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Abstract—Model checking of safety properties is fundamental
in formal verification. When a safety property is found to
hold, the model checker provides (at best) a machine-checkable
certificate that gives limited insight to users and little confidence
that the check passes for the “right” reasons, rather than due
to e.g., vacuity or unjustified assumptions. Recently, inductive
validity cores (IVCs) have been developed to address this issue. In
this paper, we lift several algorithms from the field of UNSAT core
extraction in order to compute minimal IVCs of hardware safety
checking problems. The MARCO algorithm extracts all minimal
cores of an UNSAT formula by efficiently exploring the formula’s
power set, and has already been applied to compute IVCs in
software safety checking. The CAMUS algorithm for UNSAT
core extraction exploits a duality between minimal correction
subsets (MCSes) of a formula and minimal UNSAT cores. We
adapt the algorithms to the hardware IVC context, construct a
hybrid algorithm that subsumes both CAMUS and MARCO, and
introduce novel domain-specific optimizations. Several instances
of the hybrid algorithm are presented (including CAMUS and
MARCO themselves, among other novel variants) and evaluated
empirically on hardware model checking competition circuits,
demonstrating the practicality of the proposed algorithm.

I. INTRODUCTION

Model checking techniques for safety properties (such as
IC3/PDR [5], [7]) are fundamental in formal verification.
Given a circuit and safety property, IC3 returns either (1)
UNSAFE along with a counter-example trace that leads from
an initial state to an unsafe state; or (2) SAFE along with
a safe inductive invariant certifying that the circuit cannot
reach an unsafe state. The former provides actionable feedback
to the user that can be applied to identify the source of the
failure. The latter typically does not, and as such, provides
the user with little confidence that the check passes for the
“right” reasons, rather than due to e.g., unjustified assumptions
or vacuity. Boolean satisfiability solvers suffer from a similar
lack of feedback regarding unsatisfiable formulas; the solver
may be able to return a certificate such as a resolution
refutation [22], but this provides limited insight. Instead,
unsatisfiable cores—subsets of the clauses of the formula that
are themselves unsatisfiable—appear more useful. Minimal
unsatisfiable cores, also called minimal unsatisfiable subsets
(MUSes) are of particular interest. Given an unsatisfiable
formula, several algorithms have been developed to extract all
MUSes [1], [14], [13], [18] or to extract a smallest MUS [11].
MUSes have seen application in a variety of areas including
maximum satisfiability solving [15], vacuity detection [19],
automated debugging [21], identifying missing constraints in
verification [12], and others [16].

Recently, Ghassabani et al. lifted unsatisfiable cores to
the domain of safety checking with the concept of inductive

validity cores (IVCs) and introduced algorithms to compute
minimal IVCs (MIVCs) [9], [8] of software safety checking
problems. In that context, the software system is viewed as a
transition relation consisting of a conjunction of constraints,
and an IVC is a subset of those constraints that is sufficient
to prove safety. In [9], an algorithm called IVC_UC is used
to quickly compute a small (but non-minimal) IVC. Subse-
quently, a brute-force procedure called IVC_BF is used to
minimize the IVC. The combination of these two procedures
is called IVC_UCBF. The work of [8] presents an approach
based on the MARCO algorithm [13] (originally developed to
compute all MUSes of an unsatisfiable formula) that finds all
MIVCs of a given software safety checking problem. IVCs
appear to have natural applications in areas such as vacuity
checking [2] and automated debugging [20]. They have already
been used to develop novel coverage metrics [10].

In this paper, we consider the problem of finding all MIVCs
of a hardware safety checking instance (AllMIVC), and the
problem of computing a smallest MIVC (SMIVC). In this
context, a circuit consists of a set of state elements (registers)
and logic gates, and an IVC is an abstraction (defined as a
circuit containing a subset of the original gates) over which
the given safety property holds. Given a circuit specified
at the register-transfer level (RTL), MIVCs can similarly be
computed over modules, expressions, lines of RTL code, etc.,
and are expected to provide the user with significantly more
usable feedback than a safe inductive invariant. Continuing
in the same vein as previous work on MIVC extraction,
we proceed by drawing inspiration from well-known MUS
extraction algorithms.

The MARCO algorithm [13] directly explores the power set
of the set of clauses in an unsatisfiable formula. It exhibits
good anytime behavior as it finds MUSes early and steadily
throughout its run. However, the usual form of MARCO cannot
find a guaranteed-smallest MUS until it terminates, which
is a significant disadvantage when considering the SMIVC
problem. In contrast, the CAMUS algorithm [14] computes all
MUSes of a given unsatisfiable formula by exploiting a hitting
set duality between minimal correction subsets (MCSes) and
MUSes. It first computes all MCSes and then enumerates
MUSes in increasing order of size using the hitting set duality.
The MCS enumeration step must end before MUS extraction
begins, causing poor anytime behavior, but the first MUS
found is guaranteed to be a smallest MUS.

This paper develops variants of CAMUS and MARCO targeted
at MIVC extraction. We define MCSes of a circuit, and
demonstrate the same hitting set duality exists between MCSes



and MIVCs. We further identify an algorithm to efficiently
compute MCSes based on SAT-based debugging of hardware
circuits [20], [3]. Using these results, we lift the MUS ex-
traction algorithms to handle MIVCs. Further, we present a
parameterized unified algorithm and show that CAMUS and
MARCO are two special cases of the unified algorithm. Next,
we present novel variants of the unified algorithm that out-
perform the usual instantiations of MARCO and CAMUS in this
domain. Finally, considering the different bottlenecks inherent
to MIVC extraction, we present a series of optimizations that
improve runtime performance significantly. In particular, the
MIVC extraction context requires frequent calls to IC3 where
the MUS extraction context can instead rely on SAT. As these
calls to IC3 are significantly more expensive than satisfiability
checks, the optimizations are targeted at eliminating as many
of them as possible while accelerating the ones that do occur.

Experiments are presented on circuits from the hardware
model checking competition (HWMCC) [4]. Two compre-
hensive sets of experiments are presented. The first executes
a large number of variants of the unified algorithm against
a small set of “easy” benchmark circuits in an effort to
understand which variants and optimizations perform best.
Different variants are found to offer different trade-offs be-
tween anytime behavior and overall performance. The second
set of experiments executes the best-performing configurations
against the entire HWMCC 2017 benchmark set in order to
evaluate the approaches against a set of modern, challenging
benchmarks. Out of 181 circuits, the configuration with the
best anytime performance finds at least one MIVC in 61
instances, and computes a total of 1866 MIVCs across those
61 circuits. In contrast, the configuration with the best overall
performance finds at least one MIVC in 49 instances, and
finds a total of 6907 MIVCs across those 49 circuits. The
same configuration also performs best considering the SMIVC
problem, finding a guaranteed-smallest MIVC in all 49 cases.

The rest of this paper is organized as follows. Section II
presents background material on MUS extraction and MIVC
extraction. Section III presents MARCO and CAMUS adapted
to MIVC extraction and the unified algorithm. Section IV
presents variants of the unified algorithm, while Section V
presents a series of performance-driven enhancements. Sec-
tion VI presents experimental results, while Section VII con-
cludes the paper.

II. PRELIMINARIES

A. Notation and Terminology
The following terminology and notation is used throughout

this paper. A literal is either a variable or its negation, a clause
is a disjunction of literals, a cube is a conjunction of literals,
and a Boolean formula in Conjunctive Normal Form (CNF) is
a conjunction of clauses. Where convenient, a CNF formula ϕ
is treated as a set of clauses where c ∈ ϕ means that clause c
appears in ϕ. A Boolean formula is satisfiable (SAT) if there
exists an assignment to its variables such that the formula
evaluates to 1. Otherwise it is unsatisfiable (UNSAT).

Given a finite transition system with a set of state variables
V , the primed forms V ′ = {v′|v ∈ V} refer to the next-state
functions. That is, for every state variable v ∈ V , v′ is a
Boolean function of the current state and input defining the
next state for v. A safety checking instance is represented by
a triple P = (Init, T r,Bad), where Init(V) and Bad(V) are
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Fig. 1. Circuit with (a) Tr = {g1, g2, g3, g4}, (b) abstraction {g1, g3, g4}

CNF formulas over V that represent the initial states and the
unsafe states, respectively. The transition relation Tr(V,V ′) is
encoded as a CNF formula over V ∪V ′ such that Tr(~v,~v ′) is
satisfiable if and only if state ~v can transition to state ~v ′.

B. Model Checking of Safety Properties

A safety property is expressed in Computation Tree Logic
(CTL) as AG¬Bad. Hence, an instance (Init, T r,Bad) is
UNSAFE if the formula below is SAT for some value of N :

Init(~v0) ∧
(N−1∧

i=0

Tr(~vi, ~vi+1)
)
∧Bad( ~vN ) (1)

The satisfying assignment provides a counter-example trace: a
sequence of input assignments that leads from an initial state
to an unsafe state. Conversely, the instance is SAFE if and
only if there exists a formula Inv(V) such that:

Init(~v)⇒ Inv(~v ) (2)

Inv(~v) ∧ Tr(~v,~v ′)⇒ Inv(~v ′) (3)

Inv(~v)⇒ ¬Bad(~v) (4)

The properties above are called initiation (Eq. 2), induction
(Eq. 3), and safety (Eq. 4). A formula with all three properties
is called a safe inductive invariant and certifies that the
instance is SAFE. Given a safety checking instance, the model
checking algorithm IC3 [5] returns either SAFE (along with
a safe inductive invariant) or UNSAFE (along with a counter-
example trace).

C. MCSes, MSSes, and MUSes

Given an UNSAT formula ϕ in CNF, any subset ϕ1 ⊆ ϕ
that is itself UNSAT is called an UNSAT core of ϕ. If ϕ1 is
minimal, meaning that every proper subset of ϕ1 is SAT, then
ϕ1 is a minimal unsatisfiable subset (MUS). A subset C ⊆ ϕ
is a minimal correction subset (MCS) if ϕ \ C is SAT, but
for every proper subset D ( C, ϕ \D is UNSAT. A maximal
satisfiable subset (MSS) of ϕ is the complement of an MCS.
In other words, D ⊆ ϕ is an MSS if D is SAT, but for any
clause c ∈ ϕ \D, D ∪ {c} is UNSAT.

Given a set of sets C = {C1, . . . , C|C|}, a hitting set of C is
a set H such that the intersection of H and Ci is nonempty for
every Ci ∈ C. We let MCSes(ϕ) (resp., MUSes(ϕ)) denote
the set of all MCSes (resp., MUSes) of ϕ. A hitting set duality
exists between MUSes and MCSes: a subset C of ϕ is an MUS
if and only if C is a minimal hitting set of MCSes(ϕ) [14].
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Fig. 2. MIVC {g1, g4} of (r1, T r, o1), where Tr is as shown in Fig. 1

D. MIVC Extraction
This paper presents algorithms to extract MIVCs of hard-

ware safety checking instances. Where convenient, we treat
the transition relation Tr as the set of its logic gates. A subset
S ⊆ Tr represents an abstraction of Tr in which the output
of every gate in Tr \ S is replaced by a new primary input.
Figure 1 shows an example of this operation. We extend the
definition of an MCS to the context of safety checking as
follows.

Definition 1 A Correction Subset of a SAFE model checking
instance (Init, T r,Bad) is a subset S ⊆ Tr such that
(Init, T r\S,Bad) is UNSAFE. A Minimal Correction Subset
(MCS) is a correction subset for which no proper subset is a
correction subset.

We further define IVCs and MIVCs, which are analogous
to UNSAT cores and MUSes, respectively, as follows.

Definition 2 An Inductive Validity Core (IVC) of a SAFE
model checking instance (Init, T r,Bad) is an abstraction
S ⊆ Tr such that (Init, S,Bad) is SAFE. A Minimal
Inductive Validity Core (MIVC) is an IVC for which every
proper subset is not an IVC.

An IVC is simply a SAFE abstraction of the circuit. Figure 2
shows an MIVC of the circuit in Figure 1(a), with initial state
Init = (r1) and unsafe state Bad = o1. It can easily be
verified that (r1, {g1, g4}, o1) is SAFE and therefore {g1, g4}
is an IVC. Further, {g1, g4} is minimal, as (r1, {g1}, o1)
and (r1, {g4}, o1) are both UNSAFE. We also define maximal
unsafe abstractions (MUAs) analogously to MSSes of unsat-
isfiable CNF formulas.

Definition 3 A Maximal Unsafe Abstraction (MUA) is an
abstraction S ⊆ Tr that is UNSAFE and for which S ∪ {gi}
is SAFE for every gi ∈ (Tr \ S).

For instance, {g1, g2, g3} and {g2, g3, g4} are MUAs of the
circuit in Figure 1(a). Given an MCS S, the set Tr \ S (the
complement of S) is an MUA. Likewise, the complement of
an MUA is an MCS.

The IVC_UCBF algorithm [9] efficiently computes a sin-
gle MIVC of a safety checking instance. While originally
presented for software MIVCs, the same algorithm applies
to hardware. It takes as input a safety checking instance
(Init, T r,Bad) that is assumed to be SAFE. The algorithm
works in two steps: the first (IVC_UC) computes an IVC,
while the second (IVC_BF) uses brute force to minimize the
result to an MIVC.

The first step, IVC_UC, uses a model checker to compute a
safe inductive invariant1 Inv, which is assumed to be a CNF

1In [9], this is more generally a safe k-inductive invariant. We present the
algorithm in terms of safe inductive invariants for simplicity.
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Fig. 3. Multiplexer construction for automated debugging

formula over V . As a performance optimization, the invariant
is then reduced to a subset of its clauses that is also a safe
inductive invariant. Applying this optimization may cause the
algorithm to find a different MIVC, but it will not change
the fact that algorithm finds a minimal IVC. Next, using
standard UNSAT core techniques, the algorithm computes an
abstraction S ⊆ Tr that is sufficient to make the following
formula UNSAT:

Inv(~v) ∧ S(~v,~v ′) ∧ ¬Inv(~v ′) (5)

The unsatisfiability of Eq. 5 is equivalent to the condition for
induction described in Eq. 3. Safety and initiation also hold for
S by construction, so S is an IVC, but it may not be minimal.
The second step, IVC_BF, uses brute force to minimize S. It
works by repeatedly removing a gate from S and checking the
satisfiability of Eq. 5. If it is SAT, the gate is added back to
S. The process repeats until every gate has been considered,
at which point S is an MIVC.

E. Automated Debugging

This section presents an algorithm that uses SAT-based auto-
mated debugging [20] to compute MCSes of a safety checking
problem, which is essential to the algorithms presented in this
paper. The work of [3] presents an algorithm to diagnose a
failing reachability property, which is a property that requires
a certain state Good to be reachable (i.e., EFGood in CTL).
Equivalently, such a property requires that (Init, T r,Good)
is UNSAFE. The algorithm takes as input an error cardinality
n ≥ 1 and a user-provided set of suspect locations in the
circuit L = {l1, . . . , l|L|} and returns n-tuples of suspect
locations where a change can be made to correct the failure.
More formally and assuming L = Tr, it returns every n-subset
S ⊆ Tr such that (Init, T r \ S,Good) is UNSAFE. That is,
it returns all correction subsets of cardinality n.

At a high level, the algorithm works as follows. The
enhanced transition relation Tren is constructed from Tr by
adding error-select lines E = {e1, e2, . . . , e|Tr|} and new
primary inputs W = {w1, w2, . . . , w|Tr|}. When e1 = 1, li is
replaced by wi. This operation can be implemented using the
multiplexer construction shown in Figure 3. When simulating
or model checking Tren, it behaves like Tr, except with cer-
tain locations li (those for which ei = 1) replaced by inputs. A
formula is constructed representing the enhanced initial states
Initen = Init ∧ Φn, where Φn is a cardinality constraint
enforcing that exactly n error-select lines are assigned to 1.
The safety checking instance (Initen, T ren, Good) is then
solved using IC3. If there is a counter-example, the n error-
select lines that are assigned to 1 indicate a correction subset.
As a performance optimization, BMC can be used to find
solutions for a bounded number of time-frames, and then IC3
can be used to find any remaining solutions and conclude that
no other solutions exist.



III. A UNIFIED ALGORITHM FOR MIVC EXTRACTION

This section presents an MIVC enumeration algorithm that
unifies CAMUS and MARCO. Section III-A adapts the MARCO
algorithm to MIVC extraction based on the work of [8].
Section III-B adapts CAMUS to MIVC extraction. Finally,
Section III-C presents an approach that unifies both algorithms.

A. MARCO
Given an unsatisfiable CNF formula, MARCO [13] extracts

all MUSes of the formula by directly exploring the power
set of the set of clauses in the formula. The algorithm has
already been applied to extract MIVCs of software safety
checking instances [8]. Algorithm 1 shows pseudocode for the
procedure, adapted to the hardware MIVC context. It takes a
safety checking problem (Init, T r,Bad) as input and explores
the power set of Tr.

Line 2 initializes a CNF formula called the map that tracks
which portions of the power set are explored. The map is a
CNF formula with one variable si for each gate gi ∈ Tr. Each
satisfying assignment of the map corresponds to an abstraction
of Tr that includes gi if and only if si is assigned to 1.
Lines 3–13 compute MIVCs. Within the loop, line 4 extracts
an abstraction of Tr called a seed from the map. If the seed is
UNSAFE, line 10 calls grow to expand it to an MUA, which
is stored in the variable mua. An efficient implementation of
grow is discussed in Section V-A. The map is then updated
on line 11 by adding a clause (shown in Eq. 6) that blocks
the MUA and all of its subsets, as any subset of an MUA is
UNSAFE. The clause requires any future seeds to contain an
element of the MCS Tr \mua.

blockDown(S) =
∨

gi∈Tr\S

si (6)

If the seed is SAFE, line 6 calls shrink to reduce the
seed to an MIVC. This is implemented using the IVC_UCBF
procedure described in Section II-D. The map is subsequently
updated on line 8 by adding a clause (shown in Eq. 7) that
blocks the MIVC and all of its supersets. A strict superset of
an MIVC is indeed an IVC, but is not minimal and therefore
can safely be ignored. Blocking all supersets of MIVCs and
all subsets of MUAs is key to the algorithm’s efficiency.

blockUp(S) =
∨
gi∈S
¬si (7)

B. CAMUS
Given an unsatisfiable CNF formula, CAMUS [14] extracts

all MUSes of the formula in order from smallest to largest
using the hitting set duality between MCSes and MUSes noted
in Section II-C. First, it enumerates all MCSes of Φ, which
can be done using a variety of approaches [17]. Subsequently,
the algorithm computes MUSes as minimal hitting sets of the
MCSes. Lifting CAMUS to MIVC extraction requires a way to
compute MCSes of safety checking instances and showing the
existence of a hitting set duality between MCSes and MIVCs.
The former is described in Section II-E, while the latter is
demonstrated in Theorem 1 below.

Theorem 1 Given a safety checking problem (Init, T r,Bad),
a subset S ⊆ Tr is an IVC if and only if S is a hitting set of
MCSes(Init, T r,Bad).

Algorithm 1 MARCO for MIVC extraction
Input: safety checking problem (Init, T r,Bad)
Output: set of all MIVCs of (Init, T r,Bad)

1: MIV Cs← ∅
2: map← >
3: while map is SAT do
4: seed← getUnexplored(map)
5: if (Init, seed,Bad) is SAFE then
6: mivc← shrink(seed)
7: MIV Cs←MIV Cs ∪ {mivc}
8: map← map ∧ blockUp(mivc)
9: else

10: mua← grow(seed)
11: map← map ∧ blockDown(mua)
12: end if
13: end while
14: return MIV Cs

Proof: Suppose S is an IVC. By Definition 1, there is no
MCS Ψ such that S is contained in Tr\Ψ (otherwise S would
be UNSAFE). Thus, for every MCS Ψ, S ∩ Ψ 6= ∅, implying
that S is a hitting set of MCSes(Init, T r,Bad).

Now suppose S is a hitting set of MCSes(Init, T r,Bad).
For every MCS Ψ, S contains an element of Ψ, so S 6⊆ (Tr \
Ψ). This implies S is SAFE and therefore an IVC.

Algorithm 2 shows pseudocode for the MIVC enumeration
variant of CAMUS, presented in terms of the same subroutines
used by MARCO. The loop beginning on line 3 repeatedly
extracts an MCS and updates the map accordingly using
blockDown. This step is closely related to lines 10–11 of
Algorithm 1 in which MARCO computes an MUA and then
refines the map by calling blockDown on the MUA. In
contrast, CAMUS directly computes an MCS, the complement
of which (i.e., Tr\mcs) is an MUA by definition. Ultimately,
the clause added to the map in this step requires any satisfying
assignment to correspond to a subset of Tr that hits mcs.

After all MCSes have been found, the loop beginning on
line 7 extracts MIVCs using a process similar to the main
loop of MARCO with several steps removed. First, since every
seed is a hitting set of the MCSes, there is no need to
check for safety as every seed is guaranteed to be an IVC.
Second, instead of calling getUnexplored, CAMUS uses
getUnexploredMin, which returns an unexplored seed of
minimum cardinality. This ensures IVCs are enumerated from
smallest to largest and that each IVC found is minimal. Third,
as every seed is of minimum cardinality, there is no need to
call shrink upon discovering a SAFE seed.

C. Unified Algorithm
From the descriptions in the preceding subsections, it is

clear that MARCO and CAMUS have significant similarities.
This gives rise to a unified algorithm for MIVC extraction
that generalizes both CAMUS and MARCO. Pseudocode for the
unified algorithm is presented in Algorithm 3. It takes as input
a safety checking problem and a parameter k that controls the
behavior of the MCS enumeration step. The loop on lines 3–8
enumerates MCSes of cardinality k or less and updates the
map accordingly. The parameter k provides a configurable
trade-off between anytime performance (improved by lower-
ing k) and overall performance (improved by increasing k).



Algorithm 2 CAMUS for MIVC extraction
Input: safety checking problem (Init, T r,Bad)
Output: set of all MIVCs of (Init, T r,Bad)

1: MIV Cs← ∅
2: map← >
3: while more MCSes exist do
4: mcs← FindMCS(Init, T r,Bad)
5: map← map ∧ blockDown(Tr \mcs)
6: end while
7: while map is SAT do
8: mivc← getUnexploredMin(map)
9: MIV Cs←MIV Cs ∪ {mivc}

10: map← map ∧ blockUp(mivc)
11: end while
12: return MIV Cs

That is, finding more MCSes upfront reduces the number of
iterations required in the second loop, which results in fewer
calls to grow, shrink, and the model checker. Subsequently,
the loop on lines 9–19 enumerates MIVCs using an approach
that is very similar to the main loop of MARCO.

Algorithm 3 UMIVC

Input: safety checking problem (Init, T r,Bad),k∈Z∪{∞}
Output: set of all MIVCs of (Init, T r,Bad)

1: MIV Cs← ∅
2: map← >
3: for i = 1 to k do
4: while more MCSes of cardinality i exist do
5: mcs← FindMCS(Init, T r,Bad, i)
6: map← map ∧ blockDown(Tr \mcs)
7: end while
8: end for
9: while map is SAT do

10: seed← getUnexplored(map)
11: if k =∞ or (Init, seed,Bad) is SAFE then
12: mivc← shrink(seed)
13: MIV Cs←MIV Cs ∪ {mivc}
14: map← map ∧ blockUp(mivc)
15: else
16: mua← grow(seed)
17: map← map ∧ blockDown(mua)
18: end if
19: end while
20: return MIV Cs

IV. ALGORITHM VARIANTS

This section presents several important variants of Algo-
rithm 3, distinguished by different strategies for exploring the
search space and different amounts of upfront computation.
In particular, different variants pass different values of k to
Algorithm 3 and compute unexplored seeds using one of the
following approaches:
• getUnexplored, which returns an arbitrary unex-

plored seed using SAT;
• getUnexploredMin, which returns an unexplored

seed of minimum cardinality using MaxSAT;

TABLE I
SUMMARY OF UMIVC VARIANTS

Variant k Exploration
CAMUS ∞ getUnexploredMin
MARCO 0 getUnexplored
MARCO-DOWN 0 getUnexploredMax
MARCO-UP 0 getUnexploredMin
MARCO-ZZ 0 getUnexploredZZ
k-UMIVC k getUnexplored
k-UMIVC-DOWN k getUnexploredMax
k-UMIVC-UP k getUnexploredMin
k-UMIVC-ZZ k getUnexploredZZ

• getUnexploredMax, which returns an unexplored
seed of maximum cardinality using MaxSAT; or

• getUnexploredZZ (zig-zag), which alternates be-
tween returning minimum- and maximum-cardinality un-
explored seeds on consecutive calls.

Table I summarizes all of the variants, which are discussed
in more detail in the following subsections.

A. CAMUS and MARCO
CAMUS corresponds to the variant where k = ∞ and

getUnexploredMin is used for exploration. All MCSes
are computed upfront and the search space is explored bottom-
up i.e., starting from the smallest seeds. In this variant safety
checking is unnecessary, grow is never called, and shrink
can be replaced with a no-op as seeds are always minimal
and therefore any seed returned by getUnexploredMin is
guaranteed to be an MIVC.

The simplest form of MARCO described in Section III-A
corresponds to a variant where k = 0 and getUnexplored
is used for exploration. The search space is explored arbi-
trarily, with neither a bottom-up nor a top-down bias. The
primary advantage of this variant is that getUnexplored
may require less runtime. Experimentally, we observe that
getUnexplored accounts for very little runtime, so opti-
mizing its runtime is not expected to be beneficial.

We also consider several other variants of MARCO. The
first, MARCO-DOWN, uses getUnexploredMax to explore
the search space in a top-down fashion i.e., starting with the
largest seeds. In this variant, grow can be replaced by a no-
op as seeds are always maximal, and therefore any UNSAFE
seed returned by getUnexploredMax is guaranteed to be
an MUA. This variant (with additional optimizations) was
referred to as “Optimized MARCO” in the work of [13]
and was used to extract MIVCs of software safety checking
problems in [8]. A significant advantage of MARCO-DOWN is
that the first iteration of the main loop is guaranteed to find
an MIVC, which provides excellent anytime performance—the
algorithm computes a single MIVC as quickly as IVC_UCBF.

In contrast, MARCO-UP uses getUnexploredMin to
explore the search space bottom-up and is presented as a dual
variant of MARCO-DOWN in [13]. A closely-related smallest
MUS extraction algorithm was presented in [11]. In this
variant, seeds are always minimal and calling shrink is
unnecessary. CAMUS and MARCO-UP are closely related; both
algorithms work by finding minimal hitting sets of the MCSes.
The only difference is that CAMUS computes all MCSes
upfront, whereas MARCO-UP does not. Instead, it repeatedly
computes a seed as a minimal hitting set of the currently-
known MCSes, checks if the seed is an MIVC, and if not,



computes a new MCS. A significant advantage of this variant
is that the first MIVC it finds is guaranteed to be an SMIVC.

The variant MARCO-ZZ explores the search space in a zig-
zagging fashion, alternating between a top-down and bottom-
up search on consecutive iterations of the main loop. This
variant preserves some advantages of both the bottom-up
and top-down approaches. First, in an iteration in which
getUnexploredZZ returns a minimum seed, the call to
shrink can be eliminated. Likewise, for maximum seeds, the
call to grow can be eliminated. Second, in our implementation
the first iteration finds a maximum seed, which preserves the
fast time-to-first-MIVC of MARCO-DOWN. Finally, this variant
can also discover a smallest MIVC before termination, though
it is unlikely to do so as quickly as MARCO-UP.

B. Hybrid Variants
The primary difference between the unified algorithm and

existing approaches is the potential to combine the advantages
of MARCO and CAMUS. By front-loading the computation of
all MCSes, CAMUS avoids the need to perform any safety
checks in the MIVC extraction loop, including those that
result from calling grow or shrink. This comes at the
cost of poor anytime behavior, as computing all MCSes is
itself often intractable. The hybrid variants front-load some
computation of MCSes, potentially achieving a more useful
trade-off between overall performance and anytime behavior.

Each of the MARCO variants has a hybrid coun-
terpart: k-UMIVC, k-UMIVC-DOWN, k-UMIVC-UP, and
k-UMIVC-ZZ. In these variants, all MCSes of size k or
less are computed upfront. Due to an optimization pre-
sented in Section V-B, computing MCSes upfront can be less
computationally-expensive than computing them on-demand
using grow in the second loop. This observation holds true
even when using an optimized implementation of grow de-
scribed in Section V-A. In addition, each MCS computed
upfront avoids running one iteration of the MIVC extraction
loop, which saves a call to IC3 and potentially avoids a call
to grow or shrink.

V. PERFORMANCE OPTIMIZATIONS

This section presents a series of performance optimizations
to the UMIVC algorithm. MARCO and CAMUS were initially
developed for MUS extraction, but extracting MIVCs presents
a different set of constraints and performance characteristics.
In each context, a large number of seeds are generated, and
each needs to be checked for either satisfiability (in the MUS
context) or safety (in the MIVC context). Naturally, safety
checking is significantly more computationally expensive than
satisfiability checking, and this drives different implementation
decisions in the MIVC context. In particular, the greater
expense of safety checking necessitates optimizations that
aggressively reduce the number of calls to the model checker
and accelerates the calls that do occur.

A. Implementing grow via MCS Extraction
A key reason that MARCO-DOWN performs well in software

MIVC extraction [8] is the use of IVC_UCBF to efficiently
shrink seeds. The runtime of MARCO-UP and MARCO-ZZ
variants also depends on an efficient implementation of grow.
A brute-force implementation of grow repeatedly selects a
gate g ∈ Tr \ seed and checks if (Init, seed ∪ {g}, Bad) is

UNSAFE. If so, g is added to the seed. The process repeats until
every gate of Tr \ seed has been considered. The optimized
implementation leverages the fact that the complement of an
MCS is an MUA. The algorithm simply finds an MCS S over
Tr \ seed (using the algorithm described in Section II-E with
a suspect set equal to Tr \ seed) and then returns Tr \ S.
Early experiments showed that this optimization gives drastic
performance improvements, so it is enabled for all experiments
presented in Section VI. Indeed, without this optimization
MARCO-UP is rarely able to find any MIVCs.

B. Approximating Upfront MCS Computation
The hybrid UMIVC variants compute a subset of all MCSes

upfront using the algorithm described in Section II-E. That
is, for each i from 1 to k, BMC is used to find MCSes of
cardinality i, and then IC3 is used to find any remaining
MCSes of cardinality i and finally prove that they have all
been found. This approach is guaranteed to find every MCS
of size k or less. However, correctness of the hybrid UMIVC
variants does not depend on every such MCS being found; it
does not even require the correction sets found in this step to
be minimal. If a particular MCS is not found during this step,
it will instead be found in the MIVC enumeration loop, and
thus the resulting set of MIVCs is unchanged.

By sacrificing completeness and minimality, this step can
be implemented entirely using BMC. For each i starting from
1, BMC is used to search for correction subsets of cardinality
i. The BMC-based search at each cardinality is terminated
after reaching a suitable stopping condition, such as unrolling
for a specific number of time-frames. This approximation
eliminates the IC3 calls that dominate the runtime of this step.
Early experiments showed that this optimization yields drastic
performance improvements, so it is enabled for all experiments
presented in Section VI.

C. Caching Invariants and Counter-examples
The UMIVC algorithm executes many safety checks against

various abstractions of the given circuit. In practice, different
abstractions tend to have similar behavior. In particular, a
counter-example (resp., safe inductive invariant) that witnesses
unsafety (resp., safety) for a particular abstraction is likely
to be a witness for other abstractions. As a performance
optimization, our implementation maintains least recently used
(LRU) caches of counter-examples and safe inductive invari-
ants. When a new counter-example or safe inductive invariant
is found for any abstraction, it is put at the front of the LRU
cache. If the cache grows beyond a pre-determined size limit,
the least recently used element is evicted.

When checking an abstraction for safety and before running
BMC or IC3, each cached counter-example is re-simulated on
the abstraction. If one witnesses unsafety, it is moved to the
front of the LRU cache. If no cached counter-example is a
witness, each cached invariant is checked to see if it contains
a valid safe inductive invariant for the abstraction. For cached
invariant Inv, this is accomplished using an invariant finder
algorithm [6] that finds the maximum subset of Inv that is
an inductive invariant with respect to the abstraction, if any
exists. As is the case for counter-examples, when a witness
to safety is found, it is moved to the front of the LRU cache.
If neither cache contains a witness, a normal safety check is
executed, which may involve running BMC and IC3.
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Fig. 4. Abstraction {g1, g2, g4} of Tr (Fig. 1(a)), in which g2 is isolated

D. Biased Safety Checking

Considering the caching optimization presented in the pre-
vious subsection, checking if a cached invariant witnesses
safety is still an expensive operation. In UMIVC, many safety
checks have an “expected” outcome, depending on where in
the algorithm the model checker is called. For instance, when
running a bottom-up search and calling grow, the algorithm
is often starting from a very small UNSAFE seed. In this case,
it is probable that many gates need to be added to the seed
before it becomes SAFE, and therefore most safety checks
will return UNSAFE. Likewise, when searching top-down and
starting with a large SAFE seed, it may be the case that many
gates need to be removed before reaching an UNSAFE seed
and most safety checks will return SAFE.

Based on this intuition, our implementation considers the
expected outcome of a safety check when deciding the order
in which to execute individual checks. If the expected result
is UNSAFE or no bias is expected, the checks are executed in
the following order: counter-example cache, BMC, invariant
cache, IC3. If the expected result is SAFE, the following
order is used instead: invariant cache, BMC, IC3; the counter-
example cache is skipped as it was found to rarely yield a re-
sult in this case. Safety checks made from grow are expected
to be UNSAFE, as are those made on a seed returned from
getUnexploredMin. Safety checks made from shrink
are expected to return SAFE, as are those made on a seed
returned from getUnexploredMax.

E. Exploiting Structure

In order to be minimal IVC, an abstraction cannot contain
any gates that do not affect its behavior. For example, consider
the circuit in Figure 4, where the output of gate g2 is
disconnected. Since its output is ignored, g2 does not affect
the behavior of the circuit and {g1, g4} is an equivalent circuit.
This implies that {g1, g2, g4} cannot be an MIVC, since if it
is SAFE, so is the subset {g1, g4}. This notion is formalized
as the following lemma, where fanout(gi) denotes the set of
all gates for which gi is an input.

Lemma 1 Let S ⊆ Tr be an MIVC of (Init, T r,Bad). For
every gate gi ∈ S, either: (1) gi is the single output of the
circuit; (2) gi is the next-state function of a state element; or
(3) an element gj of fanout(gi) is in S.

Proof: Assume towards a contradiction gi ∈ S but gi is
neither an output, a next-state function, nor an input of any
gj ∈ S. Thus, the output of gj is disconnected in S, so S\{gj}
is also an IVC, contradicting the minimality of S.

For any gate gi that is not a next-state function or an output,
Lemma 1 allows adding the clause below to the map without
blocking any MIVCs.

¬si ∨ ∨
gj∈fanout(gi)

sj


Adding these clauses can prune large portions of non-solution
space (which may contain IVCs, but not MIVCs).

VI. EXPERIMENTS

This section presents empirical results comparing the pre-
sented algorithms2 on benchmark safety checking instances
from the Hardware Model Checking Competition (HWMCC).
Two comprehensive sets of experiments are presented. The
first evaluates several configurations of UMIVC (i.e., different
variants with different optimizations from Section V enabled)
against a sample of 50 benchmark circuits from the HWMCC
2011 benchmark set. Since MIVC extraction appears more dif-
ficult than model checking, using an older benchmark set (with
“easier” problem instances) gives more meaningful results
with fewer across-the-board timeouts. This set of experiments
is intended to evaluate each variant and optimization to de-
termine which configurations perform best. Subsequently, for
each of the major variants (k-UMIVC-DOWN, k-UMIVC-UP,
k-UMIVC-ZZ, and CAMUS), a configuration that is expected
to perform well is executed against all of the SAFE benchmarks
in the HWMCC 2017 set. The second set of experiments is
intended to evaluate the best-performing configurations against
a large set of modern benchmark circuits. All experiments
are executed on a Linux workstation with an Intel Core i7-
8700 CPU clocked at 3.2 GHz with a memory limit of 16 GB
and a time limit of 15 minutes per benchmark circuit. The
optimizations to grow (Section V-A) and to upfront MCS
computation computation (Section V-B) are enabled in all
cases, as is the IVC_UCBF-based shrink procedure.

In the first set of experiments, there are 12 circuits for which
no evaluated algorithm could find an MIVC within the time
limit. These are removed from further consideration, leaving
38 circuits. Table II presents a summary of the results. Due
to space constraints, not all configurations tested are shown.
In particular, for hybrid UMIVC only one value of k is shown
for each search strategy. Each row in the table refers to a
configuration of the UMIVC algorithm. The first column shows
the variant, the second shows the value of k, and the next three
columns indicate if the (S)tructure optimization (Section V-E),
(C)aching optimization (Section V-C), and (B)iased safety
(Section V-D) optimizations are present, respectively. The
sixth column (MCS) indicates for how many benchmarks the
configuration was able to complete the MCS enumeration
step (top line) and the number of seconds to do so summed
across all benchmarks (bottom line). The next three columns
show similar information related to finding a single MIVC,
finding all MIVCs, and finding a guaranteed-smallest MIVC,
respectively. The tenth column (#MIVC) reports the total
number of MIVCs found across all circuits. The final two
columns indicate the total number of calls made to IC3
and the total time taken for all IC3 calls, respectively. For
clarity, we refer to configurations by their name followed by
a plus sign and the optimizations enabled. For instance, the
configuration in the bottom row is called 0-UMIVC-ZZ+CB
while the top row is ∞-UMIVC-UP (i.e., CAMUS).

2Implementations can be found at: https://github.com/ryanberryhill/pme



TABLE II
SUMMARY OF RESULTS (38 HWMCC 2011 CIRCUITS)

Variant k S C B MCS One All SMIVC # # IC3
MIVC MIVC MIVC IC3 time

UP ∞ 16 16 16 16 69 195 167820941 20943 21854 20943
UP ∞ Y 16 16 16 16 71 195 168220944 20947 20963 20947
UP 0 - 25 17 25 64 135 282813519 19438 13519
UP 3 26 23 18 23 362 429 539111623 14365 19928 14365
UP 0 Y - 25 19 25 110 164 196912978 18843 12978
UP 0 Y - 25 18 25 89 99 459713547 19463 13547
UP 0 Y Y - 25 18 25 89 99 459513552 19443 13552
UP 3 Y Y Y 26 23 19 23 330 101 697511630 14371 19421 14371
DOWN 0 - 34 19 19 287 39180 74386168 18820 18820
DOWN 2 32 31 20 20 290 34883 49086996 9176 18106 18106
DOWN 0 Y - 34 22 22 323 41123 74086129 17032 17032
DOWN 0 Y - 37 17 17 171 1659 21694071 20706 20706
DOWN 0 Y Y - 38 19 19 448 2396 35522505 19352 19352
DOWN 2 Y Y Y 32 21 23 23 550 901 15727081 8355 16929 16929
ZZ 0 - 34 17 19 192 27215 66626219 19945 19039
ZZ 3 26 25 17 21 256 20272 392211607 13495 21466 17434
ZZ 0 Y - 34 10 10 56 18482 64486188 27669 27669
ZZ 0 Y - 37 7 7 67 4891 21814061 29642 29642
ZZ 0 Y Y - 38 7 7 71 4596 25322477 29593 29592
ZZ 3 Y Y Y 26 26 18 22 428 94 60011621 12600 19496 15836

The results demonstrate that the top-down, bottom-up, and
zig-zagging variants all offer worthwhile trade-offs. Bottom-up
variants outperform other variants at finding smallest MIVCs,
as expected. The top-down and zig-zagging variants perform
best at finding one MIVC, as the first step in these approaches
is to compute an MIVC using IVC_UCBF. The zig-zagging
variant offers an appealing trade-off as it computes a single
MIVC as quickly as the top-down variant while finding
SMIVCs faster—though not as fast as the bottom-up variant.
The hybrid variants appear to trade off anytime behavior (pri-
marily observed through the “One MIVC” column) for over-
all performance (primarily observed through the “# MIVC”
column). For instance, when comparing 0-UMIVC-UP (i.e.,
MARCO-UP) to the hybrid variant 3-UMIVC-UP, increas-
ing k appears to slightly degrade anytime performance, as
3-UMIVC-UP finds a single MIVC in only 23 cases, com-
pared to 25 for 0-UMIVC-UP. However, 3-UMIVC-UP has
significantly better overall performance, as it finds a total of
362 MIVCs compared to 64 for 0-UMIVC-UP.

The optimizations presented in Section V also appear highly
successful. While the optimization of Section V-B is not
directly evaluated as it is enabled in every configuration, we
note that computing MCSes upfront appears to be much more
efficient than computing them during grow. Considering the
3-UMIVC-UP+SCB configuration, a total of 32,048 MCSes
are computed upfront, compared to 372 computed during
grow. Upfront computation takes a grand total of 11630
seconds (as indicated by the MCS column), whereas grow
consumes a total of 3193 seconds. Ultimately, upfront compu-
tation computes 86× as many MCSes in only 3.6× as much
time. Adding clauses that reflect the circuit structure (Sec-
tion V-E) offers a modest improvement to overall performance
with no effect on anytime behavior. Caching invariants and

TABLE III
SUMMARY OF RESULTS (64 HWMCC 2017 CIRCUITS)

Algorithm MC MCS One All SMIVC #
MIVC MIVC MIVC

3-UMIVC-UP+SCB 64 55 49 32 49 6907481 12265 16869 30075 16869
2-UMIVC-DOWN+SCB 64 63 61 37 37 1866481 3739 7100 26887 26874
3-UMIVC-ZZ+SCB 64 55 54 33 46 2434481 12260 15298 30294 20457
∞-UMIVC-UP+C 64 32 30 30 30 107481 30819 31462 31472 31462

counter-examples offers a modest improvement in the bottom-
up variant, but significantly improves anytime behavior in the
other variants. Interestingly, our implementation only caches
the single most-recently discovered safe inductive invariant.
Despite that, the cache is very often able to witness safety, as
evidenced by the significant reduction in calls to IC3. Consid-
ering 0-UMIVC-DOWN+C, across all benchmarks where the
cache is checked at least once, the median “hit rate” (i.e.,
fraction of safe queries where the cached invariant witnesses
safety) is 93%. Evidently, safe inductive invariants often
witness safety for many different abstractions. It can also be
seen from the 0-UMIVC-DOWN+CB variant that biased safety
checking offers significant additional performance gains.

Based on these results, the configurations that are expected
to perform best are also evaluated against the HWMCC 2017
benchmark set. Of 181 safe circuits in that set, there are 117
for which no algorithm is able to find a single MIVC. This
is expected, as the HWMCC 2017 circuits are intended to be
challenging for safety checking and MIVC extraction appears
to be significantly harder. Those circuits are discarded, leaving
64 circuits under consideration. Table III shows the results of
executing several configurations that are expected to perform
well against this benchmark set. The first column shows the
name of the variant. In order to compare the runtime of MIVC
enumeration to that of safety checking, the second column
shows the number of instances for which safety checking
was completed successfully and the time taken to do so. The
remaining columns report similar data to the corresponding
columns of Table II. It can be seen that computing all
MIVCs is significantly more expensive than safety checking,
as expected. The observed trade-offs are similar to those
observed in the HWMCC 2011 set. Interestingly, circuits in the
HWMCC 2017 set appear to have significantly more MIVCs.
The greatest number of MIVCs found for any HWMCC 2011
circuit is 110. Conversely, there are 8 HWMCC 2017 circuits
for which at least that many MIVCs were found, and 3 circuits
for which over 1000 distinct MIVCs were found.

VII. CONCLUSION

This paper presents algorithms to enumerate MIVCs of
hardware safety checking instances, drawing inspiration from
well-known MUS enumeration algorithms. It lifts CAMUS and
MARCO and presents an algorithm called UMIVC that general-
izes both algorithms while preserving the advantages of each.
Several variants of the algorithm are introduced and a set of
novel performance optimizations are presented. Experiments
are presented on standard benchmark circuits demonstrating
the applicability of the presented approaches and the trade-
offs between them. MIVCs have already found application in
coverage analysis, and are expected to have applications in
areas such as debugging, vacuity detection, and others.
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