
Generating Miss Rate Curves with Low Overhead Using
Existing Hardware

by

Tom Walsh

A thesis submitted in conformity with the requirements
for the degree of Master of Science

Graduate Department of Computer Science
University of Toronto

Copyright c� 2009 by Tom Walsh

Abstract

Generating Miss Rate Curves with Low Overhead Using Existing Hardware

Tom Walsh

Master of Science

Graduate Department of Computer Science

University of Toronto

2009

Miss Rate Curves (MRCs) for main memory have been proposed as a representation

of memory utilization for use in a range of optimizations in the area of memory man-

agement. Various techniques exist for their creation; however, all real-world methods of

MRC generation must make trade-offs between overhead and accuracy. Proposals for new

hardware techniques exist, but have yet to be implemented in actual hardware. We pro-

pose the use of the Intel PEBS (Precise Event-Based Sampling) performance monitoring

capability for the task of MRC generation on existing commodity hardware.

We use PEBS to generate MRCs and compare them against MRCs generated through

instrumentation, finding the PEBS MRCs to be good, but imperfect approximations,

while keeping average PEBS overheads below 5%. We were unable to show that PEBS is

better or worse than existing techniques, but believe we have succeeded in showing the

promise of the use of general purpose performance monitoring hardware for this task and

in motivating future research and development in this area.

ii

Contents

1 Introduction 1

1.1 Why Memory Management? . 1

1.2 Why Miss Rate Curves? . 3

1.3 Why Performance Monitoring Hardware? 4

1.4 Overview . 4

2 Miss Rate Curves 5

2.1 Visualizing Memory Requirements with MRCs 6

2.1.1 What is an MRC? . 6

2.1.2 Understanding Application Memory Requirements 7

2.2 Applications of MRCs and Memory Traces 8

2.2.1 Memory Allocation . 9

2.2.2 Page Replacement . 9

2.2.3 Prefetching . 10

2.2.4 Power Consumption . 10

2.2.5 Application-Specific Optimization 10

2.3 Collecting Memory Utilization Data . 11

2.4 Existing MRC Knowledge . 13

3 Hardware Data Sampling 15

3.1 Standard Facilities . 15

iii

3.2 Precise Event-Based Sampling (PEBS) 16

3.3 PEBS Memory Applications . 18

3.4 PEBS For MRCs . 19

4 Generating MRCs 21

4.1 Tracking Memory Accesses . 21

4.2 Extracting Memory Addresses . 22

4.3 Mattson’s Stack Algorithm . 23

5 Implementation 25

5.1 Tracking DTLB Misses Using PEBS . 25

5.2 Calculating Memory Addresses from PEBS Entries and Generating MRCs 27

5.2.1 Example . 28

6 Evaluation 30

6.1 Test Platform and Benchmarks . 30

6.2 Micro-Benchmarks . 31

6.3 PEBS Data Loss and Reset Values . 37

6.4 Overhead due to PEBS . 37

6.5 Accuracy . 45

6.6 MRCs . 49

7 Discussion 59

7.1 Applicability of PEBS to MRC Generation 59

7.2 PMU Optimizations . 60

7.3 Understanding MRCs . 61

7.4 Conclusions . 62

iv

List of Figures

2.1 A Miss Rate Curve . 6

3.1 64-Bit PEBS Record Format [8] . 17

5.1 System Overview . 26

6.1 Random Access Micro-Benchmark . 33

6.2 Sequential Access Micro-Benchmark . 34

6.3 Matrix Multiplication Micro-Benchmark 36

6.4 Data Loss for the Blackscholes and Bodytrack Benchmarks 38

6.5 Data Loss for the Canneal and Facesim Benchmarks 39

6.6 Data Loss for the Ferret and Fluidanimate Benchmarks 40

6.7 Data Loss for the Freqmine and Streamcluster Benchmarks 41

6.8 Data Loss for the Swaptions and X264 Benchmarks 42

6.9 PEBS Overheads (1 of 2) . 43

6.10 PEBS Overhead (2 of 2) . 44

6.11 Blackscholes MRC showing the PEBS and Real MRCs having similar cliffs.

Blackscholes with PEBS did not produce enough data for comparison for

smaller datasets. 46

6.12 Ferret MRCs showing how PEBS accuracy degrades for smaller memory

sizes. 47

v

6.13 X264 MRCs showing similarity in shape between PEBS MRCs and Real

MRCs. 48

6.14 Blackscholes MRCs . 50

6.15 Freqmine MRCs . 51

6.16 Bodytrack MRCs . 52

6.17 Canneal MRC . 53

6.18 X264 MRCs . 54

6.19 Facesim MRCs . 55

6.20 Fluidanimate MRCs . 56

6.21 Ferret MRCs . 57

6.22 Streamcluster MRCs . 58

vi

List of Tables

3.1 PEBS Performance Events for Intel Core microarchitecture [8] 18

6.1 PARSEC Benchmarks [18] . 31

vii

Chapter 1

Introduction

This paper describes the use of the hardware performance monitoring unit on existing

Intel processors to generate miss-rate curves to further our understanding of applica-

tions’ memory requirements and advance our memory management techniques. Section

1.1 motivates our research in the area of memory management. Section 1.2 describes

Miss Rate Curves, which we believe are a valuable tool in addressing some of the chal-

lenges described in Section 1.1. Section 1.3 motivates our choice of existing performance

hardware as the means by which to generate Miss Rate Curves. Finally, Section 1.4 gives

an overview of the remainder of this paper.

1.1 Why Memory Management?

The increasing performance gap between CPUs and main memory, known as the memory

wall, means that many applications can process data faster than they can fetch it from

memory [17]. When insufficient memory is allocated, however, the cost of a page fault

becomes the dominant factor in the cost of a memory access [6]. With insufficient memory

we must reduce the cost of paging if we are to beat the memory wall.

Faster storage, such as solid-state disks, may help to partially close the memory-disk

gap in the future, but the gap will still remain. More memory can be purchased, but this is

1

Chapter 1. Introduction 2

an expensive and power-hungry solution. In scientific or financial computing, algorithms

may be tailored to the available memory; however, this assumes dedicated hardware.

In a general purpose or server computing environment where multiple applications are

frequently being run in parallel, and workloads are often dynamic in nature, memory

management is still critical.

Memory is getting larger and cheaper, but recent computing trends towards greater

mobility and virtualization reduce the memory available to each application in two ways:

by reducing the overall memory and by increasing the number of applications being run.

While memory has always been critical on the desktop, the emergence of mobile

computing devices such as laptops and netbooks means that we often have less memory

available on our systems, while still demanding high performance. In particular modern

streaming and interactive web applications can quickly use up available memory1. Users

frequently run multiple applications or view multiple web sites simultaneously, switching

rapidly between them, and expect this to be near instantaneous. However, cost and

power constraints make it unrealistic to put large amounts of memory in a notebook or

netbook.

On the server, virtual machines are increasingly popular, consolidating multiple oper-

ating system instances and applications onto a single physical machine. This introduces

an additional layer of complexity in memory management, as the virtual machine monitor

or hypervisor is now responsible for allocating memory between multiple virtual machines.

Each virtual machine instance faces increased memory pressure as it only receives a frac-

tion of the host’s physical memory. As virtual machines become increasingly dynamic,

through virtual machine migration or cloning, as in the Snowflock project[14, 19], the

memory load on a single physical machine becomes increasingly dynamic as well. For

servers, power is also an increasingly important constraint, and both cost and power con-

1Launching the Safari web browser, logging in to facebook.com and playing a video uses over 300MB
of memory for the browser alone on Mac OS 10.6

Chapter 1. Introduction 3

strain the available memory that can be installed into a system. Despite falling memory

costs, the cost of memory dominates the cost of large server systems today.

In both the server and mobile spaces, increasingly large numbers of processes are

accessing memory, not only producing increased memory pressure on each application,

but also increasing the complexity of managing memory. The challenge is to find an

efficient means of allocating memory between many processes.

1.2 Why Miss Rate Curves?

We contend that the quality of memory management algorithms is constrained primarily

by the information available to the operating system from the hardware. Today’s algo-

rithms do the best they can with the very limited information provided by the hardware’s

“referenced” and “dirty” bits, which tell the operating system whether a page of memory

has been used and whether the page has been modified. If the operating system wants to

know more detailed information about its pages, such as the reuse distance or the relative

ordering of page accesses, the OS must attempt to estimate these properties itself based

on the limited information available. New models of memory utilization are required and

the hardware must support these abstractions.

For memory allocation, we would like to make a trade-off between the amount of

memory allocated and performance. To do so, we would like to know how an application’s

performance depends on its memory allocation. Miss Rate Curves (MRCs) provide this

information. MRCs show the number of page faults of a process as a function of the

amount of memory allocated. Chapter 2 describes MRCs and their applications in more

detail.

Miss Rate Curves may be the new model that we are looking for, but first it is

necessary to show that they can be produced efficiently and they can be used to improve

our memory management algorithms.

Chapter 1. Introduction 4

1.3 Why Performance Monitoring Hardware?

There are two primary challenges related to MRCs. The first is how to generate accurate

MRCs with low enough overhead for practical online use. The second is identifying

the best algorithms and mechanisms for online MRC-based optimization. This work

focuses on the first challenge, as we believe a solid understanding of MRC properties is a

prerequisite for developing good MRC-based algorithms and good MRCs are needed in

order to develop this understanding.

A number of methods for MRC generation exist, as described in Section 2.3. Generally

those that do not rely on specialized hardware have high overheads. Those that rely on

specialized MRC-generating hardware are purely theoretical as the hardware does not

exist. We attempt to find a middle ground by using existing specialized hardware, the

CPU’s Performance Monitoring Unit (PMU), to generate MRCs. Our goal is low overhead

and good accuracy on currently available real-world hardware.

1.4 Overview

Chapter 2 describes MRCs in more detail, describing what they are, how they are used,

and how they are generated. Chapter 3 describes the use of performance monitoring

facilities, particularly Intel’s Precise Event-Based Sampling (PEBS), and it’s applica-

bility to memory-related tasks. Chapter 4 describes, at a high level, the challenges of

generating MRCs using PEBS, while Chapter 5 goes into the details of our implemen-

tation. Chapter 6 evaluates the success of PEBS-based MRC generation and Chapter

7 concludes by discussing future directions for MRC-based research and for PMU-based

memory tracking.

Chapter 2

Miss Rate Curves

Miss Rate Curves (MRCs) have been developed to better understand the memory require-

ments and utilization of applications or systems in main memory [3, 15, 32, 33], file caches

[12, 20, 34], or on-chip L2 cache [21, 27, 28]. They serve both as visualizations to aid

human understanding of memory utilization and as input for resource-management algo-

rithms. Their use has been proposed for memory allocation [3, 15, 33], page replacement

[3, 32], memory prefetching [3], memory power management [33], and application-specific

memory optimization [32].

Technically, the MRCs discussed in this paper are LRU MRCs as they assume an LRU

(Least Recently Used) replacement policy. Miss rate curves can be determined for other

replacement policies; however, online MRC generation using Mattson’s Stack Algorithm

as described in Section 4.3 is only possible for stack-based replacement policies such as

LRU or MRU (Most Recently Used). For readability, we use “MRC” throughout this

paper to mean “LRU MRC”, except where prefaced by another replacement policy, as in

“MRU MRC”.

A number of applications of MRC data have been proposed. These are described in

Section 2.2. The adoption of these techniques, however, has been slowed by the cost

of obtaining MRC data. Section 2.3 describes the techniques that have been used for

5

Chapter 2. Miss Rate Curves 6

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0 1000 2000 3000 4000 5000 6000

M
is

s
R

at
e

(p
ag

e
fa

ul
ts

)

Memory Allocation (pages)

ferret with simmedium dataset

Sampling Frequency
1/1
1/2
1/3
1/4
1/5

Real

Figure 2.1: A Miss Rate Curve

generating MRCs on-line. In Section 2.4 the holes in our existing knowledge of MRCs

are discussed.

2.1 Visualizing Memory Requirements with MRCs

2.1.1 What is an MRC?

An MRC is a curve plotting the rate at which misses occur when a process is executed

with a specific amount of memory given to that process. For our purposes, since we

are evaluating main memory, misses are page faults and the memory size is recorded in

pages. In theory an MRC could be generated by running the process with every possible

memory allocation and recording the results. However, for real-world use, more efficient

methods are required.

Chapter 2. Miss Rate Curves 7

The MRCs in this paper include all misses, both capacity misses (misses due to

insufficient memory) and compulsory misses (misses due to accessing a page for the first

time). MRCs are not always represented in this manner, as some authors choose to show

only capacity misses. The inclusion of compulsory misses helps to show the total size of

the MRC, and makes it easier to see the shape of the MRC as it is not obscured by the

X-axis.

Another varying property of MRCs is the manner in which the miss rate is shown.

Many papers use MPKI (Misses Per thousand(K) completed Instructions). Others chose

to show the Miss Ratio rather than the Miss Rate, showing the fraction of all memory

accesses that result in misses. We choose to show the absolute number of misses. The

curves in all cases are identical, with the only difference being the scaling of the Y-axis.

2.1.2 Understanding Application Memory Requirements

The seemingly basic question in attempting to understand an application’s memory re-

quirements is “how much memory does it need?” This question, however, is not so basic,

as it raises the question “for what?” For truly optimal performance, many applications

need much more memory than can realistically be provided. Simply asking “how much

memory does it need?” is not enough. The question is “how much memory does it need

for a given level of performance?” or inversely “how will an application perform with a

given amount of memory?”

MRCs answer this question. They show, for a given time-slice, the application’s

“memory performance” for every possible memory size, under the assumption of LRU

(Least Recently Used) page replacement. “Memory performance” for our purposes is

determined by the rate of page faults. Memory size is shown as the number of pages

allocated to the application. In this paper, MRCs show the rate of page faults on the

Y-axis and the number of allocated pages on the X-axis. MRCs may also be used for

other levels of the memory hierarchy. For instance, in the case of an L2 cache, the MRC

Chapter 2. Miss Rate Curves 8

would typically show L2 cache misses on the y-axis and the number of L2 cache lines on

the x-axis, under the assumption of a fully-associative cache. Non-LRU memory MRCs

are possible, but have only been used in one of the studies we are aware of [3], where

MRU (Most Recently Used) MRCs were evaluated.

Given an MRC’s precise knowledge about the memory requirements of a region1

in memory, memory may be managed in a more informed manner than with current

techniques. From the MRC, we can determine, for any allocation of memory, how

memory-constrained the region will be, and this information can be used in making

memory-management decisions. Memory may be allocated to different regions of mem-

ory to optimize overall system performance or the performance of specific processes. If

a system’s memory requirements are determined to be less than the amount of memory

provided by hardware, memory may be shut down to save power.

2.2 Applications of MRCs and Memory Traces

This section describes a number of proposed applications of main memory MRCs in com-

puter systems. While it focuses on MRCs, applications are included that are tangentially

related due to their dependence upon pre-MRC data, that is data that must be collected

for MRC generation. MRCs for caches [21, 27, 28] and file buffers [12, 20, 34] are also

useful.

1Defining a “region” of memory is an interesting but orthogonal problem. This work avoids the issue
by treating each process’ address space as a single region. However, for an operating system it may be
preferable to have multiple regions per application, isolating large data structures with different access
patterns and hence different memory requirements into independent regions, or to combine many smaller
processes into a single region. A region may be generally viewed as a chunk of memory (not necessarily
contiguous) for which the system is tracking memory utilization as a single unit.

Chapter 2. Miss Rate Curves 9

2.2.1 Memory Allocation

Detailed knowledge of the memory usage requirements for the regions of memory active

within a computer system may be used to allocate physical memory to individual regions,

for optimization of performance and fairness. For performance, the most basic approach

has been greedy allocation [3, 15, 33] favoring the process with the greatest marginal

utility at each allocation step. This approach is provably optimal for a convex MRC

[33], but may result in highly non-optimal allocations for regions with plateaus or large

concave portions in their memory requirements. Greedy algorithms with look-ahead [21]

have been proposed to see past these plateaus, but have not been thoroughly investigated.

The idea of fair allocation has been proposed [15, 33], but no satisfactory definition

of fairness seems to exist, and allocators have not been proposed using MRC data for

anything other than performance optimization. Weighted utility functions are in use [33]

for prioritizing different memory regions, and require only that the scale of the MRCs used

for input be adjusted. Varying the weighting between regions to reflect process priorities

is a potential approach for priority-based optimization. However, to our knowledge this

has not yet been studied.

In addition to their use for allocation between regions at the operating system level,

MRCs have been used in memory allocation between virtual machines at the level of the

hypervisor [15].

2.2.2 Page Replacement

An operating system’s memory management policies must deal with two orthogonal is-

sues: allocating memory between regions and choosing pages for replacement from within

a given region. The previous section described how MRCs may be used to solve the for-

mer problem. This section describes how an LRU stack, which we see in Section 4.3 is a

pre-requisite data structure for MRC generation, can be used for page replacement.

Chapter 2. Miss Rate Curves 10

While MRC-based memory allocation may be achieved without modifying the under-

lying page replacement policy of the operating system [33], most allocation-based work

also includes a simple replacement algorithm based upon the LRU stack [3, 32]. PATH

[3] goes further, looking at LRU, MRU, and LIRS [10] replacement as well as adaptively

switching between replacement policies.

The page replacement techniques above, with the exception of adaptively switching

between LRU and MRU replacement, rely solely upon the LRU stack, rather than MRC

data. They are included here because the the LRU stack is a necessary intermediate

stage in MRC creation.

2.2.3 Prefetching

PATH [3] uses page access traces, an intermediate stage towards LRU stack and MRC

creation, for prefetching sequences of pages showing temporal locality. This approach

may either replace or complement existing prefetching techniques based upon spatial

proximity.

2.2.4 Power Consumption

One of the original applications of MRCs was reducing power consumption [33]. This is

accomplished by moving pages with shorter reuse distance2 onto the same memory chips

and then powering down chips with low utility.

2.2.5 Application-Specific Optimization

CRAMM [32] allows a Java VM to use OS memory usage information (gathered via

MRCs) to maximize its heap size without causing thrashing. To do this, it requires an

2Reuse distance describes how many other pages are touched between subsequent accesses to a given
page. This may be visualized as the distance between the location of a page in the LRU stack when it
is accessed and the head of the LRU stack.

Chapter 2. Miss Rate Curves 11

interface for passing memory usage information between the OS and applications.

Application-specific page replacement was also suggested in the context of K42 [2],

where per-region Page Manager objects potentially allowed for a variety of replacement

schemes. A replacement policy based upon communication with the application is a

natural extension of such an approach.

2.3 Collecting Memory Utilization Data

Early research required that MRCs be gathered offline by repeatedly re-running an appli-

cation using varying memory sizes [1, 11, 24, 25]. Memory traces for MRC generation can

also be generated through simulation or through instrumentation of memory accesses.

Run-time collection of MRC data was first proposed by Zhou [33]. Both a hardware and

a software approach were suggested, with the proposed hardware being implemented in a

simulator. Since then we have seen several pure-software [15, 32] approaches to gathering

MRC data, as well as a hardware-software hybrid [3].

The approach in both hardware and software requires updating an LRU stack for

each memory access and applying Mattson’s Stack Algorithm, described in Section 4.3.

Tracking of page accesses is necessary for the generation of the LRU stack. To track page

accesses, Zhou’s original hardware implementation [33] snoops on the memory bus. On

each access, a hardware LRU stack and MRC are updated. This pure hardware approach

is efficient with respect to time , but storing the LRU stack requires 2MB of storage for

each 1 GB of memory. The hardware is decidedly single-purpose as only the complete

MRC is exposed outside of the hardware.

Zhou’s software approach uses memory protection to track page accesses. Since han-

dling protection faults is a relatively expensive operation, the pages are divided into

an active and inactive set. The active set contains recently accessed pages and is not

page protected, instead relying on regular scanning of the page access bits. Pages in

Chapter 2. Miss Rate Curves 12

the inactive set are protected in memory, causing a protection fault on each access. In

this manner, protection faults are only triggered in the uncommon case, greatly reducing

overhead while slightly reducing the accuracy of the LRU stack. LRU stacks and MRCs

are maintained by the OS, with bins used to reduce the overhead of determining stack

position. Overhead estimates are 7-10%

CRAMM [32] improves the efficiency of the software approach with two primary

optimizations. The active and inactive sets are dynamically re-sized, allowing the page

protection fault overhead to be reduced. In addition, an AVL tree is layered over the LRU

stack, reducing the overhead on each update. Between these two techniques, overhead

is reduced to 1-2.5%. However, it has been argued that to get such a low overhead, the

accuracy must be reduced beyond the realm of usefulness for many proposed applications

of MRCs [3].

PATH [3] combines the software and hardware approaches. The LRU stack and MRC

is maintained by the OS in a manner similar to Zhou’s software approach, while special-

ized hardware was proposed to track page accesses. Overhead is reduced by filtering out

repeated accesses to hot pages, with a slight loss of accuracy at the top of the LRU stack,

and by buffering page accesses so that the OS is infrequently interrupted. Overhead is

conservatively estimated to be roughly 6% and the generated MRCs are believed to be

more accurate than those from efficient software-only approaches. Because the proposed

hardware exposes page access information to the OS, other memory management opti-

mizations are possible (see 2.2.2, 2.2.3 above) beyond those facilitated by MRC data.

BACH [9] also proposes specialized hardware for generating memory traces, but for the

purpose of trace-driven analysis, and this scheme has been shown to be constrained by

the cost of writing to disk [31].

Qureshi [21] proposes a full hardware approach for generating MRCs at the hardware

cache level. However, this approach does not scale up to main memory. Monitoring a

4 MB 16-way cache with 64 byte lines requires maintaining LRU ordering for the 16

Chapter 2. Miss Rate Curves 13

lines in each of 4096 sets, whereas monitoring 4GB of main memory requires a single

LRU stack containing over a million entries. Since the cache already maintains LRU

information within each of its sets, for the cache, the LRU stack information is effectively

free, whereas maintaining a large LRU stack is computationally expensive. Qureshi

reduces the overhead further by only monitoring a subset of the cache sets.

Lu [15] uses a modified hypervisor to generate MRCs without modifying the operating

system. The hypervisor maintains a large page cache. Virtual machines are provided

with artificially low memory allocations; however, since pages are “swapped” in from the

hypervisor cache, rather than disk, the penalty is relatively low. The overhead is low

and proportional to the hypervisor cache size. This approach only produces miss rate

data for larger memory allocations. Granularity is also reduced, as MRCs represent the

entire virtual machine, rather than the individual process, which may be an advantage

or disadvantage depending upon the intended use for MRC data.

2.4 Existing MRC Knowledge

Recent work on MRCs has focused on performance improvement rather than workload

characterization. As such, much of the qualitative data about MRCs has gone unpub-

lished. MRC examples are sometimes included for purposes of illustration, but the focus is

generally on quantitative evaluation of the performance of MRC-based techniques rather

than the MRCs themselves.

A number of limitations exist in the existing studies. In many cases, total system

memory is quite low [32, 33] with memory pressure applied synthetically [32], and as such

the benchmarks used are not necessarily representative of real-world memory-constrained

applications. In some studies, particularly those relying on simulation for validation, the

benchmark runs are very short, evaluating only a short time-slice of the process’ lifetime

[3], or using only small, short-lived benchmarks [32].

Chapter 2. Miss Rate Curves 14

The properties of MRCs are not generally agreed upon. For instance, it has been

reported that they are usually convex [33] which seems to be supported by some results

[15, 32], while the MRCs published elsewhere show otherwise [3, 21]. This is likely a

reflection of both the choice of benchmarks and the granularity at which MRC data is

collected.

To expand our knowledge of the characteristics of MRCs in real applications, we re-

quire a low-overhead, high-accuracy method of MRC generation with available hardware.

In Chapter 3 we describe the hardware data sampling mechanisms that may achieve this

goal.

Chapter 3

Hardware Data Sampling

Performance Monitoring Units (PMUs) and Hardware Performance Counters (HPCs)

have become an important component of all modern CPUs. A basic overview of PMUs

is presented in Section 3.1. Section 3.2 describes the specifics of Intel’s Precise Event-

Based Sampling (PEBS) facilities. Related work using PEBS is described in Section 3.3.

Finally, the limitations and advantages of PEBS for the problem of tracking memory

accesses and generating a MRC is described in Section 3.4.

3.1 Standard Facilities

On modern CPUs, a limited set of hardware counters is provided for counting performance

events. The type of events to be counted and the manner in which they are counted is

programmed via a set of control registers.

Typically, processors allow the counting of various events related to normal and abnor-

mal execution, such as CPU cycles, instruction counts (sometimes for specific instruction

types as well), branch mispredictions, and a range of memory-related events such as cache

and DTLB misses. Frequently there are limitations on how events may be counted: the

total number of counters is usually quite small, often less than 10; events are often con-

strained in terms of which counters can be used to count them or which other events may

15

Chapter 3. Hardware Data Sampling 16

be counted simultaneously. Some of these limitations may be addressed through HPC

Multiplexing [4].

HPCs can be read on demand or in response to timer or overflow interrupts. HPCs

may also be used in conjunction with overflow interrupts to trigger the monitoring of other

aspects of the machine state. However, frequent overflow interrupts may dramatically

degrade performance as application execution is halted for overflow interrupt handling.

In the next section, we see how PEBS addresses this problem.

3.2 Precise Event-Based Sampling (PEBS)

PEBS is an Intel facility for reducing the overhead of overflow-triggered sampling of the

processor state; it was introduced with the Netburst microarchitecture. When an HPC is

used with PEBS, the overflow interrupt is handled by hardware. On a counter overflow,

the complete register state is saved into a buffer and the counter is reset. Execution is

only interrupted when the buffer overflows, reducing overhead.

PEBS records a PEBS record, containing the architectural registers and state infor-

mation into a programmer-configured PEBS buffer in memory. While in practice the

PEBS record format is fixed, Intel dedicates 5 bits to specifying what is to be stored

in a PEBS record, suggesting that other recording functionality could hypothetically be

added. The format of a PEBS record is shown in Figure 3.1 on page 17.

PEBS is limited to tracking one performance-monitoring event at a time, as PEBS

works only with a single counter. PEBS is also very limited in terms of which performance-

monitoring events can be used. Table 3.1 on page 18 shows the performance-monitoring

events that work with PEBS on the Intel Core microarchitecture.

These events are counted during instruction retirement. For example, a cache or

DTLB miss will not be counted until the instruction that was waiting on the memory

operation is completed and retired. On the Netburst microarchitecture, a PEBS record

Chapter 3. Hardware Data Sampling 17

Status Register: Maintains status flags used by conditional branch instructions.
Instruction Pointer: Maintains location in program execution.
Result Register: Used for returning results.
Preserved Register: Value preserved across calls.
Parameter Register: Used for passing of parameter values.

 0

 200000

 400000

 600000

 800000

 1e+06

 0 500 1000 1500 2000 2500 3000 3500

M
is

s
R

at
e

(p
ag

e
fa

ul
ts

)

Memory Allocation (pages)

x264 with simmedium dataset

Sampling Frequency
1/1
1/2
1/3
1/4
1/5

Real

63 0

RFLAGS Status Register 0x0

RIP Instruction Pointer 0x8

RAX Result Register 0x10

RBX Preserved Register 0x18

RCX Parameter Register 0x20

RDX Parameter/Result Register 0x28

RSI Parameter Register 0x30

RDI Parameter Register 0x38

RBP Preserved Register 0x40

RSP Preserved Register 0x48

R8 Parameter Register 0x50

R9 Parameter Register 0x58

R10 Register 0x60

R11 Register 0x68

R12 Preserved Register 0x70

R13 Preserved Register 0x78

R14 Preserved Register 0x80

R15 Preserved Register 0x88

144 Bytes

Figure 3.1: 64-Bit PEBS Record Format [8]

Chapter 3. Hardware Data Sampling 18

Event Name Description

INSTR_RETIRED.ANY_P Any retired instruction
X87_OPS_RETIRED.ANY Any retired floating-point

instruction
BR_INST_RETIRED.MISPRED Any retired branch instruction
SIMD_INST_RETIRED.ANY Any retired vector instruction

MEM_LOAD_RETIRED.L1D_MISS Any retired instruction that waited
on an L1 cache miss

MEM_LOAD_RETIRED.L1D_LINE_MISS Any retired instruction that waited
on an L1 cache miss and caused
the cache line to be requested

MEM_LOAD_RETIRED.L2_MISS Any retired instruction that waited
on an L2 cache miss

MEM_LOAD_RETIRED.L2_LINE_MISS Any retired instruction that waited
on an L2 cache miss and caused
the cache line to be requested

MEM_LOAD_RETIRED.DTLB_MISS Any retired instruction that waited
on a data TLB miss

Table 3.1: PEBS Performance Events for Intel Core microarchitecture [8]

captures the CPU state at the onset of the instruction that caused the counter overflow.

On the Core/Core2 microarchitecture, a PEBS record captures the state immediately

before the next instruction.

3.3 PEBS Memory Applications

PEBS has found a number of applications. This section describes other applications of

PEBS for gathering memory addresses. In Section 3.4 the unique elements of our work

are discussed.

The PMPT (Performance Monitoring PEBS Tool) [5] integrates the PEBS-generated

memory addresses with information collected from malloc() to identify data structures

that are contributing to poor cache performance. L2 cache misses are sampled, the

data addresses are calculated using methods similar to this work, and this data is cross-

referenced against records from a modified version of malloc to identify the data structures

Chapter 3. Hardware Data Sampling 19

responsible for the L2 cache misses.

TOPP (Trace-based Optimization for Precomputation and Prefetching) [23] uses

PEBS-generated memory traces for prefetching. L2 cache misses are sampled using

PEBS and pattern recognition techniques are used to perform temporal-locality-based

prefetching by generating “prefetch slices” that are executed in idle thread contexts.

Vivek Thakkar [30] uses PEBS-generated memory traces for determining page affinity

and performing page migration on ccNUMA architectures. Sampled L2 cache misses are

used to generate a trace of page accesses for each node, and pages are then migrated to

the nodes that are using them most.

Schneider et al. [26] use PEBS to sample cache misses. They do not calculate the

memory addresses, unlike the other works described here. Instead, they use the instruc-

tion pointers to optimize the JIT compilation of Java bytecodes.

3.4 PEBS For MRCs

This section highlights some of the unique aspects of our research as well as identifying

an alternative methods of MRC generation that we did not attempt.

While most memory-related PEBS work samples L2 misses, we felt that DTLB misses

were a better fit for gathering information about pages. The redundancy of having up to

64 L2 misses for each page might alleviate the issue of data loss, described in Section 6.3;

however, that redundancy would also drive up overheads as well. The increased overhead

could be alleviated by reducing sampling frequencies, but this would increase the risk of

systematic data loss due to striding access patterns that only caused a small number of

L2 misses on each visited page.

Another unique aspect of our work is the sampling frequencies used. We set PEBS

to attempt to capture every single DTLB miss. We know of no other work that pushes

PEBS to its limits in this way, and the behaviour of PEBS under these conditions is

Chapter 3. Hardware Data Sampling 20

undocumented.

Memory traces might also be generated on hardware with a software-managed TLB

by instrumentation of the TLB miss handler. This would produce similar data to our

approach, without suffering from the data loss problem mentioned above and detailed

later. However, the TLB miss handling code is a critical performance path, and adding

increased overhead to this code could be incredibly costly overall. PEBS gives us the

same data with lower overheads, but with some data loss.

More details of PEBS-based MRC generation are found in Chapter 4 and Chapter 5

with the details of the PEBS configuration in Section 5.1. The success of this approach

is detailed in Chapter 6.

Chapter 4

Generating MRCs

In an ideal world, our hardware could provide a ready-to-use MRC as in Qureshi[21]

and Zhou[33]’s proposals, or a Memory Trace as in PATH[3]. The goal of this work,

however, was to use existing real-world hardware, specifically PEBS, which was not

designed specifically for this purpose.

This section describes at a high level how PEBS may be used to generate an MRC

at run-time. Section 4.1 describes how to track memory accesses using PEBS. Section

4.2 describes how to extract the memory addresses into a Memory Trace. Section 4.3

describes Mattson’s Stack Algorithm [22], which is an algorithm for building a MRC from

a Memory Trace. Chapter 5 describes the implementation details for each of these steps.

4.1 Tracking Memory Accesses

There are two limitations of PEBS when it comes to tracking memory accesses. First, due

to the limited events that PEBS can monitor, we are forced to use either cache or TLB

misses as a proxy for memory accesses. Second, PEBS is a mechanism for coarse-grained

sampling, so it was not intended to record an entry for every instance of an event.

While memory accesses is not one of the supported performance events for PEBS on

the Intel Core/Core2 microprocessor, it is possible to monitor misses in the L1(data) or

21

Chapter 4. Generating MRCs 22

L2 caches or DTLB misses. For our purposes, we can view the caches and the DTLB as

acting as a series of filters, removing repeated accesses to recently accessed, or “hot”, pages

from our stream of memory accesses. At each successive level, more memory accesses are

filtered out. This may initially seem to be a problem, but is in fact of benefit to us. It

will become clear in Section 4.3 when Mattson’s Stack Algorithm is discussed that the

impact of these “hot” pages on the MRC is significant primarily for very small memory

allocations, while monitoring these hot pages adds both time and space overhead. In fact,

the PATH hardware proposal [3] successfully uses additional hardware filters to reduce

the size of its trace buffer. We show in Section 6.5 that DTLB misses can be used to

produce MRCs with the same characteristics as a true MRC based on memory accesses.

In this work, we attempt to track each memory access that results in a DTLB miss.

It is not our belief that PEBS was intended to be used in this manner. PEBS seems to

be intended as a sampling mechanism. Most PEBS applications and examples that we

have seen use sampling frequencies around 1/100,000 and the behaviour of PEBS at high

sampling frequencies is undocumented. In this work, we attempt to push the sampling

frequency to 1/1. As we will show, some data loss occurs if a 1/1 sampling frequency

is used, and at the outset it was not clear to what extent this would present a problem

for our approach. Section 6.3 explores the relationship between data loss and sampling

frequencies in PEBS.

4.2 Extracting Memory Addresses

Recall that PEBS provides in its output a copy of the register state. This state does not

explicitly contain the address that was used to access memory. However, it is possible

to calculate the address from the saved registers. Using the instruction pointer from the

PEBS output to search the assembly code of the monitored application, the instruction

corresponding to the memory access may be found. Once the instruction’s assembly

Chapter 4. Generating MRCs 23

is available, standard x86 addressing is simulated using the register values provided by

PEBS.

An additional complication is that on the Intel Core/Core2 microarchitecture (which

we use in our experiments) PEBS provides the register state at the outset of the instruc-

tion immediately following the instruction of interest. This complicates the calculation

of the true instruction pointer that caused the DTLB miss. Due to x86’s variable-length

instructions, the instruction pointer of interest cannot be calculated without the appli-

cation assembly code, but instead must be found by moving backwards in the assembly.

Additionally, in the event that the instruction of interest overwrites one of the registers

used in the address calculation, it becomes impossible to correctly determine the correct

address1.

The results of processing the PEBS records in this manner is a Memory Trace, which

can be used to produce an MRC as explained in Section 4.3.

4.3 Mattson’s Stack Algorithm

Mattson’s Stack Algorithm [22] is an algorithm for generating a Miss Rate Curve from

an access trace. It was developed by Mattson in 1970 and first applied to memory by

Kim in 1991 [13].

The algorithm maintains an LRU stack and a set of counters with one counter for

each entry in the LRU stack. For each memory access, the counter corresponding to its

current distance from the top of the stack is incremented and the page is then moved to

the top of the stack to maintain the LRU ordering.

For example, on an access to page 326, the algorithm finds the entry in the stack

corresponding to page 326. Suppose the page is found 27 items into the stack, then

counter 27 is incremented, and page 326 is moved to the top of the stack.

1This situation could be identified by comparing the source and destination registers of the instruction.
However, this complicates the implementation and was not implemented in this work.

Chapter 4. Generating MRCs 24

To generate an MRC, the number of page faults for a given memory allocation is

calculated by summing all the counters corresponding to stack distances greater than

the number of pages in the given allocation. The expected number of page faults with n

pages can be expressed as:

faultsn =
N�

i=n+1

counteri, whereN is themaximumcounter number

In the real world, searching and modifying a stack on each memory access is time con-

suming. Various optimizations exist [3, 29, 32, 33]. Customarily stack items are grouped

into blocks so that it is possible to quickly find the item using hashing or another lookup

scheme and then quickly calculate the stack distance based on which block the item is

in. These optimizations were not implemented in this work; however, the existing work

in this area makes it clear that efficient implementations of Mattson’s Stack Algorithm

exist.

Chapter 5 details the implementation decisions that were made in generating MRCs

using PEBS.

Chapter 5

Implementation

This chapter describes the implementation details of our system to generate MRCs using

PEBS. Section 5.1 describes the use of PEBS to monitor DTLB misses on a modern Linux

kernel using Perfmon2 and the libpfm library. Section 5.2 describes the use of objdump

to calculate the memory address from a PEBS entry and the use of this information to

generate an MRC.

The specific tools used in this system are not requisite for this task. While our

implementation is Linux-specific (running in our case on a 2.6.29 kernel), in principle

any operating system running on a PEBS-capable processor could be used. The only

true requirements are a PEBS-capable processor and access to application binaries.

Figure 5.1 on page 26 provides an overview of our system that may prove useful in

understanding this chapter.

5.1 Tracking DTLB Misses Using PEBS

The libpfm library provides a library for user-level access to the perfmon [7] interface,

a proposed extension to the Linux kernel providing platform-independent system calls

for setup and access to the system’s hardware performance monitoring unit. In our

experience, this combination is a versatile and usable means of programming performance

25

Chapter 5. Implementation 26

LRU MRC Data
0 14035
1 14035
2 14035
3 14035
4 14035
5 14035
6 14035
7 14035
8 14035
9 14035
10 14035
11 14035
12 14035
13 14035
14 14035
15 14035
16 14035
17 14035
18 14035
19 14035
20 14035
21 14035
22 14035
23 14035

LRU MRC

 0

 5000

 10000

 15000

 20000

 0 200 400 600 800 1000 1200

M
is

s
R

at
e

(p
ag

e
fa

ul
ts

)

Memory Allocation (pages)

randmatmult

Sampling Frequency
1/1
1/2
1/3
1/4
1/5

Real

Memory Trace
34143065325
34143065327
267418
34143065330
34143065332
34143065334
34143065336
34143065338
34143065340
34143065342
34143065344
34143065346
34143065348
34143065350

Register Trace
entry 016249 eflags:0x00000283 IP:0x0040085d
! EAX:0x7f315d4fe000 EBX:0x004008e0
! ECX:0x4393d8477f9922b6
! EDX:0x11b4a0f6 ESI:0x7fff65ac2c34
! EDI:0x7f315d89d4c0 EDP:0x7fff65ac2ce0
! ESP:0x7fff65ac2c50 R8:0x7f315d89d064
! R9:0x7f315d89d0e0 R10:0x7fff65ac29d0
! R11:0x7f315d568590 R12:0x00400540
! R13:0x7fff65ac2db0 R14:0x00000000
! R15:0x00000000
entry 016250 eflags:0x00000283 IP:0x0040085d
! EAX:0x7f315d500000 EBX:0x004008e0
! ECX:0xefa32bd01fe617ce EDX:0x08b21f44

Lookup File
IP! displ! base! index! scale
40084f! -50! rbp
400853! ! rax
400856! -30! rbp
40085a!! rax
40085d! -40! rbp
400861! ! rax
400868! ! rcx! rax! 1
40086c! -50! rbp
400870! ! rax
400873! -30! rbp
400878! -40! rbp
40087d! -60! rbp
400882! -60! rbp

Application Assembly
40084d: eb 33 jmp 400882 <main+0x256>
40084f: 48 8b 45 b0 mov -0x50(%rbp),%rax
400853: 48 8b 08 mov (%rax),%rcx
400856: 48 8b 45 d0 mov -0x30(%rbp),%rax
40085a: 48 8b 10 mov (%rax),%rdx
40085d: 48 8b 45 c0 mov -0x40(%rbp),%rax
400861: 48 8b 00 mov (%rax),%rax
400864: 48 0f af c2 imul %rdx,%rax 400868:
! 48 8d 14 01 lea (%rcx,%rax,1),%rdx
! 40086c: 48 8b 45 b0 mov -0x50
! (%rbp),%rax
400870: 48 89 10 mov %rdx,(%rax)
400873: 48 83 45 d0 08 addq $0x8,-0x30(%rbp)
400878: 48 83 45 c0 08 addq $0x8,-0x40(%rbp)
40087d: 48 83 45 a0 01 addq $0x1,-0x60(%rbp)

Application Binary
^?
ELF^B^A^A^@^@^@^@^@^@^@^@^@^B^@>^@^A^@^
@^@@^E@^@^@^@^@^@@^@^@^@^@^@^@^@ ^X^
@^@^@^@^@^@^@^@^@^@@^@8^@ ^@@^@
%^@"^@^F^@^@^@^E^@^@^@@^@^@^@^@^@^@^
@@^@@^@^@^@^@^@@^@@^@^@^@^@^@ø^A^@
^@^@^@^@^@ø^A^@^@^@^@^@^@^H^@^@^@^@^
@^@^@^C^@^@^@^D^@^@^@8^B^@^@^@^@^@^@8
^B@^@^@^@^@^@8^B@^@^@^@^@^@^
\^@^@^@^@^@^@^@^
\^@^@^@^@^@^@^@^A^@^@^@^@^@^@^@^A^@^@
^@^E^@^@^@^@^@^@^@^@^@^@^@^@^@@^@^@^
@^@^@^@^@@^@^@^@^@^@t
^@^@^@^@^@^@t
^@^@^@^@^@^@^@^@

objdump

online PEBS
recording

scan for memory
access instructions

trace generation

Mattsonʼs stack
algorithm

gnuplot

Figure 5.1: System Overview

Chapter 5. Implementation 27

counters on a Linux system. Of particular value for this project was the built-in PEBS

support, which includes mapping the PEBS buffer into user space for fast and efficient

processing.

Most of the complexity of using PEBS is handled by libpfm. We enabled PEBS and

set our sample event to "MEM_LOAD_RETIRED:DTLB_MISS". Our PEBS sample

period was passed in as a command line variable. Setting up the PEBS buffer and

mapping it into user space is handled by libpfm, however it is up to the user to process

the buffer entries. We simply dump the PEBS entries to a regular file, referred to in

Figure 5.1 on page 26 as the Register Trace. This, however, is not particularly efficient,

and an implementation intended for use in online optimization would want to process

the PEBS entries while still in main memory.

Recall from Section 3.2 that each PEBS entry contains the register state of the pro-

cessor immediately following the event being sampled. In the Register Trace, we have a

record of the register state immediately following each sampled DTLB miss.

5.2 Calculating Memory Addresses from PEBS Entries

and Generating MRCs

In order to convert our register state log into a trace of memory addresses, it is necessary

to calculate the memory address for each recorded DTLB miss. This section describes

how that is done.

The simplest, but not necessarily the most efficient means of viewing the application

assembly is using the objdump utility. For each of our benchmarks, we disassemble the

application binary using objdump. The entire application is scanned for instructions

that access memory, which are easily identified by looking at the addressing mode used.

The instruction pointers as well as the registers and immediate values used in the address

calculation are recorded to the Lookup File, for later use. In an online implementation, an

Chapter 5. Implementation 28

in-memory hash-table would dramatically improve lookup time, but its implementation

would be orthogonal to the challenge of determining the quality of data available with

PEBS.

Next, the Register Trace, described in Section 5.1, is scanned. For each entry, the

Lookup File is scanned for the relevant instruction. Each line of the Register Trace

contains the instruction pointer of the subsequent instruction to the instruction that

accessed memory and caused the DTLB fault. As such we must find the closest instruction

preceding the instruction pointer in the Register File. The register values stored in the

registers listed in the Lookup File are extracted from the Register Trace and combined

with the immediate values stored in the Lookup File to perform an address calculation,

following standard x86 addressing rules as follows:

Address = Base+ (Index× Scale) +Displacement

The resulting memory addresses are then divided by 4096 to give us page numbers

which are appended to the Memory Trace in Figure 5.1 on page 26. This Memory Trace

is fed into a standard unoptimized implementation of Mattson’s Stack Algorithm, as

described in Section 4.3 to produce an MRC.

5.2.1 Example

This section provides an example of the process described above. Looking back to Figure

5.1 on page 26, the entries in the Application Assembly, Register Trace, Lookup File,

and Memory Trace corresponding to this example are all in bold.

Our tool scans the Application Assembly to identify instructions that address memory.

In our example, observe that the instruction address 40085a uses register rax. This

information is recorded in the Lookup File. While scanning through the Register Trace,

we see an entry with IP: 40085d. The instruction pointers in the Register Trace point

Chapter 5. Implementation 29

to the following instruction, so we look in the Lookup File for the previous instruction,

which is 40085a. The value of rax (which is actually called EAX in the Register Trace) is

then extracted from the Register Trace. The address calculation in this case is trivial and

the page number is stored in the Address Trace, which is then used as input to generate

the MRC.

Chapter 6

Evaluation

This chapter describes our experiments to determine how well our approach works for

generating MRCs. Section 6.1 describes our test platform. Section 6.2 describes our

experiments on three small hand-written benchmarks. Section 6.3 explores the number

of DTLB misses not captured by PEBS for varying sampling frequencies. Section 6.4

evaluates the overhead of high-frequency sampling of DTLB misses using PEBS. Section

6.6 shows a number of interesting MRCs generated during these experiments and discusses

some of their properties. Section 6.5 attempts to determine the accuracy of our generated

MRCs and their utility for online optimizations.

6.1 Test Platform and Benchmarks

The experiments described below were performed on a server with dual Intel Xeon X5355

quad-core Core2 CPUs and 8 GB of RAM. All benchmarks were run using only a single

core, however, in order to minimize non-determinism. We used a Linux 2.6.29 kernel,

patched to include the Perfmon2 interface.

All benchmarks used were from the PARSEC 2.1 benchmark suite. PARSEC was

chosen because it is free, similar to the SPLASH benchmark suite used in evaluating

PATH, and it seemed to be better supported on x86. Not all PARSEC benchmarks were

30

Chapter 6. Evaluation 31

blackscholes Option pricing with Black-Scholes Partial Differential Equation
(PDE)

bodytrack Body tracking of a person
canneal Simulated cache-aware annealing to optimize routing cost of a chip

design
facesim Simulates the motions of a human face
ferret Content similarity search server
fluidanimate Fluid dynamics for animation purposes with Smoothed Particle

Hydrodynamics (SPH) method
freqmine Frequent itemset mining
streamcluster Online clustering of an input stream
swaptions Pricing of a portfolio of swaptions
x264 H.264 video encoding

Table 6.1: PARSEC Benchmarks [18]

used due to incompatibility with our test system1. The following benchmarks were used:

blackscholes, bodytrack, canneal, facesim, ferret, fluidanimate, freqmine, streamcluster,

swaptions, and x264. Swaptions, however, did not produce enough DTLB missed to

generate accurate MRCs using our approach. Table 6.1 on page 31 shows descriptions

from the PARSEC website of the benchmarks used in our experiments. Each of the

PARSEC benchmarks comes with six datasets, from smallest to largest: test, simdev,

simsmall, simmedium, simlarge, native. We did not use the test dataset for any of our

benchmarks. We used multiple datasets for each benchmark, so as to demonstrate how

the MRC varies with dataset size, but did not use every dataset with each benchmark,

as some were too small to produce good MRCs and others were too large to run during

our experiments.

6.2 Micro-Benchmarks

We wrote three small micro-benchmarks to test our approach and help demonstrate some

basic MRC properties. Knowing the MRCs for these three known access patterns helps

1The raytrace, vips, and dedup benchmarks did not build correctly on our test system.

Chapter 6. Evaluation 32

in making informed estimates about the behaviour of our PARSEC MRCs in Section 6.6.

The Figures in this section show the PEBS-generated MRCs as well as a “Real” MRC

generated by instrumenting every single memory access using Intel’s PIN dynamic in-

strumentation tool [16] and applying Mattson’s Stack Algorithm to the resulting memory

trace. The “Real” MRC is accurate under the assumption of true LRU replacement with

no prefetching or caching, so it may not correspond to true application behaviour.

The rand micro-benchmark randomly increments entries in a 4 MB (1024 page) array

of 64-bit integers. In Figure 6.1 on page 33 we see an almost perfectly linear MRC.

This is to be expected given that the probability of a a randomly accessed page being

in memory is proportionate to the amount of memory given to the application, so with

0 pages, we expect to miss on every access, with 512 pages we expect to miss on half of

the memory accesses, and with 1024 pages we expect 0 misses, as the entire application

fits within memory.

Our “Real” MRC has an identical shape to the PEBS MRCs; however, its magnitude

is much greater. This is likely due to a combination of factors. Our processor’s DTLB

contains 256 entries, so there is a 25% chance of any given access being hidden from us by

the DTLB. More significantly, our benchmark should be expected to generate almost 10

million DTLB misses while running for roughly half a second, and the PEBS hardware is

not capable of capturing 20 million records per second. We note, however, that even when

PEBS captures less than 0.1% of the DTLB misses with a PEBS sampling frequency of

1/5, the MRC shape is still correct for this benchmark.

The bigarray micro-benchmark sequentially increments entries in a 4 MB (1024 page)

array of 64-bit integers, looping through the array 25 times. This benchmark is shown in

Figure 6.2 on page 34. Looking at the “Real” case, notice that the MRC has a perfectly flat

plateau until the entire benchmark fits within memory. This reflects the poor performance

of LRU for sequential looping access patterns, as the least recently accessed pages is the

page that will be reused next.

Chapter 6. Evaluation 33

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 200 400 600 800 1000

M
is

s
R

at
e

(p
ag

e
fa

ul
ts

)

Memory Allocation (pages)

rand

Sampling Frequency
1/1
1/2
1/3
1/4
1/5

Real

 0

 200000

 400000

 600000

 800000

 1e+06

 0 500 1000 1500 2000 2500 3000 3500

M
is

s
R

at
e

(p
ag

e
fa

ul
ts

)

Memory Allocation (pages)

x264 with simmedium dataset

Sampling Frequency
1/1
1/2
1/3
1/4
1/5

Real

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 0 200 400 600 800 1000

M
is

s
R

at
e

(p
ag

e
fa

ul
ts

)

Memory Allocation (pages)

rand

Sampling Frequency
1/1
1/2
1/3
1/4
1/5

Real

Figure 6.1: Random Access Micro-Benchmark

Chapter 6. Evaluation 34

 0

 50

 100

 150

 200

 0 2 4 6 8 10

M
is

s
R

at
e

(p
ag

e
fa

ul
ts

)

Memory Allocation (pages)

bigarray

Sampling Frequency
1/1
1/2
1/3
1/4
1/5

Real

 0

 200000

 400000

 600000

 800000

 1e+06

 0 500 1000 1500 2000 2500 3000 3500

M
is

s
R

at
e

(p
ag

e
fa

ul
ts

)

Memory Allocation (pages)

x264 with simmedium dataset

Sampling Frequency
1/1
1/2
1/3
1/4
1/5

Real

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 200 400 600 800 1000

M
is

s
R

at
e

(p
ag

e
fa

ul
ts

)

Memory Allocation (pages)

bigarray

Sampling Frequency
1/1
1/2
1/3
1/4
1/5

Real

Figure 6.2: Sequential Access Micro-Benchmark

Chapter 6. Evaluation 35

While a looping access pattern is terrible for LRU-based page replacement, a looping

access pattern is ideal for both temporal-locality-based prefetching and physical-locality-

based prefetching, and our PEBS results reflect this. It seems that our test system is

able to prefetch almost every page access, avoiding DTLB misses. In this case, there is

reason to believe that our PEBS results may be more reflective of real-world performance

than the “Real” MRC.

The randmatmult micro-benchmark, shown in Figure 6.3 on page 36 multiplies a

randomly-generated 8 by 65536 matrix with a randomly generated 65536 entry vector.

The data structures are 4MB (1024 pages) for the matrix, 512 KB (128 pages) for the

vector, and 64 bytes (less than 1 page) for the result vector. Because our algorithm

makes alternating accesses to the matrix and the vector, for smaller memory allocations,

the matrix and vector each occupy half of the available memory. In the “Real” MRC, it

is not until the benchmark has just over 256 pages that the 128 page vector fits entirely

within memory, causing a significant reduction in page faults. At just over 1152 pages

(1024 + 128) the entire matrix and vector both fit in main memory, and there is another

reduction in page faults. For this reason, we see 2 plateaus. The first is when neither

data structure is entirely within memory, and the second is when both data structures

are entirely within memory2.

For the PEBS MRCs, the vector’s pages are contained almost entirely in the Core2’s

256 entry DTLB, as are 128 of the matrices pages, so accesses to these pages are hidden

from us. As a result, we see only a single plateau. If PEBS were to capture every single

DTLB miss, we would expect the plateau to extend to 896 pages, but instead it drops

off just below 600, a result of data loss for this memory-intensive benchmark.

2This demonstrates one benefit to defining separate regions for memory management within a process.
If the vector and matrix regions were independent regions, a memory allocator could see significant
performance improvements between ~128 and ~256 pages by giving all of the available memory to the
vector.

Chapter 6. Evaluation 36

 0

 5000

 10000

 15000

 20000

 0 200 400 600 800 1000 1200

M
is

s
R

at
e

(p
ag

e
fa

ul
ts

)

Memory Allocation (pages)

randmatmult

Sampling Frequency
1/1
1/2
1/3
1/4
1/5

Real

 0

 200000

 400000

 600000

 800000

 1e+06

 0 500 1000 1500 2000 2500 3000 3500

M
is

s
R

at
e

(p
ag

e
fa

ul
ts

)

Memory Allocation (pages)

x264 with simmedium dataset

Sampling Frequency
1/1
1/2
1/3
1/4
1/5

Real

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 200 400 600 800 1000 1200

M
is

s
R

at
e

(p
ag

e
fa

ul
ts

)

Memory Allocation (pages)

randmatmult

Sampling Frequency
1/1
1/2
1/3
1/4
1/5

Real

Figure 6.3: Matrix Multiplication Micro-Benchmark

Chapter 6. Evaluation 37

6.3 PEBS Data Loss and Reset Values

In Figure 6.4 on page 38, Figure 6.5 on page 39, Figure 6.6 on page 40, Figure 6.7 on page

41, and Figure 6.8 on page 42 the number of recorded PEBS records for three runs of each

benchmark at each sampling frequency are plotted against the sampling frequency used3.

The dotted line represents the expected number of PEBS records, and is determined by

doing a linear extrapolation on the points corresponding to lower sampling frequencies,

specifically 1/10 and lower. For higher sampling frequencies, we see the measured PEBS

records diverge downwards from this line and this gap represents our rate of data loss.

Data losses were up to 50% of all DTLB misses. While these losses affect the accuracy

of the memory trace, in Section 6.5 we see that these losses do not appear to affect the

overall shape of the MRC.

We see considerable instability on the smaller benchmarks and datasets, as the number

of PEBS entries collected is not large enough for smaller deviations to average out. For

instance, swaptions produces very few PEBS entries with any dataset size, and as such

shows large deviations. However, our larger benchmarks are quite stable. Our freqmine

results seem to have systematic instabilities, as multiple runs produced significantly lower

numbers of PEBS entries than expected. We believe that some aspect of freqmine’s access

pattern sometimes causes PEBS to malfunction and stop recording for a period of time.

This may be due to an overflow of the reset counter or PEBS buffer, but this is currently

just speculation.

6.4 Overhead due to PEBS

Our implementation make excessive use of text files, which is unnecessary and reduces

overall performance. In order to isolate the impact of PEBS-based monitoring of DTLB

3Sampling frequency refers to the frequency at which PEBS samples DTLB misses. A sampling
frequency of 1/10 indicates that PEBS is set to provide a register sample on every 10th DTLB miss. A
sampling frequency of 1 indicates that PEBS is attempting to sample every single DTLB miss.

Chapter 6. Evaluation 38

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e-05 0.0001 0.001 0.01 0.1 1

PE
BS

 R
ec

or
ds

Sampling Frequency

blackscholes with simlarge dataset

 0.1

 1

 10

 100

 1000

 0.001 0.01 0.1 1

PE
BS

 R
ec

or
ds

Sampling Frequency

blackscholes with simmedium dataset

 0.1

 1

 10

 100

 0.01 0.1 1

PE
BS

 R
ec

or
ds

Sampling Frequency

blackscholes with simsmall dataset

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e-05 0.0001 0.001 0.01 0.1 1

PE
BS

 R
ec

or
ds

Sampling Frequency

bodytrack with simlarge dataset

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e-05 0.0001 0.001 0.01 0.1 1

PE
BS

 R
ec

or
ds

Sampling Frequency

bodytrack with simmedium dataset

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e-05 0.0001 0.001 0.01 0.1 1

PE
BS

 R
ec

or
ds

Sampling Frequency

bodytrack with simsmall dataset

Figure 6.4: Data Loss for the Blackscholes and Bodytrack Benchmarks

Chapter 6. Evaluation 39

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e-05 0.0001 0.001 0.01 0.1 1

PE
BS

 R
ec

or
ds

Sampling Frequency

canneal with simlarge dataset

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e-05 0.0001 0.001 0.01 0.1 1

PE
BS

 R
ec

or
ds

Sampling Frequency

canneal with simmedium dataset

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e-05 0.0001 0.001 0.01 0.1 1

PE
BS

 R
ec

or
ds

Sampling Frequency

canneal with simsmall dataset

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e-05 0.0001 0.001 0.01 0.1 1

PE
BS

 R
ec

or
ds

Sampling Frequency

facesim with simlarge dataset

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e-05 0.0001 0.001 0.01 0.1 1

PE
BS

 R
ec

or
ds

Sampling Frequency

facesim with simmedium dataset

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e-05 0.0001 0.001 0.01 0.1 1

PE
BS

 R
ec

or
ds

Sampling Frequency

facesim with simsmall dataset

Figure 6.5: Data Loss for the Canneal and Facesim Benchmarks

Chapter 6. Evaluation 40

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e-05 0.0001 0.001 0.01 0.1 1

PE
BS

 R
ec

or
ds

Sampling Frequency

ferret with simlarge dataset

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e-05 0.0001 0.001 0.01 0.1 1

PE
BS

 R
ec

or
ds

Sampling Frequency

ferret with simmedium dataset

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e-05 0.0001 0.001 0.01 0.1 1

PE
BS

 R
ec

or
ds

Sampling Frequency

ferret with simsmall dataset

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e-05 0.0001 0.001 0.01 0.1 1

PE
BS

 R
ec

or
ds

Sampling Frequency

fluidanimate with simlarge dataset

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e-05 0.0001 0.001 0.01 0.1 1

PE
BS

 R
ec

or
ds

Sampling Frequency

fluidanimate with simmedium dataset

 1

 10

 100

 1000

 10000

 100000

 0.0001 0.001 0.01 0.1 1

PE
BS

 R
ec

or
ds

Sampling Frequency

fluidanimate with simsmall dataset

Figure 6.6: Data Loss for the Ferret and Fluidanimate Benchmarks

Chapter 6. Evaluation 41

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e-05 0.0001 0.001 0.01 0.1 1

PE
BS

 R
ec

or
ds

Sampling Frequency

freqmine with simlarge dataset

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e-05 0.0001 0.001 0.01 0.1 1

PE
BS

 R
ec

or
ds

Sampling Frequency

freqmine with simmedium dataset

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e-05 0.0001 0.001 0.01 0.1 1

PE
BS

 R
ec

or
ds

Sampling Frequency

freqmine with simsmall dataset

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e-05 0.0001 0.001 0.01 0.1 1

PE
BS

 R
ec

or
ds

Sampling Frequency

streamcluster with simlarge dataset

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e-05 0.0001 0.001 0.01 0.1 1

PE
BS

 R
ec

or
ds

Sampling Frequency

streamcluster with simmedium dataset

 0.1

 1

 10

 100

 1000

 10000

 0.0001 0.001 0.01 0.1 1

PE
BS

 R
ec

or
ds

Sampling Frequency

streamcluster with simsmall dataset

Figure 6.7: Data Loss for the Freqmine and Streamcluster Benchmarks

Chapter 6. Evaluation 42

 1

 10

 100

 1000

 0.01 0.1 1

PE
BS

 R
ec

or
ds

Sampling Frequency

swaptions with simlarge dataset

 0.1

 1

 10

 100

 0.01 0.1 1

PE
BS

 R
ec

or
ds

Sampling Frequency

swaptions with simmedium dataset

 0.1

 1

 10

 100

 0.01 0.1 1

PE
BS

 R
ec

or
ds

Sampling Frequency

swaptions with simsmall dataset

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e-05 0.0001 0.001 0.01 0.1 1

PE
BS

 R
ec

or
ds

Sampling Frequency

x264 with simlarge dataset

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e-05 0.0001 0.001 0.01 0.1 1

PE
BS

 R
ec

or
ds

Sampling Frequency

x264 with simmedium dataset

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e-05 0.0001 0.001 0.01 0.1 1

PE
BS

 R
ec

or
ds

Sampling Frequency

x264 with simsmall dataset

Figure 6.8: Data Loss for the Swaptions and X264 Benchmarks

Chapter 6. Evaluation 43

 1

 1.005

 1.01

 1.015

 1.02

 1.025

 1.03

 1.035

 0 0.2 0.4 0.6 0.8 1

O
ve

rh
ea

d
(re

la
tiv

e
ex

ec
ut

io
n

tim
e)

Sampling Frequency

Fluidanimate Overhead

Dataset
native
simdev
simlarge
simmedium
simsmall

 1.005

 1.01

 1.015

 1.02

 1.025

 1.03

 1.035

 1.04

 1.045

 0 0.2 0.4 0.6 0.8 1

O
ve

rh
ea

d
(re

la
tiv

e
ex

ec
ut

io
n

tim
e)

Sampling Frequency

Bodytrack Overheads

Dataset
simdev
simlarge
simmedium
simsmall

 1.025

 1.03

 1.035

 1.04

 1.045

 1.05

 1.055

 1.06

 0 0.2 0.4 0.6 0.8 1

O
ve

rh
ea

d
(re

la
tiv

e
ex

ec
ut

io
n

tim
e)

Sampling Frequency

Ferret Overhead

Dataset
simdev
simlarge
simmedium
simsmall

 1

 1.01

 1.02

 1.03

 1.04

 1.05

 1.06

 0 0.2 0.4 0.6 0.8 1

O
ve

rh
ea

d
(re

la
tiv

e
ex

ec
ut

io
n

tim
e)

Sampling Frequency

Freqmine Overhead

Dataset
simdev
simlarge
simmedium
simsmall

 1.03

 1.035

 1.04

 1.045

 1.05

 1.055

 1.06

 1.065

 1.07

 1.075

 0 0.2 0.4 0.6 0.8 1

O
ve

rh
ea

d
(re

la
tiv

e
ex

ec
ut

io
n

tim
e)

Sampling Frequency

X264 Overhead

Dataset
simdev
simlarge
simmedium
simsmall

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 0 0.2 0.4 0.6 0.8 1

O
ve

rh
ea

d
(re

la
tiv

e
ex

ec
ut

io
n

tim
e)

Sampling Frequency

Swaptions Overhead

Dataset
native
simdev
simlarge
simmedium
simsmall

Figure 6.9: PEBS Overheads (1 of 2)

Chapter 6. Evaluation 44

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 0 0.2 0.4 0.6 0.8 1

O
ve

rh
ea

d
(re

la
tiv

e
ex

ec
ut

io
n

tim
e)

Sampling Frequency

Blackscholes Overheads

Dataset
native
simdev
simlarge
simmedium
simsmall

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 0 0.2 0.4 0.6 0.8 1

O
ve

rh
ea

ds
 (r

el
at

ive
 e

xe
cu

tio
n

tim
e)

Sampling Frequency

Canneal Overheads

Dataset
simdev
simsmall

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 0 0.2 0.4 0.6 0.8 1

O
ve

rh
ea

d
(re

la
tiv

e
ex

ec
ut

io
n

tim
e)

Sampling Frequency

Streamcluster Overhead

Dataset
native
simdev
simlarge
simmedium
simsmall

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 1.2

 0 0.2 0.4 0.6 0.8 1

O
ve

rh
ea

d
(re

la
tiv

e
ex

ec
ut

io
n

tim
e)

Sampling Frequency

Facesim Overhead

Dataset
simdev
simmedium
simsmall

 1.038

 1.04

 1.042

 1.044

 1.046

 1.048

 1.05

 0 0.2 0.4 0.6 0.8 1

O
ve

rh
ea

d
(re

la
tiv

e
ex

ec
ut

io
n

tim
e)

Sampling Frequency

Average PEBS Overheads

Figure 6.10: PEBS Overhead (2 of 2)

Chapter 6. Evaluation 45

misses from implementation details and the overhead of our unoptimized Mattson’s stack

algorithm, we ran our PEBS-based monitoring code with file output turned off. The

overhead due to PEBS initialization, PEBS-based monitoring, and scanning the PEBS

record buffer all remain. Figure 6.9 on page 43 and Figure 6.10 on page 44 shows how the

PEBS overhead varies in relation to the sampling frequency. Each data point on these

graphs shows the minimum run time of 3 PEBS runs divided by the minimum run time

of 3 runs without PEBS.

All of our benchmarks ran with less than 20% overhead, with an average overhead

of less than 5%. There did not seem to be a consistent connection between overhead

and dataset size. As might be expected, the benchmarks that produced the most PEBS

entries (as seen in the figures from Section 6.3) had the highest overheads.

The overhead could likely be reduced further by using techniques developed in RapidMRC

[29]. RapidMRC detects changes in MPKI (Misses Per thousand(K) completed Instruc-

tions), indicating an application phase4 change. An MRC is generated at the beginning

of each phase. During MRC generation, RapidMRC has overheads of over 300%; how-

ever, overall overhead is reduced below 2%. By only using PEBS after a detected phase

change, we believe our overhead could be reduced as well.

6.5 Accuracy

Figure 6.11 on page 46, Figure 6.12 on page 47, and Figure 6.13 on page 48 show PEBS-

based MRCs for sampling frequencies from 1/5 to 1/1 alongside an MRC generated by

using the PIN [16] dynamic instrumentation tool to record all memory accesses and

produce an accurate memory address trace.

4A phase is a section of a program’s execution in which the application’s behaviour is relatively
consistent, such as when an application is repeatedly performing similar actions. The greater the length
of an application phase, the more resources can be used to optimize the program’s behaviour in the given
phase without the cost outweighing the performance benefits. A standard method of phase detection is
looking for changes in the application’s MPKI (Missed Per thousand(K) Instructions).

Chapter 6. Evaluation 46

 0

 500000

 1e+06

 1.5e+06

 2e+06

 0 100 200 300 400 500

M
is

s
R

at
e

(p
ag

e
fa

ul
ts

)

Memory Allocation (pages)

blackscholes with simlarge dataset

Sampling Frequency
1/1
1/2
1/3
1/4
1/5

Real

Figure 6.11: Blackscholes MRC showing the PEBS and Real MRCs having similar cliffs.
Blackscholes with PEBS did not produce enough data for comparison for smaller datasets.

Chapter 6. Evaluation 47

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0 1000 2000 3000 4000 5000 6000

M
is

s
R

at
e

(p
ag

e
fa

ul
ts

)

Memory Allocation (pages)

ferret with simmedium dataset

Sampling Frequency
1/1
1/2
1/3
1/4
1/5

Real

 0

 200000

 400000

 600000

 800000

 1e+06

 0 500 1000 1500 2000 2500 3000 3500

M
is

s
R

at
e

(p
ag

e
fa

ul
ts

)

Memory Allocation (pages)

x264 with simmedium dataset

Sampling Frequency
1/1
1/2
1/3
1/4
1/5

Real

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 500 1000 1500 2000

M
is

s
R

at
e

(p
ag

e
fa

ul
ts

)

Memory Allocation (pages)

ferret with simsmall dataset

Sampling Frequency
1/1
1/2
1/3
1/4
1/5

Real

 0

 200000

 400000

 600000

 800000

 1e+06

 0 500 1000 1500 2000 2500 3000 3500

M
is

s
R

at
e

(p
ag

e
fa

ul
ts

)

Memory Allocation (pages)

x264 with simmedium dataset

Sampling Frequency
1/1
1/2
1/3
1/4
1/5

Real

 0

 2000

 4000

 6000

 8000

 10000

 0 100 200 300 400 500 600 700

M
is

s
R

at
e

(p
ag

e
fa

ul
ts

)

Memory Allocation (pages)

ferret with simdev dataset

Sampling Frequency
1/1
1/2
1/3
1/4
1/5

Real

Figure 6.12: Ferret MRCs showing how PEBS accuracy degrades for smaller memory
sizes.

Chapter 6. Evaluation 48

 0

 200000

 400000

 600000

 800000

 1e+06

 0 500 1000 1500 2000 2500 3000 3500

M
is

s
R

at
e

(p
ag

e
fa

ul
ts

)

Memory Allocation (pages)

x264 with simmedium dataset

Sampling Frequency
1/1
1/2
1/3
1/4
1/5

Real

 0

 200000

 400000

 600000

 800000

 1e+06

 0 500 1000 1500 2000 2500 3000 3500

M
is

s
R

at
e

(p
ag

e
fa

ul
ts

)

Memory Allocation (pages)

x264 with simmedium dataset

Sampling Frequency
1/1
1/2
1/3
1/4
1/5

Real

 0

 50000

 100000

 150000

 200000

 0 500 1000 1500 2000 2500 3000

M
is

s
R

at
e

(p
ag

e
fa

ul
ts

)

Memory Allocation (pages)

x264 with simsmall dataset

Sampling Frequency
1/1
1/2
1/3
1/4
1/5

Real

Figure 6.13: X264 MRCs showing similarity in shape between PEBS MRCs and Real
MRCs.

Chapter 6. Evaluation 49

The PIN-produced “Real” MRC curves have the same shape as the PEBS-produced

curves, although they diverge for very small memory sizes. This is expected and reflects

the impact of the DTLB hiding frequently-accessed “hot” pages from us.

For both MRC-based memory allocation and LRU stack-based page replacement,

the limited accuracy for small memory sizes should not be of major concern. Memory

allocation decisions are based on the segment of the MRC close to a process’ current

memory allocation, so the accuracy for very small and unrealistic memory allocations

is not a concern. Page replacement algorithms identify infrequently accessed pages, so

inaccurate ordering of “hot” pages at the top of the stack are of little concern as well.

6.6 MRCs

This section shows all of our PEBS-generated MRCs, showing the diversity of MRCs and

the challenges that MRC-based algorithms face.

Figure 6.14 on page 50 shows the blackscholes benchmark, which simulates option

pricing using the Black-Scholes Partial Differential Equation. It includes a very steep cliff

followed by a long plateau. The large upper plateau for the native dataset is interesting.

This plateau is likely a sign of a large frequently accessed data structure whose pages

fit within the TLB for the smaller datasets, but which is sufficiently large on the native

dataset as to overflow the TLB and influence our MRC. The initial plateau presents

a problem for greedy memory allocators. Looking at the native dataset, the marginal

utility of additional pages is close to zero below 25,000 pages, hiding the performance

gain to be had by giving the process 40,000 pages or more.

The freqmine benchmark, shown in Figure 6.15 on page 51, does frequent item-set

mining. It also shows a sharp drop-off followed by a plateau, but the lack of an initial

plateau makes it less dangerous to a greedy allocator.

Figure 6.16 on page 52 shows the bodytrack benchmark, a human body tracking sim-

Chapter 6. Evaluation 50

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000

M
is

s
R

at
e

(p
ag

e
fa

ul
ts

)

Memory Allocation (pages)

blackscholes with native dataset

Sampling Frequency
1/1
1/2
1/3
1/4
1/5

 0

 200000

 400000

 600000

 800000

 1e+06

 0 500 1000 1500 2000 2500 3000 3500

M
is

s
R

at
e

(p
ag

e
fa

ul
ts

)

Memory Allocation (pages)

x264 with simmedium dataset

Sampling Frequency
1/1
1/2
1/3
1/4
1/5

Real

 0

 500000

 1e+06

 1.5e+06

 2e+06

 0 100 200 300 400 500

M
is

s
R

at
e

(p
ag

e
fa

ul
ts

)

Memory Allocation (pages)

blackscholes with simlarge dataset

Sampling Frequency
1/1
1/2
1/3
1/4
1/5

Real

Figure 6.14: Blackscholes MRCs

Chapter 6. Evaluation 51

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 0 50000 100000 150000 200000 250000

M
is

s
R

at
e

(p
ag

e
fa

ul
ts

)

Memory Allocation (pages)

freqmine with native dataset

Sampling Frequency
1/1
1/2
1/3
1/4
1/5

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 0 5000 10000 15000 20000 25000

M
is

s
R

at
e

(p
ag

e
fa

ul
ts

)

Memory Allocation (pages)

freqmine with simlarge dataset

Sampling Frequency
1/1
1/2
1/3
1/4
1/5

 0

 200000

 400000

 600000

 800000

 1e+06

 0 500 1000 1500 2000 2500 3000 3500

M
is

s
R

at
e

(p
ag

e
fa

ul
ts

)

Memory Allocation (pages)

x264 with simmedium dataset

Sampling Frequency
1/1
1/2
1/3
1/4
1/5

Real

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0 2000 4000 6000 8000 10000 12000 14000 16000

M
is

s
R

at
e

(p
ag

e
fa

ul
ts

)

Memory Allocation (pages)

freqmine with simmedium dataset

Sampling Frequency
1/1
1/2
1/3
1/4
1/5

Real

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 1000 2000 3000 4000 5000 6000 7000 8000

M
is

s
R

at
e

(p
ag

e
fa

ul
ts

)

Memory Allocation (pages)

freqmine with simsmall dataset

Sampling Frequency
1/1
1/2
1/3
1/4
1/5

Figure 6.15: Freqmine MRCs

Chapter 6. Evaluation 52

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0 200 400 600 800 1000 1200 1400 1600 1800

M
is

s
R

at
e

(p
ag

e
fa

ul
ts

)

Memory Allocation (pages)

bodytrack with simlarge dataset

Sampling Frequency
1/1
1/2
1/3
1/4
1/5

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0 200 400 600 800 1000 1200 1400

M
is

s
R

at
e

(p
ag

e
fa

ul
ts

)

Memory Allocation (pages)

bodytrack with simmedium dataset

Sampling Frequency
1/1
1/2
1/3
1/4
1/5

 0

 200000

 400000

 600000

 800000

 1e+06

 0 500 1000 1500 2000 2500 3000 3500

M
is

s
R

at
e

(p
ag

e
fa

ul
ts

)

Memory Allocation (pages)

x264 with simmedium dataset

Sampling Frequency
1/1
1/2
1/3
1/4
1/5

Real

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 100 200 300 400 500 600 700 800 900 1000

M
is

s
R

at
e

(p
ag

e
fa

ul
ts

)

Memory Allocation (pages)

bodytrack with simsmall dataset

Sampling Frequency
1/1
1/2
1/3
1/4
1/5

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 0 100 200 300 400 500 600 700 800

M
is

s
R

at
e

(p
ag

e
fa

ul
ts

)

Memory Allocation (pages)

bodytrack with simdev dataset

Sampling Frequency
1/1
1/2
1/3
1/4
1/5

Figure 6.16: Bodytrack MRCs

ulation. Figure 6.17 on page 53 shows the canneal benchmark, which performs simulated

annealing for chip design. Figure 6.18 on page 54 shows the x264 video encoding bench-

mark. They all show the sort of classical, convex, smoothly sloped MRC on which greedy

memory allocators perform well.

The facesim facial movement simulation benchmark, shown in Figure 6.19 on page

55, and the fluidanimate fluid dynamics benchmark, shown in Figure 6.20 on page 56

both have very choppy MRCs. A greedy memory allocator risks finding a local optimum

very far from the global optimum.

The final two benchmarks, the ferret content similarity search server in Figure 6.21

on page 57 and the streamcluster online clustering benchmark in Figure 6.22 on page 58

both have very close to linear MRCs. This is likely the result of a pseudo-random access

Chapter 6. Evaluation 53

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

M
is

s
R

at
e

(p
ag

e
fa

ul
ts

)

Memory Allocation (pages)

canneal with simmedium dataset

Sampling Frequency
1/1
1/2
1/3
1/4
1/5

 0

 200000

 400000

 600000

 800000

 1e+06

 0 500 1000 1500 2000 2500 3000 3500

M
is

s
R

at
e

(p
ag

e
fa

ul
ts

)

Memory Allocation (pages)

x264 with simmedium dataset

Sampling Frequency
1/1
1/2
1/3
1/4
1/5

Real

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

M
is

s
R

at
e

(p
ag

e
fa

ul
ts

)

Memory Allocation (pages)

canneal with simsmall dataset

Sampling Frequency
1/1
1/2
1/3
1/4
1/5

Figure 6.17: Canneal MRC

Chapter 6. Evaluation 54

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 0 500 1000 1500 2000 2500 3000 3500 4000

M
is

s
R

at
e

(p
ag

e
fa

ul
ts

)

Memory Allocation (pages)

x264 with simlarge dataset

Sampling Frequency
1/1
1/2
1/3
1/4
1/5

 0

 200000

 400000

 600000

 800000

 1e+06

 0 500 1000 1500 2000 2500 3000 3500

M
is

s
R

at
e

(p
ag

e
fa

ul
ts

)

Memory Allocation (pages)

x264 with simmedium dataset

Sampling Frequency
1/1
1/2
1/3
1/4
1/5

Real

 0

 200000

 400000

 600000

 800000

 1e+06

 0 500 1000 1500 2000 2500 3000 3500

M
is

s
R

at
e

(p
ag

e
fa

ul
ts

)

Memory Allocation (pages)

x264 with simmedium dataset

Sampling Frequency
1/1
1/2
1/3
1/4
1/5

Real

 0

 200000

 400000

 600000

 800000

 1e+06

 0 500 1000 1500 2000 2500 3000 3500

M
is

s
R

at
e

(p
ag

e
fa

ul
ts

)

Memory Allocation (pages)

x264 with simmedium dataset

Sampling Frequency
1/1
1/2
1/3
1/4
1/5

Real

 0

 50000

 100000

 150000

 200000

 0 500 1000 1500 2000 2500 3000

M
is

s
R

at
e

(p
ag

e
fa

ul
ts

)

Memory Allocation (pages)

x264 with simsmall dataset

Sampling Frequency
1/1
1/2
1/3
1/4
1/5

Real

Figure 6.18: X264 MRCs

Chapter 6. Evaluation 55

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

M
is

s
R

at
e

(p
ag

e
fa

ul
ts

)

Memory Allocation (pages)

facesim with simmedium dataset

Sampling Frequency
1/1
1/2
1/3
1/4
1/5

 0

 200000

 400000

 600000

 800000

 1e+06

 0 500 1000 1500 2000 2500 3000 3500

M
is

s
R

at
e

(p
ag

e
fa

ul
ts

)

Memory Allocation (pages)

x264 with simmedium dataset

Sampling Frequency
1/1
1/2
1/3
1/4
1/5

Real

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

M
is

s
R

at
e

(p
ag

e
fa

ul
ts

)

Memory Allocation (pages)

facesim with simsmall dataset

Sampling Frequency
1/1
1/2
1/3
1/4
1/5

 0

 200000

 400000

 600000

 800000

 1e+06

 0 500 1000 1500 2000 2500 3000 3500

M
is

s
R

at
e

(p
ag

e
fa

ul
ts

)

Memory Allocation (pages)

x264 with simmedium dataset

Sampling Frequency
1/1
1/2
1/3
1/4
1/5

Real

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

M
is

s
R

at
e

(p
ag

e
fa

ul
ts

)

Memory Allocation (pages)

facesim with simdev dataset

Sampling Frequency
1/1
1/2
1/3
1/4
1/5

Figure 6.19: Facesim MRCs

Chapter 6. Evaluation 56

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0 5000 10000 15000 20000 25000

M
is

s
R

at
e

(p
ag

e
fa

ul
ts

)

Memory Allocation (pages)

fluidanimate with simlarge dataset

Sampling Frequency
1/1
1/2
1/3
1/4
1/5

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

M
is

s
R

at
e

(p
ag

e
fa

ul
ts

)

Memory Allocation (pages)

fluidanimate with simmedium dataset

Sampling Frequency
1/1
1/2
1/3
1/4
1/5

 0

 200000

 400000

 600000

 800000

 1e+06

 0 500 1000 1500 2000 2500 3000 3500

M
is

s
R

at
e

(p
ag

e
fa

ul
ts

)

Memory Allocation (pages)

x264 with simmedium dataset

Sampling Frequency
1/1
1/2
1/3
1/4
1/5

Real

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

M
is

s
R

at
e

(p
ag

e
fa

ul
ts

)

Memory Allocation (pages)

fluidanimate with simsmall dataset

Sampling Frequency
1/1
1/2
1/3
1/4
1/5

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 0 100 200 300 400 500 600 700 800 900

M
is

s
R

at
e

(p
ag

e
fa

ul
ts

)

Memory Allocation (pages)

fluidanimate with simdev dataset

Sampling Frequency
1/1
1/2
1/3
1/4
1/5

Figure 6.20: Fluidanimate MRCs

Chapter 6. Evaluation 57

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 0 2000 4000 6000 8000 10000 12000 14000

M
is

s
R

at
e

(p
ag

e
fa

ul
ts

)

Memory Allocation (pages)

ferret with simlarge dataset

Sampling Frequency
1/1
1/2
1/3
1/4
1/5

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0 1000 2000 3000 4000 5000 6000

M
is

s
R

at
e

(p
ag

e
fa

ul
ts

)

Memory Allocation (pages)

ferret with simmedium dataset

Sampling Frequency
1/1
1/2
1/3
1/4
1/5

Real

 0

 200000

 400000

 600000

 800000

 1e+06

 0 500 1000 1500 2000 2500 3000 3500

M
is

s
R

at
e

(p
ag

e
fa

ul
ts

)

Memory Allocation (pages)

x264 with simmedium dataset

Sampling Frequency
1/1
1/2
1/3
1/4
1/5

Real

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 500 1000 1500 2000

M
is

s
R

at
e

(p
ag

e
fa

ul
ts

)

Memory Allocation (pages)

ferret with simsmall dataset

Sampling Frequency
1/1
1/2
1/3
1/4
1/5

Real

 0

 2000

 4000

 6000

 8000

 10000

 0 100 200 300 400 500 600 700

M
is

s
R

at
e

(p
ag

e
fa

ul
ts

)

Memory Allocation (pages)

ferret with simdev dataset

Sampling Frequency
1/1
1/2
1/3
1/4
1/5

Real

Figure 6.21: Ferret MRCs

pattern, as the probability of having a page in memory is proportionate to the amount

of memory allocated.

Chapter 6. Evaluation 58

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 0 500 1000 1500 2000 2500

M
is

s
R

at
e

(p
ag

e
fa

ul
ts

)

Memory Allocation (pages)

streamcluster with simlarge dataset

Sampling Frequency
1/1
1/2
1/3
1/4
1/5

 0

 200000

 400000

 600000

 800000

 1e+06

 0 500 1000 1500 2000 2500 3000 3500

M
is

s
R

at
e

(p
ag

e
fa

ul
ts

)

Memory Allocation (pages)

x264 with simmedium dataset

Sampling Frequency
1/1
1/2
1/3
1/4
1/5

Real

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 0 100 200 300 400 500 600

M
is

s
R

at
e

(p
ag

e
fa

ul
ts

)

Memory Allocation (pages)

streamcluster with simmedium dataset

Sampling Frequency
1/1
1/2
1/3
1/4
1/5

 0

 200000

 400000

 600000

 800000

 1e+06

 0 500 1000 1500 2000 2500 3000 3500

M
is

s
R

at
e

(p
ag

e
fa

ul
ts

)

Memory Allocation (pages)

x264 with simmedium dataset

Sampling Frequency
1/1
1/2
1/3
1/4
1/5

Real

 100

 200

 300

 400

 500

 600

 700

 0 20 40 60 80 100 120 140 160

M
is

s
R

at
e

(p
ag

e
fa

ul
ts

)

Memory Allocation (pages)

streamcluster with simsmall dataset

Sampling Frequency
1/1
1/2
1/3
1/4
1/5

Figure 6.22: Streamcluster MRCs

Chapter 7

Discussion

The MRCs presented in Chapter 6 are similar in shape to those generated from a full

trace of all memory accesses, but they are not perfect. In Section 7.1 we discuss the

limitations of PEBS for MRC generation. From there we turn to a discussion of the

future. Section 7.2 discusses possible hardware-based improvements. Section 7.3 looks at

unanswered questions in MRC-related research and proposes their study, and it is hoped

that this work may make this possible. Finally, Section 7.4 we conclude by looking at

our results and what they mean going forward.

7.1 Applicability of PEBS to MRC Generation

The PEBS-generated MRCs were often similar in shape to those generated from a trace of

all memory accesses, but not always. In these cases, it is an open question of which MRCs

are more representative of real-world performance. While PEBS has its limitations,

certain variations may be due to PEBS capturing real-world performance optimizations

such as prefetching that are not captured through instrumentation. To answer this

question, we must measure the actual page-fault rate of our benchmarks with varying

memory allocations, which would be a very time-consuming experiment.

We do know, however, that PEBS suffers from data loss, and that while the shapes

59

Chapter 7. Discussion 60

of the curves are often correct, the magnitude is quite consistently off. It is unclear how

much this would affect the performance of our MRCs in the applications described in

Section 2.2. It is also possible that additional measurements, such as measurements of

the existing memory allocation and page fault rate, might be used to adjust the scale of

the generated MRCs.

To our knowledge, the accuracy of MRCs generated through software-based techniques

has not been validated, so it is impossible to compare our accuracy to theirs. Our PEBS

overheads of 5% are lower than the total overheads of software-based techniques, but

omit the cost of Mattson’s Stack Algorithm, so a direct comparison is not possible. Our

overhead could likely be reduced further by only generating MRCs at the beginning of

each phase as was done by RapidMRC for cache-level MRCs[29], which would reduce

not only the PEBS collection overhead but also the cost of running Mattson’s Stack

Algorithm, for which high performance implementations already exist. This optimization

could likely be applied to software-based techniques as well, however.

7.2 PMU Optimizations

While PEBS works for memory tracing, our experience led us to believe that with some

improvements it could perform even better. Without expertise in microprocessor design,

it is impossible to know how much complexity the following modifications would add

to the performance monitoring unit; however, it seems plausible that they would be

relatively minor.

The whole process of working with memory addresses could be significantly stream-

lined if the memory address was more readily available. Newer POWER CPUs from

IBM expose a register to the programmer that contains the result of address calcula-

tions. However, these CPUs do not have a PEBS-like facility for automatic sampling,

so an interrupt is required in order to read this register. If such a register were exposed

Chapter 7. Discussion 61

to the programmer on Intel CPUs and furthermore was included in the PEBS record

format, memory addresses could be sampled with low complexity and low overhead.

While we have not confirmed this, it is believed that recording the register state

is a significant source of both overhead and data loss when attempting to use PEBS

with a high sampling frequency. For many applications, the complete register state is

largely unnecessary. For instance, some applications require only the instruction pointer,

while most memory-related work requires only the memory address. Providing alternate,

smaller PEBS record formats only containing this information would likely reduce the

time required to store PEBS entries and would certainly reduce the amount of memory

required. It is interesting to note that Intel provides a number of bits for setting the

PEBS record format, although currently there is only one valid setting.

7.3 Understanding MRCs

There is little published information about the general properties of MRCs and we be-

lieve this hinders research in MRC-based algorithms. It also may be the case that MRC-

knowledge motivates or influences other memory management research, such as providing

motivation for the use of local page replacement. Finally, better knowledge of MRC char-

acteristics might allow us to improve our MRC generation techniques, either improving

their accuracy or reducing their overhead. For instance, reliable relationships might be

found between the shapes of imperfect and perfect MRCs and those relationships might

be exploited to estimate the true MRC based upon one or more MRCs generated through

imperfect sampling.

It is unknown to what extent the MRCs generated in existing MRC research are

representative of the MRCs or real-world applications. In particular, we do not know the

memory utilization characteristics of memory-intensive consumer software such as games

and web-browsers.

Chapter 7. Discussion 62

It is still an open question whether LRU MRC shapes can be used to predict the shape

of non-LRU MRCs and hence predict the performance of these replacement policies. If

such insight were available, it might be possible to modify our replacement policies on

the fly to improve performance.

It is hoped that the availability of low-overhead MRC generation techniques such as

ours will facilitate greater study into MRCs and their properties.

7.4 Conclusions

We found that PEBS-based MRCs could produce MRCs with similar characteristics to

MRCs based on complete memory access traces, but with significantly lower magnitudes

and some discrepancies in shape. We believe the magnitude differences are reflective of

PEBS’ limitations, while it is an open question whether the shape discrepancies are more

reflective of the limitations of PEBS or of real-world behaviour that is not captured in

the perfect memory access traces. We do not have enough information about the other

MRC generation techniques to compare our accuracy against theirs.

The overheads of PEBS-based data collection were below 5% on average, but not

uniformly low, peaking at around 20%. These overheads, however, are not directly com-

parable against alternate MRC generation techniques. We believe it is possible to reduce

these overheads further using techniques that have been applied to MRCs for L2 caches.

It is an open question whether PEBS is the best available method of generating

MRCs. However, we feel that PEBS has been shown to be good enough to motivate the

continuing use of general purpose hardware performance monitoring units for this main

memory MRC generation. Perhaps it may also motivate hardware designers to develop

features of their hardware performance monitoring hardware with MRC generation and

other tasks requiring memory tracing in mind.

Bibliography

[1] G. Abandah. Configuration independent analysis for characterizing shared-memory

applications. IPPS ’98: Proceedings of the 12th. International Parallel Processing

Symposium on International Parallel Processing Symposium, pages 485–492, 1998.

[2] J. Appavoo, M. Auslander, M. Butrico, D. M. da Silva, O. Krieger, M. F. Mer-

gen, M. Ostrowski, B. Rosenburg, R. W. Wisniewski, and J. Xenidis. Experience

with k42, an open-source, linux-compatible, scalable operating-system kernel. IBM

Systems Journal, 44(2):427–440, 2005.

[3] Reza Azimi, Livio Soares, Michael Stumm, Thomas Walsh, and Angela Demke

Brown. Path: page access tracking to improve memory management. ISMM ’07:

Proceedings of the 6th international symposium on Memory management, pages 31–

42, 2007.

[4] Reza Azimi, Michael Stumm, and Robert W. Wisniewski. Online performance analy-

sis by statistical sampling of microprocessor performance counters. ICS ’05: Proceed-

ings of the 19th annual international conference on Supercomputing, pages 101–110,

2005.

[5] Jesse G. Beu. Pmpt - performance monitoring pebs tool. Master’s thesis, North

Carolina State University, January 2006.

63

Bibliography 64

[6] Angela Demke Brown, Todd C. Mowry, and Orran Krieger. Compiler-based i/o

prefetching for out-of-core applications. ACM Trans. Comput. Syst., 19(2):111–170,

2001.

[7] Stéphane Eranian. Perfmon2: a flexible performance monitoring interface. Proceed-

ings of the Linux Symposium, 1:269–288, July 2006.

[8] Intel R� Corporation. Intel R� 64 and IA-32 Architectures Software Developer’s Man-

ual, February 2008.

[9] James K Archibald J. Kelly Flanagan, Brent E. Nelson and Knut Grimsrud. Bach:

Byu address collection hardware, the collection of complete traces. Proceedings of

the 6th Int. Conf on Modelling Techniques and Tools for Computer Performance

Evaluation, pages 128–137, 1992.

[10] Song Jiang and Xiaodong Zhang. Lirs: an efficient low inter-reference recency set

replacement policy to improve buffer cache performance. SIGMETRICS ’02: Pro-

ceedings of the 2002 ACM SIGMETRICS international conference on Measurement

and modeling of computer systems, pages 31–42, 2002.

[11] Magnus Karlsson and Per Stenström. An analytical model of the working-set sizes

in decision-support systems. SIGMETRICS ’00: Proceedings of the 2000 ACM

SIGMETRICS international conference on Measurement and modeling of computer

systems, pages 275–285, 2000.

[12] Jong Min Kim, Jongmoo Choi, Jesung Kim, Sam H. Noh, Sang Lyul Min, Yookun

Cho, and Chong Sang Kim. A low-overhead high-performance unified buffer manage-

ment scheme that exploits sequential and looping references. OSDI’00: Proceedings

of the 4th conference on Symposium on Operating System Design & Implementation,

pages 9–9, 2000.

Bibliography 65

[13] Yul H. Kim, Mark D. Hill, and David A. Wood. Implementing stack simulation

for highly-associative memories. SIGMETRICS ’91: Proceedings of the 1991 ACM

SIGMETRICS conference on Measurement and modeling of computer systems, pages

212–213, 1991.

[14] Horacio Andrés Lagar-Cavilla, Joseph Andrew Whitney, Adin Matthew Scannell,

Philip Patchin, Stephen M. Rumble, Eyal de Lara, Michael Brudno, and Mahadev

Satyanarayanan. Snowflock: rapid virtual machine cloning for cloud computing. Eu-

roSys ’09: Proceedings of the 4th ACM European conference on Computer systems,

pages 1–12, 2009.

[15] Pin Lu and Kai Shen. Virtual machine memory access tracing with hypervisor ex-

clusive cache. ATC’07: 2007 USENIX Annual Technical Conference on Proceedings

of the USENIX Annual Technical Conference, pages 1–15, 2007.

[16] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff

Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: building

customized program analysis tools with dynamic instrumentation. PLDI ’05: Pro-

ceedings of the 2005 ACM SIGPLAN conference on Programming language design

and implementation, pages 190–200, 2005.

[17] Sally A. McKee. Reflections on the memory wall. CF ’04: Proceedings of the 1st

conference on Computing frontiers, page 162, 2004.

[18] PARSEC Benchmark Suite. parsec.cs.princeton.edu.

[19] Philip Patchin, H. Andrés Lagar-Cavilla, Eyal de Lara, and Michael Brudno. Adding

the easy button to the cloud with snowflock and mpi. HPCVirt ’09: Proceedings

of the 3rd ACM Workshop on System-level Virtualization for High Performance

Computing, pages 1–8, 2009.

Bibliography 66

[20] R. H Patterson, Garth A. Gibson, Eka Ginting, Daniel Stodolsky, and Jim Zelenka.

Informed prefetching and caching. Technical report, Pittsburgh, PA, USA, 1995.

[21] Moinuddin K. Qureshi and Yale N. Patt. Utility-based cache partitioning: A low-

overhead, high-performance, runtime mechanism to partition shared caches. MICRO

39: Proceedings of the 39th Annual IEEE/ACM International Symposium on Mi-

croarchitecture, pages 423–432, 2006.

[22] D. Slutz R. Mattson, J. Gecsei and I. Traiger. Evaluation techniques and storage

hierarchies. IBM Systems Journal, 9(2):78–117, 1970.

[23] Madhusudan Raman. Trace-based optimization for precomputation and prefetching.

Master’s thesis, University of Toronto, 2006.

[24] Edward Rothberg, Jaswinder Pal Singh, and Anoop Gupta. Working sets, cache

sizes, and node granularity issues for large-scale multiprocessors. ISCA ’93: Proceed-

ings of the 20th annual international symposium on Computer architecture, pages

14–26, 1993.

[25] E. Torrie J.P.Singh S. Woo, M. Ohara and A. Gupta. Methodological considerations

and characterization of the splash-2 parallel application suite. ISCA, 23, May 1996.

[26] Florian T. Schneider, Mathias Payer, and Thomas R. Gross. Online optimizations

driven by hardware performance monitoring. PLDI ’07: Proceedings of the 2007

ACM SIGPLAN conference on Programming language design and implementation,

pages 373–382, 2007.

[27] Harold S. Stone, John Turek, and Joel L. Wolf. Optimal partitioning of cache

memory. IEEE Trans. Comput., 41(9):1054–1068, 1992.

[28] G. E. Suh, L. Rudolph, and S. Devadas. Dynamic partitioning of shared cache

memory. J. Supercomput., 28(1):7–26, 2004.

Bibliography 67

[29] David K. Tam, Reza Azimi, Livio B. Soares, and Michael Stumm. Rapidmrc: ap-

proximating l2 miss rate curves on commodity systems for online optimizations.

ASPLOS ’09: Proceeding of the 14th international conference on Architectural sup-

port for programming languages and operating systems, pages 121–132, 2009.

[30] Vivek Thakkar. Dynamic page migration on ccnuma platforms guided by hardware

tracing. Master’s thesis, North Carolina State University, 2008.

[31] Myles G. Watson. Does the halting necessary for hardware trace collection inordi-

nately perturb the results? Master’s thesis, Brigham Young University, 2004.

[32] Ting Yang, Emery D. Berger, Scott F. Kaplan, and J. Eliot B. Moss. Cramm: virtual

memory support for garbage-collected applications. OSDI ’06: Proceedings of the

7th symposium on Operating systems design and implementation, pages 103–116,

2006.

[33] Pin Zhou, Vivek Pandey, Jagadeesan Sundaresan, Anand Raghuraman, Yuanyuan

Zhou, and Sanjeev Kumar. Dynamic tracking of page miss ratio curve for memory

management. ASPLOS-XI: Proceedings of the 11th international conference on Ar-

chitectural support for programming languages and operating systems, pages 177–188,

2004.

[34] Yuanyuan Zhou, James Philbin, and Kai Li. The multi-queue replacement algorithm

for second level buffer caches. Proceedings of the General Track: 2002 USENIX

Annual Technical Conference, pages 91–104, 2001.

