
LMPT: A Novel Authenticated Data Structure to Eliminate
Storage Bottlenecks for High Performance Blockchains

Jemin Andrew Choi∗, Sidi Mohamed Beillahi∗, Srisht Fateh Singh∗, Panagiotis Michalopoulos∗,
Peilun Li†, Andreas Veneris∗, Fan Long∗

∗University of Toronto †Shanghai Tree-Graph Blockchain Research Institute
choi@cs.toronto.edu, sm.beillahi@utoronto.ca, srishtfateh.singh@mail.utoronto.ca,

p.michalopoulos@mail.utoronto.ca, peilun.li@confluxnetwork.org,
veneris@eecg.toronto.edu, fanl@cs.toronto.edu

Abstract—We present the Layered Merkle Patricia Trie
(LMPT), a performant storage data structure for process-
ing transactions in high-throughput systems when com-
pared to traditional Merkle Patricia Tries used in Ethereum
clients. LMPTs keep smaller intermediary tries in memory
to alleviate read and write amplification from high-latency
disk storage. As an additional feat, they also allow for the
I/O and transaction verifier threads to be scheduled in
parallel and independently. LMPTs can ultimately reduce
significant I/O traffic that happens on the critical path of
transaction processing. Empirical results show that LMPTs
can process up to ×6 more transactions per second on real-
life ERC20 smart contract workloads when compared to
existing Ethereum clients.

Index Terms—Blockchain, data storage, transaction ex-
ecution, Merkle Patricia trie

I. INTRODUCTION

Popularized by cryptocurrencies [3], [32], blockchain
platforms have become increasingly prevalent today.
Among others, they enable decentralized ledgers at
Internet-of-scale that fuel innovation in diverse industries
such as finance [15], supply chain [45], and health-
care [29]. One issue that continues to challenge their
wider adoption is their limited transaction throughput. In
our context, a transaction is a signed message that oc-
curs between externally owned addresses (EOAs) and/or
smart contracts. The transaction’s message encodes a
function call that contains one or more operations to exe-
cute. Transactions are packed in a block that is recorded
on the blockchain. To ensure safety, the consensus pro-
tocols used by blockchain platforms like Bitcoin and
Ethereum conservatively apply slow block generation
rates and restrict block sizes. Consequently, this allows
them to process only 7 to 30 transactions per second
(TPS) [24], [40], when compared to traditional central-
ized systems that can parse thousands of transactions per
second.

To address this bottleneck, new consensus protocols
have been proposed in recent years. For example, Al-
gorand [19], Conflux [27], Prism [12], and OHIE [50]
can process thousands of transactions per second. In

doing so, innovations in high throughput ledgers also
revealed an important but overlooked challenge in the
blockchain community: transaction execution perfor-
mance. Particularly, transactions that frequently access
the blockchain state tend to become the new perfor-
mance bottleneck that limits the overall throughput of
a blockchain platform. For instance, when importing
previously downloaded transactions, popular Ethereum
clients like GoEthereum [4] and OpenEthereum [5] can
only process 700 TPS on a laptop with a SSD, which
is significantly lower than the capability of many new
consensus protocols [25].

In the Ethereum blockchain, we can distinguished two
types of nodes: full and light nodes. A full node syn-
chronizes and executes all transactions and maintains the
blockchain state. A light node only synchronizes blocks
headers without transactions and the blockchain state.
The blockchain state in Ethereum is a key-value structure
that maps account addresses and persistent state to the
corresponding account metadata and values. If a light
node requires the value of a given key, it queries a full
node. However, since Ethereum follows permissionless
protocol there exist a mechanism to ensure that the light
node does not need to trust the full node in order to use
its response (known as the authenticated ledger state).
In particular, the Ethereum protocol requires miners
to compute a commitment (known as the state root)
of the blockchain state and add the latest computed
commitment in the generated blocks headers. Thus, when
responding to a query from a light node, a full node
generates a proof based on the latest commitment of the
blockchain state that can be verified against the blocks
headers the light node keeps.

Previous studies have shown that the bottleneck of
executing transactions in Ethereum clients is of process-
ing read/write operations on the underlying blockchain
state [25], [38]. In particular, to ensure the authenticated
ledger state mechanism Ethereum stores its state as a
Merkle Patricia Trie (MPT) [47]. Each node in the trie
has up to sixteen children where each path from the root
to a leaf node corresponds to a hexadecimal-encoded
key and the leaf node holds the corresponding value

©2022 IEEE

of the key. Furthermore, each inner node in the MPT
contains the hash result of all of its children. As such,
a Merkle proof of a key-value pair consists of hashes of
all nodes along the path to the leaf node of the key. The
root hash value is published globally in the header of
each Ethereum block so that anyone can verify the key-
value pair with the proof. Thus, a blockchain full node
maintaining the entire state can generate authenticated
proofs of key-value pairs in the state, and a light node
can verify the proofs without the need to trust the full
node.

The trust resulting from the authenticated ledger state
mechanism comes with costly performance drawbacks
since read/write operations in MPT are slow: 1) a
read/write to a key-value pair is amplified to multiple
I/O operations of all nodes along the corresponding path
of the key in the MPT, 2) a write operation recomputes
the hashes of all inner nodes along the path in the MPT,
and most importantly, 3) the transaction execution thread
has to wait for costly read/write operations to complete
before it continues to the next instruction or transaction.
Notably to those observations is the fact that to ensure
deterministic execution outcomes, blockchain clients ex-
ecute transactions sequentially in a single thread.

This paper presents the Layered Merkle Patricia Trie
(LMPT), a novel authenticated storage structure for high
performance blockchains. LMPTs can directly operate
with transaction execution engines that implement the
Ethereum Virtual Machine (EVM) [46], [47]. The em-
pirical results presented show that LMPTs speed up the
transaction execution throughput by up to 6 times. The
net-effect is that, in conjunction with existing innova-
tions on consensus algorithms, LMPTs can significantly
improve the transaction throughput of blockchain plat-
forms.

The LMPT consists of a Snapshot MPT and a flat
key value store that holds the blockchain state at a
recent block height, an Intermediate MPT that contains
updates to the blockchain state on top of the Snapshot
MPT, and a Delta MPT that contains updates on top
of the Intermediate MPT. LMPT records new updates
to the blockchain state first into the Delta MPT. For
a predetermined number of blocks (e.g., 1000 blocks),
LMPT merges the updates from the Intermediate MPT
into the Snapshot MPT to form a new one. Then, the
old Delta MPT becomes the new Intermediate MPT and
the new Delta MPT is emptied.

One advantage of the LMPT design is reduced in-
tensity and amplification of read and write operations.
Because the Intermediate MPT and the Delta MPT only
hold recent updates to the blockchain state, they are
small enough to be stored entirely in memory. Evidently,
the small depths of the two tries reduce the I/O amplifi-
cation of reads and writes. In addition, as more decen-

tralized applications (DApps) move into the blockchain
ecosystem, popular smart contracts are expected to have
greater localized access patterns on blockchain state [7].
Consequently, most reads and writes in the transaction
execution thread will only access the intermediate and/or
Delta MPTs, which are cached in memory.

Another advantage of LMPT is to decouple the ex-
pensive disk I/O operations from the critical transaction
execution thread as much as possible. Furthermore, the
blockchain clients can parallelize the construction of
Snapshot MPTs with the transaction execution thread.
Reads that do not require authentication can be executed
from an internal flat key value store, instead of querying
the full trie.

We evaluated LMPT with real-world workloads and
benchmarks for simple payments and ERC20 smart
contracts [18], [1]. We sampled 500, 000 transactions
from Ethereum, and packed blocks to simulate blocks
on the real network based on gas limits. Our results
show that LMPT is able to considerably outperform the
Ethereum MPT for larger genesis states under the same
hardware constraints and system usage. LMPTs are able
to sustain up to 3000 TPS for simple payments and 2000
TPS for ERC20 smart contracts for 10 million senders
in the genesis state, which is roughly ×6 faster than
the existing MPT structure in Ethereum clients. We also
evaluated LMPT with 500, 000 transactions workload of
the more complex Uniswap smart contract that is widely
used in decentralized finance (DeFi) [8], [48]. We show
that LMPT is roughly ×2 faster than the existing MPT
structure in Ethereum clients for Uniswap smart contract
for 10 million senders in the genesis state. These results
show that LMPT is increasingly suitable for blockchain
systems as the state trie grows exponentially bigger.

In summary, the paper makes the following contribu-
tions:

• LMPT: We present a novel authenticated storage
structure called LMPT that significantly reduces
the amplification effect of read/write operations and
decouples expensive disk I/O operations from the
critical transaction execution thread.

• EVM Transaction Execution Engine with
LMPTs: We present the design, implementation,
and evaluation of an EVM transaction execution
engine integrating LMPTs that empirically enables
the transaction execution engine to process up to
3000 TPS (i.e., ×6 times compared to traditional
MPTs).

The remainder of this paper is organized as follows.
Section II presents a background review of the Ethereum
blockchain and its storage. Section III motivates the
LMPT and presents an overview of the LMPT. Sec-
tion IV presents the design of the LMPT. We evaluate the
implementation of the LMPT on real world benchmarks

in Section V. In Section VI we discuss related work. We
finally conclude the paper in Section VII.

II. BACKGROUND

In this section we describe how Ethereum uses MPT to
store the ledger state and why read/write operations on
MPTs are a performance bottleneck during transaction
execution.

A. Ethereum Blockchain
Ethereum is a state machine constituted of a gen-

esis state and transactions that modify the state [46],
[47]. Ethereum supports two types of accounts: user
accounts and smart contract accounts. Smart contract
accounts are software objects that manage transactions.
Each account is associated with a unique address. The
state includes account information, which consists of
the nonce, account Ether balance, the storage root hash
of the account’s storage trie, and the Ethereum Virtual
Machine (EVM) code hash if the account is a smart
contract. The state is kept in a top level state trie, where
there is a mapping between the Keccak256* hash of
the account address and the state. Users can interact
with the blockchain by issuing transactions using their
user accounts. Ethereum then executes state transition
functions using the EVM. Transactions are packed into
a block that also contains the hash of the previous block
in the chain. To check whether a block is valid in a
chain, the block header stores the cryptographic hash of
the MPT root. Hence, any tampering of the block state
can easily be detected by verifying the root hash of the
MPT.

B. Ethereum Storage
To efficiently store authenticated state, Ethereum uses

a modified MPT structure to compress key-value pair
hashes. The key is a 256-bit hash of the account address,
which maps to the stored account data as the value. Since
light clients in Ethereum do not have full access to all the
data in the blockchain, it is crucial to have authenticated
data reads and writes so light clients can verify the state
with partial proofs with the help of a full client that has
access to all the data in the blockchain.

In a MPT, we distinguish three types of nodes: branch,
extension, and leaf nodes. A branch node stores up to
16 pointers, one per hexadecimal, that point to either a
leaf node, extension node, or another branch node. An
extension node compresses a byte sequence that can be
used to compress nodes with a shared hash sequence
and contains the pointer to the next node in the tree. A
leaf node stores the encoded path and the value itself.

*Keccak256 is the primary hash function of the Ethereum
blockchain to compute the Keccak-256 hash of the input based on
the Keccak cryptographic primitive [13].

Root

Hash(A,B)

A

Hash(A)

B

Hash(C,D)

C

Hash(C)

D

Hash(D)

0b5e

2d b3

0 f
f1

Branch

... 2 ... b ...

LeafLeaf

Leaf

Fig. 1: MPT used in Ethereum. A node contains the hash
of its children nodes, preventing data tampering. A path
of the trie can be travelled by one hexadecimal at a time,
shown by the branch node, until a leaf node is reached.

Finally, the root of the tree is used to create a hash that
is dependent on all the leaf values, which can be used by
light clients to verify data originated from a full client
with access to the entire blockchain state.

Fig. 1 illustrates the MPT structure. It shows how a
path can be constructed from the root to extension and
branch nodes, down to the leaf nodes. The Ethereum
block header contains the Keccak256 hash of the root
to allow both efficient storage and verification of block
data. From the root, there are branch nodes for each
hexadecimal that contain pointers to the next node in the
path of the trie. In addition, each node contains a hash of
its children nodes, which allows to efficiently compare
whether two trees have the same data by checking the
hash of their roots. By traversing the path down the
tree to its leaf node, we can verify the existence of a
particular account key-value in a blockchain state.

In addition, when an authenticated read query is
executed on MPT, it requires a proof that shows a valid
path between the root node and the leaf node. This path
is then used to recompute the signature independently,
and verify that the read value exists in the trie. This is
imperative for data access in light clients that do not store
the entire state trie. Authenticated reads in a standard
MPT are costly due to high read amplification as clients
track down nodes in the MPT. Since each node access
requires an additional database read, each authenticated
read in Ethereum can have a read amplification of 64, or
one per hexadecimal in the 256-bit hash of the address.

III. MOTIVATION AND OVERVIEW

We present an overview of LMPTs and how they
tackle the performance bottleneck of the MPT.

Disk

I/O
Handler

Verifier

Read request

I/O
Handler

Verifier waits on the critical path

Fig. 2: I/O Blocking for Transaction Execution

 func t(addr to, int a){
 bal[from] -= a;
 bal[to] += a;
 }

Invoke load operation in the
EVM

EVM reads/writes
from DB

PUSH 0x10

SLOAD

SSTORE

Wait for DB to
fetch data

a

r

b

Fig. 3: A sequential thread execution for database (DB)
reads in the EVM

A. Observations and Motivation

We now describe an experiment using OpenEthereum,
a popular and fast open-sourced Ethereum client [5]. We
use OpenEthereum to import blocks containing transac-
tions that regularly access the blockchain state and use
perf [6] to profile transaction execution. We observed
that as transactions access the blockchain state more
frequently, the transaction processing throughput became
lower. Our findings are consistent with prior work [25]:
the majority of transactions execution time is spent on
operations that access the blockchain state, e.g., EVM
opcodes such as SLOAD and SSTORE.

Observation 1: The blockchain storage is the primary
performance bottleneck for transaction execution.

In particular, we observe that transaction execution
threads frequently become blocked waiting for the disk
I/O operations to finish. Fig. 2 illustrates our profiling
findings. While the verifiers wait for disk I/O operations
to finish, resources like CPU and memory are under-
utilized and idle during transaction execution.

Fig. 3 presents an example to illustrate the root cause
of the latency-bound issue. The left part of Fig. 3
presents a Solidity code snippet which reads an array
stored in the MPT. In Ethereum, read/write operations
will be translated into SLOAD/SSTORE EVM instruc-
tions, as shown in the middle of Fig. 3. Because the EVM
is designed to execute transactions and EVM instructions
sequentially, the transaction execution thread has to wait
for the results of SLOAD before it can execute the next
instruction. The SLOAD execution reads the data from
the MPT and is eventually amplified into multiple key-
value read operations, shown on the right of Fig. 3.

Read State

1. Delta MPT

a

d

b

Memory

k1 v1
k2 v2
k3 v3

3. Flat KV Store

3. Snapshot MPT

a

s

b

(Authenticated)

. . . .

(Simple)
2. Intermediate MPT

a

i

b

Disk

Fig. 4: Authenticated and simple state reads in LMPT

Similar latency-bound issues exist for MPT write
operations and SSTORE instructions. In particular, each
Ethereum block contains the MPT state root hash that
existing clients have to compute and verify. Thus, the
transaction execution thread will wait for all MPT write
operations associated with one block to finish before it
continues to the next block. Although the latency of the
write operations only happens at the block level, it is on
the critical path for the performance because it cannot
be mitigated by memory cache in the Ethereum client.

Observation 2: The primary performance bottleneck
of MPT: transaction execution thread waits for expe-
nsive disk I/O operations and becomes latency bound.

TABLE I: Cache hit rates in OpenEthereum

Cache size (MB) Hit Rate TPS
50 0.635 1238

100 0.758 1256
500 0.862 1278
1000 0.879 1292

Table I presents our experimental findings on the
OpenEthereum client with different memory cache
sizes for the MPT database. We import blocks contain-
ing random simple payment transactions and report the
transaction throughput under different cache sizes. In
Table I, we observe that increasing the memory cache
size in OpenEthereum had an immediate effect on the
cache hit rate, i.e. around 25%. However, the cache sizes
had no significant impact on overall performance, and
throughput increased by no more than 5%. These results
show that simply enlarging the memory cache of MPT
or naively allocating more memory to the process may
not improve the transaction execution sufficiently.

B. LMPT Overview
To reduce I/O amplification and separate the critical

path of blocking threads, we propose a new data struc-
ture, namely Layered Merkle Patricia Trie (LMPT), to

Write State

1. Delta MPT
a

d

b

Memory

3. Snapshot MPT

a

s

b

. . . .

Disk

Background Thread

(Merge with Intermediate
MPT in background)

2. Intermediate MPT

a

i

b

Fig. 5: Writing state in LMPT. Writes are periodically
flushed from intermediate trie to snapshot trie using
background threads.

store authenticated Ethereum state. The LMPT consists
of three distinct MPTs that act as “caches” for any
authenticated access: delta, intermediate, and Snapshot
MPTs. For every read access to the state tree, the request
first searches the Delta MPT. If the requested data is
not found, then the Intermediate MPT is searched, then
finally, the Snapshot MPT is checked. This hierarchical
cache structure reduces read amplification on the key
path (especially for hot data) and reduces very costly
accesses to disk. Fig. 4 shows how authenticated and
simple reads access data in the LMPT. The smaller
delta and intermediate tries are stored in memory to
allow for faster access to hot data, while the larger
snapshot trie and the flat key-value store are stored in
disk. For authenticated reads that require Merkle proofs,
the snapshot trie provides information about the account.
Simple reads requested from the full node itself can be
read from a flat key-value store, which reduces any read
amplification for accessing a value.

For a write, instead of immediately flushing changes
to disk, the Delta MPT is updated. Caching writes allow
to have a consistent view of the entire system at the
small cost of storing and updating the Delta MPT in
memory. To keep the MPTs small, the changes are
flushed at periodic checkpoints, where the Delta MPT
changes are merged to the Intermediate MPT and the
Intermediate MPT is merged into the Snapshot MPT.
Fig. 5 shows how the Delta MPT is stored inside
the memory while a background process merges any
larger changes between the intermediate and Snapshot
MPT. As a result, the writes are periodically batched
and completed independently of the critical path of
transaction verification. The disentanglement of the two
memory tries: Delta and Intermediate MPTs, allows the
slow process of flushing changes from the Intermediate
MPT in memory to the Snapshot MPT in disk to occur
concurrently while transactions can fetch hot data from
the Delta MPT in memory.

struct Trie {
root: uint256,
kv: Map

}
struct LMPT {
delta, interm: Trie, // In memory
snapshot: Trie, // In disk
flat: Map // In disk

}

Fig. 6: LMPT Data Structure

T := LMPT()
fn write_LMPT(k,v) {
root := T.delta.put(T.delta.root,k,v)
T.delta.root := root

}
fn read_LMPT(k) -> <v,p> {
<v,p1> := T.delta.get(delta.root,k)
if v is present
return <v,p1>

<v,p2> := T.interm.get(T.interm.root,k)
if v is present
return <v,p1 + p2>

if auth_proof
<v,p3> := T.snapshot.get(T.snapshot.root,k)
return <v,p1 + p2 + p3>

else
v := flat.get(k)
return <v,ϵ>

}

Fig. 7: LMPT read and write operations

IV. LMPT DESIGN

In this section, we outline the design of LMPTs and
describe the fundamental improvements they bring to
transaction throughput in the storage layer for blockchain
clients.

A. Definitions and Data Structures

In Fig. 6, we define the data structures used to
architect the LMPT. We first define the data type trie,
which consists of a uint256 root hash and a key-value
map as an abstraction for storing authenticated data. The
LMPT data structure is comprised of four components:
the delta, intermediate, and snapshot tries, and the flat
key-value store map. The delta and intermediate trees are
stored in memory and contain frequently accessed state.
The snapshot tree and flat key-value map store the entire
blockchain state on disk, and return the values for an
authenticated and non-authenticated access, respectively.

B. Read and Write Operations

In Fig. 7, we present the pseudocode for LMPT read
and write operations. For a write, the value is always
updated on the delta trie, which is kept in memory so
that hot data can be queried quickly. For a read, we first
query the delta trie, and if a value does exist in the delta
trie, we can verify existence for that value and simply
return the value and path. If the value does not exist,
then we need to return proof by showing that the two

fn merge_compute(T) -> (root′, flat′) {
flat′ := T.flat
root′ := T.snapshot.root
for <k, v> in T.interm.kv(T.interm.root)

root′ := T.snapshot.append(root′, k, v)
flat′ := flat′.set(k, v)

return (root′, flat′)
}
fn merge_update(T, root′, flat′) {

T.flat := flat′

T.snapshot.root := root′

T.interm := T.delta
T.interm.root := T.delta.root
T.delta := Trie()
T.delta.root := None

}

Fig. 8: LMPT merge operations

adjacent paths, i.e., a path that is immediately greater
and immediately less than the value, exist in the tree
instead. Using this returned proof of adjacent paths, we
query the intermediate trie to check for the value. If the
intermediate trie contains the corresponding value for the
key, we return the resulting data and the combined proof
from the delta and intermediate tries. Finally, if the key
is not present in the delta or intermediate trie, then it is
queried from disk. If the client requires an authenticated
read, then it must query the snapshot trie on disk for
the value. If the client can trust the authenticity of the
data, e.g., reading state from its own database, then the
client can query the flat store map to eliminate any
read amplification. By querying the disk last, we can
delay costly reads from disk and reduce incurring large
read amplification on bigger tries by having smaller,
intermediary authenticated data structures in memory.

C. Trie Merge Operations

In Fig. 8, we give the two step merge process of
the different trie structures behind the LMPT. The
merge_compute function updates the snapshot trie
and flat store map on disk. At predefined intervals,
merge_compute is called to update and append all
the changes from the intermediate trie to its snapshot
trie and flat store map, and returns the new snapshot
root and key-value map. This function allows to batch
writes to disk at once and allows the Snapshot MPT on
disk to be updated efficiently without having to update
every single interior node on the MPT, which greatly
reduces write amplification. In addition, the merging
can be parallelized and distributed to multiple threads,
which prevents blocking the main execution thread on
the critical path for I/O accesses.

The merge_update function defines how the tries
in the LMPT are updated. merge_update accepts
the new snapshot root and flat store map that were
returned by the function merge_compute. Then, the

block_cnt := 0
T := LMPT(genesis_state)
while Block is processing
for transaction in Block
T.update_trie(transaction)

block_cnt += 1
if block_cnt % merge_interval == 0
Wait for last spawned thread to end
merge_update(T, root′, flat′)
spawn_thread(root′, flat′=merge_compute(T))

Fig. 9: Flushing updates to disk on a background thread

intermediate trie is set to the smaller delta trie, and the
delta trie is flushed and initialized by a new empty trie.

Finally, Fig. 9 shows a procedure that merges new
data using a background thread so it does not block
the critical path for the client. While a new block is
being processed by the node, the incoming transactions
in the block are written into the delta and intermediate
tries of the LMPT. After each block is processed, a
block counter is incremented as the tries in memory
are filled with new incoming data. When the counter
reaches a particular threshold, defined as the merge
period interval, the process waits until all the remaining
transactions are processed and threads that are merging
tries finish. Then, the process calls the merge_update
function to update the tries and flat store map computed
by merge_compute. This two parts process allows
data to be batched and flushed from memory to disk
by a background thread so the main execution thread
continues verification normally and only accesses the
disk for the merge period intervals. After the tries are
merged, a new background thread is spawned so that
the incoming data can be integrated into the snapshot
trie and flat store and flushed to disk in the next merge
period.

D. Integration with Blockchain Clients
The LMPT can replace the standard MPT in

Ethereum-like systems with the following modifications:
1) State encoding: Ethereum uses a 32-byte root hash

of the MPT representing the resulting state of each
executed block. LMPT consists of three tries, but
we can use one-way cryptographic hash functions
like Keccak256 to combine the root hashes of
the tries to generate a single 32-byte root hash
representing the state.

2) Proof verification process: The authentication
proof contains the proof combination of multiple
tries, if the value is not found in the delta trie. Thus,
we need to update the proof verification process
accordingly so that the proof combination from the
delta, intermediate, and snapshot tries is accepted
by the verifier.

Remark 4.1: Client crash recovery: When an LMPT-
based client node crashes without updates in memory

being persisted on the disk this may result in the node
being out of sync with the rest of the Ethereum network.
However, the recovery mechanism of the LMPT-based
node is the same as that of an MPT-based client where
the client will start from the consistent state it has on
the disk and connect with peers in the network to sync
and receive the missing updates.

V. EMPIRICAL EVALUATION

In this section, we evaluate the transaction throughput
on Ethereum clients with and without LMPT using
different workloads based on simple payment transfers,
ERC20 smart contracts, and Uniswap smart contracts.

A. Implementation
To compare LMPT’s storage performance with ex-

isting Ethereum MPT implementations, we modify the
OpenEthereum client to implement LMPT instead of
the standard Ethereum MPT. The OpenEthereum client
is implemented in Rust programming language and is
one of the fastest Ethereum clients available [2]. In
particular, we modify the existing storage engine of
OpenEthereum to integrate the delta trie, intermediate
trie, snapshot trie, and flat store instead of the single
MPT structure. In addition, we alter the verification
engine of OpenEthereum so that the LMPT merging
process from Section IV is integrated into the client.
Memory overhead: LMPT requires additional memory
over standard MPT to store Delta and Intermediate
MPTs. For instance, if Delta and Intermediate MPTs are
configured to each hold the data of 2 million transactions
and assuming that the average transaction size is 250
bytes, then LMPT would require 1GB in memory which
is reasonable. This is the default configuration we use in
our experiments, and these numbers are configurable.

B. Experimental Setup
The first two experiments are run on an AWS EC2

i3.xlarge instance with 4 vCPU, 30GB memory, and
1TB SSD storage and the last experiment is run on
an AWS EC2 c6a.8xlarge instance with 32 vCPU and
64GB memory, and 1TB SDD storage. We run our
LMPT implementation and compare it with the standard
OpenEthereum v3.1.0, available on Github [5]. In order
to purely compare storage performance, we turn off the
consensus engine and run the experiments in a private
network containing a single node, so the blocks can
be instantly mined and network effects will be negli-
gible. We further collect a sample trace of 500, 000 real
transactions from the Ethereum network for the first two
experiments of simple payments and ERC20 transfers.
We replicate the transaction behavior and pack blocks
to mimic real world conditions. The blocks are created
to reflect real gas limits, which is 150 transactions per
block for simple payments and 20 transactions per block

1M 3M 5M 10M
0

1,000

2,000

3,000 2,837

2,424
2,139

1,8521,996

937
611

314

Accounts in initial state

T
PS

LMPT OpenEthereum

1M 3M 5M 10M
0

1,000

2,000

3,000
3,086

2,487
2,164 2,062

1,728

876
627

340

Accounts in initial state
T

PS

LMPT OpenEthereum

Fig. 10: TPS for LMPT-based OpenEthereum and the
standard OpenEthereum for simple payment transac-
tions. The top graph corresponds to the Ethereum traces
benchmark and the bottom graph corresponds to the
random senders traces benchmark.

for ERC20. For ERC20 workloads, we sample transfer
transactions for the Tether token, which is one of the
most popular ERC20 tokens on Ethereum [1]. We mon-
itor memory usage for both the LMPT implementation
and standard OpenEthereum to ensure that the average
memory usage for both experiments are relatively equal.

C. Simple Payments

Ethereum traces benchmark: We re-create blocks
with the transaction traces collected from real Ethereum
simple payment transactions. This allows us to import
the blocks and measure the true performance of the
authenticated storage structures. Since real Ethereum
simple payments require their respective private keys of
the senders, we create a one-to-one mapping between
each public address and a generated public-private key
pair. This enables one to send and sign transactions using
the generated private keys to keep the integrity of the
real-life workloads on the main network.
Random senders traces benchmark: In addition, we
create another benchmark where we send simple pay-
ment transactions from a set of random senders ad-
dresses. We define each random sender with a high initial
ETH balance in the genesis block, and send transactions
with an evenly distributed load. Although the number of

accounts in the initial states differs, every unique sender
is guaranteed to send at least one transaction to a random
receiver. Similar to the Ethereum traces benchmark, we
send a total of 500, 000 transactions from the random
senders pool.
Initial state: In the experiments, we prepare different
initial states with an increasing number of accounts
in the genesis block and measure the throughput in
transactions per second for importing blocks on the
client. This is because in our initial tests, the number
of accounts in the genesis state does have a signifi-
cant impact on performance. Contrarily, the number of
transactions has little effect on the overall TPS, aside
from storage warm up times (cache loading) for the
initial transactions. Even as transactions increase, we do
not observe significant difference in transaction import
times. We track workloads with large numbers of senders
and receivers, which would not fit entirely in the program
memory and require I/O accesses from storage.

Fig. 10 shows the size of initial state versus perfor-
mance for LMPT-based OpenEthereum and the standard
OpenEthereum for simple payment transactions for the
two benchmarks. The X-axis corresponds to the number
of accounts in the genesis state (in millions) and the
Y-axis corresponds to the throughput (in TPS) when
the blocks are imported from disk. Our results show
that the standard OpenEthereum’s MPT model handles
a relatively small initial state fairly well, and can reach
up to 2000 TPS for 1 million accounts for both the
Ethereum and random sender traces benchmarks. How-
ever, it drastically slows down to about 1000 TPS in
importing blocks when the initial state is 3 million
accounts. At 10 million accounts in the initial state, the
standard OpenEthereum starts to significantly slow down
on our 30GB memory machine, and for more than 10
million accounts, it fails to make much progress on the
machine.

On the other hand, the LMPT-based OpenEthereum
can achieve around 3000 TPS for 1 million accounts,
a 50% improvement over the standard OpenEthereum.
It is also able to sustain much higher performance
for a large number of senders, and gets up to 2000
TPS for 10 million senders. For both benchmarks, the
LMPT outperforms the standard client by a factor of 6
for a large initial state. After the initial state reaches
around 20 million accounts, we finally see a noticeable
drop and saturation in performance for the LMPT-based
OpenEthereum, which is twice the threshold reached by
the standard OpenEthereum.

The LMPT structure allows for higher sustained per-
formance because as the state trie gets bigger, LMPT
can still cache hot data and account information into its
delta and intermediate tries. In addition, since merging
the snapshot trie on disk is done in parallel to the main

1M 3M 5M 10M
0

1,000

2,000 1,862 1,830 1,809

1,330

1,638

986

697

395

Accounts in initial state

T
PS

LMPT OpenEthereum

1M 3M 5M 10M
0

1,000

2,000
1,961 1,894 1,838

1,4581,438

769
546

181

Accounts in initial state
T

PS

LMPT OpenEthereum

Fig. 11: TPS for LMPT-based OpenEthereum and the
standard OpenEthereum for ERC20 transfer transactions.
The top graph corresponds to the Ethereum traces bench-
mark and the bottom graph corresponds to the random
senders traces benchmark.

execution thread, there is minimal blocking when state is
imported. Contrarily, the standard OpenEthereum needs
to execute increasingly more state reads from disk as the
state grows larger, which slows it down drastically.

D. ERC20 Transfers

Similar to the simple payment traces, we sample
transactions for the Tether token to generate real
life workloads for the ERC20 contract. We deploy the
ERC20 contract on a private network, initialize the con-
tract address, synthesize a set of accounts, and fund them
with some initial tokens. Then, we use our generated
senders to call the transfer function and send the tokens
according to our sampled transactions trace. For the ran-
dom senders benchmark, we initialize senders addresses
with enough tokens and call the transfer function with
an even distribution.

Fig. 11 illustrates the size of initial state versus
performance for LMPT-based OpenEthereum and the
standard OpenEthereum for ERC20 tokens transfers
transactions for the two benchmarks. The performance
on ERC20 contracts are noticeably lower because they
require more computation and gas. However, the results
are similar to the simple payments as the standard
OpenEthereum reaches saturation much more quickly as

the state grows in size. For 1 million accounts, LMPT-
based OpenEthereum had around 2000 TPS and could
sustain that performance for 3−5 millions accounts. On
the other hand, the standard OpenEthereum had around
1600 TPS for 1 million accounts and performance
quickly dropped as the size of the initial state increases.
For 10 million accounts, LMPT-based OpenEthereum
outperforms standard OpenEthereum by a factor 4. This
shows that LMPT is able to maintain better throughput
as the initial state grows. These results also suggest
that LMPT is an effective solution for blockchains that
support smart contracts and require more complex state
reads and writes.

E. Uniswap Exchange

In this experiment, we compare LMPT against
OpenEthereum MPT using a widely used smart contract
that requires more state reads and writes than simple
payment and ERC20 transfer. In particular, we use
the Uniswap smart contract, a very popular decen-
tralized finance (DeFi) protocol [8], [48]. Uniswap is
an exchange protocol that also offers flash loan ser-
vices. Uniswap exchange protocol consists of liquidity
providers and traders. A liquidity provider supplies a
pool of two ERC20 tokens that can be exchanged, i.e.,
creating an exchange market between the two ERC20
tokens. A trader exchanges one type of ERC20 token
to the pool and receive the other ERC20 token out of
the pool. The exchange rate between the ERC20 tokens
in the pool is determined using an automated liquidity
protocol by computing the relative number of the two
tokens the pool has taking to account a small percent as
reward for the liquidity pool provider. For instance, in
a given liquidity pool with an amount X of a token A
and an amount Y of a token B, the output amount o of
token B a user receives for selling an input amount i of
token A is given as follows:

o =
Y · i · (1− f)

X + i · (1− f)
(1)

The constant f represents the reward earned by the
liquidity provider for the exchange. In the Uniswap smart
contract implementation, we can distinguish two main
exchange functions swapExactTokensForTokens
and swapTokensForExactTokens. swapExactTo-
kensForTokens sells a specific amount of tokens fixed
by the caller for another (the outputted amount is de-
termined using the Uniswap exchange formula). On the
other hand, swapTokensForExactTokens buys a specific
amount of tokens fixed by the caller.

In this experiment, we send a total of 500, 000 trans-
actions from the random senders addresses pool that
uniformly call one of the two functions swapExact-
TokensForTokens and swapTokensForExactTokens. We

1M 3M 5M 10M
0

1,000

2,000 1,702 1,696
1,557 1,548

1,096 1,019
904 808

Accounts in initial state

T
PS

LMPT OpenEthereum

Fig. 12: TPS for LMPT-based OpenEthereum and the
standard OpenEthereum for Uniswap swapExactTokens-
ForTokens and swapTokensForExactTokens transactions
from a set of random senders.

initialize each random sender with a sufficient ETH and
ERC20 tokens balances. Similar to before, we prepare
different initial states with an increasing number of
accounts in the genesis block.

Fig. 12 shows the size of initial state versus perfor-
mance for LMPT-based OpenEthereum and the standard
OpenEthereum for Uniswap exchange transactions initi-
ated by random senders addresses. The performance for
Uniswap transactions are lower versus ERC20 transac-
tions because they require more computation and storage
accesses. The results of the experiment are similar to
the results of the simple payment and ERC20 trans-
fer as the standard OpenEthereum reaches saturation
much more quickly as the state grows in size. In the
Uniswap experiment, we use a machine with superior
computing and memory capabilities. Thus, both LMPT-
based OpenEthereum and standard OpenEthereum reach
saturation much slower in Fig. 12 compared to Fig. 11
even though Uniswap requires more computation and
storage accesses than ERC20. For instance, for 3 millions
accounts in standard OpenEthereum the TPS for ERC20
is smaller than the TPS for Uniswap, this is because
standard OpenEthereum reaches saturation in the inferior
machine. On the other hand, for 3 millions accounts
in LMPT-based OpenEthereum the TPS for ERC20 is
bigger than the TPS for Uniswap while the Uniswap
is run on a more superior machine. Eventually, for 10
millions accounts, LMPT-based OpenEthereum reaches
saturation in the inferior machine, and the TPS for
ERC20 is smaller than the TPS for Uniswap that is
run on a superior machine. Notice that for 10 million
accounts, LMPT-based OpenEthereum outperforms stan-
dard OpenEthereum by almost a factor 2 for Uniswap
transactions. The results of this experiment also show
that LMPT is an effective solution for blockchains that
support the advanced DeFi smart contracts that does

more complex computation and storage state reads and
writes.

The reduced speed-up factor for Uniswap transactions
of LMPT compared to simple payment and ERC20
transfer transactions is because a Uniswap transaction
involves computing the output amount based on the input
amount using Equation 1. On the other hand, a simple
payment or an ERC20 transfer transaction does not
involve such computation. Thus, there will be no speed-
up in executing the corresponding arithmetic operations
to carry this computation between an MPT-based client
and an LMPT-based client since they have the same
execution engine. The speed-up will be in accessing the
data in storage where the two clients differ.

The experiments show for a large initial blockchain
state that the LMPT-based client outperforms the MPT-
based client by a factor of 6 for simple payment
transfer, 8 for ERC20 transfer, 1.9 for Uniswap tokens
swap transactions. These speedups are thanks to the
partial elimination of the authenticated read and write
amplifications that require additional data accesses. In
particular, an authenticated read/write in MPT can have a
read/write amplification of 64 in the worst-case scenario,
i.e., one per hexadecimal in the 256-bit hash of the
address, i.e., 4 − bit × 64 = 256 − bit. The read/write
amplification converges towards the worst case when
the initial blockchain state is large, i.e., the trie is large
implying more internal nodes between the root node and
the target node. The following mechanisms adopted in
LMPT helped reduce the above worst-case amplification:

• For hot data, authenticated reads by a light node can
retrieve data from memory rather than from disk.

• For simple reads by a full node the key-value flat
map eliminates the read amplifications, i.e., a read
no longer needs to access all inner nodes in the trie
between the root node and the node storing data.

• For writes, updates are written to the delta trie in the
memory and propagated in the background to the
disk. Thus, avoiding the execution being delayed
while the MPT on the disk updates all internal
nodes which may require an additional 64 disk
writes in the worst case.

VI. RELATED WORK

Layered storage hierarchy has been studied exten-
sively in the context of storage systems, distributed
systems, and databases to ensure efficient data accesses
for data intensive applications [20], [34], [39], [30], [31],
[21], [22], [23], [49], [17]. However, layered storage
design based on MPTs was not studied in the con-
text of global state storage in blockchain platforms. In
particular, the problem LMPTs are solving are for the
main blockchain networks, i.e., Layer-1 solutions. As

a result, we discuss other recent Layer-1 solutions that
improve blockchain throughput here.
Distributed MPTs: A number of works [36], [38]
study distributed MPTs to improve storage performance.
In [38], the authors introduce mLSM, which splits the
storage layer into multiple MPTs. This allows to reduce
the authenticated read and write amplification. By de-
coupling the verifier with the lookup, mLSM reduced
the I/O workload between reads and writes. However,
increasing the number of levels in the MPT structure
introduces a separate write amplification between layers
and performance considerations need to be made when
doing compaction between different tries.

Soujanya et al. [36] introduce Rainblock, which
uses distributed sharding for the MPTs to improve
storage performance in Ethereum based clients [36].
The underlying architecture proposes to decouple nodes
into clients, miners, and storage nodes. This allows the
storage nodes to use a distributed and sharded MPT in
order to provide witness proofs to verify blocks based on
the Merkle root. However, Rainblock requires major
changes to existing Ethereum clients, as there is no such
distinction between clients, miners and storage nodes.
On the other hand, our LMPT design does not require
major architectural changes and can be applied directly
to existing nodes in Ethereum with few modifications,
as we discussed in Section IV. Chenxing et al. [26]
evaluated the TPS performance of both LMPT and
Rainblock under a large block size configuration of
20, 000 transactions per block (in our experiments we
use more realistic block sizes that reflect real gas limits)
for simple payments and ERC20 transfers. Their results
(Figure 2 in [26]) show that Rainblock achieves
a small TPS increase of 10% over LMPT. Chenxing
et al. [26] proposes LVMT a new blockchain storage
that instead of MPT it uses a new cryptographic vec-
tor commitment scheme called authenticated multipoint
evaluation tree (AMT) that can update commitment (i.e.,
the hash root) in constant time instead of O(log n) in
MPT. An LVMT-based client can achieve a much better
TPS than both Rainblock and LMPT [26]. However,
similar to Rainblock, LVMT requires major changes
to existing Ethereum clients, replacing the whole MPT
storage data structures by AMT-based data structures. On
the other hand, our LMPT design builds on the existing
MPT storage data structures.
Consensus protocols: There are many works on im-
proving transaction throughput in blockchain systems
by improving the underlying consensus protocols with
different tradeoffs, e.g., [11], [14], [19], [27]. Although
improving consensus protocols is an important concern,
the transaction execution will still be a bottleneck by
blocking I/O calls made by clients. As the blockchain
state increasingly grows, the storage bottleneck will be

the main problem faced by blockchain clients to over-
come for scaling transaction throughput. Our proposed
LMPT can be implemented with any consensus mecha-
nism, and it allows further improvements in performance.
Sharding in blockchains: There are a number of
works on improving throughput in blockchain platforms
through sharding transaction execution and sharding the
blockchain state [10], [16], [28], [35]. The Ethereum
community has also been receptive to sharding consen-
sus solutions as a part of the ETH2 protocol [9]. Sharding
proposes validator nodes to split up into smaller com-
mittees and validate a portion of the entire blockchain
state. By separating groups of validator nodes, the nodes
can also validate blocks with fewer resources, as it only
needs to keep track of a small portion of the state and
can allow more validators to participate on a limited set
of computing power. However, sharding also introduces
the problem of malicious nodes gaining easier access
to attack the blockchain. This is because the state is
more vulnerable to fragmentation, and sharding requires
stricter network guarantees and fewer overall validators
in each shard committee [37], [41]. In addition, sharding
often requires heavy cross-shard communication and
more networking overhead as nodes need to coordinate
transactions with other nodes that have different portions
of the state [43]. All in all, sharding is orthogonal to
the problem LMPTs are solving by enabling a more
performant storage structure.

VII. CONCLUSION

The LMPT is a novel storage structure that can sig-
nificantly improve transaction processing in the storage
layer of blockchain systems. This paper shows that it is
able to be easily integrated to existing blockchain clients
and can be used to improve throughput, in addition
to novel consensus mechanisms. Ultimately, our results
show that the LMPT is able to parallelize execution in
the critical path and is effective for improving import
performance in block catchup, especially for large states.

LMPT is integrated in production in the Conflux
protocol [27], [33], an EVM-based high performance
blockchain, replacing the traditional MPT.

There are several interesting avenues for future work
for improving the efficiency of blockchain platforms.
In particular, new vector commitment schemes such as
authenticated multipoint evaluation Trees (AMT) [44]
and Hyperproofs [42] permit to achieve faster authen-
ticated storage reads and writes than MPT. Furthermore,
Hyperproofs provides an efficient proof aggregation
mechanism that enables to build a blockchain protocol
with states sharding. Thus, an interesting direct future
work is to investigate how to extend the layered LMPT
design to AMT and Hyperproofs.

REFERENCES

[1] ERC-20 Top tokens. https://etherscan.io/tokens.
[2] Ethereum Node and Clients. https://ethereum.org/en/developers/

docs/nodes-and-clients/.
[3] Etherum White Paper. https://github.com/ethereum/wiki/wiki/

White-Paper.
[4] Go Ethereum. https://geth.ethereum.org/.
[5] OpenEthereum. https://github.com/openethereum/openethereum.
[6] Perf tools. https://github.com/torvalds/linux/tree/master/tools/

perf.
[7] Top 20 Gas Consuming Smart Contracts.

https://www.theblockcrypto.com/data/on-chain-metrics/
ethereum.

[8] Uniswap Protocol. https://uniswap.org/.
[9] Validated, staking on eth2: Sharding Consensus. https://blog.

ethereum.org/2020/03/27/sharding-consensus/.
[10] Mustafa Al-Bassam, Alberto Sonnino, Shehar Bano, Dave

Hrycyszyn, and George Danezis. Chainspace: A sharded smart
contracts platform. In 25th Annual Network and Distributed
System Security Symposium, NDSS 2018, San Diego, California,
USA, February 18-21, 2018, 2018.

[11] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin,
Konstantinos Christidis, Angelo De Caro, David Enyeart,
Christopher Ferris, Gennady Laventman, Yacov Manevich,
Srinivasan Muralidharan, Chet Murthy, Binh Nguyen, Manish
Sethi, Gari Singh, Keith Smith, Alessandro Sorniotti, Chrysoula
Stathakopoulou, Marko Vukolić, Sharon Weed Cocco, and Jason
Yellick. Hyperledger fabric: A distributed operating system for
permissioned blockchains. In Proceedings of the Thirteenth
EuroSys Conference, EuroSys ’18, New York, NY, USA, 2018.
Association for Computing Machinery.

[12] Vivek Bagaria, Sreeram Kannan, David Tse, Giulia Fanti, and
Pramod Viswanath. Prism: Deconstructing the blockchain to
approach physical limits. In Proceedings of the2019 ACM
SIGSAC Conference on Computer and Communications Security,
CCS ’19, page 585–602, New York, NY, USA, 2019. Association
for Computing Machinery.

[13] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van
Accche. The keccak reference, version 3.0. https://keccak.team/
files/Keccak-reference-3.0.pdf, 2011.

[14] Vitalik Buterin, Daniël Reijsbergen, Stefanos Leonardos, and
Georgios Piliouras. Incentives in ethereum’s hybrid casper
protocol. Int. J. Netw. Manag., 30(5), Sep 2020.

[15] Luisanna Cocco, Andrea Pinna, and Michele Marchesi. Banking
on blockchain: Costs savings thanks to the blockchain technol-
ogy. Future Internet, 9:25, 06 2017.

[16] Hung Dang, Tien Tuan Anh Dinh, Dumitrel Loghin, Ee-Chien
Chang, Qian Lin, and Beng Chin Ooi. Towards scaling
blockchain systems via sharding. In Proceedings of the 2019
International Conference on Management of Data, SIGMOD
’19, page 123–140, New York, NY, USA, 2019. Association for
Computing Machinery.

[17] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavard-
han Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan
Sivasubramanian, Peter Vosshall, and Werner Vogels. Dynamo:
amazon’s highly available key-value store. In Thomas C. Bres-
soud and M. Frans Kaashoek, editors, Proceedings of the 21st
ACM Symposium on Operating Systems Principles 2007, SOSP
2007, Stevenson, Washington, USA, October 14-17, 2007, pages
205–220. ACM, 2007.

[18] Vitalik Buterin Fabian Vogelsteller. ”eip-20: Erc-20 token stan-
dard,” ethereum improvement proposals, 2015.

[19] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and
Nickolai Zeldovich. Algorand: Scaling byzantine agreements
for cryptocurrencies. In Proceedings of the 26th Symposium on
Operating Systems Principles, pages 51–68. ACM, 2017.

[20] John L. Hennessy and David A. Patterson. Computer Architecture
- A Quantitative Approach, 5th Edition. Morgan Kaufmann, 2012.

[21] Song Jiang, Xiaoning Ding, Feng Chen, Enhua Tan, and Xi-
aodong Zhang. DULO: an effective buffer cache management
scheme to exploit both temporal and spatial localities. In

https://etherscan.io/tokens
https://ethereum.org/en/developers/docs/nodes-and-clients/
https://ethereum.org/en/developers/docs/nodes-and-clients/
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://geth.ethereum.org/
https://github.com/openethereum/openethereum
https://github.com/torvalds/linux/tree/master/tools/perf
https://github.com/torvalds/linux/tree/master/tools/perf
https://www.theblockcrypto.com/data/on-chain-metrics/ethereum
https://www.theblockcrypto.com/data/on-chain-metrics/ethereum
https://uniswap.org/
https://blog.ethereum.org/2020/03/27/sharding-consensus/
https://blog.ethereum.org/2020/03/27/sharding-consensus/
https://keccak.team/files/Keccak-reference-3.0.pdf
https://keccak.team/files/Keccak-reference-3.0.pdf

Garth Gibson, editor, Proceedings of the FAST ’05 Conference
on File and Storage Technologies, December 13-16, 2005, San
Francisco, California, USA. USENIX, 2005.

[22] Hyojun Kim, Sangeetha Seshadri, Clement L. Dickey, and
Lawrence Chiu. Evaluating phase change memory for enterprise
storage systems: A study of caching and tiering approaches. ACM
Trans. Storage, 10(4):15:1–15:21, 2014.

[23] Jaehyung Kim, Hongchan Roh, and Sanghyun Park. Selective I/O
bypass and load balancing method for write-through SSD caching
in big data analytics. IEEE Trans. Computers, 67(4):589–595,
2018.

[24] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly,
Ismail Khoffi, Linus Gasser, and Bryan Ford. Enhancing bitcoin
security and performance with strong consistency via collective
signing. In Proceedings of the 25th USENIX Conference on Se-
curity Symposium, SEC’16, page 279–296, USA, 2016. USENIX
Association.

[25] Ao Li, Jemin Andrew Choi, and Fan Long. Securing smart
contract with runtime validation. In Proceedings of the 41st
ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2020, page 438–453, New York, NY,
USA, 2020. Association for Computing Machinery.

[26] Chenxing Li, Sidi Mohamed Beillahi, Guang Yang, Ming Wu,
Wei Xu, and Fan Long. LVMT: an efficient authenticated storage
for blockchain. In Roxana Geambasu and Ed Nightingale, editors,
17th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2023, Boston, MA, USA, July 10-12, 2023,
pages 135–153. USENIX Association, 2023.

[27] Chenxing Li, Peilun Li, Dong Zhou, Zhe Yang, Ming Wu,
Guang Yang, Wei Xu, Fan Long, and Andrew Chi-Chih Yao.
A Decentralized Blockchain with High Throughput and Fast
Confirmation. USENIX Association, USA, 2020.

[28] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja,
Seth Gilbert, and Prateek Saxena. A secure sharding protocol
for open blockchains. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, CCS
’16, pages 17–30, New York, NY, USA, 2016. ACM.

[29] Thomas McGhin, Kim-Kwang Raymond Choo, Charles Zhechao
Liu, and Debiao He. Blockchain in healthcare applications:
Research challenges and opportunities. Journal of Network and
Computer Applications, 135:62–75, 2019.

[30] Nimrod Megiddo and Dharmendra S. Modha. ARC: A self-
tuning, low overhead replacement cache. In Jeff Chase, editor,
Proceedings of the FAST ’03 Conference on File and Storage
Technologies, March 31 - April 2, 2003, Cathedral Hill Hotel,
San Francisco, California, USA. USENIX, 2003.

[31] Michael P. Mesnier, Feng Chen, Tian Luo, and Jason B. Ak-
ers. Differentiated storage services. In Ted Wobber and Peter
Druschel, editors, Proceedings of the 23rd ACM Symposium
on Operating Systems Principles 2011, SOSP 2011, Cascais,
Portugal, October 23-26, 2011, pages 57–70. ACM, 2011.

[32] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash
system,” http://bitcoin.org/bitcoin.pdf.

[33] Conflux Network. Conflux-rust. https://developer.
confluxnetwork.org/, 2023.

[34] Elizabeth J. O’Neil, Patrick E. O’Neil, and Gerhard Weikum. The
LRU-K page replacement algorithm for database disk buffering.
In Peter Buneman and Sushil Jajodia, editors, Proceedings of the
1993 ACM SIGMOD International Conference on Management
of Data, Washington, DC, USA, May 26-28, 1993, pages 297–
306. ACM Press, 1993.

[35] George Pı̂rlea, Amrit Kumar, and Ilya Sergey. Practical smart
contract sharding with ownership and commutativity analysis. In
Stephen N. Freund and Eran Yahav, editors, PLDI ’21: 42nd ACM
SIGPLAN International Conference on Programming Language
Design and Implementation, Virtual Event, Canada, June 20-25,
20211, pages 1327–1341. ACM, 2021.

[36] Soujanya Ponnapalli, Aashaka Shah, Souvik Banerjee, Dahlia
Malkhi, Amy Tai, Vijay Chidambaram, and Michael Wei. Rain-
block: Faster transaction processing in public blockchains. In
2021 USENIX Annual Technical Conference (USENIX ATC 21),
pages 333–347. USENIX Association, July 2021.

[37] Tayebeh Rajab, Mohammad Hossein Manshaei, Mohammad
Dakhilalian, Murtuza Jadliwala, and Mohammad Ashiqur Rah-
man. On the feasibility of sybil attacks in shard-based permis-
sionless blockchains. arXiv preprint arXiv:1710.09437, 2020.

[38] Pandian Raju, Soujanya Ponnapalli, Evan Kaminsky, Gilad Oved,
Zachary Keener, Vijay Chidambaram, and Ittai Abraham. mlsm:
Making authenticated storage faster in ethereum. In 10th USENIX
Workshop on Hot Topics in Storage and File Systems (HotStorage
18), Boston, MA, July 2018. USENIX Association.

[39] Benjamin Reed and Darrell D. E. Long. Analysis of caching
algorithms for distributed file systems. ACM SIGOPS Oper. Syst.
Rev., 30(3):12–21, 1996.

[40] Sara Rouhani and Ralph Deters. Performance analysis of
ethereum transactions in private blockchain. In 2017 8th IEEE
International Conference on Software Engineering and Service
Science (ICSESS), pages 70–74, 2017.

[41] Alberto Sonnino, Shehar Bano, Mustafa Al-Bassam, and George
Danezis. Replay attacks and defenses against cross-shard con-
sensus in sharded distributed ledgers. 2020 IEEE European
Symposium on Security and Privacy (EuroS&P), pages 294–308,
2020.

[42] Shravan Srinivasan, Alexander Chepurnoy, Charalampos Papa-
manthou, Alin Tomescu, and Yupeng Zhang. Hyperproofs:
Aggregating and maintaining proofs in vector commitments.
IACR Cryptol. ePrint Arch., page 599, 2021.

[43] Yuechen Tao, Bo Li, Jingjie Jiang, Hok Chu Ng, Cong Wang,
and Baochun Li. On sharding open blockchains with smart
contracts. In 2020 IEEE 36th International Conference on Data
Engineering (ICDE), pages 1357–1368, 2020.

[44] Alin Tomescu, Robert Chen, Yiming Zheng, Ittai Abraham,
Benny Pinkas, Guy Golan Gueta, and Srinivas Devadas. Towards
scalable threshold cryptosystems. In Proceedings of the 2020
IEEE Symposium on Security and Privacy, pages 877–893. IEEE,
2020.

[45] Yingli Wang, Jeong Hugh Han, and Paul Beynon-Davies. Un-
derstanding blockchain technology for future supply chains: a
systematic literature review and research agenda. Supply Chain
Management: An International Journal, 24, 12 2018.

[46] Gavin Wood. Ethereum: A secure decentralised generalised
transaction ledger, 2012. https://ethereum.github.io/yellowpaper/
paper.pdf.

[47] Gavin Wood. Ethereum: A secure decentralised generalised
transaction ledger, 2017.

[48] Karl Wüst and Arthur Gervais. Do you need a blockchain?
In 2018 Crypto Valley Conference on Blockchain Technology
(CVCBT), pages 45–54. IEEE, 2018.

[49] Xinan Yan, Linguan Yang, Hongbo Zhang, Xiayue Charles Lin,
Bernard Wong, Kenneth Salem, and Tim Brecht. Carousel: Low-
latency transaction processing for globally-distributed data. In
Gautam Das, Christopher M. Jermaine, and Philip A. Bernstein,
editors, Proceedings of the 2018 International Conference on
Management of Data, SIGMOD Conference 2018, Houston, TX,
USA, June 10-15, 2018, pages 231–243. ACM, 2018.

[50] Haifeng Yu, Ivica Nikolić, Ruomu Hou, and Prateek Saxena.
Ohie: Blockchain scaling made simple. In 2020 IEEE Symposium
on Security and Privacy (SP), pages 90–105, 2020.

Jemin Andrew Choi received his BASc in
Computer Engineering and MSc in Computer
Science at the University of Toronto where
he worked with Fan Long on blockchain
authenticated storage systems. He is broadly
interested in programming languages and dis-
tributed systems..

https://developer.confluxnetwork.org/
https://developer.confluxnetwork.org/
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf

Sidi Mohamed Beillahi is an NSERC Post-
doctoral Fellow at the University of Toronto.
He received his Ph.D. at Paris Diderot Uni-
versity, in 2021. The focus of his research
is on developing programming languages and
formal verification techniques to enhance the
construction of secure and reliable software
systems operating distributed databases and
blockchain platforms.

Srisht Fateh Singh is currently pursuing his
PhD at the ECE department, University of
Toronto from where he also graduated with
MASc in 2023. Prior to this, he pursued
his Bachelor’s from the EE department at
IIT Bombay in 2021. His research interests
include decentralized finance, applications in
blockchain, and systems design, in general.

Panagiotis Michalopoulos (Graduate Stu-
dent Member, IEEE) received the Diploma
in electrical and computer engineering from
the University of Patras, Patras, Greece, in
2017, and the M.Sc. degree in embedded
systems from the Eindhoven University of
Technology, Eindhoven, The Netherlands, in
2020. He is currently working toward the
Ph.D. degree in electrical and computer en-
gineering with the University of Toronto,
Toronto, ON, Canada. His research interests

include identity and trust systems, CBDCs, and distributed ledger
technologies.

Peilun Li obtained his Bachelor’s and PhD
degrees from IIIS, Tsinghua University. Post-
graduation, he assumed the role of a tech-
nical specialist at the Shanghai Tree-Graph
Blockchain Research Institute. His primary
research focus lies in the realm of distributed
systems and blockchain technology.

Andreas Veneris is a Connaught Scholar
and Professor at the Department of Electrical
and Computer Engineering, cross-appointed
with the Department of Computer Science
at the University of Toronto. He obtained a
Ph.D. from the University of Illinois, Urbana-
Champaign. In the past, he held joint faculty
positions with the Athens University of Eco-
nomics and Business (Dept. of Informatics,
2006-16) and with the University of Tokyo
(Dept. of ECE, 2010-11). For more than 20

years he worked in the field of CAD for VLSI synthesis, verification
and debugging using formal methods where he published more than
120 conference/journal papers. Today, he focuses on Central Bank Dig-
ital Currencies (CBDCs), mechanism/economic design of distributed
systems, formal methods for smart contract verification, and techno-
legal blockchain policy/regulatory questions. Prof. Veneris has received
a 10-year Best Paper Retrospective Award, five other best paper awards
and holds three patents. He was a member of the team in the first
webcast ever (37th Grammy Awards, 1995), an event acknowledged
by the American Congress. In February 2021 his work with the Bank
of Canada became public, proposing Canada’s Central Bank Digital
Loonie – the first work of its kind that presents a comprehensive
technological, regulatory/legal and economic model for a central bank
digital currency. In 2021 he was honored to be acknowledged for his
contributions on a classified report by the Hoover Institution, prefaced
by former United States Secretary of the State Condoleezza Rice and
co-authored by an extensive list of prominent world-thinkers. This
report was released on March 1, 2022 titled as “Digital Currencies:
The US, China, And The World At A Crossroads”. A week later US
President Joe Biden signed an Executive Order following most of the
recommendations of this report. Today he engages with many G20
Central Banks on the topic of CBDCs.

Fan Long is an assistant professor at Com-
puter Science Department in University of
Toronto. He holds PhD of Computer Science
from MIT. His research interests include pro-
gramming language, software engineering,
security, and blockchain. He is a recipient
of ACM SIGSOFT outstanding dissertation
award. He is also a co-founder of Conflux,
a high-performance next-generation public
blockchain project.

	Introduction
	Background
	Ethereum Blockchain
	Ethereum Storage

	Motivation and Overview
	Observations and Motivation
	LMPT Overview

	LMPT Design
	Definitions and Data Structures
	Read and Write Operations
	Trie Merge Operations
	Integration with Blockchain Clients

	Empirical Evaluation
	Implementation
	Experimental Setup
	Simple Payments
	ERC20 Transfers
	Uniswap Exchange

	Related Work
	Conclusion
	References
	Biographies
	Jemin Andrew Choi
	Sidi Mohamed Beillahi
	Srisht Fateh Singh
	 Panagiotis Michalopoulos (Graduate Student Member, IEEE)
	 Peilun Li
	Andreas Veneris
	Fan Long

