket, and a busy bit for each page descriptor within abucket. The distributed FCM ensures that separate portions of the �le are cached byseparate reps thus partitioning the page across the reps. The distributed version providesscalability but at increased uniprocessor costs compared to the shared version for small�les.5.3.5 Page Fault ExperimentThe page fault experiment is a simple user-level program that maps a �le either withthe shared FCM and Region or with the distributed FCM and Region6 implementation.The program then spawns threads that execute the code in Figure 5.6. The programinduces a partitioned access of the �le with each processor touching it own pages. Asecond version of the program which allows a switch between the shared and distributedimplementations was used to explore the performance of dynamic switching. Since theuniprocessor implementation starts performing poorly whenever there is any multipro-6To eliminate I/O costs all the pages were initially faulted on to ensure that they were in-core.



Chapter 5. Performance 69cessor interaction, we explicitly initiate the switch when at the end of the �rst iterationif there are multiple number of test threads.75.3.6 Results of Page Fault ExperimentIn Figure 5.7, the distributed objects are better when the accesses occur on more thanone processor since they avoid the contention that exists with the shared implementation.However, Figure 5.8, which zooms in on Figure 5.7, shows the higher cost of using the dis-tributed implementation on a uniprocessor. Examining both �gures we see that dynamicswitching allows us to adapt on the 
y between the uniprocessor and multiprocessorworkloads achieving better overall performance.5.4 Cost-Bene�t Tradeo�s in Dynamic SwitchingThe switching infrastructure is intended to support switching of objects that are ex-pected to change between long phases of access patterns that can bene�t from di�erentpolicies/implementations, and to facilitate live-swapping of objects for on-the-
y versionupgrades. However, it is interesting to discuss the limits on when the dynamic switchingcan be worthwhile.If the objective is to carry out live update of a long-running object (for bug-�x orupgrade), then the switch is worthwhile regardless of the time and cost it takes to com-plete the switch. On the other hand, if the intent is to adapt to changes in user behaviorpatterns, the dynamic switch may not be worthwhile if the pattern changes are too quick| at some point the overhead for dynamically switching among strategies will overwhelmthe bene�ts of doing so.To make a switch worthwhile, the cycles used in performing the switch must be7For the purpose of demonstration this is su�cient. However, in practice, a contention-sensitive lockcan be used to detect contention and initiate a switch.
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Figure 5.7: FCM/Region performance comparisons
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Chapter 5. Performance 71less than the cycles saved by using the new implementation for the duration of thenew program phase that bene�ts from the new implementation. From the earlier costanalyses, the mediation incurs approximately 1200+633F cycles, where F is the numberof mediated calls to the original object. The value of F is dependent on the workload ofthe system, but is generally small. Early experiments indicate that F is generally lessthan 5. Additionally, there are overheads from the creation and execution of the mediatorworker threads, and overhead due to cache disturbances from running the switching code.It is estimated that, in general, the combined cost would be within the order of 10000cycles. It can be as little as 4000 cycles if the switch is not complicated by in-
ight callsand system load. While the cost is non-negligible, generally the bene�t obtained fromswitching to the new implementation far outweighs the cost.5.5 SummaryWe have presented the experimental setup, explained the costs associated with the switch-ing mechanism, and demonstrated the performance potential of applying dynamic cus-tomization to adapt to changing access patterns and resource requirements.The costs associated with dynamic switching include mediator instantiation, miss-handling, rep creation, per-call redirection overhead, and the execution of mediatorworker threads. The time it takes to complete a switch depends on the workload ofthe system, as well as the number of in-
ight requests in the original object. Since ituses the generation counting mechanism to advance the switch phase, the more activethreads the system has at one time, the longer the switch may take.The counter experiments demonstrate that programs with di�erent usage phases canbene�t from the ability to switch implementation during execution to obtain improvedperformance. The page fault experiment shows how dynamic switching can improve theperformance of di�erent classes of programs, using memory-mapped �les under di�er-



Chapter 5. Performance 72ent resource usage requirements. While simple light-weight implementations of memorymanagement building blocks may perform better for small �les in a uniprocessor pro-gram, the performance quickly deteriorates when used in a multiprocessor program. Ifthe system does not have prior knowledge of whether the program uses the �le concur-rently, by using dynamic customization, it can use the simple implementations in thebeginning, and switch to using more complex building block implementations when the�le accesses become concurrent.



Chapter 6Concluding RemarksK42's achieves customizability through its building-block design. We have developed ageneric mechanism that allows on-the-
y customization by dynamically switching objects.The mechanismworks even while there are in-
ight requests to the object being switched.The primary goal of dynamic customization is to complement the static, creation-timecustomization provided by building blocks. Dynamic clustered object switching allowslong-running system servers to change object implementations on the 
y without rejectingincoming requests and without needing to restart the servers. This facility can be used tocustomize long-running services with phases of execution that have di�erent object accessproperties. It can also be used to upgrade and replace older versions of object imple-mentations in systems where maintaining an operational status is a requirement. Whenthe original (legacy) object implementor provided the canonical data transfer method, itcan in theory be switched to any future object (with the same interface) that implementsany arbitrary policy.1The dynamic switching facility is built as a generic software layer that can be appliedby all K42 building blocks. The layer is built on top of K42's object infrastructure, lever-1The cost of the data transfer may be a concern. However, if the objects are relatively �ne-grained,the bene�t should easily overcome the cost. This is the case especially when the object is long-lived, orwhen the object is required to stay online. 73



Chapter 6. Concluding Remarks 74aging the technologies of clustered objects, protected procedure call (PPC), and threadgeneration model. Clustered objects further extend the object-oriented paradigm to pro-vide the abstraction of internal data distribution in a shared memory multiprocessor forbetter locality and concurrency. The PPC model implies that external requests to systemobjects are serviced by new logical threads. The thread generation model associates agenerational timestamp with each thread that is created to handle server requests. Theswitching layer takes advantage of the level of indirection provided by clustered objectsto mediate requests to a running clustered object. It uses PPC and the thread generationmodel to provide an e�ective way to determine the existence of in-
ight requests thatare made to a server process, and decide when it is safe to allow the new object instanceto take over.In the results, we demonstrated that this dynamic customizability is bene�cial formultiprocessor performance. In a simple counter example, where we considered theisolated e�ect on an individual object, we showed that mismatching the choice of datastructure and object request pattern can result in signi�cant performance degradation.On 12 processors, the shared implementation performed 300 times better for a read accesspattern, while the distributed implementation performed 30 times better on a updateaccess pattern. Dynamically customizing the counter object allowed us to achieve theoptimal performance for both cases. On a combined access pattern, dynamic switchingachieved an order of magnitude better performance than the shared object, and twoorders of magnitude better performance than the distributed object.We also examined how dynamic customization could impact the performance of mem-ory management objects being used in K42. We showed that dynamically customizingthe region and FCM objects allowed us to capture substantial advantages for the overallcost of a page fault. For the uniprocessor case we showed a 25 percent improvement overthe object optimized for the distributed case. For the multiprocessor case, the distributedobject had a large performance improvement over the centralized implementation. We



Chapter 6. Concluding Remarks 75were able to take advantage of both of these objects by dynamically switching as therequest pattern changed.We are at an early stage of exploring dynamic customizability in K42. We haveconcentrated on the multiprocessor performance advantages but expect to see advan-tages beyond that. Our early experience indicates there are signi�cant programmabilityadvantages as well as maintainability advantages.6.1 Future WorkNow that we have a working implementation of the dynamic switching infrastructure,we can experiment more with the properties of di�erent building block implementationsunder di�erent usage patterns, and evaluate the potential bene�ts of performing dynamicswitching between di�erent implementations. As the operating systemmatures, there willbe more system components available for experimentation.We have not yet fully explored the issues involved in data transfer between the switch-ing objects, and this may need more packaging to make it viable. In this dissertation,we have concentrated on the mechanism, not on the policies. We expect in the futureto investigate the operating system automatically monitoring the system and detectingwhen to initiate a dynamic switch, for example, when a �le grows too large, when thecontention for a shared lock increases, or when its reference pattern changes. Therehas been other work in this area [7, 27] and we would like to be able to leverage it tohelp K42 self adapt. We believe that dynamic on-the-
y customization will again resultin the radical performance advantages that researchers demonstrated with customizableoperating systems.
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