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ABSTRACT
In the digital VLSI cycle, logic transformations are often required to
modify the design to meet different synthesis and optimization goals.
Logic transformations on sequential circuits are hard to perform due to
the vast underlying solution space. This paper proposes an SPFD-based
sequential logic transformation methodology to tackle the problem with
no sacrifice on performance. It first presents an efficient approach to
construct approximate SPFDs (aSPFDs) for sequential circuits. Then,
it demonstrates an algorithm using aSPFDs to perform the desirable se-
quential logic transformations using both combinational and sequential
don’t cares. Experimental results show the effectiveness and robustness
of the approach.

1. Introduction
In the process of designing VLSI chips, small logic modifications are

often needed to re-adjust a netlist for different goals. In design debug-
ging [1] for example, the designer tries to rectify a circuit that failed
verification. Once the source of the error(s) is localized, simple logic
transformations are implemented on those locations to correct it. An-
other example is when implementing engineering changes; small spec-
ification changes have to be reflected at late stages of the design cycle
for a design that has already been synthesized and optimized. In such
cases, one seeks to apply a minimal set of modifications to achieve the
changes [2]. Rewiring techniques for post-synthesis optimization also
rely on logic transformations to improve design performance [3, 4].

In all the cases discussed above, the logic transformations usually in-
volve small changes on a few design nets. A full-blown synthesis step
can be a resource intensive process and an unnecessary one, since ex-
isting synthesis tools may modify the design significantly, jeopardizing
some of the engineering effort invested in it [5]. As such, dedicated
automated tools that restructure the design minimally are desired to im-
plement such logic transformations.

An automated logic restructuring methodology for combinational cir-
cuits is proposed in [6]. The method proposes a novel approach to con-
struct Sets of Pairs of Functions to be Distinguished (SPFDs) using sim-
ulation. SPFDs were introduced by Yamashita et al. [7] and they provide
additional degrees of flexibility during synthesis [7–9]. However, they
may require prohibitive amounts of memory to manage when used for
logic restructuring [9]. The work in [6] alleviates this by using simu-
lation to approximate SPFDs when modifying combinational circuits.
Results show that approximate SPFDs, or simply aSPFDs, provide a
memory and run-time efficient alternative.

In this paper, an efficient aSPFD-based sequential logic transforma-
tion methodology is proposed. It applies a small set of modifications
to the combinational part of sequential circuits to match a desired be-
havior. The advantage of the proposed methodology is that it avoids
exploring the complete state space, which is usually one of the issues
when dealing with sequential circuits [9]. The aSPFD allows us to ex-
plore only the portion of the state space that is important to carry out
the transformation thus alleviating the state space explosion issue.

Nevertheless, generating aSPFDs of nodes in sequential circuits can
still be computationally intensive. It may be necessary to translate
aSPFDs between various input spaces due to temporal effects from dif-

ferent cycles in the sequential circuit. The proposed methodology pre-
sents an approach to construct aSPFDs without the need for state-space
expansion. It also takes into account both combinational and sequential
don’t cares to attain further flexibilities in constructing the transforma-
tion. Extensive experiments in this paper demonstrate that aSPFDs can
be used to restructure a sequential design with a small set of changes.

The remainder of the paper is organized as follows. Section 2 fur-
ther motivates the problem, presents notational conventions and gives
background information on SPFDs and aSPFDs. The procedure to con-
struct aSPFDs on sequential circuits is discussed in Section 3. The pro-
posed sequential logic restructuring methodology utilizing aSPFDs is
presented in Section 4. Experimental results are given in Section 5 fol-
lowed by the conclusion in Section 6.

2. Background
2.1 Notation

In this work, we consider a sequential circuit with primary input set
X = (x1, · · · ,xm), state input set S = (s1, · · · ,sp), and primary output
set O = (o1, · · · ,on). Throughout this paper, the superscript of a symbol
refers to the cycle of the unrolled circuit. For example, X 2 represents
the set of the primary input in the second cycle. x2

1 refers to the primary
input x1 in the second cycle. We also let symbol Ti denote the i-th
simulated cycle. An input vector sequence with k cycles is denoted as
V = (v1, · · · ,vk). Values for each vector represent logic values on the
primary input only. We assume that initial state values are all at logic 0.
However, the method can work for any set of initial state values.

2.2 Motivation and Prior Work
Sequential circuits can be hard to re-structure due to the presence of

memory elements. Given a simulation input vector sequence, values of
a node may depend on the states of the circuit from previous cycles.
This can increase the complexity of the underlying analysis severely.
There are two common practices to reduce the sequential temporal ef-
fects so that techniques that work on combinational circuits can be also
applied onto sequential ones.

The first approach is reducing the sequential behavior of a circuit to a
single-copy version of a combinational one by considering the outputs
(inputs) of the registers as pseudo-primary inputs (outputs). The issue is
that this approach can lead to dramatically sub-optional results because
sequential don’t cares such as unreachable states or equivalent state are
not taken into account [10].

Another common approach is modeling the circuit using the Iterative
Logic Array (ILA) representation. In this case, one can “unroll” the de-
sign over time to maintain the state transition information [10, 11]. The
side-effect is that the input vector space of the unrolled circuit grows
exponentially, i.e. O(2k), where k is the number of times the circuit is
unrolled. This can become computationally expensive for some meth-
ods such as SPFDs since the size of the representing data structures
depends on the number of primary inputs.

Previous work on restructuring sequential circuits include [10] and [11].
Sinha et. al. [10] define sequential SPFDs and use them to optimize the
sequential state encoding. To avoid the input vector space explosion
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Figure 1: SPFDs for OR gate: Rc ⊂ {Ra∪Rb}

described earlier, the method unrolls the circuit incrementally until no
more useful information can be extracted. The authors conclude that the
size of the input space remains a major challenge for some circuits. A
formal technique to re-design a sequential circuit is proposed in [11]. It
uses Binary Decision Diagrams (BDDs) [12] to represent the Boolean
relation of nodes and the state transitions. Since no experiments are
presented, the scalability of the method remains unclear.

2.3 SPFD and aSPFD
SPFDs express the functional flexibility of a design [7]. The SPFD

of a node defines pairs of minterms that have to be distinguished by the
function of the node. A function distinguishes two minterms if it eval-
uates to different values under the minterms. The SPFD can be repre-
sented as a graph [13], where vertices are minterms and edges connect
minterms that need to be distinguished. The graph edges are also re-
ferred as the SPFD edges. For example, Figure 1 shows SPFDs of an
OR gate. Rc, the SPFD of the node c, consists of four vertices (minterms
in terms of ab). Since OR gates evaluate to 0 only if both inputs are 0,
Rc contains edges between 00 and {01,10,11}, Similarly, Ra (Rb) is the
SPFD of the node a (b).

Let the SPFD of node l be represented as Rl . SPFDs contain all the
information that is necessary to synthesize the fanout network. For each
node in a circuit, the SPFD of the node must be a subset of the union of
the SPFDs of its fanins. Thus,

∪m
i=1Rli ⊇ Rlo , (1)

where node lo has m fanins {l1, · · · , lm}. Eq. 1 indicates that the infor-
mation at a node has to be a subset of all the information at its fanins.
For example, in Figure 1, Rc is indeed a subset of Ra∪Rb.

Common approaches of computing SPFDs use BDDs and SAT. SPFD
computations with BDDs [12] may need prohibitive amounts of mem-
ory for some circuits [9]. Computing SPFDs with SAT is memory ef-
ficient, but it can be computationally expensive since every edge in the
SPFD of a node needs to be computed.

In [6], SPFDs are approximated using simulation to reduce the mem-
ory requirements of their representation and also ease operations on
them. The same work also demonstrates the applicability of approxi-
mate SPFDs (or aSPFDs) to compute appropriate logic transformations
for combinational circuits. Essentially, an aSPFD represents a subset of
edges of the original SPFD. The set of edges represented in an aSPFD
can be suitably chosen according to the specific synthesis task at hand.
Since logic transformations usually involve only a small portion of the
circuit, aSPFDs with properly selected SPFD edges can contain enough
information to carry out logic re-structuring accurately. After building
an aSPFD, the work in [6] searches for a set of support nodes to im-
plement the logic transformation at the netlist location of interest such
that Eq. 1 is satisfied. Experiments in [6] demonstrate that using a set
of 1000-2000 input vectors to choose the edges is effective for logic
transformations in benchmark circuits.

3. Approximating Sequential SPFDs
The act of applying logic transformations is treated as a pair of “er-

ror/correction” operations in [6]. We follow this terminology here to
ease the presentation. An “error” means a functional discrepancy be-

tween the desired specification and the current design where we seek a
“correction” (i.e., the transformation itself) that rectifies it. We assume
the location of the error, that is, the location of where the transforma-
tion should be applied, is known to our algorithm. We refer to such a
location as the transformation node in the remaining paper.

To transform the current design into the desired specification, a new
function that eliminates the observed discrepancy needs to be imple-
mented at the transformation node. It is achieve by deriving an aSPFD
at the node such that functions satisfying the aSPFD (i.e. a function that
distinguishes all the SPFD edges in the aSPFD) can rectify the discrep-
ancy in the circuit. Let Rtrans be the new aSPFD. Devising the trans-
formation becomes a task of finding a set of nets that satisfies Eq. 1 for
Rtrans. Then, those nets can serve as the new fan-ins to the transforma-
tion node. A fan-in network that satisfies Rtrans can be synthesized into
a two-level AND-OR network by the procedure described in [8]. This be-
comes the new function at the transformation node. Therefore, to suc-
cessfully apply the transformation, generating Rtrans that contains the
necessary information of the required transformation is a crucial step.

3.1 Constructing Sequential aSPFDs
The technique proposed in [6] cannot be used directly to generate

aSPFDs for sequential circuits. In a sequential circuit, the value of nets
in the circuit at Ti for some input vector sequences is a function of the
initial state input and the sequence of the primary input vectors up to and
including cycle Ti, i.e. f (S1,X 1, · · · ,X i). This implies that the space
of minterm pairs that needs to be distinguished by the aSPFD at the
transformation node is different across different cycles. For example, in
Figure 2(a), the value of l in T2 is a function of s1, a1 and a2. Hence,
the Rl in T2 has to distinguish minterms in the space of {s1,a1,a2}.

The aSPFDs for the same net over different cycles are needed cu-
mulatively to determine the logic transformation that has to be imple-
mented at the erroneous node and they are all equally important. A valid
transformation has to satisfy all those aSPFDs. Intuitively, the complex-
ity of logic transformation can be greatly reduced if one “global” aSPFD
that integrates all information stored in each individual aSPFD can be
constructed. This makes it necessary to convert the aSPFDs into a uni-
fied input space. One way to achieve this goal is to translate all aSPFDs
into a domain that is the superset of the complete input space, such as
the one consisting of the initial state and the primary input from T1 to
Tlast . Although feasible, this approach may not be computationally de-
sirable as it requires the use of formal techniques (BDDs or SAT) to
perform the image computations [9, 13].

Instead of translating aSPFDs into the largest input space, our ap-
proach generates aSPFDs over the input space {S ∪X }. Although this
might results in treating some of the sequential behavior as combina-
tional behavior, it still offers more flexibility when compared to treating
a sequential circuit as a pure combinational one. We determine the val-
ues of the state in each cycle for the given input vector sequences and
generate a partially specified truth table of the new function that the
transformation should obey. The truth table specifies the logic values
for the new function under the simulated input vector sequences where
minterm variables are taken from the set {S ∪X }. The complete proce-
dure of this step is further discussed in Section 3.2. Once the truth table
is determined, the aSPFDs of the node can be determined by identifying
its onset and offset sets. Let On(l) (O f f (l)) denote the onset (offset)
of the node l. Then, Rl necessitates that minterms in On(l) have to be
distinguished from minterms in O f f (l). That is, Rl contains an edge
for each pair (a,b) ∈ {On(l)×O f f (l)}

Recall that the aSPFD is an approximation of the SPFD. For a combi-
national circuit, it only explores the portion of the input space covered
by the given input vectors. Similarly, aSPFDs for sequential circuits
only consider states that are reachable during simulation of the given in-
put vector sequences. Hence, in our approach, only reachable states are
considered. By simulating input vector sequences, unreachable states
are pruned out by construction reducing the state space analyzed.

EXAMPLE 1. Figure 2(a) depicts a sequential circuit unrolled for
three cycles under simulation of a single input vector sequence. Assume
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Figure 2: The circuit for Examples 1 and 2

the correct response at o1 should be 0 and net l is the transformation
node. One can verify that if the values of l are 110 at cycles T1 · · ·T3,
the discrepancy at o can be resolved, i.e. o1 = 0. This gives the truth
table of l (in terms of abs) stating that l evaluates to 1 under minterms
{100,011} and to 0 under {101}. We conclude that On(l) = {100,011}
and O f f (l) = {101}. The aSPFD of l contains two edges: (100,101)
and (011,101).

3.2 Generating the Truth Table
In this section the procedure to generate the partial truth table of the

new function at the transformation node is described. Note, the truth ta-
ble contains only the values of the function under the minterms explored
during simulation of the input vector sequences. This partial truth table
is used to compute the value of the new function.

DEFINITION 1. Given an input vector sequence, V , the expected
trace of a node l is a sequence of values the function of l should evaluate
for V after the transformation is implemented.

In other words, an expected trace defines the value of internal states
and the function of the transformation. It can be extracted by formu-
lating the circuit into a Boolean SAT problem and solving the prob-
lem with SAT solvers. The formulation is similar to the one presented
in [1]. In summary, given a circuit, the input vectors V and the output
responses Y , the solver tries to find an assignment to all the nodes in the
circuit such that the values of the output of the circuit match Y under V .
V and Y serve as the constraints to the SAT instance. An all-solution
SAT solver can return all possible assignments that satisfy the instance.

The procedure GENERATETRUTHTABLE in Algorithm 1 gives the
pseudo-code to calculate the expected trace and the truth table of trans-
formation node l. The basic idea is to make l a new primary input
(line 1.6) and let the SAT solver determine the value at l in each cycle
such that the SAT instance is satisfied.

LEMMA 1. Let C be a sequential circuit and l ∈C denotes a logic
transformation node candidate. If the values of the primary input X i

equal the values of X j for any two cycles, (Ti,Tj), and the values of the
state S i equal the values of S j, the value of li and l j are the same.

Proof: Nodes in a sequential circuit can be expressed as a many-
to-one function in terms of the primary input (X ) and the state ele-
ments (S), f : {{0,1}|X |+|S | → {0,1}}. Suppose, towards a contra-
diction, the lemma is not true. Then, there exists an input assignment
Î ∈ {0,1}|X |+|S | such that fl(Î) = 0 at Ti and fl(Î) = 1 at Tj. Since the
logic transformations discussed here do not add/remove a state input,

Algorithm 1 Computing the truth table of the transformation node
1: C := the unrolled sequential circuit
2: l := the transformation node
3: V := the input vector sequence
4: Y := the expected output response
5: procedure GENERATETRUTHTABLE(C, l, V , Y )
6: Make l as a primary input in C
7: k← the length of V
8: φ← CONVERTCIRCUITTOCNF(C, V , Y )
9: for all (i, j) | 0 < i, j < k, i 6= j do

10: if vi == v j then
11: add constraints to φ that force li = l j if the state input

have the same values at Ti and Tj.
12: end if
13: end for
14: {m̂in, v̂al}← SOLVEWITHSATSOLVER (φ)
15: end procedure

the input space is not changed after the transformation. Such one-to-
many mappings of fl are incorrect and the values of li and l j have to be
the same. �

In order to comply with Lemma 1, additional constraints are added
to the SAT instance. For every pair of (Ti,Tj) when the primary input
vectors are the same, a checker that ensures li and l j have the same
value when the states at these two cycles are the same is added to the
SAT instance (line 1.11). If the SAT solver can find a valid assignment
satisfying the resulting SAT instance, the values assigned to l is the
desired expected trace that can be used to construct the aSPFD.

For the given input sequences and the expected output responses,
there can exist multiple expected traces that satisfy the SAT instance.
Those traces may cause conflicts in the new truth table at the trans-
formation node, i.e. different logic values are assigned for the same
minterm. In the following discussion, we explain the cases under which
such a conflict can arise. Let Ê1 and Ê2 represent two expected traces
returned by the SAT solver. Assume a conflict occurs for minterm M
between the assignment to Ê1 at cycle Ti and the assignment to Ê2 at
cycle Tj. Then, one of the two cases below is true.

• The output responses and the states at cycle Ti + 1 for Ê1 and
Tj + 1 for Ê2 are the same. This implies that the value of the
transformation node under M does not affect the output response
or the next state. Hence, M is a combinational don’t care. Identi-
fying these don’t cares is desirable as it can reduce the number of
minterm pairs required to be distinguished in aSPFDs.

• The output responses and/or the next states are different. This
can happen when the circuit has multiple state transition paths
for the same initial transitions. Since our analysis is bounded
by the length of the input vector sequences, it may not process
enough cycles to differentiate those different paths. As the result,
multiple assignments are valid within the bounded cycle range
and they can cause conflicting assignments to the transformation
node. Since the algorithm does not have enough information to
distinguish the correct assignment, we consider the minterm M in
this case to be a don’t care as well.

Figure 3 shows an example of a scenario where the second case out-
lined above can arise. Let l be the transformation node. The graph de-
fines a state transition diagram for a single-output design that depends
on the value of l. The condition for the state transition is labeled on the
edge and the value of the output is indicated below the state. Assume
the design starts at S0. It takes at least three cycles to differentiate the
transition Patha and Pathb. If the circuit is only unrolled for two cycles,
both paths will seem the same. Consequently, l can be 0 or 1 in S0.

As evident from the discussion above, it will be necessary to consider
all the expected traces returned by the SAT solver to generate the truth
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table for the transformation. To perform this task effectively, the line 14
in Algorithm 1 has to be extended with the following steps:

1. Obtain all solutions to the SAT instance with the SAT solver.

2. Extract minterms in the {S ∪X } space and expected traces from
the solutions.

3. Update the truth table of the transformation node. Minterms at
cycles where values of expected traces are conflicted are consid-
ered as don’t cares.

EXAMPLE 2. Returning to Example 1, here we show how to gener-
ate the expected trace of l. The first step is to make l into a primary input
as shown in Figure 2(b) and then construct a SAT instance representing
the design. Values shown next to the primary output are the respective
correct output response. Because the set of primary input (a,b) has the
value (1,0) at T1 and T3, we add constraints to the SAT instance such
that if s1 and s3 have the same value, lines l1 and l3 must have the
same value as well. The value 110 is returned by the SAT solver as the
expected trace of l.

One can verify that without the additional constraints, the assignment
100 to (l1, l2, l3) can also satisfy the given output response. However,
in this case, abs at T1 and T3 are both 100, but l1 and l3 have opposite
values. This is not a valid expected trace since it can cause a conflicting
assignment in the truth table of l. It should be noted that don’t cares can
only arise due to conflicts across different expected traces.

4. Logic Changes with Sequential aSPFDs
In this section, we present an aSPFD-based technique to re-structure

the combinational circuitry of sequential designs. It uses input vector
sequences to generate aSPFDs (as described in the previous section)
that guide synthesis for the resulting transformation.

We explain the complete sequential transformation procedure by pre-
senting an example. Given a sequential circuit, Corig, as shown in Fig-
ure 4(a), assume the goal is to remove wire (d, l) (the dotted line). Let
Cmod denote the circuit where wire (d, l) is removed. Three input vector
sequences that detect the “error” in Cmod are listed in Table 1, each of
which comprises of three cycles [3]. The initial value of the state s is
set to 0. Assume that l is the transformation node. The procedure to
perform an appropriate logic transformation at l is as follows:

1. Call GENERATETRUTHTABLE in Algorithm 1 to obtain the truth
table of the new function at l. The table is shown in Table 2.

Table 1: Test vector sequences
Vector v1 v2 v3

Pattern (a,b) 10,01,00 11,00,10 01,00,11

Table 2: Truth table of l
minterms 000 001 010 100 110 111

l 0 0 1 0 1 1

000

010

100

110 011

101

111

001

(a)

000

010

100

110 011

101

111

001

(b)

Figure 5: (a) Required aSPFD for l in Figure 4(a). (b) aSPFD for b

2. Construct the aSPFD of the new function at l using the truth table.
According to the table, O f f (l) = {000,001,100} and On(l) =
{010,110,111}. Rl contains six minterms and those in On(l)
have to be distinguished from minterms in O f f (l) (Figure 5(a)).
The black (white) nodes indicate that l has a logic value 1(0)
when the labeled minterm is applied. The dotted nodes refer to
don’t cares or minterms that are not explored by the input vectors.

3. Construct the aSPFDs of remaining nets in the design via simu-
lation. The circuit is simulated with minterms and the values of
l defined in the truth table for one cycle. This allows us to ob-
tain the truth table of the nets after the transformation. Then, the
onset/offset of each remaining net can be determined and used to
construct its aSPFD.

4. Remove edges of Rl that are included in the aSPFDs of fanins of l.
According to Eq. 1, the remaining edges are missing information
for l in Cmod . In our example only the edge (001,010) (the dotted
line in the figure) is not a part of aSPFDs of fanins of l.

5. Search for additional wires such that Eq. 1 is fulfilled. The greedy-
based procedure similar to the one in [6] is used. The algorithm
iteratively selects a wire whose aSPFD contains most SPFD edges
of Rl until all edges are covered. Here, the SPFD edge (001,010)
is contained in Rb (Figure 5(b)). Thus, b is qualified as the addi-
tional input to l. The resulting design is shown in Figure 4(b).

It should be noted that, just like in combinational aSPFDs [6], the
penalty of using aSPFD to re-structure the design is that the resulting
circuit needs to be verified. This is because an aSPFD does not contain
all minterm pairs that it needs to distinguish but only those excited by
the input vector sequence. Hence, using aSPFDs for logic transforma-
tions necessitates a verification step after the transformation. Since the
structural changes are incremental, a full blown verification step may
not be required and other faster proof methods can be used [3, 14].

Because the algorithm selects minterms based on the given input vec-
tor sequences, it may characterize a minterm as a don’t care if it is not
exercised by those sequences. In such a case, the proposed approach
may fail to find a logic transformation that passes verification. Since
the verification tool will return a counter-example, this can be added to
the input vector sequences and the algorithm can be re-executed to find
new transformation(s).

On the other hand, the input vector sequences may not provide all
the information for the don’t care space of the design. In this case,
the algorithm will accidentally specify a well defined logic value for a



Table 3: Sequential logic transformation results for different complexities of modification
circuit total error. succ hit first solution multiple solution
name loc equat. loc. rate (%) avg # wires avg sec % verified % unique avg # sol. avg # wire % verified % unique
s510 s 12 12 9 75 0.3 384 100 100 1.8 0.6 92 100
s713 s 25 18 0 0 - 325 - - - - - -
s953 s 9 9 3 33 1 223 100 67 3.3 1.5 37 70
s1196 s 9 9 5 56 2 237 83 66 5 1.5 92 64
s1238 s 8 8 3 38 1.1 781 100 42 5 1.6 100 55
s1488 s 14 14 6 43 1.7 258 83 75 5 1.3 46 68
s510 m 10 10 9 90 0.3 68 100 100 4.2 2.0 38 99
s713 m 14 6 5 83.3 0.6 689 100 63 1.4 1.6 41 60
s953 m 8 5 2 40 1.2 105 100 100 1 1.2 100 100
s1196 m 6 5 4 80 1.8 27 100 83 2.6 2.5 72 83
s1238 m 13 11 8 72 2.2 218 100 38 4.3 2.5 76 47
s1488 m 17 17 0 0 - 83 - - - - - -
s510 c 8 8 3 38 0.5 166 100 100 1.5 0.7 92 100
s713 c 17 12 8 67 1 1124 100 75 1 1 100 75
s953 c 11 8 0 0 - 122 - - - - - -
s1196 c 10 5 2 40 0.5 588 50 100 1.2 0.7 32 100
s1238 c 7 7 1 14 0 328 100 100 - - - -
s1488 c 14 10 3 30 1.7 98 33 100 1.5 2.6 27 100
Overall 206 168 64 38 1.0 319 90 80 2.7 1.5 67 76

minterm which is essentially a don’t care. The following lemma shows
that in those cases, there is no loss in the final resolution of the solution.

Our experimental results indicate that our methods derives transfor-
mations using sequential aSPFDs that most of them pass verification,
thereby proving the efficacy of the proposed approach.

LEMMA 2. Given two aSPFD, Ri and R j. Let Ri ⊂ R j. Any func-
tions that satisfy R j also satisfy Ri.

Proof: Suppose, toward a contradiction, that this is not true. Then,
there exists a function, F , that satisfies R j, but it does not satisfy Ri. This
implies that F fails to distinguish at least one minterm pair required by
Ri. Because Ri is a subset of R j, such minterm pair must exist in R j
as well. Thus, F cannot satisfy R j. By contradiction, all functions that
satisfy R j have to satisfy Ri. �

In our approach, the aSPFDs may contain minterm pairs that are not
required to be distinguished due to lack of information from the input
vectors. According to Lemma 2, the transformations returned can still
correct the design.

5. Experiments
This section presents the empirical results using ISCAS’89 bench-

marks. The diagnosis algorithm from [1] is used to identify the loca-
tion of the transformation node and zChaff [15] is the underlying SAT
solver. Experiments are conducted on a Core 2 Duo 2.4GHz processor
with 4GB of memory. Runtimes are reported in seconds.

In our experimental setup, three different complexities of modifica-
tions are injected in the original benchmark. Experiments involve cor-
recting those changes to test the performance of our algorithm. The
location and the types of modifications are randomly selected. Simple
complexity modifications (suffix “s”) involve the addition/deletion of a
single wire or a gate type replacement. Moderate complexity modifica-
tions (suffix “m”) on a gate include additions/deletions of multiple fanin
wires and a gate type change. The final complexity modifications, com-
plex (suffix “c”), inject multiple simple complexity modifications in the
fanin cone of a gate.

In the first set of the experiment, 500 input vector sequences, each
of which with a length of 10 cycles, are used. A bounded sequential
equivalent checking [16] is used to verify the correctness of the trans-
formation. It verifies the resulting design against the original design
within a finite number of cycles. In our experiment, this bound is set
to 10 cycles. If the transformation fails, the process is iterated for a
maximum of 30 times. Results are summarized in Table 3.

The name of the original benchmark and the complexity of the mod-
ification injected are shown in Column 1. The overall result is sum-

marized in the last row of the table. Numbers in Column 2-5 are the
sum of results from 5 experiments/circuit, while those in the remaining
columns are averages. The number of transformation locations returned
by the diagnosis are reported in Column 2. The formal method in [17]
is utilized to answer with certainty whether there exists a modification
that corrects the design at those locations. In detail, that method does
not return the actual transformation but indicates whether some amount
of transformation may or may not correct the design at the particular
location. These results are reported in Column 3 and they are used as
the metric to measure the effectiveness of the proposed methodology.

The next column shows the total number of locations where a valid
transformation is identified. A valid transformation is the one that passes
verification. We also define the correction hit rate as the ratio of the
number of locations with a valid transformation to the total number of
locations. The hit rate is recorded in Column 5. Taking s510 s as an ex-
ample, there are 12 locations can be corrected in the five experiments;
our algorithm can find a valid transformation for nine of them. The hit
rate in this case is 75% (9 out of 12).

From the table, one can see that our algorithm is able to correct 14
out of 18 test cases. For each individual case, the correction hit rate can
go up to 83%. Overall, our algorithm successfully identifies transfor-
mations for 38% of the locations. The reason why the algorithm fails
to correct some of the locations is because the input vectors do not pro-
vide enough information to generate a good aSPFD. As discussed in
Section 4, this occurs when the algorithm characterizes a minterm as
a don’t care when this minterm is not exercised by the input vectors.
Consequently, the resulting transformation does not distinguish all nec-
essary minterm pairs that are required to correct the design.

Columns 6-9 summarize the results when a transformation that passes
verification is found. Column 6 contains the average of the number of
additional wires selected to construct the transformation. Overall the
number of additional wires is limited to three, which suggests that the
transformations only alter the design with small changes, a desirable
characteristic. One may notice that the number is less than one in some
cases. This is because there are cases where no additional wire is re-
quired to construct the transformation. The average runtime is recorded
in Column 7. Column 8 shows the percentage of transformations that
pass verification when the first valid transformation is returned by the
algorithm. In most cases, the first transformation is a valid solution.
This shows that aSPFDs is a good metric to prune out invalid solutions.
Then, those transformations are checked whether they could be the solu-
tions of the approach proposed in [6]. This is carried out by performing
combinational equivalent checking between the transformed circuit and
the reference. Note that transformations identified by [6] must main-



Simple Moderate Complex Overall
0

10

20

30

40

50

60

Error Complexity

C
o
rr

e
c
ti
o
n
 H

it
 R

a
te

 (
%

)

100 200 500 700

Figure 6: Solution hit rate
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Figure 8: First hit rate

tain the state assignments, since the method treats registers as pseudo-
primary inputs/outputs. If two designs are not combinational equivalent,
it means that the transformation changes the state assignments. There-
fore, the transformation will be pruned out by [6]. Overall, 80% of the
valid transformations are uniquely identified by the proposed method-
ology as shown in Column 8.

Next, the algorithm is extended to find at most five transformations
that pass verification. Column 10 contains the average number of valid
transformations and the next column has the average number of addi-
tional wires selected for the new logic. In most cases, the algorithm is
not able to find more transformations that pass verification, a fact that
indicates the challenge of the problem. Finally, the percentage of trans-
formations that pass verification and the percentage of transformations
that are uniquely identified by the proposed methodology are shown in
the last two columns.

In the final set of the experiments, we investigate the performance of
the transformation with various sizes of the input vector sequences. We
use four sizes: 100, 200, 500 and 700. All have a length of 10 cycles and
the algorithm searches for one valid transformation. Figure 6 shows the
correction hit rate for varies vector sizes. One can see that the hit rate is
increased as the size of input vectors increases. This is expected since
more vectors provide more information for the aSPFD and the chance
that the algorithm incorrectly characterizes a minterm as a don’t care
is reduced. We also see that for all types of error complexity, the hit
rate of the cases where 200 vectors are used is close to the rate of those
with 500 vectors. This suggests that small number of input vectors is
sufficient for an acceptable solution.

Although using a larger set of input vectors can improve the cor-
rection hit rate, the penalty is that the algorithm needs to utilize more
computational resources to analyze the problem. The average runtime
of each case is depicted in Figure 7. It shows a two-fold increase overall
when the size of the vector set increases from 200 to 500 vectors. Fi-
nally, Figure 8 shows the percentage of transformation that passes veri-
fication. We see that cases with 100 input vectors have the lowest rate.
This is because with fewer vectors the aSPFD contains fewer minterm
pairs to be distinguished. As a result, there are more nets that can sat-
isfy Eq. 1 to construct the transformation. However, most of them do
not pass verification. Overall, with 200 or more input vectors, the algo-
rithm is able to find a transformation that passes verification by the first
few iterations.

6. Conclusion
A simulation-based aSPFD-driven algorithm for sequential logic trans-

formation is presented. The algorithm utilizes aSPFDs to efficiently
construct transformations. A procedure to construct aSPFDs for se-
quential circuits is also outlined in this work. It alleviates the input
space explosion and computation issue by using simulation to select
states that are important to restructuring construction. Experimental re-
sults demonstrate the performance of the proposed work. The algorithm
is able to find transformations for up to 83% of the testcases. An analy-
sis also shows that the correction hit rate can be improved if more input
vectors are provided.
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