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Abstract—With the growing popularity of hand-held battery-
powered devices, leakage power is a major concern in the
nanometer CMOS era. Power gating technique is an effective
and widely adopted solution to this problem. The challenge of
implementing power gating is the sizing and placement of the
sleep transistors that are used to gate the power supply. In
a placed design, due to non-uniform current demand of logic
cells, some regions of the chip can have sleep transistors with
very high current demand, causing power grid noise violations.
Identifying these regions early in the design cycle is critical to the
success of power gating implementation. This paper presents a
novel methodology to calculate the current demand of each sleep
transistor and locate regions in the chip where multiple sleep
transistors experience very high current demand. In this paper,
we model the spatial locality of the current drawn by each logic
cells in the form of a bounding box. We explore techniques to
identify the appropriate size of the bounding boxes. Furthermore,
we extend the current distribution technique to handle placement
blockages that do not share the sleep transistor network of the
chip. Experimental results on industrial circuits show that the
proposed algorithm can identify over 90% of such regions with a
20x run-time reduction compared to state-of-the-art commercial
CAD tool.
Index Terms—Distributed Sleep Transistor Network , Discharge
Current, kd-Tree, Multiple Power Gated Domains

I. INTRODUCTION

High power consumption is one of the major impediments
to the advancement of VLSI designs in the nanometer CMOS
era. Device scaling, and the associated reduction of threshold
voltage, channel length, and gate oxide thickness [1] have
introduced different forms of leakage current and caused static
power to be a dominant part of the total power consumption of
the chip. Sub-threshold leakage, one of the major contributors
to static power, can be reduced by disconnecting a logic block
from either the ground or supply voltage during idle mode of
operation using sleep transistors. This technique is commonly
referred to as power gating.

Power gating is implemented by placing sleep transistors
between chip-level power grid and the virtual power grid. In
general, the sleep transistor network should be able to deliver
the maximum current demand of the design without incurring
a performance loss. However, in a placed design due to locality
of current distribution, not all sleep transistors have equal cur-
rent demand. This uneven distribution leads to local clusters of
logic cells with higher current requirement than the maximum
discharge current of the local sleep transistors. We refer such
regions as Discharge Current Hot spots (DCHs). This can lead
to power grid noise violations (IR drop) and commensurate
performance loss. Identifying such regions during the design
sign-off stage leads to unwanted changes in the design that
can reduce the potential power savings. This paper presents a
new algorithm to identify DCHs in a placed design early in the

design cycle such that design engineers have greater flexibility
in taking corrective measures without impacting overall power
savings. Experiments show a large performance gain of the
proposed methodology as compared to the current state-of-
the-art industrial tools.

Power gate insertion methodologies optimize simultane-
ously the size and position of the sleep transistors. While
a smaller sleep transistor leads to unacceptable performance
loss, a large sleep transistor leads to significant area and power
overhead, thereby negating the purpose of the power gating
technique. Based on the granularity of the blocks, different
sleep transistor networks have been proposed. Module-based
sleep transistors are inserted at the root of the power distri-
bution network of large modules [2]. A fine-grained sleep
transistor insertion approach is proposed in [3]–[7] where
sleep transistors are wired together forming a Distributed Sleep
Transistor Network (DSTN). In reality, the placement of the
sleep transistor is highly constrained by custom layout design
rules [8]. Thus, insertion of sleep transistors is done prior
to automatic place and route of other logic cells [9]. Such
an approach is widely used in industrial designs and is the
adopted power gating technique.

The goal of this work is to quickly locate DCHs in a placed
design. In detail, we make the following contributions:

1) We present a novel algorithm for calculating the maxi-
mum discharge current demand of each sleep transistor in
a standard cell-based placed design and identify potential
discharge current hot spots.

2) The different parameters that affect the current distribu-
tion among the sleep transistors are explored.

3) We extend our algorithm to handle discontinuity in DSTN
due to presence of hard IP blocks such as memory and
I/O blocks that have their own power grid.

Results show that, on average, our approach can accurately
identify 90% of DCHs and outperform existing techniques by
20x.

The rest of the paper is organized as follows. Section II dis-
cusses sleep transistor architectures and the locality property of
current distribution. Section III presents a kd-Tree-based data
structure for representing the DSTN. The discharge current
calculation for each sleep transistor is presented in Section IV.
Section V shows our proposed technique to include the effects
discontinuity in DSTN due to IP blocks. Section VI reports
experimental results, followed by conclusion in Section VII.

II. SLEEP TRANSISTOR PLACEMENT

To facilitate the power gate implementation, sleep transistors
are inserted before placing the design. Different insertion
architectures have been proposed for sleep transistor insertion.
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Fig. 1. Maximum Discharge Current

In [10], sleep transistors are inserted as a ring around the logic
block to be power gated. Recently, row-based approach has
been proposed in [11] in which dedicated rows are inserted
for placing sleep transistors. However, the most common sleep
transistor architecture is a grid [12]. Such an implementation
reduces the effects of process variation and introduces less IR
drop variation [8].

Assuming equal current demand across the layout, the
size of sleep transistors is calculated based on worst-case
power [13]. In reality, the sleep transistors encounter unequal
current demand. Fig. 1 illustrate this situation. The discharge
current demand of sleep transistors in a placed design with ∼1
million logic cells is shown in Fig. 1. We observe that the cur-
rent distribution is non-uniform with regions in the floorplan
having sleep transistors with very high current demand (the
peaks in Fig. 1). The current demand is based on a generic
activity that tries to identify hot spots. Typical applications
show similar uneven current distribution.

Definition 1 Discharge current hot spot is a region of the
floorplan with multiple sleep transistors residing contiguously
to one another and having current demand greater than the
maximum discharge current.

As logic cells located in the DCH starve for charge, these
regions can lead to IR-drop violations. Thus current demand
of the sleep transistors residing within DCH must be reduced.
Modification of the logic cell placement is one way of address-
ing this problem. However, such modification can adversely
affect the timing and thus is highly discouraged. Solving this
problem by up-sizing sleep transistors is proposed in [14].
Changing wire width and adjustment of fake vias are some
of the other techniques used to address this problem [15].
However, these methods either are not scalable for industrial
designs or require detailed information of the design that can
be obtained only towards the end of the design cycle.

The focus of this paper is detecting DCHs early in the
design cycle so that necessary steps such as decap insertion,
power grid wire width adjustment etc. can be taken well before
the design is close to tape-out. Our first step is to model
the DSTN as a kd-Tree and then use this data structure for
calculating the discharge current for each sleep transistor.

III. DSTN MODELLING USING KD-TREES

In a standard cell-based power gated design, each logic cell
acts as a sink, drawing current from virtual supply network
(V VDD). Sleep transistors deliver this current from the supply

network (VDD). For a given design, let N be the number of
logic cells and M be the number of power gating cells. Due
to the locality property, current is drawn by each logic cell
(ni, i = 1, . . . , N ) from a set of sleep transistors (Si, i =
1, . . . , N ) in it’s vicinity. The goal is to compute Si and then
distribute the current among the sleep transistors in Si.

This problem can be modeled as a nearest neighbor search
problem in which the search space can be modeled as a multi-
dimensional binary search tree, or kd-Tree [16]. In principle,
a kd-Tree is very similar to a binary tree in which the
underlying space is partitioned based on just one value of all
the d dimensions. Because the floorplan is a two-dimensional
Euclidean space, we build a 2-d tree using x and y coordinates
of points as keys in a strictly alternating sequence. Given the
set of coordinate C of M sleep transistors, the root of the kd-
Tree vertically splits the set C into roughly two equal halves.
This is done by finding the median x coordinate of the points
in C. The coordinate on the splitting line is the root of the tree.
All coordinates to the left of the root reside in the left sub-tree
and all coordinates to the right of the root resides in the right
sub-tree. Next, each sub-tree is split along the y coordinate
where the root node of the sub-tree is the median of all the
y coordinates in the sub-tree. All points below the point at
the root of the sub-tree go to its left sub-tree; all those above,
to it’s right sub-tree. This process of splitting the coordinates
along the x-axis and y-axis is performed iteratively until all
nodes have been added to the tree.

A kd-Tree construction requires that there exist only one
point on every splitting line. However, due to the regular
structure of the DSTN, sleep transistors are aligned to the
power grid. This causes multiple sleep transistors to have
the same x or y coordinate. To circumvent this problem, we
modify the coordinate of each sleep transistor by a small
amount (ǫ) such that no two sleep transistors have the same x
or y coordinate. This can be expressed as follows:

(x
′

, y
′

) = (x± ǫ, y ± ǫ)
such that ∀x1, x2 ∈ XP : x1 6= x2

and ∀y1, y2 ∈ YP : y1 6= y2

(1)

where XP and YP are x and y coordinate vectors of the sleep
transistor locations. Due to high resolution of the floorplan,
the minimum distance of the adjacent sleep transistors is much
larger than ǫ. Thus, such a change has no effect on the current
calculation of the sleep transistors. The following example
explains the kd-Tree construction of a DSTN.

Example 1 Let the sleep transistors be located in positions as
shown in Fig. 2(a). Fig. 2(b) shows the necessary modification
of the locations as well as the resulting partition of space
for kd-Tree construction. The corresponding kd-Tree is shown
in Fig. 2(c). The location (500,500) is chosen as the root
of the kd-Tree because its x coordinate is median of all x
coordinates. The dotted line passing through (500,500) splits
the floorplan into two equal halves with sleep transistors
residing to the left(right) of the line reside in the left(right)
sub-tree of the root node. For the left sub-tree we split the
floorplan along the y axis at (300,498). Sleep transistors
residing below(above) the splitting line reside in the left(right)
sub-tree of (300,498). We continue splitting the floorplan and
build the rest of the kd-Tree. The horizontal or vertical line
segment at each node in the tree defines the splitting plane at
that node.
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Fig. 2. Location modification and corresponding kd-Tree

The average time to build the kd-Tree is on the order of
O(M · logM) [16] where M is the number of power gating
cells. We find the sleep transistors in the vicinity of each logic
cell using this data structure, as presented in the next section.

IV. RANGE SEARCH

This step computes the discharge current demand of each
sleep transistor and detects DCHs. The current distribution
in present chips tends to be locally uniform and globally non-
uniform. This property is referred as spatial locality and is uti-
lized in power grid design [17]–[19]. Because sleep transistors
act as switches between the virtual and chip’s power/ground
network, the current to each logic cell is supplied by sleep
transistors in its vicinity. Therefore the principle of locality
is applied in finding the discharge current load of individual
sleep transistors.

We divide the floorplan into N overlapping regions, where
N is the number of logic cells in the design that share the
same DSTN. Each region has one logic cell in its center acting
as the current sink; all sleep transistors residing within this
region act as the current source. These regions are modeled
as bounding boxes. Fig. 3 demonstrates the current flow from
the sleep transistors surrounding the logic cell in the form
of a bounding box. Based on the sleep transistors residing
within the bounding box, logic cells L1 and L2 draw current
from sleep transistors S1, S2, S3, S4 and S4, S6 respectively.
Utilizing the spatial locality property, we distribute the current
in inverse proportion to the distance between the logic cell and
the sleep transistors. Thus, sleep transistors located closest to
the logic cell have higher contribution to the current demand.
Note that the size of the bounding box is different for the two
logic cells. We present our technique of calculating the size
in the next sub-section.

To find the sleep transistors within the bounding box, we
first compute the four corners of the box. Let (x, y) be the
coordinate of a logic cell. Assuming equal height and width of
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Fig. 3. Bounding Box for Each Logic Cell

the bounding box, let maxD be the dimension of the bounding
box. Starting from the bottom left corner, the four corners of
the box are (x−maxD/2, y−maxD/2), (x+maxD/2, y−
maxD/2), (x+maxD/2, y+maxD/2), (x−maxD/2, y+
maxD/2) respectively in clockwise direction. Starting from
the root, for each node we test the point against the range
along the splitting dimension. If the x or y coordinate of the
node falls within the bounding box, then we have to search
both the right and left sub-trees; otherwise, we traverse to the
right/left sub-tree depending on the value being greater/less
than the range. The following example explains the search
technique in the kd-Tree in Fig. 2(c).

Example 2 Let the coordinates of the logic cell be (310,290)
andmaxD be 20. Then, the x range and y range are [300,320]
and [280,300]. Starting from the root node, we traverse to the
left sub-tree because the x coordinate of the root is greater
than x range (dotted line in Fig. 4). The y coordinate of the
node (300,498) falls within the y range, but the x coordinate is
beyond the x-range. Therefore we first traverse the left sub-tree
followed by the right sub-tree. Because the node (298,98) is
beyond the range, we traverse only to the right sub-tree. The
node (301,298) falls within the range and is appended to the
location of the sleep transistors in the vicinity of (310,290).
In similar fashion we visit the nodes (498,100), (299,698),
(99,702), and (100,502). Finally, (301,298) is the only node
found within the bounding box (shaded node in Fig. 4).

The kd-Tree data structure acts as a pruning device of the
search space. For example all nodes in the right sub-tree of
the root node in Example 2 need not be examined at all. This
makes the range search extremely efficient. The run-time for

the range search is O(2 ·
√
M + F ) where F is the number

of nodes found within the bounding box [20].
Using this search technique, we calculate the discharge

current demand of each sleep transistor. Next, we identify
DCHs as regions in the DSTN having higher current demand
than the maximum discharge current.
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Fig. 4. Range Search in kd-Tree
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A. Max Distance Calculation

The size of the bounding box is critical to the current
distribution among the sleep transistors. In reality, the size
of the bounding box is problem dependent. Having a large
bounding box leads to unnecessary run time due to an overly
conservative choice of current distribution.

To overcome this problem, we employ a novel technique
for finding the height/width of the bounding box (maxD). We
model the logic cell as a current source and the virtual power
grid connecting the sleep transistor with the logic cell as a
distributed RC wire. Fig. 5 depicts the worst-case scenario in
which a single sleep transistor delivers the current to the logic
cell. Iload is the load current of the logic cell, and Rw and
Cw are the wire resistance and capacitance of unit length.

Next, we simultaneously modify the switching frequency,
average current demand of the logic cell, and the distance
between the logic cell and the sleep transistor and explore
their effects on IR drop in the virtual power grid. Fig. 6
shows the average IR drop variation (VDD = 1.0V ) with
the change of the above parameters using SPICE simulation.
The combined effect of these design parameters cause maxD
to vary (as shown inFig. 6). Thus, using a fixed maxD will
cause significant error in the current calculation. The problem
is acute when the fixed value is less than the variable maxD
for a high current consuming logic cell. The current calculation
will cause higher current demand for few sleep transistors in
the vicinity of the logic cell.

For a given frequency and average current, we select maxD
such that a sleep transistor residing beyond maxD will cause
an IR drop violation greater than 10% [21] of VDD (0.1V)
in Fig. 6). The frequency of switching can be extracted easily
from the top-level design by identifying the clock domain for
the design block in which the logic cell resides. Also, average
current is computed from the power consumed by the logic
cell that can be derived by simulating the design. We consider
each logic cell switches at the positive clock edge of the clock
domain in which it resides.
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Fig. 6. Effect of Distance, Frequency, and Average Current on IR Drop
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V. PLACEMENT BLOCKAGE

In general hard IP blocks do not share the power grid
network with the rest of the design and act as placement
blockage to the DSTN. This causes discontinuity in the DSTN.
The power and ground rails, routed over these blocks, connect
the power gating cells that surround them. Although these
power gating cells are physically located far from one another,
the resistance between them is small. Moreover there is no
logic cell present between them. Thus, logic cells placed near
the placement blockage are likely to draw current from the
sleep transistors present at the opposite end of the IP block. In
order to include placement blockage, we insert pseudo sleep
transistors (PST) in the blockage region and consider them
as current sources. The location of each PST is determined
by the horizontal and vertical spacing between neighboring
sleep transistors in the original DSTN. Moreover each PST
coordinate must be unique as they are added to the kd-Tree
structure of the DSTN. Fig. 7 shows three different scenarios
of placement blockage. The PST placed within the IP block
location 1 act as current source for sleep transistors that are
directly above it or to it’s left (shown as directed edges). In
contrast, three sides of the IP block have sleep transistors for IP
block at location 2. Thus three sleep transistors are associated
with each pseudo sleep transistor within location 2. All four
sides of the IP block at location 3 have sleep transistors and
each PST is associated with four sleep transistors. In each
case, the directed edges between each pseudo sleep transistor
and the sleep transistors indicate the association.

The current demand calculation uses both the sleep transis-
tors and pseudo sleep transistors as current sources. However,
as PST are not present in the original DSTN, we need to re-
distribute the current to the sleep transistors. The association
of each PST is used for this purpose. From the set of
sleep transistors associated to each pseudo sleep transistor,
we remove those sleep transistors that are located within the
bounding box of the logic cell. This step ensures that we
do not consider the sleep transistors twice, once when the
current is distributed among sleep transistors including PST
and when we are redistributing the current of the pseudo sleep
transistor. Using the same distance-based metric, the current
to the pseudo sleep transistor is re-distributed to the remaining
sleep transistors.

The overall design methodology is presented in Algo-
rithm 1. Starting with a placed design PL, the functions
EXTRACTST() and EXTRACTLC() reads the location of logic
cells and sleep transistors for each domain. IP is the set of
hard IP blocks in the design. We modify the location of the



Algorithm 1 DCH Detection and Correction

1: input PL: placed design with sleep transistors
2: input D: number of power domains
3: input IP : set of IP blocks present in the design
4: input I: current demand of each logic cell in PL

5: input F : clock domain of each logic cell in PL

6: input P : distance, frequency and current relation
7: output DCH: location of all DCHs
8: ni

(x,y)
: logic cell at location (x, y) in domain i

9: DCH = ∅

10: for each domain i ∈ D do

11: [Xi
P
, Y i

P
] = EXTRACTST(PL)

12: [Xi
L
, Y i

L
] = EXTRACTLC(PL)

13: MODIFYST([Xi
P
, Y i

P
])

14: Ki = BUILDKDTREE([Xi
P
, Y i

P
])

15: if IP 6= ∅ then

16: INSERTPST(Xi
P
, Y i

P
, IP )

17: Ki = BUILDKDTREE([Xi
P
, Y i

P
])

18: end if

19: for each (x, y) ∈ [Xi
L
, Y i

L
] do

20: maxD = FINDDIST(P, F, ni
x,y )

21: Si
(x,y)

= FINDST(Ki,maxD)

22: STi = DISTCUR(S(x, y)
i, LTi, n

i
x,y )

23: end for

24: if IP 6= ∅ then

25: REDISTCUR(STi, X
i
P
, Y i

P
)

26: end if

27: end for

28: for each domain i ∈ D do

29: DCHi = COMPUTEDCH(STi)

30: if D > 1 then

31: SWAP([Xi
P
, Y i

P
], STi)

32: DCHi = COMPUTEDCH(STi)

33: end if

34: DCH = DCH
⋃

DCHi

35: end for

36: return (DCH)

sleep transistors using the function MODIFYST() and then
build each kd-Tree Ki, as presented in Section III. In the
presence of IP blocks, INSERTPST() inserts the PST. The
function FINDDIST() calculates maxD for each logic cell.
Range search is performed by FINDST() and the current
is distributed using the distance metric in DISTCUR(). The
function REDISTCUR() redistributes the current in the PST to
the neighboring sleep transistors. Based on the current of each
sleep transistor, COMPUTEDCH() identifies each DCH. Next,
based on the vicinity of these sleep transistors we identify the
DCHs. The output of the proposed algorithm is the set DCH
that lists all the DCHs in the design.

VI. EXPERIMENTAL RESULTS

The validity of the proposed approach to identify and
mitigate DCHs is presented in this section. The algorithm
is implemented using Python and the computations were
performed on a Unix workstation with 3 GHz CPU and 18
GB of RAM. In our experiments we use 28-nm technology
with VDD = 1.0V .

At first, the maxD is calculated using HSPICE simulations
with the current source modeled as an inverter. For simplicity,

V VDD is modeled as Metal 1 wire as it is used in the DSTN
connecting the logic cells to the sleep transistors. The variation
of IR drop with current, frequency, and distance is noted.
These values are used to select maxD for each logic cell
during average current calculation of the sleep transistors.
The proposed approach is run on 12 industrial benchmark
circuits. The designs are synthesized using Synopsys Physical
Compiler. The current load of each logic cell in the gate-
level netlist is derived from simulations using Synopsys Power
Compiler. OpenAccess Database is used to extract the position
of sleep transistors and logic cells. We inserted PST within the
placement blockages.

The commercial tool∗ used for comparison also uses the
placed design as it’s input. In addition to extracting the design
related information, such as location of logic and power gating
cells, the tool also gathers detailed routing information. Next,
it runs fast SPICE simulation by modeling each logic cell as a
simple current source connected to the RC-network generated
from the routing information. Similar to the proposed work,
the current sources are derived from the power information
available from previous simulation runs. It reports the current
demand of each power gating cell.

Table I shows the results of of our algorithm. The first five
columns provide design-related information such as design
name, number of logic cells, number of power domains,
number of pre-placed sleep transistors in each domain, and
the number of IP blocks. For each design with multiple
domains, the number of logic cells and sleep transistors in each
domain is mentioned individually. The number of pseudo sleep
transistors required for each design is reported in column six.
The next two columns indicate the number of DCH found for
each domain using the proposed algorithm and the industrial
tool. The next column reports the number of matching DCH
using both the methods.

We define accuracy as the number of DCH that are common
in both the techniques and report it in the next column. In all
the designs, our method identified equal or greater number of
DCH than the commercial tool. In the additional DCHs found
by our method, the commercial tool reported relatively high
average current demand. Addressing these regions is beneficial
in terms of reducing over all fluctuation in current demand
across the chip. The run time of our method and that of the
industrial tool is reported in the following two columns. The
last column indicates the relative speed-up achieved using the
proposed method. On average, there is a run-time speedup of
20x with good accuracy in identifying the DCH locations.

To measure the quality of our solutions, the location of
DCH in three circuits in Table I, identified using the proposed
method and the industrial tool, is shown in Fig. 8. The
location of sleep transistors violating maximum discharge
current detected by the industrial tool and the proposed method
are indicated by ‘�’ and ‘∗’ respectively. The shaded regions
are the DCH found using the industrial tool.

Fig. 9 compares the runtime of our method with the number
of logic cells. The positive linear correlation highlights the
benefit of using the kd-Tree model for searching power gating
cells. Thus, future technology generations with larger logic
cells will benefit from this approach.

∗Name of vendor cannot be disclosed due to legal agreement.



TABLE I
DCH RESULTS

Circuit Info # DCH Run time
Instance # logic # power # Sleep #IP

#PST
Industrial Proposed

Match Accuracy
Industrial Proposed

Improvement
name cells domains Transistors block Tool Method Tool Method

design1 493K 1 5138 5 12 2 3 2 100% 4h 23min 27min 19s 9.7x
design2 1.32M 1 15620 20 36 5 7 5 100% 6h 22m 13in 13s 29.4x
design3 1.34M 1 13425 11 13 5 8 5 100% 4h 49min 12min 27s 24.08x
design4 207K 1 2490 14 46 2 4 2 100% 1h 55min 9min 10s 12.77x
design5 1.28M 1 14368 19 29 2 4 2 100% 4h 57min 11min 4s 27x
design6 1.01M 1 10885 18 33 6 9 6 100% 5h 50min 16min 1s 21.87x
design7 1.4M 1 16793 34 60 1 3 1 100% 38h 46min 1h 33min 25.01x
design8 753K 1 7981 11 65 4 8 3 75% 5h 14min 12min 26.16x

design9
1:14K

2
1:240

7
1:4 1:2 1:5 1:2

80% 4h 2min 11min 50s 20.1x
2:475K 2:5094 2:16 2:3 2:5 2:2

design10
1:9K

2
1:448

7
1:3 1:6 1:5 1:4

81% 4h 59min 16min 52s 17.58x
2:935K 2:9410 2:124 2:5 2:8 2:5

design11
1:14K

2
1:240

5
1:4 1:2 1:5 1:2

80% 1h 16min 6min 33s 11.69x
2:475K 2:5098 2:16 2:3 2:5 2:2

design12
1:183K

2
1:275

7
1:4 1:2 1:2 1:2

80% 2h 13min 9min 20s 14.3x
2:479K 2:5063 2:19 2:3 2:6 2:2

AVG 93% 20x
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Fig. 8. Comparison of DCH

VII. CONCLUSION

A kd-Tree-based range search technique for identifying
discharge current hot spots has been proposed in this paper.
Locality-based current distribution using a bounding box was
explored. Identifying these regions early in the design cycle
gives greater leverage to fix the issues with minimal impact to
power saving goals. Experimental results on industrial bench-
mark circuits show that the overall methodology is highly
effective in identifying the DCHs and it is also considerably
faster compared to state-of-the-art industrial solutions. Future
work would concentrate on considering the presence of decaps
in the design that act as local source of ccharge there-by
reducing the impact on the power gating cells.
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