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Abstract

Recent advances in Boolean satisfiability have made it
attractive to solve many digital VLSI design problems
such as verification and test generation. Fault diag-
nosis and logic debugging have not been addressed by
existing satisfiability-based solutions. This paper at-
tempts to bridge this gap by proposing a model-free
satisfiability-based solution to these problems. The
proposed formulation is intuitive and easy to imple-
ment. It shows that satisfiability captures significant
problem characteristics and it offers different trade-offs.
It also provides new opportunities for satisfiability-
based diagnosis tools and diagnosis-specific satisfiabil-
ity algorithms. Theory and experiments validate the
claims and demonstrate its potential.

1 Introduction

Recent years have seen an increased use of Boolean Sat-
isfiability (SAT) based tools in the design cycle. Design
verification and model checking [4][5], test generation
[6], optimization [10] and physical design [12], among
others, have been successfully tackled with SAT-based
solutions. This is due to recent advances in SAT solvers
[7] [9] that make them efficient tools for these problems.

Although SAT-based solutions have tackled many
circuit design problems, design diagnosis has not yet
been addressed in existing literature. Given an erro-
neous design, a specification and a set of input test vec-
tors, diagnosis identifies malfunctioning portions of the
design. Diagnosis is an integral process to improve the
design cycle, increase manufacture yield and shorten
the time-to-market window [2] [3].

Depending on the stage of the design cycle, shown
in Fig. 1, and the type of malfunction (“soft” or
“hard”), diagnosis is required during design error diag-
nosis (logic debugging) and during fault diagnosis. De-

sign error diagnosis occurs in early stages of the design

cycle where the specification is some HDL (or RTL) de-
scription and the design is a logic netlist. Malfunctions
are caused by specification changes, bugs in automated
tools or the human factor [1]. Logic debugging identi-
fies lines and corrections in the erroneous netlist that
correct it according to a specification. Fault diagno-

sis takes place when the fabricated chip fails testing.
Given a faulty chip and a netlist, fault diagnosis iden-
tifies locations in the correct netlist by injecting faults
into it until the netlist emulates the behavior of the
faulty chip. Since both problems have similar goals,
we describe this work in terms of fault diagnosis unless
otherwise stated.

It is notable that diagnosis is an inherently dif-
ficult problem because the solution (search) space
grows exponentially with the number of circuit lines,
the number of faults and the various fault models :
diagnosis space = (# ckt lines)(# errors). This is
because the specification (HDL or the failing chip) is
treated as a “black box” controllable at the primary
inputs and observable at the primary outputs (Fig. 2).
Due to this complexity, development of efficient diag-
nosis tools remains a challenging task.

Motivated by these observations, we present a SAT-

based solution to design diagnosis of multiple faults.
The formulation is intuitive, straightforward to im-
plement and decouples diagnosis from fault model-
ing. Model-free diagnosis is a desirable characteristic
for modern devices where fault effects may have non-
deterministic (unmodeled) behavior [3].

In this work we do not develop a SAT solver but we
propose a SAT-based solution to fault diagnosis and
we use existing solvers to solve it. We argue that SAT
naturally captures many essential characteristics of di-
agnosis, we examine different implementation trade-offs
and suggest heuristics to guide a SAT solver towards an
efficient solution. To the best of our knowledge, this is
the first work to examine design diagnosis using SAT.
Experiments with multiple faults demonstrate the effi-



ciency and practicality of the approach.

This paper is organized as follows. Section 2 contains
background information and definitions. Section 3 de-
scribes the proposed SAT-based formulation and its
characteristics. Section 4 contains experiments and the
last Section concludes this work.

2 Background

Traditionally, diagnosis techniques are classified as
cause-effect or effect-cause techniques [2]. Cause-effect
analysis usually compiles fault dictionaries. Given a
failing chip and a set of vectors v1, v2, . . . , vk from the
tester, the chip responses are matched with those in
the dictionary to return set of potential faults for each
vector. Effect-cause analysis does not use fault dictio-
naries but simulates input vectors and applies different
techniques to identify candidate faults.

In both cases, sets of candidate faults F1, F2, . . . , Fk

are returned. When each Fi is injected in the netlist,
it explains the (faulty or non-faulty) behavior of test
vector vi alone. These sets are later intersected F =
F1∩F2 ∩· · ·∩Fk to return set F of faults that explains
the chip behavior for all vectors v1, v2, . . . , vk.

The quality of diagnosis is related to its resolution,
that is, its ability to return in F the line(s) where
fault(s) reside. Due to fault equivalence [2], a solu-
tion may not be unique. Ideally, a solution contains
only the actual and equivalent fault sites, because it is
easier for the designer to probe these sites.

In this work, we consider combinational circuits with
primitives AND, OR, NOT, NAND, NOR, XOR and XNOR gates
and full-scan sequential circuits with a fault-free scan-
chain. We use Conjunctive Normal Form (CNF) SAT
instances expressed as a logical AND (·) of clauses, each
of which is the OR (+) of one or more literals. A literal
is an instance of a variable x or its negation x′. We
use the procedure in [6] to translate logic circuits into
CNF form. Given a CNF formula, a SAT solver finds
a variable assignment that satisfies the formula or it
proves that the formula cannot be satisfied.

Without loss of generality, we describe our al-
gorithms on circuits with m primary inputs X =
x1, x2, . . . , xm and a single primary output y =
f(x1, x2, . . . , xm) = f(X). The method is easily gen-
eralized to multiple output circuits. We use the names
L = {l1, l2, . . . , ln} to represent internal circuit lines
including stems and branches. The method in Sec-
tion 3 adds circuitry to the original circuit. This
new hardware requires two extra lines per original cir-
cuit line and we use S = {s1, s2, . . . , sn} and W =
{w1, w2, . . . , wn} to label these lines.
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Figure 1: Digital VLSI design flow
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Figure 2: Fault diagnosis and logic debugging

In this presentation, variables for all circuit lines
xi, li, wi and y are defined to model circuit constraints
under simulation of vector vj . To avoid confusion,

we use the notation x
j
i , l

j
i , w

j
i and yj for these vari-

ables and Xj , Lj and W j for the respective sets of
variables. Under this notation, superscript j matches
the index of simulated test vector vj . The notation
S = {s1, s2, . . . , sn} is used to indicate both variable
and line names. Variables for lines S are common to
all test vectors.

3 SAT-based Design Diagnosis

Given a logic netlist and a set of vectors v1, v2, . . . , vk,
the SAT-based algorithm introduces new logic and
compiles a CNF formula Φ for this new circuit to model
vector constraints. Formula Φ has two components.

The first component is the conjunction of k CNF for-
mulas Cj(Lj , W j , Xj , yj , S), 1 ≤ j ≤ k. Each such
Cj enforces vector vj constraints in the logic netlist
and potential fault sites. This is done with circuitry
added to the design. The second component EN (S) de-
scribes constraints for the number N of injected faults.



These constraints are also coded in the circuit with
hardware and they are later translated to CNF. N is
user-specified and it states that the design is corrupted
with N faults.

The complete formula Φ is expressed as:

Φ = EN (S) ·

k∏

j=1

Cj(Lj , W j , Xj , yj , S)

Intuitively,
∏k

j=1 Cj(Lj , W j , Xj , yj , S) requires that

the candidate set of faults satisfies every Cj constraint
for all vectors vj . In other words, faults are intersected

for all vectors as in traditional diagnosis. We now de-
scribe how each component of Φ is formed with theory
and examples.

Component 1: This is comprised of k CNF formulas
Cj to model the circuit and fault constraints for vector
vj . The circuit is modified to reflect the presence of
faults at various circuit lines. To model the presence of
a fault on line li, a multiplexer with select line Si is at-
tached to this line. This multiplexer is later translated
into CNF format and added to the formula.

Consider the circuit in Fig. 3(a), for example. The
presence of a fault on line l = g → h can be repre-
sented by a multiplexer with select line s, as shown in
Fig. 3(b) and explained in [11]. The first input of the
multiplexer is connected to the output of gate g and
the second input of the multiplexer is connected to a
new line w to model the potential fault. The output
of the multiplexer is connected to the original output
of g. Observe that the functionality of the original or
faulty circuit is selected when the value of the select
line is 0 or 1, respectively.

The CNF for the multiplexer logic is given in
Fig. 3(c). It can be seen that only 4 clauses are re-
quired. Hence, the CNF formula for the complete cir-
cuit in Fig. 3(b) is C = (x1 + l′) · (x2 + l′) · (x′

1 + x′

2 +
l) · (s + l′ + z) · (s + l + z′) · (s′ + w′ + z) · (s′ + w + z′) ·
(x3 + y) · (z + y) · (x′

3 + z′ + y′).
Once multiplexers are introduced at every line, the

new circuit is translated into CNF. To get Cj from
this CNF formula, we insert clauses that represent in-
put/output constraints of the test vectors vj . This can
be done with a set of unit-literal clauses for the set
of primary input variables x1, x2, . . . , xm and primary
output y. These literals agree with the respective logic
values of the vector vj ; that is, if vj assigns a logic 1 (0)

to input xj then x
j
i (xj

i
′) appears in the formula and

so on.

Example: Recall the circuit in Fig. 3(a) and assume
there is a single stuck-at 1 fault on line l. The input

test vector v = (x1, x2, x3) = (1, 0, 1) detects the fault:
a logic 1 appears at the output of the good circuit,
while a logic 0 appears at the output of the faulty one.
The construction requires unit-literal clauses x1, x2, x3

and y′ to be added to C. Hence, the final CNF formula
for vector v is Cv = C · x1 · x

′

2 · x3 · y
′.

This process is repeated for every test vector vj , j =
1 . . . k to get CNFs Cj(Lj , W j , Xj , yj , S). Note that
each such formula requires a new set of variables (and
literals) for primary inputs (Xj), primary outputs (yj),
internal circuit lines (Lj) and fault sites (W j). This is
because every input test vector may translate into a
different set of constraints for circuit lines and fault
locations. However, only one set of select line S =
s1, s2, . . . , sn variables is used because the fault(s) of a
solution must satisfy all the vector constraints simulta-
neously. The second component, described next, con-
strains the cardinality N of these faults.
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Figure 3: Circuit multiplexer construction C

Component 2: The second component attaches addi-
tional hardware to the circuit above. This logic trans-
lates into constraints EN (S) that request a solution
with at most N faults. When this new circuit is trans-
lated into CNF, we obtain formula Φ. We describe the
idea for the single fault case (E1(S)) first. Later, we
generalize for multiple faults and discuss trade-offs.

Example: Consider the formula Cv computed by the
first component. This formula models the circuit in
Fig. 3(b) under simulation of test vector v = (1, 0, 1).
Assume s (multiplexer select line) is introduced as an
additional unit-literal clause so that the formula be-
comes Cv = C · x1 · x

′

2 · x3 · y′ · s. Given this new Cv ,
a SAT solver will attempt to find a satisfying variable
assignment for the circuit lines and the variable w so
that the circuit emulates the faulty chip behavior for
vector v. The multiplexer will be forced to select line w



and the solver will return w = 1 to indicate a stuck-at
1 fault on line l.

The general procedure for single faults is an exten-
sion of the one in the example. Given variables for
select lines S = s1, s2, . . . , sn, we need to add the com-
ponent E1(S) to indicate that one, and only one select
line may be set to logic 1 at any time. This is done
with the following:

E1(S) = (s1 + s2 + · · · + sn) ·
∏

i = 1...n − 1,

j = i + 1...n

(s′i + s′j)

The left part requires that at least one select line be
set to logic 1, and the right part causes E1(S) to be-
come unsatisfied if more than one select line is set to
1. Clearly, the set of new clauses introduced by E1(S)
is O(n2). This idea can be extended to multiple errors.
For example, it can be shown that

E2(S) = (s1+s2+· · ·+sn)·
∏

i = 1...n − 2,

j = i + 1...n − 1
p = j + 1...n

(s′i+s′j +s′p)

requires the SAT solver to search for one or two faults
etc. Although this formulation of EN (S) may be prac-
tical for single faults, it requires an exponential number
of clauses to be added explicitly to the formula. For ex-
ample, E2(S) for a circuit with 103 lines requires 109

new clauses to be included.
To overcome this exponential explosion of space re-

quirements in the multiple fault case, we introduce the
circuit the hardware shown in Fig. 4. This hardware
acts as a counter, forcing the SAT solver to “enumer-
ate” sets of N fault sites. In the figure, thick lines
indicate buses of O(logn) bit-width (N ≤ n) and all
other lines represent single bit buses. The hardware
performs a bitwise addition of the multiplexer select
lines S = s1, s2, . . . , sn and compares the result to the
user-defined number of faults N . The output of the
comparator is “forced” to logic 1 with a unit-literal
clause so that the bitwise addition of the members of
S is always equal to N in the comparator. As with the
select lines themselves, the variables introduced for this
hardware are common to all vectors vj .

It can be shown that the number of CNF clauses
introduced by EN (S) with this hardware construction
remains linear O(n). We omit proof of the claim due to
lack of space. Intuitively, this implicit hardware repre-
sentation for EN (S) provides a trade-off between time
and space. In the section that follows, we argue that
modern SAT-solvers take advantage of this trade off in
practice to avoid an exponential explosion in the time
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Figure 4: Hardware for multiple errors
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Figure 5: Implementation heuristics

domain. Experiments in Section 4 confirm this obser-
vation.

Implementation Details: As explained, a multi-
plexer requires 4 additional clauses, and the counter
construction in Fig. 4 is done with O(n) clauses. There-
fore, space requirements for Φ are linear O(nk) in both
the number of circuit lines and the number of vectors.
In the remainder of this paper, we discuss time require-

ments and explain why the proposed SAT-based for-
mulation performs model-free diagnosis.

Modern SAT-solvers [7] [9] are enriched with clause-
learning and backtracking techniques to help search
and prune the solution space. To take advantage of
these techniques, the SAT solver is modified as follows.

For every multiplexer with select line si and inputs li
and wi, clause (si+w

j
i
′) is added for vector vj to denote

the logic implication si
′ → w

j
i
′. This has the desirable

effect that when fault on line li is not selected (si = 0),
then the value on wi is immediately set to logic 0 to
prevent unnecessary branching of the SAT solver on
the value of wi. Additionally, as soon as the solution of
fault sites si1 , si2 , . . . , siN

is returned, the SAT-solver
does not reset and start to search for another solution
from scratch. Instead, the clause (s′i1 + s′i2 + · · ·+ s′iN

)
is immediately added as a learned clause.

This is illustrated in Fig. 5 where dotted lines in-
dicate explored portion of the solution space. Upon
discovery of a solution, the tool backtracks and may
reuse part of the past computation to identify other so-



lution(s) or return unsatisfiability (no other solutions).
This is useful in fault diagnosis where all actual and
equivalent solutions need be probed by the test engi-
neer. Experiments show that this heuristic helps a SAT
solver tackle the run-time complexity when it searches
for all solutions [8]. In debugging, the tool usually exits
as soon as it finds the first solution.

The SAT-based formulation does not make any as-
sumption on the logic value of the fault for each vector
vj . Therefore, it provides a model-free approach to di-
agnosis. This is a desirable characteristic because it
may capture faults with “non-deterministic” behavior
[3]. However, it is interesting to argue on the logic as-
signments to variables w

j
i1

, w
j
i2

, . . . , w
j
iN

on circuit lines
li1 , li2 , . . . , liN

of a solution for all vectors vj .

As explained, these logic line assignments are re-
quired to guarantee that the netlist emulates the be-
havior of the specification for vj . The test engineer
may use these values to determine the behavior of the
fault and perform fault modeling [2]. Because of these
characteristics, we can concluded that SAT provides an
attractive platform for fault diagnosis and logic debug-
ging.

4 Experiments

In this Section we present experiments for a proto-
type tool implemented in the C programming language.
Hardware construction and heuristics are embedded in
the code of the SAT-solver described in [7]. Exper-
iments are conducted for single and double stuck-at
faults in the ISCAS’85 benchmark circuits. We use
the original versions of the benchmark circuits where
C7552 has 7552 lines, C432 has 432 lines etc. These
versions contain redundancies and they are harder to
diagnose. The type and location of the faults are se-
lected at random. We run experiments on a SUN Blade
100 workstation with 256MB of memory. Ten experi-
ments are performed for each circuit and for each fault
case. Average values are reported in the next para-
graphs and run-times are in seconds.

Table 1 contains results on single stuck-at faults and
Table 2 shows information in a similar manner for dou-
ble faults. The first column of each table has the circuit
name and the second column contains the number k of
test vectors used for diagnosis. This set contains mainly
vectors with failing responses. Test vector generation
is not the subject of this work [6].

The third column of each table has the initial number
of clauses of Φ before learned clauses are added. These
numbers confirm that memory requirements are linear
to circuit size and number of vectors. For example,

Table 1: Single stuck-at faults

ckt # of # of # fault CPU (sec)
name vectors clauses sites one all
C432 30 48,181 5.6 0.4 0.1
C499 30 142,314 9.4 0.2 0.2
C880 30 108,112 11.4 1.0 0.3
C1355 30 141,388 6.4 1.9 0.6
C1908 30 102,322 3.1 3.1 1.2
C2670 60 420,033 7.4 4.0 1.7
C3540 60 735,345 6.2 15.0 9.1
C5315 60 488,345 12.2 29.0 8.8
C6288 60 1,654,667 2.7 104.1 200.8
C7552 60 1,230,687 6.1 30.1 17.6

C432 requires approximately half the number of clauses
of C880 because it has nearly half the number of lines.
Equivalently, the CNF sizes of circuits with single faults
are half of that for double faults because diagnosis uses
half the number of test vectors.

The number of fault sites (actual and equivalent) re-
turned is found in column 4. The next columns have
total CPU times. CPU time per fault can be found
if we add these columns and divide with the number
of faults. The average CPU time to return the first
solution is found in column 5. Once the first solution
is found, column 6 contains the average CPU time to
return subsequent solutions and/or to prove unsatisfia-
bility. In most cases, SAT is very efficient for diagnosis.

We observe that the SAT-solver spends more time
to return the first solution than all others. The CPU
run-times in the last two columns confirm the intuition
behind Fig. 5 and they suggest that the added clauses
allow the computation performed for the first solution
to be reused by the tool to find other solutions. The
benefit of these heuristics (Section 3) is also depicted
in Fig. 6. This figure shows the SAT solver run-time
for single faults when none, one or both of heuristics
are employed. Recall that the first heuristic requires
variable w

j
i on line li immediately to assume a logic 0

once si is not selected for vector vj . The second heuris-
tic backtracks once a solution is found to reuse past
computation and return more solutions. Run-times in-
dicate that the added clauses allow the SAT solver to
prune the solution space. For C3540, for instance, the
speed up is dramatic.

Experiments demonstrate the effectiveness, flexibil-
ity and practicality of the SAT-based solution to design
diagnosis. In the future, we plan develop diagnosis-
specific satisfiability algorithms to improve perfor-
mance.



Table 2: Double stuck-at faults

ckt # of # of # fault CPU (sec)
name vectors clauses sites one all
C432 60 96,249 13.2 6.7 0.4
C499 60 288,923 23.2 42.1 4.5
C880 60 215,076 17.2 13.1 1.5
C1355 60 286,583 12.4 51.0 2.6
C1908 60 201,556 28.8 20.8 7.4
C2670 120 882,143 24.5 72.7 11.3
C3540 120 987,798 3.3 188.5 102.8
C5315 120 1,695,180 24.3 308.6 15.8
C6288 120 3,240,767 2.2 1011.8 1712.2
C7552 120 2,410,767 3.7 432.1 555.8

time

C432 C1908

(sec)

8.0

1.6

0.1 0.1 1.8
2.4

9.1
11.2

C3540

Both heuristics
First heuristic

156.2

No heuristic

Figure 6: Performance speed up

5 Conclusions

A satisfiability-based solution to multiple fault diag-
nosis and logic debugging is presented. The method
is intuitive and practical within an industrial environ-
ment. Theoretical and experimental results indicate
that Boolean satisfiability provides an efficient solu-
tion to design diagnosis. This gives new opportunities
for satisfiability-based diagnosis tools and diagnosis-
specific satisfiability algorithms.
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