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Abstract— All-solution Boolean satisfiability (SAT) solvers are
engines employed to find all the possible solutions to a SAT
problem. Their applications are found throughout the EDA
industry in fields such as formal verification, circuit synthesis
and automatic test pattern generation. Typically, these engines
iteratively find each solution by calling a standard SAT solving
procedure. Each solution is minimized using different post-
processing techniques and the problem is constrained to prevent
recurring solutions. In this work, instead of applying post-
processing techniques, the objective is to minimize the size of
the solution “on the fly” during the all-solution SAT solving
process. This is achieved by allowing the solver to exploit the
structural circuit Observability Don’t Cares (ODC) arising from
the problem. The solver makes decisions such that the number
of ODCs is maximized in each solution thus leading to an overall
smaller number of iterations. Through extensive experiments, it
is demonstrated that integrating ODC techniques within an all-
solution SAT solver results in increased performance and more
compact solutions.

I. INTRODUCTION

Due to recent developments, Boolean satisfiability (SAT) solvers
are now employed in many EDA applications such as formal verifi-
cation [1], circuit synthesis [2], and circuit testing [3]. The success
of SAT solvers has led to the increased popularity of a subtle
derivative, the all-solution SAT solver. Where the SAT solver seeks
to find a single solution to a SAT problem, the all-solution SAT
solver seeks to find all solutions to a SAT problem. Applications of
all-solution SAT solvers are found in Unbounded Model Checking
(UMC) [4], Automated Test Pattern Generation (ATPG) [3], formal
design debugging [5], and circuit optimization [6], [2], among others.

Typically, all-solution SAT solvers iteratively call a standard SAT
solving procedure to find each solution to a problem. At each
iteration, when the standard SAT solver returns a solution, a blocking
clause [4] is added to the problem to prevent it from discovering
the same solution in future iterations. Additionally, most all-solution
SAT solvers attempt to “generalize” the solutions by applying post-
processing logic minimization or reduction techniques [7], [8], [4]. In
this manner, they convert sets of single solutions into a solution cube
which “contains” a number of individual solutions. Since the number
of solutions can be exponential to the problem size, “compacting” the
solutions at each iteration is critical for the efficiency of the solver.

For circuit-based problems, most solution reduction techniques
implicitly make use of the circuit’s Observability Don’t Care (ODC)
space to reduce the size of each solution. Informally, ODCs are signal
values that do not affect the outcome of the circuit under a set of
signal assignments. It has been shown that managing ODC signals
is an effective way of increasing the efficiency of SAT solvers for
many circuit-based problems [9], [10]. In this paper, we argue that
ODCs may also be exploited to return more compact solutions in an
all-solution SAT solver thus improving its efficiency. For example,

consider two solutions {a = 1, b = 0, c = 1} and {a = 1, b = 0, c =

0} to some problem. If the SAT solver can deduce that signal c is
a don’t care, the single solution cube {a = 1, b = 0} provides the
exact same information as the two previous solutions.

In this paper we develop techniques based on ODCs that enhance
SAT solvers for problems where all the solutions are required. Unlike
many existing techniques that reduce the size of the solution cubes
in a post-processing manner, our approach modifies the internal SAT
solver to explicitly consider don’t cares dynamically during execution
so that it dynamically reduces the size of each solution and improve
performance.

This paper is structured as follows. We briefly discuss related
work in Section II and provide background material in Section III.
Section IV presents the benefits of ODCs for all-solution SAT solvers
and introduces a novel scoring scheme used in the decision making
procedure. Section V discusses the experiments, while Section VI
concludes this work.

II. RELATED WORK

Recently, there has been much work done on all-solution SAT
solving frameworks mostly for UMC problems. Both [4] and [8]
develop all-solution SAT frameworks which use post-processing
implication graph analysis or justification procedures to reduce the
size of the cubes. In [11], a reduction algorithm is developed to
determine the “necessary” input assignments by performing a forward
traversal of the circuit. In [7], the main contribution is the use of
cofactoring to reduce the solutions cubes for UMC problems. Most
of the work on all-solution SAT solvers has been concerned with
reducing the size of the blocking clauses or the solution cubes after
they are found. In contrast, our work is concerned with using a SAT
solver that is explicitly aware of ODCs and makes decisions “on the
fly” to reduce the number of solution cubes.

III. PRELIMINARIES

In this work, the terms line, signal, and variable are used in-
terchangeably. A signal with multiple fanouts is called a stem and
each fanout is called a branch. We distinguish between a stem and
each of its branches by allocating a different SAT variable for each.
A signal is a neighbor of another signal iff they are fanins of the
same gate. A literal refers to a Boolean variable or its complement.
Over n variables, a minterm is a conjunction of exactly n literals
corresponding to each variable. A cube is a conjunction of m ≤ n
literals [12]. We say that a cube A covers another cube B, if for
every minterm in B the same minterm exists in A [12]. The cube
size refers to the number of literals it contains.

A. Observability Don’t Cares
Since there are many variations of ODCs in the literature [12],

[10], in this section we briefly describe ODCs as explained in [10].
Informally, given a combinational circuit where some lines are
assigned Boolean logic values, a signal is an ODC if assigning it a



0 or 1 logic value does not change the value of any primary output.
In a SAT problem derived from a circuit, we say that a variable is
marked lazy iff its corresponding circuit signal is an ODC and is
unassigned.
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Fig. 1. Examples showing benefits of ODCs
As an example, consider Figure 1 (i) assuming that signal e is

a primary output and all variables are unassigned. When line d is
assigned a logic 0, the value on the output e remains the same
regardless of the logic value on lines a, b, c. As such, variables a, b, c
are declared ODCs and marked lazy.

B. All-solution SAT solvers
An all-solution SAT solver finds all the satisfiable variable assign-

ments to a Boolean satisfiability problem. To distinguish between
a SAT solver that finds a single solution and one that finds all the
solutions to a particular problem, we refer to the former as a standard
SAT solver. Figure 2 presents a typical algorithm for an all-solution
SAT solver.

1: A = ∅

2: while (1) do

3: while (decide()) do

4: if ( deduce() = conflict) then

5: blevel = analyze conflict()
6: if ( blevel = 0) then

7: if (A = ∅) then

8: return UNSATISFIABLE
9: else

10: return DONE
11: end if

12: end if

13: backtrack(blevel)
14: end if

15: end while

16: // problem is SATISFIABLE
17: full sol = get assignments()
18: reduced = reduce assignments(full sol)
19: A = A ∪ reduced

20: add blocking clause(reduced)
21: blevel = analyze conflict()
22: if (blevel = 0) then

23: return DONE
24: end if

25: backtrack(blevel)
26: end while

Fig. 2. All-solution SAT solver

In Figure 2, the while-loop in lines 3–15 is a standard DPLL-based
SAT algorithm [13]. Once a satisfying assignment (solution) is found,
the get assignments() and add blocking clause() pro-
cedures generate a blocking clause [4] in terms of variables of interest
to prevent finding the same solution in subsequent iterations as well
as to force the solver to backtrack and look for other solutions.
Depending on the application, variables of interest may be primary
inputs, state variables, or variables corresponding to cuts through
the implication graph or the original problem circuit [7], [8], [4].
After each found solution, all-solution SAT solvers typically call a
procedure such as reduce assignments() to generate cubes to
cover the found solutions [7], [8], [4].

IV. ODCS AND ALL-SOLUTION SAT
In an all-solution SAT solver, the size of each solution cube

returned by the procedures get assignments() and re-
duce assignments() of the algorithm in Figure 2 is critical
to the engine’s overall efficiency. A solution cube containing fewer
literals covers more solutions and reduces the number of iterations.
In this regard, SAT solvers that exploit ODCs can have the inher-
ent advantage of finding small solution cubes before applying the
reduce assignments() procedure [9], [10].

As an example consider the circuit in Figure 1 (ii) where the
objective is to find all primary input assignments such that the
output is 1. An all-solution SAT solver using observability don’t
cares can make the assignment f = 1 leading to signals c, d, e, g
becoming ODCs and resulting in the solution {a = 1, b = 1}.
Similarly, in the next iteration it can make the assignment g = 1

leading to signals a, b, f becoming ODCs and resulting in the solution
{c = 1, d = 1, e = 1}. In contrast, an all-solution SAT solver
without any assignment reduction procedures needs up to 11 iterations
to find all the 11 solution minterms (8 minterms covered by the
cube {a = 1, b = 1} plus four minterms covered by the cube
{c = 1, d = 1, e = 1} minus the common minterm {a = 1, b =

1, c = 1, d = 1, e = 1}).
In [9], [10], ODCs were used to improve the performance of SAT

solvers without considering their effect on the size of the satisfying
assignments. Here, our objective is to use ODCs to achieve solution
cubes with few literals and thus improve the performance of all-
solution SAT solvers.

A. Variable Assignment Procedure
In [10] it was shown that the decision making procedure of DPLL-

based SAT solvers can safely avoid deciding on ODC variables.
For most circuit-based SAT problems, the problem constraints are
constructed in such a way that the value of ODC variables is
irrelevant. It can be proved that for common circuit-based SAT
problems, ODC signals can be altogether ignored by the all-solution
SAT solver’s assignment procedure without affecting the outcome of
the SAT problem. The complete proof can be found [14].

Since assignments lead to Boolean Constraint Propagation (BCP)
and for most problems BCP can take over 80% of the overall
run time [13], ignoring assignments on ODC or lazy variables can
decrease the SAT solver’s overhead and potentially increase its
efficiency. In our ODC aware SAT solver, we ignore all lazy variables
in the variable assignment procedure.

B. Decision Making Procedure
An all-solution SAT solver using ODCs can reduce the number

of iterations needed to find all solutions and improve its run time
by tuning its decision making heuristic in favor of small solution
cubes. For example, consider the circuit partitioned in fanout free
cones as illustrated in Figure 3. A SAT solver such as [10] decides
on variables such that the largest cones become lazy first. In this
respect, decisions are made such that cones C and D are marked
lazy first. Assuming that primary inputs are the variables of interest,
to generate small solutions cubes, decisions should be made to mark
cones A and B as lazy first since they produce the most number of
lazy primary inputs.
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Fig. 3. Partition of circuit in fanout free cones

In the rest of this paper we consider primary inputs as the variables
of interest, but the procedures can be easily modified for other
variables of interest such as state variables or variables corresponding
to cuts in the circuit. We develop a decision making procedure that
branches on variables with the highest scores similar to VSIDS [13].
The score for each variable is calculated in a quick pre-processing
phase that takes linear time with respect to the problem size. The
novel scoring scheme is based on a heuristic that assesses a variable’s
ability to mark primary inputs lazy. The objective of each decision
is to branch on the variable which has the highest probability of



1: //Calculate Pip value
2: for all (gates g in a breadth-first manner) do

3: if g is primary input then

4: if number of fanouts for g > 19 then

5: g.Pip=1
6: else

7: g.Pip=100− 5∗(number of fanouts-1)
8: end if

9: else

10: for all (fanins pred) do

11: g.Pip=g.Pip + pred.Pip
12: end for

13: if number of fanouts for line > 3 then

14: line.Pip = line.Pip/4
15: else

16: line.Pip = line.Pip/(number of fanouts)
17: end if

18: end if

19: //Initialize Lipi
20: g.Lipi 0 = 0
21: g.Lipi 1 = 0
22: end for

23: //Calculate Lipi value
24: for all (gates g in a breadth-first manner) do

25: for all (fanins line) do

26: if (g controlling value = 0) then

27: for all (fanins neighbor) do

28: line.Lipi 0 = line.Lipi 0+neighbor.Pip
29: end for

30: else

31: for all (fanins neighbor) do

32: line.Lipi 1 = line.Lipi 1+neighbor.Pip
33: end for

34: end if

35: line.Lipi = max(line.Lipi 0,line.Lipi 1)
36: end for

37: end for

Fig. 4. Calculating Lipi

marking as many primary inputs lazy as possible. As such, when a
satisfying assignment is found in terms of the variables of interest,
many of the variables may be lazy and left unassigned leading to a
small solution cube.

We call the variable score Lazy Influence on Primary Inputs or
Lipi for short. The Lipi value for all variables is found in a pre-
processing phase using two breadth-first traversals of the circuit. In
the first pass, an intermediate value called Primary Input Predecessor
or Pip is calculated for each variable. For each line, Pip is based on
the number of primary inputs in its transitive fanin while taking into
account its number of fanouts or branches. There are two Lipi scores
for each line, one for each assignment phase (0 or 1). Each Lipi
score for a line is calculated based on the number of other neighboring
lines that get marked lazy when this line takes on a controlling
value. More specifically, each Lipi score corresponds to the sum of
the Pip scores of the neighboring fanins when the particular phase
is a controlling value for the gate under consideration. Finally, the
largest of the Lipi scores for each phase is selected and used in
the branching procedure. The algorithm in Figure 4 illustrates how
the Pip and Lipi variables are calculated. Lines 1-22 calculate the
Pip value depending on the fanins and the fanout number, while
lines 23-37 calculate the Lipi score based on the Pip value of the
neighbors.

Figure 5 shows the Pip and Lipi values on a sample circuit. For
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Fig. 5. Example of Pip and Lipi assignments

example, to calculate the Pip value for signal e, we add the Pip
value of its fanins (i.e. 100 for input c + 100 for input d). The Lipi
score for e is calculated by adding the Pip value of the neighboring
lines for each phase (i.e. 100 for neighbor a + 100 for neighbor b).

Consider the circuit problem of Figure 5. Since the Lipi score
for variable a (along with b) is the largest among all variable scores,
the first decision made by the SAT solver is a = 0 (b = 0). The result
of this decision is that the primary inputs b, c and d are marked lazy.
If the problem is satisfied without backtracking on decision a = 0,
the only non-lazy primary input variable is a leading to the solution
cube {a = 0} covering 8 distinct solutions/minterms.

V. EXPERIMENTS

We develop our proposed ODC techniques on top of the SAT
solver zChaff [13] and combine them with the solution reduction
technique of [8]. We generate over 1000 problems using all of
the ISCAS’89 benchmarks where current state and next state lines
are replaced with primary inputs and primary outputs, respectively.
In these problems, an arbitrary number of primary outputs are
constrained to 0 or 1 at random and the objective is to find all of the
primary input assignments that satisfy the constraints. These problems
are similar to scenarios found in many problems such as pre-image
computation [4] and circuit optimization[6], [2]. The experiments are
run on a Sun Blade 1000 machine with a 750MHz CPU and 2.5GB
of memory.

Fig. 6. Performance comparison with/without ODCs

We first demonstrate the benefits of using a SAT solver that
accounts for ODCs within the all-solution framework. Figure 6 plots
the run time of the SAT solver with and without ODCs against each
other. Points below the diagonal line signify that our ODC techniques
result in faster run times. Since the majority of points are below the
diagonal line, we deduce that the ODC methods developed here are
effective for all-solution SAT solvers.

Fig. 7. Comparison of the justification procedure

Most all-solution SAT solvers perform a solution reduction tech-
nique after each iteration based on backward justification of the
circuit or implication graph [8], [4]. Here, we propose using the
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Fig. 8. Comparison of different decision making heuristics

computed Lipi scores during justification. During backward justifi-
cation, if there is a choice on the circuit line to justify, the line with
the greatest Lipi score is selected. Figure 7 compares the run time
of the all-solution SAT solver using a justification procedure similar
to [8] against our justification procedure based on the Lipi scores.
This result shows that when the internal SAT engine accounts for
ODCs, the Lipi score can be used during the justification procedure
to further increase the efficiency.

Figure 8 illustrates the benefits of our decision making heuristic
over three other methods. As discussed in Section IV-B, the Lipi
scoring scheme is quite effective at making decisions that produce
many lazy primary inputs, but to achieve a balance between solving
each iteration quickly and finding small solution cubes, we employ a
strategy similar to [10]. In this strategy the variable with the highest
Lipi score is selected from a set of variables with the highest VSIDS
scores. This decision making approach is found to be well suited for
all-solution SAT problems. In Figure 8 (i) our scoring scheme is
compared against a random scoring scheme to ensure its efficiency
in the general case. Figure 8 (ii) compares our approach against
the scoring scheme used in [10] which is successful in producing
the maximal number of lazy variables at each decision. In Figure 8
(iii), we compare our scoring scheme (combined Lipi and VSIDS)
against the pure Lipi scoring scheme to illustrate the trade-off
between solving for solutions quickly and finding small solution
cubes. In all cases, our decision making procedure and variable
scoring scheme is found to be the most efficient.

Method name # cubes run time wins sole wins

without ODC 128 12.8 198 17
random score 110 11.2 165 11
[10] score 107 10.4 209 23
Lipi score 116 12.5 210 21
without Lipi just. 88 10.3 233 26
all ODC dev. 83 9.1 279 60

TABLE I

EVALUATION BASED ON SEVERAL CRITERION

In Table I we demonstrate the efficiency of our proposed tech-
niques based on different criteria. Rows 2-6 represent the results of
the different strategies we compare against. Row 2 shows the results
for the all-solution SAT solver with the reduction technique from [8]
without our ODC-based developments. Rows 3, 4 and 5 represent
the results for the all-solution SAT solver using ODCs with a random
scoring scheme, with the scoring scheme from [10], and with the pure
Lipi scoring scheme, respectively. Row 6 represents the results for
the all-solution SAT solver with the reduction technique from [8]
including all our ODC developments. Finally, Row 7 presents the
results incorporating all of our ODC developments including our
Lipi justification procedure instead of the reduction technique
from [8]. Column 2 and 3 show the average number of solution
cubes and average run times in seconds for each method. For each
experiment, we give a win to the approach requiring the minimum
number of iterations. If only one approach is given a win for an
experiment, we call this condition a sole win. The number of wins

and sole wins can be used to rate the compactness of the solution
cubes for each method. Column 4 and 5 show the number of wins
and sole wins, respectively, for each approach.

The results of Table I show that our ODC developments lead to
an all-solution SAT solver with faster run times and more compact
solution cubes on average. Overall, the experimental results demon-
strate that integrating ODCs in all-solution SAT solvers is beneficial
for most problems.

VI. CONCLUSION

We demonstrated that integrating ODCs in all-solution SAT solvers
can inherently lead to a faster engine which returns smaller solutions.
Our novel variable scoring scheme is successful at biasing the
decision making procedure in favor of minimal solution cubes. As
demonstrated through many experiments, our developments result in
an overall increase in the all-solution SAT solver’s efficiency.
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