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The implementation of new programming languages benefits from interpretation because it is

simple, flexible and portable. The only downside is speed of execution, as there remains a

large performance gap between even efficient interpreters and systems that include a just-in-

time (JIT) compiler. Augmenting an interpreter with a JIT, however, is not a small task. Today,

Java JITs are typically method-based. To compile whole methods, the JIT must re-implement

much functionality already provided by the interpreter, leading to a “big bang” development

effort before the JIT can be deployed. Adding a JIT to an interpreter would be easier if we

could more gradually shift from dispatching virtual instructions bodies implemented for the

interpreter to running instructions compiled into native code by the JIT.

We show that virtual instructions implemented as lightweight callable routines can form the

basis for a very efficient interpreter. Our new technique, interpreted traces, identifies hot paths,

or traces, as a virtual program is interpreted. By exploitingthe way traces predict branch desti-

nations our technique markedly reduces branch mispredictions caused by dispatch. Interpreted

traces are a high-performance technique, running about 25%faster than direct threading.

We show that interpreted traces are a good starting point fora trace-based JIT. We extend

our interpreter so traces may contain a mixture of compiled code for some virtual instructions

and calls to virtual instruction bodies for others. By compiling about 50 integer and object

virtual instructions to machine code we improve performance by about 30% over interpreted

traces, running about twice as fast as the direct threaded system with which we started.
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Chapter 1

Introduction

Modern computer languages are commonly implemented in two main parts – a compiler that

targets a virtual instruction set, and a so-calledhigh-level language virtual machine(or simply

language VM) to run the resulting virtual program. This approach simplifies the compiler

by eliminating the need for any machine dependent code generation. Tailoring the virtual

instruction set can further simplify the compiler by providing operations that perfectly match

the functionality of the language.

There are two ways a language VM can run a virtual program. Thesimplest approach is to

interpret the virtual program. An interpreter dispatches avirtual instruction bodyto emulate

each virtual instruction in turn. A more complicated, but faster, approach deploys a dynamic,

or just in time (JIT), compiler to translate the virtual instructions to machine instructions and

dispatch the resulting native code.Mixed-modesystems interpret some parts of a virtual pro-

gram and compile others. In general, compiled code will run much more quickly than virtual

instructions can be interpreted. By judiciously choosing which parts of a virtual program to

JIT compile, a mixed-mode system can run much more quickly than the fastest interpreter.

Currently, although many popular languages depend on virtual machines, relatively few JIT

compilers have been deployed. Notable exceptions include research languages like Self and

several Java Virtual Machines (JVM). Consequently, users ofimportant computer languages,

1



CHAPTER 1. INTRODUCTION 2

including JavaScript, Python, and many others, do not enjoythe performance benefits of mixed-

mode execution.

The primary goal of our research is to make it easier to extendan interpreter with a JIT

compiler. To this end we describe a new architecture for a language VM that significantly

increases the performance of interpretation at the same time as it reduces the complexity of

extending it to be a mixed-mode system. Our technique has twomain features.

First, our JIT identifies and compiles hot interprocedural paths, or traces. Traces are single

entry multiple exit regions that are easier to compile than the methods compiled by current

systems. In addition, hot traces help predict the destination of virtual branches. This means

that even before traces are compiled they provide a simple way to improve the interpreted

performance of virtual branches.

Second, we implement virtual instruction bodies as lightweight, callable routines, and at the

same time, we closely integrate the JIT compiler and interpreter. This gives JIT developers a

simple alternative to compiling each virtual instruction.Either a virtual instruction is translated

to native code, or instead, a call to the corresponding body is generated. The task of JIT devel-

opers is thereby simplified by making it possible to deploy a fully functional JIT compiler that

compiles only a subset of virtual instructions. In addition, callable virtual instruction bodies

have a beneficial effect on interpreter performance becausethey enable a simple interpretation

technique, subroutine threading, that very efficiently executes straight-line, or non-branching,

regions of a virtual program.

We prototype our ideas in Java because there exist many high-quality Java interpreters and

JIT compilers with which to compare our results. We are able to determine that the perfor-

mance of our prototype compares favourably with state-of-the art interpreters like JamVM and

SableVM. An obvious next step would be to apply our techniques to enhance the performance

of languages that currently do not offer a JIT.

The discussion in the next few sections refers to many technical terms and techniques that

are described in detail in Chapter 2, which introduces the basic concepts and related work, and
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Chapter 3, which provides a tutorial-like description of several interpreter techniques.

1.1 Challenges of Method-based JIT Compilation

Today, the usual approach taken by mixed-mode systems is to identify frequently executed, or

hot, methods. Hot methods are passed to the JIT compiler which compiles them to native code.

Then, when the interpreter sees an invocation of a compiled method, it dispatches the native

code instead.

Up Front Effort This method-oriented approach has been followed for many years, but re-

quires a large up-front investment in effort. Such a system cannot improve the performance of

a method until it can compile every feature of the language that appears in it. For significant

applications this requires the JIT to compile essentially the whole language, including compli-

cated features already implemented by high-level virtual instruction bodies, such as those for

method invocation, object creation, and exception handling.

Compiling Cold Code Just because a method is frequently executed does not mean that all

the instructions within it are frequently executed also. Infact, regions of a hot method may

be cold, that is, they may have never executed. Compiling cold code has more implications

than simply wasting compile time. Except at the very highestlevels of optimization, where

analyzing cold code may prove useful facts about hot regions, there is little point compiling

code that never runs. A more serious issue is that cold code increases the complexity of dy-

namic compilation. We give three examples. First, for late binding languages such as Java,

cold code likely contains references to external symbols which are not yet bound. Thus, when

the cold code does eventually run, the generated code and theruntime that supports it must

deal with the complexities of late binding [74]. Second, certain dynamic optimizations are not

possible without runtime profiling information. Foremost amongst these is the optimization of

virtual function calls. Since there is no profiling information for cold code, the JIT may have
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to generate relatively slow, conservative code. This issueis even more important for runtime

typed languages, like Python, in which the type of the operands of a virtual instruction may not

be known until run time. Without runtime information neither a static, nor a dynamic, Python

compiler may be able to determine whether the inputs of simple arithmetic operations such as

addition are integers, floats, or strings. Third, as execution proceeds, some of the formerly cold

regions in compiled methods may become hot. The conservative assumptions made during the

initial compilation may now be a drag on performance. The straightforward-sounding approach

of recompiling the method containing the formerly cold codeundermines the profitability of

compilation. Furthermore, it is complicated by problems such as what to do about threads that

are still executing in the method or that will return to the method in the future.

1.2 Challenges of Efficient Interpretation

After a virtual program is loaded by an interpreter into memory it can be executed bydispatch-

ing each virtual instruction body (or justbody) in the order specified by the virtual program.

From the processor’s point of view, this is not a typical workload because the control transfer

from one body to the next is data dependent on the sequence of instructions making up the

virtual program. This makes the dispatch branches hard for aprocessor to predict. Ertl and

Gregg observed that the performance of otherwise efficient interpretation is limited by pipeline

stalls and flushes due to extremely poor branch prediction [28].

1.3 What We Need

The challenges we identified above suggest that the architecture of agradually extensible

mixed-mode virtual machine should have three important properties.

1. Virtual instruction bodies should be callable. This allows JIT implementors to compile

only some instructions, and fall back on the emulation functionality already implemented
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by the virtual instruction bodies for others.

2. The unit of compilation must be dynamically determined and of flexible shape. This

allows the JIT compiler to translate hot regions while avoiding cold code.

3. As new regions of hot code reveal themselves and are compiled, a way is needed of

gracefully linking them to previously compiled hot code.

Callable Virtual Instruction Bodies Packaging bodies as callable can also address the pre-

diction problems observed in interpreters. Any straight-line sequence of virtual instructions

can be translated to a very simple sequence of generated machine instructions. Corresponding

to each virtual instruction we generate a single direct callwhich dispatches the corresponding

virtual instruction body. Executing the resulting generated code thus emulates each virtual in-

struction in the linear sequence in turn. No branch mispredictions occur because the destination

of each direct call is explicit and the return instruction ending each body is predicted perfectly

by the return branch predictor present in most modern processors.

Traces Our system compiles frequently executed, dynamically identified interprocedural paths,

or traces. Traces contain no cold code, so our system leaves all the complexities of running

cold code to the interpreter. Since traces are paths throughthe virtual program, they explicitly

predict the destination of each virtual branch. As a consequence even a very simple imple-

mentation of traces can significantly improve performance by reducing branch mispredictions

caused by dispatching virtual branches. This is the basis ofour new technique,interpreted

traces.

1.4 Overview of Our Solution

In this dissertation we describe a system that supports dynamic compilation units of vary-

ing shapes. Just as a virtual instruction body implements a virtual instruction, aregion body



CHAPTER 1. INTRODUCTION 6

implements a region of the virtual program. Possible regionbodies include single virtual in-

structions, basic blocks, methods, partial methods, inlined method nests, and traces. The key

idea is to package every region body as callable, regardlessof the size or shape of the region

of the virtual program that it implements. The interpreter can then execute the virtual program

by dispatching each region body in sequence.

Region bodies corresponding to longer sequences of virtual instructions will run faster than

those compiled from short ones because fewer dispatches arerequired. In addition, larger

region bodies should offer more opportunities for optimization. However, larger region bodies

are more complicated and so we expect them to require more development effort to detect

and compile than short ones. This suggests that the performance of a mixed-mode VM can

be gradually extended by incrementally increasing the scope of region bodies it identifies and

compiles. Ultimately, the peak performance of the system should be at least as high as current

method-based JIT compilers since, with basically the same engineering effort, inlined method

nests could be compiled to region bodies also.

The practicality of our scheme depends on the efficiency of dispatching bodies by calling

them. Thus, the first phase of our research, described in Chapters 4 and5, was to retrofit

SableVM [32], a Java virtual machine, andocamlrun, an OCaml interpreter [14], to a new

hybrid dispatch technique we callcontext threading. We evaluated context threading on Pow-

erPC and Pentium 4 platforms by comparing branch predictor and runtime performance of

common benchmarks to unmodified, direct-threaded versionsof the virtual machines. We

show that callable bodies can be dispatched more efficientlythan dispatch techniques currently

thought to be very efficient. For instance, on a Pentium 4, oursubroutine threaded version of

SableVM runs the SPECjvm98 benchmarks about 19% faster than direct threading.

In the second phase of this research, described in Chapters 6 and 7, we gradually extended

JamVM, a cleanly implemented and relatively high performance Java interpreter [53], to create

Yeti (graduallY Extensible Trace Interpreter). We decidedto start afresh because it proved

difficult to cleanly add trace detection and profiling instrumentation to our implementation
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of context threading. We chose JamVM as the starting point for Yeti, rather than SableVM,

because it is simpler.

We built Yeti in five stages with the explicit intention of providing a design trajectory from a

simple system to a high performance implementation. First,we repackaged all virtual instruc-

tion bodies as callable. Our initial implementation executed only single virtual instructions

which were dispatched via an indirect call from a simple dispatch loop. This is slow compared

to context threading but very easy to instrument with profiling code. Second, we identified

linear blocks, or sequences of virtual instructions ending in branches. Third, we extended

our system to identify and dispatchinterpreted traces, or sequences of linear blocks. Traces

are significantly more complex region bodies than linear blocks because they must accommo-

date virtual branch instructions. Fourth, we extended our trace runtime system to link traces

together. In the fifth and final stage, we implemented a naive,non-optimizing compiler to

compile the traces. An interesting feature of the JIT is thatit performs simple compilation

and register allocation for some virtual instructions but falls back on calling virtual instruction

bodies for others. Our compiler currently generates PowerPC code for about 50 integer and

object virtual instructions.

We chose traces as our unit of compilation because traces have several attractive properties:

(i) they can extend across the invocation and return of methods, and thus have an interproce-

dural view of the program, (ii) they contain only hot code, (iii) they are relatively simple to

compile as they aresingle-entry multiple-exitregions of code, and (iv), it is straightforward to

generate new traces and link them onto existing ones as new hot paths reveal themselves.

Instrumentation built into our prototype shows that on the average, traces accurately pre-

dict paths taken by the Java SPECjvm98 benchmark programs. This result corroborates those

reported by Balaet al. [8] and Duesterwald and Bala [26] for C and Fortran programs.Perfor-

mance measurements show that the overhead of trace identification is reasonable. Even with

our naive compiler, Yeti runs about twice as fast as unmodified JamVM.
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1.5 Thesis Statement

The performance of a high level language virtual machine canbe more easily enhanced from

a simple interpreter to a high performance mixed-mode system if its design includes two main

ideas. First, virtual instruction bodies should be callable. Second, the system should dynami-

cally identify, translate into machine code, and run regions that contain no cold code. Traces

should be a good choice because they predict the destinationof virtual branch instructions and

hence support efficient interpretation. Traces should alsobe simple to compile as they contain

no merge points.

1.6 Contributions

We show that if virtual instruction bodies are implemented as callable routines a family of dis-

patch techniques becomes possible, from very simple, portable and slow, to somewhat machine

dependent but much faster. Since the implementation of the virtual instruction bodies makes

up a large portion of an interpreter, an attractive aspect ofthis approach is that there is no need

to modify the bodies as more complex, and higher performing,mechanisms are implemented

to dispatch them.

The simplest, and most portable, way to build an interpreterwith callable bodies is to

to write a dispatch loop in C that dispatches each instruction via a function pointer. This

technique, called direct call threading, or DCT, performs about the same as a switch threaded

interpreter. DCT is a good starting point for our family of techniques because it is simple to

code and as portable asgcc. Our strategy is to extend DCT by inserting profiling code into

the dispatch loop. The instrumentation dynamically identifies regions of the virtual program

and translates them into callable region bodies. These region bodies can then be called from

the same dispatch loop, increasing performance.

We introduce a new technique, interpreted traces, to address branch mispredictions caused

by dispatch. As virtual instructions are dispatched, our profiling instrumentation uses well
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known heuristics to identify hot, interprocedural paths, or traces. We say the traces are inter-

preted because virtual instruction bodies do all the real work. Straight-line portions of each

trace are implemented using subroutine threading, wherebya direct call machine instruction is

generated to call the virtual instruction body implementing each virtual instruction. We follow

the dispatch of each virtual branch instruction with trace exit code that exploits the fact that

traces predict the destination of virtual branches. Interpreted traces require the generation of

only three machine instructions: direct call, compare immediate, and conditional jump. Thus,

the machine dependency of the technique is modest.

We use micro-architectural performance counter measurements to show that interpreted

traces result in good branch prediction. We show that interpreted traces improve the perfor-

mance of our prototype relative to direct threading about the same amount as selective inlining

gains over direct threading in SableVM. This means that interpreted traces are competitive with

the highest performing techniques to optimize the dispatchperformance of an interpreter. We

achieve this level of performance despite the fact that our system performs runtime profiling as

traces are detected.

Finally, we show that interpreted traces are a good startingpoint for a trace-based just

in time (JIT) compiler. We extend our code generator for interpreted traces such that traces

may contain a mixture of compiled code for some virtual instructions and subroutine threaded

dispatch for others. By compiling about 50 integer and objectvirtual instructions to register

allocated compiled code we improve the performance of our prototype by about 30% over

interpreted traces to run about twice as fast as the direct threaded system with which we started.

Taken together, direct call threading, interpreted traces, and our trace-based JIT provide a

design trajectory for a language VM with a range of performance from switch threading, a very

widely deployed entry level technique, to about double the performance of a direct threaded

interpreter. The fact that interpreted traces are gradually extensible in this way makes them a

good strategic design option for future language virtual machines.
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Summary of Contributions

1. If virtual instruction bodies are implemented as callable routines straight-line sections

of virtual programs can be efficiently interpreted by load-time generated sequences of

subroutine threaded code. We show that on modern processorsthe extra path length

of the call and return instructions used by subroutine threading is more than made up

for by the elimination of stalls caused by mispredicted indirect branches used by direct

threading.

2. We introduce a new technique, interpreted traces, which identifies traces, or hot paths,

to predict the destination of virtual branch instructions.We implement interpreted traces

in JamVM, a high performance Java interpreter, and show thatthey outperform direct

threading by 25%. This is about the same speedup achieved by SableVM’s implementa-

tion of selective inlining.

3. The code generator for interpreted traces can be gradually extended to be a trace-based

JIT by adding support for virtual instructions one at a time.Traces are simple to compile

as they contain no cold code or merge points. Our trace-basedJIT currently compiles

about 50 virtual instructions and obtains a speed up of about30% over interpreted traces.

1.7 Outline of Thesis

We describe an architecture for a virtual machine interpreter that facilitates the gradual exten-

sion to a trace-based mixed-mode JIT compiler. We demonstrate the feasibility of this approach

in a prototype, Yeti, and show that performance can be gradually improved as larger program

regions are identified and compiled.

In Chapters 2 and 3 we present background and related work on interpreters and JIT com-

pilers. In Chapter 4 we describe the design and implementation of context threading. Chapter

5 describes how we evaluated context threading. The design and implementation of Yeti is
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described in Chapter 6. We evaluate the benefits of this approach in Chapter 7. Finally, we

discuss possible avenues for future work and conclude in Chapter 8.



Chapter 2

Background

Researchers have investigated how virtual machines should execute high-level language pro-

grams for many years. The research has been focused on a few main areas. First, innovative

virtual machine support can play a role in the deployment of qualitatively new and differ-

ent computer languages. Second, virtual machines provide an infrastructure by which ordinary

computer languages can be more easily deployed on many different hardware platforms. Third,

researchers continually devise new ways to enable languageVMs to run virtual programs faster.

This chapter will describe research which touches on all these issues. We will briefly dis-

cuss interpretation in preparation for a more in-depth treatment in Chapter 3. We will describe

how modern object-oriented languages depend on the virtualmachine to efficiently invoke

methods by following the evolution of this support from the early efforts to modern speculative

inlining techniques. Finally, we will briefly describe trace-based binary optimization to set the

scene for Chapter 6.

2.1 High Level Language Virtual Machine

A static compiler is probably the best solution when performance is paramount, portability is

not a great concern, destinations of calls are known at compile time and programs bind to ex-

ternal symbols before running. Thus, most third generationlanguages like C and FORTRAN

12
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are implemented this way. However, if the language is object-oriented, binds to external refer-

ences late, and must run on many platforms, it may be advantageous to implement a compiler

that targets a fictitioushigh-level language virtual machine(HLL VM) instead.

In Smith’s taxonomy, an HLL VM is a system that provides a process with an execution

environment that does not correspond to any particular hardware platform [66]. The interface

offered to the high-level language application process is usually designed to hide differences

between the platforms to which the VM will eventually be ported. For instance, UCSD Pascal

p-code [17] and Java bytecode [52] both express virtual instructions as stack operations that

take no register arguments. Gosling, one of the designers ofthe Java virtual machine, has said

that he based the design of the JVM on the p-code machine [3]. Smalltalk [36], Self [75] and

many other systems have taken a similar approach. A VM may also provide virtual instructions

that support peculiar or challenging features of the language. For instance, a Java virtual ma-

chine has specialized virtual instructions (eg.invokevirtual) in support of virtual method

invocation. This allows the compiler to generate a single, relatively high-level virtual instruc-

tion instead of a sequence of complex machine and ABI dependent instructions.

This approach has benefits for the users as well. For instance, applications can be dis-

tributed in a platform neutral format. In the case of the Javaclass libraries or UCSD Pascal

programs, the amount of virtual software far exceeds the size of the VM. The advantage is that

the relatively small amount of effort required to port the VMto a new platform enables a large

body of virtual applications to run on the new platform also.

There are various approaches a HLL VM can take to actually execute a virtual program. An

interpreter fetches, decodes, then emulates each virtual instruction in turn. Hence, interpreters

are slow but can be very portable. Faster, but less portable,a dynamic compiler can translate

to native code and dispatch regions of the virtual application. A dynamic compiler can exploit

runtime knowledge of program values so it can sometimes do a better job of optimizing the

program than a static compiler [69].
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Java Source Java Bytecode

int f();
iload a
iload b
iconst 1
iadd
iadd
istore c

int f(){
   int a,b,c;
   ..
   c = a + b + 1;
   ..
  }

javac compiler

Figure 2.1: Example Java Virtual Program showing source (onthe left) and Java virtual in-
structions, or bytecodes, on the right.

2.1.1 Overview of a Virtual Program

A virtual program, as shown in Figure 2.1, is a sequence of virtual instructions and related

meta-data. The figure introduces an example program we will use as a running example, so we

will briefly describe it here. First, a compiler,javac in the example, creates aclass filede-

scribing the virtual program in a standardized format. (We show only one method, but any real

Java example would define a whole class.) Our example consists of just one Java expression

{c=a+b+1} which adds the values of two Java local variables and a constant and stores the

result in a third. The compiler has translated this to the sequence of virtual instructions shown

on the right. The actual semantics of the virtual instructions are not important to our example

other than to note that none are virtual branch instructions.

The distinction between a virtual instruction and aninstanceof a virtual instruction is

conceptually simple but sometimes hard to clearly distinguish in prose. We will always refer

to a specific use of a virtual instruction as an “instance”. For example, the first instruction in

our example program is an instance ofiload. On the other hand, we might also use the term

virtual instruction to refer to a kind of operation, for example that theiload virtual instruction

takes one parameter.

Java virtual instructions may take implicit arguments thatare passed on a expression stack.

For instance, in Figure 2.1, theiadd instruction pops the top two slots of the expression stack
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and pushes their sum. This style of instruction set is very compact because there is no need to

explicitly list parameters of most virtual instructions. Consequently many virtual instructions,

like iadd, consist of only the opcode. Since there are fewer than 256 Java virtual instructions,

the opcode fits in a byte, and so Java virtual instructions areoften referred to asbytecode.

In addition to arguments passed implicitly on the stack, certain virtual instructions take im-

mediate operands. In our example, theiconst virtual instruction takes an immediate operand

of 1. Immediate operands are also required by virtual branchinstructions (the offset of the des-

tination) and by various instructions used to access data.

The bytecode in the figure depends on a stack frame organization that distinguishes between

local variables and the expression stack.Local variable arrayslots, orlva slots, are used to

store local variables and parameters. The simple function shown in the figure needs only four

local variable slots. The first slot, lva[0], stores a hiddenparameter, the object handle1 to

the invoked-upon object and is not used in this example. Subsequent slots, lva[1], lva[2] and

lva[3] storea, b andc respectively. The expression stack is used to store temporaries for most

calculations and parameter passing. In general “load” formbytecodes push values in lva slots

onto the expression stack. Bytecodes with “store” in their mnemonic typically pop the value

on top of the expression stack and store it in a named lva slot.

2.1.2 Interpretation

An interpreter is the simplest way for an HLL VM to execute a guest virtual program. Whereas

the persistent format of a virtual program conforms to some external specification, when it

is read by an interpreter the structure of itsloaded representationis chosen by the designers

of the interpreter. For instance, designers may prefer a representation that word-aligns all

immediate parameters regardless of their size. This would be less compact, but more portable

and potentially faster to access, than the original byte code on most architectures.

An abstraction implemented by most interpreters is the notion of avirtual program counter,

1lva[0] stores the local variable known asthis to Java (and C++) programmers.



CHAPTER 2. BACKGROUND 16

or vPC. It points into the loaded representation of the program andserves two main purposes.

First, thevPC is used by dispatch code to indicate where in the virtual program execution has

reached and hence which virtual instruction to emulate next. Second, thevPC is conventionally

referred to by virtual instruction bodies to access immediate operands.

Interpretation is not efficient

We do not expect interpretation to be efficient compared to executing compiled native code.

Consider Java’siadd virtual instruction. On a typical processor an integer add can be per-

formed in one instruction. To emulate a virtual addition instruction requires three or more

additional instructions to load the inputs from and store the result to the expression stack.

However, it is not just the path length of emulation that causes performance problems.

Also important is the latency of the branch instructions used to transfer control to the virtual

instruction body. To optimize dispatch. researchers have proposed variousdispatchtechniques

to efficiently branch from body to body. Recently, Ertl and Gregg showed that on modern

processors branch mispredictions caused by dispatch branches are a serious drain on perfor-

mance [28, 29].

When emulated by most current high-level language virtual machines, the branching pat-

terns of the virtual program are hidden from the branch prediction resources of the underlying

real processor. This is despite the fact that a typical virtual machine defines roughly the same

sorts of branch instructions as does a real processor and that a running virtual program exhibits

similar patterns of virtual branch behaviour as does a native program running on a real CPU.

In Section 3.4 we discuss in detail how our approach to dispatch deals with this issue, which

we have dubbed thecontext problem.

2.1.3 Early Just in Time Compilers

A faster way of executing a guest virtual program is to compile its virtual instructions to native

code before it is executed. This approach long predates Java, perhaps first appearing for APL



CHAPTER 2. BACKGROUND 17

on the HP3000 [48] as early as 1979. Deutsch and Schiffman built a just in time (JIT) compiler

for Smalltalk in the early 1980’s that ran about twice as fastas interpretation [24].

Early systems were highly memory constrained by modern standards. It was of great con-

cern, therefore, when translated native code was found to beabout four times larger than the

originating bytecode2. Lacking virtual memory, Deutsch and Schiffman took the view that dy-

namic translation of bytecode was a space time trade-off. Ifspace was tight then native code

(space) could be released at the expense of re-translation (time). Nevertheless, their approach

was to execute only native code. Each method had to be fetchedfrom a native code cache or

else re-translated before execution. Today a similar attitude prevails except that it has also been

recognized that some code is so infrequently executed that it need not be translated in the first

place. The bytecode of methods that are not hot can simply be interpreted.

A JIT can improve the performance of a JVM substantially. Relatively early Java JIT

compilers from Sun Microsystems, as reported by the development team in 1997, improved

the performance of the Javaraytrace application by a factor of 2.2 andcompress by

6.8 [19]3. More recent JIT compilers have increased the performance further [2, 4, 71]. For

instance, on a modern personal computer Sun’s Hotspot server dynamic compiler currently

runs the entire SPECjvm98 suite more than 4 times faster than the fastest interpreter. Some

experts suggest that in the not too distant future, systems based on dynamic compilers will run

fasterthan the code generated by static compilers [69, 68].

2.2 Challenges to HLL VM Performance

Modern languages offer users powerful features that challenge VM implementors. In this sec-

tion we will discuss the impact of object-oriented method invocation and late binding of ex-

2This is less than one might fear given that on a RISC machine one typical arithmetic bytecode will be naïvely
translated into two loads (pops) from the expression stack,one register-to-register arithmetic instruction to do the
real work and a store (push) back to the new top of the expression stack.

3These benchmarks are singled out because they eventually were adopted by the SPEC consortium to be part
of the SPECjvm98 [67] benchmark suite.
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ternal references. There are many other issues that affect Java performance which we discuss

only briefly. The most important amongst them are memory management and thread synchro-

nization.

Garbage collectionrefers to a set of techniques used to manage memory in Java (asin

Smalltalk and Self) where unused memory (garbage) is detected automatically by the system.

As a result, the programmer is relieved of any responsibility for freeing memory that he or she

has allocated. Garbage collection techniques are somewhatindependent of dynamic compila-

tion techniques. The primary interaction requires that threads can be stopped in a well-defined

state prior to garbage collection. So-calledsafe pointsmust be defined at which a thread pe-

riodically saves its state to memory. Code generated by a JIT compiler must ensure that safe

points occur frequently enough that garbage collection is not unduly delayed. Typically this

means that each transit of a loop must contain at least one safe point.

Java provides explicit, built-in, support for threads.Thread synchronizationrefers mostly

to the functionality that allows only one thread to enter certain regions of code at a time. Thread

synchronization must be implemented at various points and the techniques for implementing it

must be supported by code generated by the JIT compiler.

2.2.1 Polymorphism and the Implications of Object-oriented Program-

ming

Over the last few decades, object-oriented development grew from a vision, to an industry

trend, to a standard programming tool. Object-oriented techniques stressed development sys-

tems in many ways, but the one we need to examine in detail hereis the challenge of polymor-

phic method invocation.

The destination of a callsite in an object-oriented language is not determined solely by

the signature of a method, as in C or FORTRAN. Instead, it is determined at run time by a

combination of the method signature and the class of the invoked-upon object. Callsites are

said to bepolymorphicas the invoked-upon object may turn out to be one of potentially many
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void sample(Object[] otab){
for(int i=0; i<otab.length; i++){

otab[i].toString(); //polymorphic callsite
}

}

Figure 2.2: Example of Java method containing a polymorphiccallsite

classes.

Most object-oriented languages categorize objects into a hierarchy ofclasses. Each object

is aninstanceof a class which means that the methods and data fields defined by that class are

available for the object. Each class, except the root class,has asuper-classor base-classfrom

which it inheritsfields and methods.

Each class may override a method and so at run time the system must dispatch the definition

of the method corresponding to the class of the invoked-uponobject. In many cases it is not

possible to deduce the exact type of the object at compile time.

A simple example will make the above description concrete. When it is time to debug a

program almost all programmers rely on facilities to view a textual description of their data.

In an object-oriented environment this suggests that each object should define a method that

returns a string description of itself. This need was recognized by the designers of Java and

consequently they defined a method in the root classObject:

public String toString()

to serve this purpose. ThetoString4 method can be invoked on every Java object. Consider

an array of objects in Java. Suppose we code a loop that iterates over the array and invokes the

toString method on each element as in Figure 2.2.

There are literally hundreds of definitions oftoString in a Java system and in many

cases the compiler cannot discern which one will be the destination of the callsite. Since it

is not possible to determine the destination of the callsiteat compile time, it must be done

4It is the text returned bytoString that appears in various views of an interactive debugger
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when the program executes. Determining the destination taxes performance in two main ways.

First, locating the method to dispatch at run time requires computation. This will be discussed

in Section 2.4.1. Second, the inability to predict the destination of a callsite at compile time

reduces the efficacy of interprocedural optimizations and thus results in relatively slow systems.

This is discussed next.

Impact of Polymorphism on Optimization

Optimization can be stymied by polymorphic callsites. At compile time, an optimizer cannot

determine the destination of a call, so obviously the targetcannot be inlined. In fact, stan-

dard interprocedural optimization as carried out by an optimizing C or FORTRAN compiler is

simply not possible [56].

In the absence of interprocedural information, an optimizer cannot guess what calculations

are made by a polymorphic callee. Knowledge of the destination of the callsite would permit

a more precise analysis of the values modified by the call. Forinstance, with runtime infor-

mation, the optimizer may know that only one specific versionof the method exists and that

this definition simply returns a constant value. Code compiled speculatively under the assump-

tion that the callsite remains monomorphic could constant propagate the return value forward

and hence be much better than code compiled under the conservative assumption that other

definitions of the method may be called.

Given the tendency of modern object-oriented software to befactored into many small

methods which are called throughout a program, even in its innermost loops, these optimiza-

tion barriers can significantly degrade the performance of the generated code. A typical ex-

ample might be that common subexpression elimination cannot combine identical memory

accesses separated by a polymorphic callsite because it cannot prove that all possible callees

do not kill the memory location. To achieve performance comparable to procedural compiled

languages, interprocedural optimization techniques mustsomehow be applied to regions laced

with polymorphic callsites.
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Section 2.4 describes various solutions to these issues.

2.2.2 Late binding

A basic design issue for any language is when external references are resolved. Java binds

references very late in order to support flexible packaging in general and downloadable code in

particular. (This contrasts with traditional languages like C, which rely on a link-editor to bind

to external symbols before they run.) The general idea is that a Java program may start running

before all the classes that it needs are locally available. In Java, binding is postponed until the

last possible moment, when the virtual instruction making the reference executes for the first

time. Then, during the first execution, the reference is either resolved or a software exception

is raised. This means that the references a program attemptsto resolve depends on the path of

execution through the code.

This approach is convenient for users and challenging for language implementors. When-

ever Java code is executed for the first time the system must beprepared to handle unresolved

external references. An obvious, but slow, approach is to simply check whether an external ref-

erence is resolved each time the virtual instruction executes. For good performance, only the

first execution should be burdened with any binding overhead. One way to achieve this is for

the virtual program to rewrite itself when an external reference is resolved. For instance, sup-

pose a virtual instruction,vop, takes an immediate parameter that names an unresolved class

or method. When the virtual instruction is first executed the external name is resolved and

an internal VM data structure describing it is created. The loaded representation of the virtual

instruction is then rewritten, say tovop_resolved, which takes the address of the data struc-

ture as an immediate parameter. The implementation ofvop_resolved can safely assume

that the external reference has been resolved successfully. Subsequentlyvop_resolvedwill

execute in place ofvop with no binding overhead5.

The process of virtual instruction rewriting is relativelysimple to carry out when instruc-

5This roughly describes how JamVM and SableVM handle late binding.
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tions are being interpreted. For instance, it is possible tofall back on standard thread support

libraries to protect overwriting from multiple threads racing to rewrite the instruction. It is more

challenging if the resolution is being carried out by dynamically compiled native code [74].

2.3 Early Dynamic Optimization

Early efforts to build dynamic optimizers were embedded in applications or C or FORTRAN

run time systems.

2.3.1 Manual Dynamic Optimization

Early experiments with dynamic optimization indicated that large performance improvements

are possible. Typical early systems were application-specific. Rather than compile a language,

they dynamically generated machine code to calculate the solution to a problem described by

application specific data. Later, researchers built semi-automatic dynamic systems that would

re-optimize regions of C programs at run time [51, 5, 34, 38, 37].

Although the semi-automatic systems did not enable dramatic performance improvements

across the board, this may be a consequence of the performance baseline to which they com-

pared themselves. The prevalent programming languages of the time were supported by static

compilation and so it was natural to use the performance of highly optimized binaries as the

baseline. The situation for modern languages like Java is somewhat different. Dynamic tech-

niques that do not pay off relative to statically optimized Ccode may be beneficial when applied

to code naïvely generated by a JIT. Consequently, a short description of a few early systems

seems worthwhile.

2.3.2 Application specific dynamic compilation

In 1968 Ken Thompson built a dynamic compiler which accepteda textual description of a

regular expression and dynamically translated it into machine code for an IBM 7094 computer
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[49]. The resulting code was dispatched to find matches quickly.

In 1985 Pikeet al. invented an often-cited technique to generate good code for quickly

copying, or bitblt’ing, regions of pixels from memory onto adisplay [58]. They observed

that there was a bewildering number of special cases (causedby various alignments of pixels

in display memory) to consider when writing a good general purpose bitblt routine. Instead

they wrote a dynamic code generator that could produce a good(near optimal) set of machine

instructions for each special case. At worst, their system executed only about 400 instructions

to generate code for a bitblt.

2.3.3 Dynamic Compilation of Manually Identified Static Regions

In the mid-1990’s Lee and Leone [51] built FABIUS, a dynamic optimization system for the

research language ML [34]. FABIUS depends on a particular useof curried functions.Cur-

ried functions take one or more functions as parameters and return a new function that is a

composition of the parameters. FABIUS interprets the call ofa function returned by a curried

function as a clue from the programmer that dynamic re-optimization should be carried out.

Their results, which they describe as preliminary, indicate that small, special purpose, applica-

tions such as sparse matrix multiply or a network packet filter may benefit from their technique

but the time and memory costs of re-optimization are difficult to recoup in general purpose

code.

More recently it has been suggested that C and FORTRAN programs can benefit from

dynamic optimization. Auslanderet al. [5], Grantet al. [38, 37] and others have built semi-

automatic systems to investigate this. Initially these systems required the user to identify re-

gions of the program that should be dynamically re-optimized as well as the variables that are

runtime constant. Later systems allowed the user to identify only the program variables that

are runtime constants and could automatically identify which regions should be re-optimized

at run time.

In either case, the general idea is that the user indicates regions of the program that may
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be beneficial to dynamically compile at run time. The dynamicregion is precompiled into

template code. Then, at run time, the values of runtime constants can be substituted into the

template and the dynamic region re-optimized. Auslander’ssystem worked only on relatively

small kernels like matrix multiply and quicksort. A good wayto look at the results was in

terms ofbreak even point. In this view, the kernels reported by Auslander had to execute from

about one thousand to a few tens of thousand of times before the improvement in execution

time obtained by the dynamic optimization outweighed the time spent re-compiling and re-

optimizing.

Subsequent work by Grantet al. created the DyC system [38, 37]. DyC simplified the pro-

cess of identifying regions and applied more elaborate optimizations at run time. This system

can handle real programs, although even the streamlined process of manually designating only

runtime constants is reported to be time consuming. Their methodology allowed them to eval-

uate the impact of different optimizations independently,including complete loop unrolling,

dynamic zero and copy propagation, dynamic reduction of strength and dynamic dead assign-

ment elimination to name a few. Their results showed that only loop unrolling had sufficient

impact to speed up real programs and in fact without loop unrolling there would have been no

overall speedup at all.

2.4 Dynamic Object-oriented optimization

Some of the challenges to performance discussed above are caused by new, more dynamic lan-

guage features. Consequently, optimizations that have traditionally been carried out at compile

time are no longer effective and must be redeployed as dynamic optimizations carried out at

run time. The best example, polymorphic method invocation,will be discussed next.
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2.4.1 Finding the destination of a polymorphic callsite

Locating the definition of a method for a given object at run time is a search problem. To search

for a method definition corresponding to a given object the system must search the classes in

the hierarchy. The search starts at the class of the object, proceeds to its super class, to the

super class of its super class, and so on, until the root of theclass hierarchy is reached. If each

method invocation requires the search to be repeated, the process will be a significant tax on

overall performance. Nevertheless, this is exactly what occurs in a naïve implementation of

Smalltalk, Self, Java, JavaScript or Python.

If the language permits early binding, the search may be converted to a table lookup at

compile-time. For instance, in C++, all the possible destinations of a callsite are known when

the program is loaded. As a result, a C++ virtual callsite can be implemented as an indirect

branch via a virtual table specific to the class of the object invoked on. This reduces the cost

to little more than a function pointer call in C. The construction and performance of virtual

function tables has been heavily studied, for instance by Driesen [25].

Real programs tend to have loweffective polymorphism. This means that the average call-

site has very few actual destinations. If fact, most callsites areeffectively monomorphic, mean-

ing they always call the same method. Note that low effectivepolymorphism does not imply

that a smart compiler should have been able to deduce the destination of the call. Rather, it is

a statistical observation that real programs typically make less use of polymorphism than they

might.

Inlined Caching and Polymorphic Inlined Caching

For late-binding languages it is seldom possible to generate efficient code for a callsite at

compile time. In response, various researchers have investigated how it might be done at run

time. In general, it pays to cache the destination of a callsite when the callsite is commonly

executed and its effective polymorphism is low. Thein-line cache, invented by Deutsch and

Schiffman [24] for Smalltalk more than 20 years ago, replaces the polymorphic callsite with



CHAPTER 2. BACKGROUND 26

the native instruction to call the cached method. The prologue of all methods is extended with

fix-up code in case the cached destination is not correct. Deutsch and Shiffman reported hitting

the in-line cache about 95% of the time for a set of Smalltalk programs.

Hölzle [43] extended the in-line cache to be apolymorphic in-line cache(PIC) by generat-

ing code that successively compares the class of the invokedobject to a few possible destina-

tion types. The implementation is more difficult than an in-line cache because the dynamically

generated native code sequence must sequentially compare and conditionally branch against

several possible destinations. A PIC extends the performance benefits of an in-line cache to

effectively polymorphic callsites. For example, on a SPARCstation-2 Hölzle’s lookup would

cost only 8 + 2n cycles, where n is the actual polymorphism of the callsite. A PIC lookup costs

little more than an in-line cache for effectively monomorphic callsites and is much faster for

callsites that are effectively polymorphic.

2.4.2 Smalltalk and Self

Smalltalk adopted the position that essentially every software entity should be represented as

an object. A fascinating discussion of the qualitative benefits anticipated from this approach

appears in Goldberg’s book [35].

The designers of Self took an even more extreme position. They held that even control

flow should be expressed using object-oriented concepts6. They understood that this approach

would require them to invent new ways to efficiently optimizemessage invocation if the perfor-

mance of their system was to be reasonable. Their research program was extremely ambitious

and they explicitly compared the performance of their system to optimized C code executing

the same algorithms.

In addition, the Self system aimed to support the most interactive programming environ-

ment possible. Self supports debugging, editing and recompiling methods while a program

6In Self, two blocks of code are passed as parameters to an if-else message sent to a boolean object. If the
object is true the first block is evaluated, otherwise the second.
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is running with no need to restart. This requires very late binding. The combination of the

radically pure object-oriented approach and the ambitiousgoals regarding development envi-

ronment made Self a sort of trial-by-fire for object-oriented dynamic compilation techniques.

Ungar, Chambers and Hölzle have published several papers [15, 44, 43, 45] that describe

how the performance of Self was increased from more than an order of magnitude slower than

compiled C to only twice as slow. A readable summary of the techniques is given by Ungar

et al. [75]. A thumbnail summary would be that effective monomorphism can be exploited

by a combination of type-checking guard code (to ensure thatsome object’s type really is

known) and static inlining (to expose the guarded code to interprocedural optimization). To

give the flavor of this work we will briefly describe two specific optimizations: customization

and splitting.

Customization

Customization is a relatively old object-oriented optimization introduced by Craig Chambers

in his dissertation [15] in 1988. The general idea is that a polymorphic callsite can be turned

into a static callsite (or inlined code) when the type of object on which the method is invoked

is known. The approach taken by a customizing compiler is to replicate methods with type

specialized copies so as to produce callsites where types are known.

Ungaret al. give a simple, convincing example in [75]. In Self, it is usual to write generic

code, for instance algorithms that can be shared by integer and floating point code. An example

is a method to calculate minimum. Themin method is defined by a class calledMagnitude.

All concrete number classes, likeInteger andFloat, thus inherit themin method. A cus-

tomizing compiler will arrange that customized definitionsof min are compiled forInteger

andFloat. Inlining the customized methods replaces the polymorphiccall7 to < within the

original min method by the appropriate arithmetic compare instructions8 in each of the cus-

7In Self even integer comparison requires a message send.
8i.e. the integer customized version ofmin can issue an arithmetic integer compare and the float customization

can issue a float comparison instruction.
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tomized versions of integer and floatmin.

Method Splitting

Oftentimes, customized code can be inlined only when protected by a type guard. The guard

code is essentially an if-then-else construct where the “if” tests the type of an object, the “then”

inlines the customized code and the “else” performs the original polymorphic method invoca-

tion of the method. Chambers [15] noted that the predicate implemented by the guard estab-

lishes the type of the invoked object for one leg of the if-then-else, but following the merge

point, this knowledge is lost. Hence, he suggested that following code be “split” into paths

for which knowledge of types is retained. This suggests thatinstead of allowing control flow

to merge after the guard, a splitting compiler can replicatefollowing code to preserve type

knowledge.

Incautious splitting could potentially cause exponentialcode size expansion. This implies

that the technique is one that should only be applied to relatively small regions where it is

known that polymorphic dispatch is hurting performance.

2.4.3 Java JIT as Dynamic Optimizer

The first Java JIT compilers translated methods into native instructions and improved poly-

morphic method dispatch by deploying techniques such as method customization and splitting

invented decades previously for Smalltalk. New innovations in garbage collection and thread

synchronization, not discussed in this review, were also made. Despite all this effort, Java

implementations were still slow. More aggressive optimizations had to be developed to accom-

modate the performance challenges posed by Java’s object-oriented features, particularly the

polymorphic dispatch of small methods. The writers of Sun’sHotspot compiler white paper

note:

In the Java language, most method invocations arevirtual (potentially poly-
morphic), and are more frequently used than in C++. This meansnot only that
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method invocation performance is more dominant, but also that static compiler
optimizations (especially global optimizations such as inlining) are much harder
to perform for method invocations. Many traditional optimizations are most effec-
tive between calls, and the decreased distance between calls in the Java language
can significantly reduce the effectiveness of such optimizations, since they have
smaller sections of code to work with.[2, pp 17]

Observations similar to the above led Java researchers to perform speculative optimizations

to transform the program in ways that are correct at some point, but may be invalidated by

legal computations made by the program. For instance, Pechtchanski and Sarkar speculatively

generate code for a method with only one loaded definition that assumes it will never be over-

ridden. Later, if the loader loads a class that provides another definition of the method, the

speculative code may be incorrect and must not run again. In this case, the entire enclosing

method (or inlined method nest) must be recompiled under more realistic assumptions and the

original compilation discarded [57].

In principle, a similar approach can be taken if the speculative code is correct but turns out

to be slower than it could be.

The infrastructure to replace a method is complex, but is a fundamental requirement of

speculative optimization in a method-oriented dynamic compiler. It consists of roughly two

parts. First, meta data must be produced when a method is optimized that allows local variables

in the stack frame and registers of a running method to be migrated to a recompiled version.

This is somewhat similar to the problem of debugging optimized code [44]. Later, at run time,

the meta data is used to convert the stack frame of the invalidcode to that of the recompiled

code. Fink and Qian describe a technique called on stack replacement (OSR) that shows how

to restrict optimization so that recompilation is always possible [31]. The key idea is that

values that may be dead under traditional optimization schemes must be kept alive so that a

less aggressively optimized replacement method can continue.
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2.4.4 JIT Compiling Partial Methods

The dynamic compilers described thus far compile entire methods or inlined method nests. The

problem with this approach is that even a hot method may contain cold code. The cold code

may never be executed or perhaps will later become hot only after being compiled.

Compiling cold code that never executes can have only indirect effects such as allowing the

optimizer to prove facts about the portions of the method that arehot. This can have a positive

impact on performance, by enabling the optimizer to prove facts about hot regions that enable

faster code to be produced. Also, it can have a negative impact, as the cold code may force

the optimizer to generate more conservative, slower, code for the hot regions. Thus, various

researchers have investigated how compiling code code can be avoided.

Whaley described a prototype that compiled partial methods,skipping cold code. He mod-

ified the compiler to generate glue code stubs in the place of cold code. The glue code had

two purposes. First, to the optimizer at compile time, the glue code included annotations so

that it appeared to use the same variables as the cold code. Consequently the optimizer has a

true model of variables used in the cold regions and so generated correct code for the hot ones.

Second, when run, the glue code interacted with the runtime system to exit the code cache and

resume interpretation. Hence, if a cold region was entered,control would simply revert to the

interpreter. His results showed a large compile time savings, leading to modest speed ups for

certain benchmarks [79].

Suganumaet al. investigated this issue further by modifying a method-based JIT to specu-

latively optimize hot inlined method nests. Their technique inlines only hot regions, replacing

cold code with guard code [72]. The technique is speculativebecause conservative assumptions

in the cold code are ignored. When execution triggers guard code, it exposes the speculation

as wrong and hence is a signal that continued execution of theinlined method nest may be

incorrect. On stack replacement and recompilation are usedto recover. They also measured a

significant reduction in compile time. However, only a modest speedup was obtained, suggest-

ing either that conservative assumptions stemming from thecold code are not a serious concern
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or their recovery mechanism is too costly.

2.5 Traces

HP Dynamo [8, 26, 7] is a same-ISA binary optimizer. Dynamo initially interprets a binary

executable program, detecting hot interprocedural paths,or traces, through the program as it

runs. These traces are then optimized and loaded into atrace cache. Subsequently, when the

interpreter encounters a program location for which a traceexists, it is dispatched from the

trace cache. If execution diverges from the path taken when the trace was generated then a

trace exitoccurs, execution leaves the trace cache and interpretation resumes. If the program

follows the same path repeatedly, it will be faster to execute code generated for the trace rather

than the original code. Dynamo successfully reduced the execution time of many important

benchmarks. Several binary optimization systems, including DynamoRIO [13], Mojo [16],

Transmeta’s CMS [23], and others, have since used traces.

Dynamo uses a simple heuristic, called Next Executing Tail (NET), to identify traces. NET

starts generating a trace from the destination of a hot reverse branch, since this location is likely

to be the head of a loop, and hence a hot region of the program islikely to follow. If a given

trace exit becomes hot, a new trace is generated starting from its destination.

Software trace caches are efficient structures for dynamic optimization. Bruening and

Duesterwald [11] compare execution time coverage and code size for three dynamic optimiza-

tion units: method bodies, loop bodies, and traces. They show that method bodies require

significantly more code size to capture an equivalent amountof execution time than either

traces or loop bodies. This result, together with the properties outlined in Section 1.4, suggest

that traces may be a good choice for a unit of compilation.

DynamoRIO Bruening describes a new version of Dynamo which runs on the Intel x86 ar-

chitecture. The current focus of this work is to provide an efficient environment to instrument

real world programs for various purposes such as to improve the security of legacy applica-
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tions [13, 12].

One interesting application of DynamoRIO was by Sullivanet al. [73]. They ran their

own tiny interpreter on top of DynamoRIO in the hope that it would be able to dynamically

optimize away a significant proportion of interpretation overhead. They did not initially see

the results they were hoping for because the indirect dispatch branches confounded Dynamo’s

trace selection. They responded by creating a small interface by which the interpreter could

programatically give DynamoRIO hints about the relationship between the virtual pc and the

hardware pc. This was their way around what we call the context problem in Section 3.4.

Whereas interpretation slowed down by almost a factor of two using regular DynamoRIO,

after they had inserted calls to the hint API, they saw speedups of about 20% on a set of small

benchmarks. Baron [9] reports similar performance results running a similarly modified Kaffe

JVM [80].

Last Executed Iteration (LEI)

Hiniker, Hazelwood and Smith performed a simulation study evaluating enhancements to the

basic Dynamo trace selection heuristics [41]. They observed two main problems with Dy-

namo’s NET heuristic. The first problem,trace separation, occurs when traces that turn out to

often execute sequentially happen to be placed far apart in the trace cache, hurting the locality

of reference of code in the instruction cache. LEI maintainsa branch history mechanism as

part of its trace collection system that allows it to do a better job handling loop nests, requiring

fewer traces to span the nest. The second problem, excessivecode duplication, occurs when

many different paths become hot through a region of code. Theproblem is caused when a

trace exit becomes hot and a new trace is generated that diverges from the preexisting trace for

only one or a few blocks before rejoining its path. As a consequence, the new trace replicates

blocks of the old trace from the place they rejoin to their common end. Combining several such

observed traces together forms a region with multiple pathsand less duplication. A simulation

study suggests that using their heuristics, fewer, smallerselected traces will account for the
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same proportion of execution time.

2.6 Hotpath

Gal, Probst and Franz describe the Hotpath project [33]. Hotpath extends JamVM (one of

the interpreters we use for our experiments) to be a trace oriented mixed-mode system. They

focus on traces starting at loop headers and do not compile traces other than those in loops.

Thus, they do not attempt trace linking as described by Dynamo, but rather “merge” traces

that originate from side exits leading back to loop headers.This technique allows Hotpath to

compile loop nests. They describe an interesting way of modeling traces using single static

assignment (SSA) [22] that exploits the constrained flow of control present in traces. This both

simplifies their construction of SSA and allows very efficient optimization. Their experimental

results show excellent speedup, within a factor of two of Sun’s HotSpot, for scientific style loop

nests like those in the LU, SOR and Linpack benchmarks, and more modest speedup, around

a factor of two over interpretation, for FFT. No results are given for tests in the SPECjvm98

suite, perhaps because their system does not yet support “trace merging across (inlined) method

invocations” [33, page 151]. The optimization techniques they describe seem complimentary

to the overall architecture we propose in Chapter 6.

2.7 Branch Prediction and General Purpose Computers

Branch prediction is an important consideration in the design of a high level language VM

because commonly used dispatch techniques represent an unusual workload for modern pro-

cessors. As we shall see in Chapter 3, techniques that were efficient on older machines may

be very slow on modern processors for which accurate branch prediction is essential for good

performance. The basic problem is that many interpretationtechniques evolved when thepath

lengthof dispatch code was the most important design consideration whereas on modern com-
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puters thepredictabilityof dispatch branches is key.

Modern processors implement deep pipelines to achieve goodperformance. The main idea

is to split the processing of instructions up into pipeline stages and overlap the processing of

the stages to achieve high throughput. Straight-line sequences of instructions can easily be read

ahead, decoded and executed. However, branches pose a challenge because their destination

may not be known until well after they have been decoded. If the processor simply waited

until the destination of the branch is known performance would be poor because the pipeline

would run dry. Thus, modern architectures attempt to predict the destination of branches and

speculatively decode and execute the instructions there. There is a rich body of research on

branch prediction, since branches are otherwise very costly on pipelined architectures. In this

thesis we care only about techniques adopted by real microprocessors[54]. With a prediction in

hand, the processor will proceed as if the destination of thebranch is known. If the prediction

turns out to be correct the results calculated by the speculatively dispatched instructions can

be committed to architectural state. If the branch prediction turns out to be wrong, then the

speculative work must be thrown away.

There are three kinds of branch instructions that interest us:

1. Direct Branches, including direct conditional branches;

2. Indirect branches;

3. Calls and Returns.

Direct Branches Direct branch instructions encode the destination explicitly as an operand,

typically as an signed offset to be added to the program counter. Unconditional direct branches

thus pose little challenge, as the destination can be calculated as soon as the instruction has been

decoded. Conditional branch instructions are harder – in order to predict the destination the

processor must guess whether (or not) the branch will be taken. Fortunately, techniques have

been developed that allow conditional branches to be predicted accurately. Most techniques
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involve memories that record the previous behavior of each branch and guess whether a branch

is taken or not based on the recorded information in combination with various aspects of the

execution context of the processor.

Indirect Branches Indirect branches take operands that identify a location inmemory. The

destination of the branch is the contents of the memory location. Indirect branches can be

challenging to predict because they are data dependent on memory. However, it turns out that

for many workloads the destination of a given indirect branch is always or mostly the same. In

this case the processor simply remembers the destination last taken by an indirect branch and

predicts that subsequent executions will branch to the sameplace.

As pointed out by Ertl and Gregg most high level language virtual machines do not behave

this way because the indirect branches used to dispatch virtual instructions have many different

destinations [29].

Calls and Returns Direct calls are similar to direct branches in that the destination is explicit.

Thus, the destination of a call is easy to predict. A return instruction, on the other hand, has

the flavor of an indirect branch, in that on many architectures it is defined to pop its destination

off a stack in memory. However, in most cases, calls and returns are perfectly matched and

so the destination of each return is the instruction following the corresponding call. To handle

this case processors maintain a stack of addresses. Whenevera call is decoded its address is

pushed on the stack. By popping the stack the destination of the corresponding return can be

predicted perfectly.

2.7.1 Dynamic Hardware Branch Prediction

The primary mechanism used to predict indirect branches on modern computers is thebranch

target buffer(BTB). The BTB is a hardware table in the CPU that associates the destination of

a small set of branches with their address [40]. The idea is tosimply remember the previous
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destination of each branch. This is the same as assuming thatthe destination of each indirect

branch is correlated with the address in memory of the branchinstruction itself.

The Pentium 4 implements a 4K entry BTB [42]. (Instead of a BTB the PowerPC 970 has

a much smaller 32 entry count cache [46].) Direct threading confounds the BTB because all

instances of a given virtual instruction compete for the same BTB slot.

Another kind of dynamic branch predictor is used for conditional branch instructions. Con-

ditional branches are relative, or direct, branches so there are only two possible destinations.

The challenge lies in predicting whether the branch will be taken or fall through. For this pur-

pose modern processors implement abranch history table. The PowerPC 7410, as an example,

deploys a 2048 entry 2 bit branch history table [55]. Direct threading also confounds the branch

history table as all the instances of each conditional branch virtual instruction compete for the

same branch history table entry. In this case, the hard to predict branch is not an explicit dis-

patch branch but rather the result of anif statement in a virtual branch instruction body. This

will be discussed in more detail in Section 4.3.

Return instructions can be predicted perfectly using a stackof addresses pushed by call

instructions. The Pentium 4 has a 16 entryreturn address stack[42] whereas the PPC970 uses

a similar structure called thelink stack[46].

2.8 Chapter Summary

In this chapter we briefly traced the development of high-level language virtual machines from

interpreters to dynamic optimizing compilers. We saw that interpreter designs may perform

poorly on modern, highly pipelined processors, because current dispatch mechanisms cause

too many branch mispredictions. This will be discussed in more detail in Section 3.4. Later, in

Chapter 4, we describe our solution to the problem.

Currently, JIT compilers compile entire methods or inlined method nests. Since hot meth-

ods may contain cold code, this forces the JIT compiler and runtime system to support late
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binding. Should the cold code later become hot, a method-based JIT must recompile the con-

taining method or inlined method nest to optimize the newly hot code. These issues add com-

plexity to a method oriented system that could be avoided if compiled code contained no cold

code. The HP Dynamo binary optimizer project defines a suitable candidate for a dynamically

identified unit of compilation, namely the hot interprocedural path, or trace. In Chapter 6, we

describe how a virtual machine can compile traces to incrementally compile code as it becomes

hot.



Chapter 3

Dispatch Techniques

In this chapter we expand on our discussion of interpretation by examining several dispatch

techniques in detail. In Chapter 2 we defined dispatch as the mechanism used by a high level

language virtual machine to transfer control from the code to emulate one virtual instruction

to the next. This chapter has the flavor of a tutorial as we trace the evolution of dispatch

techniques from the simplest to the highest performing.

Although in most cases we will give a small C language exampleto illustrate the way the

interpreter is structured, this should not be taken to mean that all interpreters are hand written

C programs. Precisely because so many dispatch mechanisms exist, some researchers argue

that the interpreter portion of a virtual machine should be generated from some more generic

representation [30, 70].

Section 3.1 describes switch dispatch, the simplest dispatch technique. Section 3.2 in-

troduces call threading, which figures prominently in our work. Section 3.3 describes direct

threading, a common technique that suffers from branch misprediction problems. Section 2.7.1

briefly describes branch prediction resources in modern processors. Section 3.4 defines the

context problem, our term for the challenge to branch prediction posed by interpretation. Sub-

routine threading is introduced in Section 3.5. Finally, Section 3.6 describes related work that

eliminates dispatch overhead by inlining or replicating virtual instruction bodies.

38
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3.1 Switch Dispatch

Switch dispatch, perhaps the simplest dispatch mechanism,is illustrated by Figure 3.1. Al-

though the persistent representation of a Java class is standards-defined, the representation of

a loaded virtual program is up to the VM designer. In this casewe show how an interpreter

might choose a representation that is less compact than possible for simplicity and speed of

interpretation. In the figure, the loaded representation appears on the bottom left. Each virtual

opcode is represented as a full word token even though a byte would suffice. Arguments, for

those virtual instructions that take them, are also stored in full words following the opcode.

This avoids any alignment issues on machines that penalize unaligned loads and stores.

Figure 3.1 illustrates the situation just before the statementc=a+b+1 is executed. The box

on the right of the figure represents the C implementation of the interpreter. ThevPC points

to the word in the loaded representation corresponding to the first instance ofiload. The

interpreter works by executing one iteration of the dispatch loop for each virtual instruction it

executes, switching on the token representing each virtualinstruction. Each virtual instruction

is implemented by acase in theswitch statement. Virtual instruction bodies are simply the

compiler-generated code for each case.

Every instance of a virtual instruction consumes at least one word in the internal represen-

tation, namely the word occupied by the virtual opcode. Virtual instructions that take operands

are longer. This motivates the strategy used to maintain thevPC. The dispatch loop always

bumps thevPC to account for the opcode and bodies that consume operands bump thevPC

further, one word per operand.

Although no virtual branch instructions are illustrated inthe figure, they operate by assign-

ing a new value to thevPC for taken branches.

A switch interpreter is relatively slow due to the overhead of the dispatch loop and the

switch. Despite this, switch interpreters are commonly used in production (e.g. in the JavaScript

and Python interpreters). Presumably this is because switch dispatch can be implemented in

ANSI standard C and so it is very portable.
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Java

source

Java 

Bytecode

{
  c=a+b+1;
}

vPC

Loaded

representation

of virtual 

program

Virtual operations

are identified by 

tokens.

ILOAD

a

ILOAD

b

ICONST

1

IADD

IADD

ISTORE

c

interp(){
  int *vPC;

  while(1){

    switch(*vPC++){

    case ICONST:
      //fetch immed arg and
      //move vPC to next opcode
      int c = *vPC++; 
      //push c
      break;

    case IADD:
      //pop 2 inputs, add
      //push result
      break;

    case ILOAD: //push local var..
      
    case ISTORE: //pop, store to local
     
    }
  }
}

iload a
iload b
iconst 1
iadd
iadd
istore c

Figure 3.1: A switch interpreter loads each virtual instruction as a virtual opcode, or token,
corresponding to the case of the switch statement that implements it. Virtual instructions that
take immediate operands, likeiconst, must fetch them from thevPC and adjust thevPC
past the operand. Virtual instructions which do not need operands, likeiadd, do not need to
adjust thevPC.
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3.2 Direct Call Threading

Another portable way to organize an interpreter is to write each virtual instruction as a func-

tion and dispatch it via a function pointer. Figure 3.2 showseach virtual instruction body

implemented as a C function. While the loaded representationused by the switch interpreter

represents the opcode of each virtual instruction as a token, direct call threading represents each

virtual opcode as the address of the function that implements it. Thus, by treating thevPC as a

function pointer, a direct call-threaded interpreter can execute each instruction in turn.

In the figure, thevPC is a static variable which means theinterp function as shown is

not re-entrant. Our example aims only to convey the flavor of call threading. In Chapter 6 we

will show how a more complex approach to direct call threading can perform about as well as

switch threading (described in Section 3.1).

A variation of this technique is described by Ertl [27]. For historical reasons the name

“direct” is given to interpreters which store theaddressof the virtual instruction bodies in the

loaded representation. Presumably this is because they can“directly” obtain the address of a

body, rather than using a mapping table (or switch statement) to convert a virtual opcode to the

address of the body. However, the name can be confusing as theactual machine instructions

used for dispatch are indirect branches. (In this case, anindirect call).

Next we will describe direct threading, perhaps the most well-known high performance

dispatch technique.

3.3 Direct Threading

Like in direct call threading, a virtual program is loaded into a direct-threaded interpreter as a

list of body addresses and operands. We will refer to the listas theDirect Threading Table, or

DTT, and refer to locations in the DTT asslots.

Interpretation begins by initializing thevPC to the first slot in the DTT, and then jumping

to the address stored there. A direct-threaded interpreterdoes not need a dispatch loop like
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vPC

iload

a

iload

b

iconst

1

iadd

iadd

istore

c

Loaded representation 

of virtual program

  int * vPC;

  void iload() { .. }

  void iconst(){ .. }

  void iadd()  { .. }

  void istore(){ .. }

  vPC = &dtt[0];

  interp(){

    
   }

while(1){
  (*vPC++)(); 
  } 

Virtual operations

are identified by 

addresses of functions

implementing each 

virtual instruction body

Figure 3.2: A direct call-threaded interpreter packages each virtual instruction body as a func-
tion. The shaded box highlights the dispatch loop showing how virtual instructions are dis-
patched through a function pointer. Direct call threading requires the loaded representation of
the program to point to theaddressof the function implementing each virtual instruction.

vPC

iload a
iload b
iconst 1
iadd
iadd
istore c

{
  c=a+b+1;
} &&iload

a
&&iload
b
&&iconst
1
&&iadd
&&iadd
&&istore
c

DTT
interp(){
  iload:
    //push var..
    
     goto *vPC++;

  iconst:
    //push constant
     
    goto *vPC++;

  iadd://add 2 slots

  istore://pop,store 
}

Java source

Java Bytecode

B
ytecode Loader

Javac
Compiler

Virtual Instruction Bodies

Figure 3.3: Direct-threaded Interpreter showing how Java Source code compiled to Java byte-
code is loaded into the Direct Threading Table (DTT). The virtual instruction bodies are written
in a single C function, each identified by a separate label. The double-ampersand (&&) shown
in the DTT is gcc syntax for the address of a label.
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mov %eax = (%rx) ; rx is vPC lwz r2 = 0(rx)

addl 4,%rx mtctr r2

jmp (%eax) addi rx,rx,4

bctr

(a) Pentium 4 assembly (b) Power PC assembly

Figure 3.4: Machine instructions used for direct dispatch.On both platforms assume that
some general purpose register,rx, has been dedicated for thevPC. Note that on the PowerPC
indirect branches are two part instructions that first load thectr register and then branch to its
contents.

direct call threading or switch dispatch. Instead, as can beseen in Figure 3.3, each body ends

with goto *vPC++, which transfers control to the next instruction.

In C, bodies are identified by a label. Common C language extensions permit the address

of this label to be taken, which is used when initializing theDTT. GNU’s gcc, as well as C

compilers produced by Intel, IBM and Sun Microsystems all support the label-as-value and

computed goto extensions, making direct threading quite portable.

Direct threading requires fewer instructions and is fasterthan direct call threading or switch

dispatch. Assembler for the dispatch sequence is shown in Figure 3.4. When executing the

indirect branch in Figure 3.4(a) the Pentium 4 will speculatively dispatch instructions using a

predicted target address. The PowerPC uses a different strategy for indirect branches, as shown

in Figure 3.4(b). First the target address is loaded into a register, and then a branch is executed

to this register address. The PowerPC stalls until the target address is known1, although other

instructions may be scheduled between the load and the branch (like theaddi in Figure 3.4)

to reduce or eliminate these stalls.

3.4 The Context Problem

Mispredicted branches pose a serious challenge to modern processors because they threaten to

starve the processor of instructions. The problem is that before the destination of the branch is

1In addition, the PPC970 implements a small count cache that remembers the target address for the 32 previ-
ously executed indirect branches.



CHAPTER 3. DISPATCH TECHNIQUES 44

known the execution of the pipeline may run dry. To perform atfull speed, modern CPUs need

to keep their pipelines full by correctly predicting branchtargets.

Ertl and Gregg point out that the assumptions underlying thedesign of indirect branch

predictors are usually wrong for direct-threaded interpreters [28, 29]. In a direct-threaded

interpreter, there is onlyone indirect jump instruction per virtual instruction. For example,

in the fragment of virtual code illustrated in Figure 2.1, there are two instances ofiload

followed by an instance oficonst. The indirect dispatch branch at the end of theiload

body will execute twice. The first time, in the context of the first instance ofiload, it

will branch back to the entry point of the theiload body, whereas in the context of the

secondiload it will branch toiconst. Thus, the hardware will likely mispredict the second

execution of the dispatch branch.

The performance impact of this can be hard to predict. For instance, if a tight loop in a

virtual program happens to contain a sequence of unique virtual instructions, the BTB may

successfully predict each one. On the other hand, if the sequence contains duplicate virtual

instructions, the BTB may mispredict all of them.

This problem is even worse for direct call threading and switch dispatch. For these tech-

niques there is only one dispatch branch and so all dispatches share the same BTB entry. Direct

call threading will mispredict all dispatches except when the same virtual instruction body is

dispatched multiple times consecutively.

Another perspective is that the destination of the indirectdispatch branch is unpredictable

because its destination is not correlated with the hardwarepc. Instead, its destination is corre-

lated to thevPC. We refer to this lack of correlation between the hardwarepc andvPC as the

context problem. We choose the termcontextfollowing its use incontext sensitive inlining[39]

because in both cases the context of shared code (in their case methods, in our case virtual

instruction bodies) is important to consider.
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3.5 Subroutine Threading

Forth is organized as a collection of callable bodies of codecalledwords. Words can be user

defined or built into the system. Meaningful Forth words are composed of built-in and user-

defined words and execute by dispatching their constituent words in turn. A Forth implemen-

tation is said to besubroutine-threadedif a word is compiled to a sequence ofnative call

instructions,one call for each constituent word. Since a built-in Forth word is loosely analo-

gous to a callable virtual instruction body, we could apply subroutine threading at load time

to a language virtual machine that implements virtual instruction bodies as callable. In such

a system the loaded representation of a virtual method wouldinclude a sequence of generated

native call instructions, one to dispatch each virtual instruction in the virtual method.

Curley [21, 20] describes a subroutine-threaded Forth for the 68000 CPU. He improves the

resulting code by inlining small opcode bodies, and converts virtual branch opcodes to single

native branch instructions. He credits Charles Moore, the inventor of Forth, with discovering

these ideas much earlier. Outside of Forth, there is little thorough literature on subroutine

threading. In particular, few authors address the problem of where to store virtual instruction

operands. In Section 4.2, we document how operands are handled in our implementation of

subroutine threading.

The choice of optimal dispatch technique depends on the hardware platform, because dis-

patch is highly dependent on micro-architectural features. On earlier hardware,call andreturn

were both expensive and hence subroutine threading required two costly branches, versus one

in the case of direct threading. Rodriguez [63] presents the trade offs for various dispatch types

on several 8 and 16-bit CPUs. For example, he finds direct threading is faster than subroutine

threading on a 6809 CPU, because thejsr andret instruction require extra cycles to push

and pop the return address stack. On the other hand, Curley found subroutine threading faster

on the 68000 [20]. Due to return branch prediction hardware deployed in modern general pur-

pose processors, like the Pentium and PowerPC, the cost of a return is much lower than the

cost of a mispredicted indirect branch. In Chapter 5 we quantify this effect on a few modern
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CPUs.

3.6 Optimizing Dispatch

Much of the work on interpreters has focused on how to optimize dispatch. In general dispatch

optimizations can be divided into two broad classes: those which refine the dispatch itself, and

those which alter the bodies so that they are more efficient orsimply require fewer dispatches.

Switch dispatch and direct threading belong to the first class, as does subroutine threading.

Kogge remains a definitive description of many threaded codedispatch techniques [50]. Next,

we will discuss superinstruction formation and replication, which are in the second class.

3.6.1 Superinstructions

Superinstructionsreduce the number of dispatches. Consider the code to add a constant in-

teger to a variable. This may require loading the variable onto the expression stack, loading

the constant, adding, and storing back to the variable. VM designers can instead extend the

virtual instruction set with a single superinstruction that performs the work of all four virtual

instructions. This technique is limited, however, becausethe virtual instruction encoding (of-

ten one byte per opcode) may allow only a limited number of instructions, and the number of

desirable superinstructions grows large in the number of subsumed atomic instructions. Fur-

thermore, the optimal superinstruction set may change based on the workload. One approach

uses profile-feedback to select and create the superinstructions statically (when the interpreter

is compiled [30]).
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3.6.2 Selective Inlining

Piumarta and Riccardi [61] presentselective inlining2. Selective inlining constructs superin-

structions when the virtual program is loaded. They are created in a relatively portable way, by

memcpy’ing the compiled code in the bodies, again using GNU C labels-as-values. The idea

is to construct (new) super instruction bodies by concatenating the virtual bodies of the virtual

instructions that make them up. This works only when the codein the virtual bodies isposition

independent, meaning that the destination of any relative branch in a body is in that body also.

Typically this excludes bodies making C function calls. Like us, Piumarta and Riccardi applied

selective inlining to OCaml, and reported significant speedup on several micro benchmarks. As

we discuss in Section 5.3, our technique is separate from, but supports and indeed facilitates,

inlining optimizations.

Languages, like Java, that require runtime binding complicate the implementation of se-

lective inlining significantly because at load time little is known about the arguments of many

virtual instructions. When a Java method is first loaded some arguments are left unresolved.

For instance, the argument of aninvokevirtual instruction will initially be a string nam-

ing the callee. The argument will be re-written the first timethe virtual instruction executes to

point to a descriptor of the now resolved callee. At the same time, the virtual opcode is rewrit-

ten so that subsequently a “quick” form of the virtual instruction body will be dispatched. In

Java, if resolution fails, the instruction throws an exception and is not rewritten. The process

of rewriting the arguments, and especially the need to pointto a new virtual instruction body,

complicates superinstruction formation. Gagnon describes a technique that deals with this ad-

ditional complexity which he implemented in SableVM [32].

Selective inlining requires that the superinstruction starts at a virtual basic block, and ends

at or before the end of the block. Ertl and Gregg’sdynamic superinstructions[29] also use

2About two years earlier, Rossi and Sivalingam [65] described a similar technique which they called “instruc-
tion dispatch usingmemcpy”. However, Piumarta and Riccardi’s independent discoveryinspired many other
projects to exploit selective inlining.



CHAPTER 3. DISPATCH TECHNIQUES 48

memcpy, but are applied to effect a simple native compilation by inlining bodies for nearly

every virtual instruction. They show how to avoid the basic block constraints, so dispatch to

interpreter code is only required for virtual branches and unrelocatable bodies. Vitale and Ab-

delrahman describe a technique called catenation, which (i) patches Sparc native code so that

all implementations can be moved, (ii) specializes operands, and (iii) converts virtual branches

to native branches, thereby eliminating the virtual program counter [77].

3.6.3 Replication

Replication— creating multiple copies of the opcode body—decreases thenumber of contexts

in which it is executed, and hence increases the chances of successfully predicting the succes-

sor [29]. Replication combined with inlining opcode bodies reduces the number of dispatches,

and therefore, the average dispatch overhead [61]. In the extreme, one could create a copy for

each instruction, eliminating misprediction entirely. This technique results in significant code

growth, which may [77] or may not [29] cause cache misses.

3.7 Chapter Summary

In summary, branch mispredictions caused by the context problem limit the performance of a

direct-threaded interpreter on a modern processor. We havedescribed several recent dispatch

optimization techniques. Some of the techniques improve performance of each dispatch by

reducing the number of contexts in which a body is executed. Others reduce the number of

dispatches, possibly to zero.

In the next chapter we will describe a new technique for interpretation that deals with the

context problem. Our technique, context threading, performs well compared to the interpreta-

tion techniques we have described in this chapter.



Chapter 4

Design and Implementation of Efficient

Interpretation

This chapter will describe how to efficiently implement an interpreter thatcalls its virtual

instruction bodies1. This investigation was motivated by the suggestion we madein Chapter

1, namely that such an interpreter will be easier to extend with a JIT than an interpreter that is

direct-threaded or uses switch dispatch. Before tackling the design of our mixed-mode system

we need to ensure that the interpreter is efficient.

An obvious, but slow, way to use callable virtual instruction bodies is to build a direct call

threaded (DCT) interpreter (see Section 3.2 for a detailed description of the technique.) In a

DCT interpreter all bodies are dispatched by the sameindirectcall instruction. The destination

of the indirect call is data driven (i.e. by the sequence of virtual instructions that make up the

virtual program) and thus impossible for the hardware to predict. As a result, a DCT interpreter

suffers a branch misprediction for almost every dispatch.

The main realization driving our approach is that to call each body without misprediction

dispatch branches must bedirect call instructions. Since these can only be generated when

virtual instructions are loaded, we generate them ourselves. At load time, each straight-line

1The material in this chapter and the next is derived from our CGO 2005 paper [10].
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section of virtual instructions is translated to a sequenceof direct call native instructions, each

dispatching the corresponding virtual instruction body. The loaded program is run by jumping

to the beginning of the generated sequence of native code, which then emulates the virtual

program by calling each virtual instruction body in turn. This approach is very similar to a

Forth compile-time technique called subroutine threading, described in Section 3.5.

Subroutine threading dispatches straight-line sequencesof virtual instructions very effi-

ciently because no branch mispredictions occur. The generated direct calls pose no prediction

challenge because each has only one explicit destination. The destination of the return ending

each body is perfectly predicted by the return branch predictor stack implemented by modern

processors. In the next chapter we present data showing thatsubroutine threading runs the

SPECjvm98 suite about 20% faster than direct threading.

Subroutine threading handles straight-line virtual code efficiently, but does nothing to im-

prove the dispatch of virtual branch instructions. We introducecontext threading, which, by

generating more sophisticated code for virtual branch instructions, eliminates the branch mis-

predictions caused by the dispatch of virtual branch instructions as well. Context threading im-

proves the performance of the SPECjvm98 suite by about another 5% over subroutine thread-

ing.

Generating and dispatching native code obviously makes ourimplementation of subroutine

threading less portable than many dispatch techniques. However, since subroutine threading

requires the generation of only one type of machine instruction, a direct call, its hardware

dependency is isolated to a few lines of code. Context threading requires much more machine

dependent code generation.

In Chapter 6 we will describe another way of handling virtual branches that requires less

complex, less machine dependent code generation, but requires additional runtime infrastruc-

ture to identify hot runtime interprocedural paths, or traces.

Although direct-threaded interpreters are known to have poor branch prediction properties,

they are also known to have a small instruction cache footprint [64]. Since both branch mispre-
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dictions and instruction cache misses are major pipeline hazards, we would like to retain the

good cache behavior of direct-threaded interpreters whileimproving the branch behavior. Sub-

routine threading minimally affects code size. This is in contrast to techniques like selective

inlining, described in Section 3.6, which improve branch prediction by replicating entire bod-

ies, in effect trading instruction cache size for better branch prediction. In Chapter 7 we will

report data showing that subroutine threading causes very few additional stall cycles caused by

instruction cache misses as compared to direct threading.

In Section 4.1 we discuss the challenge of virtual branch instructions in general terms.

In Section 4.2 we show how to replace straight-line dispatchwith subroutine threading. In

Section 4.3 we show how to inline conditional and indirect jumps, and in Section 4.4 we discuss

handling virtual calls and returns with native calls and returns.

4.1 Understanding Branches

Before describing our design, we start with two observations. First, a virtual program will

typically contain several types of control flow: conditional and unconditional branches, indirect

branches, and calls and returns. We must also consider the dispatch of straight-line virtual

instructions. For direct-threaded interpreters, straight-line execution is just as expensive as

handling virtual branches, sinceall virtual instructions are dispatched with an indirect branch.

Second, the dynamic execution path of the virtual program will contain patterns (loops, for

example) that are similar in nature to the patterns found when executing native code. These

control flow patterns originate in the algorithm that the virtual program implements.

As described in Section 2.7.1, modern microprocessors haveconsiderable resources de-

voted to identifying these patterns in native code, and exploiting them to predict branches.

Direct threading uses only indirect branches for dispatch and, due to the context problem, the

patterns that exist in the virtual program are largely hidden from the microprocessor.

The spirit of our approach is to expose these virtual controlflow patterns to the hardware,
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vPC    &ctt[0]

    a

   &ctt[1]

    b

    &ctt[2]

    1

    &ctt[3]

    &ctt[4]

    &ctt[5]

    c

call iload

call iload

call iconst

call iadd

call iadd

call istore

DTT

CTT

interp(){

  void iload(){
    //push var..
    vPC++; //past arg
    vPC++; //past opcode
    }

  void iconst(){
    //push constant
    vPC+=2; 
    }

  void iadd(){ 
    //add 2 slots
    vPC++; //past opcode
    }
 
 void istore(){
    //store var
    vPC+=2;
    }
 }

loaded data generated code

Figure 4.1: Subroutine Threaded Interpreter showing how the CTT contains one generated
direct call instruction for each virtual instruction and how the first entry in the DTT corre-
sponding to each virtual instruction points to generated code to dispatch it. Callable bodies
are shown here as nested functions for illustration only. All maintenance of thevPC must be
done in the bodies. Hence even virtual instructions that take no arguments, likeiadd, must
bumpvPC past the virtual opcode. Virtual instructions, likeiload, that take an argument
must bumpvPC past the argument as well.

such that the physical execution path matches the virtual execution path. To achieve this goal,

we generate dispatch code at load time that enables the different types of hardware prediction

resources to predict the different types of virtual controlflow transfers. We strive to maintain

the property that the virtual program counter is precisely correlated with the physical program

counter and in fact, when all our techniques are combined, there is a one-to-one mapping

between them at most control flow points.
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interp(){

  iload:
     //push local var
    
     asm ("ret");
     goto *vPC++;

  
  iconst:
     //push constant

     asm ("ret"); 
     goto *vPC++;

}

Figure 4.2: Direct threaded bodies retrofitted as callable routines by inserting inline assembler
return instructions. This example is for Pentium 4 and henceends each body with aret
instruction. Theasm statement is an extension to the C language, inline assembler, provided
by gcc and many other compilers.

4.2 Handling Linear Dispatch

The dispatch of straight-line virtual instructions is the largest single source of branches when

executing an interpreter. Any technique that hopes to improve branch prediction accuracy must

address straight-line dispatch.

Rather than eliminate dispatch, we describe an alternative organization for the interpreter

in which native call and return instructions are used. This approach is conceptually elegant

because the subroutine is a natural unit of abstraction to express the implementation of virtual

instruction bodies.

Figure 4.1 illustrates our implementation of subroutine threading, using the same example

program as Figure 3.3. In this case, we show the state of the virtual machineafter the first

virtual instruction has been executed. We add a new structure to the interpreter architecture,

called theContext Threading Table(CTT), which contains a sequence of native call instruc-

tions. Each native call dispatches the body for its virtual instruction. Although Figure 4.1

shows each body as a nested function, in fact we implement this by ending each non-branching
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opcode body with a native return instruction2 as shown in Figure 4.2.

The handling of immediate arguments to virtual instructions is perhaps the biggest differ-

ence between our implementation of subroutine threading and the approach used by Forth.

Forth words pop all their arguments from the expression stack — there is no concept of an im-

mediate operand. Thus, there is no need for a structure like the DTT. The virtual instruction set

defined by a Java virtual machine includes many instructionswhich take immediate operands.

Hence, in Java, we need both the direct threading table (DTT)and the CTT. (In Section 3.3 we

described how the DTT is used to store immediate operands, and to correctly resolve virtual

control transfer instructions.) In direct threading, entries in the DTT point to virtual instruction

bodies, whereas in subroutine threading they refer to call sites in the CTT.

It may seem counterintuitive to improve dispatch performance by calling each body because

the latency of a call and return may be greater than an indirect jump. This is not the real issue.

On modern microprocessors the extra cost of the call (if any)is far outweighed by the benefit of

eliminating a large source of unpredictable branches, as the data presented in the next chapter

will show.

4.3 Handling Virtual Branches

Subroutine threading handles the branches that implement the dispatch of straight-line virtual

instructions; however, the control flow of the virtual program is still hidden from the hardware.

That is, bodies that perform virtual branches still have no context. There are two problems, the

first relating to shared indirect branch prediction resources, and the second relating to a lack of

history context for conditional branch prediction resources.

Figure 4.3 introduces a new Java example, this time including a virtual branch. Consider

the implementation ofifeq, shaded in the figure. Prediction of the indirect branch at “(a)”

may be problematic, becauseall instances ofifeq instructions in the virtual program share

2The goto’s remain to work around the fact that currently C compilers like gcc do not allow branches in inline
assembler. Return is a branch. This is discussed in Section 6.5
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(a)

{
  boolean notZero(int p1){
  if ( p1!=0 ){
   return true;
  }else{
   return false;
  }
}

boolean notZero(int);
  Code:
   0: iload_1
   1: ifeq 6
   4: iconst_1
   5: ireturn
   6: iconst_0
   7: ireturn

Java source

Java Bytecode

call iload_1

call ifeq 

call iconst_1

call ireturn

call iconst_0

call ireturn

CTT

interp(){
 
  iload_1:
    //push const 1
    vPC++; //no arg
    asm ("ret")

  ifeq:
    if ( *sp )
      vPC = *vPC;
     else
      vPC+=2;
    goto *vPC;

iconst_1: //push 1
iconst_0  //push 0

  ireturn:
   //vPC = return
   goto *vPC;

}

virtual instruction bodiesgenerated code

vPC

0:  &ctt[0]

1:  &ctt[1]

    6

3:  &ctt[2]

4:  &ctt[3]

5:  &ctt[4]

6:  &ctt[5]

   

DTT

loaded data

Figure 4.3: Subroutine Threading does not not address branch instructions. Unlike straight line
virtual instructions, virtual branch bodies end with an indirect branch, just like direct threading.
(Note: When a body is called thevPC always points to the slot in the DTT corresponding to
its first argument, or, if there are no operands, to the following instruction.)
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(a)

(b)

(c)

CTT

interp(){
 
  iload_1:
    //push local 1
    vPC++;
    asm ("ret")

  ifeq:
    if ( *sp )
      vPC = *vPC;
     else
      vPC+=2;
    asm ("ret")

iconst_1: //push 1
iconst_0  //push 0

  ireturn:
   //vPC = return
   asm("ret");

}

generated code

vPC

    &ctt[0]

    &ctt[1]

    6

    &ctt[2]

    &ctt[3]

    &ctt[4]

    &ctt[5]

   

DTT

loaded data virtual instruction bodies

call iload_1

call ifeq

jmp (%vPC)

call iconst_1

call ireturn

jmp (%vPC)

call iconst_0

call ireturn

jmp (%vPC)

Figure 4.4: Context threading with branch replication illustrating the “replicated” indirect
branch (a) in the CTT. The fact that the indirect branch corresponds to only one virtual in-
struction gives it better prediction context. The heavy arrow from (a) to (b) is followed when
the virtual branch is taken. Prediction problems remain in the code compiled from theif
statement labelled (c)

the same indirect branch instruction (and hence have a single prediction context).

Figure 4.4 illustratesbranch replication, a simple solution to the first of these problems.

The idea is to generate an indirect branch instruction in theCTT immediately following the

dispatch of the virtual branch. Virtual branch bodies have been modified to end with a native

return instruction and the only result of dispatching a branch body is the side effect of setting

thevPC to the destination. The result is that each virtual branch instruction has its own indirect

branch predictor entry. Branch replication is an appropriate term because the indirect branch

ending the branch body has been copied to potentially many places in the CTT.)

Branch replication is attractive because it is simple and produces the desired context with

a minimum of new generated instructions. However, it has a number of drawbacks. First, for
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branching opcodes, we execute three hardware control transfers (a call to the body, a return,

and the replicated indirect branch), which is an unnecessary overhead. Second, we still use the

overly general indirect branch instruction, even in cases like goto where we would prefer a

simpler direct native branch. Third, by only replicating the dispatch part of the virtual instruc-

tion, we do not take full advantage of the conditional branchpredictor resources provided by

the hardware. This is because theif statement in the body, marked (c) in the figure, is shared

by all instances ofifeq. Due to these limitations, we only use branch replication for indirect

virtual branches and exceptions3.

Branch inlining, illustrated by Figure 4.5, is a technique that generates code for the bodies

of virtual branch instructions into the CTT. In the figure we show how our system inlines the

ifeq instruction. The generated native code, shaded in the figure, implements the same if-

then-else logic as the original direct-threaded virtual instruction body. The inlined conditional

branch instruction (jne, “(a)” in the figure) is thus fully exposed to the Pentium’s conditional

branch prediction hardware.

On the Pentium, branch inlining reduces pressure on the branch target buffer, or BTB, since

conditional branches use the conditional branch predictors instead. The virtual conditional

branches now appear as real conditional branches to the hardware. The dispatch of the body

has been entirely eliminated.

The primary cost of branch inlining is increased code size, but this is modest because, at

least for languages like Java and OCaml, virtual branch instructions are simple and have small

bodies. For instance, on the Pentium 4, most branch instructions can be inlined with no more

than 10 words, at worst a few additional i-cache lines.

The obvious challenge of branch inlining, apart from the hard labor required to implement

it, is that the generated code is not portable and assumes detailed knowledge of the virtual

bodies it must interoperate with.

3OCaml defines explicit exception virtual instructions
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(a)

(b)

CTT

generated code

vPC

    &ctt[0]

    &ctt[1]

    6

    &ctt[2]

    &ctt[3]

    &ctt[4]

    &ctt[5]

   

DTT

loaded data

interp(){
 
  iload_1:
    //push local 1
    vPC++;
    asm ("ret")

  iconst_1: 

  iconst_0  

  ireturn:
   //vPC = return
   asm("ret");

}

virtual instruction bodies

call iconst_1

call ireturn

jmp (%vPC)

call iconst_0

call ireturn

jmp (%vPC)

call iload_1
subl $4, %edi

movl (%edi), %eax

cmpl $0, %eax

jne nt

movl (%esi), %esi

jmp cttdest

nt: addl $4, %esi

Figure 4.5: Context-threaded VM Interpreter: Branch Inlining. The dashed arrow (a) illus-
trates the inlined conditional branch instruction, now fully exposed to the branch prediction
hardware, and the heavy arrow (b) illustrates a direct branch implementing the not taken path.
The generated code (shaded) assumes thevPC is in registeresi and the Java expression stack
pointer is in registeredi. (In reality, we dedicate registers in the way shown for SableVM on
the PowerPC only. On the Pentium4, due to lack of registers, thevPC is actually stored on the
stack. )

4.4 Handling Virtual Call and Return

The only significant source of control transfers that remainin the virtual program is virtual

method invocation and return. For successful branch prediction, the real problem is not the

virtual call, which has only a few possible destinations, but rather the virtual return, which

potentially has many destinations, one for each callsite ofthe method. As noted previously,

the hardware already has an elegant solution to this problemin the form of the return address

stack. We need only to deploy this resource to predict virtual returns.

We describe our solution with reference to Figure 4.6. The virtual method invocation body,

Java’sinvokestatic in the figure, must transfer control to the first virtual instruction of the

callee. Our goal is to generate dispatch code so that the corresponding virtual return instruction
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(d)

CTT

interp(){
 
  invokestatic:
    //build frame
    vPC = *vPC;
    asm ("ret")

  return:
   //pop frame
   vPC = return
   asm( "ret");

}

virtual instruction bodiesgenerated code

vPC

   &ctt[0]

    &ctt[callee]

   

DTT

loaded data

(a)

(b)callee

jmp return

call invokestatic

call (*vPC)

...

(c)

Figure 4.6: Context Threading Apply-Return Inlining on Pentium. The generated codecalls
the invokestatic virtual instruction body butjumps(instruction at (c) is ajmp) to the
return body.

makes use of the hardware’s return branch predictors.

We begin at the virtual call instruction (just before label “(a)” in the figure). The body of the

invokestatic creates a new frame for the callee and then sets thevPC to the entry point of

the callee (“(b)” in the figure) before returning back to the CTT. Similar to branch replication,

we insert a new nativecall indirect instruction following “(a)” in the CTT to transfer control to

the start of the callee, shown as a solid arrow from “(a)” to “(b)” in the figure. The call indirect

has the desired side effect of pushing CTT location (a) onto the hardware’s return address stack.

The first instruction of the callee is then dispatched. At theend of the callee, we modify the

virtual return instruction as follows. In the CTT, at “(c)”, we emit a native directjump, an

x86 jmp in the figure, to dispatch the body of the virtual return. Thisdirect branch avoids

perturbing the return address stack. The body of the virtualreturn now returns all the way back

to the instruction following the original virtual call. This is shown as the dotted arrow from

“(d)” to following “(a)”. We refer to this technique asapply/return inlining4.

4“apply” is the name of the (generalized) function call opcode in OCaml where we first implemented the
technique.
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With this final step, we have a complete technique that alignsall virtual program control

flow with the corresponding native flow. There are, however, some practical challenges to

implementing our design for apply/return inlining. First,one must take care to match the

hardware stack against the virtual program stack. For instance, in OCaml, exceptions unwind

the virtual machine stack; the hardware stack must be unwound in a corresponding manner.

Second, some runtime environments are extremely sensitiveto hardware stack manipulations,

since they use or modify the machine stack pointer for their own purposes. In such cases, it

is possible to create a separate stack structure and swap between the two at virtual invocation

and return points. This approach would introduce significant overhead, and is only justified if

apply/return inlining provides a substantial performancebenefit.

4.5 Chapter Summary

The code generation described in this chapter is carried outwhen each virtual method is loaded.

The idea is to generate relatively simple code that exposes the dispatch branch instructions to

the hardware branch predictors of the processor.

In the next chapter we present data showing that our approachis effective in the sense

that branch mispredictions are reduced and performance is improved. Subroutine threading is

by far the more effective than branch replication, branch inlining, apply-return inlining, or tiny

inlining, especially when its relatively simplicity and small amount of machine dependent code

are taken into account. Branch inlining is the most complicated and least portable.

Our implementation of context threading has at least two potential problems. First, effort

is expended at load time for regions of code that may never execute. This could penalize per-

formance when large amounts of cold code are present. Second, is it awkward to interpose

profiling instrumentation around the virtual instruction bodies dispatched from the CTT. The

difficulty stems from the fact that subroutine threading, like direct threading, does not need a

dispatch loop. This means that calls to profiling code must begenerated in amongst the gener-
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ated dispatch code in the CTT. Removing instrumentation afterit is needed requires generated

code to be rewritten or regenerated.

In Chapter 6 we describe a different approach to efficient interpretation that addresses these

two problems. There, we describe a different approach that generates simple code for hot inter-

procedural paths, or traces. This allows us to exploit the efficacy and simplicity of subroutine

threading for straight-line code at the same time as eliminate the mispredictions caused by

virtual branch instructions.



Chapter 5

Evaluation of Context Threading

In this chapter we evaluate context threading by comparing its performance to direct threading

and direct-threaded selective inlining. We evaluate the impact of each of our techniques on

Pentium 4 and PowerPC processors by measuring the performance of a modified version of

SableVM, a Java virtual machine and ocamlrun, an OCaml interpreter. We explore the dif-

ferences between context threading and SableVM’s selective inlining further by measuring a

simple extension of context threading we call tiny inlining. Finally, we illustrate the range of

improvement possible with subroutine threading by comparing the performance of subroutine-

threaded Tcl and subroutine-threaded OCaml to direct threading on Sparc.

The overall results show that dispatching virtual instructions by calling virtual instruction

bodies is very effective for Java and OCaml on Pentium 4 and PowerPC platforms. In fact,

subroutine threading outperforms direct threading by a healthy margin of about 20%. Con-

text threading is almost as fast as selective inlining as implemented by SableVM. Since these

are dispatch optimizations, they offer performance benefits depending on the proportion of

dispatch to real work. Thus, when a Tcl interpreter is modified to be subroutine-threaded, per-

formance relative to direct threading increases only by about 5%. Subroutine threaded Ocaml

is 13% faster than direct threading on the same Sparc processor.

We begin by describing our experimental setup in Section 5.1. We investigate how effec-

62
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tively our techniques address pipeline branch hazards in Section 5.2.1, and the overall effect

on execution time in Section 5.2.2. Section 5.3 demonstrates that context threading is comple-

mentary to inlining and results in performance comparable to SableVM’s implementation of

selective inlining. Finally, Section 5.4 discusses a few ofthe limitations of context threading

by studying the performance of Vitale’s subroutine-threaded Tcl [78, Figure 1] and OCaml, on

Sparc.

5.1 Experimental Set-up

We evaluate our techniques by modifying interpreters for Java and OCaml to run on Pentium

4, PowerPC 7410 and PPC970. The Pentium and PowerPC are processors used by PC and

Macintosh workstations and many types of servers. The Pentium and PowerPC provide differ-

ent architectures for indirect branches (Figure 3.4 illustrates the differences) so we ensure our

techniques work for both approaches.

Our experimental approach is to evaluate performance by measuring elapsed time. This

is simple to measure and always relevant. We guard against intermittent events polluting any

single run by always averaging across three executions of each benchmark.

We report pipeline hazards using the performance measurement counters of each proces-

sor. These vary widely not only between the Pentium and the PowerPC but also within each

family. This is a challenge on the PowerPC, where IBM’s modern PowerPC 970 is a desirable

processor to measure, but has no performance counters for stalls caused by indirect branches.

Thus, we use an older processor model, the PowerPC 7410, because it implements performance

counters that the PowerPC 970 does not.

5.1.1 Virtual Machines and Benchmarks

We choose two virtual machines for our experiments. OCaml is asimple, very cleanly im-

plemented interpreter. However, there is only one implementation to measure and only a few
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Table 5.1: Description of OCaml benchmarks. Raw elapsed time and branch hazard data for
direct-threaded runs.

Pentium 4 PowerPC 7410 PPC970 Lines
Branch Branch Elapsed of

Time Mispredicts Time Stalls Time Source
Benchmark Description (TSC*108) (MPT*106) (Cycles*108) (Cycles*106) (sec) Code
boyer Boyer theorem prover 3.34 7.21 1.8 43.9 0.18 903

fft Fast Fourier transform 31.9 52.0 18.1 506 1.43 187

fib Fibonacci by recursion 2.12 3.03 2.0 64.7 0.19 23

genlex A lexer generator 1.90 3.62 1.6 27.1 0.11 2682

kb A knowledge base program 17.9 42.9 9.5 283 0.96 611

nucleic nucleic acid’s structure 14.3 19.9 95.2 2660 6.24 3231

quicksort Quicksort 9.94 20.1 7.2 264 0.70 91

sieve Sieve of Eratosthenes 3.04 1.90 2.7 39.0 0.16 55

soli A classic peg game 7.00 16.2 4.0 158 0.47 110

takc Takeuchi function (curried) 4.25 7.66 3.3 114 0.33 22

taku Takeuchi function (tuplified) 7.24 15.7 5.1 183 0.52 21

relatively small benchmark programs are available. For this reason we also modified SableVM,

a Java Virtual Machine.

OCaml We chose OCaml as representative of a class of efficient, stack-based interpreters

that use direct-threaded dispatch. The bytecode bodies of the interpreter, in C, have been

hand-tuned extensively, to the point of using gcc inline assembler extensions to hand-allocate

important variables to dedicated registers. The implementation of the OCaml interpreter is

clean and easy to modify [14, 1].

OCaml Benchmarks The benchmarks in Table 5.1 make up the standard OCaml benchmark

suite1. Boyer, kb, quicksort andsieve do mostly integer processing, whilenucleic

andfft are mostly floating point benchmarks.Soli is an exhaustive search algorithm that

solves a solitaire peg game.Fib, taku, andtakc are tiny, highly-recursive programs which

calculate integer values.

Fib, taku, andtakc are unusual because they contain very few distinct virtual instruc-

tions, and in some cases use only one instance of each. This has two important consequences.

First, the indirect branch in direct-threaded dispatch is relatively predictable. Second, even mi-

1ftp://ftp.inria.fr/INRIA/Projects/cristal/Xavier.Leroy/benchmarks/objcaml.tar.gz



CHAPTER 5. EVALUATION OF CONTEXT THREADING 65

Table 5.2: Description of SPECjvm98 Java benchmarks. Raw elapsed time and branch hazard
data for direct-threaded runs.

Pentium 4 PowerPC 7410 PPC970
Branch Branch Elapsed

Time Mispredicts Time Stalls Time
Benchmark Description (TSC*1011) (MPT*109) (Cycles*1010) (Cycles*108) (sec)
compress Modified Lempel-Ziv compression 4.48 7.13 17.0 493 127.7

db performs multiple database functions 1.96 2.05 7.5 240 65.1

jack A Java parser generator 0.71 0.65 2.7 67 18.9

javac the Java compiler from the JDK 1.0.2 1.59 1.43 6.1 160 44.7

jess Java Expert Shell System 1.04 1.12 4.2 110 29.8

mpegaudio decompresses MPEG Layer-3 audio files 3.72 5.70 14.0 460 106.0

mtrt two thread variant of raytrace 1.06 1.04 5.3 120 26.8

raytrace a raytracer rendering 1.00 1.03 5.2 120 31.2

scimark performs FFT SOR and LU, ’large’ 4.40 6.32 18.0 690 118.1

soot java bytecode to bytecode optimizer 1.09 1.05 2.7 71 35.5

nor changes can have dramatic effects (both positive and negative) because so few instructions

contribute to the behavior.

SableVM SableVM is a Java Virtual Machine built for quick interpretation. SableVM imple-

ments multiple dispatch mechanisms, including switch, direct threading, and selective inlining

(which SableVM callsinline threading[32]). The support for multiple dispatch mechanisms

facilitated our work to add context threading and allows forcomparisons against other tech-

niques, like inlining, that also address branch mispredictions. Finally, as part of its own inlining

infrastructure, SableVM builds tables describing which virtual instruction bodies can be safely

inlined using memcpy. This made our tiny inlining implementation very simple.

Java Benchmarks SableVM experiments were run on the complete SPECjvm98 [67] suite

(compress, db, mpegaudio, raytrace, mtrt, jack, jess andjavac), one large

object-oriented application (soot [76]) and one scientific application (scimark [62]). Ta-

ble 5.2 summarizes the key characteristics of these benchmarks.

5.1.2 Performance and Pipeline Hazard Measurements

On both platforms we measure elapsed time averaged over three runs to mitigate noise caused

by intermittent system events. We necessarily use platformand operating systems dependent
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methods to estimate pipeline hazards.

Pentium 4 Measurements The Pentium 4 (P4) processor speculatively dispatches instruc-

tions based on branch predictions. As discussed in Section 3.4, the indirect branches used for

direct-threaded dispatch are often mispredicted due to thelack of context. Ideally, we could

measure the cycles the processor stalls due to mispredictions of these branches, but the P4

does not provide a performance counter for this purpose. Instead, we count the number ofmis-

predicted taken branches(MPT) to measure how our techniques effect branch prediction. We

measure time on the P4 with the cycle-accuratetime stamp counter(TSC) register. We count

both MPT and TSC events using our own Linux kernel module, which collects complete data

for the multithreaded Java benchmarks2.

PowerPC Measurements We need to characterize the cost of branches differently on the

PowerPC than on the P4. On the PPC architecture split branches are used (as shown in Fig-

ure 3.4(b)) and the PPC stalls until the branch destination is known3. Hence, we would like

to count the number of cycles stalled due to link and count register dependencies. Unfortu-

nately, PPC970 chips do not provide a performance counter forthis purpose; however, the

older PPC7410 CPU has a counter (counter 15, “stall on LR/CTR dependency”) that provides

exactly the information we need [55]. On the PPC7410, we also use the hardware counters to

obtain overall execution times in terms of clock cycles. We expect that the branch stall penalty

should be larger on more deeply-pipelined CPUs like the PPC970, however, we cannot directly

verify this. Instead, we report only elapsed execution timefor the PPC970.

5.2 Interpreting the data

2MPT events are counted with performance counter 8 by settingthe P4 CCCR to 0x0003b000 and the ESCR
to value 0xc001004 [47]

3In addition, the PPC970 implements a small count cache that remembers the branch destination for the 32
previously executed indirect branches.
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Table 5.3: (a) Guide to Technique description.
Technique Key Description

Subroutine Threading SUB Section 4.2
Branch Inlining SUB+BI Section 4.3
Context Threading SUB+BI+AR Section 4.4
Tiny Inlining TINY Section 5.3
Selective Inlining (sablevm) SABLEVM Section 3.6

(b) Guide to performance data figures.

Interpreter Hazards
P4/PPC7410
Performance

PPC970 time

OCaml
Figure 5.1 on
the following

page

Figure 5.3 on
page 72

Figure 5.5 (a)
on page 74

Java (SableVM)
Figure 5.2 on

page 69
Figure 5.4 on

page 73
Figure 5.5 (b)

on page 74

In presenting our results, we normalize all experiments to the direct threading case, since

it is considered a state-of-the art dispatch technique. (For instance, the source distribution of

OCaml configures for direct threading.) We give the absolute execution times and branch haz-

ard statistics for each benchmark and platform using directthreading in Tables 5.1 and 5.2.

Bar graphs in the following sections show the contributions of each component of our tech-

nique: subroutine threading only (labeled SUB); subroutinethreading plus branch inlining and

branch replication for exceptions and indirect branches (labeled SUB+BI); and our complete

context threading implementation which includes apply/return inlining (labeled SUB+BI+AR.

We include bars for selective inlining in SableVM (labeledSABLEVM) and our own simple

inlining technique (labeledTINY) to facilitate comparisons, although inlining results arenot

discussed until Section 5.3. We do not show a bar for direct threading because it would, by

definition, have height 1.0. Table 5.3 provides a key to the acronyms used as labels in the

following graphs.
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(b) PPC 7410 LR/CTR stall cycles

Figure 5.1: OCaml Pipeline Hazards Relative to Direct Threading
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(b) PPC7410 - LR/CTR stall cycles

Figure 5.2: Java Pipeline Hazards Relative to Direct Threading
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5.2.1 Effect on Pipeline Branch Hazards

Context threading was designed to align virtual program state with physical machine state to

improve branch prediction and reduce pipeline branch hazards. We begin our evaluation by

examining how well we have met this goal.

Figure 5.1 reports the extent to which context threading reduces pipeline branch hazards

for the OCaml benchmarks, while Figure 5.2 reports these results for the Java benchmarks on

SableVM. At the top of both figures, the graph labeled (a) presents the results on the P4, where

we count mispredicted taken branches (MPT). At bottom of thefigures, the graphs labeled (b)

present the effect on LR/CTR stall cycles on the PPC7410. The last cluster of each bar graph

reports the geometric mean across all benchmarks.

Context threading eliminates most of the mispredicted takenbranches (MPT) on the Pen-

tium 4 and LR/CTR stall cycles on the PPC7410, with similar overall effects for both inter-

preters. Examining Figures 5.1 and 5.2 reveals that subroutine threading has the single greatest

impact, reducing MPT by an average of 75% for OCaml and 85% for SableVM on the P4, and

reducing LR/CTR stalls by 60% and 75% on average for the PPC7410.This result matches our

expectations because subroutine threading addresses the largest single source of unpredictable

branches—the dispatch used for straight-line sequences ofvirtual instructions. Branch inlin-

ing has the next largest effect, since conditional branchesare the most significant remaining

pipeline hazard after applying subroutine threading. On the P4, branch inlining cuts the remain-

ing MPTs by about 60%. On the PPC7410 branch inlining has a smaller, yet still significant

effect, eliminating about 25% of the remaining LR/CTR stall cycles. A notable exception to the

MPT trend occurs for the OCaml micro-benchmarksFib, takc andtaku. These tiny recur-

sive micro benchmarks contain few duplicate virtual instructions and so the Pentium’s branch

target buffer (BTB) mostly predicts correctly and inlining the conditional branches cannot help.

Interestingly, the same three OCaml micro benchmarksFib, takc andtaku that chal-

lenge branch inlining on the P4 also reap the greatest benefitfrom apply/return inlining, as

shown in Figure 5.1(a). (This appears as the significant improvement of SUB+BI+AR relative



CHAPTER 5. EVALUATION OF CONTEXT THREADING 71

to SUB+BI.) Due to the recursive nature of these benchmarks, their performance is dominated

by the behavior of virtual calls and returns. Thus, we expectpredicting the returns to have

significant impact.

For SableVM on the P4, however, our implementation of apply/return inlining is restricted

by the fact that gcc-generated code touches the processor’sesp register. Rather than imple-

ment a complicated stack switching technique, as discussedin Section 4.4, we allow the virtual

and machine stacks to become misaligned and then manipulatetheesp directly. This reduces

the performance of our apply/return inlining implementation, presumably by somehow imped-

ing the operation of the return address stack predictor. This can be seen in Figure 5.2(a), where

adding apply/return inlining increases mispredicted branches. On the PPC7410, the effect of

apply/return inlining on LR/CTR stalls is very small for SableVM.

Having shown that our techniques can significantly reduce pipeline branch hazards, we now

examine the impact of these reductions on overall executiontime.

5.2.2 Performance

Context threading improves branch prediction, resulting inbetter use of the pipelines on both

the P4 and the PPC. However, using a nativecall/return pair for each dispatch increases in-

struction overhead. In this section, we examine the net result of these two effects on overall

execution time. As before, all data is reported relative to direct threading.

Figures 5.3 and 5.4 show results for the OCaml and SableVM benchmarks, respectively.

They are organized in the same way as the previous figures, with P4 results at the top, labeled

(a), and PPC7410 results at the bottom, labeled (b). Figure 5.5 shows the performance of

OCaml and SableVM on the PPC970 CPU. The geometric means (rightmost cluster) in Figures

5.3, 5.4 and 5.5 show that context threading significantly outperforms direct threading on both
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virtual machines and on all three architectures. The geometric mean execution time of the

OCaml VM is about 19% lower for context threading than direct threading on P4, 9% lower on

PPC7410, and 39% lower on the PPC970. For SableVM, SUB+BI+AR, compared with direct

threading, runs about 17% faster on the PPC7410 and 26% fasteron both the P4 and PPC970.

Although we cannot measure the cost of LR/CTR stalls on the PPC970, the greater reductions

in execution time are consistent with its more deeply-pipelined design (23 stages vs. 7 for the

PPC7410).

Across interpreters and architectures, the effect of our techniques is clear. Subroutine

threading has the single largest impact on elapsed time. Branch inlining has the next largest

impact eliminating an additional 3–7% of the elapsed time. In general, the reductions in exe-

cution time track the reductions in branch hazards seen in Figures 5.1 and 5.2. The longer path

length of our dispatch technique are most evident in the OCamlbenchmarksfib andtakc

on the P4 where the improvements in branch prediction (relative to direct threading) are minor.

These tiny benchmarks compile into unique instances of a fewvirtual instructions. This means

that there is little or no sharing of BTB slots between instances and hence fewer mispredictions.

The effect of apply/return inlining on execution time is minimal overall, changing the geo-

metric mean by only±1% with no discernible pattern. Given the limited performance benefit

and added complexity, a general deployment of apply/returninlining does not seem worth-

while. Ideally, one would like to detect heavy recursion automatically, and only perform ap-

ply/return inlining when needed. We conclude that, for general usage, subroutine threading

plus branch inlining provides the best trade-off.

We now demonstrate that context-threaded dispatch is complementary to inlining tech-

niques.



CHAPTER 5. EVALUATION OF CONTEXT THREADING 76

5.3 Inlining

Inlining techniques address the context problem by replicating bytecode bodies and removing

dispatch code. This reduces both instructions executed andpipeline hazards. In this section we

show that, although both selective inlining and our contextthreading technique reduce pipeline

hazards, context threading is slower due to the overhead of its extra dispatch instructions. We

investigate this issue by comparing our owntiny inlining technique with selective inlining.

In Figures 5.2, 5.4 and 5.5(b), the bar labeled SABLEVM shows our measurements of

Gagnon’s selective inlining implementation for SableVM [32]. From these figures, we see that

selective inlining reduces both MPT and LR/CTR stalls significantly as compared to direct

threading, but it is not as effective in this regard as subroutine threading alone. The larger

reductions in pipeline hazards for context threading, however, do not necessarily translate into

better performance over selective inlining. Figure 5.4(a)illustrates that SableVM’s selective

inlining beats context threading on the P4 by roughly 5%, whereas on the PPC7410 and the

PPC970, both techniques have roughly the same execution time, as shown in Figure 5.4(b)

and Figure 5.5(a), respectively. These results show that reducing pipeline hazards caused by

dispatch is not sufficient to match the performance of selective inlining. By eliminating some

dispatch code, selective inlining can do the same real work with fewer instructions than context

threading.

Context threading is a dispatch technique, and can be easily combined with an inlining strat-

egy. To investigate the impact of dispatch instruction overhead and to demonstrate that context

threading is complementary to inlining, we implementedTiny Inlining, a simple heuristic that

inlines all bodies with a length less than four times the length of our dispatch code. This elim-

inates the dispatch overhead for the smallest bodies and, ascalls in the CTT are replaced with

comparably-sized bodies, tiny inlining ensures that the total code growth is low. In fact, the

smallest inlined OCaml bodies on P4 weresmallerthan the length of a relative call instruction

(five bytes). Table 5.4 summarizes the effect of tiny inlining. On the P4, we come within 1%

of SableVM’s selective inlining implementation. On PowerPC, we outperform SableVM by
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Table 5.4: Detailed comparison of selective inlining (SABLEVM) vs SUB+BI+AR and TINY.
Numbers are elapsed time relative to direct threading.△context is the the difference between
selective inlining and SUB+BI+AR.△tiny is the difference between selective inlining and
TINY (the combination of context threading and tiny inlining).

Arch Context Selective Tiny ∆context ∆tiny

(SUB+BI+AR) (SABLEVM) (T) (SABLEVM - SUB+BI+AR) (SABLEVM - TINY)
P4 0.762 0.721 0.731 -0.041 -0.010

PPC7410 0.863 0.914 0.839 0.051 0.075
PPC970 0.753 0.739 0.691 -0.014 0.048

7.8% for the PPC7410 and 4.8% for the PPC970.

5.4 Limitations of Context Threading

We discuss two limitations of our technique. The first describes how our technique, like most

dispatch optimizations, can have only limited impact on virtual machines that implement large

virtual instructions. The second issue describes the difficulty we experienced adding profiling

to our implementation of context threading.

5.4.1 Heavyweight Virtual Instruction Bodies

The techniques described in this chapter address dispatch and hence have greater impact as the

frequency of dispatch increases relative to the real work carried out. A key design decision for

any virtual machine is the specific mix of virtual instructions. A computation may be carried

out by many lightweight virtual instructions or fewer heavyweight ones. Figure 5.6 shows

that a Tcl interpreter typically executes an order of magnitude more cycles per dispatched

virtual instruction than OCaml. Another perspective is thatOCaml executes proportionately

more dispatch because its work is carved up into smaller virtual instructions. In the figure,

we see that many OCaml benchmarks average only tens of cycles per dispatched instruction.

Thus, the time OCaml spends executing a typical body is of the same order of magnitude as

the branch misprediction penalty of a modern CPU. On the otherhand most Tcl benchmarks
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Figure 5.6: Reproduction of [78, Figure 1] showing cycles runper virtual instructions dis-
patched for various Tcl and OCaml benchmarks .

execute hundreds of cycles per dispatch, many times the misprediction penalty. Thus, we

expect subroutine threading to speed up Tcl much less than OCaml. Figure 5.7 reports the

performance of subroutine threaded OCaml on an UltraSPARC III4. As shown in the figure,

subroutine threading speeds up OCaml on the UltraSPARC by about 13%. In contrast, the

geometric mean of 500 Tcl benchmarks speeds up only by only 5.4% [78].

Another issue raised by the Tcl implementation was that about 12% of the 500 program

benchmark suite slowed down. Very few of these dispatched more than 10,000 virtual in-

structions. Most were tiny programs that executed as littleas a few dozen dispatches. This

suggests that for programs that execute only a small number of virtual instructions, the load

time overhead of generating code in the CTT may be too high.

4We leveraged Vitale’s Tcl infrastructure, which only runs on Sparc, to implement subroutine threading. Thus,
to compare to Tcl we ported our subroutine threaded OCaml to Sparc also.
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Figure 5.7: Elapsed time of subroutine threading relative to direct threading for OCaml on
UltraSPARC III.

5.4.2 Context Threading and Profiling

Our original scheme for extending our context threaded interpreter with a JIT was to detect

hot paths of the virtual program by generating calls to profiling instrumentation amongst the

dispatch code in the CTT. We persevered for some time with thisapproach, and successfully

implemented a system that identified traces [81]. The resulting implementation, though effi-

cient, was fragile and required the generation of more machine specific code for profiling than

we considered desirable. In the next chapter we describe a much more convenient approach

based on dispatch loops.

5.4.3 Development using SableVM

SableVM is a very well engineered interpreter. For instance, SableVM’s infrastructure for

identifying un-relocatable virtual instruction bodies made implementing our TINY inlining

experiment simple. However, its heavy use ofm4 andcppmacros, used to implement multiple

dispatch mechanisms and achieve a high degree of portability, makes debugging awkward. In



CHAPTER 5. EVALUATION OF CONTEXT THREADING 80

addition, our efforts to add profiling instrumentation to context threading made many changes

that we subsequently realized were ill-advised. Hence, we decided to start from clean sources.

For the next stage of our experiment, our trace-based JIT, wedecided to abandon SableVM in

favour of JamVM5.

5.5 Chapter Summary

Our experimentation with subroutine threading has established that calling virtual instruction

bodies is an efficient way of dispatching virtual instructions. Subroutine threading is partic-

ularly effective at eliminating branch mispredictions caused by the dispatch of straight-line

regions of virtual instructions. Branch inlining, though labor intensive to implement, elimi-

nates the branch mispredictions caused by most virtual branches. Once the pipelines are full,

the latency of dispatch instructions becomes significant. Asuitable technique for addressing

this overhead is inlining, and we have shown that context threading is compatible with our

“tiny” inlining heuristic. With this simple approach, context threading achieves performance

roughly equivalent to, and occasionally better than, selective inlining.

Our experiments also resulted in some warnings. First, our attempts to finesse the imple-

mentation of virtual branch instructions using branch replication (Section 4.3) and apply/re-

turn inlining (Section 4.4) were not successful. It was onlywhen we resorted to the much less

portable branch inlining that we improved the performance of virtual branches significantly.

Second, the slowdown observed amongst a few Tcl benchmarks (which dispatched very few

virtual instructions) raises the concern that even the loadtime overhead of subroutine thread-

ing may be too high. This suggests that we should investigatelazy approaches so we can delay

generating code until it is needed.

These results inform our design of a gradually extensible interpreter, to be presented next.

We suggested, in Chapter 1, that a JIT compiler would be simpler to build if its code genera-

5We planned to build our prototype JIT for PPC only. Thus, the organization of SableVM, so highly geared
towards portability, was more infrastructure than we needed.
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tor has the option of falling back on calling virtual instruction bodies. The resulting fall back

code is very similar to code generated at load time by a subroutine-threaded interpreter. In this

chapter we have seen that linear sequences of virtual instructions program can be efficiently

dispatched using subroutine threading. This suggests thatthere would be little or no perfor-

mance penalty, relative to interpretation, when a JIT fallsback on calling sequences of virtual

instructions that it chooses not to compile.

We have shown that dispatching virtual branch instructionsefficiently can gain 5% or more

performance. We have shown that branch inlining, though notportable, is an effective way of

reducing branch mispredictions. However, our experience has been that branch inlining is time

consuming to implement. In the next chapter we will show thatidentifying hot interprocedural

paths, or traces, at runtime enables a much simpler way of dealing with virtual branches that

performs as well as branch inlining.



Chapter 6

Design and Implementation of YETI

This chapter describes our graduallyextensible trace interpreter, or Yeti for short. The main

goal of this part of our research is to design and implement a language VM that allows for a

simple, efficient interpreter and yet can be conveniently, and gradually, extended with a JIT

compiler1.

As we argued in Chapter 1, we believe the key ingredients for this are threefold. First, the

system should implement callable virtual instruction bodies that can be dispatched both by the

interpreter and from JIT compiler generated code. Second, the system should compile, then

run, dynamically identified regions of code that contain only hot code. We pointed out that hot

interprocedural paths, or traces, seem like a good choice. Third, the JIT compiler should be

able to fall back on generating dispatch code to virtual instruction bodies when it encounters

virtual instructions that it does not fully support. The combination of these features enables a

gradual style of JIT development where compiler support forvirtual instructions can be added

one instruction at a time.

A similar argument can be made that the code generated for each hot region of the virtual

program should also be callable and should update interpreter state before returning so that

interpretation may resume immediately. We call this aregion bodybecause it essentially is a

1The material in this chapter and the next is derived from our VEE 2007 paper [82].

82
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generated virtual instruction body for a newly created, runtime identified, virtual instruction.

Region bodies are to be called with interpreter state as the first virtual instruction in the

region would have seen it and return with the interpreter state as the last the virtual instruction

would have left it. Within the region, body interpreter state need not be kept up-to-date. A

region body can have multiple return points due to exceptions (in straight-line code) or trace

exits.

Packaging generated code as callable also aims to support anincremental style of devel-

opment, in this case allowing new and presumably larger or more highly optimized regions of

the virtual program to be identified, compiled and dispatched. Currently, Yeti dispatches single

virtual instruction bodies, subroutine-threaded region bodies for straight-line sections of code,

and interpreted and compiled traces.

Section 6.1 gives an overview of our implementation. Section 6.2 describes how regions are

identified. The runtime environment of a trace is described in Section 6.3. Section 6.4 describes

how region bodies are generated for interpreted and JIT compiled traces. Finally, Section 6.5

describes ways in which our implementation is challenged bythe software environment in

which it is implemented.

6.1 Structure and Overview of Yeti

Our system starts operating as a simple direct call threaded(DCT) interpreter as discussed

in Section 3.2. After each instruction has run once, instrumentation called from the dispatch

loop identifies straight line sections of the virtual program. Simple subroutine-threaded region

bodies are generated. These are installed by overwriting the DTT slot corresponding to the first

virtual instruction in the region with the entry point of thenew region body. Subsequently, the

subroutine-threaded code executes. The system, up to this point, is operating as a lazy loaded

subroutine-threaded interpreter. This alone can speed up programs with long linear blocks (like

compress andmpeg) relative to direct-threaded performance.
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As the program executes, profiling associates and updates event counters in apayloadstruc-

ture corresponding to each region. Eventually, hot traces are identified and translated to region

bodies. We will describe two ways traces are compiled. Interpreted traces, described in 6.4.1,

implement traces in the simplest way we could conceive of, whereas JIT compiled traces, de-

scribed in 6.4.2, compile the virtual instructions in each trace to register allocated native code.

A novel aspect of our JIT is that it compiles only a subset of virtual instructions while falling

back on dispatch for the remainder. Currently, our system generates code for about 50 integer

and object virtual instructions, including all of Java’s conditional branch instructions. We have

invested no effort in classical optimizations apart from a relatively simple variation on inlining

when the invocation and return of a method occur in the same trace.

Ordinarily, DCT is slow, because it suffers a branch misprediction penalty for almost every

iteration of the dispatch loop, but this turns out not to be a performance problem for Yeti.

As hot region bodies are identified, installed, dispatched,and linked together, execution shifts

almost entirely to within the region bodies and consequently the overhead of the dispatch loop

becomes negligible.

Initial Load Figure 6.1 shows how our running example (Figure 2.1) is loaded by Yeti. In

the figure, the bodies are the same C coded virtual instruction bodies we show in Figure 4.2.

Initially all instances of an instruction, like the two instances ofiload in the figure, point to

the same shared region bodies. This makes the initial load lightweight, since no code needs

to be generated and a small (static) set of region bodies and associated profiling payloads are

shared by all instances of virtual instructions.

Like direct threading and regular DCT, Yeti loads each virtual instruction into one or more

slots in the DTT when the virtual program is loaded. Arguments to virtual instructions are

handled exactly the same as DCT or direct threading. However,we have enhanced the rep-

resentation of the virtual opcode significantly. In Yeti, weadd a level of indirection – the

first DTT slot of each instruction points to an instance of adispatcherstructure instead of the
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address of a virtual instruction body.

Dispatcher It is the need to efficiently associate thevPC with both the body (for dispatch)

and the payload (for profiling) that motivates the extra indirection in our design. The alternative

would be to maintain a side table associating the payload andvPC. We chose the current

arrangement over a hash table because it is simpler.

The dispatcher structure contains four key fields. The region body to be dispatched is stored

in thebodyfield. Thepreworkerandpostworkerfields store the addresses of instrumentation

functions to be called before and after the dispatch of the region body respectively. Finally, the

dispatcher has a payload field, which is a region of profiling or other data that the instrumenta-

tion needs to associate with the region body. The most obvious use of the payload is to count

events associated with each region body. We define specialized payload structures to describe

virtual instructions, linear blocks, and traces.

When a dispatcher is created, specific preworker and postworker functions are chosen de-

pending on the type of region body the dispatcher describes.The design is object-based in

the sense that the choice of a given preworker and postworkerdetermines the behavior of the

instrumentation for the given region body. In our design, the workers assume that they are

always associated with a specific type of payload.

Dispatch Loop The dispatch loop, shaded in Figure 6.1, requires an extra level of indirec-

tion to call each body. The overhead of the extra indirectionis of little concern as any given

instruction will be executed only a few times using this generic mechanism.

Figure 6.1 also illustrates how instrumentation code for the region is called before (thepre-

worker) and after (thepostworker) the instruction body is executed. Initially instrumentation is

interposed around the dispatch of each virtual instruction. This is convenient as it puts the run-

time in control when the destination of each virtual branch has been determined but before it

is dispatched. Later, as larger region bodies are installed, instrumentation is dispatched before

and after the execution of the region body (no longer after each instruction).
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Figure 6.1: Virtual program loaded into Yeti showing how dispatcher structures are initially
shared between all instances of a virtual instruction. The dispatch loop, shaded, is similar the
dispatch loop of direct call threading except that another level of indirection, through the the
dispatcher structure, has been added. Profiling instrumentation is called before and after the
dispatch of the body.

An interesting feature omitted from the figure is that Yeti actually has several specialized

dispatch loops. For instance, when a trace is dispatched theonly remaining event to monitor

is the emergence of a hot trace exit. Overhead can be significantly reduced by providing a

specialized dispatch loop exclusively for traces that inline only the required instrumentation.

In general, profiling can be optimized, or turned off altogether, by changing dispatch loops.

Thread Context Structure Modern virtual machines support multiple threads of execution.

Our design, like many modern interpreters, requires that each new interpreter thread runs in a

separatepthread starting with a new invocation of theinterp function. This means that

any local variables declared ininterp are thread-private data. The DTT, dispatchers and

region bodies, on the other hand, are shared by all threads.



CHAPTER 6. DESIGN AND IMPLEMENTATION OF YETI 87

Yeti needs a small additional amount of thread-private datafor its own purposes. To keep

all thread-private data together, we have added a new structure to theinterp function called

the thread context structure, or TCS. The TCS contains only a few fields, mostly in support

of the region identification and trace exit profiling. For instance, in support of region identifi-

cation, the TCS provides therecordMode bit, which indicates whether the current thread is

actively recording a region; and thehistory list,that records region bodies as they are executed.

Section 6.4.2 describes the role played by the TCS in profilingtrace exits.

A pointer to the TCS is passed to preworker and postworkers each time they are called. For

simplicity, the TCS was omitted from Figure 6.1 but appears inFigure 6.2 where it is the root

of the history list.

6.2 Region Selection

Our strategy for identifying hot regions of the program is carried out by preworkers and post-

workers in conjunction with state information passed in theTCS. When the profiling instru-

mentation discovers the beginning of a new region to be compiled into a region body it sets the

recordMode bit in the TCS. As described below, this may be done by the preworker (as for

linear blocks) or the postworker (as for traces). Once therecordMode bit is set, the thread is

actively collecting a region of the program. In this mode thepreworker appends the payload of

each region body about to be executed to the thread-private history list in the TCS.

Eventually a preworker or postworker will recognize that execution has reached the end

of the region to be collected and clearsrecordMode. At this point a new region body is

generated from the history list.

6.2.1 Initiating Region Discovery

We ignore the first execution of each instance of a virtual instruction before considering it for

inclusion in a region body. First, as discussed in Section 3.6.2, late binding languages like
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Java may rewrite some virtual instructions the first time they execute. We should delay region

selection until after these instructions have been rewritten. Second, some virtual instructions,

for instance static class initialization blocks in Java, only execute once. This suggests that we

should always wait until the second execution before considering a virtual instruction.

The obvious way of implementing this is to increment a counter the first time an instruction

executes. However, this cannot be implemented with our loading strategy because a shared

dispatcher has no simple way of counting how many times a specific instance has been dis-

patched. For example, in Figure 6.1 both instances ofiload share the same dispatcher and

payload, so there is no place to maintain a counter for each instance.

Hence, after the first execution, the preworker replaces theshared dispatcher with a new,

non-shared, instance of ablock discovery dispatcher. The second time the instruction is dis-

patched, the block discovery dispatcher sets about identifying linear blocks, as described next.

6.2.2 Linear Block Detection

A linear block is a runtime approximation of a basic block, namely a straight-line section of the

virtual program ending with a branch. The process of identifying linear regions of the program

is carried out by the block discovery preworker based on state information it is passed in the

TCS.

We start our explanation of how the block discovery works with a detailed walk-through of

how the block discovery preworker identifies a new linear block. Suppose a block discovery

preworker is called for an instance of virtual instructioni atvPC. A block discovery dispatcher

was installed fori after it executed for the first time. Hence, whenever the block discovery

preworker is called there are two possibilities. IfrecordMode is set theni should simply be

appended to the history list (in the TCS) and thus added to the linear region currently being

recorded2. Otherwise, ifrecordMode is clear, theni must begin a new linear block. (If there

already was a linear region starting atvPC, then a dispatcher for that region body would have

2There are corner cases, for instance, ifi is encountered while a trace is being collected.
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   (*d->post)(vPC,pay,&tcs);
  } 
}goto

body
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payload
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body
payload
pre
post

body
payload
pre
post

body
payload
pre
post

body
payload
pre
post

Figure 6.2: Shows a region of the DTT during block recording mode. The body of each block
discovery dispatcher points to the corresponding virtual instruction body (Only the body for the
first iload is shown). The dispatcher’s payload field points to instances of instruction payload.
The thread context struct is shown as TCS.

executed instead.)

The preworker recognizes the end of the linear region when itencounters a virtual branch

instruction. At this pointrecordMode is cleared, and a new subroutine-threaded region body

is generated from the instructions on the history list. Figure 6.2 illustrates an intermediate

stage during the identification of the linear block of our running example. The preworker has

appended the payload of each instruction onto the thread’s history list, rooted in the TCS. In

the figure, a branch instruction, agoto, will end the current linear block.

Figure 6.3 illustrates the situation just after the collection of the linear block. The dispatcher

corresponding to the entry point of the linear block has beenreplaced by a newlinear block

dispatcherwhose job it will be to search for traces. The linear block dispatcher points to a

new payload created from the history list; its body field points to a subroutine-threading-style

region body that has been generated for the linear block. Note that linear blocks are not basic

blocks because they do not end at labels. If the virtual program later branches to a virtual
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linear block dispatcher

Figure 6.3: Shows a region of the DTT just after block recording mode has finished.

address that happens to be in the middle of a linear block our system will create a new linear

block that replicates the tail of the original.

6.2.3 Trace Selection

The postworker of a linear block dispatcher is called after the last virtual instruction of the

linear block has executed. Since, by definition, linear blocks end with branches, after executing

the last instruction thevPC has been set to the destination of the branch and hence pointsto

one of the successors of the linear block. The postworker runs at exactly the right moment to

profile edges of the control flow graph, namely after each branch destination is known, and yet

before the destination is executed.

If the vPC of the destination islessthan thevPC of the virtual branch instruction itself,

this is a reverse branch – a likely candidate for the latch of aloop. According to the heuristics

developed by Dynamo (see Section 2.5), hot reverse branchesare good places to start the

search for hot code. Accordingly, when our system detects a reverse branch that has executed

100 times3 it enterstrace recording mode. In trace recording mode, similar to linear block

3Performance does not seem sensitive to the particular value, so we chose a round number in the vicinity of
the value used by Dynamo. The rational is that the probability of staying on trace falls as the number of trace exits
grows. Perhaps the trace end condition should count blocks ending with conditional branches instead of simply
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recording mode, the postworker adds each linear block payload to the thread’s history list. The

situation is very similar to that illustrated in Figure 6.2,except the history list describes linear

blocks instead of virtual instructions. Our system, like Dynamo, ends a trace (i) when it reaches

a reverse branch or finds a cycle, or (ii) when it contains too many (currently 100) linear blocks.

When trace generation ends, a newtrace dispatcheris created and installed. This is quite

similar to Figure 6.3 apart from the need to support trace exits. The payload of a trace dis-

patcher includes a table oftrace exit descriptors, one for each linear block in the trace. See

Figure 6.4.

Although code could be generated for the trace at this point,we postpone code genera-

tion until the trace has run a few times, currently five, in trace training mode4. Trace training

mode uses a specialized dispatch loop that calls additionalinstrumentation before and after

dispatching each virtual instruction in the trace. The instrumentation is passed pointers to var-

ious interpreter variables (top of the expression stack, a description of the currently executing

method, etc). In principle, almost any detail of the virtualmachine’s state can be recorded.

Currently, we record the class of every Java object upon whicha virtual method is invoked.

Once the trace has been trained, we generate and install a region body. We have imple-

mented two different mechanisms for generating code for a trace. Early in the project we

implemented a simple approach,interpreted traces, that generates very simple subroutine-

threaded style code for each trace. Then, with a great deal more effort, we implemented our

trace-based JIT compiler. Both approaches are described in Section 6.4.

Before we discuss code generation, we need to describe the runtime of the trace system and

especially the operation of trace exits.

blocks.
4As almost all the callsites in the SPECjvm98 benchmarks are monomorphic, a smaller number of training

runs would have been sufficient but unrealistic.
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6.3 Trace Exit Runtime

One of the properties that make traces a desirable shape of region body is that they predict hot

paths through the virtual program. If the predictions are good, and the Dynamo results suggest

that they are, we assume that most trace exits are not taken. The trace exits that are taken,

however, quickly become hot and hence new traces must be generated and linked. This means

that it will likely pay to burden the implementation of a trace exit with some extra overhead if

this makes the path through the trace more efficient.

We use a combination of code generation (in the region body for the trace) and runtime

profiling instrumentation (in the postworker called after each trace returns to the dispatch loop)

to detect which trace exits are occurring and what to do aboutit.

Trace exits occur when execution diverges from the path collected during trace generation,

or in other words, when the destination of a virtual branch instruction in the trace is different

from what was recorded during trace generation. Generated trace exit code in the trace detects

the divergence and branches to atrace exit handler. Generated code in the trace exit handler

records which trace exit has occurred by storing, into the TCS, the address of the trace payload

(to identify the trace) and the index of the trace exit (to identify the specific branch). The

trace exit handler then returns to the dispatch loop, which,as usual, calls the postworker. The

postworker uses the information in the TCS to update the traceexit profiling information in the

trace payload.

This scheme minimizes overhead for traces that complete or link at the expense of cold

trace exits. Conceptually, the postworker has only a few alternatives to chose from:

1. If the trace exit is still cold, increment the counter corresponding to the trace exit in the

trace payload.

2. Notice that the counter has crossed the hot threshold and arrange to generate a new trace.

3. Notice that a trace already exists at the destination and link the trace exit handler to the

destination trace.
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Alternative 1 is trivial, the postworker increments a counter and returns. Alternative 2 is also

simple, the postworker simply sets therecordMode bit in TCS and the destination trace will

start being collected immediately. Alternative 3 is more challenging and will be described in

the next section.

6.3.1 Trace Linking

The goal of trace linking is to rewrite the trace exit handlerof a hot trace exit to branch directly

to the destination trace rather than return to the dispatch loop. The actual mechanism we use

depends on the underlying virtual branch instruction. There are two main cases, branches with

only one off-trace destination and branches with multiple off-trace destinations.

Regular conditional branches, like Java’sif_icmp, are quite simple. The branch has only

two destinations, one on the trace and the other off. When the trace exit becomes hot a new

trace is generated starting with the off-trace destination. Then, the next time the trace exit

occurs, the postworker links the trace exit handler to the new trace by rewriting the branch

instruction in the trace exit handler to jump directly to thedestination trace instead of returning

to the dispatch loop. Subsequently, execution stays in the code cache for both paths of the

program.

Multiple destination branches, like method invocation andreturn, are more complex. When

a trace exit originating from a multi-way branch occurs, we are faced with two additional

challenges. First, profiling multiple destinations is moreexpensive than just maintaining one

counter. Second, when one or more of the possible destinations are also traces, the trace exit

handler needs some mechanism to jump to the right one.

The first challenge we essentially ignore. We use a simple counter and trace generate

all destinations of a hot trace exit that arise. The danger of this strategy is that we could trace

generate superfluous cold destinations and waste trace generation time and code cache memory.

The second challenge concerns the efficient selection of a destination trace to which to

link, and the mechanism used to branch there. To choose a destination, we follow the heuristic
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Figure 6.4: Schematic of a trace illustrating how trace exittable (shaded) in trace payload has
recorded the on-trace destination of each virtual branch

developed by Dynamo for regular branches – that is, we link todestinations in the order they

are encountered. The rationale is that the highest probability trace exits will occur first5. At

link time, we rewrite the code in the trace exit handler with code that checks the value of the

vPC. If it equals thevPC of a linked trace, we branch directly to that trace; otherwise we

return to the dispatch loop. Because the specific values of thevPC for each destination trace

are visible to the postworker, we can hard-wire the comparand in the generated code. In fact,

we can generate a sequence of compares checking for each of the multiple destinations in turn.

Eventually, a sufficiently long cascade would perform no better than a trip around the dispatch

loop. Currently we limit ourselves to two linked destinations per trace exit. This mechanism is

similar to the technique used for interpreted traces, described next.

5This is also the reasoning behind Dynamo’s handing of indirect branches.
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6.4 Generating code for traces

Generating code for a trace is made up of two main tasks, generating the main body of the trace

and generating a trace exit handler for each trace exit. After trace selection the TCS history list

contains a list of linear block payloads that were selected.By traversing the list we can visit

each virtual instruction in the trace.

We describe two different strategies for compiling a trace.Both schemes use the same

runtime and carry out trace linking identically. Interpreted traces, described next, represent

our simplest approach to generating code for a trace. JIT compiled traces, described in Sec-

tion 6.4.2, contain a mixture of compiled code and dispatch.

Figure 6.4 gives a schematic for a hypothetical trace. As shown in the figure, the dispatcher

is the root of the data structure and points to the payload andthe entry point of the region body.

The payload contains a counter (not shown in the figure) and a trace exit table. The trace exit

table is an array of trace exit descriptors, one for each trace exit in the trace. Each trace exit

descriptor contains a counter (not shown) and a pointer to the trace exit handler for each trace

exit. The counter is used to determine when a trace exit becomes hot. The pointer to the trace

exit handler is used to mark the location that will be rewritten for trace linking.

6.4.1 Interpreted Traces

Interpreted traces require only slightly more complex codegeneration than subroutine thread-

ing, but are about as effective as branch inlining (See Section 4.3) at reducing the overhead of

dispatching virtual branch instructions. We call them interpreted because no virtual instruction

bodies are compiled in-line, rather, an interpreted trace dispatches all virtual instruction bodies

including virtual branches.

The trace payload identifies each linear block in the trace and each linear block payload

lists every virtual instruction. Hence, by iterating over the linear block payloads the straight

line portions of a trace can be easily implemented as regionsof subroutine-threaded code.
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Trace exits require only slightly more complicated code generation. A trace is a hot path

through the virtual program, or put another way, a trace predicts the value of thevPC after each

of its constituent virtual branch instructions has executed. Taking this view, the purpose of

each trace exit is to ensure that the branch it guards has set thevPC to the on-trace destination.

The on-trace destination of each virtual branch is recordedin the trace payload as the trace is

generated. Hence, the simplest possible implementation ofa trace exit must do three things.

First, it dispatches the virtual branch body. Second, it compares the value of thevPC, the

destination of the branch, to the on-tracevPC predicted by the trace. A compare immediate can

be used, since the on-trace value of thevPC is known and is constant. Third, it conditionally

branches to the trace exit handler if the comparison fails.

This code is somewhat reminiscent of the branch replicationtechnique we described in

Section 4.3 except that instead of following the dispatch ofthe virtual branch body with an

expensiveindirect branch we generate a compare immediate followed by adirect conditional

branch to the trace exit handler. We expect this technique tobe quite easy for the branch

predictors of the underlying processor to predict because the direct conditional branch is fully

exposed to the branch history predictors. As we shall show inthe next chapter, interpreted

traces achieve a level of performance similar to subroutinethreading plus branch inlining.

6.4.2 JIT Compiled Traces

Our JIT does not perform any classical optimizations and does not build any internal represen-

tation before compiling a trace. As traces contain no merge points, we perform a single pass

through each trace allocating expression stack slots to registers and generating code.

An important aspect of our JIT design is that it can generate code for a trace before it sup-

ports all virtual instructions. Our JIT generates registerallocated machine code for contiguous

sequences of virtual instructions it recognizes. When an unfamiliar virtual instruction is en-

countered, code is generated to flush any temporary values held in registers back to the Java

expression stack. Then, the bodies of any uncompilable or unfamiliar virtual instructions are
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dispatched using subroutine threading. This significantlyeases development as the compiler

can be extended one virtual instruction at a time. The same tactics can be used for virtual

instructions that the JIT partially supports. When the compiler encounters an awkward corner

case it can simply give up and fall back to subroutine dispatch instead.

Expression stack slots are assigned to registers, freeing the generated code from maintain-

ing the expression stack. Immediate arguments to virtual instructions, normally loaded from

the DTT, are loaded into registers using load immediate instructions whenever possible. This

frees the generated code from maintaining thevPC.

Machine code generation is performed using theccg [59] runtime assembler.

Dedicated Registers

The code generated by Yeti must be able to load and store values to the same Java expression

stack and local variable array referred to by the C code implementing the virtual instruction

bodies. Our current PowerPC implementation side-steps this difficulty by dedicating hardware

registers for the values that must be shared between our generated code and C generated bodies.

At present we dedicate registers for thevPC, the top of the Java expression stack and the pointer

to the base of the local variables. Code is generated to adjustthe value of the dedicated registers

as part of the flush sequence, described below.

On targets with fewer registers, notably Intel’s Pentium, there may not be enough general

purpose registers to dedicate three of them for our own purposes. There, we plan to generate

code that accesses the variables in memory.

Register Allocation

Java virtual instructions, and those of many other virtual machines, pop arguments off and push

results onto an expression stack (See Section 2.1.1). Naivecompilation of the pushes and pops

would result in many redundant loads, stores and adjustments of the pointer to the top of the

expression stack. Our JIT assigns the temporary values to registers instead.
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Our register allocator and code generator are combined and perform only one pass. As

we examine each virtual instruction we maintain a compile time structure we call theshadow

stack.The shadow stack associates each value in an expression stack slot with the register to

which it has been assigned. Whenever a virtual instruction would pop one of its inputs we first

check if there already is a register for that value in the corresponding shadow stack slot. If

so, we use the register instead of generating any code to pop the expression stack. Similarly,

whenever a virtual instruction would push a new value onto the expression stack we assign a

new register to the value and push this on the shadow. We forgogenerating any code to push

the value onto the expression stack.

A convenient property of this approach is that every value assigned to a register always has

a home locationon the expression stack. If we run out of registers we simply spill the register

whose home location is deepest on the shadow stack (as all theshallower values will be needed

sooner [60]).

Flushing Registers to Expression Stack

The simple strategy for assigning expression stack slots toregisters we have described assumes

that execution remains on the trace and that all instructions have been compiled. However,

when a trace exit is taken, or when the JIT needs to fall back tocalling a virtual instruction

body, all values in registers must be saved back to the expression stack.

Flush code is generated by scanning the shadow stack to find every expression stack slot

currently assigned to a register. A store is generated to store each such live register to its

home location on the expression stack. Then, the shadow stack is reinitialized to empty and all

registers are marked as free.

Generated code typically does not need to maintain the dedicated registers, for instance the

top of the expression stack, or thevPC, until it is about to return to the interpreter. Generated

flush code updates the values held by the dedicated registersas well.
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Trace Exits and Trace Exit Handlers

The virtual branch instruction ending each block is compiled into a trace exit. We follow two

different strategies for trace exits. The first case, regular conditional branch virtual instructions,

are compiled by our JIT into machine code that conditionallybranches to a trace exit handler

when execution would leave the trace. The generated code implements the semantics of the

virtual instruction body, and compares and conditionally branches on the values in registers.

It does not access thevPC. PowerPC code for this case appears in Figure 6.5. The sense

of the conditional branch is adjusted so that the branch is always not-taken for the on-trace

path. The second case, for more complex virtual branch instructions, such as for method

invocation and return, which may have multiple destinations, are handled as for interpreted

traces. (Polymorphic method dispatch is also handled this way if it cannot be optimized as

described in Section 6.4.3.)

Trace exit handlers have two further roles. First, since compiled traces contain compiled

code, it may be necessary to flush values held in registers andupdate the values of dedicated

registers. For instance, in Figure 6.5, the trace exit handler adjusts thevPC. Flush code is the

only difference between trace exit handlers for interpreted and compiled traces. Second, trace

linking is achieved by overwriting code in the trace exit handler. (This is the only situation in

which we rewrite code.) To link traces, the tail of the trace exit handler is rewritten to branch

to the destination trace rather than return to the dispatch loop.

The trace link branch occurs after the flush code, which meansthat registers are flushed

only to be reloaded by the destination trace. We have not yet implemented any optimization

to address this redundancy. However, if the shadow stack at the trace exit were to be saved

aside, it could be used to prime the compilation of the destination. Then, the trace link could

be inserted before the flush code.

Most trace exit handlers are reached only when a conditionaltrace exit is taken. The only

exception occurs when a trace executes to completion. Then,control must return to the dispatch

loop. To implement this, each trace ends with an in-line trace exit handler. Like any other trace
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...
OPC_ILOAD_3
x
OPC_ILOAD_2
y
OPC_IF_ICMPGE +121 trace exit compiled from if_icmpge

compiled from iloads

if this trace exit becomes hot, trace linking overwrites 
this instruction with branch to destination trace

TEH stores trace exit number (0) and hardwired 
address of trace payload into thread context struct

vPC adjusted upon leaving JIT compiled region

...
lwz r3,12(r27)

lwz r4,8(r27)

cmpw r3,r4    
bge teh0
... teh0:

     addi r26,r26,112 //adjust vpc
     li r0,0 
     stw r0,916(r30)
     lis r0,1090
     ori r0,r0,11488
     stw r0,912(r30)
     blr //return to dispatch loop

DTT

Figure 6.5: PowerPC code for a portion of a trace region body,showing details of a trace exit
and trace exit handler. This code assumes that r26 has been dedicated for thevPC. In addition
the generated code in the trace exit handler usesr30, the stack pointer as defined by the ABI,
to store the trace exit id into the TCS.

exit handler, it may later be linked to its destination traceif one becomes hot.

6.4.3 Trace Optimization

We describe two optimizations here: how loops are handled and how the training data can be

used to optimize method invocation.

Inner Loops

An intrinsic property of Dynamo’s trace selection heuristic is that the innermost loops of a

program are often selected into a single trace ending with the loop closing reverse branch. This

occurs because trace generation starts at the target of reverse branches and ends whenever it

reaches a reverse branch. Note that there may be many branches, including calls and returns,

along the way. When the trace is compiled, the loop is trivial to find because the last virtual

instruction in the trace is a virtual conditional branch back to its entry.

Inner loops expose a problem with the way we end a trace. Normally, a trace exit is com-

piled as a branch taken to the trace exit handler for the off-trace path and a fall-through for the

on-trace path. If this approach were followed, each iteration of a hot inner loop would execute
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to the inline trace exit handler at the end of the trace and return to the dispatch loop. Soon

this trace exit would become hot and trace linking would rewrite the inline trace exit to branch

back to the head of the trace. To avoid the extra branch and pointless trace linking, the trace

JIT compiles a reverse branch differently – reversing the sense of the trace exit and generating

a reverse conditional branch back to entry point of the trace.

Thus far, we have not exploited this information to optimizethe body of the trace. For

example, it would be relatively easy to detect loop invariant instructions and move them to a

newly constructed loop preheader. However, the flow graph ofthe resulting unit of compilation

would then include a merge point because the head of the loop would have two inbound edges

(the back edge and the edge from the preheader). The registerallocation scheme we have

described does not support merge points.

Virtual Method Invocation

So far, all the trace exits we have described have been translations of virtual branch instructions.

However, a trace exit can be used to guard other speculative optimizations as well. Our strategy

for optimizing virtual method invocation is to generate a guard trace exit that is much cheaper

than a full method dispatch. If the guard code falls through,we know execution should continue

along the trace.

Specifically, if the class of the invoked-upon object is different than recorded when the trace

was generated, a trace exit must occur. At trace generation time we know the on-trace desti-

nation of each call. From the training profile, we know the class of each invoked-upon object.

Thus, we can easily generate avirtual invoke guardthat branches to the trace exit handler if the

class of the object on top of the expression stack is not the same as recorded during training.

Then, we can generate code to perform a faster, stripped downversion of method invocation.

The savings are primarily the work associated with looking up the destination given the class

of the receiver. This technique was independently inventedby Galet al. [33].
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Inlining

Traces are agnostic towards method invocation and return, treating them like any other multiple-

destination virtual branch instructions. However, when a return corresponds to an invoke in the

same trace, the trace compiler can sometimes remove almost all method invocation overhead.

Consider when the code between a method invocation and the matching return is relatively sim-

ple; for instance, it does not touch the callee’s stack frame(other than the expression stack), it

cannot throw an exception and it makes no further method invocations. Then, we can elimi-

nate the invoke altogether, and the only method invocation overhead that remains is the virtual

invoke guard. If the inlined method body contains any trace exits, the situation is slightly more

complex. In this case, in order to prepare for a return somewhere off-trace, the trace exit han-

dlers for the trace exits in the inlined code must modify the expression stack exactly as the

(optimized away) method invocation would have done.

6.5 Other implementation details

Our system, as described in this chapter, generates code that coexists with virtual instruction

bodies written in C. Consequently, the generated code must be able to access a few interpreter

variables like thevPC, the top of the expression stack, and the base of the local variable array.

For these heavily used interpreter variables, on machines with sufficient general purpose regis-

ters, we take the obvious approach of assigning the variables to dedicated registers. Dedicating

the register might even improve the quality of code generated by the compiler for the inter-

preter. We note that on the PowerPC OCaml dedicates registersfor thevPC and a few other

commonly used values, presumably because it performs better this way.

A related challenge arises in our implementation of trace exit handlers. We want on-trace

execution to be free of trace exit related overhead. At the same time, we need a way of record-

ing which trace exit has occurred so that we can determine which trace exits are hot. This

means that each trace exit handler, which is a region of code specific to a trace exit generated
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by Yeti, must have a way of writing into the TCS. On the PowerPC we could dedicate yet an-

other register to point to the TCS. However, this could only hurt the performance of the virtual

instruction bodies, since they never refer to the TCS. Instead, we indulge in some unwarranted

chumminess with gcc. Using a trick invented by Vitale, we usegcc inlineasm statements

to obtain a string containing assembler gcc would generate to access the desired field in the

TCS [78]. Then, we parse the string and extract all the information we need to generate code

to access the field.

Our use of a dispatch loop, similar to Figure 6.2, in conjunction with making virtual bodies

callable by inserting inlined assembler return instructions, results in a control flow graph that is

not apparent to the optimizer. First, the optimizer cannot know that the label at the head of each

virtual instruction body can be reached by the function pointer call in the dispatch loop. (The

compiler assumes, quite reasonably, that the function pointer call only reaches the entry point

of functions.) Second, the optimizer does not know that control flows from the inlined return

instruction back to the dispatch loop. We work around these difficulties by inserting computed

gotos (which never actually execute) to simulate the missing edges.

6.6 Chapter Summary

In this chapter we have described the design trajectory for ahigh-level language virtual machine

that extends from a very simple interpreter through a high-performance trace-based interpreter,

to a extensible trace-based JIT compiled system. Our designgoals are much more ambitious

than in the preceding two chapters. There, we concentrated on how an interpreter can be made

more efficient. In this chapter we presented a design that supports the evolution of a high-level

language VM from a simple interpreter to a JIT. Thus, we favour infrastructure that supports

the development of a JIT, for instance our dispatcher-basedinstrumentation, over infrastructure

that is more narrowly focused on a specific interpretation technique.

An aspect of context threading that is somewhat unpalatableis that the effort invested im-
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plementing branch inlining, apply/return inlining and tiny inlining does nothing to facilitate the

later addition of a JIT compiler. For instance, implementing branch inlining in the interpreter

runs the risk of being a throw-away effort – if evolving performance requirements eventually

lead to the implementation of a JIT, then a good deal of the theeffort spent building branch

inlining will have to be duplicated.

In contrast to this, Yeti builds its advanced interpretation techniques on top of infrastructure

that is intended to facilitate the addition of a JIT. For instance, interpreted traces require trace-

based profiling that is also required to support the trace-based JIT. As we will show in the next

chapter, interpreted traces perform just as well as branch inlining.

With the resources at our disposal, it is not feasible to showthat the performance potential

of our trace-based JIT compiler is equal to an optimizing method-based JIT like those deployed

by Sun or IBM. Our design is intended to support any shape of region body, so in a sense, the

peak performance of traces is not a limiting factor, since with sufficient engineering effort,

peak performance could always be achieved by compiling inlined method nests.

Instead, we concentrated our JIT compiler design efforts onhow to support only a subset

of virtual instructions, added one at a time. We found this was a convenient way to work, much

easier than bringing up a regular compiler, since interactions between code generation bugs

were much reduced. Currently our JIT consists of only about 2000 statements of C source code,

about half machine dependent, and compiles about 50 integervirtual instructions. Neverthe-

less, as we will show in the next chapter, our JIT improves theperformance of the SPECjvm98

benchmarks by about 24% over interpreted traces.

The main problem with the implementation of our prototype isthat our generated code

depends too heavily on gcc. There are two main issues. First,our generated code occasionally

needs to access interpreter values. On the PowerPC we were able to side-step the potential

difficulties by dedicating registers for key interpreter variables, but clearly another approach

will be necessary for 32 bit Intel processors, which have toofew general purpose registers to

dedicate to any interpreter variables. Second, the way we have packaged virtual instruction
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bodies, and called them via a function pointer, (Figure 6.1)hides the true control flow of the

interpreter from the C optimizer. We will discuss how this might be avoided by packaging

bodies as nested functions in Chapter 8.

Next, in Chapter 7, we will evaluate the performance of our prototype.



Chapter 7

Evaluation of Yeti

In this chapter we evaluate Yeti from three main perspectives. First, we evaluate the effec-

tiveness of traces for capturing the execution of regions ofJava programs, and verify that the

frequency of dispatching region bodies does not burden overall performance. Second, we con-

firm that the performance of the simplest, entry level, version of our system is reasonable, and

that performance improves as more sophisticated shapes of region bodies are identified and ef-

fort is invested in compiling them. The goal here is to determine whether the first few stages of

our extensible system are viable deployment candidates foran incrementally evolving system.

Third, we attempt to measure the extent to which our technique is affected by various pipeline

hazards, especially branch mispredictions and instruction cache misses.

We prototyped Yeti in a Java VM (rather than a language that does not have a JIT) in order

to compare our techniques against high-quality implementations on well-known benchmarks.

We show that through four stages of extending our system, from a simple direct call-threaded

(DCT) interpreter to a trace based JIT compiler, performanceimproves steadily. Moreover,

at each stage, the performance of our system is comparable toother Java implementations

based on different, more specific techniques. Thus, DCT, the entry level of Yeti, is roughly

comparable to switch threading. Interpreted traces are faster that direct threading and our trace

based JIT is 27 % faster than selective inlining in SableVM.

106
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These results indicate that our design for Yeti is a good starting point for an extensible

infrastructure whose performance can be incrementally improved, in contrast to techniques like

those described in Chapters 3 and 4 which are end points with little infrastructure to support

the next step up in performance.

Section 7.1 describes the experimental set-up. We report the extent to which different

shapes of region enable execution to stay within the code cache in Section 7.2. Section 7.3

reports how the performance of Yeti is affected by differentregion shapes. Section 7.4 de-

scribes preliminary performance results on the Pentium. Finally, Section 7.5 studies the effect

of various pipeline hazards on performance.

7.1 Experimental Set-up

The experiments described in this section are simpler than those described in Chapter 5 because

we have modified only one Java virtual machine, JamVM. Almostall our performance mea-

surements are made on the same PowerPC machine, except for a preliminary look at interpreted

traces on Pentium.

We took a different tack to investigating the micro-architectural impact of our techniques

than the approach presented in Chapter 5. There, we measured specific performance monitor-

ing counters, for instance, the number of mispredicted taken branches that occurred during the

execution of a benchmark. Here, we evaluate Yeti’s impact onthe pipelines using a much more

sophisticated infrastructure which determines the causesof various stall cycles.

Virtual Machines Yeti is a modified version of Robert Lougher’s JamVM 1.1.3, which

is a very neatly written Java Virtual Machine [53]. On all platforms (OSX 10.4, PowerPC and

Pentium Linux) we built both our modifications to JamVM and JamVM as distributed using

gcc 4.0.1.

We compare the performance of Yeti to several other JVM configurations:
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Table 7.1: SPECjvm98 benchmarks including elapsed time for baseline JamVM (i.e., without
any of our modifications), Yeti and Sun HotSpot.

Elapsed Time
(sec)

Benchmark Description JamVM Yeti HotSpot
1.3.3 1.05_6_64

direct threaded trace JIT optimizing JIT
compress Lempel-Ziv 98 44 8.0
db Database functions 56 35 23
jack Parser generator 22 14 5.4
javac JDK 1.0.2 33 24 9.9
jess Expert Shell System 29 19 4.4
mpeg read MPEG-3 87 36 4.6
mtrt Two thread raytracer 30 25 2.1
raytrace raytracer renderer 29 17 2.3
scimark FFT, SOR,LU, ’large’ 145 58 16

Table 7.2: Guide to labels which appear on figures and references to technique descriptions.

Technique
Label on
Figures

Section describing
Technique

Subroutine Threading SUB Section 4.2
Direct Call Threading DCT Section 6.1
Linear Blocks LB Section 6.2.2
Interpreted Traces i-TR Section 6.4.1
Interpreted Traces with linking OFF i-TR-nolink as above
Yeti - Trace JIT TR-JIT Section 6.4.2
SableVM 1.1.8 SABLEVM Section 3.6.2

1. JamVM configured for direct threading (its default configuration) is our baseline because

direct threading is a commonly deployed high performance dispatch technique.

2. JamVM configured to be switch threaded as an example of an entry-level interpretation

technique. Many production language virtual machines havebeen usefully deployed

using switch threading.

3. A subroutine threaded version of JamVM.

4. SableVM with selective inlining as an example of an advanced interpreter technique.

5. Sun’s Hotspot JVM version 1.05 as a state of the art Java JIT.
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Elapsed Time Data Elapsed time performance data was collected on a dual CPU 2 GHz

PowerPC 970 processor with 512 MB of memory running Apple OSX10.4. Pentium perfor-

mance was measured on a Intel Core 2 Duo E6600 2.40GHz 4M with 2GB of memory under

Linux 2.6.9. Performance is reported as the average of threemeasurements of elapsed time, as

printed by thetime command.

Benchmarks Table 7.1 briefly describes each SPECjvm98 benchmark [67] andscimark,

a scientific program. Since the rest of the figures in this chapter will report performance relative

to unmodified JamVM 1.1.3, Table 7.1 includes, for each benchmark, the raw elapsed time for

JamVM, Yeti (running our JIT), and version 1.05.0_6_64 of Sun Microsystems’ Java HotSpot

JIT. (We provide the elapsed time here because below we will report performance relative to

direct threaded JamVM.)

Table 7.2 provides a key to the acronyms used as labels in the following graphs and indi-

cates the section of this thesis each technique is discussed.

Pipeline Hazards In Section 7.5 we describe how Yeti is effected by common processor

pipeline hazards, such as branch mispredictions and instruction cache misses. We use a new

infrastructure, built and operated by Azimiet al., colleagues from the Electrical Engineering

Computer Group, that heuristically attributes stall cyclesto various causes [6]. Livio Soares

provided us with a port of their infrastructure to Linux 2.6.18. We collected the stall data on a

slightly different model of PowerPC, a 2.3 GHz PowerPC 970FX (Apple G5 Xserve) running

Linux version 2.6.18. The 970FX part is a 90nm implementation of the 130nm 970, more

power efficient but identical architecturally. The platform change was forced upon us because

Soares’ port requires a system running the new FX version of the processor.
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Figure 7.1: Number of dispatches executed vs region shape. The y-axis has a logarithmic scale.
Numbers above bars, in scientific notation, give the number of regions dispatched. The X axis
lists the SPECjvm98 benchmarks in alphabetical order.

7.2 Effect of region shape on dispatch

In this section we report data obtained by modifying Yeti’s instrumentation to keep track of how

many virtual instructions are executed from each region body and how often region bodies are

dispatched. These data will help us understand to what extent execution remains in the code

cache for differently shaped regions of the program.

For a JIT to be effective, execution must spend most of its time in compiled code. We can

easily count how many virtual instructions are executed from interpreted traces and so we can

calculate what proportion of all virtual instructions executed come from traces. Forjack,

traces account for 99.3% of virtual instructions executed.For all the remaining benchmarks,

traces account for 99.9% or more.

A remaining concern is how often execution enters and leavesthe code cache. In our
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system, execution enters the code cache whenever a region body is called from a dispatch

loop. It is an easy matter to instrument the dispatch loops tocount how many iterations occur,

and hence how many dispatches are made. These numbers are reported by Figure 7.1. The

figure shows how direct call threading (DCT) compares to linear blocks (LB), interpreted traces

with no linking (i-TR-nolink) and linked interpreted traces(i-TR). Note that the y-axis has a

logarithmic scale.

DCT dispatches each virtual instruction body individually,so the DCT bars on Figure 7.1

report how many virtual instructions were executed by each benchmark. For each benchmark,

the ratio of DCT to LB shows the dynamic average linear block length (e.g., forcompress

the average linear block executed1.25 × 10
10/1.27 × 10

9
= 9.9 virtual instructions). In

general, the height of each bar on Figure 7.1 divided by the height of the DCT bar gives the
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average number of virtual instructions executed per dispatch of that region shape. Figure 7.2

also presents the same data in terms of virtual instructionsexecuted per dispatch, but sorts the

benchmarks along the x axis by the average LB length. Hence, for compress, the LB bar shows

9.9 virtual instructions executed on the average.

Scientific benchmarks appear on the right of Figure 7.2 because they tend to have longer

linear blocks. For instance, the average block inscitest has about 24 virtual instructions

whereasjavac, jess andjack average about 4 instructions. Comparing the geometric

mean across benchmarks, we see that LB reduces the number of dispatches relative to DCT by

a factor of 6.3. On long basic block benchmarks, we expect that the performance of LB will

approach that of direct threading for two reasons. First, fewer trips around the dispatch loop

are required. Second, we showed in Chapter 5 that subroutine threading is better than direct

threading for linear regions of code.

Traces do predict paths taken through the program. The rightmost cluster on Figure 7.2

show that, even without trace linking (i-TR-nolink), the average trace executes about 5.7 times

more virtual instructions per dispatch than a LB. The improvement can be dramatic. For in-

stancejavac executes, on average, about 22 virtual instructions per trace dispatch. This is

much longer than its dynamic average linear block length of 4virtual instructions. This means

that forjavac, on the average, the fourth or fifth trace exit is taken. Or, putting it another

way, forjavac a trace typically correctly predicts the destination of 5 or6 virtual branches.

This behavior confirms the assumptions behind our approach to handling virtual branch

instructions in general and the design of interpreted traceexits in particular. We expect that

most of the trace exits, four fifths in the case ofjavac, will not exit. Hence, we generate code

for interpreted trace exits that should be easily predictedby the processor’s branch history

predictors. In the next section we will show that this improves performance, and in Section 7.5

we show that it also reduces branch mispredictions.

Adding trace linking completes the interpreted trace (i-TR)technique. Trace linking makes

the greatest single contribution, reducing the number of times execution leaves the trace cache
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Figure 7.3: Percentage trace completion rate as a proportion of the virtual instructions in a
trace and code cache size for as a percentage of the virtual instructions in all loaded methods.
For the SPECjvm98 benchmarks and scitest.

by between one and 3.7orders of magnitude. Trace linking has so much impact because it

links traces together around loops. A detailed discussion of how inner loops depend on trace

linking appears in Section 6.4.3.

Although this data shows that execution is overwhelmingly from the trace cache, it gives

no indication of how effectively code cache memory is being used by the traces. A thorough

treatment of this, like the one done by Bruening and Duesterwald [11], is beyond the scope of

this thesis. Nevertheless, we can relate a few anecdotes based on data that our profiling system

already collects.

Figure 7.3 describes two aspects of traces. First, in the figure, the %complete bars report the

extent to which traces typically complete, measured as a percentage of the virtual instructions

in a trace. For instance, forraytrace, the average trace exit occurs after executing 59% of

the virtual instructions in the trace. Second, the %loaded bars report the size of the traces in the

code cache as a percentage of the virtual instructions in allthe loaded methods. For raytrace we

see that the traces contain, in total, 131% of the code in the underlying loaded methods. Closer
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examination of the trace cache shows thatraytrace contains a few very long traces which

reach the 100 block limit (See Section 6.2.3). In fact, thereare nine such traces generated for

raytrace, one of which is dispatched 500 thousand times. (This is the only 100 block long

trace executed more than a few thousand times generated by any of our benchmarks.) The

hot trace was generated from code performing a complex calculation with many calls to small

accessor methods that were inlined into the trace, hence thehigh block count. Interestingly,

this trace has several hot trace exits, the last significantly hot exit from the 68’th block.

We observe that for an entire run of thescitest benchmark, all generated traces contain

only 24% of the virtual instructions contained in all loadedmethods. This is a good result

for traces, suggesting that a trace-based JIT needs to compile fewer virtual instructions than

a method-based JIT. Also, we see that forscitest, the average trace executes almost to

completion, exiting after executing 99% of the virtual instructions in the trace. This is what

one would expect for a program that is dominated by inner loops with no conditional branches

– the typical trace will execute until the reverse branch at its end.

On the other hand, forjavac we find the reverse, namely that the traces bloat the code

cache – almost fourtimesas many virtual instructions appear in traces than are contained in

the loaded methods. In Section 7.5 we shall discuss the impact of this on the instruction cache.

Nevertheless, traces injavac are completing only modestly less than the other benchmarks.

This suggests thatjavac has many more hot paths than the other benchmarks. What we are

not in a position to measure at this point is the temporal distribution of the execution of the hot

paths.

7.3 Effect of region shape on performance

In this section we report the elapsed time required to execute each benchmark. One of our

main goals is to create an architecture for a high level machine that can be gradually extended

from a simple interpreter to a high performance JIT augmented system. Here, we evaluate the
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Figure 7.4: Performance of each stage of Yeti enhancement from DCT interpreter to trace-
based JIT relative to unmodified JamVM-1.3.3 (direct-threaded) running the SPECjvm98
benchmarks (sorted by LB length).

performance of various stages of Yeti’s enhancement from a direct call-threaded interpreter to

a trace based mixed-mode system.

Figure 7.4 shows how performance varies as differently shaped regions of the virtual pro-

gram are executed. The figure shows elapsed time relative to the unmodified JamVM distri-

bution, which uses direct-threaded dispatch. The raw performance of unmodified JamVM and

TR-JIT is given in Table 7.1. The first four bars in each clusterrepresent the same stage of

Yeti’s enhancement as those in Figure 7.1. The fifth bar, TR-JIT, gives the performance of Yeti

with our JIT enabled.

Direct Call Threading Our simplest technique, direct call threading (DCT) is slower than

JamVM, as distributed, by about 50%.

Although this seems serious, we note that many production interpreters are not direct
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Figure 7.5: Performance of Linear Blocks (LB) compared to subroutine-threaded JamVM-
1.3.3 (SUB) relative to unmodified JamVM-1.3.3 (direct-threaded) for the SPECjvm98 bench-
marks.

threaded but rather use the slower and simpler switch threading technique. When JamVM

is configured to run switch threading we we find that its performance is within 1% of DCT.

This suggests that the performance of DCT is well within the useful range.

Linear Blocks As can be seen on Figure 7.4, Linear blocks (LB) run roughly 30%faster than

DCT, matching the performance of direct threading for benchmarks with long basic blocks like

compress andmpeg. On the average, LB runs only 15% more slowly than direct threading.

The region bodies identified at run time by LB are very similarto the code generated by

subroutine threading (SUB) at load time so one might expect the performance of the two tech-

niques to be the same. However, as shown by Figure 7.5 LB is, onthe average, about 43%

slower.

This is because virtual branches are much more expensive forLB. In SUB, the virtual
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Figure 7.6: Performance of JamVM interpreted traces (i-TR) and selective inlined SableVM
1.1.8 relative to unmodified JamVM-1.3.3 (direct-threaded) for the SPECjvm98 benchmarks.

branch body is called from the CTT1, then, instead of returning, it executes an indirect branch

directly to the destination CTT slot. In contrast, in LB a virtual branch instruction sets the vPC

and returns to the dispatch loop to call the destination region body. In addition, each iteration

of the dispatch loop must loop up the destination body in the dispatcher structure (through an

extra level of indirection compared to SUB).

Interpreted Traces Just as LB reduces dispatch and performs better than DCT, so link-

disabled interpreted traces (i-TR-nolink) further reduce dispatch and run 38% faster than LB.

Interpreted traces implement virtual branch instructionsbetter than LB or SUB. As de-

scribed in Section 6.4.1, i-TR generates a trace exit for each virtual branch. The trace exit is

implemented as a direct conditional branch that is not takenwhen execution stays on trace.

As we have seen in the previous section, execution typicallyremains on trace for several trace

1See Section 3.5
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Figure 7.7: Performance of JamVM interpreted traces (i-TR) relative to unmodified JamVM-
1.3.3 (direct-threaded) and selective inlined SableVM 1.1.8 relative to direct threaded SableVM
version 1.1.8 for the SPECjvm98 benchmarks.

exits. Thus, on the average, i-TR replaces costly indirect calls (from the dispatch loop) with

relatively cheap not-taken direct conditional branches. Furthermore, the conditional branches

are fully exposed to the branch history prediction facilities of the processor.

Trace linking, though it eliminates many more dispatches, achieves only a modest further

speed up because the specialized dispatch loop for traces ismuch less costly than the generic

dispatch loop that runs LB.

We compare the performance of selective inlining, as implemented by SableVM, and in-

terpreted traces in two different ways. First, in Figure 7.6, we compare the performance of

both techniques relative to the same baseline, in this case JamVM with direct threading. Sec-

ond, in Figure 7.7, we show the speedup of each VM relative to its own implementation of

direct threading, that is, we show the speedup of i-TR relative to JamVM direct threading and

selective inlining relative to SableVM direct threading.

Overall, Figure 7.6 shows that i-TR and SableVM perform almost the same with i-TR

about 3% faster than selective inlining. SableVM wins on programs with long basic blocks,
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like mpeg andscitest, because selective inlining eliminates dispatch from longsequences

of simple virtual instructions. However, i-TR wins on shorter block programs likejavac and

jess by improving branch prediction. Nevertheless, Figure 7.7 shows that selective inlining

results in a 2% larger speedup over direct threading for SableVM than i-TR. Both techniques

result in very similar overall effects even though i-TR is focused on improving virtual branch

performance and selective inlining on eliminating dispatch within basic blocks.

Subroutine threading again emerges as a very effective interpretation technique, especially

given its simplicity. SUB runs only 6% more slowly than i-TR and SableVM.

The fact that i-TR runs exactly the same runtime profiling instrumentation as TR-JIT makes

it qualitatively a very different system than SUB or SableVM. SUB and SableVM are both

tuned interpreters that generate a small amount of code at load time to optimize dispatch.

Neither includes any profiling infrastructure. In contrastto this, i-TR runs all the infrastructure

needed to identify hot traces at run time. As we shall see in Section 7.5, the improved virtual

branch performance of interpreted traces has made it possible to build a profiling system that

runs faster than most interpreters.

JIT Compiled traces The rightmost bar in each cluster of Figure 7.4 shows the performance

of our best-performing version of Yeti (TR-JIT). Comparing geometric means, we see that

TR-JIT is roughly 24% faster than interpreted traces. Despite supporting only 50 integer and

object virtual instructions, our trace JIT improves the performance of integer programs such as

compress significantly. With our most ambitious optimization, of virtual method invocation,

TR-JIT improved the performance ofraytrace by about 35% over i-TR.Raytrace is

written in an object-oriented style with many small methodsinvoked to access object fields.

Hence, even though it is a floating-point benchmark, it is greatly improved by devirtualizing

and inlining these accessor methods.

Figure 7.8 compares the performance of TR-JIT to Sun Microsystems’ Java HotSpot JIT.

Our current JIT runs the SPECjvm98 benchmarks 4.3 times slower than HotSpot. Results range
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from 1.5 times slower fordb, to 12 times slower formtrt. Not surprisingly, we do worse on

floating-point intensive benchmarks since we do not yet compile the float bytecodes.

7.4 Early Pentium Results

As illustrated earlier, in Figure 3.4, the Intel’s Pentium architecture takes a different approach

to indirect branches and calls than does the PowerPC. On the PowerPC, we have shown that the

two-part indirect call used in Yeti’s dispatch loops performs well. However, the Pentium relies

on its BTB to predict the destination of its indirect call instruction. As we saw in Chapter 5,

when the prediction is wrong, many stall cycles may result. Conceivably, on the Pentium, the

unpredictability of the dispatch loop indirect call could lead to very poor performance.

Gennady Pekhimenko, a fellow graduate student at the University of Toronto, ported i-TR

to the Pentium platform. Figure 7.9 gives the performance ofhis prototype. The results are

roughly comparable to our PowerPC results, though i-TR outperforms direct threading a little

less on the Pentium. The average test case ran in 83% of the time taken by direct threading

whereas it needed 75% on the PowerPC.

7.5 Identification of Stall Cycles

We have shown that Yeti performs well compared to existing interpreter techniques. However,

much of our design is motivated by micro-architectural considerations. In this section, we use

a new set of tools to measure the stall cycles experienced by Yeti as it runs.

The purpose of this analysis is twofold. First, we would liketo confirm that we understand

why Yeti performs well. Second, we would like to discover anysource of stalls we did not

anticipate, and perhaps find some guidance on how we could do better.



CHAPTER 7. EVALUATION OF YETI 122

1.
19

0.
79

compress

1.
43

0.
90

db

1.
47

0.
84

jack

1.
48

0.
95

javac

1.
35

0.
79

jess

0.
79

0.
64

mpeg

1.
59

0.
88

mtrt

1.
59

0.
87

ray

1.
05

0.
93

scitest
1.

29
9

0.
83

8

geomean
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

E
la

p
se

d
 t

im
e 

re
la

ti
ve

 t
o

 ja
m

-d
is

tr
o

LB i-TR
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category name Description

i-cache Instruction cache misses
br_misp Branch mispredictions
compl Completed instructions. (Cycles in which an instruction did complete)

other_stall Miscellaneous stalls
fxu Fixed point execution unit
fpu Floating point execution unit

d-cache Data cache
basic_lsu Basic load and store unit stalls

Table 7.3: GPUL categories

7.5.1 Identifying Causes of Stall Cycles

Azimi et al. [6] describe a system that uses a statistical heuristic to attribute stall cycles in a

PowerPC 970 processor. They define astall cycleas a cycle for which there is no instruction

that can be completed. Practically speaking, on a PowerPC970, this occurs when the proces-

sor’s completion queue is empty because instructions are held up, or stalled. Their approach,

implemented for a PPC970 processor running K42, a research operating system [18], exploits

performance monitoring hardware in the PowerPC that recognizes when the processor’s in-

struction completion queue is empty. Then, the next time an instructiondoescomplete they

attribute, heuristically and imperfectly, all the intervening stall cycles to the functional unit of

the completed instruction. Azimiet al. show statistically that their heuristic estimates the true

causes of stall cycles well.

The Linux port runs only on a PowerPC 970FX processor2. This is slightly different than

the PowerPC 970 processor we have been using up to this point.The only acceptable machine

we have access to is an Apple Xserve system which was also slightly faster than our machine,

running at 2.3 GHz rather than 2.0 GHz.

2We suspect that the actual requirement is the interrupt controller that Apple packages in newer systems.



CHAPTER 7. EVALUATION OF YETI 124

7.5.2 Stall Cycle results

Figure 7.10 shows the break down of stall cycles for various runs of the SPECjvm98 bench-

marks as measured by the tools of Azimiet al. Five bars appear for each benchmark. From the

left to the right, the stacked bars represent subroutine-threaded JamVM 1.1.3 (SUB) , JamVM

1.1.3 (direct-threaded as distributed, hence DISTRO) and three configurations of Yeti, i-TR-no-

link, i-TR and TR-JIT. The y axis, like many of our performancegraphs, reports performance

relative to JamVM. The height of the DISTRO bar is thus 1.0 by definition. Figure 7.11 reports

the same data as Figure 7.10, but, in order to facilitate pointing out specific trends, zooms in

on four specific benchmarks.

Each histogram column is split vertically into a stack of bars which illustrates how executed

cycles break down by category. Only cycles listed as “compl”represent cycles in which an in-

struction completed. All the other categories represent stalls, or cycles in which the processor

was unable to complete an instruction. The “other_stall” category represents stalls to which the

tool was not able to attribute a cause. Unfortunately, the other_stall category includes a source

of stalls that is important to our discussion, namely the stalls caused by data dependency be-

tween the two instructions of the PowerPC architectures’ two-part indirect branch mechanism3.

See Figure 3.4 for an illustration of two-part branches.

The total cycles executed by each benchmark do not correlateperfectly with the elapsed

time measurements reported earlier in this chapter.

For instance, in Figure 7.4, i-TR runs scitest in 60% of the time of direct threading, whereas

in Figure 7.11(c) it takes 80%. There are a few important differences between the runs, namely

the differences between the PowerPC 970FX and PowerPC 970, the different clock speed (2.3

GHz vs 2.0 GHz) and differences between Linux (with modifications made by Azimiet al.) and

3In earlier models of the PowerPC, for instance the 7410, these cycles were called “LR/CTR stall cycles”, as
reported by Figure 5.1(b)
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Figure 7.10: Cycles relative to JamVM-1.3.3 (direct threading) running SPECjvm98 bench-
marks.
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Figure 7.11: Stall breakdown for SPECjvm98 benchmarks relative to JamVM-1.3.3 (direct
threading).
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OSX 10.4. We use the data qualitatively to characterize pipeline hazards and not to measure

absolute performance.

7.5.3 Trends

Several interesting trends emerge from our examination of the cycle reports.

1. Interpreted traces reduce branch mispredictions causedby virtual branch instructions.

2. Simple code we generated for interpreted trace exits stresses the fixed-point execution

unit (fxu)

3. Our JIT (TR-JIT) does little to reduce lsu stalls, which is asurprise since many loads and

stores to the expression stack are eliminated by the register allocator.

4. As we reduce pipeline hazards caused by dispatch new kindsof stalls arise.

5. Trace bloat, like we observed for javac, can lead to significant stalls due to instruction

cache misses.

Each of these issues will be discussed in turn.

Branch misprediction

In Figure 7.11(mpeg) we see how our techniques affectmpeg, which has a few very hot,

very long basic blocks. The blocks contain many duplicate virtual instructions. Hence, direct

threading encounters difficulty due to the context problem,as discussed in Section 3.4. (This

is plainly evident in the solid red br_misp stack on the DISTRO bar on all four sub figures.)

SUB reduces the mispredictions that occur runningmpeg significantly – presumably the

ones caused by linear regions. Yeti’s i-TR technique effectively eliminates the branch mis-

predictions formpeg altogether. Both techniques also reduce other_stall cyclesrelative to di-

rect threading. These are probably being caused by the PowerPC’s two-part indirect branches
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which are used by DISTRO to dispatch all virtual instructions and by SUB to dispatch virtual

branches. SUB eliminates the delays for straight-line codeand i-TR further eliminates the

stalls for virtual branches. Figures 7.11(javac) and 7.11(jess) show that traces cannot predict

all branches and some stalls due to branch mispredictions remain for i-TR and TR-JIT.

Overhead of interpreted Trace Exits

In all four sub figures of Figure 7.11 we see that fxu stalls decrease or stay the same relative to

DISTRO for SUB whereas for i-TR they increase. Note also thatthe fxu stalls decrease again

for the TR-JIT condition. This suggests that the fxu stalls are not caused by the overhead of

profiling (since TR-JIT runs exactly the same instrumentation as i-TR). Rather, they are caused

by the overhead of the simple-minded trace exit code we generate for interpreted traces.

Recall that interpreted traces generate a compare immediateof the vPC followed by a

conditional branch. The comparand is the destinationvPC, a 32 bit number. On a PowerPC,

there is no form of the compare immediate instruction that takes a 32 bit immediate parameter.

Thus, we generate two fixed point load immediate instructions to load the immediate argument

into a register. Presumably it is these fixed point instructions that are causing the extra stalls.

TR-JIT and the Expression Stack

Yeti’s compiler works hard to eliminate loads and stores to and from Java’s expression stack.

In Figure 7.11(mpeg) , TR-JIT makes a large improvement over i-TR by reducing the number

of completed instructions. However, it was surprising to learn that basic_lsu stalls were in fact

not much effected. (This pattern holds across all the other sub figures also.) Presumably the

pops from the expression stack hit the matching pushes in PPC970’s store pending queue and

hence were not stalling in the first place.
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Exposing stalls from workload

In Figure 7.11(scitest) we see an increase in stalls due to the FPU for SUB and i-TR. Our

infrastructure makes no use of the FPU at all – so presumably this happens because stalls

waiting on the real work of the application are exposed as we eliminate other pipeline hazards.

This effect makes it hard to draw conclusions about any increase in stalls that occurs, for

instance the increase in fxu stalls caused by i-TR describedin the previous section, because it

might also be caused by the application.

Trace bloat

The javac compiler is a big benchmark. The growth of the blue hatched bars at the top

of Figure 7.11(javac) shows how i-TR and TR-JIT make this significantly worse. Even SUB,

which only generates one additional 4 byte call per virtual instruction, increases i-cache misses.

In the figure, i-TR stalls on instruction cache as much as direct threading stalls on mispredicted

branches.

As we pointed out in Section 7.2, Dynamo’s trace selection heuristic does not work well for

javac, selecting traces representing four times as many virtual instructions as appear in all

the loaded methods. This happens when many long but slightlydifferent paths are hot through

a body of code. Part of the problem is that the probability of reaching the end of a long trace

under these conditions is very low. As trace exits become hotmore traces are generated and

replicate even more code. As more traces are generated the trace cache grows huge.

Figure 7.11(javac) shows that simply setting aside a large trace cache is not a good solu-

tion. The replicated code in the traces makes the working setof the program larger than the

instruction cache can hold.

Our system does not, at the moment, implement any mechanism for reclaiming memory

that has been assigned to a region body. An obvious candidatewould be reactive flushing (See

Section 2.5), which occasionally flushes the trace cache entirely. This may result in better

locality of reference after the traces are regenerated anew. Counter-intuitively, reducing the
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size of the trace cache and implementing a very simple trace cache flushing heuristic may lead

to better instruction cache behavior than setting aside a large trace cache.

Hiniker et al [41] have suggested several changes to the trace selection heuristic that im-

prove locality and reduce replication between traces.

7.6 Chapter Summary

We have shown that traces, and especially linked traces, arean effective shape for region bod-

ies. The trace selection heuristic described by the HP Dynamo project, described in Section 2.5,

results in execution from the code cache for an average or 2000 virtual instructions between

dispatches. This reduces the overhead of region body dispatch to a negligible level. The amount

of code cache memory required to achieve this seems to vary widely by program, from a very

parsimonious 24% of the virtual instructions in the loaded methods forscitest to a rather

bloated 380% forjavac.

We have measured the performance of four stages in the evolution of Yeti: DCT, LB, i-

TR, and TR-JIT. Performance has steadily improved as larger region bodies are identified and

translated. Traces have proven to be an effective shape for region bodies for two main reasons.

First, interpreted traces offer a simple and efficient way toefficiently dispatch both straight

line code and virtual branch instructions. Second, compiling traces is straightforward – in part

because the JIT can fall back on our callable virtual instruction bodies, but also because traces

contain no merge points, which makes compilation easy.

Interpreted traces are a fast way of interpreting a program,despite the fact that runtime

profiling is required to identify traces. We show that interpreted traces are just as fast as inline-

threading, SableVM’s implementation of selective inlining. Selective inlining eliminates dis-

patch within basic blocks at runtime (Section 3.6) whereas interpreted traces eliminate branch

mispredictions caused by the dispatch of virtual branch instructions. This suggests that a hy-

brid, namely inlining bodies into interpreted traces (reminiscent of our TINY inlining heuristic
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of Section 5.3) may be an interesting intermediate technique between interpreted traces and the

trace-based JIT.

Yeti provides a design trajectory by which a high level language virtual machine can be

extended from a simple interpreter to a sophisticated trace-based JIT compiler mixed-mode

virtual machine. Our strategy is based on two key assumptions. First, that stepping back to

a relatively slow dispatch technique, direct call threading (DCT), is worthwhile. Second, that

identifying dynamic regions of the program at runtime, traces, should be done early in the life

of a system because it enables high performance interpretation.

In this chapter we have shown that both these assumptions arereasonable. Our implemen-

tation of DCT performs no worse than switch threading, commonly used in production, and

the combination of trace profiling and interpreted traces iscompetitive with high-performance

interpreter optimizations. This is in contrast to context threading, selective inlining, and other

dispatch optimizations, which perform about the same as interpreted traces but do nothing to

facilitate the development of a JIT compiler.

A significant remaining challenge is how best to implement callable virtual instruction

bodies. The approach we follow, as illustrated by Figure 4.2, is efficient but depends on C

language extensions and hides the true control flow of the interpreter from the compiler that

builds it. A possible solution to this will be touched upon inChapter 8.

The cycle level performance counter infrastructure provided by Azimi et al. has enabled

us to learn why our technique does well. As expected, we find that traces make it easier

for the branch prediction hardware to do its job, and thus stalls due to branch mispredictions

reduce markedly. To be sure, some paths are still hard to predict and traces do not eliminate

all mispredicted branches. We find that the extra path lengthof interpreted trace exits does

matter, but in the balance reduces stall cycles from mispredicted branches more than enough to

improve performance overall.

Yeti is early in its evolution at this point. Given the robustperformance increases we ob-

tained compiling the first 50 integer instructions we believe much more performance can be
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easily obtained just by compiling more kinds of virtual instructions. For instance, floating

point multiplication (FMUL or DMUL) appears amongst the most frequently executed vir-

tual instructions in four benchmarks (scitest, ray, mpeg andmtrt). We expect that our

gradual approach will allow these virtual instructions to compiled next with commensurate

performance gains.



Chapter 8

Conclusions and Future Work

Interpreters play an important role in the implementation of computer languages. Initially,

language implementors need a language VM to be simple and flexible in order to support the

evolution of their language. Later, as their language increases in popularity, performance may

become more of a concern.

Today, commonly implemented interpreter designs do not anticipate the need for more

performance, and just in time (JIT) compiler designs, though capable of very high performance,

require a great deal of up-front development. These factorsconspire to prevent, or at least

delay, important language implementations from improvingperformance by deploying a JIT.

In this dissertation we have responded to this challenge by describing a design for a language

VM that explicitly maps out a trajectory of staged deployments, providing gradually increasing

performance as development effort is invested.

8.1 Conclusions and Lessons Learned

Our approach is different from most interpreter designs because we intentionally start out run-

ning a simple dispatch mechanism, direct call threading (DCT). DCT is an appropriate choice

not because it is particularly fast – it runs about the same speed as a regular switch threaded

interpreter – but because it is the simplest way to dispatch callable virtual instruction bodies

133
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and because it is easy to augment with profiling. This makes the early versions of a language

VM simple to deploy.

To gain performance in later releases the DCT interpreter canbe extended by inserting

profiling into the dispatch loop and identifying interpreted traces. When more performance is

required interpreted traces can be be enhanced by JIT compiling a subset of virtual instructions.

Our approach is motivated by a few observations:

1. We realized that callable bodies can be very efficiently dispatched by the old technique of

subroutine threading now that processors commonly implement return branch predictors.

This is effective for straight-line sections of the virtualprogram.

2. We realized that although the overhead of a dispatch loop is high for dispatching single

virtual instruction bodies, it may be perfectly reasonablefor dispatching callable region

bodies generated from dozens or hundreds of virtual instructions. The basic idea behind

Yeti’s extensibility is that development effort should be invested in identifying and com-

piling larger and more complex regions of the virtual program which are then dispatched

from a profiled dispatch loop.

3. Optimizing the dispatch of virtual branch instructions,for instance by selective inlining,

is typically carried out by an interpreter when a method is loaded. Instead, we identify

traces at run time using profiling instrumentation called from the dispatch loop. Hot

traces predict paths through the virtual program which we exploit to generate simple

trace exit code in otherwise subroutine-threaded interpreted traces.

4. When even better performance is needed, we show how a trace-based JIT can be built

to eliminate dispatch and replace the expression stack withregister-to-register compiled

code. The novel aspect of our JIT is that it exploits the fact that Yeti’s virtual instruction

bodies are callable. Unsupported virtual instructions, ordifficult compiler corner cases

can be side-stepped by dispatching virtual instruction bodies instead. This allows support

for virtual instructions to be added one at a time. The importance of the latter point is
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hard to quantify, but seemed to reduce the difficulty of debugging the back end of the

compiler significantly.

Most of the elements of our approach are plausible as soon as it has been proved that callable

bodies can be efficiently dispatched. However, actual performance improvements depend on

a subtle trade-off between the overhead of runtime profilingand the reduction of stalls caused

by branch mispredictions. The only way to determine that ourideas were viable is to build a

fairly complete prototype. We chose to build a prototype in Java because there are commonly

accepted benchmark programs to measure and many high quality implementations to compare

ourselves to.

In the process we learned a number of interesting things:

1. Calling virtual instruction bodies can be very efficient onmodern CPUs. Our implemen-

tation of subroutine threading (SUB) is very simple and eliminates most of the branch

mispredictions caused by switch or direct threading, namely those caused by dispatch-

ing straight-line code. SUB outperforms direct threading by about 20%. However, SUB

does not address mispredictions caused by dispatching virtual branch instructions. Also,

it is difficult to interpose runtime instrumentation into subroutine threaded execution.

2. Direct Call Threading (DCT) is simpler than SUB, but much slower, running about 40%

slower than direct threading. This, however, is not worse than switch, which is widely

implemented by heavily used languages like Python and JavaScript. DCT is very easy

to augment with profiling, since instrumentation can simplybe called from the dispatch

loop before and after dispatching each body. Furthermore, by providing multiple dis-

patch loops it is easy to turn instrumentation on and off.

3. Branch inlining, our initial approach to improving the virtual branch performance of

SUB, is labor intensive and non-portable. It improves the performance of subroutine

threading by about 5%.
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4. Interpreted traces are a powerful interpretation technique. They perform well, as fast

as SableVM’s inline-threading, running Java benchmarks about 25% faster than direct

threading on a PowerPC 970. This performance includes the cost of the runtime profiling

to identify traces. A system running interpreted traces hasalready implemented the

infrastructure to identify hot regions of a running program, an essential ingredient of a

JIT. This makes interpreted traces a good strategic option for language virtual machines

that may eventually need to be extended with a JIT.

5. Our trace compiler was easy to build, and we attribute thisprimarily to two factors.

First, traces contain no merge points, so it is easy to track where expression temporary

values are on the expression stack and assign them to registers. Second, callable virtual

instruction bodies enabled us to add compiler support for virtual instructions one at a

time. By compiling about 50 integer virtual instructions in this way the performance of

Yeti was increased to about double the performance of directthreading.

The primary weakness of our prototype is the specific mechanism we used to implement

callable virtual instruction bodies. Our approach, as illustrated by Figure 4.2, hides the re-

turn branch from the compiler. This means that the optimizerdoes not properly understand

the control flow graph of the interpreter. The workaround, suitable only for a prototype, is to

“fake” the missing control flow by adding computed goto statements that are never executed

immediately following each inline return instruction. Nested functions, a relatively commonly

implemented extension to C, are a promising alternative thatwill be discussed in the next sec-

tion.

8.2 Future work

Substantial additional performance gains are no doubt possible by extending our trace-based

JIT to handle more types of instructions (such as the floatingpoint bytecodes) and by apply-

ing classical optimizations such as common subexpression elimination. Improving the per-
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formance of compiled code by applying classical optimizations is relatively well understood.

Hence, on its own, such an effort seems to have relatively little to contribute to research. More-

over, it would require significant engineering work and likely could only be undertaken by a

well-funded project.

We will discuss four avenues for further research. First, a way to package virtual instruction

bodies as nested functions. Second, how the approach we describe in Section 6.4.3 to optimize

virtual method invocation could be adapted for runtime typed languages. Third, we comment

on how new shapes of region bodies could be derived from linked traces. Fourth, we describe

our vision of how our design could be used by the implementorsof a new language.

8.2.1 Virtual instruction bodies as nested functions

An better option for implementing callable virtual instruction bodies might be to define them

as nested functions. Nested functions are a common extension to C, implemented by gcc and

other C compilers, that allows one function to be declared within another. The idea is that

each virtual instruction body is declared as a separate nested function, with all bodies nested

within the main interpreter function. Important interpreter variables, like thevPC, are defined,

as currently, as local variables in the main interpreter function but can be used from the nested

function implementing each virtual instruction body as well.

The approach is elegant, since functions are a natural way toexpress virtual instruction

bodies, and also well supported by the tool chain, includingthe debugger. However, our first

attempts in this direction did not perform well. In short, when a nested function is called via a

function pointer, like from our DCT dispatch loop, gcc adds anextra level of indirection and

calls the nested function via a runtime generated trampoline. As a result the DCT dispatch loop

runs very slowly.

We investigated the possible performance of nested functions by hand-modifying the as-

sembler generated by gcc to short-circuit the trampoline. In this way, we created a one-off

version of OCaml that declares each virtual instruction bodyin its own nested function and
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runs a simple DCT dispatch loop like the one illustrated by Figure 3.2. On the PowerPC this

DCT interpreter runs the same OCaml benchmarks used in Chapter 5about 22% more slowly

than switch threading.

Further improvements to nested function performance should be investigated, possibly in-

cluding modifications to gcc to create a variant of nested functions more suitable for imple-

menting virtual instruction bodies.

8.2.2 Extension to Runtime Typed Languages

An exciting possibility is to create new speculative dynamic optimizations based on the run-

time profile data collected while training a trace (See Section 6.2.3.) The basic realization is

that a mechanism very similar to a trace exit can be used to guard almost any speculative op-

timization. As a specific example we consider the optimization of arithmetic operations in a

runtime typed language.

A runtime typed language is a language that does not force theuser to declare the types

of variables but instead discovers types at run time. A typical implementation compiles ex-

pressions to sequences of virtual instructions that are nottype specific. For instance, in Tcl

or Python the virtual body for addition will work for integers, floating point numbers or even

strings. Performance tends to be poor as each virtual instruction body must check the type of

each input before actually calculating its result.

We believe the same profiling infrastructure that we use to optimize callsites in Java (Sec-

tion 6.4.3) could be used to improve arithmetic bytecodes ina runtime typed language. Whereas

the destination of a Java method invocation depends only upon the type of the invoked-upon

object, the operation carried out by a polymorphic virtual instruction may depend on the type

of each input. For instance, suppose that a specific instanceof the addition instruction in Tcl,

Python or JavaScript has integer type. (We would know this ifits inputs were observed to be

integers during trace training.) We could generate one or more trace exits, or guards, to ensure

that the inputs are actually integers. Following the guardswe could generate specialized integer



CHAPTER 8. CONCLUSIONS ANDFUTURE WORK 139

code, or dispatch a version of the addition virtual instruction body specialized for integers.

8.2.3 New shapes of region body

Just as basic blocks are collected into traces, so traces could be collected into yet larger regions

for optimization. An obvious possibility would be to identify loop nests amongst the linked

traces, and use these as a higher level unit of compilation.

The data recorded by our trace region payload structures already includes the information

necessary to build a flow graph of the program in the code cache. It remains to adapt classical

flow graph algorithms to detect nested loops and create a strategy for compiling the resulting

code.

There seems to be little point, however, in detecting loop nests without any capability of

optimizing them. Thus, this extension of our work would onlymake sense for a system that

plans to build an optimizer.

8.2.4 Vision for new language implementation

Our vision for a new language implementation would be to start by building a direct call

threaded interpreter. Until the issues with nested functions have been dealt with, the virtual

bodies would have to be packaged as we described in Chapter 6. The level of performance

would be roughly the same as a switch-threaded interpreter.

Then, as more performance is called for, we would add linear blocks, interpreted traces,

and trace linking. It would be natural to make these extensions in separate releases of our

implementation. We believe that much of the runtime profiling infrastructure we built for

Yeti could be reused as is. Finally, when performance requirements demand a JIT compiler

could be built. Like Yeti, the first implementation would compile only a subset of the virtual

instructions, perhaps only the ones needed to address specific performance issues with a given

application.
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8.3 Summary

We have described a design trajectory which describes how a high level language virtual ma-

chine can be deployed in a sequence of stages, starting with asimple entry-level direct call

threaded interpreter, followed by interpreted traces and finally a trace-based just in time com-

piler.

We have shown that it is beneficial to implement virtual instruction bodies as callable rou-

tines both from the perspective of efficient interpretationand because it allows bodies to be

reused by the JIT. We recognized that on modern computers subroutine threading is a very

efficient way to dispatch straight-line sequences of virtual instructions. For branches we in-

troduce a new technique, interpreted traces. Our techniqueexploits the power of traces to

predict branch destinations and hence reduce mispredictions caused by the dispatch of virtual

branches. Interpreted traces are a state-of-the-art technique, running about 25% faster than

direct threading. This is about the same speed up as achievedby inlined-threading, SableVM’s

implementation of selective inlining.

We show how interpreted traces can be gradually enhanced with a trace-based JIT com-

piler. An attractive property of our approach is that compiler support can be added one virtual

instruction at a time. Our trace-based JIT currently compiles about 50 integer virtual instruc-

tions, running about 30% faster than interpreted traces, orabout double the performance of

direct threading.

Our hope is this work will enable more language implementations to deploy better inter-

preters and JIT compilers and hence deliver better computerlanguage performance to more

users.
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