
QDo: A QUIESCENT STATE CALLBACK FACILITY 

Adrian Tam 

A thesis submitted in conformity with the requirements 

for the degree of Master of Applied Science 

Graduate Department of Electrical and Computer Engineering 

University of Toronto 

Copyright © 2006 by Adrian Tam



Abstract 

QDo: A Quiescent State Callback Facility 

Adrian Tam 

Master of Applied Science 

Graduate Department of Electrical and Computer Engineering 

University of Toronto 

2006 

In systems that only have short-lived threads, it is possible to define a Quiescent Point 

(QP(t), relative to time t, as the earliest time after t where no thread exists that was alive at 

time t. Quiescent points have a number of uses, such as memory reclamation for lock free 

objects. 

QDo is a facility that allows clients to register their interest for QP(t). QDo then moni- 

tors and notifies interested parties when a quiescent point is established. We have designed, 

implemented and analyzed the performance of the QDo facility. QDo works by check- 

ing the number of active threads in the previous epoch per processor. When that number 

reaches zero, a local quiescent point is established. QDo then communicates with other 

processors to establish a global quiescent point. 

Our experiment shows that callback latency and overhead is highly dependent on how 

frequently the QDo facility monitors for quiescent point. Checking frequency of 10ms 

results in 2% overhead for SDET benchmark.



Contents 

1 Introduction 

1.1 ProblemStatement ......... 

1.2 Motivation. |. ............ 

1.3 QDoDesign Goals ......... 

1.4 SummaryofResults. ........ 

1.5 Structureof Dissertation ...... 

2 Backgroundand Related Work 

2.1 Related Work ............ 

2.1.1 Synchronization ...... 

2.1.2 Read-Copy Update . .... 

22 K42 .....LL 600 

2.2.1 Clustered Object ...... 

2.2.2 Generation Count. ..... 

3 Designof QDo Facility 

3.1 HighLevel Design ......... 

3.1.1 Functional Decomposition . 

3.1.2 Per Address Space QDoMgr 

ii 

400040 4484444000 

TE E E E I I I I I I E E E I I] 

e e I E E I I E E IO 

dee 44000408000 

ee 400800000 

e 044 

ee# 086044 

I I I E I IO 

de 400 

ea 84004044 

14 

18 

19 

20



CONTENTS ii 

3.1.3 Processor Subset Support... 26 

3.2 RequestRegistration . LL. 26 

3.2.1 Interface ........... LL 27 

3.2.2 Example Usage . LL. 27 

3.2.3 Batching LL... 28 

3.3 Monitoring & Detection of Quiescent State. ................ 29 

3.3.1 Single Processor Detection . . LL... 29 

3.3.2 Multiprocessor Communication . LL 0 33 

3.4. Callback Execution . 20000 42 

4 Implementation 44 

4.1 Overview . LL. 44 

4.2 HighLevel Description . LL... 44 

4.3  Clustered Object. LL... 45 

4.3.1 ROOt. LL. 46 

4.3.2 Representatives... 47 

44 Initialization LL... 48 

4.5 Delay Checking . LL... 49 

4.6 Fork LL... LL 49 

4.7  Quiescent State Monitoring Daemon . LL... 50 

4.8. Synchronization . LL. 51 

4.8.1 LOCKkS LL... S1 

4.8.2 LockFreeList . LL... 52 

4.8.3 Disablingthe Scheduler... 53 

4.9 Multiple Processors Callback . LL... 54 

4.9.1  Methodof Notifying Callbacks . 0. 54



CONTENTS 

4.9.2 Serial vs. Concurrent Callback Execution . ............. 

5 Experimental Evaluation 

5.1 Definition . LL. 

5.2 Experimental Setup . LL... 

5.3 Latency Micro-benchmark LL... 

5.3.1 Effect of Communication Algorithm . 

5.3.2 Effect of Monitoring Thread’s Soft Timer Frequency . ....... 

5.3.3 Effect of Synchronization Techniques . ............... 

5.4 Overhead Micro-benchmark . LL... 

5.4.1 Effectof Soft-Timer Frequency... 

5.4.2 Effect of Synchronization Techniques... ............. 

5.5 Distribution of Generation Period in Kernel Space . ............. 

5.5.1 Communication Algorithms . 2 

5.5.2 Monitoring Thread’s Soft-Timer Frequency . ............ 

5.6 SDET Macro-Benchmark Result... 

6 Conclusion 

6.1 Future Work 

References 

A Glossary 

#4 4000400 

iv 

54 

56 

56 

58 

59 

59 

67 

69 

70 

70 

73 

73 

74 

74 

78 

82 

84 

85 

97



List of Figures 

2.1 

2.2 

2.3 

24 

2.5 

2.6 

2.7 

2.8 

2.9 

2.10 

3.1 

3.2 

3.3 

3.4 

3.5 

3.6 

3.7 

3.8 

Relation Between Number of Threads, Quiescent Point and Quiescent State 15 

Linked List at Time 0... 16 

Create Copy of Element B-Io. LL... 16 

Linked List is Updated with Element B-I. .................. 16 

Threads Continue to Access Element B_. . ................. 16 

Quiescent State for Removing Element B_. ................. 16 

Memory Reclamation of Element B_................00 17 

K42 Basic Structure . LL... 19 

Generation Definition for K42 LL... 20 

Clustered Object Garbage Collection for Multiprocessor . ......... 22 

Life Cycle of QDo Processing . LL... 24 

QDo’s registration interface |... 27 

Example of how QDo might be called by a lock-free linked list object . .. 28 

Multiple Token Rings |... 35 

Snapshot Multiprocess Communication Method . .............. 36 

Snapshot Stored in QDoO LL... 37 

Callback is Safe to be Executed . . 37 

Diffracting Tree... 39



LIST OF FIGURES vi 

3.9 

3.10 

3.11 

4.1 

5.1 

5.2 

5.3 

5.4 

5.5 

5.6 

5.7 

5.8 

5.9 

5.10 

5.11 

5.12 

5.13 

VP2 Achieved Local Quiescence . LL... 40 

VPO, VP1 and VP2 Achieved Local Quiescence . .............. 40 

VPO, VPI1, VP2 and VP3 Achieved Local Quiescence . ........... 41 

Major Data Structure Used in QDo . LL. 46 

Measurement Terminologies . LL 57 

Code Snippet of Latency Measurement Process... ............ 60 

Relationship Between Communication Latency, Wakeup Frequency and 

Snapshot Communication Method... LL... 64 

Relationship Between Communication Latency, Wakeup Frequency and 

Multi-Token Communication Method... 65 

Relationship Between Communication Latency, Wakeup Frequency and 

Token Communication Method... 66 

Actual Relationship between Callback Latency and Monitoring Thread’s 

Soft Timer’s Period . LL... 68 

Code Snippet of Overhead Measurement Process... .........., 71 

Relationship between Monitoring Thread’s Soft Timer Frequency and Over- 

Histogram of Global Generation Period for Different Communication Al- 

gorithm (2 VP) LL... 76 

Histogram of Global Generation Period for Different Communication Al- 

gorithm (4 VP) LL... TI 

Histogram of Global Generation Period when Checking Frequency = 100 ms 78 

Histogram of Global Generation Period when Checking Frequency = 10 ms 79



LIST OF FIGURES vii 

5.14 Histogram of Global Generation Period when Checking Frequency = 1 ms. 79 

5.15 Histogram of Global Generation Period when Checking Frequency = 0.1 ms 80



List of Tables 

3.1 

5.1 

5.2 

5.3 

5.4 

5.5 

5.6 

5.7 

5.8 

5.9 

5.10 

5.11 

5.12 

5.13 

5.14 

Trade-offs for Multiprocess Communication Techniques... ........ 

Characteristics of IBM 270 Workstation... 

Setup for Measuring Latency for Different Communication Algorithms 

Average Callback Latency (in ms) for Different Communication Algorithms 

Average Request Placement Overhead (in ns) for Different Communication 

Algorithms Le 

Average Local Latency (in ns) for Different Communication Algorithms . 

Communication Latency (in ms) for Different Communication Algorithms . 

Average Execution Latency (in ns) for Different Communication Algorithms 

Setup for Measuring Latency for Various Monitoring Thread Soft Timer’s 

FrEQUENCy LL. 

Breakdown of Callback Latency for Different Monitoring Thread’s Soft 

Timer Frequencies for 4 VP (in ms) 0. 

Setup for Measuring Callback Latency for Various Synchronization Method 

Callback Latency for Different Synchronization Techniques... ...... 

Overhead for Different Synchronization Techniques . . ........... 

Setup for Measuring SDET performance . 0... 

SDET performance (in scripts/hour) . LL... 

vili 

67



Chapter 1 

Introduction 

Shared memory multiprocessors (SMPs) are becoming increasingly prevalent. With the 

emergence of chip multiprocessors (CMPS) and simultaneous multi-threading processors 

(SMTs), one can even expect standard desktop computers and game consoles to domi- 

nantly be multi-processors within a few years. Today, Intel sells the Core Duo processor 

[43], AMD has released the Opteron processor [5], IBM has the Cell processor [44] and 

Sun sells the Niagra processor [46]. The Intel Core Duo processor, already employed in 

the Apple iMac notebook, has two execution cores within a single processor. The AMD 

Opteron processor, designed for servers and workstations, also has two cores on a single 

die. It supports both simultaneous 32 and 64 bits computations. The Sony Playstation 3 

game console uses IBM Cell Processor as its main central processing unit (CPU). Each cell 

processor has one Power Processing Element (PPE) and eight Synergistic Processor Ele- 

ments (SPE). The PPE is a dual-threaded, dual-issue 64 bit Power-Architecture compliant 

core that can run conventional operating system while each SPE is a reduced instruction set 

computer (RISC) processor that operates on local store memory. The Sun Niagra processor, 

also known as UltraSPARC TI, is designed for thread rich applications. Each processor has 

up to eight 4-way multi-threaded cores. Based on the current trend, it is not inconceivable



CHAPTER 1. INTRODUCTION 2 

that within five years, low-end computers will be 8-way or higher multiprocessor machines. 

Software for multiprocessor platforms is significantly more complex than multiprocess- 

ing software for uniprocessors. A key aspect is that synchronization is needed to protect 

consistency of common data structures that might be accessed in parallel. The cost of syn- 

chronization is high and, relative to processor speeds, has become higher over the years. 

Small et. al. measured that under heavy load, NetBSD 1.2 can spent 9% to 12% of its time 

executing synchronization operations [76]. McKenney et. al. demonstrated that lock effi- 

ciency, as measured by the speed of synchronization instruction divided by the speed of 

a non-synchronization instruction, has decreased by an order of magnitude from 1984 to 

2001 [55]. Synchronization overhead stems from two sources: the overhead of executing 

atomic operations (for example test-and-set instructions) and contention overhead (such as 

spinning or queuing delays) that arises when multiple threads wish to execute a critical 

section at the same time. 

Over the years, there has been a significant amount of research aimed at reducing syn- 

chronization overhead. Some of the research targets the restructuring of software so as to 

reduce the amount of data that is shared, and with it, the need for synchronization. For 

example, the K42 research team developed a structure for the K42 operating system where 

an object can be decomposed into multiple representatives while preserving a single uni- 

fied interface [8]. Objects can customize its allocation by its partitioning, distributing and 

replicating its data so as to maximize locality and minimizing sharing. 

Other researches have developed lock-free data structures, including lock free quajects 

[52] and lock free linked list [32]. Lock free data structures do not require explicit synchro- 

nization, such as locking, in order to protect the structures’ integrity. In addition, priority 

inversion is avoided. Instead, through sequences of atomic operations, they ensure that a 

consistent picture is seen by all processors. One key problem with lock free structures is 

that it is difficult to know when it is safe to destroy an object. For example, even if an



CHAPTER l. INTRODUCTION 3 

object is dequeued from a linked list with no synchronization, it is difficult to know when it 

is safe to free the object without using traditional locking mechanisms, since other parallel 

threads may still be accessing the dequeued object. 

Stili other researches have developed techniques that exploit expected access behaviour 

to reduce synchronization overhead in the common case, but with higher overhead in the 

uncommon case. An example of this is the Read-Copy-Update (RCU) mechanism devel- 

oped by Paul McKenney, and now a part of the Linux 2.6 kernel. RCU is optimized for 

read mostly data structures [54]. Reads do not block nor require atomic synchronization 

primitives. Writes, on the other hand, incur large latencies because their executions are 

delayed to known safe points [56]. 

1.1 Problem Statement 

Operating systems, databases, web servers and other system software are typically demand 

driven, where threads execute only on stimulus from outside the system. For example, an 

operating system experiences activity only when applications issue a system call or there 

is an interrupt. Typically, threads that execute on behalf of outside parties are short-lived, 

namely for the duration required to service the request. 

In systems that only have short-lived threads, it is possible to define a Quiescent Point 

(QP(t) relative to time t as the earliest time after t where no thread exists that was alive 

at time t. Quiescent Points can be exploited in a number of ways. For example, for lock 

free data structures, it is safe to destroy at time QP(t) objects that were dequeued at time t, 

because no thread that potentially had a reference to the dequeued object can possibly still 

be executing. Similarly, for RCU, it provides guarantees on when all threads are able to 

see the effects of changes to the updated data structure [54]. However, detecting Quiescent 

Points in an efficient manner is not trivial.



CHAPTER 1. INTRODUCTION 4 

In this dissertation, we describe the design and implementation of a Quiescent Point 

callback facility called QDo. Clients of the QDo facility can register quiescent point call- 

backs, and the QDo facility issues the callback the next time quiescent point is reached. We 

explore different ways of implementing QDo and assess their performance characteristics. 

1.2 Motivation 

Many problems can take advantage of QDo facility. Here we describe a few example uses. 

One obvious use for QDo is memory reclamation for lock free objects. In theory, an 

object’s memory can be reclaimed immediately after it is deleted. However, other threads 

executing on another processor might still have access to the deleted memory via transient 

references [62]. QDo provides a means to detect when other threads can no longer access 

the memory occupied by the object. Thus, memory reclamation can be implemented as 

callbacks after quiescent point is reached. 

Hot swapping is another problem that can benefit from using the QDo facility. Hot 

swapping supports live upgrades to running system component and allows software to be 

more adaptable by changing its behaviour at run time. This is achieved by swapping one 

component for another component [25, 41]. QDo simplifies hot swapping by identifying 

when it is safe to swap out the existing object - the point at which no other thread will 

reference the old object. 

Another use of QDo is hash table resizing. To maintain efficiency and avoids collisions, 

hash tables should be resized when the number of items in the table is larger than a thresh- 

old [23]. One common method to protect hash table integrity is to lock hash table entries 

and prevent other threads from modifying the hash table during resizing. However, this 

will slow the common read and write paths, since every access will require lock synchro- 

nization. As an alternative, we can use a two step process to resize the table. For most of



CHAPTER 1. INTRODUCTION 5 

the time, reading and writing does not require a lock. At time t, we ask the QDo facility 

to schedule the resizing of hash table after QP(t). From time t to time QP(t), reading and 

writing to a hash table requires acquiring a lock. 

1.3 QDo Design Goals 

The QDo facility has four main goals. They are, in order of importance, 

1. Low Overhead 

2. Low Latency for Quiescent Callback 

3. Scalability 

4. Available in Both User and Kernel Space 

Low overhead means that the latency and throughput of other non-QDo related calls 

should not be affected significantly by the presence of the QDo facility, especially when 

there are no outstanding callbacks. If the overhead were high, software designers would be 

reluctant to incorporate the facility into their systems. 

Another important requirement for QDo is to have low latency for Quiescent callbacks. 

Latency in the case refers to the time between placing callback request onto the QDo facility 

and the execution of callback. There are several factors that affect latency, including system 

load, the number of outstanding QDo requests as well as the duration of callbacks. Our goal 

is to reduce the latency due to QDo’s detection and callback mechanisms. 

Scalability is another important requirement. The QDo facility was developed for the 

K42 Operating System, and K42 is designed for large scale shared memory multiproces- 

sors. Hence, QDo must be as scalable as K42 with overhead and latency not increasing



CHAPTER 1. INTRODUCTION 6 

disproportionately relative to the number of processors. Without requiring scalability, QDo 

may become the choking point for K42 in larger multiprocessor systems. 

Finally, the QDo facility should be available both at the application level and the kernel 

level. In particular, many important kernel structures, such as lock free objects, can benefit 

from the QDo facility. Hence, we need to extend the facility to beyond user level code. 

1.4 Summary of Results 

QDo's callback latency is highly dependent on how frequently the QDo facility monitors 

whether quiescent point has been reached. Callback latency is low when each processor 

frequently monitors for quiescent condition. In addition, the method of communicating 

a processor’s state with other processors also influences callback latency. Taking regular 

snapshot of other processors’ state produces the lowest latency. 

Overhead is also dependent on how frequently QDo facility monitors whether quies- 

cent point is reached. Frequent checking results in high overhead. Based on our micro- 

benchmark experiments, we determine that a checking frequency of 10ms results in 1% 

overhead in the thread creating and destruction path. We have confirmed that this trans- 

lates to about 2% overhead when running the SPEC Software Development Environment 

Throughput (SDET) benchmark. 

1.5 Structure of Dissertation 

This dissertation focuses on the design and implementation of QDo, a Quiescent Point 

callback facility for the K42 Operating System. Chapter 2 provides background informa- 

tion that enables the reader to understand the remainder of the dissertation. In addition, it 

presents work related to this research. Chapter 3 describes the design of the QDo facility,



CHAPTER l. INTRODUCTION 7 

while Chapter 4 presents implementation details. Chapter 5 includes and analyzes results of 

tests with micro-benchmarks and macro-benchmarks. Concluding remarks and future work 

is presented in Chapter 6. Appendix A provides a glossary of terminology definitions.



Chapter 2 

Background and Related Work 

This chapter first discusses some of the prior art in the area of synchronization and then 

gives an overview of the K42 operating system for which the QDo facility was designed. 

2.1 Related Work 

2.1.1 Synchronization 

Memory Consistency Models 

Leslie Lamport demonstrated in 1979 that maintaining data correctness within a multi- 

processed program executing on a modern multiprocessor does not require that every data 

access be atomic [49]. Instead, a program can be proved to be correct if it obeys a few rules 

on its operation sequences. These rules include: 

1. “AIl write operations to a single memory cell by any one process are observed by all 

other processes in the order in which the writes were issued”. 

2. “A synch command causes the issuing process to wait until all previously issued 

memory accesses have completed”.



CHAPTER 2. BACKGROUND AND RELATED WORK 9 

3. “A read of a memory cell that resides in the process’s cache precedes every operation 

execution issued subsequently by the same process”. 

Programs that follow these rules are said to adhere to the strictly sequential consistency 

model. 

Since then, there has been much research on further relaxing shared memory access 

requirements [2, 3, 6, 29, 45, 64]. Weaker memory consistency models, including “cache 

consistency” [30], “processor consistency” [4], ‘“weak consistency’ [24]°, “release consis- 

tency” [29] and “entry consistency models” [17] can achieve performances improvements 

on the order of 10 to 40 percent over the strictly sequential consistency model [64]. Mod- 

ern compiler technologies have taken advantage of these weaker consistency models and 

made parallel accesses more efficient [15, 86]. However, explicit synchronization, such as 

memory barriers and locks are often still needed to prevent race conditions around critical 

regions. 

Locks 

Improving lock implementation can also improve shared memory multiprocessors (SMP) 

performance. For example, Mellor-Crummey et. al. stipulated that hot spot memory con- 

tention during busy waiting can be eliminated by having each processor spin on a local 

variable [60]. This technique is easily implementable on modern processors as it only has 

two requirements. First, a fetch_and_® operation (i.e., an operation that reads, modifies, 

and then writes a memory location atomically) needs to be available. Common processor 

instructions, such as test_and_set, fetch_and_store, fetch_and_add, and compare_and_swap 

satisfy this requirement. Second, there has to be a memory hierarchy in which each pro- 

cessor is able to read some portion of shared memory without using the interconnection 

network. This is the case on many modern SMP systems. Although Mellor-Crummey



CHAPTER 2. BACKGROUND AND RELATED WORK 10 

et. al. ’s approach reduces communication overhead during synchronization significantly, 

McKenney et. al. showed that locally accessed spin-locks are still not ideal from a scala- 

bility point of view [55]. CPU resources are spent on servicing memory latency, as each 

processor still has to modify the same global lock. 

Tullsen et. al. seeks to reduce locking overhead through fine-grained synchronization 

on simultaneous multi-threading (SMT) processors by taking advantage of communicating 

threads executing in parallel on a single processor [80]. Tullsen et. al. °s scheme hands 

over a lock from one thread to another efficiently by recording the address of blocked 

instructions in a thread-shared hardware, known as lock-box. The drawback of his scheme, 

however, is that this method is only applicable to SMT processors and requires specialized 

hardware. 

Preemption-safe locking addresses performance degradation on time-slicing multipro- 

grammed systems due to the preemption of processes holding locks [47]. While the lock- 

holding process is preempted, other processes waiting on the lock are unable to perform 

useful work. Solutions include avoidance (i.e., not preempting a process that is holding a 

lock) and recovery (blocking a process that fails to get a lock). These techniques require 

the kernel and scheduler to cooperate with the waiting processes. Michael et. al. asserts that 

non-blocking preemption-safe locks outperform both ordinary and preemption-safe locks 

[63]. 

Specialized Locks 

Numerous specialized locks have been proposed that improve efficiency for either read- 

mostly or write-mostly data. Reader-writer lock (RWLock) improves read-mostly data 

synchronization by allowing multiple readers to read the shared data in parallel [48]. Each 

reader is required to acquire a reader lock but this lock may be shared with other readers. 

On the other hand, the writer lock is exclusive and excludes other writers and readers.



CHAPTER 2. BACKGROUND AND RELATED WORK 11 

To increase parallelism and reduce communication overhead, the reader-writer lock can 

be combined with Mellor-Crummey et. al. ’s localized spin lock’s approach [59]. In this 

scheme, each interested thread adds itself to the RWLock list and spins on its local variable. 

When the thread releases the lock, it updates its neighbor”s spin variable to indicate the lock 

is released. 

Lock Free Approaches 

Lock free data structure has been proposed to improve synchronization efficiency and to 

prevent deadlock situations. Instead of using locks, lock free structures use atomic instruc- 

tions and careful ordering of instructions to maintain consistency [38, 82]. The challenge 

is to support all operations on the data structure without using locks, and for this, atomic 

instructions such as compare and swap are required. By definition, lock free structures also 

avoid priority inversion, where a lower-priority process is preempted while holding a lock 

needed by a higher priority process. 

A distinction is made between “lock-free” structures and “wait-free” structures. Lock- 

free structures only guarantee that some, but not necessary all, “processes will complete 

an operation in a finite number of steps” [35]. On the other hand, wait-free structures 

guarantee that all processes will “complete an operation in a finite number of steps” [36, 

78]. 

In the operating system domain, Masslain et. al. was perhaps the first to use lock free 

structures to implement an entire operating system. The Synthesis system is based on 

lock-free quajects that must fit in one or two words [52]. These structures are updated 

atomically using Compare And Swap (CAS) instructions and Double Compare And Swap 

(DCAS) instructions. The drawback of this technique is that it limits data structure size to 

one or two words. 

In the Cache Kernel operating system [22], Greenwald et. al. implemented the system



CHAPTER 2. BACKGROUND AND RELATED WORK 12 

kernel and supporting libraries with non-blocking data structure through the use of Type- 

Stable Memory Management (TSM) [31]. Each non-blocking data structure is associated 

with a descriptor similar to a version number. To modify the shared structure, both the 

data and the descriptor has to be atomically updated successfully. The atomic update, 

implemented using DCAS instructions, fails if the descriptor is modified by another thread 

before committing the update. 

Both Massalin et. al. ’s and Greenwald et. al. °s method require the use of an atomic 

Double-Compare and Swap instruction. DCAS is hardware specific and not widely avail- 

able. Although software techniques [16, 51] have been proposed to emulate DCAS func- 

tionality, these techniques are O(N?) or O(NM?), where N is the number of processes per 

processor that needs to synchronize and M is the size of the data [7]. 

Harris et. al. shows how a lock free linked list can be updated with only two compare- 

and-swap (CAS) instructions, instead of with a double compare and swap (DCAS) instruc- 

tion [32]. Deletion is divided into two separate steps - logical deletion and physical dele- 

tion. Logically deleted elements are marked as deleted and are removed from structures 

they may be part of. However, they may continue to be accessed by concurrently running 

threads. Physical deletion is performed only after there are no longer any references to the 

logically deleted nodes. To determine that there are no pointers to the logically deleted ele- 

ments, an exhaustive search through the list is done [33]. This technique is only applicable 

to the linked list data structure. 

Michael et. al. points out that there are two challenges in using lock free data structure 

[61]. First, the system does not know when it is safe to assume the object can no longer be 

accessed by any thread, and hence when it is safe to perform memory reclamation. Second, 

many systems using lock free data structures suffer from the so called ABA problem [42, 

81]. ABA problem refers to the fact that atomic primitives such as CAS do not necessarily 

guarantee that no other threads have modified the protected data. Let us assume that one



CHAPTER 2. BACKGROUND AND RELATED WORK 13 

thread changes the shared data’s value from A to B. It is possible that another thread may 

have changed the compared data back to the original value A and CAS do not realize 

protected data had been changed (hence the term ABA problem). Thus, programmers 

cannot solely rely on comparing lock free data with expected values in determining whether 

writes are safe [82]. 

Safe Memory Reclamation 

The Safe Memory Reclamation (SMR) scheme proposed by Michael et. al. makes it easy 

to determine safe points for memory reclamation in lock free data structure [21, 61, 62]. 

Whenever a thread accesses a shared lock free object, it adds itself to a list of single writer 

multi-reader pointers, known as hazard pointers (HP). When a thread no longer accesses a 

shared object, it removes that shared object from its hazard pointer list. A shared object’s 

memory can safely be reclaimed only if it is not on any thread’s HP list. The disadvantage 

of this technique is that it is not efficient for read accesses [55] since SMR requires scanning 

of every thread’s HP list. As discussed earlier, operating systems are typically demand 

driven and have a large number of threads. These threads are dynamically created and 

typically short-lived. Hence, scanning these threads incurs large overhead costs. 

Transactional Memory 

Transactional memory, first proposed by Herlihy et. al. , is a hardware extension of a multi- 

processor cache-coherence protocol that allows read-modify-write operations to be defined 

and customized [38]. Herlihy's scheme associates writes to multiple words of memory in 

the local cache into a single transaction. The transaction is committed permanently only 

if no other transactions have updated any location in the transaction’s data set. Otherwise, 

the transaction is aborted and the writes are discarded. Although transactional memory is



CHAPTER 2. BACKGROUND AND RELATED WORK 14 

similar to database transactions, Herlihy’s transactions are designed to be short-lived. In 

addition, only a small number of memory locations are expected to be written within a 

single transaction. Transactional memory requires changes to the existing cache coherence 

protocol and hence appropriate hardware support. 

Software transactional memory (STM), on the other hand, is designed for general pur- 

pose processors [37, 73]. Similar to Herlihy et. al. °s transaction memory, updates to mul- 

tiple words of memory can be associated into a single transaction. To start a transaction, 

ownership of all accessed data must be acquired successfully by writing to the shared mem- 

ory’s ownership vector. Otherwise, the transaction’s acquired ownerships are released and 

the transaction is discarded. The drawback of STM is that its performance is inferior to 

using locks [66]. Note that STM requires ownership for both read and write operations. 

Thus, in the case of having multiple readers and no writers, extensive synchronization is 

still required. Moreover, since ownership is shared by all processors, applications will 

suffer from high cache traffic [55]. 

2.1.2 Read-Copy Update 

Read-Copy Update (RCU), proposed by Paul McKenney et. al. , is a reader-writer synchro- 

nization mechanism optimized for read mostly data [55, 56, 57]. Read operations, which 

can be concurrent, do not require any explicit synchronization. Therefore, this technique is 

ideal for read mostly workload because reads incur no overhead. 

RCU works by requiring the writer first to make a copy of the data it wishes to modify. 

Subsequently, the writer modifies the copy and then constantly monitors whether it is safe to 

replace the previous data with the updated copy, a time known as quiescent point. Quiescent 

point (QP(t)) is the first point in time at which it is known that no other threads will be able 

to access the old data. Quiescent state is the system’s condition at which it is known that



CHAPTER 2. BACKGROUND AND RELATED WORK 15 

Quiescent 

Number 
of Threads 

That Can 
Access 

Shared Data 
Structure Quiescent  ...._.... > 

State 

  Time 

  

Figure 2.1: Relation Between Number of Threads, Quiescent Point and Quiescent State 

no other threads will be able to access the old data. This state, as illustrated in Figure 2.1, 

may be either directly provided by the readers or indirectly observed by the system. For the 

direct case, read-side signals must be provided to indicate when the reader has completed. 

For the indirect case, quiescent state can be deduced by observing the state of participating 

threads. 

Let us go through a simple example to see how RCU works. Assume that a thread 

wants to modify an element B from a lock free linked list, as seen in Figure 2.2. First, 

a copy of Element B (B-I) is created and updates are made on Element B-I, as seen in 

Figure 2.3. Next, the linked list is updated so that all new accesses will see Element B-I 

instead of Element B, as seen in Figure 2.4. This can be done with a single write in this 

case. At this time, there may still be threads that continue to access Element B, as depicted 

in Figure 2.5. Thus, even after Element B is removed from the list, the element’s memory 

cannot be immediately reclaimed. Element B’s memory can only be reclaimed when we 

know that no threads will reference this element, as seen in Figure 2.6. After quiescent state 

is reached, the element’s memory can safely be reclaimed, as shown in Figure 2.7. Note 

that the modifying client reads, copies and then updates the copy, hence the term RCU. 

Some methods, such as RCU, need to defer some actions, such as object reclamation,



CHAPTER 2. BACKGROUND AND RELATED WORK 16 

    

    Element Element Element 
Head A B c 

Figure 2.2: Linked List at Time 0 

            
    

  

Element 

  

    

        

B-I \ 

Element Element Element 

Head A B To | 

Figure 2.3: Create Copy of Element B-I 

        
    

  
Element 

  

  
  

    

B-I \ 

Element Element Element 
Head A B c i] 

Figure 2.4: Linked List is Updated with Element B-I 

          
    

  
Element 

/ B_I 

Element Element \ Element 
[e | 

  

    

            
    

  

Figure 2.5: Threads Continue to Access Element B 

  
Element 
B-I 

Element Element \ Element 
Head 

  
    

            
    

  

Figure 2.6: Quiescent State for Removing Element B



CHAPTER 2. BACKGROUND AND RELATED WORK 17 

  
Element 
B-I 
  

    

            
    

Element Ele Element 
Head A B Cc 

7 \ 

Figure 2.7: Memory Reclamation of Element B 

to a later point when it is safe to do so. We generally refer to the execution of these 

actions as callbacks. In this case, callbacks are method calls invoked when quiescent state 

is established. In the previous example, Element B’s memory is reclaimed when such a 

callback occurs. 

Numerous RCU implementations have been been proposed for the Linux 2.6 operating 

system [14, 68, 69, 70]. These implementations differentiate themselves primary along 

two design issues: i) how they detect quiescent state on each processor and ii) how the 

processors communicate amongst each other to establish global multiprocessor quiescent 

state. For example, some of the implementations that have been proposed are: 

1. RCU-Poll: 

Local Quiescent Detection: A counter (quiescent counter) is used to record when 

idle-loop and context switch has occurred in a non-preemptive kernel. Local 

quiescent is established when this counter has increased. 

Global Communication: Each processor regularly polls other processor’s quiescent 

counter. Global quiescent is established when each processor’s counter has 

been incremented. 

2. RCU-Taskq:



CHAPTER 2. BACKGROUND AND RELATED WORK 18 

Local Quiescent Detection: Local quiescent is established when a per-CPU ker- 

nel daemon schedules itself. The scheduling of kernel daemon forces context 

switch to occur in a non-preemptive kernel. 

Global Communication: RCU facility forces other processors to schedule their 

RCU kernel daemon to be executed. The originating kernel then waits until 

all processors have executed the RCU kernel daemon. Note that quiescent state 

is forced instead of observed from other processors. 

3. RCU-Preempt: 

Local Quiescent Detection: A per-CPU counter (preemption counter) is used to 

keep track of the number of preempted tasks. Local quiescent is established 

when each tasks that was running or preempted at time t exited or voluntarily 

switched context. 

Global Communication: Global quiescent is established when each CPU’s number 

of running/preempted tasks reaches zero. This is observed by reading other 

processor’s preemption counter. 

2.2 K42 

K42, a descendant of the Tornado operating system [8, 27, 28], is a research operating 

system that focuses on performance and scalability for large scale shared memory NUMA 

multiprocessor [9, 40, 79]. It is being developed by IBM Watson Research with collabora- 

tion from the University of Toronto and other universities. 

K42’s basic structure is depicted in Figure 2.8 [10]. Similar to Mach[1] and LA4[34], 

K42 uses a micro-kernel architecture rather than a traditional monolithic kernel. The kernel



CHAPTER 2. BACKGROUND AND RELATED WORK 19 

  

Application 

ipplication Application 
Object Object 

Linux Libraries / glibc 

Linux Emulation 

K42 Operating System Libraries 

TOI 
File 
Server 

    

    

        
  
Kemel 

L
A
 

  

libe Memory 

fee] TRES) CESSI                 

Figure 2.8: K42 Basic Structure 

only provides basic support such as memory management, process management, interpro- 

cess communication (IPC) infrastructure and base scheduling. The libc library facility is 

available to both the user (application) and kernel layers. Additional functionality, such 

as file server, name server and socket server, are implemented as user level servers. Each 

server has an exclusive virtual address space. Communication with the micro-kernel and 

other servers is through IPC mechanism [10, 11, 28]. 

To achieve good scalability, K42 uses an object oriented approach. Virtual and physical 

resources are represented by objects, which allows locality to be maximized. In addition, 

only local locks are used to protect the relevant object and no global locks are used. Thus, 

centralized bottlenecks are avoided and lock contention is minimized [40, 79]. 

2.2.1 Clustered Object 

An important structure used in K42 is the clustered object. Clustered object is a partitioned 

object model that allows an object to be decomposed into multiple representation objects



CHAPTER 2. BACKGROUND AND RELATED WORK 20 

  

  

  

  

Figure 2.9: Generation Definition for K42 

that have a single unified external interface [8]. Decomposing into multiple representa- 

tion objects allows easy construction of objects that are partioned, distributed or replicated 

across different virtual processors (VPs). Thus, unrelated requests to different resources 

can be processed independently because resources are not shared across different VPs. 

Using Clustered Objects, K42 takes locality to the extreme. For example, n threads of 

the same process independently but concurrently faulting on pages of a common mapped- 

in file causes no access to any shared data in the kernel, and causes no accesses to shared 

locks [9]. 

2.2.2 Generation Count 

K42 uses an event-driven model for its micro-kernel and its servers. Threads, which can 

be created with low overhead, are created to service events when a system call is invoked 

or when an interrupt occurs. The threads are terminated when the servicing of the event 

completes. Thus, threads within the micro-kernel and server layers are by design short 

lived. K42 groups threads that are created at approximately the same time into epochs, also 

known as generations [28, 40]. Figure 2.9 illustrates the notion of generations for K42. A 

generation is defined as the time when the previous generation ended to the time when the 

last thread associated with the previous generation is terminated.



CHAPTER 2. BACKGROUND AND RELATED WORK 21 

K42 keeps track of the number of active threads in an address space with a reference 

counter, on a per virtual processor basis. When a thread is created, it is assigned to the 

current generation and the reference count for the current generation is incremented. When 

a thread is terminated, the terminated thread’s assigned generation reference count is decre- 

mented. If the generation’s reference count reaches zero, a new generation is started and 

the current generation number is incremented. This design requires K42 to keep track of 

both the previous generation’s reference count and the current generation’s reference count 

for each virtual processor. 

The clustered object infrastructure uses the generation count facility for its RCU-like 

garbage collection. When an object is to be deleted, it is marked as such, but memory 

reclamation is deferred for the clean up daemon. The clustered object manager (COS- 

MgrObject) creates one cleanup daemon thread for each VP. The cleanup daemon thread 

sleeps for 2 milliseconds and can be woken up earlier if the system is low on memory. Once 

woken up, the daemon thread checks to see if any clustered object's memory is safe to be 

reclaimed. Reclamation is deemed to be safe when both its temporary and persistent ref- 

erences have been removed. Temporary references are clustered object references that are 

held privately by a single thread. Persistent references are clustered object references that 

are stored in shared memory and can be accessed by multiple threads. Practically speaking, 

for a uniprocessor, an object’s memory can be reclaimed when two local generations have 

passed after it is logically deleted. 

For the multiprocessor case, a token scheme, is used to establish safe points for memory 

reclamation. The token scheme is illustrated in Figure 2.10. A virtual processor hands off 

its token to the next virtual processor only when its cleanup daemon thread detects that 

two generations have passed since the virtual processor receives the token. Thus, we can 

establish that all temporary references are removed when the token had visited each VPs 

once.



CHAPTER 2. BACKGROUND AND RELATED WORK 

  

     

  

  

   
  

Safe 

Logical Memory 

Deletion Reclamation 
Point Point 

È e +1) VPO gen(m) gen(m 

' 

vel gen(n) i gen(n+1) 

: gen(p) i gen(prI); I 
VP2 o : : 

} 

i +1 i ve3 gen(q) pena }     
@ Token for Garbage Collection 

———>- Token Handoff 

Figure 2.10: Clustered Object Garbage Collection for Multiprocessor 

22



Chapter 3 

Design of QDo Facility 

In this chapter, we present our design for the QDo facility and the rational behind it. Sec- 

tion 3.1 presents high-level design decisions we made. Section 3.2 discusses how new QDo 

requests are registered. Section 3.3 describes how quiescent states are detected. Section 3.4 

presents the design decisions made in executing the callbacks. 

Chapter 4 will describe the implementation of the QDo facility. Chapter 5 will provide 

the experimental results. 

3.1 High Level Design 

Three high level design decisions heavily influence the overall design of the QDo facility: 

1. the functional decomposition of the facility; 

2. per-address space handling of QDo requests; and 

3. supporting processor subsets for quiescent state establishment. 

Each of these design decisions are discussed in this section. 

23



CHAPTER 3. DESIGN OF QDO FACILITY 24 

  

Client 

      

  

  QDoMgr 

Request Registration 

  

Monitoring & 

Detection 

' 

' 

' 
’ 
! Multi-processor Communication 

Scheduler |d- } DI 
' 

| } Single Processor Single Processor Single Processor 

: Detection Detection Detection 
' 
' 

Callback Execution 

Request Removal 

Figure 3.1: Life Cycle of QDo Processing 

  

        

  

    
       
  

3.1.1 Functional Decomposition 

In order to understand the functional decomposition of the QDo facility, let us walk through 

the life cycle of a QDo request in K42, as illustrated in Figure 3.1. First, a client places 

its request for a QDo callback by invoking a function at the QDo management system 

(QDoMgr). When the QDoMgr function is invoked, the Request Registration” component 

records the interest. The ‘Monitoring & Detection’ component continuously monitors all 

outstanding QDo requests and detects when quiescent state is reached for each of the re- 

quests. Once quiescent state for a request is reached, the associated request is forwarded 

to the *Callback Execution” component, which schedules a callback for execution and the 

corresponding request is deleted from the Registration component. After the callback is 

executed, the request is deleted from the QDoMgr system. 

Within the ’ Monitoring & Detection’ component, there are two sub-components, namely 

"Single Processor Detection’ and ’ Multi-processor Communication’. Single Processor De-



CHAPTER 3. DESIGN OF QDO FACILITY 25 

tection’ is responsible for detecting whether quiescent state is reached within the current 

processor and ’Multi-processor Communication’ is responsible for communicating state 

information between different processors. We will further explore these sub-components 

in subsequent sections. 

3.1.2 Per Address Space QDoMgr 

In our design, QDo requests are processed on a per address space basis. In other words, 

each application in the user space has its own QDoMgr, and QDo requests from different 

applications are handled separately. The QDoMgr in the kernel spaces will only monitor 

for QDo requests from the kernel. This decision was made for a number of reasons. 

Firstly, having a per address space QDoMgr, allows for specialization. The current im- 

plementation is designed primarily for demand-driven servers, where threads are relatively 

short-lived (to process a client request), and hence quiescent state is based on generations. 

This may not be suitable for all applications, and through specialization it may be possible 

to implement alternative means of identifying quiescent state. For example, in applications 

with long running threads, it may be advantageous to have the client identify the critical 

sections or mark its known safe points. 

Secondly, K42 addresses security in a first class manner. Objects in different address 

spaces communicate via an Interprocess Communication (IPC) infrastructure, and pro- 

cesses from different address spaces do not share data directly [11]. Hence, we only need 

to be concerned with threads within the same address space in establishing quiescent state. 

Thirdly, executing callbacks to different address spaces brings in unnecessary complex- 

ity. In particular, QDoMgr would have to keep track of the state of different address spaces. 

Finally, K42 already provides the AcriveThrdCnt facility, that is part of the user level 

scheduler, and counts threads’ generation on a per address space basis [28]. Managing QDo



CHAPTER 3. DESIGN OF QDO FACILITY 26 

on a per address space basis allows us to reuse this existing infrastructure without major 

changes. 

The drawback of processing QDo requests on a per address space basis is that the 

total overhead of the monitoring and detection component is proportional to the number 

of address spaces, since each space has to manage its own QDoMgr and performs regular 

checks for quiescent state. 

3.1.3 Processor Subset Support 

The final high-level design decision we made was to support processor subsets when estab- 

lishing quiescent state. That is, clients are allowed to specify the set of virtual processors 

on which quiescent state has to be achieved before the callback is executed. This is differ- 

ent from the Linux 2.4 and 2.6 implementations, where quiescent state must be established 

system wide (i.e., on all processors) before callback is initiated [68, 69, 70, 71]. K42°s 

clustered object system allows clustered objects (CO) to be created with representatives 

instantiated on just a subset of virtual processors [8, 13]. Requiring that quiescent state be 

established globally would be inefficient, as a significant number of COs only ever instan- 

tiate one or a small number of representatives. 

3.2 Request Registration 

The ’Registration’ component is responsible for accepting QDo requests and recording 

them within the QDoMgr system.



CHAPTER 3. DESIGN OF QDO FACILITY 27 

SysStatus QDoMgr::QDo(( void +) callback, 

uval64 parameter, 

VPSet quiescenceSet, 

VPSet executeSet); 

Figure 3.2: QDo’s registration interface 

3.2.1 Interface 

In designing the QDo interface, we settled on making a single function, QDo(), available 

to clients. QDo’s registration interface is shown in Figure 3.2. Two obvious parameters are 

the callback function to be executed when quiescent state is reached and a single argument 

for the callback function. In the figure, the parameter callback is a subroutine pointer to 

the callback function. The callback parameter, specified as a 64 bit integer, is defined as 

parameter. Furthermore, quiescenceSet is the set of processors on which quiescent state 

must be reached before a callback can occur. Finally, through the executeSer parameter, 

the QDo client can specify the set of processors on which the callback function should be 

executed on when quiescent state is reached. Application sometimes may require a callback 

to be executed on only one processor, as in the case for memory reclamation, or they may 

require a callback to be executed on every processor, as in the case for hot-swapping [77]. 

If the registration is successful, the method’s return code is 0 to indicate success. 

3.2.2 Example Usage 

We will go through a simple example to demonstrate how QDo is called. In this example, 

shown in Figure 3.3, a lock free linked list needs to delete a specified element. This is 

implemented in the method deleteElement. Once quiescent is established, QDoMgr will 

execute the specified callback method callbackDeleteElement to free the element’s mem- 

ory. We do not know how many other virtual processors may have access to the deleted



CHAPTER 3. DESIGN OF QDO FACILITY 28 

void LockFreeLinkedList::callbackDeleteElement(uval data) { 

/* callback when quiescent state is established x/ 

delete (Element +) data; 

} 

void LockFreeLinkedList:: deleteElement(Element* element) { 
/* logically delete the specified element x/ 

/* Here, we will search what are the left and right 

nodes with respect to the element x/ 

do { 
left_node = search(element, right_node); 

} while CompareAndStore(left_node—>right, 
element, right_node); 

/* Find out the quiescent set and execution set */ 

VPSet quiescentSet; 

quiescentSet .addVP{Scheduler::GetAllVP()); 

VPSet executionSet; 

executionSet.addVP(Scheduler::GetVP()); 

/* schedule a callback to physically delete the 

element when quiescent state is reached x/ 

DREFGOBJ(QDoMgr)->QDo(&callbackDeleteElement , 

(uval) element, 

quiescentSet, executionSet); 

Figure 3.3: Example of how QDo might be called by a lock-free linked list object 

element. Thus, quiescent state has to be established across all virtual processors. On the 

other hand, the callback only needs to be called on one processor - a good candidate is the 

current virtual processor. 

3.2.3 Batching 

Another request registration design issue is whether to support batching of QDo requests or 

to only support individual requests. Batching is currently implemented in a majority of the



CHAPTER 3. DESIGN OF QDO FACILITY 29 

Linux’s RCU implementation [56]. It involves grouping QDo requests that are registered in 

approximately the same time together so that a single quiescent state will launch multiple 

callbacks. The benefit of batching is that detection and monitoring costs (which can be 

significant) is shared among multiple requests. However, batching does not allow users to 

have the flexibility of specifying the virtual processor subsets when establishing quiescent 

state. 

3.3 Monitoring & Detection of Quiescent State 

The ’Monitoring & Detection’ component is responsible for establishing when quiescent 

state is reached for outstanding QDo requests. Requests are handed off to the ’Callback 

Execution’ component when callbacks are safe to execute. To simply our design, we di- 

vide this part into two subcomponents, namely single processor detection and multiproces- 

sor communication. The single processor detection subcomponent detects when quiescent 

state is reached locally with respect to a particular VP. In order to achieve quiescent state 

on multiple processors, it is necessary to aggregate quiescent state information from all the 

processors of the set for which global quiescent state must be reached. For this, multipro- 

cessor communication is necessary. This subcomponent is concerned with coordinating the 

results from single processor detection in forming a consensus of when quiescent state is 

reached among all relevant VPs. 

3.3.1 Single Processor Detection 

Detecting Local Quiescent State 

The design chosen for QDoMgr is based on generation counts, as described in Section 2.2.2. 

Local quiescent state is established for a request when the local generation is incremented



CHAPTER 3. DESIGN OF QDO FACILITY 30 

at least twice after the request was registered with the QDo facility. At that time, all ex- 

isting threads that had existed before registration will no longer exist. We selected this 

approach because of its advantages. First, checking of quiescent state occurs naturally as 

part of each thread’s destruction process — when a thread is destroyed, the thread destructor 

checks whether the number of active threads from previous epoch reaches zero. Lever- 

aging this facility reduces checking overhead. Second, this method is not dependent on 

programmer discipline. A programmer’s failure to declare an object as shared would not 

affect proper establishment of quiescent state. The drawback is that this design can result 

in longer callback latency. Quiescent state cannot be achieved until all threads that existed 

at time of registration have terminated, even if these threads do not access the shared ob- 

Ject. In addition, this method is only suitable for servers that only have short-lived threads; 

long-lived threads would prevent quiescent state from being reached. For our environment 

— K42 - this choice is appropriate, because as discussed in Section 2.2.2, K42 is demand 

driven and its threads are designed to be short-lived. 

There are many alternative designs in detecting and monitoring local quiescent state. 

One way is to use a reference counter to keep track of the number of threads currently 

accessing a shared object [S0, 72]. Before a shared object is accessed, the accessing thread 

increments the object’s associated reference counter. This counter is decremented by the 

thread when the object will no longer be accessed. When the counter reaches zero, we 

know that it is safe to launch a callback with respect to the target object. Using a reference 

counter would require client code to be changed so that the shared object can be monitored. 

Reference counters and semaphores are similar in that both techniques provide access con- 

trol by counting the number of client accessing the target object [75]. However, reference 

counters are intended to count threads accessing the shared object, while semaphores only 

count threads accessing a critical section. 

The advantage of using reference counters is the short latency because a reference count



CHAPTER 3. DESIGN OF QDO FACILITY 31 

being decremented to zero is the theoretical definition of the associated quiescent point. On 

the other hand, using reference counters results in larger overhead because the counter has 

to be updated whenever a thread wishes to access the target object [84]. Furthermore, this 

technique relies on the discipline of the programmer: if a programmer forgets to increment 

the reference counter before accessing the shared object, quiescent state may be incorrectly 

established, leading to a race condition; similarly, we will never achieve quiescent state if 

a programmer forgets to decrement the reference counter after accessing the shared object. 

Another way to establish quiescent state is to use a strategy based on hazard pointers, as 

suggested by Michael [62]. Before accessing a shared object, the accessing thread registers 

the node of the shared object onto its list of hazard pointers. Each thread will write to 

its own list and this list is accessible to all other threads. Threads waiting for an object’s 

quiescent state will regularly scan all other thread hazard pointer lists. Quiescent state can 

be established when the shared object’s node does not appear on any other thread hazard 

pointer list. Scanning for threads is more efficient than using reference counters, as threads 

do not experience write contention when registering the shared object. On the other hand, 

this technique still relies on the discipline of programmers. Furthermore, it is difficult to 

determine how frequently the threads list should be scanned. Large overhead arises when 

scanning occurs too frequently while infrequent scanning results in larger latency. 

For non-preemptable operating system kernels, we can also detect quiescent state by 

noticing when the operating system reaches a known safe point. This is similar to how RCU 

is implemented in Linux [56, 57]. This design does not rely on programmer discipline. 

Examples of safe points in a non-preemptable kernel are idle loop and context switches. 

Idle loop is a known safe point because we know that there are no active kernel threads. 

Context switches are also a known safe point because kernel threads are prohibited from 

holding locks across a context switch. Therefore, they are also prohibited from holding 

pointers to sensitive data structure [57].



CHAPTER 3. DESIGN OF QDO FACILITY 32 

Idle processor 

One problem we face when using generation count to establish quiescent state is that it fails 

to detect quiescent state if the processor becomes idle - in that case, the generation count is 

not increased. There are a few ways to address this issue. 

The solution chosen for QDoMgr is to use a soft timer to regularly schedule QDoMgr. If 

a generation change has not occurred within a certain period of time, then QDoMgr would 

invoke the scheduler to see whether the number of active threads in the current generation 

is zero !. If this is the case, the generation count is increased. This design incurs a small 

amount of overhead, especially when the processor is not idle. There are two drawbacks 

to the soft timer scheme. First, if there are long running threads which prevent generation 

changes from happening within the scheduled period, then the timer may fire off even when 

local quiescent state is not reached. We do not envision this to be a problem because K42 

is not designed for long running threads. Second, the time taken to establish quiescent state 

is longer than it needs to be when system is idle. In this case, the latency is determined by 

the check frequency. Future work will have to investigate how this particular case can be 

further optimized. 

An alternative way is to provide hooks within the idle loop that prompts the QDoMgr 

to check for outstanding requests. At this point, no useful work is being done and QDoMgr 

can check the scheduler’s blocked thread queues. If there are no blocked threads, QDoMgr 

can conclude quiescent state is reached. However, K42 uses a two level scheduler [12] and 

different address spaces have a separate QDoMgr. It is unclear whether hooks to multiple 

QDoMgr will cause significant overhead for the scheduler. 

Another solution is to run a background loop thread within the same address space. The 

  

1We have already discounted the scheduler/daemon thread when counting the number of active threads in 
the current generation



CHAPTER 3. DESIGN OF QDO FACILITY 33 

thread would run with the lowest priority and thus only executes when there are no other 

threads to execute. This thread would activate and deactivate itself to trigger generation 

changes. However, the problem with this technique is that K42°s scheduler is not fully 

implemented at this time, as it only supports 2 classes of priority - CPU bound and VO 

bound. Therefore, we cannot declare a specific thread as having a lower priority. Running 

the background thread as YO bound or CPU bound has high overhead because it competes 

for CPU resources with useful threads. 

3.3.2 Multiprocessor Communication 

The multiprocessor communication subcomponent is responsible for coordinating the in- 

dividual processors that detected quiescent state locally so as to establish global quiescent 

state. In the next few paragraphs, we analyze some of the possibilities. Without loss of 

generality, but for the sake of simplicity, the analysis is done with the assumption of one 

virtual processor per processor and one core per processor. For this analysis, we assume 

there are a total of m requests distributed evenly across n processors and each request re- 

quires quiescent on an average of r processors. We have implemented all four possibilities 

in the K42 Operating System and we will analyze their performance in Chapter 5. 

Single Token Ring 

One possibility is to use a token ring, similar to the garbage collection scheme used in 

K42, as discussed in Section 2.2.2. A token is passed continuously from one processor to 

the next. Global quiescent state is established when the token has passed through every 

processor at least once. The token is handed off to the next processor when the current 

processor reaches local quiescent state relative to the time the token was received. There 

are three advantages with this technique. First, communication overhead cost is in the order



CHAPTER 3. DESIGN OF QDO FACILITY 34 

of O(n), where n is the number of processors. No matter how many outstanding requests the 

system has, only 1 exchange per processor is required. Explicit synchronization between 

different processors is not required. Second, this design has small space overhead. Token 

passing requires 1 byte per processor to store the token, and 1 byte per request, to store 

whether the specific request had seen the token. Thus, space overhead is on the order of 

O(M+O(m). 

On the other hand, token passing incurs large latencies. Since the token has to pass 

through every processor and local quiescent establishment is not done in parallel, latency 

is on the order of O(n). In addition, this design is not flexible. Even when the client has 

specified that it is only interested in local quiescence on two processors, it is still necessary 

to wait until all processors have serially established local quiescence. 

Multiple Token Rings 

From above paragraphs, we know that a single token ring does not allow for efficient pro- 

cessor subset processing. One possibility to overcome this shortcoming is to have multiple 

different specialized token rings, as illustrated in Figure 3.4 [58, 65]. Each request has an 

associated token and the token is only passed serially through the specified processors. Sim- 

ilar to the single token ring case, processors only hand off a token when local quiescence is 

established. Each processor may hold multiple tokens at the same time. Global quiescence 

is established when all specified processors for that particular request have reached local 

quiescence. 

As can be seen, this arrangement is flexible and allows clients to specify what processor 

to waiton. An unresponsive processor will not affect requests that do not have the processor 

in its quiescenceSet. In addition, assuming each request requires an average of r processors, 

the average latency is O(r). If r is much smaller than n, then the latency for multiple token 

rings is much smaller than the single token case. As discussed in Section 3.1.3, many



CHAPTER 3. DESIGN OF QDO FACILITY 35 

  

i ® 

—@#—* ns ..-... » - -G- 

Token I Token 2 Token 3 
QuiescenceVP: VPO, VPI QuiescenceVP: VP5, VP6 QuiescenceVP: VPO, VP3, VP4, VP7 

Figure 3.4: Multiple Token Rings 

applications in K42 only needs to wait a subset of all processors due to the clustered object 

design. 

The advantages of this scheme comes with higher costs, however. There are m token 

rings and each token ring requires communication with r virtual processors. Hence, the 

average communication cost is O(mr). In addition, when each request is specified to be 

quiescent on every processor (i.e., r equals n), communication costs increase to O(mn) and 

latency is O(n). This design requires space overhead in the order of O(mr). Since the num- 

ber of requests a processor has to process is not known, token storage has to be allocated 

dynamically. Further, explicit synchronization techniques are required for coordinating the 

passing of tokens. As tokens are dynamically allocated in lists and multiple processors can 

write to the same list concurrently, we need to prevent race conditions by either using locks 

or having lock free lists.



CHAPTER 3. DESIGN OF QDO FACILITY 

  

  

VPO's generation count: a VPO's generation count: a 
  

VP.l’s generation count: b VPl*s generation count: b+1 
  

VP2°s gi ion count: c VP2°s generation count: c 
  

  

VP3's generation count: d VP3’s generation count: d 
  

VP4’s generation count: e VP4’s generation count: e 
  

VP5°s generation count: f VP5°s generation count: f+1 
  

VP6’s generation count: g VP6’s generation count: g 
    VP?s ion count: h     VP7°s generation count: h     

  

VPO VPI 

  

  

VPO's generation count: a 
  

VPi”s generation count: b 
  

VP2°s generation count: c-1 
  

VP3’s generation count: d 
  

VP4”s generation count: e 
  

VP5’s generation count: f-I 
  

VP6’s generation count: g 
    VP?7’s generation count: h     

VP7 

36 

Figure 3.5: Snapshot Multiprocess Communication Method 

Snapshot 

Snapshot is another way to communicate between multiple processors, as shown in Fig- 

ure 3.5. Each processor regularly takes snapshots of other processors’ generation counts 

(A convenient time is when generation change occurs). Global quiescence for a particu- 

lar request is established when each relevant processor’s local generation number has been 

incremented at least two times. 

Consider the following example. Let us assume that we have an eight processors sys- 

tem. We have a QDo request that is interested in VP2, VP3, VP4 and VPS. First, the 

request for a callback is registered on VP2 and QDoMgr enqueues the request. After that, 

the request will wait until the next time snapshot is taken. QDoMgr will then store this 

snapshot with the QDo request, as illustrated in Figure 3.6. Callback can be executed when 

the generation count for VP2, VP3, VP4 and VPS has been incremented by at least two, as 

seen in Figure 3.7. 

The snapshot method is flexible in that we will only wait for the processors we are 

interested in. Unrelated processors have little effect on the request latency. In addition, 

snapshot’s latency is mostly on the order of O(1) because each processor is waited on in 

parallel. The worst case latency is slight larger than latency of the worst processor. Since



CHAPTER 3. DESIGN OF QDO FACILITY 37 

  

    
  

parameter VPO's generation count: 25 
  

VP.l’s generation count: 13 
quiescencSet (VP: 2,3,4,5)   

VP?'s generation count: 17 
  

VP3's generation count: 24 
  

VP4's generation count: 29 
  snapshot 

QDo 

ih VP$’s generation count: 12 
      VP6°s generation count: 19 

  

    VP7’s generation count: 11        Copy 

  
  

  

VPO’s generation count: 25 
  

VP.1’s generation count: 13 
  

VP2°s generation count: 17 
  

VP3°s generation count: 24 
  

  
  

  

VP4's pi ion count: 29 

VP5’s generation count: 12 

VP6's ion count: 19 
  
    VP7°s generation count: 11 

VP2°s Snapshot 
    

Figure 3.6: Snapshot Stored in QDo 

  

     

  

VPO's generation count: 25 
  

VP.1’s generation count: 13 
  quiescenceSet (VP: 2,3,4,5) 7 
VP2's generation count: 17 
  

VP3’s generation count: 24 
  

VP4's generation count: 29 
snapshot 

QDo 

  
VPS’s generation count: 12 
      VP6's generation count: 19 

  

      VP7's generation count: 11      

  

  

VPO’s gi ion count: 25 

VPl’s generation count: 16 

  
  

  

VP2°s generation count: 20 

VP3's gi ion count: 26 

VP4'°s ion count: 40 

  

  
  

  
  

VP5°s generation count: 14 
  

VP6°s generation count: 21 
      VP?7’s generation count: 11 

VP2°s Snapshot 
  

Figure 3.7: Callback is Safe to be Executed



CHAPTER 3. DESIGN OF QDO FACILITY 38 

the maximum number of processors is known, snapshots can be stored in a simple static 

data structure such as an array. Further, no matter how many outstanding requests the 

system has, only 1 exchange per processor is required per virtual processor pair. Hence, 

synchronization is not required when communicating between processors. 

The drawback of this scheme is that our communication costs are increased to O(n2). 

Each processor has to periodically communicate with each other processor to obtain its 

generation count. Although we expect the overhead associated with copying one word of 

memory per processor to be small, the number might add up and affect scalability. Second, 

the storage overhead is larger than with the other techniques. Every processor has to store 

a snapshot of all other processors’ state. In addition, each outstanding request has to store 

a copy of the snapshot. Therefore, the storage overhead is in the order of O(n2) + O(mn). 

Diffracting Tree 

A diffracting tree-like structure can be used to communicate quiescent state information 

among multiple processors [53, 74, 87]. In this scheme, each virtual processor is repre- 

sented by a leaf node in a binary diffracting tree. Each leaf node publishes its own quiescent 

state information and makes this information available to its parent node. Each non-leaf 

(parent) node, in turn, recursively aggregates the quiescent information from its children 

and makes the information available to its parent. Once the root node notices that all virtual 

processors have achieved local quiescent state, it increments the global generation count. 

All virtual processors will then reset their quiescent state information. 

For an example, let us assume we have a system with eight processors, as shown in 

Figure 3.8. A QDo request has been registered on VP3. The first thing we want to do is 

to wait until the global generation number increases. After the global generation number 

increases, VP2 checks to see whether it achieves local quiescent state. If so, it polls whether 

VP3 achieves local quiescent, as illustrated in Figure 3.9. At the same time, once VPO and



CHAPTER 3. DESIGN OF QDO FACILITY 39 

  

Figure 3.8: Diffracting Tree 

VPI achieve local quiescence, VPO polls VP2 for the state of VP2 and VP3, as shown in 

Figure 3.10. Finally, once VPO, VP1, VP2 and VP3 reach local quiescence, VPO polls VP4 

for the state of VP4, VP5, VP6 and VP7. This is illustrated in Figure 3.11. VPO increments 

the global generation number when all virtual processors reaches local quiescence. After 

the global generation number increments, global quiescence is declared and callbacks can 

be executed. 

The latency of quiescence communication is on the order of O(log n). This is because 

most of the communication can be done in parallel. In addition, since information on other 

processors’ state is aggregated, we do not have to have multiple copies of other processors’ 

state for each VP. Instead, each processor only needs to have 1 copy of other processors’ 

state and each request only needs to allocate 1 additional word to store the global gener- 

ation number. Thus, the memory overhead is O(n)+O(m). Furthermore, communication 

overhead is limited to order of O(n) because each processor only communicates with 1 

other processor at a time. An additional benefit is that this technique does not require ex- 

plicit synchronization. The maximum number of processors is known in advance and only 

1 word is exchanged at a time. 

The drawback of this technique is that we do not have the ability to customize the



CHAPTER 3. DESIGN OF QDO FACILITY 

  
Figure 3.10: VPO, VP1 and VP2 Achieved Local Quiescence 

40



CHAPTER 3. DESIGN 0F QDO FACILITY 41 

Global generation 

count dx 

) Local Quicscent State Noi Achievedì 

N Local Quiescent State Achieved 

Figure 3.11: VPO, VP1, VP2 and VP3 Achieved Local Quiescence 

  

processors subset we are interested in for each request. We need to wait for local quiescence 

even for processors that have no bearing on the shared object. This contradicts one of the 

requirements made in Section 3.2.1. In addition, communication overhead is not distributed 

evenly across all processors. In our example, VPO suffers higher overhead because it needs 

to communicate with VP1, VP2 and VPA4 in establishing global quiescence. 

Summary 

We have summarized our design trade-offs in Table 3.3.2. As it can be seen, different 

designs have different trade-offs. Snapshot has the lowest latency and allows flexibility in 

specifying which processors to wait on. However, it also has the highest space overhead of 

all the possible choices. On the other hand, the diffracting tree has a low communication 

and space overhead while it has a latency of O(log n). The drawback is that the diffracting 

tree is not flexible in customizing the quiescence communication route. 

Thus, if latency is an important constraint, then snapshot is the best option. However,



  

  
  

  

  

  

CHAPTER 3. DESIGN OF QDO FACILITY 42 

Design Latency | Communication | Space Require Customize 

Overhead Overhead Explicit Processors 

Synchronization | to Wait On 

Single Token ON) O(n) O(N)+O(m) No No 

Ring 

Multiple Token | O(1) O(mr) O(mr) Yes Yes 

Ring 

Snapshot O(1) On?) O(n°)+O(mn) | No Yes 

Diffracting Tree | O(log n) | O(m O(N)+0(m) No No               
  

Table 3.1: Trade-offs for Multiprocess Communication Techniques 

if we need to minimize overhead, then a diffracting tree should be used. Single token is 

an inferior option when compared to diffracting tree because of its larger latency with the 

same order of magnitude of overhead. Multiple token rings are feasible only when the 

expected number of request is much lower than the number of processors. Otherwise, the 

cost of synchronization out-weights all potential benefits. 

3.4 Callback Execution 

The ’Callback Execution’ component is responsible for launching the callback after the 

’Monitoring & Detection’ component declares that quiescent state has been reached. After 

the callbacks are scheduled for execution, requests are removed from the QDoMgr system. 

One decision we need to consider is whether the callbacks should be executed as separate 

threads. 

After careful analysis, we decided that callbacks are executed as separate threads. Al- 

though the overhead of executing callbacks in separate threads may be relatively expensive 

when the callback is simple. This overhead is mitigated by K42's design decision of hav- 

ing low overhead for thread creation. Furthermore, even if a callback causes the executing 

thread to die, other callbacks are not affected.



CHAPTER 3. DESIGN OF QDO FACILITY 43 

On the other hand, executing callbacks with the same thread lowers the overhead be- 

cause the scheduler does not have to be involved. However, this technique is potentially 

unsafe because QDoMgr has no control over the integrity of the callback or the quality of 

the callback code. Callbacks can encounter programming errors that cause this one thread 

to crash so that later requests may not have their callback executed. In addition, if a call- 

back runs for a long time, later callbacks are delayed because the scheduler cannot preempt 

execution with tasks scheduled in the same thread.



Chapter 4 

Implementation 

4.1 Overview 

QDoMgr is fully implemented in the K42 Operating System as part of the scheduler mod- 

ule. It consists of about 3000 lines of C++ code. In addition, about 40 lines of existing K42 

code were modified, mainly to initialize QDoMgr during address space creation. 

4.2 High Level Description 

At a high level, QDoMgr operates as follows: When a caller registers a new QDo request 

with QDoMgr, QDoMgr enqueues this new request into a local unordered linked list. In 

addition, various system states (such as generation count) are recorded. As described in 

Section 3.3.1, QDoMgr continuously monitors these requests until local quiescent state is 

established. This is accomplished by comparing the current local generation number with 

the recorded generation number. Then, these QDo requests will be moved to a separate un- 

ordered local list where they await global quiescence, as discussed in Section 3.3.2. When 

global quiescent state is established for a particular QDo request, the scheduler schedules



CHAPTER 4. IMPLEMENTATION 45 

the QDo’s callback method for execution. After the scheduler has scheduled the callback, 

its associated QDo is removed from the QDoMgr's lists and is deleted. 

There are a few particularly interesting and non-trivial implementation issues, such 

as how QDoMgr should be structured and how to initialize QDoMgr. These issues are 

discussed in this chapter. 

4.3 Clustered Object 

One particular interesting implementation issue is how QDoMgr should be structured. 

QDoMegr’s structural efficiency has a major impact on the scalability of managing QDo re- 

quests. To maximize potential concurrency and minimize overhead, we want to maximize 

the locality of individual object members as much as possible and minimize the amount of 

sharing. Therefore, we have implemented QDoMgr as a clustered object. Clustered object 

allows us to divide objects into shared and non-shared implementations. Shared members 

are implemented within the Root Object. Non-shared members are implemented within 

Representative Object with one representative local to each virtual processor. 

QDoMgr is implemented as a well known clustered object in the libc library. Well 

known clustered objects are clustered objects that are statically allocated instead of dynam- 

ically allocated [9]. By implementing QDoMgr as a well known clustered object, we know 

that there is only one copy of QDoMgr running per VP per address space. This knowl- 

edge allows us to make a few assumptions in simplifying the synchronization and callback 

mechanics. For example, we can assume that once ActiveThrdCnt detects that there are no 

active threads from the previous generation, and the generation number can be incremented, 

we will know which QDoMgr to notify. 

QDoMgr is implemented in libc because one of our design goals, as explained in Sec- 

tion 1.3, is to make the QDo facility available to both user and kernel spaces. Implementing



CHAPTER 4. IMPLEMENTATION 46 

  

  

QDoMgr Clustered Object 
  

QDoMgrRoot 

  

Î Global Batch Number (for MergingTree only) | | Inititalized VPSet 
  

  

  

      
    
  

  
  

  

  

  

  

  

  

  

  

  

            
  

  

  

  

  

    

    

    

Rep Listing 

[ ) | ll ] 

QDoMgr (per rep) vPO QDoMgr (per rep) VPI QDoMer (per rep) VP2 

| Token (for TokenPassing only) | Token (for TokenPassing only) _] | Token (for TokenPassing only) | 

| Local Batch Number Ì | Local Batch Number | | Local Batch Number | 

VP1’s Local Batch Num VPO”s Local Batch Num VPO’s Local Batch Num 

(for Snapshot only) (for Snapshot only) (for Snapshot only) 

VP?2°s Local Batch Num VP?2°s Local Batch Num VPl°s Local Batch Num 

(for Snapshot only) (for Snapshot only) (for Snapshot only) 

OtherVP”s State OtherVP*s State OtherVP”s State 

(for MergingTree only) (for MergingTree only) (for MergingTree only) 

| repLock | [replock | | repLock | 

| registrationLock Î | registrationLock | [registrationLock Î 

(FegistrationList ) (FezistrationList ) (registrationList ) 

(Wait for Local Quiescence List } (Wait for Local Quiescence List ) (Wait for Local Quiescence List 
    

  

(Wait for Global Quiescence List ) 
  

I Wait for Giobal Quiescence List) (Wait for Global Quiescence List ) 
    

  

(Wait for Execution List )         (Wai for Execution List )     (Wait for Execution List       
  

Figure 4.1: Major Data Structure Used in QDo 

QDoMgr within the library allow us to use the same code for both the kernel and user space. 

Some of the member structures used in implementing QDoMgr are illustrated in Fig- 

ure 4.1. As it can be seen, only few member structures are shared across multiple virtual 

processors. The majority are contained within per virtual processor representatives. 

4.3.1 Root 

Only a small amount of the object data is implemented within the Root Object. First, the 

variable initializedVPSet records on which VPs the QDoMgr has been initialized. This vari-



CHAPTER 4. IMPLEMENTATION 47 

able is updated at most once per virtual processor. Hence, we do not need to be concerned 

with the overhead of sharing this variable, even though it needs to be protected by a lock. 

Another shared variable in the root is the global batch number needed for the diffracting 

tree communication algorithm. This variable is shared across multiple virtual processors, 

but is updated by only 1 virtual processor, so, explicit synchronization is not required and 

the cost of sharing is low. 

4.3.2 Representatives 

We will now discuss some of the data implemented within Clustered Object Representa- 

tives. First, token is a variable used by the single token ring communication algorithm to 

denote whether a virtual processor currently holds the token. The variable is set by the 

previous virtual processor holding the token and is reset by the local virtual processor. No 

other VP accesses this variable. No explicit synchronization is needed, given the protocol 

of using this variable. 

Another variable that is implemented in the Representatives is the local generation 

number. Recall from Section 3.3.1 that the local generation number is used to determine 

whether local quiescent state is reached. Each VP continuously updates its local generation 

number, but at the same time, other VPs periodically copy this local generation number 

and store it in their local memory. On the surface, it would appear that the local genera- 

tion number should be implemented in the Root. However, it is desirable that each VP has 

the flexibility in deciding when to update its view of the other processors’ local generation 

number. This allows us to reduce unnecessary cache-line invalidation. 

The third data structure implemented within Representatives is a table of virtual pro- 

cessors’ quiescent state. This table is used in the snapshot communication method. The 

table is only accessed and updated by the local VP. Each VP'’s table’s entries are different.



CHAPTER 4. IMPLEMENTATION 48 

Finally, QDoMgr has a number of unordered linked lists that are used to hold incom- 

plete QDo requests !. These linked lists are designed for temporary storage and are only 

accessed by the local virtual processor. Some implementations require local locks. These 

locks are primary used in coordinating the queuing of new QDo requests. However, in the 

case of the multiple token ring communication algorithm, we also use these lock to coordi- 

nate the communication of tokens. We will further discuss the trade-offs in Section 4.8.1. 

4.4 Initialization 

Another interesting issue is how to start up QDoMgr — more specifically, when to initialize 

QDoMgr. At a first glance, we would expect that we need to initialize QDoMgr as soon as 

the address space is created to ensure we do not miss any threads created during process 

initialization. However, it turns out that it is sufficient to initialize QDoMgr before the 

scheduler enables the system call and IPC (Inter-process communication) entry points. The 

ActiveThrdCnt facility (which counts the number of threads in the current generation) is 

already initialized very early on (as a matter of fact, before context switch is enabled). 

Thus, all threads are accounted for when calculating the number of active threads in the 

current generation. In addition, applications using the QDoMgr facility are by definition 

designed for deferred method callbacks [55]. Thus, QDoMgr still functions correctly and 

its performance is not significantly affected if its initialization is delayed to until just before 

IPC and system call entry point is enabled. 

  

lIncomplete QDo Requests refer to QDo requests of which their callbacks have not been scheduled to be 
executed. They may or may not have reached quiescent state.



CHAPTER 4. IMPLEMENTATION 49 

4.5 Delay Checking 

To improve performance, we also need to consider how to minimize the overhead when 

QDo service is not required. One technique we employ is to delay the regular checking 

of quiescent state until the first QDo request has been placed. This is achieved by only 

starting the checking daemon (which will be explained in Section 4.7) after the method 

QDoMer::QDo() is called for the first time. This way, only programs that make use of 

QDoMegr's service have the overhead of quiescent state detection. The drawback is that 

once QDo requests have been placed in an address space, checking overhead will continue 

to be incurred. Determining how to further reduce the checking overhead is deferred for 

future work. 

4.6 Fork 

We also need to consider how QDoMgr should behave during program forks. In theory, 

after a process forks, the child process should get a copy of the stack, memory, open file 

descriptors, etc. from the parent process [75]. However, we do not want the child to have a 

copy of the parent’s incomplete QDo requests. Instead, the child should be started with an 

empty QDo request list. The reason we do not want the child process to inherit incomplete 

QDo requests from its parent is that, after a process forks in K42, its child does not inherit 

the parent’s threads (except the thread that executes fork). Therefore, the parent’s active 

thread count (both for the current and previous generation) should have no bearing on the 

child’s quiescent state. This implies that the parent’s QDo request should be invalid with 

respect to the child’s process. 

There are a few solutions to address this issue. The solution we employ is to sim- 

ply reset the child QDoMgr's incomplete callback queues as part of the child’s post fork-



CHAPTER 4. IMPLEMENTATION 50 

ing cleanup. While doing so, we will not encounter any race conditions because regular 

checking of incomplete requests has not begun. Furthermore, as the child process has 

not yet resumed execution, no new QDo requests can be placed on the child’s QDoMgr. 

This is accomplished by adding a line in the child’s post forking handle routine (Pro- 

gExec::ForkChildPhase2) to re-initialize QDoMgr’s data structure. 

One alternative solution is to delay forking until all QDo callbacks are launched. This 

solution has many problems. First, large latency is introduced as both the parent and child 

program has to be delayed. Second, it is unclear whether we need to block QDoMgr from 

accepting new requests as we wait for incomplete QDo callbacks to be completed. Other- 

wise, forking might be infinitely delayed. 

4.7 Quiescent State Monitoring Daemon 

In our implementation, we use a daemon to monitor system state to detect quiescent state 

for cach outstanding request. The alternative is to schedule a new thread to check for 

quiescent state every time a callback request is registered. In deciding whether a daemon is 

the best option, we need to evaluate different trade-offs. First, using a daemon allows us to 

easily ensure that only 1 thread is monitoring quiescent state on each virtual processor. This 

assurance is important because it simplifies our intra virtual processor synchronization. We 

will further discuss this issue in Section 4.8.2. 

Second, using a daemon allows us to reduce the possibility that quiescent states are 

triggered by the checking thread’s termination. Let us assume that there are no active 

threads in the address space. If we schedule a new thread to check for quiescent state, then 

the new checking thread will become the only active thread in the address space. Once this 

new checking thread is terminated, the scheduler notices that the active thread count drops 

to zero. This triggers the scheduling of checks for outstanding callbacks. On the other



CHAPTER 4. IMPLEMENTATION S1 

hand, using a daemon will not have this problem because the daemon thread is already 

discounted from the active thread count. It may appear that frequent checking is desirable 

as latency is reduced. However, unnecessary checking takes away the scheduler’s quantum 

from other address spaces’ processes. 

4.8. Synchronization 

Explicit synchronization is required for both intra-virtual processor and inter-virtual pro- 

cessor communication. Multiple threads on the same virtual processor can concurrently 

enqueue callback requests on the same QDoMgr. In addition, we need to coordinate the 

passing of tokens for multiple token rings communication, as discussed in Section 3.3.2. 

Explicit synchronization between multiple VPs is not needed for Single Token Ring, Snap- 

shot and Diffracting Tree communication algorithm. This is because only one memory 

word is exchanged per virtual processor pair and this is done in a coordinated fashion 

with one VP doing the updating and the other reading. There are three ways to approach 

synchronization, namely using explicit locks, disabling the scheduler, or using a lock free 

technique. We consider each technique in more detailed in the subsections that follow. All 

three techniques have been implemented in QDoMgr and their performance implications 

will be discussed in Chapter 5. 

4.8.1 Locks 

The first way we can enforce consistency is to use locks. In our case, this is done by 

executing the atomic instruction FetchAndOrSync. Separate locks are used to govern the 

placing of new QDo requests and the communication of tokens. The locks are implemented 

on a per virtual processor basis — that is, each VP has its own set of locks because each VP



CHAPTER 4. IMPLEMENTATION 52 

has its own separate lists for new requests. Thus, placing new requests on separate VPs 

should be independent of each other. Furthermore, we need to have a different lock for 

token passing because we do not want to block threads from placing QDo requests while 

token passing takes places. 

Although QDoMgr has multiple locks, deadlock is prevented by following a few pro- 

gramming practices. First, each thread will not hold more than 1 lock at a time. Second, 

while the lock is held, the holder will not be blocked. This is achieved because updates do 

not depend on other objects that are protected by locks. 

The advantages of locks are that they are simple and easy to use. In addition, they can 

be used for both intra- and inter-virtual processor synchronization. However, locks can 

have high overhead. Although we have implemented locks on a per virtual processor basis, 

multiple virtual processors may still contend for the same lock. 

4.8.2 Lock Free List 

Another way to coordinate intra- and inter-processor communication is to use lock free 

lists. Deadlock is avoided because no thread is blocked using this technique. In our imple- 

mentation, we have used Harris et. al. ’s lock free linked list technique [32]. As discussed 

in Section 2.1.1, the lock free linked list is updated by the atomic instruction Compare- 

And-Swap. This technique has similar problem as locks in that en-queuing and dequeuing 

requires communication with other processor, resulting in high overhead. 

Readers may wonder whether using a lock free list would result in a circular depen- 

dency. Recall that one use of QDo is to delete elements of lock free lists. Circular depen- 

dency is avoided, however, by satisfying three conditions. First, although multiple threads 

may add to the list, only the daemon removes entries from the list. Second only one in- 

stance of the daemon is running per address space per virtual processor. From that, we



CHAPTER 4. IMPLEMENTATION 53 

can conclude that there are multiple producers and a single consumer for every QDo lock 

free list. Third, all producers will only add elements to the head of the list. These three 

conditions allow us to infer that no thread will have any temporal references to deleted 

elements. Producers do not have temporal references to QDo lock free linked list elements 

because these threads do not have to traverse the link list. On the other hand, since there is 

only one consumer, the only thread traversing the linked list is the thread that deletes ele- 

ments. Consequently, we do not need QDoMgr to defer deletion to safe points and circular 

dependency is avoided. 

4.8.3 Disabling the Scheduler 

Disabling the scheduler can also prevent race conditions between threads running on the 

same virtual processor. This is accomplished by preventing the executing thread from be- 

ing scheduled out before it has completed its task, ensuring atomicity within the virtual 

processor. This technique has some limitations, however. First, we must be careful that the 

thread do not invoke any blocking calls or incurs any page fault while the scheduler is dis- 

abled. Second, this technique does not apply to inter-virtual processor communication. As 

a result, disabling the scheduler cannot prevent race conditions for the multiple token rings 

communication algorithm. On the other hand, this technique has low overhead. Moreover, 

it should be noted that synchronization across multiple processors are not needed for the 

Single Token Ring, Snapshot and Diffracting Tree algorithms.



CHAPTER 4. IMPLEMENTATION 54 

4.9 Multiple Processors Callback 

4.9.1 Method of Notifying Callbacks 

The first decision we need to make is how to notify other virtual processors that they should 

execute callbacks. One possibility, and the one we have adopted, is to send an asynchronous 

inter-processor message to the target virtual processor. When this happens, the multiproces- 

sor message system will send an interrupt to the target VP notifying a message is pending. 

A thread is then created on the target VP to execute the callback. The advantage of this 

technique is that the latency for completing callbacks on multiple processors is reduced as 

callback requests are received immediately. Furthermore, virtual processors do not have to 

regularly poll for pending callbacks because the inter-processor messages are delivered us- 

ing a push model. On the other hand, the overhead of receiving an inter-processor message 

is high in that a potentially useful running process may be interrupted. 

An alternative is to enqueue pending callback requests on the target VP’s to-execute 

list. The target VP regularly polls this list to determine whether there are pending callback 

requests. This alternative has overhead even when there are no pending callbacks because 

it uses a polling method. However, the overhead from each pending callback is low because 

the target virtual processor is not interrupted. Instead, the callbacks can be launched when 

QDoMgr has the scheduler’s quantum. 

4.9.2. Serial vs. Concurrent Callback Execution 

Recall that callers may request callbacks to be executed on multiple virtual processors. We 

need to determine whether it is best to concurrently execute callbacks from the same QDo 

request on multiple processors or to execute the callbacks in sequence. The solution we 

have employed is to execute callbacks on each target VP serially. QDoMgr from one VP



CHAPTER 4. IMPLEMENTATION 55 

notifies the next specified virtual processor that callbacks are to be executed only after the 

local callback has been executed. The disadvantage is that this technique has a latency 

of O(q), where q is the number of virtual processors on which the callbacks are to be 

launched. On the other hand, lower overhead is achieved by reducing the need for write 

side synchronization. Since the callbacks are launched serially, these callbacks will not 

compete to acquire write lock with each other. 

An alternative solution is to execute callbacks concurrently. Executing callbacks con- 

currently has O(1) latency. However, this technique has high communication overhead: 

QDo Callbacks would likely need to use explicit synchronization, such as locks, to protect 

critical regions. Thus, callbacks from the same QDo request will compete for the same 

lock. It is not beneficial for the same QDo callbacks to execute concurrently at multiple 

virtual processors.



Chapter 5 

Experimental Evaluation 

In this chapter, we present the micro-benchmark and macro-benchmark measurement re- 

sults obtained from our implementation. 

5.1 Definition 

Before discussing our experimental results, we first define some terminologies. A diagram 

illustrating the relationship between a thread’s state and various measurement terms is pro- 

vided in Figure 5.1. 

e Callback Latency - Latency between the point in time when invoking the function 

to register a QDo callback request to the point in time the callback has completed 

execution. 

e Communication Latency - The time difference between the point in time when local 

quiescent state is established and the point in time when global quiescent state is 

established. 

e Detection Latency - Time difference between the point in time when the monitoring 

56



CHAPTER 5. EXPERIMENTAL EVALUATION 57 

  

bi Callback Lateney (000. Lili ii iii — 
re TITTTTTTTTOO Seen SUIT t Lat SITTTTTTTTT oto TTT 77777777 *». ' 

! Thread 1 Local Quiescent Latency _______....... - ! i 
! Deactivation  MThread 4 jcati ' ' 

i Latency Wakeup Communic: da 

| le ------ Latency + Detection Latency Ls Execution ! 
Request Placement i i Latency ' la -- Latency. ._.... ' 

Overhead ' l 7 > ' ; | 
: re e=07707 = ' i ' ' | ' i 

Requesting ' l ' ‘ i J , ! ! 

Place Retum Beactivatior i ' ! ! 

Request from ! ' ‘ | ' ! : 
Placing ! ' | ! ì ! ! 
Request ‘ | | ! ' ! 

' : ' I I ' ' 

! 
Monitoring i N\; , 4 r n , t Thread ! 

’ i | : ! i i 

Monitoring Notice Declare Declare Schedule i 

Thread Outstanding Local Global Callback h 

Unblocked Request Quiescence —Quiescence Execution ! 
' 
' 
' 
i 
' 
t 

E 

Execution — sl 

Thread Callback 
Execution 

Figure 5.1: Measurement Terminologies 

thread is woken up to the point in time when local quiescent is established. 

e Execution Latency - Time difference between the point in time when global quiescent 

state is established to the point in time when the callback has completed execution. 

e Execution Thread - The thread that is launched to execute the scheduled callback. 

e Local Quiescent Latency - Time difference between when the requesting thread is 

deactivated to when local quiescence is established. 

e Monitoring Thread - QDo manager daemon thread that checks whether there are 

outstanding QDo requests, and if so, whether quiescent state has been reached for 

these requests. 

e MThread Wakeup Latency - Time difference between the point in time when the 

requesting thread is deactivated to when the monitoring thread is unblocked.



CHAPTER 5. EXPERIMENTAL EVALUATION 58 

  

  

      

Parameter Value 

Processor Type Power 3 (630+) 

Processor Clock Frequency | 375 MHz 

Number of Processors 4 

Data Cache 64 KB 

Instruction Cache 32 KB 

L2 Cache Size 4 MB per processor 
Main Memory Size 1489732 KB 
  

Table 5.1: Characteristics of IBM 270 Workstation 

Quiescent Latency - Time difference between when a callback request is registered 

to when global quiescent is established. 

e Request Placement Overhead - Time difference between the moment when a request- 

ing thread places a callback request to the moment when the requesting thread re- 

sumes normal execution. 

e Requesting Thread - The thread that requests callback to be executed upon quiescent 

state. 

e Thread Deactivation Latency - Time difference between the moment when requesting 

thread places a QDo callback request to the moment when that requesting thread is 

deactivated. 

5.2 Experimental Setup 

Our experimental results are obtained by running the K42 Operating System on a IBM 270 

Workstation. The characteristics of the 270 Workstation are summarized in Table 5.1 [19]. 

For the micro-benchmark experiments, our file server will be Network File System 

(NFS) [39]. To remove noise and secondary effects, NFS validation is turned off and K42 

thinwire polling is disabled. The experiments are written as user level programs. This



CHAPTER 5. EXPERIMENTAL EVALUATION 59 

allows us to verify that the QDo facility is functional in user space. The only processes ac- 

tive during experimental runs are the kernel, baseServers, bash, procfs (process filesystem), 

systcl (system control) and the micro-benchmark process. 

To eliminate the effect of disk IO on macro-benchmarks, we use Ram File System 

(ramfs) as our file server [83]. In addition, K42 thinwire polling is disabled. Both the 

micro-benchmark and macro-benchmark results are recorded with the K42 tracing facility 

[85]. 

53 Latency Micro-benchmark 

The latency micro-benchmark consists of a user level thread invoking the QDo facility to 

schedule a callback when quiescent state is reached. Code snippet of this micro-benchmark 

is provided in Figure 5.2. Our measurement is taken from 5 separate runs and each run 

consists of the user level thread scheduling a callback 500 times. 

In the next few paragraphs, we will explore how latency is affected by factors such as 

the choice of communication protocol (as discussed in Section 3.3.2), QDoMgr monitoring 

thread’s soft timer’s frequency (as discussed in Section 3.3.1), synchronization techniques 

(as discussed in Section 4.8). 

5.3.1 Effect of Communication Algorithm 

We will now determine the choice of communication algorithms’ effect on callback latency. 

In this experiment, we hold the other parameters, such as the monitoring thread frequency 

and synchronization technique, constant. Details of the setup for this experiment can be 

found in Table 5.2. 

As discussed in Section 3.3.2, we expect the snapshot communication algorithm to have



CHAPTER 5. EXPERIMENTAL EVALUATION 60 

void 
UsrQDOTestCB(uval num) { 

/* This function is executed when quiescent 

* state is reached x/ 

/* We take a timestamp when we start this function*/ 

if (num == 0) 

TraceStart(); 

/* QDo will wait for quiescent state across 

* all processors and will execute the callback 

* on this processor */ 

VPSet quiescentSet; 
VPSet executionSet; 

quiescentSet.addVP(Scheduler::GetAIllVP()); 

executionSet.addVP(Scheduler::GetVP()); 

if (num< 500) { 

/* UsrQDoTestCB will call itself 500 times x/ 
DREFGOBJ (TheQDoMgrRef)->qdo ( UsrQDoTestCB , 

num+1, 

quiescentSet, 

executionSet); 

} 

TraceEnd (); 

/* we take a timestamp of when this 

* function finishes */ 

Figure 5.2: Code Snippet of Latency Measurement Process



CHAPTER 5. EXPERIMENTAL EVALUATION 61 

  

  

    

Parameter Value/Choice 

Monitoring Thread’s Soft Timer Frequency | 10ms 

Number of Processors 2 and 4 

Synchronization Technique Disable Scheduler 
Method of Executing Callback Launch a New Thread for Each Callback   
  

Table 5.2: Setup for Measuring Latency for Different Communication Algorithms 

  

  

  

Number of Processors | Multi-Token | Snapshot Token Tree Î 

2VP 5.127756 10.101238 | 20.202603 | 20.144856 

(0.138102) | (0.0315741) | (0.0534543) | (0.0524735) 

4 VP 12.976357 10.084384 | 29.837121 21.05772 

(0.244489) |(0.0211059) | (0.451504) (0.18661)             
  

  

Table 5.3: Average Callback Latency (in ms) for Different Communication Algorithms 

the lowest callback latency, followed by the tree communication algorithm. The token and 

multi-token communication should have similar callback latency. 

We ran our experiments on a IBM 270 workstation and the results are summarized in 

Table 5.3. The standard error is denoted in brackets. The result is different than what we 

had expected. To understand why this is the case, we will analyze the individual com- 

ponents that make up callback latency. Recall from Figure 5.1, callback latency consists 

of five components, namely request placement overhead, thread deactivation latency, local 

quiescent latency, communication latency and execution latency. Thread deactivation la- 

tency is dependent on the requesting thread and is outside of QDoMgr's control. We will 

now examine the other four components’ impact. 

Request Placement Overhead 

The request placement overhead result is summarized in Figure 5.4. We expect the request 

placement overhead to be small and independent of the communication algorithm. This 

expectation has been verified. Each communication algorithm’s request placement over-



CHAPTER 5. EXPERIMENTAL EVALUATION 62 

  
  

Number of Processors | Multi-Token | Snapshot | Token Tree 
  

  

2 VP 3149.20 3371.26 | 3445.16 | 3427.66 

(12.73) (16.74) | (17.43) | (16.53) 
4VP 3236.94 3375.96 | 3427.66 | 3446.56           (14.61) (16.80) | (16.44) | (17.04) 
      

Table 5.4: Average Request Placement Overhead (in ns) for Different Communication Al- 

gorithms 

head is about 3400 ns. Since the request placement overhead is small, it is not the source 

of callback latency’s discrepancy. 

Local Quiescent Latency 

The second component is local quiescent latency. Local quiescent latency encompasses 

the time from when the requesting thread is deactivated to when local quiescent state is 

established. In theory, this value is independent of the communication algorithm used. 

The measured results are presented in Table 5.5. As can be seen, local quiescent latency 

is, contrary to initial expectation, dependent on the communication algorithms. Snapshot 

communication has higher local quiescent latency than tree communication. This is the 

case because, for the snapshot communication algorithm, QDoMgr needs to take snapshots 

of other processors before checking whether local quiescent state is reached. This allows 

us to have an accurate picture of other processors’ state at the time when QDo request is 

registered. Otherwise, we will not notice if other processors have already reached local 

quiescent during our wait for local quiescent state. Nevertheless, since the local quiescent 

latencies are in the range of 7 to 20 microseconds, they are not the main contributing factor 

for callback latency’s discrepancies.



CHAPTER 5. EXPERIMENTAL EVALUATION 

    

  

  

| Number of Processors | Multi-Token | Snapshot | Token | Tree 

2 VP 9566.45 11268.96 | 8753.28 | 7553.42 

(32.84) (18.96) | (33.93) | (16.39) 

4 VP 9874.34 15979.2 | 8715.68 | 7586.92 

(32.41) (19.41) (17.90) | (14.98)                 

Table 5.5: Average Local Latency (in ns) for Different Communication Algorithms 

  

  

  

  

| Number of Processors | Multi-Token | Snapshot Token | Tree 

2 VP 5.112565 10.084824 | 20.185612 | 20.131964 

(0.138) (0.032) (0.054) (0.049) 

4 VP 12.960751 | 10.063246 | 29.820415 | 21.04462 

(0.245) (0.021) (0.452) (0.182)               
  

63 

Table 5.6: Communication Latency (in ms) for Different Communication Algorithms 

Communication Latency 

Another component is communication latency. As can be seen in Table 5.6, communi- 

cation latency has a major effect on callback latency. We expected the multi-token com- 

munication algorithm to have similar communication latency as the token communication 

algorithm. However, this is not the case. The multi-token algorithm’s latency is, how- 

ever, much smaller than the token algorithm’s latency. In fact, multi-token performs better 

for 2 VP than our expected best algorithm for latency, namely snapshot communication 

algorithm. 

The reason for these apparent discrepancy becomes clear when considering the effect of 

soft timers. Recall from Section 3.3.1 and Section 4.7 that generation changes do not occur 

when the processor is idle. Thus, we use a soft timer to regularly schedule the monitoring 

thread to monitor quiescent state. For this experiment, the processors are mostly idle and 

the soft timer is set to 10ms. In the case of the snapshot communication algorithm, as 

shown in Figure 5.3, after the requesting thread registers a callback request with QDoMgr



CHAPTER 5. EXPERIMENTAL EVALUATION 64 

time VPO VPI VP2 VP3 

Legend 

—  Wakeupof 

QDoMgr 
Placement of QDo |L_----j_------------ lied. Daemon 

Request I 

10 ms after Placement |------}-------------1-----------0-0p--0.-002--0----. 
of QDo Request 

Declaration of Global |7 7777777777777 TITTI 

Quiescent State           
Figure 5.3: Relationship Between Communication Latency, Wakeup Frequency and Snap- 

shot Communication Method 

on VPO, VPO’s monitoring thread wakes up and takes a snapshot of other VPs’ generation 

count. This monitoring thread then sleeps for 10ms because there are no active threads and 

generation changes do not occur. In the meantime, during VPO°s 10ms sleep time, other 

VPs’ monitoring threads wake up and increment their generation counts. After the 10ms 

expires, VPO’s monitoring thread wakes up and finds that other processors have reached 

local quiescent state. Thus, global quiescent state can be deduced only after 10ms. 

The situation is different in the case of the multi-token communication algorithm, which 

is depicted in Figure 5.4. Similar to the snapshot communication algorithm, the requesting 

thread registers a callback request on VPO. First, the monitoring daemon established local 

quiescent state on VPO. Then, before VPO’s monitoring thread goes to sleep for 10ms, 

it passes the token to the next specified: processor. Global quiescent state is established 

when the token has passed through all specified processors. One important thing to note is 

that the token does not have return to VPO before global quiescent state can be deduced.



CHAPTER 5. EXPERIMENTAL EVALUATION 65 

time 

vPO VPI VP2 VP3 

Legend 

— Wakeup of 

QDoMgr Daemon 

Placement of QDo Request |7 777777 @: > QDoMgr hands 
off token to next 

®............... = 
vP #-............... »| 

Declaration of Global |______|..-......-...1 irc. 
Quiescent State fp ad 

QiJi TT 

10 ms after Placement | 777777 TTT 
of QDo request 

@ 0... » 

00... 2 

=           
Figure 5.4: Relationship Between Communication Latency, Wakeup Frequency and Multi- 
Token Communication Method 

Instead, VP3’s monitoring thread establishes that global quiescent state is achieved after 

the token has arrived VP3. Thus, depending on the timing of other VPs’ monitoring thread, 

it is possible that quiescent state is achieved before VPO wakes up again. This explains 

why the communication latency for multi-token communication can be shorter than the 

communication latency for snapshot communication in the case of 2 VPS. 

Now let us consider at the case of the token communication algorithm, which is illus- 

trated in Figure 5.5. Similar to the multi-token communication algorithm, the requesting 

thread registers a callback request on VPO. However, in contrast with the multi-token case, 

other processors may hold the token when QDo request is placed. A processor must be 

visited by the token twice before deducing that quiescent state was achieved. Hence, in the 

case when the processors are idle, the minimum communication latency is 20ms.



CHAPTER 5. EXPERIMENTAL EVALUATION 66 

time 
VPO VPI VP2 VP3 

Legend 
Placementof |__.___._ fille lie Prices. 

QDo Request at VPO Sd RT — Wakeupof 

cip 
QDoMgr 

IARPPEFETEZZEZO 
Daemon 

@---- > QDoMgr hands off 

token to next processor 

Tiri iii... # » 

10 ms after Placement |/ (| - iticcizivos 
of QDo Request ]77777 077] ST TTT Teti A Eete rage 

LTT 

Global Quiescent State }------- * danenienerazagiio neo. i nici. e 0000... ---- 

®--.................... » 

20 msafter Placement |...-..-.}...-..-.-----.-iiol iii iii * gori zionionc-.-] nu. 
Of QDo Request | = 

e           
Figure 5.5: Relationship Between Communication Latency, Wakeup Frequency and Token 
Communication Method 

    

  

Number of Processors | Multi-Token | Snapshot | Token Lu Tree 
  

  

      

2 VP 1763.146293 | 1253.86 4272.18 1326.88 
(12.04589) |(5.9898839) | (8.645286) | (6.296987) 

4VP 1792.14 1264.74 4041.22 1520.3 
(11.940121) | (5.874614) | (10.745737) | (5.977098)       
  
  

Table 5.7: Average Execution Latency (in ns) for Different Communication Algorithms 

Execution Latency 

The final component of callback latency is execution latency. The execution latency is 

summarized Table 5.7. As it can be seen, execution latency is mostly independent of the 

communication method and does not significantly impact callback latency. The token com- 

munication method has a higher execution latency than other communication methods be- 

cause the executing processor has to pass the token to the next processor even after global 

quiescent is detected.



CHAPTER 5. EXPERIMENTAL EVALUATION 67 

  

  

      

Parameter Value/Choice 

Communication Method Snapshot 

Number of Processors 2 and 4 
Synchronization Technique Disable Scheduler 

Method of Executing Callback | Launch a New Thread for Each Callback 
  

Table 5.8: Setup for Measuring Latency for Various Monitoring Thread Soft Timer’s Fre- 
quency 

5.3.2 Effect of Monitoring Thread’s Soft Timer Frequency 

Next, we will investigate how the monitoring thread’s soft timer frequency affects callback 

latency. We would expect that callback latency is small when the soft timer is set to a small 

value. Recall from our previous analysis in Section 5.3.1, communication latency domi- 

nates callback latency and the monitoring thread’s soft timer greatly affects communication 

latency. The setup for measuring the callback latency is summarized in Table 5.8 and the 

results are summarized in Figure 5.6. 

As it can be seen from the graph, the result again is counter-intuitive in that when the 

soft timer frequency is very high (i.e., the soft timer period is very small), the callback 

latency increases rather than decreases. To understand this effect, we break the callback 

latency down into four different components for the four VPs, as illustrated in Table 5.9. 

We see that when the frequency is very high, the local quiescent latency, communica- 

tion latency and execution latency increases substantially. After further investigation, we 

identify two reasons for the increase. First, the scheduler’s overhead becomes significant 

when the soft timer is set to a small value. The executing thread and monitoring thread 

does not have a chance to execute to completion before the timer kicks in and interrupts 

the processor. Second, as the monitoring threads for different VP execute at approximately 

the same time, they start to interfere with each other. For example, when VPO’s moni- 

toring thread takes a snapshot of VP2’s state, VP2’s monitoring thread may be updating



CHAPTER 5. EXPERIMENTAL EVALUATION 

1000 

Average Callback Latency for Different Checking Frequency 

  

  

  

  

Av
er
ag
e 

Ca
li

ba
ck

 
La
te
nc
y 

(i
n 

ms
) 

  0.01 

  

    

0.001 0.01 0.1 

Soft Timer Checking Period (in ms) 

—@—_2 VP 

--8--4VP 

68 

Figure 5.6: Actual Relationship between Callback Latency and Monitoring Thread’s Soft 

Timer’s Period 

  
  

  
  

  
  

          

Monitoring Request Local Communication | Execution Callback 
Thread Placement Quiescent Latency Latency Latency 

Soft-Timer Overhead Latency 

Frequency 

0.001 0.001752176 | 0.528700918 | 0.342516826 |0.011369182 | 0.884845389 
0.01 0.001619621 | 0.009483673 | 0.024451218 | 0.003561776 | 0.039615848 
0.1 0.001577864 | 0.015248283 | 0.141788762 | 0.00356986 | 0.162684012 
1 0.001470918 | 0.012766467 | 1.093163733 | 0.003537685 | 1.111435848 
10 0.00149012 | 0.012957625 |  10.07524649 | 0.003835888 | 10.09403419 
100 0.00159022 | 0.013337405 | 100.1158967 |0.005080739 | 100.1364242 
  
  

Table 5.9: Breakdown of Callback Latency for Different Monitoring Thread’s Soft Timer 
Frequencies for 4 VP (in ms) 

 



CHAPTER 5. EXPERIMENTAL EVALUATION 69 

  

  

  

Parameter Value/Choice 

Monitoring Thread’s Soft Timer Frequency | 10 ms 
Number of Processors 2 and4 

Synchronization Technique Disable Scheduler 

Method of Executing Callback Launch a New Thread for Each Callback     
  

Table 5.10: Setup for Measuring Callback Latency for Various Synchronization Method 

  

  
  

  

            

Number Disabled Lock Lock-Free 

of VPs || Synchronization | Synchronization | Synchronization 

2 10.08412401 10.79778994 10.77461108 

(0.026502491) | (0.122462024) | (0.117888982) 

4 10.09403419 10.78058096 10.78264814 

(0.024663745) | (0.116344351) | (0.116212869) 
  

  

Table 5.11: Callback Latency for Different Synchronization Techniques 

VP2’s generation. Therefore, although increasing the monitoring thread’s soft timer fre- 

quency can lower callback latency, it is important not to set the monitoring thread checking 

frequency too high. 

5.3.3 Effect of Synchronization Techniques 

The third parameter we consider the effect of synchronization techniques on callback la- 

tency. We expect that disabling scheduler has the least latency because it does not require 

explicit synchronization communication with other processors, as discussed in Section 4.8. 

We have measured the callback latency for different synchronization techniques with setup 

summarized in Table 5.10 and the result is presented in Table 5.11. 

The results confirm our expectation that disabling the scheduler produces the best la- 

tency results for both 2 VPs and 4 VPs case. One may wonder why the latency for 4 VPs 

is less than 2 VPs for lock synchronization. To answer this question, we need to realize 

that the results for 2 VPs and 4 VPS fall within the standard error. Thus, we cannot accu-



CHAPTER 5. EXPERIMENTAL EVALUATION 70 

rately conclude the 4 VPs case has less latency than the 2 VPs case. Instead, we can only 

conclude 4 VPs has similar latency with the 2 VPS case. 

54 Overhead Micro-benchmark 

Recall from Section 1.3 that one of our design goal is to have low overhead. To evaluate 

whether we have achieved this goal, one of our micro-benchmark experiments measures 

how long it takes to schedule and execute 500 functions with and without QDoMgr running. 

A code snippet of the experiment is provided in Figure 5.7. This micro-benchmark gives 

us a good picture of the overhead because it exercises the scheduler to create and destroy 

threads. As such, when QDoMgr is enabled, QDoMgr will frequently be invoked to check 

whether quiescent state has beens achieved. We calculate overhead as follows: 

ExecuteTimeWithQDoMgr — ExecuteTimeWithoutQDoMgr 

ExecuteTimeWithoutQDoMgr 
Overhead =   (5.1) 

5.4.1 EffectofSoft-Timer Frequency 

We first examine the effect of the monitoring thread’s soft timer frequency on overhead. 

The setup of our experiment is the same as our latency micro-benchmark described in 

Section 5.3.2. We expect overhead to grow exponentially with respect to the monitoring 

thread’s soft timer frequency. The result is shown in Figure 5.8. As it can be seen, the 

overhead for 100ms and 10ms soft timer frequency is less than 1% while the overhead for 

a 0.01ms checking frequency is over 100%. This confirms our earlier assertion that the 

soft-timer frequency should not be set to a very low value.



CHAPTER 5. EXPERIMENTAL EVALUATION 71 

void QDoCallback(uval done) { 

*done = 1; 

} 

void schedFunction(uval runLeft) { 

if (runLeft) { 
Scheduler ::ScheduleFunction(schedFunction, 

runLeft — 1); 

} else { 
TraceEnd (); 

/* Stop the timer */ 

} 
} 

int main() { 
#ifdef HAVE QDO_MGR 
/* This part will only run when QDoMgr is running %*/ 

uval done = 0; 

/* First, we want to call QDo to see the 

effect of QDoMgr on overhead. If we 

do not place a QDo request, the QDoMgr 

will remain idle */ 

VPSet quiescentSet; 

VPSet executionSet; 

quiescentSet.addVP(Scheduler::GetAIl1VP ()); 

executionSet.addVP(Scheduler::GetVP()); 

DREFGOBJ ( TheQDoMgrRef)->qdo(QDoCallback, 

&done , 

quiescentSet, 

executionSet); 

while (! done) { 

/* Want to wait until callback is done */ 

Yield (); 

} 
#endif // #ifdef HAVE_QDO_MGR 

TraceStart(); /* Start the timer x%/ 

Scheduler::ScheduleFunction(schedFunction , 

500); 

return 0; 

Figure 5.7: Code Snippet of Overhead Measurement Process



CHAPTER S. EXPERIMENTAL EVALUATION 72 

Overhead for Various Checking Frequency 

250.00%   

  

150.00%   

100.00%   

      

  

  

0.01 0.1 1 10 100 

Soft Timer Checking Frequency (in ms) 

Figure 5.8: Relationship between Monitoring Thread’s Soft Timer Frequency and Over- 
head



CHAPTER 5. EXPERIMENTAL EVALUATION 73 

  

  

  Disabling | Locked | Lock-Free 

Scheduler | List List 
2VP| 0.67% 0.63% 1.16% 

4VP | 0.59% 0.58% 1.08% 

  

            

  

Table 5.12: Overhead for Different Synchronization Techniques 

5.4.2 Effect of Synchronization Techniques 

Next, we explore whether the choices of synchronization technique used affects overhead. 

Our experiment setup is the same as described in Section 5.3.3. Based on the results from 

Section 5.3.3 and Section 5.4.1, we expect that the overhead for all three techniques (Dis- 

abling the Scheduler, Using Locks and Lock-Free List) to be less 2 %. Nevertheless, dis- 

abling the scheduler should have the least overhead while lock free list should have the 

highest overhead. This is because the lock-free list requires extensive communication with 

other processors. It should be note that lock free linked list has an advantage of being 

deadlock free. 

Our experimental results are summarized in Table 5.12. As expected, all three cases 

result in overhead of less than 2%. The Lock-Free linked list produces the worst results 

compared to the other three cases. On the other, Disabling the scheduler and locked list 

have similar overhead. 

5.5 Distribution of Generation Period in Kernel Space 

We now investigate the distribution of the global generation period under real work loads. 

This allows us to understand how QDoMgr behaves in a real server. To setup this experi- 

ment, we place a background thread in the kernel space, as described by the code snippet 

in Figure 5.9. The function BackgroundQDoLoop will invoke QDoMgr to schedule a call- 

back on the same function on the local virtual processor once quiescent state is reached



CHAPTER 5. EXPERIMENTAL EVALUATION 74 

across all virtual processors. We then measure the distribution of callback latency for the 

first 2000 QDo callbacks. At the same time, we run the SPEC Software Development En- 

vironment Throughput (SDET) benchmark [26]. The SDET benchmark simulates typical 

programs run by a software developer. Many kernel threads are created and destroyed when 

servicing SDET requests. 

5.5.1 Communication Algorithms 

The first parameter we consider is how the choice of communication algorithm affects the 

global generation distribution. The setup of this experiment is the same as the latency 

measurement experiment described in Section 5.3.1. 

The experimental results are summarized in Figure 5.10 and Figure 5.11. As expected, 

the distribution with the snapshot communication algorithm is consistent for both the 2 

VPs and the 4 VPs cases. With the token communication algorithm, the median callback 

latency is almost twice as high in the 4 VPs case than in the 2 VPs case. This matches 

our expectation in Section 3.3.2, namely that token algorithm’s generation period grows 

proportionally with respect to the number of processors. With the multi-token algorithm, 

the median global generation period also increases from a 2 VPs to a 4 VPs system. This 

again matches our expectations where multi-token’s callback latency grows with respect to 

the number of virtual processors. 

5.5.2 Monitoring Thread’s Soft-Timer Frequency 

The second parameter we consider is how the monitoring thread’s soft-timer frequency 

affects on the distribution of the global generation period. Our setup is the same as the 

experiment described in Section 5.3.2. 

The experimental results are summarized in Figure 5.12, Figure 5.13, Figure 5.14 and



CHAPTER 5. EXPERIMENTAL EVALUATION 75 

void BackgroundQDoLoop(uval numCall) { 
/x 

*/ 

} 

This function will call QDoMgr to schedule itself 

once quiescent state is reached and we will measure 

the distribution of the callback latency. 

VPSet quiescentSet; 

VPSet executeSet; 

quiescentSet .addVP(Scheduler::GetAllVP()); 

executionSet.addVP(Scheduler::GetVP()); 

if (numCall < 2000) { 

Trace (); /* measure distribution «/ 

DREFGOBJ ( TheQDoMgrRef)->qdo ( BackgroundQDoLoop, 

numCall+1, 

quiescentSet, 

executionSet); 

int main() { 

} 

Scheduler ::ScheduleFunction(BackgroundQDoLoop, 

0); 
return 0; 

Figure 5.9: Code Snippet of Measuring the Distribution of Generation Period in Kernel 

Space



CHAPTER 5. EXPERIMENTAL EVALUATION 76 

Distribution of Giobal Generation Perlod for Different Communication Alogrithm (2 VP) 

1800 

Di
st
ri
bu
ti
on
 

  
  

  

  
Giobal Generation Period (in ms) 

Wi Snapshot El Multi-Token El Token Tree 

Figure 5.10: Histogram of Global Generation Period for Different Communication Algo- 
rithm (2 VP)



CHAPTER 5. EXPERIMENTAL EVALUATION 77 

Distribution of Giobal Generation Period for Different Communication Algorithm (4 VP) 

Di
st
ri
bu
ti
on
 

      
Giobal Generation Period (In ma) 

I Snapshot E Muiti-Token EToken O Tree 

Figure 5.11: Histogram of Global Generation Period for Different Communication Algo- 
rithm (4 VP) 

 



CHAPTER 5. EXPERIMENTAL EVALUATION 78 

Histogram on Distribution of Generation Period for 100 ms Checking Period 

Di
st
ri
bu
ti
on
 

Generation Perlod 7 

  

52 VP_M4VP 

Figure 5.12: Histogram of Global Generation Period when Checking Frequency = 100 ms 

Figure 5.15. Note that for a 100ms monitoring thread period, our experiment finishes before 

2000 samples are taken. As expected, the generation period is large when the soft timer is 

set to a large value, and vice-versa. In addition, the histogram for soft timer frequency of 

0.1ms is much more spread out. This suggests that for the SDET workload, the theoretical 

minimum limit of global generation period is between 0.1ms to 1ms. 

5.6 SDET Macro-Benchmark Result 

Now that the latency, overhead and distribution of global generation period for QDo call- 

backs is known, we investigate how the QDo facility impacts performance in a more re- 

alistic setting. For this experiment, we modified existing K42 code (HashNonBlocking 

and XHandleTrans module) to use the QDo facility. The HashNonBlocking module is a 

non-blocking hash lookup table implemented with RCU logic. This table is used for var- 

 



CHAPTER 5. EXPERIMENTAL EVALUATION 79 

Histogram on Distributlon of Generation Period when Checking Frequency is 10 ms 

    
    

Checking Frequency (In ms) Co 

K12 VP 4 VP 

Figure 5.13: Histogram of Global Generation Period when Checking Frequency = 10 ms 

  

Di
st
ri
bu
ti
on
 

Checking Frequency (in ms) ” " n 

142 VP 4 VP 

Figure 5.14: Histogram of Global Generation Period when Checking Frequency = 1 ms 

 



CHAPTER 5. EXPERIMENTAL EVALUATION 80 

Histogram on Distribution of Generation Period when Checking Frequency is 0.1 ms 

  

Checking Frequency (in ms) 

2 VP _M4VP 

Figure 5.15: Histogram of Global Generation Period when Checking Frequency = 0.1 ms 

ious purposes, such as maintaining a list of processes as well as the interface to service 

for registration and look up of mount points [18]. Before the changes, the HashNonBlock- 

ing module used K42”s clustered object garbage collection’s generation count to determine 

when it is safe to resize the hash table !. After the changes, the HashNonBlocking mod- 

ule uses the QDo facility to resize the hash table after global quiescence across all virtual 

processor is reached. 

The XHandleTrans module provides support routines for the external object translation 

and invocation subsystem [77]. Before the changes, XHandleTrans used the clustered ob- 

ject garbage collection to physically delete freed object. With QDoMgr, we use the QDo 

facility to physically deleted the freed object upon quiescent state. 

The setup of the experiment is listed in Table 5.13. Our measurements is summarized in 

  

Recall from Section 2.2.2 that K42's clustered object infrastructure uses generation count to implement 

RCU-like garbage collection



CHAPTER 5. EXPERIMENTAL EVALUATION 81 

  

Parameter Value/Choice 
  

Communication Algorithm 
Number of Processors 

Synchronization Technique 

Method of Executing Callback   

Monitoring Thread’s Soft Timer Frequency | 10 ms 

Snapshot 

2 and 4 

Disable Scheduler 

Launch a New Thread for Each Callback     
  

Table 5.13: Setup for Measuring SDET performance 

  

Number of Processors i No QDo With QDo | Percentage Difference 
  

2 15674 
4 2979.5       

1559.5 -0.50% 
2921.5 -1.95%     

  

Table 5.14: SDET performance (in scripts/hour) 

Table 5.14. It is disappointing that there is a slowdown when using QDo instead of perfor- 

mance improvement, although the slowdown is less than 2%. We still need to investigate 

the cause of this decrease, but believe it is due to the soft timer overhead.



Chapter 6 

Conclusion 

We have designed and implemented a quiescent point callback facility called QDo for the 

K42 Operating System. This facility allows i) clients to register interest in the quiescent 

point relative to the time of registration, ii) monitors the system for relevant quiescent 

point, and iii) initiates a client-specified callback when quiescent state has been achieved. 

In designing this facility, there were four design goals: 

1. low overhead, 

2. low latency for callbacks, 

3. good scalability, and 

4. having the facility available for both user and kernel space 

To achieve our design goals, we have made a number of design decisions. Quiescent 

monitoring is done on a per address space basis. In addition, we partitioned the monitor- 

ing and detection of quiescent state into two separate steps - the monitoring of quiescent 

states on the local processor and the communication of these states with other processors 

to establish a global quiescent state. For the local processor, we use a soft timer to regular 

82



CHAPTER 6. CONCLUSION 83 

wake up the QDo daemon thread and check whether at least two generation changes have 

occurred. To communicate quiescent information with other processors, we have devised 

four possible ways to establish for global quiescent state: 

1. Using a single token ring for all QDo request. 

2. Using one token ring for each QDo request. 

3. Taking snapshots of other processors’ state. 

4. Using in a binary diffracting tree-like communication structure. 

We implement the QDo management facility (QDoMgr) as a clustered object to min- 

imize true and false data sharing. There are three choices in synchronizing data, namely 

temporary disabling the scheduler, using an explicit lock, and using a lock free list. In 

addition, QDoMgr will schedule each callback with a new thread. 

Through our experiments, we determined that taking regular snapshots of other pro- 

cessors is the communication method resulting in the least amount of latency. In addition, 

the soft timer used in regularly waking up the QDoMegr daemon plays an important role in 

determining callback frequency and overhead. Setting the soft timer wakeup to less than 

10us can greatly increase the overhead and renders the facility unusable. To reduce over- 

head and callback latency, it is best to temporary disable the scheduler in critical sections 

instead of using lock free list. For analyzing the performance impact on real application, 

we experimented with the SDET benchmark. Unfortunately, running SDET decreased per- 

formance by about 2%. We still need to investigate the cause of this decrease, but believe 

it is due to the soft timer overhead.



CHAPTER 6. CONCLUSION 84 

6.1 Future Work 

We have a number of tasks that are left for future works, including: 

1. Detection of quiescent state when there are no active threads — Currently, a soft timer 

is used to regularly wake up the monitoring daemon to determine whether quiescent 

state has been reached. However, this is not efficient. We need to examine how we 

can efficiently check for quiescent state in an idle processor. 

2. Combine QDoMgr with the clustered object garbage collection system — Currently, 

the clustered object garbage collection uses a generation-based RCU collection scheme. 

We believe that the clustered object management system can use QDoMgr facility to 

do the garbage collection. This reduces overhead as there will be only 1 daemon 

monitoring for quiescent state. 

3. Repeat the experiments on a variety of machines — We have only measured the per- 

formance on a 4 processor system. It would be interesting to repeat our experiments 

on a large machine (i.e., 24 ways or 64 ways) to determine whether our design as- 

sumptions continue to hold true as the number of processors increase.



Bibliography 

[1] Mike Accetta, Robert Baron, William Bolosky, David Golub, Richard Rashid, Avadis 

Tavanian, and Michael Young. Mach: A new kernel foundation for unix develop- 

ment. In Proceedings of the USENIX Summer Technical Conference, Atlanta, GA, 

July 1986. 

[2] Sarita V. Adve and Kourosh Gharachorloo. Shared memory consistency models: A 

tutorial. IEEE Computer, 29(12):66-76, December 1995. 

[3] Yehuda Afek, Geoffrey Brown, and Michael Merritt. Lazy caching. ACM Transac- 

tions on Programming Languages and System, 15(1):182-205, January 1993. 

[4] Mustaque Ahamad, Rida A. Bazzi, Ranjit John, Prince Kohli, and Gil Neiger. The 

power of processor consistency. In Proceedings of the Fifth ACM Symposium on 

Parallel Algorithms and Architectures (SPAA’93), pages 251-260, June 1993. 

[5] AMD. BIOS and Kernel Developer's Guide for AMD Athlon 64 and AMD Opteron 

Processors, October 2005. 

[6] Cristiana Amza, Alan L. Cox, Sandhya Dwarkadas, Pete Keleher, Honghui Lu, Ra- 

makrishnan Rajamony, Weimin Yu, and Willy Zwaenepoel. Treadmarks: Shared 

memory computing on networks of workstations. [EEE Computer, 29(2):18-28, 

February 1996. 

85



BIBLIOGRAPHY 86 

[7] James H. Anderson and Mark Moir. Universal constructor for multi-object opera- 

tions. In Proceedings of the Fourteenth ACM Symposium on Principles of Distributed 

Computing (PODC), pages 184-193, August 1995. 

[8] Jonathan Appavoo. Clustered objects: Initial design, implementation and evaluation. 

[9] 

[10] 

[11] 

[12] 

[13] 

[14] 

Master’s thesis, University of Toronto, 1998. 

Jonathan Appavoo. Clustered Object. PhD thesis, University of Toronto, 2005. 

Jonathan Appavoo, Marc Auslander, Maria Burtico, Dilma Da Silva, Orran Krieger, 

Mark Mergen, Michal Ostrowski, Bryan Rosenburg, Robert W. Wisniewski, and Jimi 

Xenidis. K42: an open-source linux-compatible scalable operating system kernel. 

IBM Systems Journal, 44(2):427-440, 2005. 

Jonathan Appavoo, Marc Auslander, Dilma DaSilva, David Edelsohn, Orran Krieger, 

Michal Ostrowski, Bryan Rosenburg, Robert W. Wisniewski, and Jimi Xenidis. K42 

overview. Technical report, IBM Research, August 2002. 

Jonathan Appavoo, Marc Auslander, Dilma DaSilva, David Edelsohn, Orran Krieger, 

Michal Ostrowski, Bryan Rosenburg, Robert W. Wisniewski, and Jimi Xenidis. 

Sceduling in k42. Technical report, IBM Research, August 2002. 

Jonathan Appavoo, Marc Auslander, Dilma DaSilva, Orran Krieger, Michal Os- 

trowski, Bryan Rosenburg, Robert W. Wisniewski, Jimi Xenidis, Michael Stumm, 

Ben Gamsa, Reza Azimi, Raymond Fingas, Adrian Tam, and David Tam. Enabling 

scalable performance for general purpose workloads on shared memory multiproces- 

sors. Technical Report RC22863, IBM Research Report, 2003. 

Andrea Arcangeli, Mingming Cao, Paul E. McKenney, and Dipankar Sarma. Using 

read-copy-update techniques for system v ipc in the linux 2.5 kernel. In Proceedings



BIBLIOGRAPHY 87 

[15] 

[16] 

[17] 

[18] 

[19] 

[20] 

of 2003 USENIX Annual Technical Conference (FREENIX Track), pages 297-310, 

June 2003. 

John K. Bennett, John B. Carter, and Willy Zwaenepoel. Munin: Distributed shared 

memory based on type-specific memory coherence. In Proceedings of the Second 

ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming 

(PPOPP’90), pages 168-176, Seattle, WA, March 1990. 

Brian N. Bershad. Practical considerations for non-blocking concurrent objects. In 

Proceedings of the Thirteenth IEEE International Conference on Distributed Comput- 

ing Systems, pages 264-273, Los Alamitos, CA, May 1993. IEEE Computer Society 

Pres. 

Brian N. Bershad and Matthew J. Zekauskas. Midway: Shared memory parallel pro- 

gramming with entry consistency for distributed memory multiprocessors. Technical 

Report CMU-CS-91-170, School of Computer Science, Carnegie Mellon University, 

September 1991. 

Suparna Bhattacharya and Dilma Da Silva. Towards a highly adaptable filesystem 

framework for linux. In Proceedings of Ottawa Linux Symposium 2006, volume One, 

pages 87-99, Ottawa, ON, 2006. 

J. M. Borkenhagen, R. J. Eickemeyer, R. N. Kalla, and S. R. Kunkel. A multithreaded 

powerpc processor for commercial servers. /BM Journal of Research and Develop- 

ment, 44(6):885-898, 2000. 

Daniel P. Bovet and Marco Cesati. Understanding the Linux Kernel. O’Reilly & 

Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA, second edition, 

2003.



BIBLIOGRAPHY 88 

[21] 

[22] 

[23] 

[24] 

[25] 

[26] 

[27] 

[28] 

John B. Carter, Chen-Chi Kuo, and Ravindra Kuramkote. A comparison of soft- 

ware and hardware synchronization mechisms for distributed share memory multi- 

processors. Technical Report UUCS-96-011, University of Utah, Salt Lake City, UT, 

September 1996. 

David R. Cheriton and Kenneth J. Duda. A caching model of operating system kernel 

functionality. In Proceedings of the First Symposium on Operating Systems Design 

and Implementation, pages 179-193, Monterey, CA, November 1994. 

Martin Dietzfelbinger, Anna R. Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der 

Heide, Hans Rohnert, and Robert Endre Tarjan. Dynamic perfect hashing: Upper and 

lower bounds. In Proceedings of the IEEE Symposium on Foundations of Computer 

Science, pages 524-531, 1988. 

Michael Dubois, Christoph Scheurich, and Faye A. Briggs. Memory access buffering 

in multiprocessors. In Proccedings of the Thirteenth Annual International Symposium 

on Computer Architecture, pages 432-442, June 1986. 

Dominic Duggan. Type-based hot swapping of running modules. In Proceedings of 

the Fifth International Conference on Functional Programming, pages 62-73, 2001. 

Steven L. Gaede. Perspectives on the spec sdet bench- 

mark. Technical report, Lone Eagle Systems Inc, January 1999. 

http://www.specbench.org/osg/sdm91/sdet/SDETPerspectives.html. 

Ben Gamsa. Tornado: Maximizing Locality and Concurrency in a Shared-Memory 

Multiprocessor Operating System. PhD thesis, University of Toronto, 1999. 

Ben Gamsa, Orran Krieger, Jonathan Appavoo, and Michael Stumm. Tornado: Maxi- 

mizing locality and concurrency in a shared memory multiprocessor operating system.



BIBLIOGRAPHY 89 

[29] 

[30] 

[31] 

[32] 

[33] 

[34] 

In Proceedings of the Third Symposium on Operating System Design and Implemen- 

tation, New Orleans, LA, February 1999. 

Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons, Anoop 

Gupta, and John Hennessy. Memory consistency and event ordering in scalable 

shared-memory multiprocessors. In Proceedings of the 17th Annual International 

Symposium on Computer Architecture, pages 15-26, May 1990. 

James R. Goodman. Cache consistency and sequential consistency. Technical Re- 

port 61, IEEE Scalable Coherent Interface Working Group, March 1989. 

Michael Greenwald and David R. Cheriton. The synergy between nonblocking syn- 

chronization and operating system structure. In Proceedings of the Second Sympo- 

sium on Operating System Design and Implementation, pages 123-136, Seattle, WA, 

October 1996. USENIX Association. 

Timothy L. Harris. A pragmatic implementation of non-blocking linked-list. In Pro- 

ceedings of the Fifteenth International Symposium on Distributed Computing, volume 

2180 of Lecture Notes in Computer Science, pages 300-314, Springer-Verlag, Octo- 

ber 2001. 

Timothy L. Harris, Keir Fraser, and Ian A. Pratt. A practical multi-word compare- 

and-swap operation. In Proceedings of the Sixteenth International Symposium on 

Distributed Computing, pages 265-279, Springer-Verlag, October 2002. 

Hermann Hartig, Michael Hohmuth, Jochen Liedtke, Sebastian Schonberg, and Jean 

Wolter. The performance of u-kernel-based systems. In Proceedings of the Sixteenth 

ACM Symposium on Operating Systems Principles (SOSP’97), Saint-Malo, France, 

October 1997.



BIBLIOGRAPHY 90 

[35] Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming 

Languages and Systems, 11(1):124-149, Jaunary 1991. 

[36] Maurice Herlihy. A methodology for implementing highly concurrent data ob- 

jJects. ACM Transactions on Programming Languages and Systems, 15(5):745-770, 

November 1993. 

[37] Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer II. Sofît- 

ware transactional memory for dynamic-sized data structures. In Proceedings of the 

Twenty-Second Annual Symposium on Principles of Distributed Computing, pages 

92-101, Boston, Massachusetts, 2003. ACM Press. 

[38] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architectural support 

for lock-free data structures. In Proceedings of the Twentieth Annual International 

Symposium on Computer Architecture, pages 298-300, New York, NY, May 1993. 

ACM. 

[39] D. Hitz, J. Lau, and M. Malcolm. File system design for an NFS file server appliance. 

In Proceedings of the USENIX Winter 1994 Technical Conference, pages 235-246, 

San Fransisco, CA, USA, 17-21 1994. 

[40] Kevin Hui. Design and implementation of k42°s dynamic clustered object switching 

mechanism. Masters thesis, University of Toronto, 2000. 

[41] Kevin Hui, Jonathan Appavoo, Robert Wisniewski, Marc Auslander, David Edelsohn, 

Ben Gamsa, Orran Krieger, Bryan Rosenburg, and Michael Stumm. Supporting hot- 

swappable components for system software. In Proceedings of HotOS, 2001. 

[42] IBM T.J. Watson Research Center. System/370 Principles of Operations, 1983.



BIBLIOGRAPHY 91 

[43] 

[44] 

[45] 

[46] 

[47] 

[48] 

[49] 

[50] 

Intel. Intel Core Duo Processor and Intel Core Solo Processor on 65 nm Process 

Datasheet, January 2006. 

J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and D. Shippy. 

Introduction to the cell multiprocessor. /BM Journal of Research and Development, 

49(4/5):589 — 604, 2005. 

Pete Keleher, Alan L. Cox, and Willy Zwaenepoel. Lazy release consistency for 

software distributed shared memory. In Proceedings of the Nineteenth International 

Symposium on Computer Architecture (ISCA’92), pages 13-21, Gold Coast, Aus- 

tralia, May 1992. 

Poonacha Kongetira, Kathirgamar Aingaran, and Kunle Olukotun. Niagra: A 32 way 

multithreaded sparc processor. JEEE Micro, 25(2):21-29, March - April 2005. 

Leonidas I. Kontothanassis, Robert W. Wisniewski, and Michael L. Scott. Scheduler- 

conscious synchronization. ACM Transactions on Computer Systems, 15(1):3-40, 

February 1997. 

Orran Krieger, Michael Stumm, Ron Unrau, and Jonathan Hanna. A fair fast scalable 

reader-writer lock. In Proceedings of the 1993 International Conference on Parallel 

Processing, pages 201-204, St. Charles, IL, August 1993. 

Leslie Lamport. How to make a multiprocessor computer that correctly executes 

multiprocess program. JEEE Transactions on Computers, 28(9):690-691, September 

1979. 

Bernard Lang, Christian Queinnec, and Jose Piquer. Garbage collecting the world. 

In Conference Record of the Nineteenth Annual ACM Symposium on Principles of



BIBLIOGRAPHY 92 

[51] 

[52] 

[53] 

[54] 

[55] 

[56] 

[57] 

Programming Languages, ACM SIGPLAN Notices, pages 39-50. ACM Press, January 

1992. 

Victor Luchangco, Mark Moir, and Nir Shavit. Nonblocking k-compare-single-swap. 

In Proceedings of the Fifteenth Annual ACM Symposium on Parallel Algorithms and 

Architectures, pages 314-323, San Diego, CA, USA, 2003. ACM Press. 

Henry Massalin and Calton Pu. A lock-free multiprocessor os kernel. Technical 

Report CUCS-005-91, Department of Computer Science, Columbia University, New 

York, NY, June 1991. 

Marios Mavronicolas, Marina Papatriantafilou, and Philippas Tsigas. The impact of 

timing on lineraizability in counting networks. In Proceedings of Eleventh Interna- 

tional Parallel Processing Symposium, pages 684-688, 1997. 

Paul McKenney and J. D. Slingwine. Read-copy update: using execution history to 

solve concurrency prolbems. In Proceedings of International Conference on Parallel 

and Distributed Computing and Systems, October 1998. 

Paul E. McKenney. Exploiting Deferred Destruction: An Analysis of Read-Copy- 

Update Techniques in Operating System Kernels. PhD thesis, Oregon Health & Sci- 

ence University, 2004. 

Paul E. McKenney, Jonathan Appavoo, Audi Kleen, Orran Kreiger, Rusty Russell, 

Dipankar Sarma, and Maneesh Soni. Read-copy update. In Proceedings of the Ottawa 

Linux Symposium, Ottawa, Ontario, Canada, July 2001. 

Paul E. McKenney, Dipankar Sarma, Andrea Arcangeli, Andi Kleen, Orran Krieger, 

and Rusty Russel. Read copy update. In Proceedings ofthe Ottawa Linux Symposium, 

pages 338-367, Ottawa, Ontario, Canada, June 2002.



BIBLIOGRAPHY 93 

[58] 

[59] 

[60] 

[61] 

[62] 

[63] 

[64] 

[65] 

Philip K. McKinley and Jane W. W. Liu. Group communication in multichannel net- 

works with staircase interconnection topologies. In Proceedings of ACM SIGCOMM 

Symposium 1989, pages 170-181, Austin, Texas, September 1989. ACM. 

John M. Mellor-Crummey and Michael L. Scott. Scalable reader-writer synchroniza- 

tion for shared-memory multiprocessors. In Proceedings of the Third ACM SIGPLAN 

Symposium on Principles and Practice of Parallel Programming, pages 106-113, 

Williamsburg, VA, USA, 1991. ACM Press. 

John M. Mellor-Crummey and Michael L. Scott. Synchronization without contention. 

In Proceedings of the Fourth Symposium Architectural Support for Programming Lan- 

guages and Operating Systems, pages 269-278, Santa Clara, CA, April 1991. ACM. 

Maged M. Michael. Safe memory reclamation for dynamic lock-free objects using 

atomic reads and writes. In Proceedings of the Twenty-first Annual ACM Symposium 

on Principles of Distributed Computing, pages 21-30, July 2002. 

Maged M. Michael. Hazard pointers: Safe memory reclamation for lock-free objects. 

IEEE Transactions on Parallel And Distributed Systems, 15(6), June 2004. 

Maged M. Michael and Michael L. Scott. Nonblocking algorithms and preemption- 

safe locking on multiprogrammed shared memory multiprocessors. Journal of Paral- 

lel and Distributed Computing, 51(1):1-26, May 1998. 

David Mosberger. Memory consistency models. Operating Systems Review, 

27(1):18-27, January 1993. 

Thomas M. Parks, Jose Luis Pino, and Edward A. Lee. A comparison of synchronous 

and cyclo-static dataflow. In Proceedings of IEEE Asilomar Conference on Signals, 

Systems and Computers, Pacific Grove, CA, November 1995.



BIBLIOGRAPHY 94 

[66] Ravi Rajwar and James R. Goodman. Transactional lock-free execution of lock-based 

program. In Proceedings of the Tenth International Conference on Architectural Sup- 

port for Programming Languages and Operating System, pages 5-17, October 2002. 

[67] Alessandro Rubini and Jonathan Corbet. Linux Device Drivers. O'Reilly & Asso- 

ciates, Inc., second edition, June 2001. 

[68] Rusty Russell. Re: 2.4.10pre7aal. Linux Kernel Mailing List, September 2001. 

[69] Rusty Russell. Re: [patch for 2.5] preemptible kernel. Linux Kernel Mailing List, 

March 2001. 

[70] Dipankar Sarma. Re: [patch] per-cpu areas for 2.5.3-pre6. Linux Kernel Mailing List, 

February 2002. 

(71] Dipankar Sarma and Paul E. McKenney. Making rcu safe for deep sub-millisecond 

response realtime applications. In Proceedings of the 2004 USENIX Annual Technical 

Conference (FREENIX Track), pages 182-191. USENIX Association, June 2004. 

[72] H. Schorr and W. M. Waite. An efficient machine-independent procedure for garbage 

collection in various list structures. Communications of the ACM, 10(8):501-506, 

August 1967. 

[73] Nir Shavit and Dan Touitou. Software transactional memory. In Proceedings of 

the Fourteenth Symposium on Priniciples of Distributed Computing, pages 204-213. 

ACM, August 1995. 

[74] Nir Shavit and Asaph Zemach. Diffracting tress. ACM Transactions on Computer 

System, 14(4):385-428, November 1996. 

[75] Abraham Silberschatz and Peter Baer Galvin. Operating System Concepts. Addison 

Wesley Longman, Inc., fifth edition, November 1998.



BIBLIOGRAPHY 95 

[76] 

[77] 

[78] 

[79] 

[80] 

[81] 

[82] 

Christopher Small and Stephen Manley. A revisitation of kernel synchronization 

schemes. In Proceedings of the USENIX Annual Technical Conference, Anaheim, 

California, 1998. 

Craig A. N. Soules, Jonathan Appavoo, Kevin Hui, Robert W. Wisniewski, Dilma Da 

Silva, Gregory R. Ganger, Orran Kreiger, Michael Stumm, Marc Auslander, Michal 

Ostrowski, Bryan Rosenburg, and Jimi Xenidis. System support for online recon- 

figuration. In Proceedings of the Usenix Technical Conference, pages 141-154, San 

Antonio, TX, June 2003. 

Hàkan Sundell, Philippas Tsigas, and Yi Zhang. Simple and fast wait-free snapshots 

for real-time systems. In Proceedings of the Fourth International Conference on Prin- 

ciples of Distributed Systems (OPODIS 2000), pages 91-106, 2000. 

David Tam. Performance analysis and optimization of the hurricane file system on 

the k42 operating system. Master’s thesis, University of Toronto, 2003. 

Dean M. Tullsen, Jack L. Lo, Susan J. Eggers, and Henry M. Levy. Supporting fine- 

grained synchronization on a simultaneous multithreading processor. In Proceedings 

of the Fifth International Symposium on High Performance Computer Architecture, 

pages 54-58, January 1999. 

John D. Valois. Implementing lock-free queues. In Proceedings of the Seventh Inter- 

national Conference on Parallel and Distributed Computing Systems, pages 64-69, 

Las Vegas, NV, October 1994. 

John D. Valois. Lock-free linked lists using compare-and-swap. In Proceedings of the 

Fourteenth Annual ACM Symposium on Principles of Distributed Computing (PODC 

’95), pages 214-222, Ottawa, ON, Canada, August 1995. ACM. Erratum available at 

ftp://ftp.cs.rpi.edu/pub/valoisj/podc95-errata.ps.gz.



BIBLIOGRAPHY 96 

[83] 

[84] 

[85] 

[86] 

[87] 

An-I Wang, Geoffrey Kuenning, Peter Reiher, and Gerald Popek. The effects of 

memory-rich environments on file system microbenchmarks. In Proceedings of 

the 2003 International Symposium on Performance Evaluation of Computer and 

Telecommunication Systems (SPECTS), Montreal, July 2003. 

Paul R. Wilson. Uniprocessor garbage collection techniques. ACM Computing Sur- 

veys, 1992. 

Robert W. Wisniewski and Brian Rosenburg. Efficient, unified, and scalable perfor- 

mance monitoring for multiprocessor operating systems. In Proceedings of Super- 

computing 2003, Phoenix, AZ, November 2003. 

Janet Wu, Raja Das, Joel Saltz, Harry Berryman, and Seema Hiranandani. Distributed 

memory compiler design for sparse problems. IEEE Transactions on Computers, 

44(6):737-753, June 1995. 

Pen-Chung Yew, Nian-Feng Tzeng, and Duncan H. Lawrie. Distributing hot-spot 

addressing in large-scale multiprocessors.  /EEE Transactions on Computers, C- 

36(4):388-395, April 1987.



Appendix A 

Glossary 

Throughout the dissertation, we use various terminology describing the implementation of 

QDo. We will define these terminologies below: 

e Batch - Grouping different callback requests together such that these requests have a 

common quiescent point. Global batch refers to grouping of requests from all virtual 

processors together. Local batch refers to grouping of requests from a single virtual 

processor. 

e Callback - Function or method calls that will be executed when the operating system 

detects global quiescent state is reached. 

e Callback Latency - Latency between the point in time when invoking the function 

to register a QDo callback request to the point in time the callback has completed 

execution. 

e Completed Callbacks - QDo requests of which the callbacks had been executed in all 

the specified processors. These QDo calls are ready to be deleted. 

97



APPENDIX A. GLOSSARY 98 

e Grace Period - Time interval during which all CPUs and tasks have pass through at 

least one quiescent state [57]. 

e Incomplete QDo Requests - QDo requests of which the callbacks have not been 

scheduled to be executed. They may or may not have reached quiescent state. 

e Kernel Daemon - A kernel process that runs in the background, without intervention 

by a user. 

e Launched Callbacks - QDo requests of which the callbacks have just been executed 

by the scheduler. Once all the callback”’s instructions had been executed, the QDo 

requests became Completed Callbacks. 

e Pending Callbacks - QDo requests of which quiescence have been established. The 

callbacks can be, but have not yet been, executed. 

e Quiescent Latency - Time difference between the moment of placing a callback re- 

quest to the moment when global quiescence is established. 

e Quiescent Point - The first point in time at which it is known that no other threads 

will be able to access the old data. 

e Quiescent State - The system condition, after QP(t) is reached, at which it is known 

that no threads will be able to access the old data. Global quiescent refers to the 

condition where it is known that no threads from all virtual processor will be able to 

access the old data. Local quiescent state refers to the condition where it is known 

that no threads from the local virtual processor will be able to access the old data. 

e Safe Point - Program location at which it is known no threads are accessing a shared 

data structure.



APPENDIX A. GLOSSARY 99 

e Scheduled Callbacks - QDo requests of which quiescent state had been established 

and the scheduler had scheduled the callbacks to be executed. However, the call- 

backs have not yet been executed. Once the first processor executes the callback, the 

requests became Launched Callbacks. 

e Tasklet - A mechanism in Linux 2.4 kernel and above that schedules the execution of 

a kernel task to a later safe time. The tasklet is guaranteed to be executed only once 

and only on the processor it is first scheduled on [67].




