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Big Data applications are trivially parallelizable because they typically consist of simple and straightforward

operations performed on a large number of independent input records. GPUs appear to be particularly well suited

for this class of applications given their high degree of parallelism and high memory bandwidth. However, a

number of issues severely complicate matters when trying to exploit GPUs to accelerate these applications. First,

Big Data is often too large to fit in the GPU’s separate, limited-sized memory. Second, data transfers to and

from GPUs are expensive because the bus that connects CPUs and GPUs has limited bandwidth and high latency;

in practice, this often results in data-starved GPU cores. Third, GPU memory bandwidth is high only if data is

layed out in memory such that the GPU threads accessing memory at the same time access adjacent memory;

unfortunately this is not how Big Data is layed out in practice.

This dissertation presents three solutions that help mitigate the above issues and enable GPU-acceleration

of Big Data applications, namely BigKernel, a system that automates and optimizes CPU-GPU communication

and GPU memory accesses, S-L1, a caching subsystem implemented in software, and a hash table designed for

GPUs. Our key contributions include: (i) the first automatic CPU-GPU data management system that improves

on the performance of state-of-the-art double-buffering scheme (a scheme that overlaps communication with

computation to improve the GPU performance), (ii) a GPU level 1 cache implemented entirely in the software

that outperforms hardware L1 when used by Big Data applications and, (iii) a GPU-based hash table (for storing

key-value pairs popular in Big Data applications) that can grow beyond the available GPU memory yet retain

reasonable performance. These solutions allow many existing Big Data applications to be ported to GPUs in

a straightforward way and achieve performance gains of between 1.04X and 7.2X over the fastest CPU-based

multi-threaded implementations.
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Chapter 1

Introduction

An important class of computations operate on voluminous datasets in ways similar to what is sometimes referred

to as ”Big Data” computations and other times (in the GPU community) referred to as streaming computations.

These computations perform simple, straightforward, and independent operations on a large number of input

data records. They are trivially parallelizable, and the input data exhibits no (or very low) reuse. This class of

computation is large and includes computations that filter, transform, aggregate or partition large data sets.

As an example application, consider Page View Count, which counts the number of occurrences of each URL

in input web-log files. This application is easily parallelized by partitioning the input data into smaller chunks,

having different worker threads count the URLs in different chunks, and then, at the end, aggregate the results.

GPUs appear to be well suited for accelerating Big Data applications. The many GPU cores allow for highly

parallelized computing. A GPU offers aggregate compute power an order of magnitude larger than what a CPU

can; e.g., 8.3 TFLOPS vs. 1.5 TFLOPS (Nvidia GTX 1080 vs. an Intel Skylake CPU with 20 cores). And GPU

memory has significantly higher theoretical bandwidth than CPU memory, since they were designed for graphics

processing; e.g., 320 GB/s vs. 115 GB/s. Figures 1.1 and 1.2 depict the improvements in computing power and

memory bandwidth of modern GPUs and CPUs. As shown, GPUs computational power and memory bandwidth

are reaching levels previously expected only from small supercomputers.

While GPUs appear to be attractive for Big Data applications, a number of issues complicate their efficient

use. First is the issue of managing the data that does not fit in GPU memory. The CPU and GPU have separate

memories, requiring explicit data transfers between CPU and GPU memory, and GPU memory is limited in size

(currently up to at most 16GB). As a result, substantial non-trivial effort has to go into managing data that does

not fit in GPU memory. For the typical input data of Big Data applications, this means that the data needs to

be explicitly partitioned into chucks and iteratively copied into GPU memory for processing there, which makes

1
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Figure 1.2: GPU and CPU memory bandwidth over the years.

GPU programming more difficult and error-prone. Further, the PCIe link that connects the two memories has

limited bandwidth and, for the computations we are considering, can often be a bottleneck starving GPU cores

from their data. For example, PCIe Gen 3 has a theoretical maximum throughput of 15.75 GB/s, far lower than

the memory bandwidth GPU-side, and this bandwidth is difficult to exploit in practice. Indeed, while impressive

speedups have been reported for many GPU applications, the speedups were often calculated without taking into

account the overhead of transferring the input data to GPU memory [32].

A second issue is the fact that the high bandwidth of GPU memory can be exploited only when GPU threads

executing at the same time access memory in a coalesced fashion; i.e., where the threads simultaneously access

adjacent memory locations. If not coalesced, memory accesses may become serialized, resulting in significantly

lower memory throughput and high access latencies. Because the applications we are targeting are not a priori

structured to operate on data in a coalesced fashion, the data has to be reorganized to support coalesced accesses

on the GPU, which is non-trivial.

A third issue is the fact that the GPU L1 caches are entirely ineffective [43]. For the typical number of cores
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in modern GPUs, the L1 caches are too small and their cache line sizes are disproportionally large given the

small cache size. For example, the Nvidia GTX 1080 has 128 cores per SMX, each of which can have multiple

outstanding memory accesses at any time. Yet the maximum L1 cache size is 64KB and the cache line size is 128

bytes (for a total of 512 cache lines). Thus, cache lines are typically evicted before there is any reuse, causing

a high degree of cache thrashing and an attendantly low L1 hit rate given the large number of threads executing

on GPU cores, each issuing multiple memory accesses (typically to independent memory locations in our target

applications).

Finally, a forth issue is that traditional data structures typically perform poorly when naı̈vely ported to the

GPU. For example, traversing linked lists can result in low GPU core utilization because groups of GPU cores

execute in SIMD fashion and all the cores in the group will have to wait for the slowest core that had to traverse

the longest list. To prevent such performance degradations, data structures and their associated operations often

have to be restructured to take into account the micro-architectural characteristics of the GPU. Hash table is one

of those data structures that is particularly important to us because it can efficiently store key-value pairs that are

widely used in Big Data applications. Hash tables that do not fit in GPU memory are particularly challenging to

implement on GPUs without excessive CPU-GPU communication because there is, by design, little locality in

accessing the table.

In this dissertation, we present a set of runtime/compile-time systems and libraries to address the issues men-

tioned above. First, we present a scheme, called BigKernel, that automates and optimizes CPU-GPU communica-

tion and GPU memory accesses. Second, we present S-L1, a level-1 (L1) cache for GPUs implemented entirely in

software to address the ineffectiveness of hardware L1 caches. Finally, we present a hash table design that allows

the hash table to grow beyond the size of GPU memory, and yet stay reasonably efficient. The code required

for BigKernel, S-L1, and our hash table can be applied to existing Big Data applications using straightforward

compiler transformations and/or by using runtime libraries.

BigKernel provides pseudo-virtual memory to Big Data GPU applications that operate on streaming data. It

uses a four -stage pipeline with automated prefetching to (i) optimize CPU-GPU communication and (ii) optimize

GPU memory accesses. BigKernel optimizes CPU-GPU communication by only transferring the data that will

be accessed GPU-side, and it optimizes GPU memory accesses by rearranging the data in a way that coalescing

is increased significantly when the GPU accesses the data. It also simplifies the programming model by allowing

programmers to write kernels using arbitrarily large data structures when the data records can be operated on

independently, thus relieving the programmer from having to partition the data into segments, manage buffers,

transfer data between CPU and GPU, and having to invoke GPU kernels multiple times. Applying BigKernel

on a set of Big Data applications shows that it outperforms both the CPU-based multi-threaded implementations

(on average by 3.0X) and the GPU-based implementation of the applications that use the state-of-the-art double-
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buffering scheme to transfer their data (on average by 1.7X).

S-L1 uses GPU’s shared memory to provide an L1 cache implemented entirely in software. The GPU shared

memory is a small software-managed memory, which is positioned at the same level as the GPU’s L1 cache, and

has the same access latency as the hardware L1. S-L1 determines, at run time, the proper size of cache, samples

the effectiveness of caching the data of different data structures, and based on that information, decides what data

to cache. On a set of Big Data GPU applications, S-L1 achieves an average speedup of 1.9 over hardware L1 and

2.1 over no L1 caching. Combining S-L1 with BigKernel leads to an average speedup of 1.19 over BigKernel

alone.

Finally, our hash table is intended to be used as a key-value store for GPU-based Big Data applications. It

(i) supports variable-length keys and values, (ii) can perform on-the-fly grouping of key-value pairs with the same

key and, (iii) uses a model of computation we developed, called SePo, to be able to obtain reasonable performance

even when the table and its data grow larger than available GPU memory. Comparing a set of GPU-based Big Data

applications that use our hash table with the corresponding CPU-based multi-threaded implementations shows an

average speedup of 3.5, despite having the hash table grow to up to four times larger than the space available in

GPU memory.

1.1 Contributions

This dissertation makes the following five specific contributions:

• The first system to automate CPU-GPU data transfers for large datasets without requiring the programmer

to split the data or annotate the code (BigKernel).

• The first scheme to improve on the performance of state-of-the-art double-buffering scheme for GPUs

(BigKernel).

• A software L1 cache implemented entirely in software with several novel features including a run-time

scheme to automatically determine the parameters to configure the cache (S-L1).

• A GPU-based hash table to store key-values which can grow beyond the available GPU memory and retain

reasonable performance.

• A model of computation that allows certain types of applications (including Big Data applications) to run

more efficiently (SePo).
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1.2 Organization

The rest of this dissertation is organized as follows. We start by presenting, in chapter 2, background information

on general purpose computing on graphics hardware (GPGPU) and go over some of the key challenges in achiev-

ing good performance on GPUs. This is followed in chapter 3 with a description of work related to ours. We

focus specifically on existing runtime/compile-time systems that improve the performance of GPU applications

and on existing core data structures used in GPU applications. This dissertation then describes the three systems

we designed and implemented. BigKernel, S-L1, and our hash table design are presented in chapters 4, 5, and 6,

respectively. We close with concluding remarks and possible directions for future work in chapter 7.

We would like to point out that the work we describe in chapters 4 and 5 were published in May, 2014 [73]

and August, 2015 [74], respectively. The work we describe in chapter 6 is ready to be published.



Chapter 2

Background

In this chapter we provide an overview of GPGPU and then present background information on the hardware

and software sides of GPU programming to help the reader better understand the key factors involved in the

performance and programmability of GPUs. This chapter can be skipped by readers already familiar with GPUs.

2.1 GPGPU Overview

The term GPU was first popularized by Nvidia in 1999 when it called its Geforce 256 ”the world’s first ’GPU’, or

Graphics Processing Unit”. It took less than a year for programmers to use this GPU for non-graphical applica-

tions, coining the term General Purpose GPU (GPGPU). However, to program a GPU, one had to use the graphics

library interfaces, which was rather tedious. GPU Programming later became easier with the introduction of GPU

software development tools tailored specifically for developing computing applications.

In 2007, Nvidia introduced a GPGPU software platform for its own line of GPU devices, which it called

Compute Unified Device Architecture (CUDA) [77]. Geforce GTX 8800 was the first CUDA-enabled consumer

GPU, offering 518 GigaFLOPs of theoretical performance [78], compared to less than 6 GigaFLOPs theoretical

performance of the, at the time, state-of-the-art Intel Core 2 processor running at 3.0 GHz. This created some

excitement, especially when impressive speedups of applications ported to GPU platforms, sometimes in excess

of 100, were reported (see Section 3.1). The rapid improvements of raw GPU performance over the last several

years has given GPUs a performance advantage over CPUs for many compute intensive applications.

In the following section, we briefly give an overview of GPU hardware and software. For the hardware

overview, we often use the specifications of Nvidia GTX 680 which implements the Kepler architecture [81]. We

describe GTX 680 because it is the GPU we used to evaluated BigKernel and S-L1, presented in chapters 4 and 5.

Although other GPU architectures will differ in some specifications, they share many general characteristics.

6
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GPU model
GPU Family and
year

Number of cores#2 memory bandwidth Size of memory Size of L2 cache Size of onchip memory

GTX 680 Kepler (2012) 1536 192GB/s 2GB 1.5MB 64KB
GTX 780 Kepler (2013) 2304 288GB/s 3GB 1.5MB 64KB
GTX Titan Black Kepler (2014) 2880 336GB/s 6GB 1.5MB 64KB
GTX 980 Maxwell (2015) 2048 192GB/s 8GB 2MB 128KB
GTX 1080 Pascal (2016) 2560 320GB/s 8GB 4MB 128KB

Table 2.1: Comparing recent GPUs key characteristics.
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Figure 2.1: The internal structure a streaming multiprocessor (SMX).

Since GTX 680, Nvidia has released four newer series of GPUs, with the latest being GTX 1080. A comparison

of the key characteristics of several recent GPUs is provided in Table 2.1.

In the following sections, we primarily use the terminology of Nvidia to describe the hardware and software

aspects of GPUs, however we provide AMD/OpenCL’s equivalent terms in footnotes as well.

2.2 GPU Overview

2.2.1 GPU Hardware

GPU compute unit consists of several streaming multiprocessors (SMX)1, each of which contains multiple com-

puting cores, tens of thousands of 4-byte registers, and a small (e.g. 64KB) but fast on-chip memory. Figure 2.1

1SMXs are called compute units in AMD/OpenCL’s terminology.
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depicts the internal structure of an SMX.

Compared to a traditional multi-core CPU, a GPU has a far higher number of cores, but each core is simpler

than a conventional CPU core. GPU cores are simpler, in part because they do not have an integrated instruction

scheduler. Instead, a single instruction scheduler is shared between multiple GPU cores in an SMX. For example,

in Kepler architecture, every 16 cores share the same instruction scheduler. As a result, groups of threads executed

by the cores that share the same instruction scheduler run in lockstep, implementing Single Instruction Multiple

Data (SIMD) type execution. Thread divergence will occur if, on a conditional branch, threads that run in lock-

step take different paths, causing the threads to serialize the execution of different paths.

The small on-chip memory in each SMX is partitioned between a hardware-managed L1 cache and a programmer-managed

shared memory2. In many GPUs, the programmer can configure how the SMX on-chip memory is to be parti-

tioned between L1 and shared memory. GTX 680, with 64KB of on-chip memory per SMX, can be configured

to assign 16KB-48KB or 48KB-16KB to L1 cache and shared memory, respectively. L1 cache is used to cache

register spills and stack data (and not application data) [80]. Shared memory is programmer managed memory

and allows threads running on the same SMX to efficiently share data.3

A larger L2 cache is shared by all SMXs of the compute unit and is connected to off-chip DRAM called global

memory. We refer to this global memory as GPU memory in this document to differentiate it from CPU main

memory.

For the Nvidia GTX 680, which is considered to be a reasonably modern GPU, access latency to registers,

L1, shared memory, L2 and DRAM is 10, 80, 80,210, and 340 cycles, respectively. Moreover, the theoretically

maximum bandwidth from L1, shared memory, L2 and DRAM have been reported to be 190.7GB/s, 190.7GB/s,

512GB/s, and 192GB/s, respectively [81].

GPU hardware uses two strategies to hide the latency of accesses to GPU memory: (i) fast context switch to

another threads on a memory access4 and (ii) wide memory buses that enable accesses to several data elements

in a single memory transaction. To exploit that latter, however, GPU programs should be optimized to access

memory in a coalesced fashion.

Coalesced memory accesses are those that are simultaneously issued by concurrent threads and fall within the

same aligned 128-byte region. These memory accesses are coalesced into a single memory access by a hardware

coalescing unit before being sent to memory, resulting in only one 128-byte memory transaction. Parallel memory

accesses from concurrent threads to data are defined as n-way coalesced if n of the accesses fall within the same

aligned 128-byte region.

2Shared memory is called local memory in AMD/OpenCL’s terminology.
3For threads to shared data, they not only need to run on the same SMX, but they have to be in the same thread block, which we describe

later.
4The context switch between GPU threads is fast because everything is stored in registers and thus there is almost no data movement on

a context switch.
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Figure 2.2: The connections between different components of the system.

Figure 2.2 illustrates the GPU compute unit, L2 cache, and DMA engines are connected to other parts of a

computer system. GPUs use a PCI Express link (PCIe) to connect to CPU and CPU memory. One end of this link

is connected to the IO hub located on the motherboard/CPU chip, and the other end is connected to one or two

DMA engine(s) located on the GPU. The link is formed by a group of up to 16 lanes, each with enough wiring to

support bidirectional data transfers at the same time. The latest generation of PCIe, PCIe revision 3.0, can transfer

data at a theoretical speed of 15.75 GB/s in each direction if all 16 lanes are utilized.

Although GPU programs are supposed to transfer data in bulk to GPU memory before operating on it, a feature

introduced in later versions of CUDA, called zero copy, enables GPU threads to directly access (the remote) CPU

memory [77]. However, to enable zero copy, the to-be-access locations of CPU memory must be pinned so that

they are not paged out by the operating system.

Finally, the latest family of CUDA-enabled GPUs (i.e., Pascal) offers hardware demand-paging support which

provides a programming convenience referred to as “unified memory”, in which the address space of GPU is

merged with that of the CPU to create a single virtual address space. This way, GPU programs are allowed to

access data located in CPU memory without first copying them to GPU memory; underneath, the demand-paging

hardware pauses the execution and waits for the GPU driver to copy the required data to GPU memory before

resuming execution.
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2.2.2 GPU Software

A typical CUDA program consists of two parts: the main part of the program, which is executed on the host (the

CPU), and the kernel5, called by the main program, which is executed on the GPU by a collection of GPU threads6

in parallel. The host part uses CUDA API calls to send different commands to the GPU. These commands include

kernel execution control (e.g. kernel launch), memory management (e.g. memory copy to/from GPU memory),

error handling (e.g. querying the GPU to check whether the kernel has terminated with an error), etc.

The programmer configures the kernel to be executed by a given number of GPU threads. A maximum of

1,024 threads are grouped into thread blocks7 as configured by the programmer. Each thread block is assigned to

an SMX by a hardware scheduler. Threads within a thread block can synchronize using barriers provided by the

GPU hardware. However, there exists no explicit support for inter-block synchronization.

Threads of a thread block are further divided into groups of 32, called warps. The threads in a warp execute in

lock-step because the cores share the same instruction scheduler. As described earlier, thread divergence will occur

if, on a conditional branch, threads of the same warp take different paths, which can lead to serious performance

degradations. Inter-warp divergence does not negatively impact performance.

A limited number of thread blocks can be scheduled on the same SMX at each time. The thread blocks

currently executing on an SMX are called online thread blocks. The offline thread blocks are put in a queue

and scheduled on the SMXs only after the online blocks complete their execution. The number of online blocks

on each SMX depends on the available resources of the SMX and the total resource requirements of the thread

blocks. Assuming that an SMX has 64K registers, for instance, no more than 4 thread blocks can be scheduled on

the same SMX at a time if the size of the thread block is 256 and each thread requires 60 registers.8

Figure 2.3 lists a trivial CUDA program that squares the values of an array. Lines 2-6 define the kernel, which

is executed on the GPU; each thread squares the value of a single array element. Lines 9-26 are the code executed

on the CPU. Line 14 allocates an array in GPU memory, and data is copied into the array at line 18. Line 19

launches the kernel to be executed by 32 GPU threads. An explicit synchronization function is called at line 20

which blocks host execution until the GPU kernel finishes. After the kernel terminates, the array is copied back

to main memory at line 21, and the allocated space on the GPU is freed at line 25.

5Kernel is called program in AMD/OpenCL’s terminology.
6GPU threads are called work-items in AMD/OpenCL’s terminology.
7Thread blocks are called work-groups in AMD/OpenCL’s terminology.
84 thread blocks would require 4× 256 × 60 = 60K registers which is available in the SMX. 5 thread blocks, however, would require

5× 256× 60 = 75K registers which is more than 64K registers available in the SMX.
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1 : / / GPU p a r t
2 : g l o b a l v o id s q u a r e A r r a y ( f l o a t ∗a )
3 : {
4 : i n t i d x = t h r e a d I d x . x ;
5 : a [ i d x ] = a [ i d x ] ∗ a [ i d x ] ;
6 : }
7 :
8 : / / Host p a r t
9 : i n t main ( v o id )
1 0 : {
1 1 : f l o a t ∗ a h , ∗ a d ;
1 2 : i n t s i z e = 32 ∗ s i z e o f ( f l o a t ) ;
1 3 : a h = ( f l o a t ∗ ) m a l lo c ( s i z e ) ;
1 4 : cu d aMal lo c ( ( v o id ∗∗ ) &a d , s i z e ) ;
1 5 :
1 6 : / / I n i t i a l i z e h o s t a r r a y . . .
1 7 :
1 8 : cudaMemcpy ( a d , a h , s i z e , cudaMemcpyHostToDevice ) ;
1 9 : s q u a r e A r r a y <<<1, 32>>> ( a d ) ;
2 0 : c u d a T h r e a d S y n c h ro n i z e ( ) ;
2 1 : cudaMemcpy ( a h , a d , s i z e , cudaMemcpyDeviceToHost ) ;
2 2 :
2 3 : / / Use t h e r e s u l t s . . .
2 4 : f r e e ( a h ) ;
2 5 : cu d aFree ( a d ) ;
2 6 : }

Figure 2.3: A trivial CUDA application that squares the elements of an array



Chapter 3

Related Work

In this chapter, we present prior work related to our research. We focus on four different subareas:

1. GPU accelerated applications

2. Core data structures developed for GPU applications

3. Compile-time or runtime systems that improve the performance of existing GPU applications through vari-

ous optimizations techniques

4. GPU performance models and studies that characterize GPU performance

3.1 GPU accelerated applications

Many studies have reported significant speedups when porting CPU applications to GPUs. These applications

stem from a wide array of areas, including: bioinformatics [62], computational finance [15], computational fluid

dynamics [93], data mining [20], defence and intelligence [19], electronic design automation [98], imaging and

computer vision [25], material science [18], medical imaging [94], molecular dynamics [110], numerical analy-

sis [7], physics [36], quantum chemistry [102], oil and gas/seismic [1], structural mechanics [84], visualization

and docking [57], and weather and climate [57]. Table 3.1 summarizes a number of applications from these areas

along with their achieved speedups over the corresponding CPU implementations.

In addition to algorithm changes that are required to make an application massively parallel, programmers

also need to fine-tune the applications to take into account the underlying micro-architectural characteristics of

the GPU in order to be able to achieve good performance. For example, Kumar et al. needed to coalesce accesses to

GPU memory to improve the performance of the Expectation Maximization (EM) algorithm [52]. They observed

that coalescing memory requests enabled the EM algorithm to exhibit higher computational throughput.

12
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Application and Organization Speed-up Software env. Testbed Hardware environment

Fast Seismic Modeling [1]
TOTAL, avenue Larribau

10X CUDA GPU: NVIDIA Tesla S1070
CPU: Ten Intel Xeon quad-core 2.0GHz

Visualization of ISO-surface Extraction [8]
Nancy Universite

2X OpenGL GPU: NVIDIA QuadroFX Go 1400
CPU: Intel Centrino 2GHz

Support Vector Machine [16]
Can Tho University

70X CUDA GPU: NVIDIA Geforce 8800 GTX
CPU: Intel Core 2 2.6 GHz

Decision Trees and Forests [89]
Microsoft Research, UK

100X CUDA GPU: NVIDIA GTX 280
CPU: Intel Core 2 Duo 2.66 GHz

Particle Swarm Optimization [121]
Peking University

11X CUDA GPU: NVIDIA GTX 8600
CPU: Intel Core 2 Duo 2.2GHz

Genetic Programming [87]
Universit Lille Nord de France

13X CUDA GPU: NVIDIA GTX 8800
CPU: Intel Core 2 Duo 2.6 GHz

Genetic Programming for Bioinformatics [54]
University of Essex

7.6X RapidMind [70] GPU: NVIDIA GTX 8800
CPU: Intel 6600 2.40 GHz

Data Mining High-throughput Screening Data [58]
ChemExplorer Co. Ltd

43X-212X CUDA GPU: NVIDIA GTX 280
CPU: 4 Intel Xeon 5120 1.86 GHz

K-Means [114]
Know-Center, Graz

14X CUDA GPU: NVIDIA GTX 9600
CPU: Intel Core 2 Duo E8400 CPU

Digital Forensics [69]
University of New Orleans

4.6X CUDA GPU: NVIDIA GTX 8800
CPU: Two AMD Opteron 2218 2.6GHz

Back-Propagation Neural Network [90]
University of Tecnolgica Metropolitana

63X CUDA GPU: NVIDIA Tesla C1060
CPU: Intel Core2 Duo E6750 2.66GHz

Molecular Dynamics Simulations [60]
Nanyang Technological University

19X CUDA GPU: NVIDIA GTX 8800
CPU: AMD Opteron 2210 1.8 GHz

K-Means [38]
Jilin University

40X CUDA GPU: NVIDIA GTX 8800
CPU: Intel Pentium D 965 3.7 GHz

Molecular Dynamic Simulation [24]
Stanford University

700X CUDA GPU: NVIDIA GTX 280
CPU: Intel Core 2 Duo 2.66 GHz

Earthquake Modeling [49]
Universite de Pau et des Payse de l’Adour

25X CUDA GPU: NVIDIA GTX 8800
CPU: Intel Xeon E5345 2.33 GHz

Quantum Monte Carlo [4]
California Institute of Technology

6X CUDA GPU: NVIDIA GTX 7600
CPU: Intel Pentium 4 3GHz

Smith Waterman for Scanning of Sequence Databases [59]
University of Warsaw

3.5X CUDA GPU: NVIDIA GTX 9800
CPU: Conventional CPU

Ultra-fast FFT Protein Docking [86]
INRIA Nancy

45X CUDA GPU: NVIDIA GTX 285
CPU: Intel Xeon quad-core 2.3 GHz

Density Functional Calculations [112]
Nagoya University

10X CUDA GPU: NVIDIA GTX 8800
CPU: Intel Core2 Duo 3.0 GHz

QM/MM-QMC Simulation [100]
Japan Advanced Institute of Sci. and Tech.

23.6X CUDA GPU: NVIDIA GTX 275
CPU: Intel Core i7 920 2.66 GHz

Biomolecular Simulations in the Centisecond
Timescale [120]
University of Massachusetts

90X CUDA GPU: NVIDIA GTX 295
CPU: Two Intel Xeon quad-core 2.83 GHz

Single-cluster Algorithm for the Simulation of the Ising
Model [51]
Tokyo Metropolitan University

7.9X CUDA GPU: NVIDIA GTX 285
CPU: Intel Xeon W3520 2.67GHz

Numerical Solution of Stochastic Differential Equations [42]
University of Silesia

675X CUDA GPU: NVIDIA Tesla C1060
CPU: Intel Core2 Duo E6750

Fast FEM Deformation Simulation [61]
University of Macau

4X CUDA GPU: NVIDIA GTX 8800
CPU: Intel Core2 Quad 2.0GHz

Nonequispaced Fast Fourier Transform [92]
King’s Coll. London

85X CUDA GPU: NVIDIA GTX 8800
CPU: Intel Xeon dual-core 2.33 GHz

Table 3.1: Studies on porting applications to GPUs with the claimed speedup achieved.
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In the process of developing a data mining translation system on GPUs, Ma et al. used GPU shared memory

spaces to dramatically improve the application’s overall performance [67]. They found, however, that since the

shared memory is small, using it can be challenging.

Govindaraju et al. focused on the use of GPUs caches in a sorting algorithm [31]. They realized that by tiling

the application’s memory access pattern, the small GPU caches could be utilized more efficiently. This technique

significantly reduces the number of GPU memory accesses and improves the performance of the sort algorithm

by 2-30x and 6-25x over prior GPU-based and CPU-based sorting algorithms, respectively.

Yudanov et al. observed that the serialization effect of thread divergence hurts the performance of GPU appli-

cations noticeably [113]. The authors tracked down and resolved the source of branch divergence in a Simulation

of Neural Networks application and achieved 9X speedup compared to a baseline CPU implementation.

Yang et al. designed and implemented a Linpack benchmark on a petascale CPU/GPU supercomputer sys-

tem [109]. They observed that one of the primary bottlenecks was the bandwidth limitation of the CPU-GPU

link. A simple software pipelining technique was used to overlap execution with host-GPU data transfers so as to

better distribute data transfers over time and reduce the time the kernel spent waiting for the data. Moreover, they

realized that finding the optimal configuration regarding the distribution and size of each task/data-transfer was

challenging and could have benefited from an adaptive framework that does this automatically.

3.2 Work on core data structures

Performance of GPU applications often depends critically on the choice of data structure used to store data. A key

challenge is that data structures used in GPU applications are typically accessed by 1000’s of active GPU threads;

even minor access inefficiencies thus translate into substantial performance degradation.

Regular data structures like arrays and matrices are the data structures of choice when the objective is to exploit

as much of the computation power and memory bandwidth of GPUs as possible: accesses to these data structures

(i) can often be coalesced into fewer (physical) memory transactions, (ii) seldomly cause thread divergence, and

(iii) often do not require synchronization.

A large body of work has presented GPU-based applications that use arrays and matrices in their implemen-

tations (e.g., [7, 12, 21]). Because matrix multiplication is one of the more important operations in scientific

computing, various studies have looked at ways to improve the way matrices are stored and operated on. Hall

et al. looked at how matrices can be stored and accessed so as to have a high cache hit rate [33]. Dziekonski

proposed a novel way to store sparse matrices on GPUs to achieve high bandwidth memory accesses [17].

Irregular data structures1, like trees and hash tables, on the other hand, are often avoided by the GPU commu-

1Irregular data structures are data structures that their access pattern is data-dependent, and statistically unpredictable.
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nity because (i) it is significantly harder to coalesce accesses to these data structures, (ii) costly synchronization is

often required for shared accesses and, (iii) thread divergence is more likely (imagine two neighbor GPU threads

traversing a tree to find two different elements at different heights). Despite these potential issues, there are cases

where such irregular data structures nevertheless improve application performance, primarily because they are a

great fit for the application’s needs.

Irregular data structures that have been designed for GPUs can be grouped into one of the three categories:

(i) mutable GPU-based structures, those that are kept in GPU memory and can be accessed and updated in-

crementally, (ii) immutable GPU-based structures, those that are kept in GPU memory but cannot be updated

incrementally but are bulk-built and need a full rebuild to be updated, and (iii) CPU-based structures, those that

are kept in CPU memory but are accessed by GPU cores remotely over the PCIe bus (mostly read-only accesses).

Mutable GPU-based structures: only few existing designs fall into this category. MapCG is a GPU-based

MapReduce runtime system that uses a hash table to store key-value pairs [37].

MapCG has been shown to achieve 1.6-2.5X performance speedup compared to earlier implementations that

used arrays to store the key-value pairs, which is perhaps surprising given the fact that a MapReduce application

can generate many key-value pairs with duplicate keys and thus face a highly contended access pattern to the hash

table.

In chapter 6, we present our own design of a hash table which also falls into this category. This hash table

was designed primarily for key-value pairs. It (i) accepts variable-length key-value pairs, (ii) groups pairs with

duplicate keys on-the-fly and, (iii) keeps the hash table in GPU memory, and while doing that stays operational

(and with retained efficiency) even when the hash table contents grow larger than GPU memory.

Immutable GPU-based structures: several hash table and most tree designs fall into this category[22, 39, 45,

76, 103, 34, 83, 99, 118]. Pan et al. use a hash table for a k-nearest neighbor computation [83]. The hash table

uses locality sensitive hashing (that hashes similar items to similar buckets) to cluster items that are similar to each

other. Their implementation achieves more than 40X speedup over a single-core CPU based implementation.

Alcantra et al. [3] described various techniques to make the hash table more efficient on GPUs. They describe

various potential structures for a hash table and analyze insert and lookup operations on each. As part of their

evaluation, they reported that the hash table they built offers random access at a higher rate than binary searches

through sorted arrays, despite the uncoalesced accesses inherent to hashing.

Foley et al. used a KD-tree to improve the performance of the Raytracer application [23]. They describe that

even though the matrix-like grid is more “GPU-friendly”, it is a suboptimal data structure for this application

when rays have certain attributes. Foley claimed that using a KD-tree provided a speedup of 8 over previous
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implementations using the grid data structure.

Sharp described a way to implement a decision tree on GPUs, and showed how it can accelerate an object

recognition algorithm [89]. Their implementation achieved 100X speedup over the corresponding CPU imple-

mentation.

Luo et al. presented a highly parallel GPU-based implementation of R-trees [64]. R-tree is an index data

structure for the efficient management of spatial data. They reported an average speedup of 25 over a CPU-based

implementation of the same application.

CPU-based structures: More recent scalable hash table designs fall into this category. Stadium hashing proposes

a hash table design where the hash table itself is located in a pinned portion of CPU memory, where it is directly

accessed by GPU threads [47]. However, a compact indexing data structure is stored in GPU memory which is

used to minimize the number of accesses to CPU memory by having one fingerprint hash token for each item

stored in the hash table and having every operation on the hash table first consult the index data structure before

accessing the hash table. For instance, on an insert, the GPU thread first uses the index data structure to find an

empty bucket, and only then will it access CPU memory to store the data. Stadium hashing reports 2-3 times

faster operations over an existing GPU parallel hashing.

Mega-KV is a CPU-based in-memory key-value store for distributed systems that uses a hash table to store

the key-value pairs [116]. Mega-KV runs on a single node and stores key-value pairs that are sent to it from other

nodes. The hash table is accelerated by a GPU-based index table. Similar to the Stadium hashing’s approach,

Mega-KV uses the GPU only for the heavy-lifting part of the operations (e.g., scanning the hash table for an

empty bucket during an insert, or finding a bucket item during a lookup). However, the actual data is kept on and

accessed in CPU memory.

Unlike the solution we present in chapter 6, neither Stadium hashing nor Mega-KV handle key-value pairs

with duplicate keys even though they are common in Big Data analytics applications. They both store pairs with

duplicate keys as if they are pairs with different keys that happen to map to the same buckets.

3.3 Runtime and Compiler-assisted Systems

A number of runtime and compiler-assisted systems have been designed for GPUs with the goal of improving the

performance of existing applications. Two classes of these systems that are of particular interest to us are (i) CPU-

GPU communication management systems with the objective of automating and/or optimizing CPU-GPU data

communication and (ii) GPU memory optimization systems with the objective of optimizing the memory accesses

of existing applications (e.g. by coalescing memory accesses or by exploiting GPU’s fast shared memory).
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We present two systems in chapters 4 and 5 that fall under this category. The first system, BigKernel, (i) auto-

mates and optimizes CPU-GPU communications and (ii) optimizes GPU memory accesses. The second system,

S-L1, implements a level-1 cache system entirely in software to improve the performance of GPU memory sub-

system.

3.3.1 CPU-GPU Communications Management Systems

Managing CPU-GPU data communications is a well-known challenge both from a programmability and from

a performance point of view. Most prior work addresses this challenge only from a programmability point of

view [27, 56, 108], but some also consider performance, which is more closely related to our research goals [55,

119].

Jablin et al. automates CPU-GPU communication to increase GPU programming convenience, however with-

out having the objective of improving the performance [41]. They used compiler technology to statically analyze

the code of an application and insert appropriate runtime library functions into its code to transfer data to/from

GPU memory. To do this, the data structures being used by the kernel are determined based on the kernel’s ar-

guments. Next, type-inference is used on each data structure to statically determine if the data structure contains

pointers or non-pointer data. If it contains non-pointer data, it is simply transferred to GPU memory before the

corresponding kernel is invoked. If the data structure contains pointers, however, not only it will be transferred to

GPU memory, but the data structure being pointed to by those pointers will also be transferred to GPU memory.

The static type-inference scheme the authors use makes the scheme inapplicable for applications with recursive

data structures. Furthermore, this work does not address the difficulty in executing kernels that process datasets

larger than the size of GPU memory. In other words, the programmer herself needs to split the input data into

smaller chunks – and call the kernel function multiple times, each time to process a different chunk of data – and

make sure that the total size of data required by each kernel invocation does not exceed the size of GPU memory.

In a more recent work by the same group, Jablin et al. designed another system to automatically manage

recursive data structures without static analysis [40]. They realized that moving toward a runtime approach (as

opposed to the static type-inference method they used in their previous work) improves the applicability of the

data management system for a wider range of GPU applications. Similar to the previous work, this new system

determines the data structures used based on the kernel arguments. These data structures are scanned before kernel

invocation to find potential pointers. For each potential pointer found, the pointee data structure is added to the

list of data structures that should be transferred to GPU memory and also scanned for potential pointers as well

(to identify recursive data structures).

The new system also does not handle datasets larger than the size of GPU memory and puts the burden of
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splitting and size-checking the data structures on the programmer. Additionally, it is assumed that the pointers

used by an application are always stored as direct pointers (i.e., immediate address) and are not displacements

(e.g. basePtr + displacement) or indexes (e.g. basePtr[index]). These limitations, for example, make the system

incapable of handling applications that access a hash table since hash tables are typically indexed into using hashes

of other data values.

VAST is another CPU-GPU communication management system that provides OpenCL programs the illusion

of having a larger GPU memory space [55]. Based on the available GPU memory, VAST partitions the data

parallel workload into chunks and extracts the working set required for the computation by first running a variation

of the kernel code, called inspector, that compiles a list of those pages of memory being accessed by GPU threads

during the computation and sends the list to the CPU. The CPU then transfers those pages to GPU memory where

the data is accessed through a page table. A downside of this approach is that each data access is transformed to

go through the page table before accessing the actual data, which incurs extra memory accesses. Nevertheless,

the authors report an average speedup of 2.6 over the baseline CPU implementations of benchmark applications.

Komoda et al. proposed a library for OpenCL that automatically overlaps computation with data communica-

tion [50]. Using this library, programmers describe the memory usage pattern of their applications in the form of a

graph abstraction called Stream Graph [96]. In this abstraction, kernel(s) and I/O streams (e.g. a stream of data in

CPU memory) are nodes of the graph and communication paths amongst the nodes are the edges. When applied

to four benchmark applications, the overlapped computation and communication improves the performance of the

applications by an average of 58%. However, the programmer is still required for splitting the data into smaller

chunks and also is required to provide information such as the size of the data structures being transferred.

Pai et al. propose a system that automates CPU-GPU memory management and also improves the perfor-

mance of CPU-GPU communication by not transferring redundant data between CPU and GPU [82]. The authors

observed that other systems that automate CPU-GPU data transfers often transfer data that is not used at all or

transfer a data item multiple times. To reduce the volume of data transfers to what is actually necessary, this sys-

tem uses a coherence model approach where data is transferred – from CPU to GPU or from GPU to CPU – only

if it is does not exist at the destination or if its available version is stale. Using this system, a set of benchmark

applications exhibit an average speedup of 1.29 over the system proposed by Jablin et al., described above [41].

The system proposed by Pai et al. does not overlap computation and data communication.

Finally, Nvidia recently equipped its GPUs with a demand-paging hardware mechanism, enabling a single

virtual space across CPU and GPU memories [79]. This single address space allows a GPU program to access

data located in CPU memory without first having to explicitly copy it to GPU memory; the demand-paging

hardware will pause the execution if the accessed data is in CPU memory and transparently copy it to GPU

memory before resuming the execution. A preliminary study on this demand-paging support, however, report on
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noticeable performance inefficiencies, suggesting that some optimizations are still needed before the mechanism

will perform reasonably well for different types of applications [119].

3.3.2 GPU Memory Optimization Systems

Despite having high theoretical memory bandwidth, GPU memory is often unable to efficiently satisfy the high

number of concurrent memory requests made by running GPU threads. Two ways this issue has been addressed

are (i) coalescing memory accesses to GPU memory and (ii) using GPU shared memory or L1 caches to cache

the data and, consequently, reduce the number of memory accesses that need to be serviced by GPU memory.

CUDA-lite is an enhancement to CUDA developed by Ueng et al. that uses shared memory as a fast scratch-

pad to reduce the number of accesses to GPU memory [101]. In CUDA-lite, a source-to-source translator is used

to transform the code of a loop-based kernel2 so it can achieve optimized tiling of GPU memory data. More

precisely, a tile of data, which is predicted to be used in future iterations of the kernel’s loop, is read in a coalesced

fashion, from GPU memory using a single memory transaction and stored in the shared memory from where

it is then accessed more efficiently. To predict which data is used in future iterations of the kernel’s loop, the

programmer has to annotate the source code to specify the loop configuration (e.g. start and end iterations) and

the location of the data item. They were able to obtain 2-17X speedup over applications with non-coalesced

memory accesses [101].

Yang et al. proposed a number of compiler optimizations to increase the effective utilization of GPU memory

bandwidth and improve the efficiency of thread parallelism on the GPU devices [111]. Similar to CUDA-lite, they

load data tiles (that are going to be used in future loop iterations) from GPU memory in a coalesced fashion and

store them in the shared memory for later use. Additionally, to improve thread parallelism efficiency, threads in

different thread blocks are analyzed for their memory access patterns (at compile-time) and those with sharing

locality are merged into one thread, enabling data reuse through registers and shared memory.

Zhang et al. conducted a comprehensive study on the difficulties and benefits of removing irregularity from

memory accesses [115]. The authors noted that since irregular memory accesses by the threads of a warp are often

to disjoint locations of memory, their performance is significantly lower than for coalesced memory accesses. To

address this, the authors proposed a software-based system in which, at runtime, the CPU reorders the data of

irregular data structures before sending them to the GPU to co-locate the data items that will be accesses at the

same time by the threads of a warp, causing the accesses to GPU memory to be coalesced. The downside of

this work is that the CPU (which is often less efficient for parallel workloads) is required to partially run the

kernel code to extract the irregular addresses the GPU threads will access, thus limiting the performance gains.

2A kernel that does the core of the computation inside a loop.
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Nevertheless, applying their system on a variety of applications, speedups between 1.07 and 2.5 were reported.

Finally, CudaDMA provides a library that allows the programmer to copy data to shared memory and use the

data from there [6]. They adopt a producer-consumer approach in which threads executing a kernel are divided

into two groups: (i) producer threads whose only job is to load the data from GPU memory into shared memory

and (ii) consumer threads that will do the computation using the data in shared memory. Producer and consumer

threads are put in different warps so as to avoid thread divergence. To employ CudaDMA, the programmer uses

the provided APIs to determine producer and consumer threads and also to register the data that needs to be

loaded to shared memory. The downside of this work is that the programmer is responsible for setting the number

of producer and consumer threads, and assigning the proper size of shared memory to different threads which is

a non-trivial task. Speedups of between 1.15 and 3.2 were reported when applying CudaDMA on several kernels

from scientific applications.

3.4 GPU Performance Characterization

GPU performance models and other studies that characterize GPU performance are often used to help GPU pro-

grammers predict and optimize their applications. These studies often analyze many of the micro-architectural

characteristics of a GPU (sometimes obtained through reverse-engineering efforts) and provide an in-depth un-

derstanding as how each component of a GPU can become performance-limiting. This section describes some of

the more important studies that characterize and predict GPU performance.

Wong et al. used micro-benchmarking to understand the architectural characteristics of a modern GPU [106].

The collected measurements are useful to those wishing to model GPU performance, since most of the GPU

micro-architectural characteristics are not publicly disclosed by the GPU vendors. For example, while there is no

information on the existence of TLBs for GPU memory in GPU documentation, this work reports on the measured

effect of two TLB levels for GPU memory.

One of the more interesting (and for us relevant) performance modeling efforts is the one by Gomez et al., who

modelled asynchronous data transfers between host and GPU memory [30]. Based on the execution time of the

applications and the time it takes to transfer data between host and GPU memory, their model estimates the po-

tential performance improvement that would be obtained from overlapping computation and data communication.

In addition, the model enables programmers to determine how best to partition the application’s computation.3

Baghsorkhi et al. propose an analytical model to predict the performance of a GPU kernel executing on

a generic GPU architecture based on its (a) compute-to-memory-access ratio, (b) coalesced memory accesses,

3Given an application which processes D data records that can be processed independently, a programmer could decide to cluster them
into n segments. Thus, each of the segments will contain D

n
of the data records.
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(c) thread divergence ratio, and (d) shared memory usage of each thread block [5]. These four criteria are suffi-

cient to determine the performance of a GPU application when its memory footprint is smaller than GPU memory

size.

Others have also studied the characteristics of GPU memory and GPU caches [26, 106]. Jia et al. characterized

GPU L1 cache locality and provided a taxonomy for reasoning about different types of access patterns and how

they might benefit from L1 caches [43]. Tore et al. provided insights into how to tune the configuration of GPU

threads to achieve higher cache hit rates. They also showed how the L1 impacts the performance of a handful of

simple kernels [97].

Table 3.2 lists other studies that characterize GPU performance.

Description Organization

GPU power efficiency modeling framework [85] University of Utah

GPU Statistical power consumption analysis and modeling [68] University of Houston

Performance modeling in multi-GPU environments [88] Northeastern University

Thread divergence modeling [13] Universidade Federal de Minas Gerais

GPU Statistical power modeling [75] Tokyo Inst. of Technology

Modeling of CPU-GPU workloads [46] Georgia Institute of Technology

Memory performance modeling and estimation [48] Arizona State University

Visual performance analysis and memory access modeling [2] Virginia Tech

GPU power and performance characterization [44] Virginia Tech

Thread divergence modeling and optimization [14] Universidade Federal de Minas Gerais

Modeling the performance of GPU application based on its CPU code [71] Argonne National Library

Statistical model on power and performance of GPU executions [117] Louisiana State University

Memory access model [65] Washington University in St. Louis

GPU power analysis using tree-based methods [10] University of Florida

Performance modeling and evaluation of memory hierarchy [63] Washington University in St. Louis

A performance analysis framework [91] Georgia Institute of Technology

Performance model for bandwidth constrained applications [66] Washington University in St. Louis

Performance models for atomic operations on GPU shared memory [29] University of Cordoba

Timing model for GPU performance [53] University de Rennes

Table 3.2: Several other studies that characterize the performance of GPUs.



Chapter 4

BigKernel

In this chapter, we describe BigKernel, a mixed compile-time, runtime scheme that aims to optimize CPU-GPU

data communication as well as GPU memory accesses in Big Data applications. We first present a short overview

of BigKernel in Section 4.1, and then present the design and implementation in more detail in Section 4.2. Sec-

tion 4.3 describes various optimizations we applied to BigKernel. We close the chapter by presenting our evalua-

tion of BigKernel in Section 4.4.

4.1 Overview

BigKernel’s goal is to optimize CPU-GPU data communication as well as GPU memory accesses by prefetching

data within a four-stage pipeline. The key idea behind BigKernel is to have GPU threads identify ahead of time,

yet online, which data will accessed by which threads in their near-term computations, transfer this information to

the CPU, and then have the CPU assemble the data and transfer it to GPU memory prior to when the GPU threads

access the data.

This scheme has a number of potential advantages. First, the amount of data transferred over the PCIe link

from CPU memory to GPU memory is often reduced, because only the data being accessed GPU-side is trans-

ferred (as opposed to all data). Secondly, it allows the CPU to assemble the data in a way that increases coalesced

data accesses on the GPU for more efficient GPU memory accesses.1 Finally, BigKernel significantly simplifies

the programming model, since the programmer need not deal with and manage (i) buffers, (ii) the transfers of

data between CPU and GPU, and (iii) the reorganization of data so as to enable coalesced accesses.

1Note that many of our target applications are inherently incapable of exhibiting coalesced memory accesses in their original form. The
records being processed are often large and therefore, only a few of them can be accessed in each memory transaction, causing the memory
accesses of consecutive threads to be non-coalesced. Moreover, in applications with variable-length records, consecutive threads cannot be
easily assigned to process consecutive records in an interleaved fashion because it is difficult for consecutive threads to identify the starting
memory location of consecutive records without accessing the previous records.

22
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BigKernel allows the programmer to write a GPU program with arbitrarily large regular data structures as

if (pseudo-) virtual memory were available GPU side. The program is compiler-transformed to one that auto-

mates the management of buffers, the transfers, and the layout of GPU-side data in a way that is transparent to

the programmer. Moreover, the fact that the transformed program only invokes a single kernel once for the en-

tire computation means that the kernel context (i.e., registers and GPU shared memory) is available throughout

the entire computation without having to manage it separately, as would be the case when kernels are invoked

iteratively.

On the other hand, one should note that BigKernel is not a general framework. It targets only data processing

applications that operate on independent input records, although we argue that this is a large and important subset

of applications. Moreover, BigKernel involves a number of tradeoffs. For example, BigKernel uses twice as

many GPU threads, potentially limiting the degree of parallelism GPU-side, although we have found this not to

be an issue in practice since GPU core utilization tends to be low for the class of computations being considered.

BigKernel also uses more CPU-side resources compared to traditional schemes – i.e., more CPU threads, more

memory accesses, and more buffers that are pinned so that they cannot be paged out – which may impact other

concurrently running processes on the CPU.

Our performance evaluation, which we present in Section 4.4, shows that across the 6 benchmarks we stud-

ied, BigKernel outperforms corresponding single and double buffering (a scheme that overlaps communication

with computation to improve the GPU performance) implementations by up to 4.6X and 3.1X, respectively, and

on average by 2.6X and 1.7X, respectively. Compared to corresponding multi-threaded CPU implementations,

BigKernel executes up to 7.2 times faster and 3.0 times faster on average.

As far as we know, BigKernel2 is:

1. the first scheme to improve on the performance of state-of-the-art double-buffering schemes for GPUs;

2. the first scheme to automate CPU-GPU data transfers for large data sets without requiring the programmer

to split the data or annotate the code;

3. the first scheme to provide the continuous execution of a single kernel on arbitrarily large input/output data

sets.

4.2 Design and Implementation

BigKernel organizes a computation into four pipeline stages, illustrated in Figure 4.1:

2The name BigKernel was chosen because (i) its target applications are those with Big Data-style processing of large datasets, (ii) the
programmer can write a single ”big” kernel that can operate on all data, even if the data does not fit in memory, and (iii) the kernel that is
generated is big compared to a traditionally implemented kernel; e.g., a kernel that is implemented in 70 LOC is transformed into one that has
over 500 LOC.
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Figure 4.1: Four-stage pipeline.
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Figure 4.2: BigKernel buffers

1. Prefetch address generation (GPU-side): GPU threads calculate the addresses of the data needed by the

computation threads later in Stage 4. It does this by running a variant of the computation that collects the

addresses of memory accesses ahead of the actual computation that performs the memory accesses. The

code to generate the memory addresses is obtained from the original GPU kernel source code by removing

all statements except (i) those that contribute to control flow, (ii) those that contribute to memory access

address calculations, and (iii) the memory accesses themselves. The memory access instructions are then

transformed to record the address of each access instead of making the memory access. The addresses are

recorded in a CPU-side address buffer (See Figure 4.2).

2. Data assembly (CPU-side): Based on the addresses generated in Stage 1, the prefetch data is assembled

into a prefetch buffer in CPU memory. .

3. Data transfer: the GPU DMA engine transfers the contents of the prefetch buffer to a data buffer in GPU

memory.

4. Kernel computation (GPU-side): GPU threads execute the actual computation using the prefetched data.

The code for the computation is obtained by transforming the original GPU kernel to use the prefetched
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data in the data buffer instead of the data at original target memory address.

4.2.1 A simple motivating example

To provide more detail using an example, consider part of a K-means computation:

clusterKernel(particles, numP, clusters) {

}

for( i = 0; i < numP; i++)
particles[i].cid = findClosestCluster(

particles[i].x, particles[i].y,
particles[i].z, clusters);

Figure 4.3: K-means computation.

where particles represents a particle array with numP elements that does not fit in GPU memory, clusters

represents an array of clusters that fits entirely in GPU memory, and findClosestCluster()returns the id

of the cluster closest to the target particle. The function clusterKernel() iterates on the particles array to

assign them to the closest cluster.

Traditional solution

Because the particle array does not fit in GPU memory, the array would traditionally be processed in chunks with

the following GPU code invoked iteratively:

clusterKernel(particles, numP, clusters) {

}

start = myParticleStartIndex( threadId, numP );
end = myParticleEndIndex( threadId, numP );
for(i = start; i < end; i++)

findClosestCluster(particles[i].x,
particles[i].y, particles[i].z, clusters);

Figure 4.4: K-means GPU-side code.

In each iteration, the above code first determines the start and end of its assigned chunk before updating the cluster

values in the particles array as before

The corresponding CPU code (i) allocates space for the cluster array GPU-side and copies the cluster array

to GPU memory, and then (ii) iteratively copies the next chunk of the particles array to GPU memory before

invoking the GPU clusterKernel() on the chunk (pElements is equal to the number of particles that fit

in the GPU buffer pBuf):
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lloc(d  clSize);
mcpy(d  clusters, clSize);
lloc(d e);

for(of ;offset<pSize;offs
mcpy(d ticles + off ize);

cluste pElements, d ;

Figure 4.5: K-means CPU-side code.

Note that the CPU and GPU code above uses single buffering, where there is no communication and computa-

tion overlap. In practice, double buffering would be used for efficiency, but this would make the code significantly

more complex.

BigKernel solution

Using BigKernel, the programmer no longer needs to partition the large particle array into chunks and manage

the transfers. Instead, she would provide the following CPU-side code that assumes the existence of an arbitrar-

ily large d particles array in GPU memory that is (virtually) allocated with streamingMalloc() and

mapped to the CPU-side particles array particles with streamingMap():

lloc(d aySize);
mcpy(d  clusters, c Size);

streamingMalloc(d_particles, pArraySize);
streamingMap(d_particles, particles, pArraySize);
clusterKernel<<<>>>(d_particles, numP, clusters);

Figure 4.6: K-means CPU-side code when using BigKernel.

The corresponding GPU-side kernel code written by the programmer (shown in Figure 4.4) remains unchanged

but gets invoked only once.

Note that the K-means kernel accesses two types of data structures: the cluster array which is explicitly copied

to GPU memory and does not involve BigKernel, and the particle array that does not fit in GPU memory and is

mapped. BigKernel manages the accesses to the latter.

Description of pipeline

We now describe each of the four stages of the BigKernel pipeline in more detail, using the above running example.

Prefetch address generation: The prefetch address generation code is obtained from the original GPU kernel
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by transforming the d particles read accesses in the for-loop to instead store the addresses in an addrBuf

array CPU-side:

counter = 0;
for( i = start; i < end; i++ ) {

}

addrBuf[counter++][threadId] = &particles[i].x;
addrBuf[counter++][threadId] = &particles[i].y;
addrBuf[counter++][threadId] = &particles[i].z;

Figure 4.7: GPU-side (transformed) code to generate prefetch addresses in BigKernel.

This transformation is done by the compiler. Currently, our transformations are relatively simplistic in that they

cannot deal with indirections or flow control based on application data that may be modified; if this is the case, then

the transformation simply defaults to fetching all data, making the resulting code similar to the double-buffering

scheme.

Since GPU threads in a warp execute in lock-step, on each address generation instructions, an aggregate of

warp-size x address-data-size bytes of data is transferred to CPU memory (i.e., 256 bytes if warp-size is 32 and

address-data-size is 8 bytes). Storing addresses in GPU memory and then sending them to CPU memory in

bulk is an alternative design choice, but we found that doing so consumes substantial portion of GPU memory

bandwidth, which in turn reduces the memory bandwidth available to data accesses during the kernel computation

stage, degrading the overall performance.

This data prefetching approach has three potential downsides. First, if the same data item is accessed multiple

times in the code then it will be be transferred multiple times, leading to extra overhead. However, we have not

found this to be the case with the applications we examined, and believe that it is rare in Big Data-style data

processing applications. Second, when characters (which are typically 1-byte) are accessed then the communica-

tion overhead of transferring the addresses (which are typically 4 or 8-bytes) is far greater than the overhead of

transferring the characters. We address this issue in the next section. Finally, the CPU-side address buffer must be

pinned (i.e., be non-pageable) so that it can be accessed by the GPU DMA engine. While this consumes physical

CPU memory that cannot be made available to other processes, this should rarely become an issue given today’s

CPU memory sizes.

Data assembly: A dedicated CPU thread is responsible for fetching the target data element from the particles

array for each address in the address buffer and then placing the data in the prefetch buffer, which also must be a

pinned buffer.

Note that the layout in the prefetch buffer automatically results in coalesced accesses after the buffer has been

transferred to GPU memory. This is because the addresses were stored into the address buffer in the order they
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were accessed by the GPU threads, so data accessed at the same time will be adjacent to each other.

This data assembly process has one potential disadvantage. Because data assembly occurs CPU-side, it in-

volves twice as many memory accesses CPU-side compared to traditional GPGPU applications. In traditional

GPGPU applications, data for the GPU is first copied to a pinned buffer, resulting in a CPU-side read and write

for each data element. However with BigKernel, the address is first DMAed to memory by the GPU, the CPU

then reads the address before copying the target data to the pinned prefetch buffer, resulting in two reads and two

writes for each prefetched data element.

Data transfer: The data transfer stage is initiated by the CPU thread that performed the data assembly but will

be executed by the GPU DMA engine, allowing CPU and GPU cores to concurrently do other work.

Kernel computation: The computation code is (compiler-) generated from the GPU kernel by transforming the

accesses to the particles array in the kernel for-loop to instead access the data in dataBuf, which was

previously transferred from the CPU:

counter = 0;
for( i=start; i < end; i ++ )

findClosestCluster (
dataBuf[counter++][threadId],
dataBuf[counter++][threadId],
dataBuf[counter++][threadId],
clusters
);

Figure 4.8: GPU-side (transformed) code to use the prefetched data.

Four-stage pipeline: Figure 4.9 shows the implementation of the four-stage pipeline depicted in Figure. 4.1,

assuming a single thread block. Unlike what is shown in Figure 4.1, the time it takes for each stage to complete

will vary in practice, depending on the application. However, prefetch address generation consistently takes the

least amount of time across all applications we experimented with.

Additional details on Figure 4.9

The CPU launches twice as many GPU threads as specified in the original program. Half are responsible for

generating the prefetch addresses and the other half are responsible for the computation. The GPU threads must

be launched in a way such that each warp contains only address generation threads or only computation threads,

but not both — otherwise the kernel will suffer from thread divergence.

The outermost for-loop of the kernel (lines 11-36) processes one chunk of data at a time. The address

generation stage (lines 16-21) ends when addrBuf is full, at which time all the address generating threads first
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0 1 : / / GPU s i d e :
0 2 : c l u s t e r K e r n e l ( p a r t i c l e , numP , c l u s t e r s , addrBuf , addrBufS ize , da taBuf , d a t a B u f S i z e )
0 3 : {
0 4 : / / 1 addrGen and 1 comp t h r e a d a s s i g n e d same t i d
0 5 : t i d = g e t V i r t u a l T h r e a d I d ( t h r e a d I d ) ;
0 6 :
0 7 : s t a r t = m y P a r t i c l e S t a r t I n d e x ( t i d , numP ) ;
0 8 : end = m y P a r t i c l e E n d I n d e x ( t i d , numP ) ;
0 9 :
1 0 : i = s t a r t ;
1 1 : f o r ( ; i < end ; ) / / each i t e r a t i o n : p r o c e s s i n g one chunk
1 2 : {
1 3 : i f ( isAddrGenThread ( t h r e a d I d ) )
1 4 : {
1 5 : c o u n t e r = 0 ;
1 6 : f o r ( ; ( i < end ) && ( c o u n t e r < a d d r B u f S i z e ) ; i ++)
1 7 : {
1 8 : addrBuf [ c o u n t e r ++] [ t i d ] = &p a r t i c l e [ i ] . x ;
1 9 : addrBuf [ c o u n t e r ++] [ t i d ] = &p a r t i c l e [ i ] . y ;
2 0 : addrBuf [ c o u n t e r ++] [ t i d ] = &p a r t i c l e [ i ] . z ;
2 1 : }
2 2 :
2 3 : b a r r i e r a d d r G e n T h r e a d s ( ) ;
2 4 : s i g n a l a d d r R e a d y ( ) ;
2 5 : }
2 6 : e l s e / / c o m p u t a t i o n t h r e a d
2 7 : {
2 8 : c o u n t e r = 0 ;
2 9 : w a i t d a t a R e a d y ( ) ;
3 0 :
3 1 : f o r ( ; ( i < end ) && ( c o u n t e r < d a t a B u f S i z e ) ; i ++)
3 2 : {
3 3 : f i n d C l o s e s t C l u s t e r ( d a t a B u f [ c o u n t e r ++] [ t i d ] ,

d a t a B u f [ c o u n t e r ++] [ t i d ] , d a t a B u f [ c o u n t e r ++] [ t i d ] ) ;
3 4 : }
3 5 : }
3 6 : }
3 7 : }
3 8 :
3 9 : / / CPU S i d e :
4 0 : cudaM al loc ( d c l u s t e r s , c l A r r a y S i z e ) ;
4 1 : cudaMemcpy ( d c l u s t e r s , c l u s t e r s , c l A r r a y S i z e ) ;
4 2 :
4 3 : cudaM al loc ( d da taBuf , d a t a B u f S i z e ) ;
4 4 : p innedM al loc ( h addrBuf , a d d r B u f S i z e ) ;
4 5 : p innedM al loc ( h pBuf , pBufSize ) ;
4 6 :
4 7 : c l u s t e r K e r n e l <<<>>>(d p a r t i c l e , numP , d c l u s t e r s , numCl , h addrBuf ,

addrBufSize , d da taBuf , d a t a B u f S i z e );%
4 8 :
4 9 : whi le ( GPUKernel isRunning ( ) )
5 0 : {
5 1 : w a i t a d d r R e a d y ( ) ;
5 2 : f o r ( i = 0 ; i < numAddr ; i ++)
5 3 : h pBuf [ i ] = ∗( p a r t i c l e s + addrBuf [ i ] ) ;
5 4 :
5 5 : cudaMemcpyAsync( d da taBuf , h pBuf ) ;
5 6 : s i g n a l d a t a R e a d y ( ) ;
5 7 : }

Figure 4.9: Implementation of the four-stage pipeline.
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barrier (line 23) and one of the threads in the thread block signals the CPU that the addresses are ready. The

CPU waits until the addresses are ready (line 51) and then assembles the data (lines 52-53), copies the data to the

GPU (line 55) and then signals the GPU computation threads that the data is ready (line 56), at which time the

computation stage (lines 31-34) can commence.

Some details were omitted from the code in Figure 4.9 for simplicity. For example, multiple instances of each

buffer are required to allow for concurrency (although the code only shows one). At minimum, two of each are

required so that one can be produced while the other is still being consumed.

Writes to mapped data: Writes to mapped data are handled similarly to the way reads are handled: each write

results in the writing of (i) the target address to an address buffer CPU side and (ii) the data value to a write buffer

GPU side. The write buffer, once full, is transferred to CPU memory by the DMA engine. The write buffer is kept

in GPU memory to exploit the high memory bandwidth of GPUs via coalesced accesses. It is then transferred in

bulk to CPU memory, which better utilizes the PCIe bus. This requires two extra sets of buffers: one GPU side

to collect the writes, and one CPU side to which the data is transferred. This also adds two stages to the pipeline:

one for the data transfer back to CPU memory and one for a CPU thread to process the transferred data and update

the target data structure. The additional buffers and the additional pipeline stages are added only if kernel code is

determined to contain write instructions to the mapped data.

Multiple GPU thread blocks: The examples and code above assumed all threads were running within one GPU

thread block. Supporting multiple thread blocks adds a few complications, which, however, can be handled

through straightforward compiler transformations. A separate set of buffers (including address buffer, prefetch

buffer, data buffer, write buffer, and another address buffer if mapped data is written to) is needed for each thread

block both CPU- and GPU-side. A separate CPU thread for each GPU thread block is responsible for data

assembly CPU-side. Threads within a thread block need to be organized so that half of them are responsible for

prefetch address generation and the other half are responsible for computation so that each computation thread

can run in the execution context of the corresponding address generation thread (but prefetching threads and

computation threads must be assigned to different warps, as explained earlier).

4.3 Optimizations

In this section we present four optimizations we applied to BigKernel and explain how they contribute to the

overall performance of the applications run with BigKernel.
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4.3.1 Pattern recognition

To reduce the amount of address information that needs to be transferred to the CPU, the address generation

stage makes use of a pattern recognition component that attempts to extract patterns from the memory addresses

it generates and then only sends the pattern. Such pattern recognition, if successful, is particularly impactful

performance-wise when dealing with text-based input data, since an address (4 or 8-bytes) would otherwise be

required for each character accessed (1-byte).

Each address generation thread starts by generating a few addresses, storing them in a private temporary

address buffer.3 The number of addresses generated is dictated by the size of the buffer, which is typically a few

tens of bytes. It then invokes a pattern recognition function to identify a potential pattern from the stored addresses.

A pattern, if found, consists of a base address and a number of strides between subsequent addresses. For instance,

if stored addresses are 0x00100, 0x00105, 0x00110, 0x00115, then the pattern would be [base address: 0x00100,

stride(s): 5]. If no pattern is found, then the addresses collected in the temporary buffer are copied to the CPU-side

address buffer, and address generation continues as described earlier in Section 4.2.

If a pattern is detected, then the address generation thread continues generating data access addresses, but

now verifies that each subsequently generated address follows the identified pattern. If it does not, then address

generation is started over from the beginning, this time without attempting to identify a pattern and writing the

addresses to the CPU-side address buffer.

If all subsequently generated addresses adhere to the pattern, then the pattern (instead of the addresses) is

written to CPU memory, and a signal is sent to the CPU indicating that a pattern was found.

This pattern recognition scheme is rather simplistic, but we have found it to be effective with our benchmarks

— see Section 4.4. One can easily conceive of ways to extend it and make it more versatile (e.g., allow patterns

to change midstream).

4.3.2 Data locality in assembling data

Compared to traditional double-buffering implementations, BigKernel incurs extra memory accesses during the

data assembly stage CPU-side. If access patterns are provided by the prefetch address generation stage then

BigKernel is able to schedule memory accesses during the data assembly stage in a way that improves memory

access locality and thus reduces the overhead of the data assembly.

To obtain the prefetch data specified by a pattern, instead of reading the data items in the order they are needed

by the GPU computation threads, we read all of the prefetch data for one GPU thread at a time. This results in

increased data locality in CPU reads, because each GPU thread tends to access consecutive data. The fetched data

3Preferably these temporary buffers are allocated in GPU shared memory, but if there is not enough space there because it is needed by
the computation, the buffer is allocated in GPU memory.
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is, however, still stored in the prefetch data buffer in the order they will be accessed GPU-side. If multiple data

structures are mapped and accessed by the GPU, then we additionally read the data from each structure separately.

We focus on improving memory access locality when reading data as opposed to when writing data, because

we found that the cost of these reads is far higher than the cost of the writes due to the processor’s write buffers.

4.3.3 Synchronization

Synchronization in GPGPU applications is complicated by the intricacies of the GPU hardware. In particular,

there is no signaling mechanism between CPU and GPU beyond using flags located in memory and busy waiting

for a specific flag value. Hence, one would want to implement synchronization so that the number of memory

accesses required is minimized, especially on the GPU because of the large number of threads that execute there.

The first three stages of the BigKernel pipeline are producers for their following stages: the address generation

stage produces addresses for the data assembly stage, which produces data for data transfer stage, which produces

data for computation stage. For each buffer used in the pipeline, proper synchronization is required to ensure that

consumption of the buffer data does not commence before the data has been produced, and that data for a buffer

is not produced until the buffer has previously been consumed.

The GPU signals the CPU at the end of the address generation stage by setting a flag in CPU memory. The

CPU busy waits on that flag before it starts the data assembly stage. The GPU cannot signal the CPU until all of

the address generating threads have completed their stage. Hence, the address generation threads first barrier at

the end of their stage before one of the threads signals the CPU. We use the bar.red GPU instruction to barrier,

because it is efficient and can barrier a given number of threads.

No synchronization is needed between the data assembly stage and the data transfer stage, because the latter

is initiated by the CPU thread after it finishes assembling the data.

The DMA engine knows when the data transfer stage has completed, but there is no mechanism for the DMA

engine to signal the kernel computation threads that this has occurred. Our solution to this problem relies on

the fact that the DMA engine performs data transfers in order. After the CPU instructs the GPU DMA engine

to transfer the data buffer (using cudaMemcpyAsync), it instructs the DMA engine to copy a flag to a specific

location in GPU memory that indicates the data transfer has completed. The flag will not be transferred until all

of the data buffer has been transferred.

Instead of having each GPU computation thread busy wait on that flag, only one computation thread is as-

signed that task. All the other computation threads barrier (again using bar.red) to ensure they do not start the

computation phase until the flag has been set.

To prevent subsequent address generation stages from overwriting an address buffer that has not yet been
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consumed, we barrier all threads in a thread block once for each chunk iteration.4 Each address generation thread

in iteration n synchronizes with the computation threads in iteration n − 3. This relies on the fact that when a

computation stage starts, all three stages prior to it have completed and the buffers of the previous stages can

safely be overwritten.

Synchronization between threads across different thread-blocks is not needed because both computation

threads and their corresponding address generation threads are packed into the same thread-block and they in-

teract with a separate CPU thread responsible for their data prefetching.

4.3.4 Buffer allocation: active vs. inactive thread-blocks

To ensure efficient use of memory resources both CPU- and GPU-side, BigKernel allocates data and address

buffers only for active thread-blocks, reusing them when inactive thread-blocks become active5 (which only occurs

when a resident active thread-block retires). The benefit of allocating buffers only for active thread-blocks is that

buffers can be made larger, potentially improving performance by reducing the number of synchronization points.

We use a hybrid compile-time, runtime method to identify the number of thread-blocks that will be active.

First, the resource usage required by a thread block, Rtb, is determined at compile-time and provided as a constant

value in the application’s code. The resources provided by the GPU hardware, RGPU , is then probed at runtime

(using provided API functions). The number of active thread-blocks is then calculated as:

min(numSetBlocks, (Rtb/RGPU ))

where numSetBlocks is the number of thread-blocks set by the programmer as the argument of the kernel

invocation.

4.4 Experimental Evaluation

Experimental Setup

Our baseline hardware infrastructure consists of a 3.8GHz Intel Xeon Quad Core E5 with 8 hardware threads

and 10MB of combined L2/L3 cache, connected to 16GB of quad-channel memory clocked at 1800MHz. All

GPU kernels were executed on an NVIDIA GeForce GTX 680 GPU with 1,536 computing cores, each running at

1020MHz, and 2GB of GPU memory. The GPU video card is connected to the system with a PCIe Gen3 x16 link

interconnect.

All GPU-based applications were implemented in CUDA, using CUDA and GPU driver release 5.0.35 in-

4An alternative is to use full/empty flags for each buffer, but this increases the number of data transfers and the amount of busy waiting.
5The number of thread-blocks that become active depends on the resources (i.e. registers and shared memory) that each thread-block

requires and the resources provided by the GPU.
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stalled on a 64-bit Ubuntu 12.04 Linux with kernel 3.5.0-23. All applications are compiled with the corresponding

version of the nvcc compiler using optimization level three.

For our experiments, we ran six applications with a range of different data access patterns.6 In the description

of applications, we use the term mapped data to describe data that is automatically managed by BigKernel. Data

that is not mapped typically fits entirely in GPU memory and is manually copied to/from GPU memory by the

programmer.

K-means: partitions n particles into k clusters so that particles are assigned to the cluster with the nearest

mean. The mapped input data consists of an array of particles, each containing particle’s coordinates, its clusterId,

and a few other data values. The kernel reads particle coordinates and sets its clusterId. The clusterIds have to be

written back to CPU memory, so they are dealt with as mapped output data.

Word Count: counts the number of occurrences of each word in a document. The mapped input data consists

of a text file. There is no mapped output data (the result is stored in a hash table which fits entirely in GPU

memory, and is copied back to CPU memory at the end of the computation).

Netflix: predicts user preferences of movies by calculating the correlation between users ratings [11]. The

mapped input data consists of an array of records, each containing movie user ratings and a few other data values.

There is no mapped output data (the result is stored in a table which fits entirely in GPU memory and is copied

back to CPU memory at the end of the computation).

Opinion Finder: analyzes the sentiments of tweets associated with a given subject (i.e. a set of given key-

words) [105]. Words from each tweet that mention the given subject are looked up in three dictionaries of positive,

negative, and adverb words. Based on the identified words and their precedence, an overall sentiment score is cal-

culated. The mapped input data consists of new-line separated text records each containing a tweet, a time-stamp,

and a few other data values. The dictionaries, as well as the output data (which is a number representing the final

sentiment score of tweets toward the subject) fit entirely in GPU memory and thus, are not mapped.

DNA Assembly: merges fragments of a DNA sequence to reconstruct a larger sequence [9]. In the first stage,

the application hashes a portion of each fragment and stores it in a hash table to count the number of identical

fragments and to remove the noisy ones. In a second stage, the hash table is used to incrementally extend each

fragment by finding partial overlaps between different fragments. We only run the first stage on the GPU. The

mapped input data consists of fixed-length string records, each containing a DNA fragment and a few other data

values. There is no mapped output data (the hash table, which is the output of the first stage, fits entirely in GPU

memory and is copied back to CPU memory at the end of the computation).

MasterCard Affinity: finds all merchants that are frequently visited by customers of a target merchant X. The

application first extracts a list of customers that visited merchant X and then, with another pass over the purchase

6The source code for these applications as well as their input data is available at http://www.eecg.toronto.edu/∼mokhtari/bigkernel.
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Application Data Size Record Type
Mapped Data Access Proportion

Read Modified

K-means 6.0GB Fixed-length 50% 12%

Word Count 4.5GB Variable-length 100% 0%

Netflix 6.6GB Fixed-length 30% 0%

Opinion Finder 6.2GB Fixed-length 73% 0%

DNA Assembly 4.5GB Fixed-length 36% 0%

MasterCard Affinity 6.4GB Variable-length 100% 0%

MasterCard Affinity (indexed) 6.4GB Variable-length (indexed) 25% 0%

Table 4.1: Application Mapped input data. (An application may also allocate and access other non-mapped data
structures.)

transactions, identifies the merchants visited by the customers from the list. The mapped input data is a new-line

separated collection of purchase transactions each containing a credit card number, a payment terminal ID, and

several other values. There is no mapped output data (a table of merchants visited by all customers of merchant

X fits entirely in GPU memory and is copied back to CPU memory at the end of the computation).

MasterCard Affinity (indexed): as above, except that an extra index file (not mapped) is provided that

contains offsets to the data-fields within the input.

Table 5.1 provides more details on the application data sets and how they are accessed. Applications that do

not modify mapped data, write their results to GPU memory and then transfer them to CPU memory after all

computations have completed.

To evaluate BigKernel, we implemented five different variations of our applications: (i) a CPU-based serial

implementation, (ii) a CPU-based multi-threaded implementation, (iii) a GPU-based implementation that uses a

single buffer for data transfers, thus serializing computation and data communication, (iv) a GPU-based imple-

mentation that uses double-buffering for data transfers in order to overlap computation with data communication,

and (v) BigKernel.

All GPU-based implementations use the same kernel. Each implementation is configured to run with the num-

ber of GPU computation threads that results in the best execution time, as determined through experimentation.7

Moreover, each implementation uses buffer sizes that result in the best execution time, given memory constraints.

The performance results presented here represent the average over ten consecutive runs.

4.4.1 Overall results

Figure 4.10 depicts the speedup of all implementations relative to the CPU-based serial implementation. To

help interpret the performance behaviours of the GPU-based implementations, Figure 4.11 shows the measured

7GPGPU programmers typically experimentally run their applications with different thread configurations to determine the optimal num-
ber of threads and from then on run that configuration.
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Figure 4.10: Application speedup over serial CPU implementation.

computation / communication ratio of the single-buffer implementation of these applications.

BigKernel outperforms both the single and double-buffering implementations across all applications, on aver-

age by 2.6X and 1.7X, respectively. The performance gains can intuitively be attributed to (i) overlapped compu-

tation and data communications, (ii) reducing the volume of CPU-GPU data communications and, (iii) enabling

coalesced accesses to GPU memory by placing the input data of consecutive threads in interleaved data segments.

We show the validity of this intuition further below.

Word Count and Opinion Finder exhibit relatively low speedup and do not appear to benefit from optimized

CPU-GPU data communications, primarily because they have a dominant computation stage, which prevents

improvements from overlapping computation with communication or from data transfer reductions. Word Count’s

computation is dominant because it uses a centralized hash table to store word counts, requiring synchronization

with attendant overheads. Opinion Finder’s computation is dominant because of the fairly heavy lexical analysis

it conducts on input tweets.

The speedup of MasterCard Affinity is also limited due to the fact that the entire input data set has to be

transferred to GPU memory. This is necessary because the variable-length records force the computation to

go over all of the data to identify the individual records (which are delimiter-character separated). The small

performance advantage of BigKernel over the double-buffering version is due to the effect of memory coalescing.

The indexed version of MasterCard Affinity, however, achieves significant speedup, because it reduces the amount

of data transferred, and because the benefits of coalesced memory accesses become more exposed with the more

efficient data transfer stage.
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Figure 4.11: Comp/comm ratio in single-buffer implementation.

4.4.2 Performance breakdown

To gain more insight into which features of BigKernel lead to performance improvements, we ran BigKernel with

certain features disabled and measured the speedup obtained over the single-buffered implementation. Specifically

we compare:

1. BigKernel overlap only: this variant transfers all data in its original layout; i.e., no optimizations to reduce

the amount of data transferred and no optimization to increase coalesced accesses. Hence, this variant only

overlaps communication and computation.

2. BigKernel transfer volume reduction: this variant transfers only the data required by the computation but

leaves the transferred data in its original layout (with the optimizations for coalesced accesses disabled).

3. BigKernel: the complete BigKernel implementation.

Figure 4.12 depicts the incremental speedup obtained from running one variant over the other. The figure thus

gives an indication of the contribution of reduced data transfers and data layout optimized for coalesced accesses.8

As expected, the amount of data transferred for MasterCard Affinity and Word Count cannot be reduced and

therefore they only benefit from communication/computation overlap and memory coalescing. Opinion Finder

also does not exhibit performance improvements from reducing the CPU-GPU data transfers due to its dominant

computation stage.

8It should be noted that the graph would look substantially different if the disabling of features had been done in a different order, because
the contributions of each feature overlap in the pipeline.
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Figure 4.12: The incremental benefit of (i) overlapping computation and communication, (ii) reducing the volume
of data transferred due to prefetching, and (iii) laying out the data to increased coalesced accesses.

The effect of the memory coalescing optimization varies from application to application based on a number

of factors:

1. the ratio of accesses to mapped data over all data accesses in the kernel – the higher the ratio, the greater

the performance benefit;

2. whether the data transfer stage dominates or not – if it does, there is no benefit from optimizing memory

accesses;

3. whether or not the original layout already leads to highly coalesced accesses – if so, there is not much room

for improvement.

4.4.3 Stage completion time breakdown

For optimal execution, each stage in the BigKernel pipeline would ideally take the same amount of time to com-

plete. This is obviously not the case in practice, and the amount of time each stage requires to complete varies

from application to application. For each application, we experimentally measured the time each stage required

on average to complete. To measure execution breakdown, we inserted time measurements at the beginning and

end of each stage. The data transfer stage, in particular, is measured by having the CPU continuously ping the

status of data transfers to stop the timer when the transfer has completed.

Figure 4.13 shows, for each application, the time each stage took to complete on average relative to the stage

that took the longest. The address generation stage requires only a small fraction of the total execution time
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Figure 4.13: Relative completion time of each BigKernel stage.

(usually less than 20%) as it only executes those instructions that contribute to memory address calculations.

The time taken by the data assembly stage varies for the different applications based on (i) the amount of data

that has to be assembled and (ii) the data locality of the data items being accessed by CPU memory and hence the

cache hit rate.

The time taken for the data transfer solely depends on the size of data to be transferred because the data to

be transferred is put in a contiguous pinned-buffer and therefore is efficiently transferred to GPU memory by the

GPU DMA engine.

Finally, the computation itself is responsible for a considerable portion of the execution time. Clearly, this

is expected for those applications that originally had a dominant computation stage. However, it is interesting to

note that BigKernel significantly increased the computation / communication ratios relative to the original single-

kernel implementations (Figure 4.11). The fact that the computation stage is the slowest stage for many of these

applications indicates that GPU memory may be the bottleneck.

4.4.4 Pattern recognition

Recognition of access patterns during the prefetch address generation stage is a key optimization in BigKernel.

This is shown in Table 4.2 that lists the performance improvements when only having to transfer patterns to CPU

memory over having to send the actual addresses.

The extent to which performance is improved for each application depends on the number of addresses sent

during the address generation stage, which in turn depends on the granularity of the data being accessed. For



CHAPTER 4. BIGKERNEL 40

Application Speedup

K-means 31%
Word Count 66%
Netflix 3%
Opinion Finder 6%
DNA Assembly 7%
MasterCard Affinity 57%
MasterCard Affinity Indexed NA

Table 4.2: Performance improvement due to the use of access patterns.

instance, in K-means, one address is sent for each double variable (i.e. 8-byte) while in Word Count, one address

has to be sent for each required character (i.e. 1-byte). Having to send a large number of addresses relative

to the amount of data to be transferred adds significant overhead to PCIe transfers (for addresses) and on CPU

memory (to read addresses during the data assembly stage). Replacing the addresses with a pattern can thus have

a significant performance impact. The speedup of MasterCard Affinity Indexed is not available since accesses to

input data of this application do not exhibit a pattern.
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S-L1

In this chapter, we show that GPU hardware L1 caches are largely ineffective for Big Data applications and then

address this ineffectiveness by proposing and evaluating S-L1, a level one cache implemented entirely in software.

In our experimental evaluation, S-L1 achieved speedups of between 0.89 and 6.4 (2.45 avg.) on ten GPU-local

applications even though each memory access requires the additional execution of a minimum of 4 instructions

(and up to potentially hundreds of instructions). Combining S-L1 with BigKernel leads to speedups of between

1.04 and 1.45 (1.19 avg.) over BigKernel alone, and speedups of between 1.07 and 11.24 (4.32 avg.) over the

fastest CPU multicore implementations.

In this chapter, we make the following two specific contributions:

1. we characterize the performance behavior of the GPU memory hierarchy and identify some of its bottle-

necks using a number of experiments, and

2. we propose S-L1, a level-1 cache implemented entirely in software and evaluate its performance; novel

features of S-L1 include a run-time scheme to automatically determine the parameters to configure the

cache.

We start this chapter by presenting motivation in Section 5.1. Section 5.2 presents a detailed description of

S-L1’s design and implementation. We close by presenting the results of our experimental evaluation of S-L1 in

Section 5.3.

5.1 Motivation

In this section we begin by showing how and why GPU hardware L1 caches are ineffective. We then present

several GPU architectural trends to provide insight as to where future GPU architectures might be headed. We
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Figure 5.1: L1 hit rate when running wc on Titan Black GPU with 192 cores. The target data is partitioned into n
chunks with each chunk assigned to a thread for processing. With effective caching, the first access of each thread
results in a miss, but the subsequent 127 accesses result in cache hits. Without effective caching, these accesses
result in 128 misses.

use these trends to motivate implementing our S-L1 cache. Following that we present several limitations of the

GPU memory hierarchy and offer some insights into the nature of those limitations, further motivating our S-L1

design.

5.1.1 GPU Hardware L1 caches

GPU L1 caches are highly inefficient as they are implemented and configured today [43]. For the number of cores

typical in modern GPUs, the hardware L1 caches are too small and their cache line sizes are disproportionally large

given the small cache size. For example, the L1 on the Nvidia GTX Titan Black we used to run our experiments on

can be configured to be at most 48KB per 192 cores, and the cache line size is 128B. At best, this leaves just two

cache lines per core. Yet GPGPU best practices expect many threads to run simultaneously per core (supported by

340 4-byte registers per core and fast context switching), each having multiple memory accesses in-flight. Given a

large number of executing threads, each issuing multiple memory accesses, cache lines are evicted before there is

any reuse, causing a high degree of cache thrashing and an attendantly low L1 hit rate. As an example, Figure 5.1

depicts the L1 hit rate as a function of the number of threads executing when running the Unix word count utility,

wc.

The hardware L1 has proven to be so ineffective that some recent GPU chip sets, like the Nvidia GTX Titan

Black, disables caching of application data by L1 as the GPU’s default behavior. Moreover, if historical trends are

any indication (see below), we can not expect GPU L1 caches to become significantly more effective any time in

the near future.
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Figure 5.2: Compute power and memory bandwidth over time/GPU generations, normalized to the values of GTX
8800.
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Figure 5.3: Compute power and L1 / shared memory size over time/GPU generation, normalized to the values of
GTX 8800 (the rate of growth of GPU register file size has also been similar to that of L1 / shared memory).

5.1.2 Historical Trends in GPU Compute Power and Memory Hierarchy

Figure 5.2 depicts how Nvidia GPU aggregate compute power (in GFLOPS) and memory bandwidth (in GB/s)

have evolved over chip generations, from their earliest CUDA-enabled version to the current version. Compute

power has been increasing steadily at a steep slope. Memory bandwidth has also been increasing, but not as

quickly. As a result, memory bandwidth per FLOP has been decreasing from 250 bytes/KFLOP for the GTX 8800

to 38 bytes/KFLOP for the GTX 1080 (a 6.6X reduction in bytes/KFLOP). This increases the importance of

caches, if GPU cores are to be well utilized.

Figure 5.3 depicts how aggregate compute power and total size of fast on-chip memory (L1 cache and shared

memory) have evolved over time. The total amount of on-chip memory has roughly kept up with compute power,

even though it varies substantially. The GTX 8800 offered 380 bytes/GFLOP in 2006 and GTX 1080 offered 477

bytes/GFLOP in 2016, a 1.25X increase in bytes/GFLOP.

One can clearly see that while GPUs memory bandwidth per FLOP dropped by 6.6X over the last 10 years,
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the increase in the size of GPU’s on-chip memory per FLOP has only been modest (1.25X increase), making GPU

cores increasingly memory starved. As a result, strategies to optimize GPU applications to make more efficient

use of the memory hierarchy will likely become more important going forward if these trends continue.

Further, given the fact that future GPU generations may have smaller on-chip memory sizes, as has happened

in the past, GPU programmers cannot assume the availability of a specific shared memory size. As a result, the

programmer will need to design GPU applications so that they configure the use of shared memory at run-time

and possibly restrict the number of threads used by the application. Or she can use run-time libraries, such as

the one we are presenting in this dissertation, that automatically adjust program behavior to available hardware

resources.

5.1.3 Behavior of GPU memory access performance

GPU vendors do not disclose much information on the micro-architecture of their GPUs. Hence, in order to

optimize GPGPU programs so that they can more efficiently exploit hardware resources, it is often necessary

to reverse engineer the performance behavior of GPUs through experimentation. In this section, we present the

results of some of the experiments we ran to gain more insight into the GPU memory subsystem. All results we

present here were obtained on an Nvidia GTX Titan Black. We expect similar results on other GPUs due to the

similarities in the configurations of memory subsystems across various GPUs.

Memory access throughput

In our first set of experiments, we used a micro-benchmark that has threads read disjoint subsets of data located

in the L2 cache as quickly as they can. The benchmark is parameterized so that the degree of coalescing can be

varied. Figure 5.4 shows the maximum L2 memory bandwidth obtained, measured as number of bytes transferred

over the network, when servicing 4-way coalesced accesses from the L2 cache as the number of threads running

in each thread block is increased up to 1024.

Each curve in the figure represents a different number of thread blocks used, and each block uses the same

number of threads. The thread blocks are assigned to SMXs in a round robin manner by the hardware. Focusing

on the bottom curve, representing an experiment that has just one thread block running on one SMX, one can see

that the memory throughput flattens out after about 512 threads at slightly less than 32 GB/s.1 We observe similar

behavior for DRAM, shown in Figure 5.5, when we adjusted the micro-benchmarks to only access data certain to

not be in the L2 cache. In this case, however, the throughput flattens out earlier at about 480 threads, reaching a

peak bandwidth of 307 GB/s with 15 blocks.

1Our experiments show that varying the degree of coalescing does not completely remove the flattening out behavior. However, the
smaller the degree of coalescing, the earlier the curve flattens out.
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Figure 5.4: L2 memory throughput as a function of number of threads in a thread block. Each curve represents
the throughput for a different number of thread blocks (1 to 15) with each thread block running 1,024 threads.
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Figure 5.5: DRAM memory throughput as a function of number of threads in a thread block. Each curve represents
the throughput for a different number of thread blocks (1 to 15) with each thread block running 1,024 threads.

It is difficult to assess what causes the stagnation in L2 and DRAM throughput. However the near-linear

scalability with the number of thread blocks indicates that the bottleneck is in the interconnect or in the SMX

itself (e.g., coalescing units) rather than in the L2 or DRAM subsystems. This is shown in Figure 5.6 where

we show the throughput as a function of the number of thread blocks with each thread block running 1,024

threads. Each point along the bandwidth curves of Figure 5.6 is equal to the end point (at 1,024 threads) of the

corresponding curve of Figures 5.4 or 5.5. L2 throughput increases almost linearly, reaching close to 480 GB/s

with 15 blocks. DRAM throughput increases almost linearly until it reaches approximately 300 GB/s, at which

point it flattens out, indicating that its bandwidth capacity has been reached at that point.

All of the results presented above measured the amount of data transferred to the SMXs by the hardware.

However, depending on the application, much of this data may not actually be used by the application. For

example, for non-coalesced accesses, each 4-byte integer access will result in 32 byte transfers, of which only 4

are actually used.

The throughput limitations of L2 and DRAM, as well as the fact that only some of the data transferred is

used by the application, indicates that memory bandwidth actually achieved in practice will be far lower than the
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Figure 5.7: Shared memory throughput as a function of number of threads in a thread block. Each curve represents
the throughput for a different number of thread blocks (1 to 15) with each thread block running 1,024 threads.

theoretical bandwidth presented in chapter 2.

In contrast to L2 and DRAM throughput, shared memory throughput within an SMX, shown in Figure 5.7,

does not flatten out and reaches 60GB/s (for an aggregate throughput of close to 900GB/s with 15 SMXs).

5.2 S-L1 Design and Implementation

In this section, we present the design and implementation of S-L1.

5.2.1 Overview

S-L1 is a level 1 cache implemented entirely in software. While a software implementation of the L1 cache adds

considerable base overhead that has to be amortized, we still implemented S-L1 in software because (i) software

allows easier customization and (ii) a software cache can be used only when beneficial, on a per application basis.

S-L1 uses the space available in each SMX’s shared memory, which has the same access latency as the

hardware L1. We also considered using SMX’s texture cache, but it is a hardware-managed, read-only cache and
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thus, does not suit the needs of S-L1.2 S-L1 does not require the developer to modify the GPU application code;

instead the compiler inserts the code required to implement S-L1.

The design of S-L1 is guided by three key principles that deal with the small size of the shared memory:

1. Private cache segments: S-L1 is partitioned into thread-private cache lines instead of having all threads

share the cache space, thus eliminating mapping collisions.

2. Smaller cache lines: the cache-line size is, at 16B, smaller than what is typical for GPUs, allowing a larger

number of cache-lines to be shared per thread; and

3. Selective caching: the data of only a select number of data structures are cached.

The objective of our design is to significantly decrease average memory access times and minimize S-L1 cache

thrashing. The specific parameters of the S-L1 cache are determined at runtime during an initial brief monitoring

phase, which also identifies the potential cache hit rate of each data structure. After the monitoring phase, the

computation is executed using the S-L1 cache for the n data structures that have the highest cache hit rates, where

n is selected based on the amount of cache space available to each thread.

The decision to use thread-private cache segments is based on the fact that inter-thread data sharing is rare in

the Big Data applications we are targeting. Therefore, the threads mostly process data independently in disjoint

locations of memory. Allowing all threads to share the entire cache space would likely result in unnecessary

collisions.

We use relatively small cache lines. The optimal cache line size depends to a large extent on the applications’

memory access patterns. Larger cache lines perform better for applications exhibiting high spacial locality, but

they perform poorer for applications with low spacial locality due to (i) the extra overhead of loading the cache

lines requiring multiple memory transactions and (ii) the increased cache thrashing that occurs because fewer

cache lines are available. We decided on using 16-byte cache lines after experimenting with different cache line

sizes — see Section 5.3.5. This size works well because 16B is the widest load/store size available on modern

GPUs, allowing the load/store of an entire line with one memory access.

We only cache some of the application’s data structures.3 The number of cache lines allocated to each thread

(CLN ) determines how many data structures we cache. CLN is calculated at runtime as

CLN = [(shMemSizePerSM/numThreadsPerSM)/cacheLineSize]

2In a separate set of experiments, we also evaluated the effectiveness of the texture cache for Big Data applications. The results show
that, like the hardware L1 cache, the texture cache hit rate drops significantly when the number of online threads increase.

3In this context, each argument to the GPU kernel that points to data is referred to as a data structure. For example, matrix multiply might
have three arguments a, b and c referring to three matrices; each is considered a data structure.



CHAPTER 5. S-L1 48

where shMemSizePerSM is the amount of shared memory available per SMX, numThreadsPerSM is the

total number of threads allocated on each SMX, and cacheLineSize is the size of the cache line; i.e., 16 bytes in

our current design.

The values of the variables in the above formula are non-trivial to obtain. For example, the amount of shared

memory available for the S-L1 cache depends on how much shared memory has previously been allocated by

the application. An application can allocate a fixed (i.e., specifying the exact size in the code) or variable (i.e.,

dynamically setting the size at runtime) amount of shared memory. Hence, a mixed compile-time/runtime ap-

proach is required to identify how much shared memory remains available for S-L1. NumThreadsPerSM is

calculated at runtime, in part by using the configuration the programmer specified at kernel invocation and in part

by calculating the maximum number of threads that can be allocated on each SMX which in turn depends on

the resource usage of GPU threads (e.g. register usage) and available resources of SMX, which is extracted at

compile-time and runtime, respectively.

Once the number of cache lines per thread – CLN – has been determined, up to that many data structures are

marked as S-L1 cacheable and a separate cache line is assigned to each. In principle, multiple cache lines could

be assigned to a data structure, but we found this does not benefit the Big Data applications we are targeting.

Generally, cache hits occur due to locality, which either is due to data reuse (where the same data is accessed

multiple time within a short period of time) or is due to accessing data (for the first time) that happens to reside in

the same cache line as a recently accessed data item. In the applications we target, the latter is typically the case.

Hence having multiple cache lines per data structure offers no benefit.

Data structures that are not marked as cacheable will not be cached and are accessed directly from memory.

If the available size of shared memory per thread is less than cacheLineSize (i.e., too much shared memory has

already been allocated by the application) then S-L1 is effectively disable by assigning no cache lines to threads

(i.e., CLN = 0).

To determine which data structures to cache, we evaluate the benefit of caching the data of each data structure

using a short monitoring phase at runtime. In the monitoring phase, the core computation of the application is

executed for a short period of time, during which a software cache for each data structure and thread is simulated

to count the number of cache hits of each data structure during a fixed period of time. When the monitoring

phase terminates, the CLN data structures with the highest cache hit counts will be marked as to be cached.

The code required for the monitoring phase is injected into existing applications using straightforward compiler

transformations.
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5.2.2 Code Transformations

The compiler transforms the main loop(s) of the GPU kernel into two loop slices. The first loop slice is used for

the monitoring phase, where the computation is executed for a short period of time using the cache simulator.

After the first loop slice terminates, the data structures are ranked based on their corresponding cache hit counts,

and the top CLN data structures are selected to be cached in S-L1. The second loop slice then executes the

remainder of the computation using S-L1 for the top CLN data structures.

As an example, the following code:

//Some initialization

for(int i = start; i < end; i ++) {
char a = charInput[i];

int b = intInput[i];

int e = doComputation(a, b);

intOutput[i] = e;
}

//Some final computation

is transformed into:

//Some initialization

cacheConfig_t cacheConfig;
int i = start;

//slice 1: monitoring phase

for(; (i < end) && (counter<THRESHOLD); i ++, counter ++) {
char a = charInput[i];
simulateCache(&charInput[i], 0, &cacheConfig);

int b = intInput[i];
simulateCache(&intInput[i], 1, &cacheConfig);

int e = doComputation(a, b);

intOutput[i] = e;
simulateCache(&intOutput[i], 2, &cacheConfig);

}

calculateWhatToCache(&cacheConfig, availNumCacheLines);
//slice 2: rest of the computation

for(; i < end; i ++)
{

char a = *((char*) accessThroughCache(&charInput[i], 0,

&cacheConfig));
int b = *((int*) accessThroughCache(&intInput[i], 1,

&cacheConfig));

int e = doComputation(a, b);

*((int*) accessThroughCache(&intOutput[i], 2,

&cacheConfig)) = e;
}

flush(&cacheConfig);
//Some final computation

Monitoring phase

In the monitoring loop, a call to simulateCache() is inserted after each memory access. This function takes as

argument the address of the memory being accessed, a data structure identifier, and a reference to the cacheConfig

object, which stores all information collected during the monitoring phase. The data structure identifier is the
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identifier of the data structure accessed in the corresponding memory access and is assigned to each data structure

statically at compile time.

The pseudo code of simulateCache() is listed in Figure 5.8. This function keeps track of which data

is currently being cached in the cache line, assuming a single cache line is allocated for each thread and data

structure, and it counts the number of cache hits that occur. To do this, cacheConfig contains, for each data

structure and thread, an address variable identifying the memory address of the data that would currently be in

the cache, and a counter that is incremented whenever a cache hit occurs. On a cache miss, the address variable is

updated with the memory address of the data that would be loaded into the cache line.

simulateCache(addr, accessId, cacheConfig) {
addr /= CACHELINESIZE;

if(addr == cacheConfig.cacheLine[accessId].addr)

cacheConfig.cacheLine[accessId].hit ++;
else { //a miss

cacheConfig.cacheLine[accessId].addr = addr;

}
}

Figure 5.8: The pseudo code of simulateCache.

The monitoring phase is run until sufficiently many memory accesses have been simulated so that the behavior

of the cache can be reliably inferred. To do this, we simply count the number of times simulateCache() is

called by each thread; once it reaches a predefined threshold for each thread, the monitoring phase is exited. This

pre-defined threshold is set to 300 in our current implementation.

This method of statically setting the duration of monitoring phase works well for regular GPU applications

such as the ones we are targeting, but more sophisticated methods may be required for more complex, irregular

GPU applications. Moreover, while we only run the monitoring phase once, it may be beneficial to enter into

a monitoring phase multiple times during a long running kernel to adapt to potential changes in the caching

behavior.

Determining what to cache

In the general case, we mark the CLN data structures with the highest cache hit counts to be cached in S-L1.

However, there are two exceptions. First, we distinguish between read-only and read-write data structures. Read-

write data structures incur more overhead, since dirty bits need to be maintained and dirty lines need to be written

back to memory. Hence, we give higher priority to read-only data structures when selecting which structures to

cache. Currently, we select a read-write data structure over a read-only data structure only if its cache count rate

is twice that of the read-only data structure, because accesses to read-write cache lines involve the execution of

twice as many instructions on average.
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Secondly, in our current implementation, we only cache data structures if it has a cache hit rate above 50%.

A hit rate of more than 50% means that, on average, the cache lines are reused at least once after loading the data

due to a miss. We do this because otherwise the overhead of the software implementation will not be amortized

by faster memory accesses.

Computation phase

In the second loop slice, the compiler replaces all memory accesses with calls to accessThroughCache().

This function returns an address, which will either be the address of the data in the cache or the address of the

data in memory depending on whether the accessed data structure is cached or not. A simplified version of

accessThroughCache() is listed in Figure 5.9.

void* accessThroughCache(void* addr, int accessId,

cacheConfig_t* cacheConfig)
{

if(cacheConfig.isCached[accessId] == NOT_CACHED) {
return addr;

}

else {
//If already cached, then simply return the

//address within the cache line
if(alreadyCached(addr, cacheConfig.cacheLine[accessId])) {

return &(cacheConfig.cachelines[accessId].
data[addr % 16]);

}

//requested data is not in the cache, so,
//before caching it we need to evict current data.

else {
//If not dirty, simply overwrite. If dirty,

//first dump the dirty data to memory

if(cacheConfig.cachelines[accessId].dirty) {

dumpToMemory(cacheConfig.cachelines[accessId]);
}

loadNewData(addr, cacheConfig.cachelines[accessId]);
return &(cacheConfig.cachelines[accessId].

data[addr % 16]);

}
}

}

Figure 5.9: The pseudo code of accessThroughCache.

S-L1 cache misses on cacheable data cause the eviction of an existing cache line to make space for the new

target cache line. If the existing cache line has been modified, then it is first written back to memory. We keep a

bitmap (in registers) to identify which portions of the cache line are modified, so that only those need to be written

back; this also guarantees that if two different threads cache the same line (in different S-L1 lines) and modify

different potions of the cache line, they will not overwrite each other’s data.

A call to flush() is inserted after the second loop slice to flush the modified cache lines to memory and

invalidate all cache lines before the application terminates.

If pointers to data structures, provided as arguments to the GPU kernel, are aliased, then the caching layer

might cache the same data from the same data structure in multiple separate cache lines. This not only wastes
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the cache space, it might also break the correctness of an application if those cache lines are dirty and have to be

written back (as they will override each other). To prevent this from happening, the caching layer has to assume

that the pointers may be aliased, and perform data lookups in all cache lines assigned to the same thread for each

memory access. This is an overhead which can be avoided if the pointers are explicitly marked as not aliased.

Programmers can indicate this by including the restrict keyword with each kernel argument.

5.2.3 S-L1 overheads

Our implementation of S-L1 introduces overheads for the monitoring phase, when determining what data struc-

tures to cache, and for each memory access. Moreover, it uses up registers which may be in short supply. We

briefly describe these overheads below.

Monitoring phase: the monitoring phase has a performance overhead because it adds instructions to record the

number of cache hits for each data structure. However, our experiments show that this performance overhead is

relatively low in practice — an average of less than 1% was observed in the 10 applications we experimented

with (see Section 5.3.4). The overhead is low because the monitoring phase only runs for a short period of time

and because the code of simulateCache() is straightforward and typically does not incur additional memory

accesses since all variables used in simulateCache() are located in registers.

calculateWhatToCache(): this function reads cache hit counters and picks the data structures with the highest

cache hit number. This overhead is negligible since the function’s logic is very simple and straightforward, and

typically, the applications access only a few data structures.

accessThroughCache(): most of the overhead of the caching layer occurs in this function. For accesses to data

structures that are not cached, the performance overhead entails the execution of four extra machine instructions.

However, accesses to cached data structures incur significantly more overhead in some cases; e.g., when evicting a

cache line. Our experiments indicate that the caching layer increases the number of instructions issued by 25% on

average over the course of the entire application (see Section 5.3.4). This overhead can indeed negatively impact

the overall performance of an application if it is not amortized by the lower access times offered by S-L1, and the

overhead is exacerbated if the application’s throughput is already limited by instruction-issue bandwidth.

Register usage

The monitoring phase requires two registers per data structure/simulated cache line: one for the mapped address

of the cache line in memory and another to keep the cache hit counters. These registers are only required during

the monitoring phase and will be reused after the phase terminates.

accessThroughCache() requires three additional registers per data structure and thread: one for the
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memory address of the data currently being cached, one for the write bitmap (which also serves as the dirty bit),

and one for the data structure identifier. (If the data structure is not cached, the value of the last register will be

-1). As an optimization, we do not allocate bitmap registers for read-only data structures. Additionally, since data

structures that are not cached do not access the bitmap and address registers, the compiler might spill them to

memory, without ever accessing them, thus reducing the register usage of uncached data structures to 1.

The recent GPU architectures (e.g. Kepler) have 65,535 registers per SMX and can support at most 2,048

threads, in which case the S-L1 caching layer would, in the worst case, use up to 6% and 9% of the total number

of available registers for cached read-only and read-write data structures, respectively.

5.2.4 Coherence considerations

Since each thread has its own private cache lines, cached data will not be coherent across cache lines of different

threads. Thus, if two threads write to the same data item cached separately, the correctness of the program might

be compromised. Fortunately, the loose memory consistency model offered by GPUs makes it easy to maintain

the same level of consistency for S-L1 accesses. We follow two simple rules to maintain the correctness of the

program: (a) we flush the threads’ cache lines on memory fence instructions and (b) we do not cache the data of

data structures that are accessed by atomic instructions.

Executing a memory fence instruction enforces all memory writes that were performed before the instruction to

be visible to all other GPU threads before the execution of the next instruction. GPGPU programmers are required

to explicitly use these instructions if application logic relies on a specific ordering of memory reads/writes. We

implement this by inserting a call to flush() immediately before each memory fence instruction, which flushes

the contents of the modified cache lines to memory and invalidates the cache lines.

By executing an atomic instruction, a thread can read, modify, and write back a data in GPU memory atomi-

cally. We extract the data structures that might be accessed by atomic instructions at compile time and mark them

as not cacheable by S-L1.

5.3 Experimental Evaluation

5.3.1 Experimental Setup

Unless noted otherwise, all GPU kernels used to evaluate S-L1 were executed on an Nvidia GeForce GTX Ti-

tan Black GPU connected to 6GB of GPU memory with a total of 2,880 computing cores running at 980MHz.

The GTX Titan Black is from the Kepler family and has 15 SMXs, each with 192 computing cores, and 64KB of

on-chip memory (of which 48KB is assigned to shared memory).
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Application Description # data structures

Upper Converts all text in an input document from lowercase to uppercase. 2

WC Counts the number of words and lines in an input document. 1

DNA Assembly merges fragments of a DNA sequence to reconstruct a larger sequence [9]. 3

Opinion Finder analyzes the sentiments of tweets associated with a given subject (i.e. a set of given keywords) [105] 4

Inverted Index Builds reverse index from a series of HTML files. 3

Page View Count Counts the number of hits of each URL in a web log. 3

MasterCard Affin-
ity

finds all merchants that are frequently visited by customers of a target merchant X [73] 3

Matrix Multiply Calculates the multiplication of two input matrices. This is a naive version and does not use shared
memory.

3

Grep Finds the string matching a given pattern and outputs the line containing that string. 2 (1 in shared memory)

Kmeans Partitions n particles into k clusters so that particles are assigned to the cluster with the nearest mean. 2 (1 in shared memory)

Table 5.1: Ten Big Data applications used in our experimental performance evaluation, their description, and the
number of data structures they use in their main loop. S-L1 determines the number of data structures to cache at
runtime, which could vary from run to run depending on the available size of shared memory per thread

All GPU-based applications were implemented in CUDA, using CUDA toolkit and GPU driver release 7.0.28

installed on a 64-bit Ubuntu 14.04 Linux with kernel 3.16.0-33. All applications are compiled with the corre-

sponding version of the nvcc compiler using optimization level three.

For each experiment, we ran the target application using different thread configurations, and only considered

the configuration with the best execution time for reporting and comparison purposes. Specifically, we tested each

application using 512 different thread configurations, starting with 15 blocks of 128 threads (for a total of 1920

threads) and increased the number of threads in 128 increments, up to 480 blocks of 1024 threads (for a total of

480K threads).

We applied S-L1 to the ten data processing applications listed in Table 5.1. There is no standard benchmark

suite for GPU data processing applications, so we selected 6 representative applications, 2 simple scientific appli-

cations (MatrixMultiply and Kmeans) to see how well S-L1 works on them, and 2 extreme applications to

stress test S-L1, namely wc, which has minimal computation (only counter increments) for each character access,

and upper, which is similar to wc but may modify the characters. For each experiment, the data accessed by the

applications was already located in GPU memory.

5.3.2 S-L1 performance evaluation for GPU-local applications

Figure 5.10 shows the performance of our 10 benchmark applications when run with S-L1 and hardware L1

relative to the performance of the same applications run with no caching at level 1 (L2 cache is enabled in all

cases). On average, the applications using S-L1 run 1.90X and 2.10X faster relative to when they use hardware

L1 and no level 1 caching at all, respectively.

Using S-L1, some applications (e.g., upper and wc) run multiple times faster, while others (e.g., grep and

Kmeans) experience slight slowdowns. The benefits obtained from S-L1 depends on a number of factors. First,
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Figure 5.10: Speedup when using S-L1 relative to no L1 caching.
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Figure 5.11: S-L1 hit rate.

the attained cache hit rate obviously has a large effect. Figure 5.11 depicts the S-L1 hit rate for all benchmarks.

Overall, the hit rate is quite high, in part because most of the applications have high spatial locality (which is

to be expected for data processing applications). As an extreme example, consider wc, where each thread accesses

a sequence of adjacent characters, so each S-L1 miss is typically followed by 15 hits, given a 16 byte cache line.

Kmeans is an exception: because the application allocates much of the shared memory for its own purposes, there

is insufficient space for S-L1 cache lines, and hence the effective S-L1 hit count is zero for this application.4

A second factor is the memory intensity of the applications; i.e., the ratio of memory access instructions to

the total number of instructions executed. Some applications (e.g., upper and wc) are memory bound and hence

benefit from S-L1. At the other extreme, grep performs worse despite having a high cache hit rate, because it

4Because Kmeans allocates space in shared memory dynamically at run time, the compiler cannot know that there is not enough space
for S-L1 — otherwise it potentially could have avoided adding the code required for S-L1.
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Figure 5.13: L2 hit rate for wc.

is compute intensive with its recursive algorithm and because it has a large number of branches with significant

thread divergence. The benefits of the caching layer is negated by the extra instructions that need to be executed

because of the software implementation of S-L1.

A third factor is the degree to which S-L1 enables extra thread parallelism, thus improving the utilization of

the GPU cores. Figure 5.12 shows the number of online threads5 that result in the best performance for each

application with and without S-L1. With S-L1, applications can run with more threads without having to worry

about thrashing in S-L1. Without S-L1, applications typically need to limit the degree of parallelism to prevent

L2 cache thrashing. For example, Figure 5.13 shows the L2 cache hit rate of wc as a function of the number of

threads per SMX, where the cache hit rate drops to around 10% at 1,024 threads.

Compared to S-L1, the benefit of hardware L1 cache is rather limited (shown in Figure 5.10). Overall, the

performance gains with the L1 are limited to under 35% and in some cases result in slowdowns. In particular, wc,

5I.e., threads that run at the same time on all multiprocessors, the maximum of which can be 30K threads on our GPU.
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Figure 5.14: Speedup of our five scenarios relative to the CPU single core version for four GPU applications
processing large data sets located in CPU memory.

PageViewCount, and Matrix Multiply all exhibit slowdown when L1 is enabled. We attribute this to the

extra DRAM transactions that result from L1 cache line thrashing. Note that, when L1 is enabled, each cache miss

results in four DRAM transactions (four 32-byte transactions to fill a 128-byte L1 cache line), three transactions

more than what actually is required to fulfill the requesting memory access instruction. This phenomenon was

originally observed by by Jia et al. [43].

5.3.3 Evaluation of S-L1 for data residing in CPU memory

For Big Data-style applications, the data will not fit in GPU memory because of the limited memory size. Hence,

in this subsection, we consider the performance of four applications with data sets large enough to not fit in GPU

memory. We ran these applications under five different scenarios:

1. CPU multi-threaded when run on a 3.7GHz Intel Core i7-4820K with 24GB of dual-channel memory

clocked at 1.8 GHz;

2. GPU using a single buffer to transfer data between CPU and GPU;

3. GPU using state-of-the-art double buffering to transfer data between CPU and GPU;

4. GPU using BigKernel; and

5. GPU using BigKernel combined with S-L1.

We selected to combine S-L1 with BigKernel in particular, because BigKernel is currently the best performing

system for data intensive GPU Big Data applications.
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Figure 5.15: S-L1 overhead, in terms of extra instruction executed and issued (in %) when using S-L1 relative to
when not using it.

Figure 5.14 shows the results. For all four applications, using BigKernel combined with S-L1 performs the

best, and for all but one application the performance is an order of magnitude better than the multi-threaded CPU

version. Compared to BigKernel alone, BigKernel combined with S-L1 is 1.19X faster. The primary reason

preventing BigKernel from performing better when combined with S-L1, we observed, is that BigKernel uses

many registers and therefore, its parallelism is limited6.

5.3.4 S-L1 overheads

S-L1 has significant overheads because it is implemented in software and extra instructions need to be executed

for each memory access: a minimum of 4 and potentially well over 100 extra instructions per memory access.

Figure 5.15 depicts the increase in the number of instructions, both executed and issued, under S-L1. Executed

instructions are the total number of instructions completed, while issued instructions also count the times an

instruction is “replayed” because it encountered a long latency event such as a memory load.

The increase in the number of executed instructions is significant: 220% on average. The reason is obvious:

each memory access instruction is transformed to additionally call a function that needs to be executed. On

the other hand, the increase in the number of issued instructions is more reasonable: 25% on average. (For wc

and MatrixMultiply the number of issued instructions actually decreases.) The reason issued instructions

increase less than executed instructions is that S-L1 provides for improved memory performance, which reduces

the number of required instruction replays.

6When a kernel uses high number of registers, an SMX will schedule less number of online threads to be able to provide them with the
required number of registers.
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Figure 5.16: Overhead of S-L1 when S-L1 is enabled but not used to cache any data.

do
w

n

 

nd
er

Inv
er iew

Ap

ea
ns

Figure 5.17: Slowdown/speedup when using 8B and 24B cache lines over using 16B cache lines.

To evaluate the amount of overhead S-L1 introduces for data structures that are not cached, we ran our bench-

marks with S-L1, but with all data structures marked as non-cacheable. Figure 5.16 shows the overhead incurred

in this case: 8% on average. Based on our experiments, the monitoring phase accounts for less than 1% of this

overhead. The rest of the overhead is attributed to executing the memory access function that is called for each

memory access. As suggested in Section 5.3.2, one potential way to avoid this overhead is have the compiler not

transform memory accesses to data structures that are found not worthy of caching – e.g. a data structure that is

statically known not exhibit any caching benefit.

5.3.5 Effect of S-L1 cache line size

Figure 5.17 compares the overall performance of applications when S-L1 is configured to use different cache line

sizes. Specifically, we show the performance improvement/loss for 8-byte and 24-byte cache lines over 16-byte
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cache lines.7

In most cases, 16-byte cache lines seems to be best choice. As we described in Section 5.2.1, we believe this

is mainly because 16-bytes is the widest available load/store size on GPU ISA and hence, the entire cache line

can be read/written with one memory access.

Decreasing the cache line size to 8-bytes impacts performance negatively in every case, since the cache then

typically needs to execute the inserted memory access function twice as often for a fixed amount of streaming

data to be processed by the application. Note that our benchmarks primarily consist of Big Data applications that

have high spatial locality and that consume most of the data in a cache lines.

Increasing the cache line size to 24-bytes results in worse performance in all but two cases, mainly because 24

bytes do not provide much additional benefit over 16 bytes, yet require two memory accesses to fill a cache line

instead of one. For example to process 48 characters accessed sequentially, a 16B cache line results in 3 misses

and thus 3 L2/DRAM accesses, whereas a 24B cache line results in 2 misses and thus 4 L2/DRAM accesses.

7We did not choose 32 as a potential cache line size since the shared memory could not accommodate the cache lines of that size if the
SMXs are fully occupied with 2048 threads.



Chapter 6

A Hash Table for GPU-based Big Data

Applications

In this chapter, we present the design and implementation of a hash table that is intended to be used as a key-value

store for GPU-based Big Data applications. The key characteristic of this hash table is that it retains reasonable

efficiency even when it grows beyond the size of GPU memory. To be able to offer this, we use a model of

computation called SePo that we developed to reduce the amount of data transferred between CPU and GPU

memories. Even though we initially developed this model for our hash table design, we believe it can be used in

other contexts as well (although it may not necessarily be beneficial for all applications).

Section 6.1 states the problem we are trying to tackle in more detail. An overview of the solution we propose

for this problem is presented in Section 6.2. Sections 6.3 and 6.4 go deep into the design and implementation of

our hash table. We close by presenting the results of our experimental evaluations in Section 6.6.

6.1 Problem Statement

The Big Data applications we are targeting often store their results in the form of key-value (KV) pairs. In part,

this is because the Big Data ecosystem started off with MapReduce, which stores data in the key-value format.

Today, the high level of storage and interoperability support for the key-value format has made it a de facto

standard for Big Data applications. It is, therefore, highly desirable to have high-performant key-value stores on

platforms that run Big Data applications, such as GPUs.

The hash table is an obvious data structure to consider for storing KV pairs efficiently. It not only allows for

fast data store and lookup, but it also offers on-the-fly grouping of pairs based on their keys (where the values of

61
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KV pairs with the same key are “grouped” or “combined”). On-the-fly grouping of pairs eliminates two overheads

that might otherwise occur when grouping is postponed to a later, separate stage of execution: the overhead of

storing multiple copies of the same key and the overhead of a separate grouping stage, that typically requires the

data to be sorted first. In fact, despite the irregularity of memory accesses to a hash table, which is a performance

hazard for GPUs, several previous studies have identified clear performance advantages when comparing hash

tables to other potential data structures for key-value storage, as we described in Section 3 [35, 37, 72].

Using hash tables on GPUs has one major challenge, however. Unlike simpler data structures like arrays, hash

tables cannot be broken into smaller segments that can be operated on independently, because each key may index

into any location of the hash table. As a result, it is not trivial to algorithmically support a hash table that is larger

than the available GPU memory.

There are two obvious system-level solutions to support hash tables that are larger than GPU memory, but

both incur high data transfer overhead. The first allocates the entire hash table as a pinned region in CPU memory

and has the GPU threads directly access the structure in CPU memory (remotely, over the PCIe bus). The second

solution uses a hardware demand paging mechanism for GPUs which uses CPU memory as the secondary storage:

if the part of the hash table being accessed is not in GPU memory, then the corresponding page(s) is paged in

before the access can complete. Both solutions incur a high number of data transfers over the PCIe bus, resulting

in a poor performance, as will be shown in Section 6.6.4. This overhead prevents GPU Big Data applications

from using hash tables if they do not fit entirely in GPU memory. To make the matters worse, due to the dynamic

memory space requirement of hash tables, there is typically no way to predict – before runtime – whether a

given dataset size can be processed successfully within the available GPU memory or not. This makes GPUs an

unreliable hardware base for real-world Big Data applications, unless one of the designs described below is used.

6.2 Solution Overview

We now introduce the SePo model of computation as a solution to allow a hash table to retain its efficiency even

if it grows beyond the size of GPU memory. We first present SePo as a general model of computation and then

describe how it is used specifically to support larger-than-memory hash tables for GPUs.

6.2.1 SePo Overview

In the SePo1 model of computation, a service requestee may postpone servicing a request by declining the request

and asking the requestor to re-issue the request at a later time. The requestee might, for example, postpone a

request because the required resources are not available or because it is inefficient to provide the service at the

1SePo is short for Selective Postponement, which implies that the requestee can temporarily postpone providing its service.
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Figure 6.1: How the SePo model can improve performance.

time it is requested. This scheme is similar to the way some OS system calls return the EAGAIN error code,

indicating that the required resources are temporarily unavailable and that the request must be re-issued. As an

example use-case of SePo, assume populating a matrix so large that the OS must keep half of it on disk, and

further assume the elements are inserted in a random fashion. Random accesses will likely result in excessive

page faults and would cause a significant slow down. The SePo model would allow the postponement of accesses

to the non-resident portions of the matrix until all accesses to the resident portions have been completed.

The SePo model of computation imposes the following two requirements on an application. First, the ap-

plication’s order of computation should not matter. That is, if we break the computation of the application into

independent computation units (e.g. processing of independent input records), the order in which the units are

processed should not affect the correctness of the application. Second, the application must be structured so that

it can tolerate having some of its requests be postponed by the requestee. This means that the application must be

able to distinguish between a unit that has been successfully processed and one that has not (due to a postponed

request), and be able to re-process the postponed requests at a later time.

Data parallel applications like Big Data analytics can typically satisfy both of these requirements, because

their computations contain independent operations performed on a large number of input records that can be

processed in any order without affecting the correctness of the computation. Further, it is fairly straightforward to

keep track of computation units in these applications, as we show in Section 6.3.3.

A key design parameter in the SePo model is determining who decides when to re-compute postponed com-

putation units. Some applications have the requestee do this because it knows when it has the resources to better

service postponed requests. Other applications pick the requestor to make the decision, perhaps because it better

knows the scheduling requirements of the computation units or how long they can tolerate being postponed. Still,

others involve both the requestee and requestor in making the decision, for example by having the requestee make

the initial decision but allowing the requestor to override it.
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Figure 6.1 shows how the SePo model can improve the performance of an application. It considers two

scenarios for processing a sample computation unit. There is a basic trade-off between servicing the request

inefficiently and the added overhead of some re-computation and servicing the request more efficiently. More

precisely, the SePo model is effective when the following condition is true:2

(tpre−computation + tpostpone) + (tpre−computation + tpostponed−service + tpost−computation) <

(tpre−computation + tservice + tpost−computation)

where tpre−computation is the expected time between the start of the computation unit and the time the requestor

issues the request including all of the direct or indirect overheads that starting a computation unit might entail

(e.g., data movement overheads); tpostpone refers to the overhead of postponing a service including keeping

track of whether the unit has been processed or not and reverting back/disposing any result that may have been

produced during the corresponding tpre−computation; tpostponed−service and tservice refer to the expected time

to provide the service of the computation unit when it is postponed and when it is not, respectively; and finally,

tpost−computation is the time it takes to finalize the computation unit (e.g., recording a log) when the corresponding

request is successfully serviced.

6.2.2 Using SePo for larger-than-memory hash tables

We use Page View Count, an application that stores its results in a hash table, to describe how the SePo model of

computation might work on a hash table in practice. The application reads in a large log, where each line consists

of an input record containing a URL. It extracts the URL and inserts the KV pair <url,1> into the hash table.

On each insert, the hash table automatically combines KV pairs with the same key, so that the hash table would

store <url,n> if the KV pair <url,1> had been inserted n times.

In this example, we assume that a hash table large enough to be able to store a pointer per unique URL easily

fits in GPU memory, and that closed hashing with chaining is used to deal with collisions. All of the remaining

GPU memory is allocated for a heap to be used by a memory allocator. Memory for each KV pair to be stored in

the hash table is allocated dynamically from this heap.

With respect to the SePo model of computation, the application in this example is the requestor and the hash

table is the requestee. For each <url,1> insert request, if the key (i.e., the url) is already in the hash table,

then its value is combined with the currently stored value of the key. If the key is not yet in the hash table, then

space is allocated for the new KV pair (<url,1>) before it is inserted into the hash table. If the space allocation

is unsuccessful, then requestee responds to the insert request with POSTPONE, and the input record is marked

as not having been processed.

2The condition might be slightly different for each application. For instance, some applications, like ours, might postpone a request
multiple times before successfully servicing it.
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Figure 6.2: A snapshot of a hash table during a subsequent iteration of computation (not all pointers are shown in
this figure).

The application iterates over the entire set of input records multiple times in sequence until all input records

have been successfully processed. In each iteration, it only considers input records that have not yet been pro-

cessed, and it attempts to insert the KV pair <url,1> for the url extracted from each input record in sequence.

If the key being inserted has previously been inserted (from an earlier record), then an existing KV record with

that key is guaranteed to be in GPU memory, and thus the value of the new KV pair (i.e., 1) can be combined with

the currently stored value. Otherwise, space for the new KV pair will have to be allocated (which, as described

earlier, may or may not be successful).

Each time the application reaches the end of the set of input records, the hash table is signalled that it will no

longer actively need any of the KV pairs currently located in GPU memory. The hash table then copies all of the

pairs to CPU memory and frees up the heap in GPU memory to make it ready for the next iteration. Note that it

will no longer need any of the KV pairs being copied back to CPU memory because all pairs (generated from the

input) with the same keys will have already been successfully inserted/combined.

Figure 6.2 shows a snapshot of a hash table during a second iteration of computation. Note that new KV

pairs are always inserted at the head of the bucket linked list so that there is no need to traverse the linked list

elements that might no longer be in GPU memory. Moreover, our implementation stores a set of two pointers in

the hash table where ordinarily one would be used: one that is based on the location of contents in GPU memory

and another that is based on the eventual location of contents in CPU memory – when the hash table contents

are copied to CPU memory. The hash table calculates and sets the value of CPU pointers (using simple pointer

arithmetic) while inserting KV pairs. This allows the hash table to be eventually accessible from both CPU and

GPU sides.
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6.3 Design Overview

The hash table we designed has three key attributes: (i) it supports variable-sized keys and values, (ii) it can

perform on-the-fly grouping of KV pairs with the same key and, (iii) it uses the SePo model of computation to

be able to exhibit reasonable performance even if it grows larger than available GPU memory.

With a closed addressing method, our hash table uses separate chaining with linked lists. Inserted KV pairs

that map to the same bucket will be stored in a linked-list of entries rooted in the table. The entries are dynamically

allocated as KV pairs are inserted, using a custom dynamic memory allocator we designed for this purpose.

Using separate chaining with dynamic allocation of entries has a number of important advantages for our

target applications. First, it allows the hash table to approach and surpass a load factor of 1 while having its

performance degrade gracefully. This is an important attribute for our target applications considering that the

number of key-values generated by a Big Data analytics is often difficult to predict.3 Using an open-addressing

hash table – e.g., one that uses Cuckoo hashing – can result in costly insert operations and even more expensive

hash table re-organizations when hash table approaches a load factor of 1.

Second, dynamically allocating bucket entries allows the hash table to start with nothing but a simple array of

null pointers, requiring little space. This allows the array to be allocated with a large number of elements – i.e.

buckets – without allocating too much memory. Having a large number of array elements reduces lock contention

among GPU threads when performing hash table operations.

Third, dynamic memory allocation allows bucket entries to be allocated when they are required, and allocated

exactly as large as they need to be. This not only preserves GPU memory, but also adds support for variable-sized

KV pairs. A hash table that pre-allocates bucket entries has a difficult time supporting variable-sized KV pairs

and often pre-allocates the entries conservatively large so that they can hold a wide range of KV pairs, hence

consuming an unnecessary large amount of memory.4

In the following we describe the detailed design of our memory allocator, how we organize buckets, and how

exactly we apply the SePo model of computation.

6.3.1 Dynamic Memory Allocator

Although a number of dynamic memory allocators designed for GPUs already existed [104], we implemented

our own custom-designed dynamic memory allocater for two reasons. First, we did not require the allocator

to support memory deallocation (as almost all existing dynamic memory allocators do) because our hash table

only ever inserts elements and never deletes them. This simplifies the design of the dynamic memory allocator

3Sometimes even different input datasets result in significantly different number of KV pairs being generated by a single Big Data analytic
application.

4For example, Inverted Index deals with URLs that are between 5 and thousands of characters and thus, requires the hash table to
conservatively pre-allocate buckets of thousands of bytes.
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substantially. Second, we had a reasonably good understanding of the memory allocation pattern that is exhibited

by our hash table operations and thus, could design the dynamic memory allocator that can take advantage of this

knowledge toward achieving a higher performance (see below).

The dynamic memory allocator we designed for our hash table uses a heap that is pre-allocated in GPU

memory. The heap is partitioned into pages, from which allocation requests are serviced. To determine the largest

size the heap can be allocated as, we (i) wait until all other data structures have been allocated, (ii) then query

GPU memory for its remaining free space, and (iii) allocate the heap with that size.

The primary objective of our dynamic memory allocator is to achieve high performance when used by 1,000’s

of concurrent threads. This is essential because the dynamic memory allocator is used in the critical path of GPU

threads that populate the hash table. To make the allocator’s service scalable, we distribute the allocation load

onto multiple pages, instead of having all allocations serviced from one page. This way, instead of accessing

one free-list pointer, the accesses are distributed over multiple free-list pointers (one per accessed page), reducing

memory access contention. To do this, we partition the hash table buckets into bucket groups, each containing n

contiguous buckets, and we allocate memory for each bucket group from a different page.

While having several pages to allocate memory from improves the performance of the memory allocator, it

increases the chance of memory fragmentation as some pages might not be fully used when the allocator fails to

allocate memory for some allocation requests. This is a trade-off in which the right balance might be different

for each application. The hash table library, therefore, allows each application to further balance this trade-off

by adjusting the size of the bucket groups, which in turn changes the number of pages from which allocations

are actively serviced from (e.g. a larger bucket group will have the hash table to be partitioned into fewer bucket

groups and thus, distributes the allocation load onto fewer number of pages).

Figure 6.3 illustrates the possible state of a hash table during runtime, along with its bucket groups, and

allocated memory pages. Initially, no page is assigned to any of the bucket groups. A page is assigned to a bucket

group on the first malloc() done by a GPU thread for any bucket of that bucket group. Further, if on a malloc()

the KV pair does not fit in the free space of the currently allocated page, then a new page is allocated from the

memory pool and chained to the previous page(s) allocated to the bucket group. For example, the bucket group #1

shown in Figure 6.3 has three pages where the first one (the one on the far right) was added first and the other two

were added when the existing page(s) ran out of free space.

6.3.2 Bucket Organizations

Key-value pairs that are generated by Big Data analytics applications often have duplicate keys. However, dif-

ferent Big Data analytics applications handle such pairs differently. In our hash table design, we consider three
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Figure 6.3: The overall structure of bucket pointers, bucket entries, and memory pages.

different bucket organizations to cater to different kinds of KV pair handling: basic method, multi-valued method,

and combining method. We describe each in turn.

Basic method:

If two KV pairs have the same key, the two KV pairs will be stored as two separate entries in the linked list of

bucket entries. This approach is generally suitable for applications that do not require the pairs with identical keys

to be grouped.

Multi-valued bucket entries:

A separate list of values is associated with each key, resulting in a two dimensional linked structure with keys

linked along one dimension and values linked to the their keys along a second dimension.

An example application that uses this method is Inverted Index which takes HTML pages as input and outputs a

1:N mapping from the hyperlinks seen in the pages (keys) to the pages that have those hyperlinks in them (values).

To do this, each time a hyperlink is found in a page, a pair in the form of <hyperlink, pagePath> is inserted into

the hash table. At the end of the execution, each bucket entry will have one or more URLs (i.e. keys) and a list

of pagePaths associated with each URL. For example, if the hyperlink http://google.com is found in

documents a.html, c.html, and d.html, the final bucket entry will look like the structure in Figure 6.4.

We store keys and values in separate pages when the multi-valued method is used. This allows the set of values

grow independently of the set of keys and thus, offers more flexibility in handling the keys and values, which is

essential for the SePo model (see Section 6.3.3). However, separating keys from values when storing them in the
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Figure 6.4: The final structure of an example bucket entry under the multi-valued method.

hash table increases the chances for memory fragmentation.

Combining method:

This method is inspired by the combiner method typically used in MapReduce applications, which is imple-

mented to aggregate (i.e., reduce in MapReduce terminology) multiple values into a single value during the map

phase [95]. Memory space needs to be allocated only the first time a KV pair with a given key is inserted. When

inserting a KV pair with a key that already exists in the hash table, then it is only necessary to update the value of

the existing bucket entry with the corresponding key.5

With the combining method, the hash table insert function calls a callback function to handle the correspond-

ing update; it is called every time a new pair with a duplicate key is inserted. The function is called with the

to-be-inserted value and a reference to the existing value as arguments.

To better understand how the combining method works, consider the Page View Count application (PVC) we

presented earlier. PVC counts the number of occurrences of each URL in a large log file. The inserted KV pairs

in PVC are of the form <URL, 1>, which means the URL has been seen once in a part of the input log file. To

calculate the total number of times URL exists in the entire log file, all 1’s (i.e., values) inserted with the same

key should be summed up. To do this, the update value callback function for PVC can be implemented as

follows:

void update_value(const char* key,

int& value_existing,

const int value_new)

{

value_existing += value_new;

}

Figure 6.5 shows a snapshot of the hash table when using each of the three different bucket organizations

for PVC. As can be seen, providing the additional bucket organization methods can potentially save a substantial

amount of memory, which is important when designing applications for GPUs. Moreover, on-the-fly grouping of

entries with duplicate keys saves runtime by not requiring a separate grouping phase that is otherwise required to

5Our hash table does not allow the value to grow in size when being combined. An application with values that grow in size must use the
multi-valued method and combine the values separately at the end of the execution.
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Figure 6.5: A snapshot of the hash table when filled by PVC data under three bucket organizations: (a) basic,
(b) multi-valued, and (c) combining.

run after the hash table is fully produced.

6.3.3 Applying the SePo model of computation

Here we describe how the Big Data analytics applications that use our hash table operate with the SePo model

of computation. We only focus on how the SePo model handles hash table inserts while the hash table is being

populated, because it is typically the only operation used when Big Data analytics applications process the input

data during the first phase of the application, and because the first phase is typically the one with the highest

computational demand (which is why we propose to use GPUs to accelerate it). The SePo model can also be used

for lookup operations on larger-than-memory hash tables when subsequent phases use/analyze the results but we

leave that to the reader as a mental exercise.

The application starts by processing input data records, inserting the generated KV pairs into the hash table.

Initially, all inserts will be successful, since all GPU-side pages have free space to store the inserted pairs. Every

time a memory allocation request is made to a GPU-side page that is full, our dynamic memory allocator allocates

a new page from the memory pool to satisfy the allocation request. After some time, however, the memory pool

runs out of free pages, and then if more pages run out of free space, the hash table will be unable to to store

some of the pairs the application is trying to insert. The hash table insert method returns a boolean value to the

requestor indicating whether it has successfully stored the pair or not (i.e., SUCCESS or POSTPONE). In

our implementation of PVC, we use a bitmap array to record which computation units have been successfully

processed. A SUCCESS return value causes the appropriate bit to be set.

With the SePo model of computation, there may come a time when the computation will need to be halted

so that the data and computation can be rearranged. For example, when no more KV pairs can be inserted into

the hash table due to a full heap, the computation may need to be halted so that the heap can be copied to CPU
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Figure 6.6: How input data is processed using each of the three bucket organization methods: (a) basic, (b) multi-

valued, and (c) combining. Note that in (c), even after all pages get full, pairs with duplicate keys are still stored
in the hash table.

memory and freed up in GPU memory before the computation can continue. Both decisions, when to halt the

computation and how to rearrange the data and computation depends to a large extent on whether the basic, the

multi-valued, or the combining bucket organization method is used. For this reason we describe them separately.

Basic method: for applications that use the basic method, Figure 6.6 (a) shows the points where the computation

stops/restarts. The computation is allowed to continue until the requests from 50% of the bucket groups, a con-

figurable parameter, are being postponed – i.e., when 50% of the bucket groups fail to allocate more memory for

the inserted KV pairs.6 Once the 50% threshold is reached, (i) the computation is halted, (ii) the entire heap on

GPU memory is copied back to CPU memory, (iii) the heap on GPU is freed up, adding the pages back to the

memory pool and, (iv) the computation restarts to process input data records from the point where a request was

postponed for the first time in the previous iteration.

An alternative approach is to not halt the entire computation, but only halt the threads that are unsuccessful

in allocating more memory until a page is freed up in GPU memory. However, this approach is expected to

be inefficient because efficient GPU hardware interrupt support does not exists and because the cost of extra

synchronization that this method needs is high.7

6We observed acceptable performance with setting the threshold to 50%.
7Note that, if we halt a GPU thread in software, it will have to spin-wait, which also causes all of its 31 neighbor threads in its warp to

wait. Given the high latency of CPU-GPU communication, these threads will have to wait a long time before a page is freed up, which wastes
a significant aggregate computing power. Even if a hardware interrupt support is provided, this alternative approach might still not work well
because, as Zheng et al. envisioned, such hardware support might still halt a large number of GPU threads upon an interrupt [119].
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Multi-valued method: for applications that use the multi-valued method, Figure 6.6 (b) shows the points where

the computation stops/restarts. In each iteration, the computation processes all input records that have not success-

fully been inserted until the end of the input data has been reached (regardless of the percentage of the requests

that are postponed). We need to do this to identify keys that have values that have not yet been inserted. At the

end of each iteration (i) instead of copying the entire heap to CPU memory, only those pages are transferred that

either are value-pages or are key-pages that do not contain any key that has values that have not yet been inserted,

(ii) the GPU-side pages that were copied to CPU memory are freed up and added back to the memory pool, and

(iii) the computation restarts to process input data records from the point where a request was postponed for the

first time in the previous iteration.

Combining method: for applications that use the combining method, Figure 6.6 (c) shows the points where the

computation stops/restarts. The combining method uses only one type of page to store both keys and values.

Similar to the multi-valued method, in each iteration the computation continues to process input records until the

end of the input data has been reached, because, even if the heap runs out of memory, pairs with duplicate keys

can still be stored since they do not need additional memory space – they would only update the existing values.

At the end of each iteration (i) the entire GPU heap is copied to CPU memory, (ii) the GPU heap is freed up,

adding the freed pages back to the memory pool and, (iii) the computation restarts to process input data records

from the point where a request was postponed for the first time in the previous iteration.

6.4 Implementation

In this section, we describe two of the more interesting hash table details: how we use a set of two pointers where

one would otherwise use a single pointer, and how we optimize synchronization.

6.4.1 Interoperability of pointers

We use two pointers where one would ordinarily use a single pointer in the hash table (including the array bucket

pointers and the pointers connecting the entries of the bucket). One pointer is GPU based and points to the target

object in GPU memory. The second pointer is CPU based and points to the target object when it will eventually

be located in CPU memory. To calculate the CPU-based pointer, the hash table library uses the address of the

CPU-side memory where the GPU heap content will be copied to as a base address to calculate the location where

the data will eventually be stored in CPU memory.

Having these two sets of pointers allows the entire hash table to be used directly both GPU side and CPU side

(after the hash table has been completely moved to CPU memory at the end of the execution).
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void atomicElementInsertion(node* prev, node* toBeInserted)

{

do

{

prevNext = prev->next;

toBeInsertedValue->next = prevNext;

oldValue = atomicCAS(&(prev->next), prevNext, toBeInsertedValue);

} while(oldValue != prevNext);

}

Figure 6.7: Pseudo code to insert the toBeInserted element between two existing elements (i.e. prev and
prev− > next) in a linked list.

6.4.2 Synchronization

Concurrent accesses to a shared data structure like a hash table requires proper synchronization. Having 1,000’s

of GPU threads synchronize on each operation can lead to heavy lock contention if synchronization is not imple-

mented carefully. In our implementation, we generally favor lock-free over lock-based schemes, and when locks

are used, we keep the granularity of the locks as minimal as possible.

We are able to use a lock-free approach for the following operations:

• Inserting a bucket entry in the basic method

• Inserting a value into a bucket entry in multi-valued method

We used variations of the pseudo code shown in Figure 6.7 to perform these lock-free operations. Here,

the atomic Compare-And-Swap instruction is used to insert the toBeInserted element between two existing

elements (i.e. prev and prev− > next) in a linked list.

The following operations require locks:

• Inserting a bucket entry in the multi-valued method

• Inserting a bucket entry in the combining method

Both of these operations cannot be implemented with a single, atomic operation because each has multiple

sub-operations that have to be performed as a transaction, without having other threads access the objects. For

example, to insert a KV pair using the multi-valued method, a thread needs to search through some of the existing

entries in the corresponding bucket list (those that are GPU resident8) to determine whether the key is already

8Note that, as described in Section 6.2.2, those entries of a bucket that are not GPU resident are guaranteed to have stored all of their
associated KV pairs, thus are not required to be searched through when inserting a new pair.
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in the list or not and then perform accordingly – during this time no other thread must be allowed to modify the

linked list.

As an optimization, we use two sets of locks for the above operations to reduce the granularity of locks when

possible. A bucket lock per bucket protects updates to the linked list of bucket entries. A bucket entry lock per

bucket entry protects updates to the entry. These two sets of locks can be acquired independently; e.g., when

locking a bucket entry, other threads can still perform operations on the bucket list or on other bucket entries.

6.5 Use case: a simple MapReduce runtime

To test our hash table infrastructure, we developed a MapReduce runtime that uses BigKernel as the input memory

manager, our hash table as the KV store, and a few more lines of code to schedule map and reduce phases. The

runtime leaves the core logic of the application to be implemented by the application programmer inside the

map and reduce/combine functions. Some MapReduce applications do not need a reduce phase, in which case

the reduce/combine function is left empty. Finally, the application programmer is asked to provide an input

data partitioner function which partitions the input data into smaller chunks, ready to be processed by the map

functions.

Our MapReduce runtime can be configured by the programmer to work in MAP REDUCE or MAP GROUP

modes. MAP REDUCE mode is used for MapReduce applications with a reduce phase that generate final <key,

value> pairs and, MAP GROUP mode is used for application with no reduce phase that generate <key, values>

pairs. These two modes are also offered by various other MapReduce runtimes [35, 72, 95].

The flow of execution in our runtime is as follows. First, the input data partitioner, which runs on the CPU,

is called; it splits the raw input data into smaller chunks. Next, BigKernel pipelines the chunks to the GPU cores

where they are processed by a number of map function instances – one per input chunk created by the input data

partitioner. Each instance is expected to generate zero or more KV pairs. The generated KV pairs are inserted

into our hash table by the map function.

When MAP REDCUE mode is used, the hash table uses the combining method and the provided reduce/com-

bine function as its callback function to aggregate/update the values associated with each distinct key. This means

that the reduce phase is embedded into the map phase (as opposed to being run only after the map phase ends).

This saves memory and improves performance [95]. When MAP GROUP mode is used, the hash table uses the

multi-valued method to group (without reducing) all values associated to a key.

The SePo model of computation is used so that the MapReduce runtime can handle large amounts of input and

result data. In fact, we believe the SePo model of computation makes our MapReduce runtime the first GPU-based

MapReduce runtime that is capable of processing data for larger than what GPU memory can hold.



CHAPTER 6. A HASH TABLE FOR GPU-BASED BIG DATA APPLICATIONS 75

Application Dataset #1 Dataset #2 Dataset #3 Dataset #4
Inverted Index 2 GB 3 GB 4 GB 5 GB
Page View Count 0.6 GB 2.2 GB 3.8 GB 5.8 GB
DNA Assembly 2 GB 4 GB 6 GB 8 GB
Netflix 1.6 GB 3.2 GB 4.8 GB 6.4 GB
Word Count (MapReduce) 0.2 GB 2 GB 3 GB 4 GB
Patent Citation (MapReduce) 0.2 GB 2.0 GB 3.4 GB 4.8 GB
Geo Location (MapReduce) 0.2 GB 1.8 GB 3.2GB 5 GB

Table 6.1: Input dataset sizes used in our experiments.

6.6 Experimental Results

In this section, we present the results of our performance evaluation. We evaluate the performance of our solution

not only by measuring its KV pair insert rate, but also by evaluating the overall performance of several Big Data

analytics applications when they are implemented on GPUs and use our hash table, compared to a corresponding

CPU-based multi-threaded version. We further compare the performance of the hash table when using the SePo

model of computation against the alternative solutions we described in Section 6.1.

6.6.1 Experimental Setup

We performed our experiments on a PC with a 3.8GHz Intel Xeon Quad Core E5 with 8 hardware threads and

10MB of combined L2/L3 cache, connected to 16GB of quad-channel memory clocked at 1800MHz. All GPU

kernels were executed on an Nvidia Geforce GTX 780ti GPU with 2,880 cores each running at 875MHz and 3GB

of DRAM with a maximum bandwidth of 336 GB/s. The GPU is connected to the rest of the system via a PCIe

Gen3 x16 bus interconnect. All GPU-based applications were implemented in CUDA, using CUDA toolkit and

GPU driver release 6.0.1 installed on a 64-bit Ubuntu 12.04 Linux with kernel 3.5.0-23.

For our experiments, we implemented seven applications consisting of four stand-alone Big Data analytics

applications (Netflix, DNA Assembly, Page View Count, and Inverted Index), and three MapReduce applications

(Word Count, Geo Location, and Patent Citation). These applications were chosen primarily due to the amount

of data they need to insert into the hash table. Each application is run with a variety of input dataset sizes, which

in turn results in a variable number of KV pairs that have to be inserted into the hash table. Table 6.1 provides

details on the application data sets used in our experiments. We briefly describe each application.

Netflix: calculates a similarity score between each pair of users based on their movie preferences [11]. The

input data consists of an array of records, each containing two ratings of a movie given by two different users and

a few other data values.9 Each KV pair inserted into the hash table is of the form <userA&userB, similarity score

between two users for a movie>. The application uses the combining method in which the similarity score of each

9This input data is produced by another application which takes as input the initial ratings of users to movies and produces a result record
per each two users that rated the same movie.
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two users is aggregated.

DNA Assembly: merges fragments of a DNA sequence to reconstruct a larger sequence [9]. The input data

consists of fixed-length string records, each containing a DNA fragment and a few other data values. Each KV pair

inserted into the hash table is of the form <part of the DNA fragment, edges of the fragment>. The application

uses the combining method in which the uniqueness of the edges of the DNA fragment is updated based on the

new value.

Page View Count: counts the number of occurrences of each URL in a web log. The input data consists of a

sequence of new-line separated records, each of which containing a URL, an IP address, and a few other values.

Each KV pair inserted into the hash table is of the form <URL, 1>. The application uses the combining method

to aggregate the values associated with each URL.

Inverted Index: builds a reverse index from a series of HTML files. The input data consists of a set of HTML

files, each containing zero or more links (i.e., < a > tags). Each KV pair inserted into the hash table is of the form

<link URL, HTML file path>. The application uses the multi-valued method to associate all HTML file paths with

the same link URL.

Word Count (MapReduce): counts the number of occurrences of each word in a document. The input data

consists of a text file. Each KV pair inserted into the hash table is of the form <word, 1>. The application uses

MAP REDUCE mode to aggregate the values associated with each word.

Geo Location (MapReduce): groups Wikipedia articles based on the geographic location from which they

have been created. The input data consists of a sequence of new-line separated records, each containing informa-

tion about an article including the geographic location from which it was posted. Each KV pair inserted into the

hash table is of the form <geographic location string, article ID>. The applications uses MAP GROUP mode to

group all article IDs with the same geographic location string.

Patent Citation (MapReduce): produces a reverse patent citation directory – similar to what Google Scholar

offers by the “cited by” functionality. The input data consists of a text file with fixed-length records each contain-

ing a citation made by a patent. Each KV pair inserted into the hash table is of the form <the cited patent, the

citing patent>. The application uses MAP GROUP mode to group all patents that have cited the same patent.

We modified our Big Data analytics applications to use BigKernel as the underlying input memory manage-

ment framework. BigKernel, as described in chapter 4, helps minimize the overhead of transferring input data

from CPU to GPU memory. Having more efficient input data transfer between CPU and GPU is especially im-

portant with the SePo model of computation, because input data may be transferred to GPU memory multiple

times.
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Figure 6.8: KV pair insert rate when using different key and value sizes, different bucket organization methods,
and up to three iterations of computation.

6.6.2 Overall results

All of the execution times presented in this section include the input data transfer from CPU to GPU and transfer of

the hash table from GPU to CPU. We believe this is the only fair way of comparing GPU implementations to CPU

ones. Moreover, all CPU implementations that require dynamic memory allocation use TCMalloc [28] which is

substantially faster than glibc’s malloc in multi-threaded applications. Finally, all GPU-based implementations

are configured to run with the number of GPU threads that result in the best execution time, as determined through

experimentation.

KV pair insert rate

In our first experiment, we measure the rate at which KV pairs can be inserted into the hash table. To do this, we

insert random KV pairs into the hash table. However, we make sure that there are many pairs with duplicate keys

(the average number of pairs with duplicate keys depends on the dataset, as described below) so as to evaluate the

efficiency of the hash table when handling pairs with duplicate keys.

Figure 6.8 presents the performance of insert operation with different key and different value sizes, when

using different bucket organization methods, and for three different numbers of KV pairs in the hash table. The

first number of KV pairs fits entirely in GPU memory, but the second and third number or pair need slightly less

than two and three times the available size of GPU memory to be stored, thus requiring two and three iterations

of computation to be completely stored, respectively. The average number of duplicate keys are 2, 5, and 10 in

the three numbers of KV pairs, respectively.

Insert under the basic method exhibits the highest performance primarily because it does not need to search

for a key during insertion and because insertion can be done using the lock-free method. Between the multi-valued

and combining methods, the former exhibits the worst performance because it involves more dynamic memory

allocations (it allocates memory for values of duplicate keys while the combining method does not) and more data

copying (given the extra values).
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Figure 6.9: Application speedup over CPU multi-threaded implementation. For the last three, the baseline is
Phoenix++.

Application performance

We compared each of the four non-MapReduce GPU accelerated applications using our hash table with a CPU-

based multi-threaded implementation. The CPU-based versions use a hash table design similar to our GPU-based

hash table design except that they do not use the SePo model of computation given that the entire hash table fits in

CPU memory for all of our input datasets. The three MapReduce applications built with our MapReduce runtime

are compared against the corresponding CPU-based applications developed using Phoenix++, a state-of-the-art

MapReduce runtime for multi-core CPUs [95].10

Figure 6.9 depicts the achieved speedups of the GPU-based applications over their CPU-based multi-threaded

counterparts for different dataset sizes. The numbers shown on top of the bars indicate the number of iterations that

were necessary to successfully store all KV pairs into the hash table when using the SePo model of computation.

Focusing only on the datasets that are processed in a single iteration of computation – bars with 1 shown on their

top – the applications exhibit a range of performance gains when accelerated with GPUs. All applications except

Inverted Index and Word Count exhibit reasonable speedups. The average speedup is 3.5X.

Inverted Index and Word Count do not perform as well on GPUs for different reasons. Inverted Index has

a long switch-case block in its core logic, which causes a high degree of thread divergence in GPUs, negatively

affecting performance. Word Count suffers from lock contention when accessing buckets because of the small

number of distinct keys and large number of duplicate keys.11 A CPU implementation also suffers from lock

contention, but not as much, given the significantly lower number of threads that run on the CPU. In fact, when

we artificially increased the number of distinct keys in the input dataset of Word Count (by adding random,

meaningless words to the input documents), performance quickly improved (not shown).

10The source code for all applications is available at https://github.com/rezafmk/SePo HashTable.
11For instance, the number of occurrences of the word ’the’ in a document is high.
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Figure 6.10: The time breakdown of the applications’ runtime.

The number of iterations an application/dataset needs depends on how much memory is needed to store the KV

pairs, which in turn depends on the number, size, and uniqueness of KV pairs and also on the bucket organization

method used. For example, Word Count will rarely need multiple iterations even for large input datasets because

(i) Word Count uses the combining method which saves memory by not allocating memory space for KV pairs

with duplicate keys and (ii) the input dataset of Word Count typically consists of text documents which contain a

limited number of distinct words no matter how large the documents is.

Figure 6.10 illustrates the breakdown of execution time when running applications with our largest available

dataset – input dataset #4. We see that generally, each iteration (including the time it takes to transfer the heap

contents to CPU memory after the iteration is finished) takes less time to complete. For instance, in the applica-

tions we experimented with, the second, the third, and the fourth iterations of computation are, on average, 1.94X,

3.84X, and 5.4X faster than the first iteration, respectively.12

6.6.3 Comparing with MapCG

We took MapCG as a state-of-the-art GPU MapReduce system and implemented our three MapReduce applica-

tions on it to compare it with the MapReduce system we built using our hash table [37]. MapCG also uses a hash

table to store KV pairs generated by the map function instances. Similar to all existing GPU-based MapReduce

runtimes that use a hash table, however, MapCG is unable to support a larger-than-memory hash table, and thus

the execution fails when there is no more free memory to store newly inserted KV pairs. In fact, we were able to

compare the performance of MapCG with our own MapReduce runtime only for the smallest input datasets (input

12One should note that these numbers will differ substantially for different applications and input datasets.
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Application Speedup
Word Count (MapReduce) 1.05X
Patent Citation (MapReduce) 2.42X
Geo Location (MapReduce) 2.55X

Table 6.2: Speedups over MapCG.

datasets between 200MB-600MB despite having a GPU with 3GB of internal memory13).

Not being able to process large input datasets in these experiments means that our hash table was, effectively,

not using the SePo model of computation (i.e., no KV pair insertions were postponed). Consequently, the compar-

ison with MapCG only evaluates the efficiency of the basic design of our hash table, including dynamic memory

allocation and synchronization.

Table 6.2 lists the speedups of the three applications when run using our MapReduce runtime over MapCG on

the same testbed. Our MapReduce runtime performs on par with MapCG for Word Count, primarily because the

performance of both runtimes are limited by the heavy contention for locks during the KV pair insertions. For the

other two applications, however, our MapReduce outperformed MapCG by over a factor of 2.

6.6.4 Comparing with alternative approaches

In this section, we compare the performance of our hash table to the two alternative system-level solutions we

described in Section 6.1 that potentially could be used to allow a larger-than-memory hash table for GPUs, namely

(i) pin the hash table in CPU memory, and (ii) using a hardware demand paging mechanism.

Hash table pinned to CPU memory

When a memory region is pinned in CPU memory, the operating system will not page it out to disk and it can be

accessed directly by GPU threads over the PCIe bus. Given that typical CPU memories are much larger than GPU

memories, a much larger hash table can be allocated and fully populated (by the GPU) without needing the SePo

model of computation.

As an experiment we modified our dynamic memory allocator to pre-allocate its heap as a pinned CPU mem-

ory region (thus storing the content of the hash table in CPU memory). Everything else is kept in GPU memory

for higher memory performance (e.g. locks). The heap is allocated sufficiently large so that the hash table’s entire

content can fit in it. We ran all applications with the largest dataset (i.e. input dataset #4) on this new version of

the hash table and compared it with our GPU-based hash table using SePo.

Figure 6.11 shows the result of this experiment in which we show the speedups of our applications when using

this modified version of the hash table as well as when using our version of the hash table. Speedup is measured

13Even though our testbed GPU has 3GB of memory space, its memory is shared among different data structures and thus each data
structure is given a smaller space.
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Figure 6.11: Speedups compared to the pinned version.

relative to the CPU-based multi-threaded implementation of the applications. Even though the original hash

table needs multiple iterations of computation to process all of the input data, it still significantly outperforms

the version that allocates the heap in CPU pinned memory. Worse, in four out of seven applications, the CPU

pinned memory version of the hash table performs worse than the CPU-based multi-threaded implementations.

The reason for this poor performance is not only the high volume of data that has to be transferred over the PCIe

bus, but the fact that the data is transferred over many small PCIe transactions, which is much costlier than a few

bulky PCIe transactions.

CPU-side hash table with demand paging

Another system-level solution that supports larger-than-GPU-memory hash tables is to use a GPU hardware that

has built-in demand-paging support [79, 119]. Such GPU would allow the application to allocate more GPU

memory than is physically available. It will copy pages between CPU and GPU memories as needed to ensure the

accessed data is available in GPU memory prior to completing the access. Due to the irregularity of accesses to

a hash table, a larger-than-memory hash table with demand paging is expected to exhibit frequent paging activity

which degrades performance substantially.

So far, none of the GPUs in the market have added demand paging support, although we expect it to to be pro-

vided in the near future. In the absence of a demand paging hardware, we could have simulated the corresponding

hardware with the demand paging support using a GPU simulator to measure the efficiency of this alternative

solution, but instead we came up with a simple experiment that provides us with a lower bound on the overhead

for this solution. In this experiment, we instrumented the code of PVC to record the access pattern to the hash

table. We use this access pattern to simulate and then count the number of page replacements that demand paging
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Assumed
physical
GPU
memory

Data
transfer
time
(1MB
page size)

Data
transfer
time
(128KB
page size)

Data
transfer
time (4KB
page size)

Total
execution
time with
our hash
table

1200 0.00s 0.00s 0.00s 1.22s
1100 14.8s 2.04s 0.07s 1.29s
1000 101.6s 11.4s 0.60s 1.37s

900 261.5s 32.5s 1.21s 1.45s
800 496.5s 62.1s 2.14s 1.56s
700 801.4s 104.4s 4.47s 1.65s
600 1178.3s 157.7s 6.12s 1.76s
500 1626.5s 128.7s 7.87s 1.89s
400 2148.3s 292.2s 10.33s 2.02s

Table 6.3: Calculated lower bound data transfer time if PVC was run on a demand paging-equipped hardware
compared to the total execution time when PVC is run using our hash table.

hardware would have imposed during the runtime of the application. Multiplying this number by the page size

yields the total amount of data that has to be transferred over the PCIe bus, which in turn gives us the lower bound

runtime that PVC would have spent transferring data under a demand paging-equipped GPU.

Table 6.3 shows the results of this experiment. The input dataset we used for this experiment ends up popu-

lating a hash table that reaches 1.2 GB in size. In our simulations we initially set GPU memory to have 1.2 GB

of free space (so that the entire hash table fits in GPU memory and no paging is required, considering that all

pages are initially GPU resident). We then ran the experiment multiple times, each time reducing the available

free space so as to increase the frequency of paging. For each run, we calculated the amount of the data that had

to be transferred between CPU and GPU and, based on that, calculated the time it takes to transfer the data over

the PCIe bus, and reported that number in the table as the data transfer time. Even though this data transfer time is

only one of the overheads associated with demand paging (others including overhead to initiate PCIe transactions

and overhead of page fault interrupt handling) it still, in many cases – including all cases where the hash table is

about 1.5 times or more larger than the available GPU memory – exceeds the total execution time of running the

application using our hash table.



Chapter 7

Concluding Remarks

GPUs have, so far, rarely been used to accelerate real-world Big Data applications despite their enormous comput-

ing power and high memory bandwidth [37, 107]. Three main challenges stood in the way: (i) Big Data is often

too large to fit in the GPU’s separate, limited-sized memory, (ii) data transfers to and from GPUs are expensive

because the PCIe bus that connects the CPU and GPU has limited bandwidth and high latency, and (iii) Big Data

is not naturally layed out to allow for coalesced accesses, which is necessary to exploit the high GPU memory

bandwidth.

In this dissertation we have presented the design and implementation of BigKernel, S-L1, and a hash table to

store key-values. All three aim to address the above challenges so as to make GPUs more suitable for real-world

Big Data applications, as described below.

BigKernel is a scheme that provides pseudo-virtual memory to GPU-based applications that operate on Big

Data. It uses a four-stage pipeline with automated prefetching to (i) optimize CPU-GPU communication and

(ii) optimize GPU memory accesses. It simplifies the programming model by allowing programmers to write

kernels using arbitrarily large data structures for applications that process data records independently, thus re-

lieving the programmer from having to partition the data into segments, manage buffers, transfer data between

CPU and GPU, and having to invoke GPU kernels multiple times. Straightforward compiler transformations are

used to transform traditional GPU kernels into BigKernel. On six benchmark applications, we experimentally

showed that BigKernel achieves an average speedup of 1.7 over implementations that use double buffering, and

an average speedup of 3 over multi-core CPU implementations. We also showed that BigKernel largely migrated

the bottleneck away from the PCIe bus to GPU memory.

S-L1 is a GPU level 1 cache which is implemented entirely in software using SMX shared memory. S-L1

determines, at runtime, the proper size of cache, samples the effectiveness of caching the data of different data

83
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structures, and based on that information, decides what data to cache. Although the software implementation adds

8% instruction overhead to the 10 applications we tested, our experimental results showed that this overhead is

amortized by faster average memory access latencies for most of these applications. Specifically, when using S-

L1, ten GPU-local Big Data applications achieved speedups of between 0.86 and 4.30 (1.90 avg.) over hardware

L1 and between 0.95 and 6.50 (2.10 avg.) over no L1 caching. Combining S-L1 with BigKernel led to speedups

of between 1.07 and 1.45 (1.19 avg.) over BigKernel alone, and speedups of between 1.07 and 6.37 (3.7 avg.)

over the fastest CPU multi-core implementations.

The GPU-based hash table we developed for storing key-value pairs of Big Data analytics applications is

capable of retaining reasonable efficiency even when its data grows beyond the size of GPU memory. This is

made possible with the help of SePo, a model of computation we developed to reduce the overhead of CPU-GPU

data transfers when the hash table does not fully fit in GPU memory. Under our SePo model of computation,

a larger-than-memory hash table will postpone certain operations (i.e., insert or lookup) if they attempt to ac-

cess non-resident portions of the hash table. Such operations are postponed until the requested portions become

resident. Our experimental results comparing GPU-based Big Data analytics applications to their CPU-based

multi-threaded counterparts, showed that an average speedup of 3.5 is achieved, despite having the hash table

grow up to four times larger than the available GPU memory.

If we consider CPU memory as just another level in the memory hierarchy (behind GPU shared memory, L1

cache, L2 cache, and GPU memory), but with lower bandwidth and higher latency, then the general goal of this

dissertation has been to prevent the GPU cores from being data-starved by caching data closer to the computing

cores. With BigKernel we use GPU memory to cache CPU memory and with S-L1, we use GPU shared memory

to cache GPU memory. And with our hash table, we try to cache as much of the accessed data in GPU memory

as possible while also preventing a potential thrashing of the GPU memory.

A recurring theme in all of our solutions is that we try to use some of the GPU’s computational power to

improve the efficiency of the GPU memory hierarchy. This makes sense because it is not possible to keep all GPU

cores busy on the application’s computation given that their hunger for data cannot be satisfied. In BigKernel,

half of the GPU threads are used to generated prefetching addresses. In S-L1, some of the computational power

is used to manage the cache (e.g., executing a monitoring phase and fetching/evicting cache lines based on the

memory accesses). And in our hash table, some of the GPU’s computational power is used to re-generate certain

key-value pairs. Going forward, we believe this theme will be adopted more widely, given how much faster GPU

computational power is increasing relative to GPU memory bandwidth.

Finally, while it is understandable that GPU designers need to prioritize optimizations for graphical processing

and maintain commodity pricing, we believe that our work provides some indications of how GPU designers could

enhance current GPU designs to make them more effective for Big Data applications. In particular, we believe the
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following improvements would allow for more efficient execution of Big Data applications on GPUs:

1. One of the most straightforward enhancements would be to improve the bandwidth and reduce the latency

of the PCIe bus – its current bandwidth has not improved in the last 6 years and is now 20 times lower than

GPU memory bandwidth.

2. Another straightforward enhancement would be to significantly increase the size of the L1 – its current size

only supports 0.25 of a cache line per thread when applications run with the maximum number of online

threads allowed.

3. We also would like to see the GPU on-chip cache geometry to be more configurable, particularly allowing

the cache lines to be smaller.

4. Currently, GPU hardware demand paging support is still very immature and inefficient [119]. We expect

it to become more efficient in the near future. Nonetheless, while providing demand paging substantially

improves programming convenience, we believe fetching the data from CPU memory to GPU memory “on-

demand” is detrimental to GPU performance due to the high latency of the PCIe bus. We believe fetching

the data from CPU memory on demand should be considered only as a last resort – only when other methods

failed to cache/prefetch the data. Therefore, we believe techniques to automatically prefetch data to GPU

memory or to allow the programmer to assist demand paging (e.g., with hints) would be critically important.

Future directions

Given the experience we have gained using GPUs to accelerate Big Data applications with our work on BigKernel,

S-L1, and our GPU-based hash table, we see various promising avenues for future work. Two incrementally

enhance our existing solutions:

1. We believe S-L1 performance can still be improved substantially. When CPU-GPU communication is not

the bottleneck, the GPU memory bandwidth is almost always the bottleneck for Big Data applications given

the fact that they are typically memory-intensive applications. Therefore, minimizing GPU memory access

overhead should be the primary objective to improve the performance of these applications. S-L1 was

developed precisely towards this end. As future work, we intend to reduce the overhead of S-L1 by relying

more on compile-time analysis. Using compiler technology, we could avoid transforming memory accesses

that access data structures statically known to have poor caching behavior. Moreover, if accesses to all data

structures can be statically analyzed, the monitoring phase might also become unnecessary. Depending on
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the application access pattern, the benefit of this static analysis will vary. At minimum, it can remove the

overhead of executing the instructions that are currently used to access data structures that are determined

to not be worthy of caching.

2. We expect GPUs to support demand paging in the near future. Hence one would want to explore modifying

BigKernel and our hash table to work more efficiently under demand paging-equipped GPU hardware. For

example, BigKernel may be able to prefetch a large indirectly-indexed data structure (e.g., an indirectly-

indexed array of records) by first fetching its index data on-demand from CPU memory1 – assuming that

the index is much smaller than the data structure itself.

Generalizing our work to other domains, we believe that the SePo model of computation may also be effective

in other contexts, as mentioned in Chapter 6. Both requirements of this model, namely having the application

be able to tolerate (i) changing the order of its computation and (ii) postponing some of its computations to a

later time, are met by most data parallel applications (including Big Data analytics and many Machine Learning

applications). It would therefore be interesting to explore the potential benefits of applying the SePo model of

computation to data parallel frameworks (e.g. Apache Spark, Memcached, or Hadoop). These frameworks often

have certain operations/tasks that can be performed more efficiently if postponed.

Finally, it would be interesting to use BigKernel, S-L1, and perhaps our hash table to develop “accelerated

frameworks” for other computation domains. We demonstrated this by developing a MapReduce runtime out

of the union of BigKernel and our hash table that was able to achieve considerable speedups on a number of

MapReduce applications (of between 1.9 and 6.4 over the state-of-the-art CPU-based MapReduce runtime). An-

other interesting domain to target is Machine Learning that has a number of existing frameworks that could be

ported to the GPU (e.g. Apache Singa and Spark MLlib). Machine learning applications are similar to Big Data

applications in that they deal with large datasets and most likely will also benefit from the GPU’s high memory

bandwidth.

1As described in Chapter 4, currently BigKernel is unable to prefetch indirectly-index data structures.



Bibliography

[1] R. Abdelkhalek, H. Calandra, O. Coulaud, J. Roman, and G. Latu. Fast seismic modeling and reverse time

migration on a GPU cluster. In Proc. of the Intl. Conf. on High Performance Computing & Simulation,

pages 36–43, 2009.

[2] A.M. Aji, M. Daga, and W. Feng. CampProf: a visual performance analysis tool for memory bound GPU

kernels. Tech. Rep. retrieved from http://eprints.cs.vt.edu/archive/00001123/, 2010.

[3] D. Alcantara, V. Volkov, S. Sengupta, M. Mitzenmacher, J. Owens, and N. Amenta. Building an efficient

hash table on the GPU. GPU Computing Gems, 2:39–53, 2011.
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[7] J. Bolz, I. Farmer, E. Grinspun, and P. Schröoder. Sparse matrix solvers on the GPU: conjugate gradients

and multigrid. In Proc. of the ACM Transactions on Graphics (TOG), pages 917–924, 2003.
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[29] J. Gómez-Luna, J.M. González-Linares, J.I. Benavides, and N. Guil. Performance modeling of atomic

additions on GPU scratchpad memory. IEEE Transactions on Parallel and Distributed Systems, 24(11):1–

13, 2012.
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